mm: only force scan in reclaim when none of the LRUs are big enough.
[linux-2.6-block.git] / mm / vmstat.c
CommitLineData
f6ac2354
CL
1/*
2 * linux/mm/vmstat.c
3 *
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
2244b95a
CL
6 *
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
f6ac2354 10 */
8f32f7e5 11#include <linux/fs.h>
f6ac2354 12#include <linux/mm.h>
4e950f6f 13#include <linux/err.h>
2244b95a 14#include <linux/module.h>
5a0e3ad6 15#include <linux/slab.h>
df9ecaba 16#include <linux/cpu.h>
c748e134 17#include <linux/vmstat.h>
e8edc6e0 18#include <linux/sched.h>
f1a5ab12 19#include <linux/math64.h>
79da826a 20#include <linux/writeback.h>
36deb0be 21#include <linux/compaction.h>
6e543d57
LD
22#include <linux/mm_inline.h>
23
24#include "internal.h"
f6ac2354 25
f8891e5e
CL
26#ifdef CONFIG_VM_EVENT_COUNTERS
27DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
28EXPORT_PER_CPU_SYMBOL(vm_event_states);
29
31f961a8 30static void sum_vm_events(unsigned long *ret)
f8891e5e 31{
9eccf2a8 32 int cpu;
f8891e5e
CL
33 int i;
34
35 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
36
31f961a8 37 for_each_online_cpu(cpu) {
f8891e5e
CL
38 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
39
f8891e5e
CL
40 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
41 ret[i] += this->event[i];
42 }
43}
44
45/*
46 * Accumulate the vm event counters across all CPUs.
47 * The result is unavoidably approximate - it can change
48 * during and after execution of this function.
49*/
50void all_vm_events(unsigned long *ret)
51{
b5be1132 52 get_online_cpus();
31f961a8 53 sum_vm_events(ret);
b5be1132 54 put_online_cpus();
f8891e5e 55}
32dd66fc 56EXPORT_SYMBOL_GPL(all_vm_events);
f8891e5e 57
f8891e5e
CL
58/*
59 * Fold the foreign cpu events into our own.
60 *
61 * This is adding to the events on one processor
62 * but keeps the global counts constant.
63 */
64void vm_events_fold_cpu(int cpu)
65{
66 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
67 int i;
68
69 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
70 count_vm_events(i, fold_state->event[i]);
71 fold_state->event[i] = 0;
72 }
73}
f8891e5e
CL
74
75#endif /* CONFIG_VM_EVENT_COUNTERS */
76
2244b95a
CL
77/*
78 * Manage combined zone based / global counters
79 *
80 * vm_stat contains the global counters
81 */
a1cb2c60 82atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
2244b95a
CL
83EXPORT_SYMBOL(vm_stat);
84
85#ifdef CONFIG_SMP
86
b44129b3 87int calculate_pressure_threshold(struct zone *zone)
88f5acf8
MG
88{
89 int threshold;
90 int watermark_distance;
91
92 /*
93 * As vmstats are not up to date, there is drift between the estimated
94 * and real values. For high thresholds and a high number of CPUs, it
95 * is possible for the min watermark to be breached while the estimated
96 * value looks fine. The pressure threshold is a reduced value such
97 * that even the maximum amount of drift will not accidentally breach
98 * the min watermark
99 */
100 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
101 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
102
103 /*
104 * Maximum threshold is 125
105 */
106 threshold = min(125, threshold);
107
108 return threshold;
109}
110
b44129b3 111int calculate_normal_threshold(struct zone *zone)
df9ecaba
CL
112{
113 int threshold;
114 int mem; /* memory in 128 MB units */
115
116 /*
117 * The threshold scales with the number of processors and the amount
118 * of memory per zone. More memory means that we can defer updates for
119 * longer, more processors could lead to more contention.
120 * fls() is used to have a cheap way of logarithmic scaling.
121 *
122 * Some sample thresholds:
123 *
124 * Threshold Processors (fls) Zonesize fls(mem+1)
125 * ------------------------------------------------------------------
126 * 8 1 1 0.9-1 GB 4
127 * 16 2 2 0.9-1 GB 4
128 * 20 2 2 1-2 GB 5
129 * 24 2 2 2-4 GB 6
130 * 28 2 2 4-8 GB 7
131 * 32 2 2 8-16 GB 8
132 * 4 2 2 <128M 1
133 * 30 4 3 2-4 GB 5
134 * 48 4 3 8-16 GB 8
135 * 32 8 4 1-2 GB 4
136 * 32 8 4 0.9-1GB 4
137 * 10 16 5 <128M 1
138 * 40 16 5 900M 4
139 * 70 64 7 2-4 GB 5
140 * 84 64 7 4-8 GB 6
141 * 108 512 9 4-8 GB 6
142 * 125 1024 10 8-16 GB 8
143 * 125 1024 10 16-32 GB 9
144 */
145
b40da049 146 mem = zone->managed_pages >> (27 - PAGE_SHIFT);
df9ecaba
CL
147
148 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
149
150 /*
151 * Maximum threshold is 125
152 */
153 threshold = min(125, threshold);
154
155 return threshold;
156}
2244b95a
CL
157
158/*
df9ecaba 159 * Refresh the thresholds for each zone.
2244b95a 160 */
a6cccdc3 161void refresh_zone_stat_thresholds(void)
2244b95a 162{
df9ecaba
CL
163 struct zone *zone;
164 int cpu;
165 int threshold;
166
ee99c71c 167 for_each_populated_zone(zone) {
aa454840
CL
168 unsigned long max_drift, tolerate_drift;
169
b44129b3 170 threshold = calculate_normal_threshold(zone);
df9ecaba
CL
171
172 for_each_online_cpu(cpu)
99dcc3e5
CL
173 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
174 = threshold;
aa454840
CL
175
176 /*
177 * Only set percpu_drift_mark if there is a danger that
178 * NR_FREE_PAGES reports the low watermark is ok when in fact
179 * the min watermark could be breached by an allocation
180 */
181 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
182 max_drift = num_online_cpus() * threshold;
183 if (max_drift > tolerate_drift)
184 zone->percpu_drift_mark = high_wmark_pages(zone) +
185 max_drift;
df9ecaba 186 }
2244b95a
CL
187}
188
b44129b3
MG
189void set_pgdat_percpu_threshold(pg_data_t *pgdat,
190 int (*calculate_pressure)(struct zone *))
88f5acf8
MG
191{
192 struct zone *zone;
193 int cpu;
194 int threshold;
195 int i;
196
88f5acf8
MG
197 for (i = 0; i < pgdat->nr_zones; i++) {
198 zone = &pgdat->node_zones[i];
199 if (!zone->percpu_drift_mark)
200 continue;
201
b44129b3
MG
202 threshold = (*calculate_pressure)(zone);
203 for_each_possible_cpu(cpu)
88f5acf8
MG
204 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
205 = threshold;
206 }
88f5acf8
MG
207}
208
2244b95a
CL
209/*
210 * For use when we know that interrupts are disabled.
211 */
212void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
213 int delta)
214{
12938a92
CL
215 struct per_cpu_pageset __percpu *pcp = zone->pageset;
216 s8 __percpu *p = pcp->vm_stat_diff + item;
2244b95a 217 long x;
12938a92
CL
218 long t;
219
220 x = delta + __this_cpu_read(*p);
2244b95a 221
12938a92 222 t = __this_cpu_read(pcp->stat_threshold);
2244b95a 223
12938a92 224 if (unlikely(x > t || x < -t)) {
2244b95a
CL
225 zone_page_state_add(x, zone, item);
226 x = 0;
227 }
12938a92 228 __this_cpu_write(*p, x);
2244b95a
CL
229}
230EXPORT_SYMBOL(__mod_zone_page_state);
231
2244b95a
CL
232/*
233 * Optimized increment and decrement functions.
234 *
235 * These are only for a single page and therefore can take a struct page *
236 * argument instead of struct zone *. This allows the inclusion of the code
237 * generated for page_zone(page) into the optimized functions.
238 *
239 * No overflow check is necessary and therefore the differential can be
240 * incremented or decremented in place which may allow the compilers to
241 * generate better code.
2244b95a
CL
242 * The increment or decrement is known and therefore one boundary check can
243 * be omitted.
244 *
df9ecaba
CL
245 * NOTE: These functions are very performance sensitive. Change only
246 * with care.
247 *
2244b95a
CL
248 * Some processors have inc/dec instructions that are atomic vs an interrupt.
249 * However, the code must first determine the differential location in a zone
250 * based on the processor number and then inc/dec the counter. There is no
251 * guarantee without disabling preemption that the processor will not change
252 * in between and therefore the atomicity vs. interrupt cannot be exploited
253 * in a useful way here.
254 */
c8785385 255void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
2244b95a 256{
12938a92
CL
257 struct per_cpu_pageset __percpu *pcp = zone->pageset;
258 s8 __percpu *p = pcp->vm_stat_diff + item;
259 s8 v, t;
2244b95a 260
908ee0f1 261 v = __this_cpu_inc_return(*p);
12938a92
CL
262 t = __this_cpu_read(pcp->stat_threshold);
263 if (unlikely(v > t)) {
264 s8 overstep = t >> 1;
df9ecaba 265
12938a92
CL
266 zone_page_state_add(v + overstep, zone, item);
267 __this_cpu_write(*p, -overstep);
2244b95a
CL
268 }
269}
ca889e6c
CL
270
271void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
272{
273 __inc_zone_state(page_zone(page), item);
274}
2244b95a
CL
275EXPORT_SYMBOL(__inc_zone_page_state);
276
c8785385 277void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
2244b95a 278{
12938a92
CL
279 struct per_cpu_pageset __percpu *pcp = zone->pageset;
280 s8 __percpu *p = pcp->vm_stat_diff + item;
281 s8 v, t;
2244b95a 282
908ee0f1 283 v = __this_cpu_dec_return(*p);
12938a92
CL
284 t = __this_cpu_read(pcp->stat_threshold);
285 if (unlikely(v < - t)) {
286 s8 overstep = t >> 1;
2244b95a 287
12938a92
CL
288 zone_page_state_add(v - overstep, zone, item);
289 __this_cpu_write(*p, overstep);
2244b95a
CL
290 }
291}
c8785385
CL
292
293void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
294{
295 __dec_zone_state(page_zone(page), item);
296}
2244b95a
CL
297EXPORT_SYMBOL(__dec_zone_page_state);
298
4156153c 299#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
7c839120
CL
300/*
301 * If we have cmpxchg_local support then we do not need to incur the overhead
302 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
303 *
304 * mod_state() modifies the zone counter state through atomic per cpu
305 * operations.
306 *
307 * Overstep mode specifies how overstep should handled:
308 * 0 No overstepping
309 * 1 Overstepping half of threshold
310 * -1 Overstepping minus half of threshold
311*/
312static inline void mod_state(struct zone *zone,
313 enum zone_stat_item item, int delta, int overstep_mode)
314{
315 struct per_cpu_pageset __percpu *pcp = zone->pageset;
316 s8 __percpu *p = pcp->vm_stat_diff + item;
317 long o, n, t, z;
318
319 do {
320 z = 0; /* overflow to zone counters */
321
322 /*
323 * The fetching of the stat_threshold is racy. We may apply
324 * a counter threshold to the wrong the cpu if we get
d3bc2367
CL
325 * rescheduled while executing here. However, the next
326 * counter update will apply the threshold again and
327 * therefore bring the counter under the threshold again.
328 *
329 * Most of the time the thresholds are the same anyways
330 * for all cpus in a zone.
7c839120
CL
331 */
332 t = this_cpu_read(pcp->stat_threshold);
333
334 o = this_cpu_read(*p);
335 n = delta + o;
336
337 if (n > t || n < -t) {
338 int os = overstep_mode * (t >> 1) ;
339
340 /* Overflow must be added to zone counters */
341 z = n + os;
342 n = -os;
343 }
344 } while (this_cpu_cmpxchg(*p, o, n) != o);
345
346 if (z)
347 zone_page_state_add(z, zone, item);
348}
349
350void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
351 int delta)
352{
353 mod_state(zone, item, delta, 0);
354}
355EXPORT_SYMBOL(mod_zone_page_state);
356
357void inc_zone_state(struct zone *zone, enum zone_stat_item item)
358{
359 mod_state(zone, item, 1, 1);
360}
361
362void inc_zone_page_state(struct page *page, enum zone_stat_item item)
363{
364 mod_state(page_zone(page), item, 1, 1);
365}
366EXPORT_SYMBOL(inc_zone_page_state);
367
368void dec_zone_page_state(struct page *page, enum zone_stat_item item)
369{
370 mod_state(page_zone(page), item, -1, -1);
371}
372EXPORT_SYMBOL(dec_zone_page_state);
373#else
374/*
375 * Use interrupt disable to serialize counter updates
376 */
377void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
378 int delta)
379{
380 unsigned long flags;
381
382 local_irq_save(flags);
383 __mod_zone_page_state(zone, item, delta);
384 local_irq_restore(flags);
385}
386EXPORT_SYMBOL(mod_zone_page_state);
387
ca889e6c
CL
388void inc_zone_state(struct zone *zone, enum zone_stat_item item)
389{
390 unsigned long flags;
391
392 local_irq_save(flags);
393 __inc_zone_state(zone, item);
394 local_irq_restore(flags);
395}
396
2244b95a
CL
397void inc_zone_page_state(struct page *page, enum zone_stat_item item)
398{
399 unsigned long flags;
400 struct zone *zone;
2244b95a
CL
401
402 zone = page_zone(page);
403 local_irq_save(flags);
ca889e6c 404 __inc_zone_state(zone, item);
2244b95a
CL
405 local_irq_restore(flags);
406}
407EXPORT_SYMBOL(inc_zone_page_state);
408
409void dec_zone_page_state(struct page *page, enum zone_stat_item item)
410{
411 unsigned long flags;
2244b95a 412
2244b95a 413 local_irq_save(flags);
a302eb4e 414 __dec_zone_page_state(page, item);
2244b95a
CL
415 local_irq_restore(flags);
416}
417EXPORT_SYMBOL(dec_zone_page_state);
7c839120 418#endif
2244b95a 419
4edb0748
CL
420static inline void fold_diff(int *diff)
421{
422 int i;
423
424 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
425 if (diff[i])
426 atomic_long_add(diff[i], &vm_stat[i]);
427}
428
2244b95a 429/*
2bb921e5 430 * Update the zone counters for the current cpu.
a7f75e25 431 *
4037d452
CL
432 * Note that refresh_cpu_vm_stats strives to only access
433 * node local memory. The per cpu pagesets on remote zones are placed
434 * in the memory local to the processor using that pageset. So the
435 * loop over all zones will access a series of cachelines local to
436 * the processor.
437 *
438 * The call to zone_page_state_add updates the cachelines with the
439 * statistics in the remote zone struct as well as the global cachelines
440 * with the global counters. These could cause remote node cache line
441 * bouncing and will have to be only done when necessary.
2244b95a 442 */
fbc2edb0 443static void refresh_cpu_vm_stats(void)
2244b95a
CL
444{
445 struct zone *zone;
446 int i;
a7f75e25 447 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
2244b95a 448
ee99c71c 449 for_each_populated_zone(zone) {
fbc2edb0 450 struct per_cpu_pageset __percpu *p = zone->pageset;
2244b95a 451
fbc2edb0
CL
452 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
453 int v;
2244b95a 454
fbc2edb0
CL
455 v = this_cpu_xchg(p->vm_stat_diff[i], 0);
456 if (v) {
a7f75e25 457
a7f75e25
CL
458 atomic_long_add(v, &zone->vm_stat[i]);
459 global_diff[i] += v;
4037d452
CL
460#ifdef CONFIG_NUMA
461 /* 3 seconds idle till flush */
fbc2edb0 462 __this_cpu_write(p->expire, 3);
4037d452 463#endif
2244b95a 464 }
fbc2edb0 465 }
468fd62e 466 cond_resched();
4037d452
CL
467#ifdef CONFIG_NUMA
468 /*
469 * Deal with draining the remote pageset of this
470 * processor
471 *
472 * Check if there are pages remaining in this pageset
473 * if not then there is nothing to expire.
474 */
fbc2edb0
CL
475 if (!__this_cpu_read(p->expire) ||
476 !__this_cpu_read(p->pcp.count))
4037d452
CL
477 continue;
478
479 /*
480 * We never drain zones local to this processor.
481 */
482 if (zone_to_nid(zone) == numa_node_id()) {
fbc2edb0 483 __this_cpu_write(p->expire, 0);
4037d452
CL
484 continue;
485 }
486
fbc2edb0
CL
487
488 if (__this_cpu_dec_return(p->expire))
4037d452
CL
489 continue;
490
fbc2edb0
CL
491 if (__this_cpu_read(p->pcp.count))
492 drain_zone_pages(zone, __this_cpu_ptr(&p->pcp));
4037d452 493#endif
2244b95a 494 }
4edb0748 495 fold_diff(global_diff);
2244b95a
CL
496}
497
2bb921e5
CL
498/*
499 * Fold the data for an offline cpu into the global array.
500 * There cannot be any access by the offline cpu and therefore
501 * synchronization is simplified.
502 */
503void cpu_vm_stats_fold(int cpu)
504{
505 struct zone *zone;
506 int i;
507 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
508
509 for_each_populated_zone(zone) {
510 struct per_cpu_pageset *p;
511
512 p = per_cpu_ptr(zone->pageset, cpu);
513
514 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
515 if (p->vm_stat_diff[i]) {
516 int v;
517
518 v = p->vm_stat_diff[i];
519 p->vm_stat_diff[i] = 0;
520 atomic_long_add(v, &zone->vm_stat[i]);
521 global_diff[i] += v;
522 }
523 }
524
4edb0748 525 fold_diff(global_diff);
2bb921e5
CL
526}
527
40f4b1ea
CS
528/*
529 * this is only called if !populated_zone(zone), which implies no other users of
530 * pset->vm_stat_diff[] exsist.
531 */
5a883813
MK
532void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
533{
534 int i;
535
536 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
537 if (pset->vm_stat_diff[i]) {
538 int v = pset->vm_stat_diff[i];
539 pset->vm_stat_diff[i] = 0;
540 atomic_long_add(v, &zone->vm_stat[i]);
541 atomic_long_add(v, &vm_stat[i]);
542 }
543}
2244b95a
CL
544#endif
545
ca889e6c
CL
546#ifdef CONFIG_NUMA
547/*
548 * zonelist = the list of zones passed to the allocator
549 * z = the zone from which the allocation occurred.
550 *
551 * Must be called with interrupts disabled.
78afd561
AK
552 *
553 * When __GFP_OTHER_NODE is set assume the node of the preferred
554 * zone is the local node. This is useful for daemons who allocate
555 * memory on behalf of other processes.
ca889e6c 556 */
78afd561 557void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
ca889e6c 558{
18ea7e71 559 if (z->zone_pgdat == preferred_zone->zone_pgdat) {
ca889e6c
CL
560 __inc_zone_state(z, NUMA_HIT);
561 } else {
562 __inc_zone_state(z, NUMA_MISS);
18ea7e71 563 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
ca889e6c 564 }
78afd561
AK
565 if (z->node == ((flags & __GFP_OTHER_NODE) ?
566 preferred_zone->node : numa_node_id()))
ca889e6c
CL
567 __inc_zone_state(z, NUMA_LOCAL);
568 else
569 __inc_zone_state(z, NUMA_OTHER);
570}
571#endif
572
d7a5752c 573#ifdef CONFIG_COMPACTION
36deb0be 574
d7a5752c
MG
575struct contig_page_info {
576 unsigned long free_pages;
577 unsigned long free_blocks_total;
578 unsigned long free_blocks_suitable;
579};
580
581/*
582 * Calculate the number of free pages in a zone, how many contiguous
583 * pages are free and how many are large enough to satisfy an allocation of
584 * the target size. Note that this function makes no attempt to estimate
585 * how many suitable free blocks there *might* be if MOVABLE pages were
586 * migrated. Calculating that is possible, but expensive and can be
587 * figured out from userspace
588 */
589static void fill_contig_page_info(struct zone *zone,
590 unsigned int suitable_order,
591 struct contig_page_info *info)
592{
593 unsigned int order;
594
595 info->free_pages = 0;
596 info->free_blocks_total = 0;
597 info->free_blocks_suitable = 0;
598
599 for (order = 0; order < MAX_ORDER; order++) {
600 unsigned long blocks;
601
602 /* Count number of free blocks */
603 blocks = zone->free_area[order].nr_free;
604 info->free_blocks_total += blocks;
605
606 /* Count free base pages */
607 info->free_pages += blocks << order;
608
609 /* Count the suitable free blocks */
610 if (order >= suitable_order)
611 info->free_blocks_suitable += blocks <<
612 (order - suitable_order);
613 }
614}
f1a5ab12
MG
615
616/*
617 * A fragmentation index only makes sense if an allocation of a requested
618 * size would fail. If that is true, the fragmentation index indicates
619 * whether external fragmentation or a lack of memory was the problem.
620 * The value can be used to determine if page reclaim or compaction
621 * should be used
622 */
56de7263 623static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
f1a5ab12
MG
624{
625 unsigned long requested = 1UL << order;
626
627 if (!info->free_blocks_total)
628 return 0;
629
630 /* Fragmentation index only makes sense when a request would fail */
631 if (info->free_blocks_suitable)
632 return -1000;
633
634 /*
635 * Index is between 0 and 1 so return within 3 decimal places
636 *
637 * 0 => allocation would fail due to lack of memory
638 * 1 => allocation would fail due to fragmentation
639 */
640 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
641}
56de7263
MG
642
643/* Same as __fragmentation index but allocs contig_page_info on stack */
644int fragmentation_index(struct zone *zone, unsigned int order)
645{
646 struct contig_page_info info;
647
648 fill_contig_page_info(zone, order, &info);
649 return __fragmentation_index(order, &info);
650}
d7a5752c
MG
651#endif
652
653#if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
8f32f7e5 654#include <linux/proc_fs.h>
f6ac2354
CL
655#include <linux/seq_file.h>
656
467c996c
MG
657static char * const migratetype_names[MIGRATE_TYPES] = {
658 "Unmovable",
659 "Reclaimable",
660 "Movable",
661 "Reserve",
47118af0
MN
662#ifdef CONFIG_CMA
663 "CMA",
664#endif
194159fb 665#ifdef CONFIG_MEMORY_ISOLATION
91446b06 666 "Isolate",
194159fb 667#endif
467c996c
MG
668};
669
f6ac2354
CL
670static void *frag_start(struct seq_file *m, loff_t *pos)
671{
672 pg_data_t *pgdat;
673 loff_t node = *pos;
674 for (pgdat = first_online_pgdat();
675 pgdat && node;
676 pgdat = next_online_pgdat(pgdat))
677 --node;
678
679 return pgdat;
680}
681
682static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
683{
684 pg_data_t *pgdat = (pg_data_t *)arg;
685
686 (*pos)++;
687 return next_online_pgdat(pgdat);
688}
689
690static void frag_stop(struct seq_file *m, void *arg)
691{
692}
693
467c996c
MG
694/* Walk all the zones in a node and print using a callback */
695static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
696 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
f6ac2354 697{
f6ac2354
CL
698 struct zone *zone;
699 struct zone *node_zones = pgdat->node_zones;
700 unsigned long flags;
f6ac2354
CL
701
702 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
703 if (!populated_zone(zone))
704 continue;
705
706 spin_lock_irqsave(&zone->lock, flags);
467c996c 707 print(m, pgdat, zone);
f6ac2354 708 spin_unlock_irqrestore(&zone->lock, flags);
467c996c
MG
709 }
710}
d7a5752c 711#endif
467c996c 712
0d6617c7 713#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
fa25c503
KM
714#ifdef CONFIG_ZONE_DMA
715#define TEXT_FOR_DMA(xx) xx "_dma",
716#else
717#define TEXT_FOR_DMA(xx)
718#endif
719
720#ifdef CONFIG_ZONE_DMA32
721#define TEXT_FOR_DMA32(xx) xx "_dma32",
722#else
723#define TEXT_FOR_DMA32(xx)
724#endif
725
726#ifdef CONFIG_HIGHMEM
727#define TEXT_FOR_HIGHMEM(xx) xx "_high",
728#else
729#define TEXT_FOR_HIGHMEM(xx)
730#endif
731
732#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
733 TEXT_FOR_HIGHMEM(xx) xx "_movable",
734
735const char * const vmstat_text[] = {
736 /* Zoned VM counters */
737 "nr_free_pages",
81c0a2bb 738 "nr_alloc_batch",
fa25c503
KM
739 "nr_inactive_anon",
740 "nr_active_anon",
741 "nr_inactive_file",
742 "nr_active_file",
743 "nr_unevictable",
744 "nr_mlock",
745 "nr_anon_pages",
746 "nr_mapped",
747 "nr_file_pages",
748 "nr_dirty",
749 "nr_writeback",
750 "nr_slab_reclaimable",
751 "nr_slab_unreclaimable",
752 "nr_page_table_pages",
753 "nr_kernel_stack",
754 "nr_unstable",
755 "nr_bounce",
756 "nr_vmscan_write",
49ea7eb6 757 "nr_vmscan_immediate_reclaim",
fa25c503
KM
758 "nr_writeback_temp",
759 "nr_isolated_anon",
760 "nr_isolated_file",
761 "nr_shmem",
762 "nr_dirtied",
763 "nr_written",
764
765#ifdef CONFIG_NUMA
766 "numa_hit",
767 "numa_miss",
768 "numa_foreign",
769 "numa_interleave",
770 "numa_local",
771 "numa_other",
772#endif
a528910e
JW
773 "workingset_refault",
774 "workingset_activate",
449dd698 775 "workingset_nodereclaim",
fa25c503 776 "nr_anon_transparent_hugepages",
d1ce749a 777 "nr_free_cma",
fa25c503
KM
778 "nr_dirty_threshold",
779 "nr_dirty_background_threshold",
780
781#ifdef CONFIG_VM_EVENT_COUNTERS
782 "pgpgin",
783 "pgpgout",
784 "pswpin",
785 "pswpout",
786
787 TEXTS_FOR_ZONES("pgalloc")
788
789 "pgfree",
790 "pgactivate",
791 "pgdeactivate",
792
793 "pgfault",
794 "pgmajfault",
795
796 TEXTS_FOR_ZONES("pgrefill")
904249aa
YH
797 TEXTS_FOR_ZONES("pgsteal_kswapd")
798 TEXTS_FOR_ZONES("pgsteal_direct")
fa25c503
KM
799 TEXTS_FOR_ZONES("pgscan_kswapd")
800 TEXTS_FOR_ZONES("pgscan_direct")
68243e76 801 "pgscan_direct_throttle",
fa25c503
KM
802
803#ifdef CONFIG_NUMA
804 "zone_reclaim_failed",
805#endif
806 "pginodesteal",
807 "slabs_scanned",
fa25c503
KM
808 "kswapd_inodesteal",
809 "kswapd_low_wmark_hit_quickly",
810 "kswapd_high_wmark_hit_quickly",
fa25c503
KM
811 "pageoutrun",
812 "allocstall",
813
814 "pgrotated",
815
5509a5d2
DH
816 "drop_pagecache",
817 "drop_slab",
818
03c5a6e1
MG
819#ifdef CONFIG_NUMA_BALANCING
820 "numa_pte_updates",
72403b4a 821 "numa_huge_pte_updates",
03c5a6e1
MG
822 "numa_hint_faults",
823 "numa_hint_faults_local",
824 "numa_pages_migrated",
825#endif
5647bc29
MG
826#ifdef CONFIG_MIGRATION
827 "pgmigrate_success",
828 "pgmigrate_fail",
829#endif
fa25c503 830#ifdef CONFIG_COMPACTION
397487db
MG
831 "compact_migrate_scanned",
832 "compact_free_scanned",
833 "compact_isolated",
fa25c503
KM
834 "compact_stall",
835 "compact_fail",
836 "compact_success",
837#endif
838
839#ifdef CONFIG_HUGETLB_PAGE
840 "htlb_buddy_alloc_success",
841 "htlb_buddy_alloc_fail",
842#endif
843 "unevictable_pgs_culled",
844 "unevictable_pgs_scanned",
845 "unevictable_pgs_rescued",
846 "unevictable_pgs_mlocked",
847 "unevictable_pgs_munlocked",
848 "unevictable_pgs_cleared",
849 "unevictable_pgs_stranded",
fa25c503
KM
850
851#ifdef CONFIG_TRANSPARENT_HUGEPAGE
852 "thp_fault_alloc",
853 "thp_fault_fallback",
854 "thp_collapse_alloc",
855 "thp_collapse_alloc_failed",
856 "thp_split",
d8a8e1f0
KS
857 "thp_zero_page_alloc",
858 "thp_zero_page_alloc_failed",
fa25c503 859#endif
ec659934 860#ifdef CONFIG_DEBUG_TLBFLUSH
6df46865 861#ifdef CONFIG_SMP
9824cf97
DH
862 "nr_tlb_remote_flush",
863 "nr_tlb_remote_flush_received",
ec659934 864#endif /* CONFIG_SMP */
9824cf97
DH
865 "nr_tlb_local_flush_all",
866 "nr_tlb_local_flush_one",
ec659934 867#endif /* CONFIG_DEBUG_TLBFLUSH */
fa25c503
KM
868
869#endif /* CONFIG_VM_EVENTS_COUNTERS */
870};
0d6617c7 871#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
fa25c503
KM
872
873
d7a5752c 874#ifdef CONFIG_PROC_FS
467c996c
MG
875static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
876 struct zone *zone)
877{
878 int order;
879
880 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
881 for (order = 0; order < MAX_ORDER; ++order)
882 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
883 seq_putc(m, '\n');
884}
885
886/*
887 * This walks the free areas for each zone.
888 */
889static int frag_show(struct seq_file *m, void *arg)
890{
891 pg_data_t *pgdat = (pg_data_t *)arg;
892 walk_zones_in_node(m, pgdat, frag_show_print);
893 return 0;
894}
895
896static void pagetypeinfo_showfree_print(struct seq_file *m,
897 pg_data_t *pgdat, struct zone *zone)
898{
899 int order, mtype;
900
901 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
902 seq_printf(m, "Node %4d, zone %8s, type %12s ",
903 pgdat->node_id,
904 zone->name,
905 migratetype_names[mtype]);
906 for (order = 0; order < MAX_ORDER; ++order) {
907 unsigned long freecount = 0;
908 struct free_area *area;
909 struct list_head *curr;
910
911 area = &(zone->free_area[order]);
912
913 list_for_each(curr, &area->free_list[mtype])
914 freecount++;
915 seq_printf(m, "%6lu ", freecount);
916 }
f6ac2354
CL
917 seq_putc(m, '\n');
918 }
467c996c
MG
919}
920
921/* Print out the free pages at each order for each migatetype */
922static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
923{
924 int order;
925 pg_data_t *pgdat = (pg_data_t *)arg;
926
927 /* Print header */
928 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
929 for (order = 0; order < MAX_ORDER; ++order)
930 seq_printf(m, "%6d ", order);
931 seq_putc(m, '\n');
932
933 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
934
935 return 0;
936}
937
938static void pagetypeinfo_showblockcount_print(struct seq_file *m,
939 pg_data_t *pgdat, struct zone *zone)
940{
941 int mtype;
942 unsigned long pfn;
943 unsigned long start_pfn = zone->zone_start_pfn;
108bcc96 944 unsigned long end_pfn = zone_end_pfn(zone);
467c996c
MG
945 unsigned long count[MIGRATE_TYPES] = { 0, };
946
947 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
948 struct page *page;
949
950 if (!pfn_valid(pfn))
951 continue;
952
953 page = pfn_to_page(pfn);
eb33575c
MG
954
955 /* Watch for unexpected holes punched in the memmap */
956 if (!memmap_valid_within(pfn, page, zone))
e80d6a24 957 continue;
eb33575c 958
467c996c
MG
959 mtype = get_pageblock_migratetype(page);
960
e80d6a24
MG
961 if (mtype < MIGRATE_TYPES)
962 count[mtype]++;
467c996c
MG
963 }
964
965 /* Print counts */
966 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
967 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
968 seq_printf(m, "%12lu ", count[mtype]);
969 seq_putc(m, '\n');
970}
971
972/* Print out the free pages at each order for each migratetype */
973static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
974{
975 int mtype;
976 pg_data_t *pgdat = (pg_data_t *)arg;
977
978 seq_printf(m, "\n%-23s", "Number of blocks type ");
979 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
980 seq_printf(m, "%12s ", migratetype_names[mtype]);
981 seq_putc(m, '\n');
982 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
983
984 return 0;
985}
986
987/*
988 * This prints out statistics in relation to grouping pages by mobility.
989 * It is expensive to collect so do not constantly read the file.
990 */
991static int pagetypeinfo_show(struct seq_file *m, void *arg)
992{
993 pg_data_t *pgdat = (pg_data_t *)arg;
994
41b25a37 995 /* check memoryless node */
a47b53c5 996 if (!node_state(pgdat->node_id, N_MEMORY))
41b25a37
KM
997 return 0;
998
467c996c
MG
999 seq_printf(m, "Page block order: %d\n", pageblock_order);
1000 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1001 seq_putc(m, '\n');
1002 pagetypeinfo_showfree(m, pgdat);
1003 pagetypeinfo_showblockcount(m, pgdat);
1004
f6ac2354
CL
1005 return 0;
1006}
1007
8f32f7e5 1008static const struct seq_operations fragmentation_op = {
f6ac2354
CL
1009 .start = frag_start,
1010 .next = frag_next,
1011 .stop = frag_stop,
1012 .show = frag_show,
1013};
1014
8f32f7e5
AD
1015static int fragmentation_open(struct inode *inode, struct file *file)
1016{
1017 return seq_open(file, &fragmentation_op);
1018}
1019
1020static const struct file_operations fragmentation_file_operations = {
1021 .open = fragmentation_open,
1022 .read = seq_read,
1023 .llseek = seq_lseek,
1024 .release = seq_release,
1025};
1026
74e2e8e8 1027static const struct seq_operations pagetypeinfo_op = {
467c996c
MG
1028 .start = frag_start,
1029 .next = frag_next,
1030 .stop = frag_stop,
1031 .show = pagetypeinfo_show,
1032};
1033
74e2e8e8
AD
1034static int pagetypeinfo_open(struct inode *inode, struct file *file)
1035{
1036 return seq_open(file, &pagetypeinfo_op);
1037}
1038
1039static const struct file_operations pagetypeinfo_file_ops = {
1040 .open = pagetypeinfo_open,
1041 .read = seq_read,
1042 .llseek = seq_lseek,
1043 .release = seq_release,
1044};
1045
467c996c
MG
1046static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1047 struct zone *zone)
f6ac2354 1048{
467c996c
MG
1049 int i;
1050 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1051 seq_printf(m,
1052 "\n pages free %lu"
1053 "\n min %lu"
1054 "\n low %lu"
1055 "\n high %lu"
08d9ae7c 1056 "\n scanned %lu"
467c996c 1057 "\n spanned %lu"
9feedc9d
JL
1058 "\n present %lu"
1059 "\n managed %lu",
88f5acf8 1060 zone_page_state(zone, NR_FREE_PAGES),
41858966
MG
1061 min_wmark_pages(zone),
1062 low_wmark_pages(zone),
1063 high_wmark_pages(zone),
467c996c 1064 zone->pages_scanned,
467c996c 1065 zone->spanned_pages,
9feedc9d
JL
1066 zone->present_pages,
1067 zone->managed_pages);
467c996c
MG
1068
1069 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1070 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
1071 zone_page_state(zone, i));
1072
1073 seq_printf(m,
1074 "\n protection: (%lu",
1075 zone->lowmem_reserve[0]);
1076 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1077 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
1078 seq_printf(m,
1079 ")"
1080 "\n pagesets");
1081 for_each_online_cpu(i) {
1082 struct per_cpu_pageset *pageset;
467c996c 1083
99dcc3e5 1084 pageset = per_cpu_ptr(zone->pageset, i);
3dfa5721
CL
1085 seq_printf(m,
1086 "\n cpu: %i"
1087 "\n count: %i"
1088 "\n high: %i"
1089 "\n batch: %i",
1090 i,
1091 pageset->pcp.count,
1092 pageset->pcp.high,
1093 pageset->pcp.batch);
df9ecaba 1094#ifdef CONFIG_SMP
467c996c
MG
1095 seq_printf(m, "\n vm stats threshold: %d",
1096 pageset->stat_threshold);
df9ecaba 1097#endif
f6ac2354 1098 }
467c996c
MG
1099 seq_printf(m,
1100 "\n all_unreclaimable: %u"
556adecb
RR
1101 "\n start_pfn: %lu"
1102 "\n inactive_ratio: %u",
6e543d57 1103 !zone_reclaimable(zone),
556adecb
RR
1104 zone->zone_start_pfn,
1105 zone->inactive_ratio);
467c996c
MG
1106 seq_putc(m, '\n');
1107}
1108
1109/*
1110 * Output information about zones in @pgdat.
1111 */
1112static int zoneinfo_show(struct seq_file *m, void *arg)
1113{
1114 pg_data_t *pgdat = (pg_data_t *)arg;
1115 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
f6ac2354
CL
1116 return 0;
1117}
1118
5c9fe628 1119static const struct seq_operations zoneinfo_op = {
f6ac2354
CL
1120 .start = frag_start, /* iterate over all zones. The same as in
1121 * fragmentation. */
1122 .next = frag_next,
1123 .stop = frag_stop,
1124 .show = zoneinfo_show,
1125};
1126
5c9fe628
AD
1127static int zoneinfo_open(struct inode *inode, struct file *file)
1128{
1129 return seq_open(file, &zoneinfo_op);
1130}
1131
1132static const struct file_operations proc_zoneinfo_file_operations = {
1133 .open = zoneinfo_open,
1134 .read = seq_read,
1135 .llseek = seq_lseek,
1136 .release = seq_release,
1137};
1138
79da826a
MR
1139enum writeback_stat_item {
1140 NR_DIRTY_THRESHOLD,
1141 NR_DIRTY_BG_THRESHOLD,
1142 NR_VM_WRITEBACK_STAT_ITEMS,
1143};
1144
f6ac2354
CL
1145static void *vmstat_start(struct seq_file *m, loff_t *pos)
1146{
2244b95a 1147 unsigned long *v;
79da826a 1148 int i, stat_items_size;
f6ac2354
CL
1149
1150 if (*pos >= ARRAY_SIZE(vmstat_text))
1151 return NULL;
79da826a
MR
1152 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1153 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
f6ac2354 1154
f8891e5e 1155#ifdef CONFIG_VM_EVENT_COUNTERS
79da826a 1156 stat_items_size += sizeof(struct vm_event_state);
f8891e5e 1157#endif
79da826a
MR
1158
1159 v = kmalloc(stat_items_size, GFP_KERNEL);
2244b95a
CL
1160 m->private = v;
1161 if (!v)
f6ac2354 1162 return ERR_PTR(-ENOMEM);
2244b95a
CL
1163 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1164 v[i] = global_page_state(i);
79da826a
MR
1165 v += NR_VM_ZONE_STAT_ITEMS;
1166
1167 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1168 v + NR_DIRTY_THRESHOLD);
1169 v += NR_VM_WRITEBACK_STAT_ITEMS;
1170
f8891e5e 1171#ifdef CONFIG_VM_EVENT_COUNTERS
79da826a
MR
1172 all_vm_events(v);
1173 v[PGPGIN] /= 2; /* sectors -> kbytes */
1174 v[PGPGOUT] /= 2;
f8891e5e 1175#endif
ff8b16d7 1176 return (unsigned long *)m->private + *pos;
f6ac2354
CL
1177}
1178
1179static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1180{
1181 (*pos)++;
1182 if (*pos >= ARRAY_SIZE(vmstat_text))
1183 return NULL;
1184 return (unsigned long *)m->private + *pos;
1185}
1186
1187static int vmstat_show(struct seq_file *m, void *arg)
1188{
1189 unsigned long *l = arg;
1190 unsigned long off = l - (unsigned long *)m->private;
1191
1192 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1193 return 0;
1194}
1195
1196static void vmstat_stop(struct seq_file *m, void *arg)
1197{
1198 kfree(m->private);
1199 m->private = NULL;
1200}
1201
b6aa44ab 1202static const struct seq_operations vmstat_op = {
f6ac2354
CL
1203 .start = vmstat_start,
1204 .next = vmstat_next,
1205 .stop = vmstat_stop,
1206 .show = vmstat_show,
1207};
1208
b6aa44ab
AD
1209static int vmstat_open(struct inode *inode, struct file *file)
1210{
1211 return seq_open(file, &vmstat_op);
1212}
1213
1214static const struct file_operations proc_vmstat_file_operations = {
1215 .open = vmstat_open,
1216 .read = seq_read,
1217 .llseek = seq_lseek,
1218 .release = seq_release,
1219};
f6ac2354
CL
1220#endif /* CONFIG_PROC_FS */
1221
df9ecaba 1222#ifdef CONFIG_SMP
d1187ed2 1223static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
77461ab3 1224int sysctl_stat_interval __read_mostly = HZ;
d1187ed2
CL
1225
1226static void vmstat_update(struct work_struct *w)
1227{
fbc2edb0 1228 refresh_cpu_vm_stats();
77461ab3 1229 schedule_delayed_work(&__get_cpu_var(vmstat_work),
98f4ebb2 1230 round_jiffies_relative(sysctl_stat_interval));
d1187ed2
CL
1231}
1232
0db0628d 1233static void start_cpu_timer(int cpu)
d1187ed2 1234{
1871e52c 1235 struct delayed_work *work = &per_cpu(vmstat_work, cpu);
d1187ed2 1236
203b42f7 1237 INIT_DEFERRABLE_WORK(work, vmstat_update);
1871e52c 1238 schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
d1187ed2
CL
1239}
1240
807a1bd2
TK
1241static void vmstat_cpu_dead(int node)
1242{
1243 int cpu;
1244
1245 get_online_cpus();
1246 for_each_online_cpu(cpu)
1247 if (cpu_to_node(cpu) == node)
1248 goto end;
1249
1250 node_clear_state(node, N_CPU);
1251end:
1252 put_online_cpus();
1253}
1254
df9ecaba
CL
1255/*
1256 * Use the cpu notifier to insure that the thresholds are recalculated
1257 * when necessary.
1258 */
0db0628d 1259static int vmstat_cpuup_callback(struct notifier_block *nfb,
df9ecaba
CL
1260 unsigned long action,
1261 void *hcpu)
1262{
d1187ed2
CL
1263 long cpu = (long)hcpu;
1264
df9ecaba 1265 switch (action) {
d1187ed2
CL
1266 case CPU_ONLINE:
1267 case CPU_ONLINE_FROZEN:
5ee28a44 1268 refresh_zone_stat_thresholds();
d1187ed2 1269 start_cpu_timer(cpu);
ad596925 1270 node_set_state(cpu_to_node(cpu), N_CPU);
d1187ed2
CL
1271 break;
1272 case CPU_DOWN_PREPARE:
1273 case CPU_DOWN_PREPARE_FROZEN:
afe2c511 1274 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
d1187ed2
CL
1275 per_cpu(vmstat_work, cpu).work.func = NULL;
1276 break;
1277 case CPU_DOWN_FAILED:
1278 case CPU_DOWN_FAILED_FROZEN:
1279 start_cpu_timer(cpu);
1280 break;
ce421c79 1281 case CPU_DEAD:
8bb78442 1282 case CPU_DEAD_FROZEN:
ce421c79 1283 refresh_zone_stat_thresholds();
807a1bd2 1284 vmstat_cpu_dead(cpu_to_node(cpu));
ce421c79
AW
1285 break;
1286 default:
1287 break;
df9ecaba
CL
1288 }
1289 return NOTIFY_OK;
1290}
1291
0db0628d 1292static struct notifier_block vmstat_notifier =
df9ecaba 1293 { &vmstat_cpuup_callback, NULL, 0 };
8f32f7e5 1294#endif
df9ecaba 1295
e2fc88d0 1296static int __init setup_vmstat(void)
df9ecaba 1297{
8f32f7e5 1298#ifdef CONFIG_SMP
d1187ed2
CL
1299 int cpu;
1300
0be94bad
SB
1301 cpu_notifier_register_begin();
1302 __register_cpu_notifier(&vmstat_notifier);
d1187ed2 1303
d7e0b37a 1304 for_each_online_cpu(cpu) {
d1187ed2 1305 start_cpu_timer(cpu);
d7e0b37a
TK
1306 node_set_state(cpu_to_node(cpu), N_CPU);
1307 }
0be94bad 1308 cpu_notifier_register_done();
8f32f7e5
AD
1309#endif
1310#ifdef CONFIG_PROC_FS
1311 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
74e2e8e8 1312 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
b6aa44ab 1313 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
5c9fe628 1314 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
8f32f7e5 1315#endif
df9ecaba
CL
1316 return 0;
1317}
1318module_init(setup_vmstat)
d7a5752c
MG
1319
1320#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1321#include <linux/debugfs.h>
1322
d7a5752c
MG
1323
1324/*
1325 * Return an index indicating how much of the available free memory is
1326 * unusable for an allocation of the requested size.
1327 */
1328static int unusable_free_index(unsigned int order,
1329 struct contig_page_info *info)
1330{
1331 /* No free memory is interpreted as all free memory is unusable */
1332 if (info->free_pages == 0)
1333 return 1000;
1334
1335 /*
1336 * Index should be a value between 0 and 1. Return a value to 3
1337 * decimal places.
1338 *
1339 * 0 => no fragmentation
1340 * 1 => high fragmentation
1341 */
1342 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1343
1344}
1345
1346static void unusable_show_print(struct seq_file *m,
1347 pg_data_t *pgdat, struct zone *zone)
1348{
1349 unsigned int order;
1350 int index;
1351 struct contig_page_info info;
1352
1353 seq_printf(m, "Node %d, zone %8s ",
1354 pgdat->node_id,
1355 zone->name);
1356 for (order = 0; order < MAX_ORDER; ++order) {
1357 fill_contig_page_info(zone, order, &info);
1358 index = unusable_free_index(order, &info);
1359 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1360 }
1361
1362 seq_putc(m, '\n');
1363}
1364
1365/*
1366 * Display unusable free space index
1367 *
1368 * The unusable free space index measures how much of the available free
1369 * memory cannot be used to satisfy an allocation of a given size and is a
1370 * value between 0 and 1. The higher the value, the more of free memory is
1371 * unusable and by implication, the worse the external fragmentation is. This
1372 * can be expressed as a percentage by multiplying by 100.
1373 */
1374static int unusable_show(struct seq_file *m, void *arg)
1375{
1376 pg_data_t *pgdat = (pg_data_t *)arg;
1377
1378 /* check memoryless node */
a47b53c5 1379 if (!node_state(pgdat->node_id, N_MEMORY))
d7a5752c
MG
1380 return 0;
1381
1382 walk_zones_in_node(m, pgdat, unusable_show_print);
1383
1384 return 0;
1385}
1386
1387static const struct seq_operations unusable_op = {
1388 .start = frag_start,
1389 .next = frag_next,
1390 .stop = frag_stop,
1391 .show = unusable_show,
1392};
1393
1394static int unusable_open(struct inode *inode, struct file *file)
1395{
1396 return seq_open(file, &unusable_op);
1397}
1398
1399static const struct file_operations unusable_file_ops = {
1400 .open = unusable_open,
1401 .read = seq_read,
1402 .llseek = seq_lseek,
1403 .release = seq_release,
1404};
1405
f1a5ab12
MG
1406static void extfrag_show_print(struct seq_file *m,
1407 pg_data_t *pgdat, struct zone *zone)
1408{
1409 unsigned int order;
1410 int index;
1411
1412 /* Alloc on stack as interrupts are disabled for zone walk */
1413 struct contig_page_info info;
1414
1415 seq_printf(m, "Node %d, zone %8s ",
1416 pgdat->node_id,
1417 zone->name);
1418 for (order = 0; order < MAX_ORDER; ++order) {
1419 fill_contig_page_info(zone, order, &info);
56de7263 1420 index = __fragmentation_index(order, &info);
f1a5ab12
MG
1421 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1422 }
1423
1424 seq_putc(m, '\n');
1425}
1426
1427/*
1428 * Display fragmentation index for orders that allocations would fail for
1429 */
1430static int extfrag_show(struct seq_file *m, void *arg)
1431{
1432 pg_data_t *pgdat = (pg_data_t *)arg;
1433
1434 walk_zones_in_node(m, pgdat, extfrag_show_print);
1435
1436 return 0;
1437}
1438
1439static const struct seq_operations extfrag_op = {
1440 .start = frag_start,
1441 .next = frag_next,
1442 .stop = frag_stop,
1443 .show = extfrag_show,
1444};
1445
1446static int extfrag_open(struct inode *inode, struct file *file)
1447{
1448 return seq_open(file, &extfrag_op);
1449}
1450
1451static const struct file_operations extfrag_file_ops = {
1452 .open = extfrag_open,
1453 .read = seq_read,
1454 .llseek = seq_lseek,
1455 .release = seq_release,
1456};
1457
d7a5752c
MG
1458static int __init extfrag_debug_init(void)
1459{
bde8bd8a
S
1460 struct dentry *extfrag_debug_root;
1461
d7a5752c
MG
1462 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1463 if (!extfrag_debug_root)
1464 return -ENOMEM;
1465
1466 if (!debugfs_create_file("unusable_index", 0444,
1467 extfrag_debug_root, NULL, &unusable_file_ops))
bde8bd8a 1468 goto fail;
d7a5752c 1469
f1a5ab12
MG
1470 if (!debugfs_create_file("extfrag_index", 0444,
1471 extfrag_debug_root, NULL, &extfrag_file_ops))
bde8bd8a 1472 goto fail;
f1a5ab12 1473
d7a5752c 1474 return 0;
bde8bd8a
S
1475fail:
1476 debugfs_remove_recursive(extfrag_debug_root);
1477 return -ENOMEM;
d7a5752c
MG
1478}
1479
1480module_init(extfrag_debug_init);
1481#endif