mm/vmscan: push lruvec pointer into inactive_list_is_low()
[linux-2.6-block.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
1da177e4
LT
29#include <linux/backing-dev.h>
30#include <linux/rmap.h>
31#include <linux/topology.h>
32#include <linux/cpu.h>
33#include <linux/cpuset.h>
3e7d3449 34#include <linux/compaction.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
248a0301 37#include <linux/delay.h>
3218ae14 38#include <linux/kthread.h>
7dfb7103 39#include <linux/freezer.h>
66e1707b 40#include <linux/memcontrol.h>
873b4771 41#include <linux/delayacct.h>
af936a16 42#include <linux/sysctl.h>
929bea7c 43#include <linux/oom.h>
268bb0ce 44#include <linux/prefetch.h>
1da177e4
LT
45
46#include <asm/tlbflush.h>
47#include <asm/div64.h>
48
49#include <linux/swapops.h>
50
0f8053a5
NP
51#include "internal.h"
52
33906bc5
MG
53#define CREATE_TRACE_POINTS
54#include <trace/events/vmscan.h>
55
1da177e4 56struct scan_control {
1da177e4
LT
57 /* Incremented by the number of inactive pages that were scanned */
58 unsigned long nr_scanned;
59
a79311c1
RR
60 /* Number of pages freed so far during a call to shrink_zones() */
61 unsigned long nr_reclaimed;
62
22fba335
KM
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
65
7b51755c
KM
66 unsigned long hibernation_mode;
67
1da177e4 68 /* This context's GFP mask */
6daa0e28 69 gfp_t gfp_mask;
1da177e4
LT
70
71 int may_writepage;
72
a6dc60f8
JW
73 /* Can mapped pages be reclaimed? */
74 int may_unmap;
f1fd1067 75
2e2e4259
KM
76 /* Can pages be swapped as part of reclaim? */
77 int may_swap;
78
5ad333eb 79 int order;
66e1707b 80
9e3b2f8c
KK
81 /* Scan (total_size >> priority) pages at once */
82 int priority;
83
f16015fb
JW
84 /*
85 * The memory cgroup that hit its limit and as a result is the
86 * primary target of this reclaim invocation.
87 */
88 struct mem_cgroup *target_mem_cgroup;
66e1707b 89
327c0e96
KH
90 /*
91 * Nodemask of nodes allowed by the caller. If NULL, all nodes
92 * are scanned.
93 */
94 nodemask_t *nodemask;
1da177e4
LT
95};
96
f16015fb
JW
97struct mem_cgroup_zone {
98 struct mem_cgroup *mem_cgroup;
99 struct zone *zone;
100};
101
1da177e4
LT
102#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
103
104#ifdef ARCH_HAS_PREFETCH
105#define prefetch_prev_lru_page(_page, _base, _field) \
106 do { \
107 if ((_page)->lru.prev != _base) { \
108 struct page *prev; \
109 \
110 prev = lru_to_page(&(_page->lru)); \
111 prefetch(&prev->_field); \
112 } \
113 } while (0)
114#else
115#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
116#endif
117
118#ifdef ARCH_HAS_PREFETCHW
119#define prefetchw_prev_lru_page(_page, _base, _field) \
120 do { \
121 if ((_page)->lru.prev != _base) { \
122 struct page *prev; \
123 \
124 prev = lru_to_page(&(_page->lru)); \
125 prefetchw(&prev->_field); \
126 } \
127 } while (0)
128#else
129#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
130#endif
131
132/*
133 * From 0 .. 100. Higher means more swappy.
134 */
135int vm_swappiness = 60;
bd1e22b8 136long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
137
138static LIST_HEAD(shrinker_list);
139static DECLARE_RWSEM(shrinker_rwsem);
140
00f0b825 141#ifdef CONFIG_CGROUP_MEM_RES_CTLR
89b5fae5
JW
142static bool global_reclaim(struct scan_control *sc)
143{
f16015fb 144 return !sc->target_mem_cgroup;
89b5fae5 145}
91a45470 146#else
89b5fae5
JW
147static bool global_reclaim(struct scan_control *sc)
148{
149 return true;
150}
91a45470
KH
151#endif
152
f16015fb 153static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
6e901571 154{
89abfab1 155 return &mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup)->reclaim_stat;
6e901571
KM
156}
157
074291fe 158static unsigned long get_lruvec_size(struct lruvec *lruvec, enum lru_list lru)
c9f299d9 159{
c3c787e8 160 if (!mem_cgroup_disabled())
074291fe 161 return mem_cgroup_get_lruvec_size(lruvec, lru);
a3d8e054 162
074291fe 163 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
c9f299d9
KM
164}
165
1da177e4
LT
166/*
167 * Add a shrinker callback to be called from the vm
168 */
8e1f936b 169void register_shrinker(struct shrinker *shrinker)
1da177e4 170{
83aeeada 171 atomic_long_set(&shrinker->nr_in_batch, 0);
8e1f936b
RR
172 down_write(&shrinker_rwsem);
173 list_add_tail(&shrinker->list, &shrinker_list);
174 up_write(&shrinker_rwsem);
1da177e4 175}
8e1f936b 176EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
177
178/*
179 * Remove one
180 */
8e1f936b 181void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
182{
183 down_write(&shrinker_rwsem);
184 list_del(&shrinker->list);
185 up_write(&shrinker_rwsem);
1da177e4 186}
8e1f936b 187EXPORT_SYMBOL(unregister_shrinker);
1da177e4 188
1495f230
YH
189static inline int do_shrinker_shrink(struct shrinker *shrinker,
190 struct shrink_control *sc,
191 unsigned long nr_to_scan)
192{
193 sc->nr_to_scan = nr_to_scan;
194 return (*shrinker->shrink)(shrinker, sc);
195}
196
1da177e4
LT
197#define SHRINK_BATCH 128
198/*
199 * Call the shrink functions to age shrinkable caches
200 *
201 * Here we assume it costs one seek to replace a lru page and that it also
202 * takes a seek to recreate a cache object. With this in mind we age equal
203 * percentages of the lru and ageable caches. This should balance the seeks
204 * generated by these structures.
205 *
183ff22b 206 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
207 * slab to avoid swapping.
208 *
209 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
210 *
211 * `lru_pages' represents the number of on-LRU pages in all the zones which
212 * are eligible for the caller's allocation attempt. It is used for balancing
213 * slab reclaim versus page reclaim.
b15e0905 214 *
215 * Returns the number of slab objects which we shrunk.
1da177e4 216 */
a09ed5e0 217unsigned long shrink_slab(struct shrink_control *shrink,
1495f230 218 unsigned long nr_pages_scanned,
a09ed5e0 219 unsigned long lru_pages)
1da177e4
LT
220{
221 struct shrinker *shrinker;
69e05944 222 unsigned long ret = 0;
1da177e4 223
1495f230
YH
224 if (nr_pages_scanned == 0)
225 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 226
f06590bd
MK
227 if (!down_read_trylock(&shrinker_rwsem)) {
228 /* Assume we'll be able to shrink next time */
229 ret = 1;
230 goto out;
231 }
1da177e4
LT
232
233 list_for_each_entry(shrinker, &shrinker_list, list) {
234 unsigned long long delta;
635697c6
KK
235 long total_scan;
236 long max_pass;
09576073 237 int shrink_ret = 0;
acf92b48
DC
238 long nr;
239 long new_nr;
e9299f50
DC
240 long batch_size = shrinker->batch ? shrinker->batch
241 : SHRINK_BATCH;
1da177e4 242
635697c6
KK
243 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
244 if (max_pass <= 0)
245 continue;
246
acf92b48
DC
247 /*
248 * copy the current shrinker scan count into a local variable
249 * and zero it so that other concurrent shrinker invocations
250 * don't also do this scanning work.
251 */
83aeeada 252 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
acf92b48
DC
253
254 total_scan = nr;
1495f230 255 delta = (4 * nr_pages_scanned) / shrinker->seeks;
ea164d73 256 delta *= max_pass;
1da177e4 257 do_div(delta, lru_pages + 1);
acf92b48
DC
258 total_scan += delta;
259 if (total_scan < 0) {
88c3bd70
DR
260 printk(KERN_ERR "shrink_slab: %pF negative objects to "
261 "delete nr=%ld\n",
acf92b48
DC
262 shrinker->shrink, total_scan);
263 total_scan = max_pass;
ea164d73
AA
264 }
265
3567b59a
DC
266 /*
267 * We need to avoid excessive windup on filesystem shrinkers
268 * due to large numbers of GFP_NOFS allocations causing the
269 * shrinkers to return -1 all the time. This results in a large
270 * nr being built up so when a shrink that can do some work
271 * comes along it empties the entire cache due to nr >>>
272 * max_pass. This is bad for sustaining a working set in
273 * memory.
274 *
275 * Hence only allow the shrinker to scan the entire cache when
276 * a large delta change is calculated directly.
277 */
278 if (delta < max_pass / 4)
279 total_scan = min(total_scan, max_pass / 2);
280
ea164d73
AA
281 /*
282 * Avoid risking looping forever due to too large nr value:
283 * never try to free more than twice the estimate number of
284 * freeable entries.
285 */
acf92b48
DC
286 if (total_scan > max_pass * 2)
287 total_scan = max_pass * 2;
1da177e4 288
acf92b48 289 trace_mm_shrink_slab_start(shrinker, shrink, nr,
09576073
DC
290 nr_pages_scanned, lru_pages,
291 max_pass, delta, total_scan);
292
e9299f50 293 while (total_scan >= batch_size) {
b15e0905 294 int nr_before;
1da177e4 295
1495f230
YH
296 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
297 shrink_ret = do_shrinker_shrink(shrinker, shrink,
e9299f50 298 batch_size);
1da177e4
LT
299 if (shrink_ret == -1)
300 break;
b15e0905 301 if (shrink_ret < nr_before)
302 ret += nr_before - shrink_ret;
e9299f50
DC
303 count_vm_events(SLABS_SCANNED, batch_size);
304 total_scan -= batch_size;
1da177e4
LT
305
306 cond_resched();
307 }
308
acf92b48
DC
309 /*
310 * move the unused scan count back into the shrinker in a
311 * manner that handles concurrent updates. If we exhausted the
312 * scan, there is no need to do an update.
313 */
83aeeada
KK
314 if (total_scan > 0)
315 new_nr = atomic_long_add_return(total_scan,
316 &shrinker->nr_in_batch);
317 else
318 new_nr = atomic_long_read(&shrinker->nr_in_batch);
acf92b48
DC
319
320 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
1da177e4
LT
321 }
322 up_read(&shrinker_rwsem);
f06590bd
MK
323out:
324 cond_resched();
b15e0905 325 return ret;
1da177e4
LT
326}
327
1da177e4
LT
328static inline int is_page_cache_freeable(struct page *page)
329{
ceddc3a5
JW
330 /*
331 * A freeable page cache page is referenced only by the caller
332 * that isolated the page, the page cache radix tree and
333 * optional buffer heads at page->private.
334 */
edcf4748 335 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
336}
337
7d3579e8
KM
338static int may_write_to_queue(struct backing_dev_info *bdi,
339 struct scan_control *sc)
1da177e4 340{
930d9152 341 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
342 return 1;
343 if (!bdi_write_congested(bdi))
344 return 1;
345 if (bdi == current->backing_dev_info)
346 return 1;
347 return 0;
348}
349
350/*
351 * We detected a synchronous write error writing a page out. Probably
352 * -ENOSPC. We need to propagate that into the address_space for a subsequent
353 * fsync(), msync() or close().
354 *
355 * The tricky part is that after writepage we cannot touch the mapping: nothing
356 * prevents it from being freed up. But we have a ref on the page and once
357 * that page is locked, the mapping is pinned.
358 *
359 * We're allowed to run sleeping lock_page() here because we know the caller has
360 * __GFP_FS.
361 */
362static void handle_write_error(struct address_space *mapping,
363 struct page *page, int error)
364{
7eaceacc 365 lock_page(page);
3e9f45bd
GC
366 if (page_mapping(page) == mapping)
367 mapping_set_error(mapping, error);
1da177e4
LT
368 unlock_page(page);
369}
370
04e62a29
CL
371/* possible outcome of pageout() */
372typedef enum {
373 /* failed to write page out, page is locked */
374 PAGE_KEEP,
375 /* move page to the active list, page is locked */
376 PAGE_ACTIVATE,
377 /* page has been sent to the disk successfully, page is unlocked */
378 PAGE_SUCCESS,
379 /* page is clean and locked */
380 PAGE_CLEAN,
381} pageout_t;
382
1da177e4 383/*
1742f19f
AM
384 * pageout is called by shrink_page_list() for each dirty page.
385 * Calls ->writepage().
1da177e4 386 */
c661b078 387static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 388 struct scan_control *sc)
1da177e4
LT
389{
390 /*
391 * If the page is dirty, only perform writeback if that write
392 * will be non-blocking. To prevent this allocation from being
393 * stalled by pagecache activity. But note that there may be
394 * stalls if we need to run get_block(). We could test
395 * PagePrivate for that.
396 *
6aceb53b 397 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
398 * this page's queue, we can perform writeback even if that
399 * will block.
400 *
401 * If the page is swapcache, write it back even if that would
402 * block, for some throttling. This happens by accident, because
403 * swap_backing_dev_info is bust: it doesn't reflect the
404 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
405 */
406 if (!is_page_cache_freeable(page))
407 return PAGE_KEEP;
408 if (!mapping) {
409 /*
410 * Some data journaling orphaned pages can have
411 * page->mapping == NULL while being dirty with clean buffers.
412 */
266cf658 413 if (page_has_private(page)) {
1da177e4
LT
414 if (try_to_free_buffers(page)) {
415 ClearPageDirty(page);
d40cee24 416 printk("%s: orphaned page\n", __func__);
1da177e4
LT
417 return PAGE_CLEAN;
418 }
419 }
420 return PAGE_KEEP;
421 }
422 if (mapping->a_ops->writepage == NULL)
423 return PAGE_ACTIVATE;
0e093d99 424 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
425 return PAGE_KEEP;
426
427 if (clear_page_dirty_for_io(page)) {
428 int res;
429 struct writeback_control wbc = {
430 .sync_mode = WB_SYNC_NONE,
431 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
432 .range_start = 0,
433 .range_end = LLONG_MAX,
1da177e4
LT
434 .for_reclaim = 1,
435 };
436
437 SetPageReclaim(page);
438 res = mapping->a_ops->writepage(page, &wbc);
439 if (res < 0)
440 handle_write_error(mapping, page, res);
994fc28c 441 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
442 ClearPageReclaim(page);
443 return PAGE_ACTIVATE;
444 }
c661b078 445
1da177e4
LT
446 if (!PageWriteback(page)) {
447 /* synchronous write or broken a_ops? */
448 ClearPageReclaim(page);
449 }
23b9da55 450 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
e129b5c2 451 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
452 return PAGE_SUCCESS;
453 }
454
455 return PAGE_CLEAN;
456}
457
a649fd92 458/*
e286781d
NP
459 * Same as remove_mapping, but if the page is removed from the mapping, it
460 * gets returned with a refcount of 0.
a649fd92 461 */
e286781d 462static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 463{
28e4d965
NP
464 BUG_ON(!PageLocked(page));
465 BUG_ON(mapping != page_mapping(page));
49d2e9cc 466
19fd6231 467 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 468 /*
0fd0e6b0
NP
469 * The non racy check for a busy page.
470 *
471 * Must be careful with the order of the tests. When someone has
472 * a ref to the page, it may be possible that they dirty it then
473 * drop the reference. So if PageDirty is tested before page_count
474 * here, then the following race may occur:
475 *
476 * get_user_pages(&page);
477 * [user mapping goes away]
478 * write_to(page);
479 * !PageDirty(page) [good]
480 * SetPageDirty(page);
481 * put_page(page);
482 * !page_count(page) [good, discard it]
483 *
484 * [oops, our write_to data is lost]
485 *
486 * Reversing the order of the tests ensures such a situation cannot
487 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
488 * load is not satisfied before that of page->_count.
489 *
490 * Note that if SetPageDirty is always performed via set_page_dirty,
491 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 492 */
e286781d 493 if (!page_freeze_refs(page, 2))
49d2e9cc 494 goto cannot_free;
e286781d
NP
495 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
496 if (unlikely(PageDirty(page))) {
497 page_unfreeze_refs(page, 2);
49d2e9cc 498 goto cannot_free;
e286781d 499 }
49d2e9cc
CL
500
501 if (PageSwapCache(page)) {
502 swp_entry_t swap = { .val = page_private(page) };
503 __delete_from_swap_cache(page);
19fd6231 504 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 505 swapcache_free(swap, page);
e286781d 506 } else {
6072d13c
LT
507 void (*freepage)(struct page *);
508
509 freepage = mapping->a_ops->freepage;
510
e64a782f 511 __delete_from_page_cache(page);
19fd6231 512 spin_unlock_irq(&mapping->tree_lock);
e767e056 513 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
514
515 if (freepage != NULL)
516 freepage(page);
49d2e9cc
CL
517 }
518
49d2e9cc
CL
519 return 1;
520
521cannot_free:
19fd6231 522 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
523 return 0;
524}
525
e286781d
NP
526/*
527 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
528 * someone else has a ref on the page, abort and return 0. If it was
529 * successfully detached, return 1. Assumes the caller has a single ref on
530 * this page.
531 */
532int remove_mapping(struct address_space *mapping, struct page *page)
533{
534 if (__remove_mapping(mapping, page)) {
535 /*
536 * Unfreezing the refcount with 1 rather than 2 effectively
537 * drops the pagecache ref for us without requiring another
538 * atomic operation.
539 */
540 page_unfreeze_refs(page, 1);
541 return 1;
542 }
543 return 0;
544}
545
894bc310
LS
546/**
547 * putback_lru_page - put previously isolated page onto appropriate LRU list
548 * @page: page to be put back to appropriate lru list
549 *
550 * Add previously isolated @page to appropriate LRU list.
551 * Page may still be unevictable for other reasons.
552 *
553 * lru_lock must not be held, interrupts must be enabled.
554 */
894bc310
LS
555void putback_lru_page(struct page *page)
556{
557 int lru;
558 int active = !!TestClearPageActive(page);
bbfd28ee 559 int was_unevictable = PageUnevictable(page);
894bc310
LS
560
561 VM_BUG_ON(PageLRU(page));
562
563redo:
564 ClearPageUnevictable(page);
565
566 if (page_evictable(page, NULL)) {
567 /*
568 * For evictable pages, we can use the cache.
569 * In event of a race, worst case is we end up with an
570 * unevictable page on [in]active list.
571 * We know how to handle that.
572 */
401a8e1c 573 lru = active + page_lru_base_type(page);
894bc310
LS
574 lru_cache_add_lru(page, lru);
575 } else {
576 /*
577 * Put unevictable pages directly on zone's unevictable
578 * list.
579 */
580 lru = LRU_UNEVICTABLE;
581 add_page_to_unevictable_list(page);
6a7b9548 582 /*
21ee9f39
MK
583 * When racing with an mlock or AS_UNEVICTABLE clearing
584 * (page is unlocked) make sure that if the other thread
585 * does not observe our setting of PG_lru and fails
24513264 586 * isolation/check_move_unevictable_pages,
21ee9f39 587 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
588 * the page back to the evictable list.
589 *
21ee9f39 590 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
591 */
592 smp_mb();
894bc310 593 }
894bc310
LS
594
595 /*
596 * page's status can change while we move it among lru. If an evictable
597 * page is on unevictable list, it never be freed. To avoid that,
598 * check after we added it to the list, again.
599 */
600 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
601 if (!isolate_lru_page(page)) {
602 put_page(page);
603 goto redo;
604 }
605 /* This means someone else dropped this page from LRU
606 * So, it will be freed or putback to LRU again. There is
607 * nothing to do here.
608 */
609 }
610
bbfd28ee
LS
611 if (was_unevictable && lru != LRU_UNEVICTABLE)
612 count_vm_event(UNEVICTABLE_PGRESCUED);
613 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
614 count_vm_event(UNEVICTABLE_PGCULLED);
615
894bc310
LS
616 put_page(page); /* drop ref from isolate */
617}
618
dfc8d636
JW
619enum page_references {
620 PAGEREF_RECLAIM,
621 PAGEREF_RECLAIM_CLEAN,
64574746 622 PAGEREF_KEEP,
dfc8d636
JW
623 PAGEREF_ACTIVATE,
624};
625
626static enum page_references page_check_references(struct page *page,
627 struct scan_control *sc)
628{
64574746 629 int referenced_ptes, referenced_page;
dfc8d636 630 unsigned long vm_flags;
dfc8d636 631
c3ac9a8a
JW
632 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
633 &vm_flags);
64574746 634 referenced_page = TestClearPageReferenced(page);
dfc8d636 635
dfc8d636
JW
636 /*
637 * Mlock lost the isolation race with us. Let try_to_unmap()
638 * move the page to the unevictable list.
639 */
640 if (vm_flags & VM_LOCKED)
641 return PAGEREF_RECLAIM;
642
64574746 643 if (referenced_ptes) {
e4898273 644 if (PageSwapBacked(page))
64574746
JW
645 return PAGEREF_ACTIVATE;
646 /*
647 * All mapped pages start out with page table
648 * references from the instantiating fault, so we need
649 * to look twice if a mapped file page is used more
650 * than once.
651 *
652 * Mark it and spare it for another trip around the
653 * inactive list. Another page table reference will
654 * lead to its activation.
655 *
656 * Note: the mark is set for activated pages as well
657 * so that recently deactivated but used pages are
658 * quickly recovered.
659 */
660 SetPageReferenced(page);
661
34dbc67a 662 if (referenced_page || referenced_ptes > 1)
64574746
JW
663 return PAGEREF_ACTIVATE;
664
c909e993
KK
665 /*
666 * Activate file-backed executable pages after first usage.
667 */
668 if (vm_flags & VM_EXEC)
669 return PAGEREF_ACTIVATE;
670
64574746
JW
671 return PAGEREF_KEEP;
672 }
dfc8d636
JW
673
674 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 675 if (referenced_page && !PageSwapBacked(page))
64574746
JW
676 return PAGEREF_RECLAIM_CLEAN;
677
678 return PAGEREF_RECLAIM;
dfc8d636
JW
679}
680
1da177e4 681/*
1742f19f 682 * shrink_page_list() returns the number of reclaimed pages
1da177e4 683 */
1742f19f 684static unsigned long shrink_page_list(struct list_head *page_list,
6a18adb3 685 struct zone *zone,
f84f6e2b 686 struct scan_control *sc,
92df3a72
MG
687 unsigned long *ret_nr_dirty,
688 unsigned long *ret_nr_writeback)
1da177e4
LT
689{
690 LIST_HEAD(ret_pages);
abe4c3b5 691 LIST_HEAD(free_pages);
1da177e4 692 int pgactivate = 0;
0e093d99
MG
693 unsigned long nr_dirty = 0;
694 unsigned long nr_congested = 0;
05ff5137 695 unsigned long nr_reclaimed = 0;
92df3a72 696 unsigned long nr_writeback = 0;
1da177e4
LT
697
698 cond_resched();
699
1da177e4 700 while (!list_empty(page_list)) {
dfc8d636 701 enum page_references references;
1da177e4
LT
702 struct address_space *mapping;
703 struct page *page;
704 int may_enter_fs;
1da177e4
LT
705
706 cond_resched();
707
708 page = lru_to_page(page_list);
709 list_del(&page->lru);
710
529ae9aa 711 if (!trylock_page(page))
1da177e4
LT
712 goto keep;
713
725d704e 714 VM_BUG_ON(PageActive(page));
6a18adb3 715 VM_BUG_ON(page_zone(page) != zone);
1da177e4
LT
716
717 sc->nr_scanned++;
80e43426 718
b291f000
NP
719 if (unlikely(!page_evictable(page, NULL)))
720 goto cull_mlocked;
894bc310 721
a6dc60f8 722 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
723 goto keep_locked;
724
1da177e4
LT
725 /* Double the slab pressure for mapped and swapcache pages */
726 if (page_mapped(page) || PageSwapCache(page))
727 sc->nr_scanned++;
728
c661b078
AW
729 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
730 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
731
732 if (PageWriteback(page)) {
92df3a72 733 nr_writeback++;
41ac1999
MG
734 unlock_page(page);
735 goto keep;
c661b078 736 }
1da177e4 737
6a18adb3 738 references = page_check_references(page, sc);
dfc8d636
JW
739 switch (references) {
740 case PAGEREF_ACTIVATE:
1da177e4 741 goto activate_locked;
64574746
JW
742 case PAGEREF_KEEP:
743 goto keep_locked;
dfc8d636
JW
744 case PAGEREF_RECLAIM:
745 case PAGEREF_RECLAIM_CLEAN:
746 ; /* try to reclaim the page below */
747 }
1da177e4 748
1da177e4
LT
749 /*
750 * Anonymous process memory has backing store?
751 * Try to allocate it some swap space here.
752 */
b291f000 753 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
754 if (!(sc->gfp_mask & __GFP_IO))
755 goto keep_locked;
ac47b003 756 if (!add_to_swap(page))
1da177e4 757 goto activate_locked;
63eb6b93 758 may_enter_fs = 1;
b291f000 759 }
1da177e4
LT
760
761 mapping = page_mapping(page);
1da177e4
LT
762
763 /*
764 * The page is mapped into the page tables of one or more
765 * processes. Try to unmap it here.
766 */
767 if (page_mapped(page) && mapping) {
14fa31b8 768 switch (try_to_unmap(page, TTU_UNMAP)) {
1da177e4
LT
769 case SWAP_FAIL:
770 goto activate_locked;
771 case SWAP_AGAIN:
772 goto keep_locked;
b291f000
NP
773 case SWAP_MLOCK:
774 goto cull_mlocked;
1da177e4
LT
775 case SWAP_SUCCESS:
776 ; /* try to free the page below */
777 }
778 }
779
780 if (PageDirty(page)) {
0e093d99
MG
781 nr_dirty++;
782
ee72886d
MG
783 /*
784 * Only kswapd can writeback filesystem pages to
f84f6e2b
MG
785 * avoid risk of stack overflow but do not writeback
786 * unless under significant pressure.
ee72886d 787 */
f84f6e2b 788 if (page_is_file_cache(page) &&
9e3b2f8c
KK
789 (!current_is_kswapd() ||
790 sc->priority >= DEF_PRIORITY - 2)) {
49ea7eb6
MG
791 /*
792 * Immediately reclaim when written back.
793 * Similar in principal to deactivate_page()
794 * except we already have the page isolated
795 * and know it's dirty
796 */
797 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
798 SetPageReclaim(page);
799
ee72886d
MG
800 goto keep_locked;
801 }
802
dfc8d636 803 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 804 goto keep_locked;
4dd4b920 805 if (!may_enter_fs)
1da177e4 806 goto keep_locked;
52a8363e 807 if (!sc->may_writepage)
1da177e4
LT
808 goto keep_locked;
809
810 /* Page is dirty, try to write it out here */
7d3579e8 811 switch (pageout(page, mapping, sc)) {
1da177e4 812 case PAGE_KEEP:
0e093d99 813 nr_congested++;
1da177e4
LT
814 goto keep_locked;
815 case PAGE_ACTIVATE:
816 goto activate_locked;
817 case PAGE_SUCCESS:
7d3579e8 818 if (PageWriteback(page))
41ac1999 819 goto keep;
7d3579e8 820 if (PageDirty(page))
1da177e4 821 goto keep;
7d3579e8 822
1da177e4
LT
823 /*
824 * A synchronous write - probably a ramdisk. Go
825 * ahead and try to reclaim the page.
826 */
529ae9aa 827 if (!trylock_page(page))
1da177e4
LT
828 goto keep;
829 if (PageDirty(page) || PageWriteback(page))
830 goto keep_locked;
831 mapping = page_mapping(page);
832 case PAGE_CLEAN:
833 ; /* try to free the page below */
834 }
835 }
836
837 /*
838 * If the page has buffers, try to free the buffer mappings
839 * associated with this page. If we succeed we try to free
840 * the page as well.
841 *
842 * We do this even if the page is PageDirty().
843 * try_to_release_page() does not perform I/O, but it is
844 * possible for a page to have PageDirty set, but it is actually
845 * clean (all its buffers are clean). This happens if the
846 * buffers were written out directly, with submit_bh(). ext3
894bc310 847 * will do this, as well as the blockdev mapping.
1da177e4
LT
848 * try_to_release_page() will discover that cleanness and will
849 * drop the buffers and mark the page clean - it can be freed.
850 *
851 * Rarely, pages can have buffers and no ->mapping. These are
852 * the pages which were not successfully invalidated in
853 * truncate_complete_page(). We try to drop those buffers here
854 * and if that worked, and the page is no longer mapped into
855 * process address space (page_count == 1) it can be freed.
856 * Otherwise, leave the page on the LRU so it is swappable.
857 */
266cf658 858 if (page_has_private(page)) {
1da177e4
LT
859 if (!try_to_release_page(page, sc->gfp_mask))
860 goto activate_locked;
e286781d
NP
861 if (!mapping && page_count(page) == 1) {
862 unlock_page(page);
863 if (put_page_testzero(page))
864 goto free_it;
865 else {
866 /*
867 * rare race with speculative reference.
868 * the speculative reference will free
869 * this page shortly, so we may
870 * increment nr_reclaimed here (and
871 * leave it off the LRU).
872 */
873 nr_reclaimed++;
874 continue;
875 }
876 }
1da177e4
LT
877 }
878
e286781d 879 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 880 goto keep_locked;
1da177e4 881
a978d6f5
NP
882 /*
883 * At this point, we have no other references and there is
884 * no way to pick any more up (removed from LRU, removed
885 * from pagecache). Can use non-atomic bitops now (and
886 * we obviously don't have to worry about waking up a process
887 * waiting on the page lock, because there are no references.
888 */
889 __clear_page_locked(page);
e286781d 890free_it:
05ff5137 891 nr_reclaimed++;
abe4c3b5
MG
892
893 /*
894 * Is there need to periodically free_page_list? It would
895 * appear not as the counts should be low
896 */
897 list_add(&page->lru, &free_pages);
1da177e4
LT
898 continue;
899
b291f000 900cull_mlocked:
63d6c5ad
HD
901 if (PageSwapCache(page))
902 try_to_free_swap(page);
b291f000
NP
903 unlock_page(page);
904 putback_lru_page(page);
905 continue;
906
1da177e4 907activate_locked:
68a22394
RR
908 /* Not a candidate for swapping, so reclaim swap space. */
909 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 910 try_to_free_swap(page);
894bc310 911 VM_BUG_ON(PageActive(page));
1da177e4
LT
912 SetPageActive(page);
913 pgactivate++;
914keep_locked:
915 unlock_page(page);
916keep:
917 list_add(&page->lru, &ret_pages);
b291f000 918 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4 919 }
abe4c3b5 920
0e093d99
MG
921 /*
922 * Tag a zone as congested if all the dirty pages encountered were
923 * backed by a congested BDI. In this case, reclaimers should just
924 * back off and wait for congestion to clear because further reclaim
925 * will encounter the same problem
926 */
89b5fae5 927 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
6a18adb3 928 zone_set_flag(zone, ZONE_CONGESTED);
0e093d99 929
cc59850e 930 free_hot_cold_page_list(&free_pages, 1);
abe4c3b5 931
1da177e4 932 list_splice(&ret_pages, page_list);
f8891e5e 933 count_vm_events(PGACTIVATE, pgactivate);
92df3a72
MG
934 *ret_nr_dirty += nr_dirty;
935 *ret_nr_writeback += nr_writeback;
05ff5137 936 return nr_reclaimed;
1da177e4
LT
937}
938
5ad333eb
AW
939/*
940 * Attempt to remove the specified page from its LRU. Only take this page
941 * if it is of the appropriate PageActive status. Pages which are being
942 * freed elsewhere are also ignored.
943 *
944 * page: page to consider
945 * mode: one of the LRU isolation modes defined above
946 *
947 * returns 0 on success, -ve errno on failure.
948 */
f3fd4a61 949int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
950{
951 int ret = -EINVAL;
952
953 /* Only take pages on the LRU. */
954 if (!PageLRU(page))
955 return ret;
956
c53919ad 957 /* Do not give back unevictable pages for compaction */
894bc310
LS
958 if (PageUnevictable(page))
959 return ret;
960
5ad333eb 961 ret = -EBUSY;
08e552c6 962
c8244935
MG
963 /*
964 * To minimise LRU disruption, the caller can indicate that it only
965 * wants to isolate pages it will be able to operate on without
966 * blocking - clean pages for the most part.
967 *
968 * ISOLATE_CLEAN means that only clean pages should be isolated. This
969 * is used by reclaim when it is cannot write to backing storage
970 *
971 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
972 * that it is possible to migrate without blocking
973 */
974 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
975 /* All the caller can do on PageWriteback is block */
976 if (PageWriteback(page))
977 return ret;
978
979 if (PageDirty(page)) {
980 struct address_space *mapping;
981
982 /* ISOLATE_CLEAN means only clean pages */
983 if (mode & ISOLATE_CLEAN)
984 return ret;
985
986 /*
987 * Only pages without mappings or that have a
988 * ->migratepage callback are possible to migrate
989 * without blocking
990 */
991 mapping = page_mapping(page);
992 if (mapping && !mapping->a_ops->migratepage)
993 return ret;
994 }
995 }
39deaf85 996
f80c0673
MK
997 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
998 return ret;
999
5ad333eb
AW
1000 if (likely(get_page_unless_zero(page))) {
1001 /*
1002 * Be careful not to clear PageLRU until after we're
1003 * sure the page is not being freed elsewhere -- the
1004 * page release code relies on it.
1005 */
1006 ClearPageLRU(page);
1007 ret = 0;
1008 }
1009
1010 return ret;
1011}
1012
1da177e4
LT
1013/*
1014 * zone->lru_lock is heavily contended. Some of the functions that
1015 * shrink the lists perform better by taking out a batch of pages
1016 * and working on them outside the LRU lock.
1017 *
1018 * For pagecache intensive workloads, this function is the hottest
1019 * spot in the kernel (apart from copy_*_user functions).
1020 *
1021 * Appropriate locks must be held before calling this function.
1022 *
1023 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1024 * @lruvec: The LRU vector to pull pages from.
1da177e4 1025 * @dst: The temp list to put pages on to.
f626012d 1026 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1027 * @sc: The scan_control struct for this reclaim session
5ad333eb 1028 * @mode: One of the LRU isolation modes
3cb99451 1029 * @lru: LRU list id for isolating
1da177e4
LT
1030 *
1031 * returns how many pages were moved onto *@dst.
1032 */
69e05944 1033static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1034 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1035 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1036 isolate_mode_t mode, enum lru_list lru)
1da177e4 1037{
f626012d 1038 struct list_head *src;
69e05944 1039 unsigned long nr_taken = 0;
c9b02d97 1040 unsigned long scan;
3cb99451 1041 int file = is_file_lru(lru);
f626012d 1042
f626012d 1043 src = &lruvec->lists[lru];
1da177e4 1044
c9b02d97 1045 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb 1046 struct page *page;
5ad333eb 1047
1da177e4
LT
1048 page = lru_to_page(src);
1049 prefetchw_prev_lru_page(page, src, flags);
1050
725d704e 1051 VM_BUG_ON(!PageLRU(page));
8d438f96 1052
f3fd4a61 1053 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1054 case 0:
bbf808ed 1055 mem_cgroup_lru_del_list(page, lru);
5ad333eb 1056 list_move(&page->lru, dst);
2c888cfb 1057 nr_taken += hpage_nr_pages(page);
5ad333eb
AW
1058 break;
1059
1060 case -EBUSY:
1061 /* else it is being freed elsewhere */
1062 list_move(&page->lru, src);
1063 continue;
46453a6e 1064
5ad333eb
AW
1065 default:
1066 BUG();
1067 }
1da177e4
LT
1068 }
1069
f626012d 1070 *nr_scanned = scan;
a8a94d15 1071
fe2c2a10 1072 trace_mm_vmscan_lru_isolate(sc->order,
a8a94d15
MG
1073 nr_to_scan, scan,
1074 nr_taken,
ea4d349f 1075 mode, file);
1da177e4
LT
1076 return nr_taken;
1077}
1078
62695a84
NP
1079/**
1080 * isolate_lru_page - tries to isolate a page from its LRU list
1081 * @page: page to isolate from its LRU list
1082 *
1083 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1084 * vmstat statistic corresponding to whatever LRU list the page was on.
1085 *
1086 * Returns 0 if the page was removed from an LRU list.
1087 * Returns -EBUSY if the page was not on an LRU list.
1088 *
1089 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1090 * the active list, it will have PageActive set. If it was found on
1091 * the unevictable list, it will have the PageUnevictable bit set. That flag
1092 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1093 *
1094 * The vmstat statistic corresponding to the list on which the page was
1095 * found will be decremented.
1096 *
1097 * Restrictions:
1098 * (1) Must be called with an elevated refcount on the page. This is a
1099 * fundamentnal difference from isolate_lru_pages (which is called
1100 * without a stable reference).
1101 * (2) the lru_lock must not be held.
1102 * (3) interrupts must be enabled.
1103 */
1104int isolate_lru_page(struct page *page)
1105{
1106 int ret = -EBUSY;
1107
0c917313
KK
1108 VM_BUG_ON(!page_count(page));
1109
62695a84
NP
1110 if (PageLRU(page)) {
1111 struct zone *zone = page_zone(page);
1112
1113 spin_lock_irq(&zone->lru_lock);
0c917313 1114 if (PageLRU(page)) {
894bc310 1115 int lru = page_lru(page);
62695a84 1116 ret = 0;
0c917313 1117 get_page(page);
62695a84 1118 ClearPageLRU(page);
4f98a2fe 1119
4f98a2fe 1120 del_page_from_lru_list(zone, page, lru);
62695a84
NP
1121 }
1122 spin_unlock_irq(&zone->lru_lock);
1123 }
1124 return ret;
1125}
1126
35cd7815
RR
1127/*
1128 * Are there way too many processes in the direct reclaim path already?
1129 */
1130static int too_many_isolated(struct zone *zone, int file,
1131 struct scan_control *sc)
1132{
1133 unsigned long inactive, isolated;
1134
1135 if (current_is_kswapd())
1136 return 0;
1137
89b5fae5 1138 if (!global_reclaim(sc))
35cd7815
RR
1139 return 0;
1140
1141 if (file) {
1142 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1143 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1144 } else {
1145 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1146 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1147 }
1148
1149 return isolated > inactive;
1150}
1151
66635629 1152static noinline_for_stack void
27ac81d8 1153putback_inactive_pages(struct lruvec *lruvec,
3f79768f 1154 struct list_head *page_list)
66635629 1155{
27ac81d8
KK
1156 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1157 struct zone *zone = lruvec_zone(lruvec);
3f79768f 1158 LIST_HEAD(pages_to_free);
66635629 1159
66635629
MG
1160 /*
1161 * Put back any unfreeable pages.
1162 */
66635629 1163 while (!list_empty(page_list)) {
3f79768f 1164 struct page *page = lru_to_page(page_list);
66635629 1165 int lru;
3f79768f 1166
66635629
MG
1167 VM_BUG_ON(PageLRU(page));
1168 list_del(&page->lru);
1169 if (unlikely(!page_evictable(page, NULL))) {
1170 spin_unlock_irq(&zone->lru_lock);
1171 putback_lru_page(page);
1172 spin_lock_irq(&zone->lru_lock);
1173 continue;
1174 }
7a608572 1175 SetPageLRU(page);
66635629 1176 lru = page_lru(page);
7a608572 1177 add_page_to_lru_list(zone, page, lru);
66635629
MG
1178 if (is_active_lru(lru)) {
1179 int file = is_file_lru(lru);
9992af10
RR
1180 int numpages = hpage_nr_pages(page);
1181 reclaim_stat->recent_rotated[file] += numpages;
66635629 1182 }
2bcf8879
HD
1183 if (put_page_testzero(page)) {
1184 __ClearPageLRU(page);
1185 __ClearPageActive(page);
1186 del_page_from_lru_list(zone, page, lru);
1187
1188 if (unlikely(PageCompound(page))) {
1189 spin_unlock_irq(&zone->lru_lock);
1190 (*get_compound_page_dtor(page))(page);
1191 spin_lock_irq(&zone->lru_lock);
1192 } else
1193 list_add(&page->lru, &pages_to_free);
66635629
MG
1194 }
1195 }
66635629 1196
3f79768f
HD
1197 /*
1198 * To save our caller's stack, now use input list for pages to free.
1199 */
1200 list_splice(&pages_to_free, page_list);
66635629
MG
1201}
1202
1da177e4 1203/*
1742f19f
AM
1204 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1205 * of reclaimed pages
1da177e4 1206 */
66635629 1207static noinline_for_stack unsigned long
f16015fb 1208shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
9e3b2f8c 1209 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1210{
1211 LIST_HEAD(page_list);
e247dbce 1212 unsigned long nr_scanned;
05ff5137 1213 unsigned long nr_reclaimed = 0;
e247dbce 1214 unsigned long nr_taken;
92df3a72
MG
1215 unsigned long nr_dirty = 0;
1216 unsigned long nr_writeback = 0;
f3fd4a61 1217 isolate_mode_t isolate_mode = 0;
3cb99451 1218 int file = is_file_lru(lru);
f16015fb 1219 struct zone *zone = mz->zone;
d563c050 1220 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
5dc35979 1221 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, mz->mem_cgroup);
78dc583d 1222
35cd7815 1223 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1224 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1225
1226 /* We are about to die and free our memory. Return now. */
1227 if (fatal_signal_pending(current))
1228 return SWAP_CLUSTER_MAX;
1229 }
1230
1da177e4 1231 lru_add_drain();
f80c0673
MK
1232
1233 if (!sc->may_unmap)
61317289 1234 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1235 if (!sc->may_writepage)
61317289 1236 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1237
1da177e4 1238 spin_lock_irq(&zone->lru_lock);
b35ea17b 1239
5dc35979
KK
1240 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1241 &nr_scanned, sc, isolate_mode, lru);
95d918fc
KK
1242
1243 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1244 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1245
89b5fae5 1246 if (global_reclaim(sc)) {
e247dbce
KM
1247 zone->pages_scanned += nr_scanned;
1248 if (current_is_kswapd())
1249 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1250 nr_scanned);
1251 else
1252 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1253 nr_scanned);
e247dbce 1254 }
d563c050 1255 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1256
d563c050 1257 if (nr_taken == 0)
66635629 1258 return 0;
5ad333eb 1259
6a18adb3 1260 nr_reclaimed = shrink_page_list(&page_list, zone, sc,
92df3a72 1261 &nr_dirty, &nr_writeback);
c661b078 1262
3f79768f
HD
1263 spin_lock_irq(&zone->lru_lock);
1264
95d918fc 1265 reclaim_stat->recent_scanned[file] += nr_taken;
d563c050 1266
904249aa
YH
1267 if (global_reclaim(sc)) {
1268 if (current_is_kswapd())
1269 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1270 nr_reclaimed);
1271 else
1272 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1273 nr_reclaimed);
1274 }
a74609fa 1275
27ac81d8 1276 putback_inactive_pages(lruvec, &page_list);
3f79768f 1277
95d918fc 1278 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f
HD
1279
1280 spin_unlock_irq(&zone->lru_lock);
1281
1282 free_hot_cold_page_list(&page_list, 1);
e11da5b4 1283
92df3a72
MG
1284 /*
1285 * If reclaim is isolating dirty pages under writeback, it implies
1286 * that the long-lived page allocation rate is exceeding the page
1287 * laundering rate. Either the global limits are not being effective
1288 * at throttling processes due to the page distribution throughout
1289 * zones or there is heavy usage of a slow backing device. The
1290 * only option is to throttle from reclaim context which is not ideal
1291 * as there is no guarantee the dirtying process is throttled in the
1292 * same way balance_dirty_pages() manages.
1293 *
1294 * This scales the number of dirty pages that must be under writeback
1295 * before throttling depending on priority. It is a simple backoff
1296 * function that has the most effect in the range DEF_PRIORITY to
1297 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1298 * in trouble and reclaim is considered to be in trouble.
1299 *
1300 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1301 * DEF_PRIORITY-1 50% must be PageWriteback
1302 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1303 * ...
1304 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1305 * isolated page is PageWriteback
1306 */
9e3b2f8c
KK
1307 if (nr_writeback && nr_writeback >=
1308 (nr_taken >> (DEF_PRIORITY - sc->priority)))
92df3a72
MG
1309 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1310
e11da5b4
MG
1311 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1312 zone_idx(zone),
1313 nr_scanned, nr_reclaimed,
9e3b2f8c 1314 sc->priority,
23b9da55 1315 trace_shrink_flags(file));
05ff5137 1316 return nr_reclaimed;
1da177e4
LT
1317}
1318
1319/*
1320 * This moves pages from the active list to the inactive list.
1321 *
1322 * We move them the other way if the page is referenced by one or more
1323 * processes, from rmap.
1324 *
1325 * If the pages are mostly unmapped, the processing is fast and it is
1326 * appropriate to hold zone->lru_lock across the whole operation. But if
1327 * the pages are mapped, the processing is slow (page_referenced()) so we
1328 * should drop zone->lru_lock around each page. It's impossible to balance
1329 * this, so instead we remove the pages from the LRU while processing them.
1330 * It is safe to rely on PG_active against the non-LRU pages in here because
1331 * nobody will play with that bit on a non-LRU page.
1332 *
1333 * The downside is that we have to touch page->_count against each page.
1334 * But we had to alter page->flags anyway.
1335 */
1cfb419b 1336
3eb4140f
WF
1337static void move_active_pages_to_lru(struct zone *zone,
1338 struct list_head *list,
2bcf8879 1339 struct list_head *pages_to_free,
3eb4140f
WF
1340 enum lru_list lru)
1341{
1342 unsigned long pgmoved = 0;
3eb4140f
WF
1343 struct page *page;
1344
3eb4140f 1345 while (!list_empty(list)) {
925b7673
JW
1346 struct lruvec *lruvec;
1347
3eb4140f 1348 page = lru_to_page(list);
3eb4140f
WF
1349
1350 VM_BUG_ON(PageLRU(page));
1351 SetPageLRU(page);
1352
925b7673
JW
1353 lruvec = mem_cgroup_lru_add_list(zone, page, lru);
1354 list_move(&page->lru, &lruvec->lists[lru]);
2c888cfb 1355 pgmoved += hpage_nr_pages(page);
3eb4140f 1356
2bcf8879
HD
1357 if (put_page_testzero(page)) {
1358 __ClearPageLRU(page);
1359 __ClearPageActive(page);
1360 del_page_from_lru_list(zone, page, lru);
1361
1362 if (unlikely(PageCompound(page))) {
1363 spin_unlock_irq(&zone->lru_lock);
1364 (*get_compound_page_dtor(page))(page);
1365 spin_lock_irq(&zone->lru_lock);
1366 } else
1367 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1368 }
1369 }
1370 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1371 if (!is_active_lru(lru))
1372 __count_vm_events(PGDEACTIVATE, pgmoved);
1373}
1cfb419b 1374
f626012d 1375static void shrink_active_list(unsigned long nr_to_scan,
f16015fb
JW
1376 struct mem_cgroup_zone *mz,
1377 struct scan_control *sc,
9e3b2f8c 1378 enum lru_list lru)
1da177e4 1379{
44c241f1 1380 unsigned long nr_taken;
f626012d 1381 unsigned long nr_scanned;
6fe6b7e3 1382 unsigned long vm_flags;
1da177e4 1383 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1384 LIST_HEAD(l_active);
b69408e8 1385 LIST_HEAD(l_inactive);
1da177e4 1386 struct page *page;
f16015fb 1387 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
44c241f1 1388 unsigned long nr_rotated = 0;
f3fd4a61 1389 isolate_mode_t isolate_mode = 0;
3cb99451 1390 int file = is_file_lru(lru);
f16015fb 1391 struct zone *zone = mz->zone;
5dc35979 1392 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, mz->mem_cgroup);
1da177e4
LT
1393
1394 lru_add_drain();
f80c0673
MK
1395
1396 if (!sc->may_unmap)
61317289 1397 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1398 if (!sc->may_writepage)
61317289 1399 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1400
1da177e4 1401 spin_lock_irq(&zone->lru_lock);
925b7673 1402
5dc35979
KK
1403 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1404 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1405 if (global_reclaim(sc))
f626012d 1406 zone->pages_scanned += nr_scanned;
89b5fae5 1407
b7c46d15 1408 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1409
f626012d 1410 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
3cb99451 1411 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
a731286d 1412 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1413 spin_unlock_irq(&zone->lru_lock);
1414
1da177e4
LT
1415 while (!list_empty(&l_hold)) {
1416 cond_resched();
1417 page = lru_to_page(&l_hold);
1418 list_del(&page->lru);
7e9cd484 1419
894bc310
LS
1420 if (unlikely(!page_evictable(page, NULL))) {
1421 putback_lru_page(page);
1422 continue;
1423 }
1424
cc715d99
MG
1425 if (unlikely(buffer_heads_over_limit)) {
1426 if (page_has_private(page) && trylock_page(page)) {
1427 if (page_has_private(page))
1428 try_to_release_page(page, 0);
1429 unlock_page(page);
1430 }
1431 }
1432
c3ac9a8a
JW
1433 if (page_referenced(page, 0, sc->target_mem_cgroup,
1434 &vm_flags)) {
9992af10 1435 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1436 /*
1437 * Identify referenced, file-backed active pages and
1438 * give them one more trip around the active list. So
1439 * that executable code get better chances to stay in
1440 * memory under moderate memory pressure. Anon pages
1441 * are not likely to be evicted by use-once streaming
1442 * IO, plus JVM can create lots of anon VM_EXEC pages,
1443 * so we ignore them here.
1444 */
41e20983 1445 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1446 list_add(&page->lru, &l_active);
1447 continue;
1448 }
1449 }
7e9cd484 1450
5205e56e 1451 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1452 list_add(&page->lru, &l_inactive);
1453 }
1454
b555749a 1455 /*
8cab4754 1456 * Move pages back to the lru list.
b555749a 1457 */
2a1dc509 1458 spin_lock_irq(&zone->lru_lock);
556adecb 1459 /*
8cab4754
WF
1460 * Count referenced pages from currently used mappings as rotated,
1461 * even though only some of them are actually re-activated. This
1462 * helps balance scan pressure between file and anonymous pages in
1463 * get_scan_ratio.
7e9cd484 1464 */
b7c46d15 1465 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1466
3cb99451
KK
1467 move_active_pages_to_lru(zone, &l_active, &l_hold, lru);
1468 move_active_pages_to_lru(zone, &l_inactive, &l_hold, lru - LRU_ACTIVE);
a731286d 1469 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1470 spin_unlock_irq(&zone->lru_lock);
2bcf8879
HD
1471
1472 free_hot_cold_page_list(&l_hold, 1);
1da177e4
LT
1473}
1474
74e3f3c3 1475#ifdef CONFIG_SWAP
14797e23 1476static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1477{
1478 unsigned long active, inactive;
1479
1480 active = zone_page_state(zone, NR_ACTIVE_ANON);
1481 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1482
1483 if (inactive * zone->inactive_ratio < active)
1484 return 1;
1485
1486 return 0;
1487}
1488
14797e23
KM
1489/**
1490 * inactive_anon_is_low - check if anonymous pages need to be deactivated
c56d5c7d 1491 * @lruvec: LRU vector to check
14797e23
KM
1492 *
1493 * Returns true if the zone does not have enough inactive anon pages,
1494 * meaning some active anon pages need to be deactivated.
1495 */
c56d5c7d 1496static int inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1497{
74e3f3c3
MK
1498 /*
1499 * If we don't have swap space, anonymous page deactivation
1500 * is pointless.
1501 */
1502 if (!total_swap_pages)
1503 return 0;
1504
c3c787e8 1505 if (!mem_cgroup_disabled())
c56d5c7d 1506 return mem_cgroup_inactive_anon_is_low(lruvec);
f16015fb 1507
c56d5c7d 1508 return inactive_anon_is_low_global(lruvec_zone(lruvec));
14797e23 1509}
74e3f3c3 1510#else
c56d5c7d 1511static inline int inactive_anon_is_low(struct lruvec *lruvec)
74e3f3c3
MK
1512{
1513 return 0;
1514}
1515#endif
14797e23 1516
56e49d21
RR
1517static int inactive_file_is_low_global(struct zone *zone)
1518{
1519 unsigned long active, inactive;
1520
1521 active = zone_page_state(zone, NR_ACTIVE_FILE);
1522 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1523
1524 return (active > inactive);
1525}
1526
1527/**
1528 * inactive_file_is_low - check if file pages need to be deactivated
c56d5c7d 1529 * @lruvec: LRU vector to check
56e49d21
RR
1530 *
1531 * When the system is doing streaming IO, memory pressure here
1532 * ensures that active file pages get deactivated, until more
1533 * than half of the file pages are on the inactive list.
1534 *
1535 * Once we get to that situation, protect the system's working
1536 * set from being evicted by disabling active file page aging.
1537 *
1538 * This uses a different ratio than the anonymous pages, because
1539 * the page cache uses a use-once replacement algorithm.
1540 */
c56d5c7d 1541static int inactive_file_is_low(struct lruvec *lruvec)
56e49d21 1542{
c3c787e8 1543 if (!mem_cgroup_disabled())
c56d5c7d 1544 return mem_cgroup_inactive_file_is_low(lruvec);
56e49d21 1545
c56d5c7d 1546 return inactive_file_is_low_global(lruvec_zone(lruvec));
56e49d21
RR
1547}
1548
c56d5c7d 1549static int inactive_list_is_low(struct lruvec *lruvec, int file)
b39415b2
RR
1550{
1551 if (file)
c56d5c7d 1552 return inactive_file_is_low(lruvec);
b39415b2 1553 else
c56d5c7d 1554 return inactive_anon_is_low(lruvec);
b39415b2
RR
1555}
1556
4f98a2fe 1557static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
f16015fb 1558 struct mem_cgroup_zone *mz,
9e3b2f8c 1559 struct scan_control *sc)
b69408e8 1560{
4f98a2fe
RR
1561 int file = is_file_lru(lru);
1562
b39415b2 1563 if (is_active_lru(lru)) {
c56d5c7d
KK
1564 struct lruvec *lruvec = mem_cgroup_zone_lruvec(mz->zone,
1565 mz->mem_cgroup);
1566
1567 if (inactive_list_is_low(lruvec, file))
9e3b2f8c 1568 shrink_active_list(nr_to_scan, mz, sc, lru);
556adecb
RR
1569 return 0;
1570 }
1571
9e3b2f8c 1572 return shrink_inactive_list(nr_to_scan, mz, sc, lru);
4f98a2fe
RR
1573}
1574
3d58ab5c 1575static int vmscan_swappiness(struct scan_control *sc)
1f4c025b 1576{
89b5fae5 1577 if (global_reclaim(sc))
1f4c025b 1578 return vm_swappiness;
3d58ab5c 1579 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1f4c025b
KH
1580}
1581
4f98a2fe
RR
1582/*
1583 * Determine how aggressively the anon and file LRU lists should be
1584 * scanned. The relative value of each set of LRU lists is determined
1585 * by looking at the fraction of the pages scanned we did rotate back
1586 * onto the active list instead of evict.
1587 *
76a33fc3 1588 * nr[0] = anon pages to scan; nr[1] = file pages to scan
4f98a2fe 1589 */
f16015fb 1590static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
9e3b2f8c 1591 unsigned long *nr)
4f98a2fe
RR
1592{
1593 unsigned long anon, file, free;
1594 unsigned long anon_prio, file_prio;
1595 unsigned long ap, fp;
f16015fb 1596 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
76a33fc3 1597 u64 fraction[2], denominator;
4111304d 1598 enum lru_list lru;
76a33fc3 1599 int noswap = 0;
a4d3e9e7 1600 bool force_scan = false;
074291fe
KK
1601 struct lruvec *lruvec;
1602
1603 lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
246e87a9 1604
f11c0ca5
JW
1605 /*
1606 * If the zone or memcg is small, nr[l] can be 0. This
1607 * results in no scanning on this priority and a potential
1608 * priority drop. Global direct reclaim can go to the next
1609 * zone and tends to have no problems. Global kswapd is for
1610 * zone balancing and it needs to scan a minimum amount. When
1611 * reclaiming for a memcg, a priority drop can cause high
1612 * latencies, so it's better to scan a minimum amount there as
1613 * well.
1614 */
b95a2f2d 1615 if (current_is_kswapd() && mz->zone->all_unreclaimable)
a4d3e9e7 1616 force_scan = true;
89b5fae5 1617 if (!global_reclaim(sc))
a4d3e9e7 1618 force_scan = true;
76a33fc3
SL
1619
1620 /* If we have no swap space, do not bother scanning anon pages. */
1621 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1622 noswap = 1;
1623 fraction[0] = 0;
1624 fraction[1] = 1;
1625 denominator = 1;
1626 goto out;
1627 }
4f98a2fe 1628
074291fe
KK
1629 anon = get_lruvec_size(lruvec, LRU_ACTIVE_ANON) +
1630 get_lruvec_size(lruvec, LRU_INACTIVE_ANON);
1631 file = get_lruvec_size(lruvec, LRU_ACTIVE_FILE) +
1632 get_lruvec_size(lruvec, LRU_INACTIVE_FILE);
a4d3e9e7 1633
89b5fae5 1634 if (global_reclaim(sc)) {
f16015fb 1635 free = zone_page_state(mz->zone, NR_FREE_PAGES);
eeee9a8c
KM
1636 /* If we have very few page cache pages,
1637 force-scan anon pages. */
f16015fb 1638 if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
76a33fc3
SL
1639 fraction[0] = 1;
1640 fraction[1] = 0;
1641 denominator = 1;
1642 goto out;
eeee9a8c 1643 }
4f98a2fe
RR
1644 }
1645
58c37f6e
KM
1646 /*
1647 * With swappiness at 100, anonymous and file have the same priority.
1648 * This scanning priority is essentially the inverse of IO cost.
1649 */
3d58ab5c
KK
1650 anon_prio = vmscan_swappiness(sc);
1651 file_prio = 200 - vmscan_swappiness(sc);
58c37f6e 1652
4f98a2fe
RR
1653 /*
1654 * OK, so we have swap space and a fair amount of page cache
1655 * pages. We use the recently rotated / recently scanned
1656 * ratios to determine how valuable each cache is.
1657 *
1658 * Because workloads change over time (and to avoid overflow)
1659 * we keep these statistics as a floating average, which ends
1660 * up weighing recent references more than old ones.
1661 *
1662 * anon in [0], file in [1]
1663 */
f16015fb 1664 spin_lock_irq(&mz->zone->lru_lock);
6e901571 1665 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1666 reclaim_stat->recent_scanned[0] /= 2;
1667 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1668 }
1669
6e901571 1670 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1671 reclaim_stat->recent_scanned[1] /= 2;
1672 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1673 }
1674
4f98a2fe 1675 /*
00d8089c
RR
1676 * The amount of pressure on anon vs file pages is inversely
1677 * proportional to the fraction of recently scanned pages on
1678 * each list that were recently referenced and in active use.
4f98a2fe 1679 */
fe35004f 1680 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 1681 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1682
fe35004f 1683 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 1684 fp /= reclaim_stat->recent_rotated[1] + 1;
f16015fb 1685 spin_unlock_irq(&mz->zone->lru_lock);
4f98a2fe 1686
76a33fc3
SL
1687 fraction[0] = ap;
1688 fraction[1] = fp;
1689 denominator = ap + fp + 1;
1690out:
4111304d
HD
1691 for_each_evictable_lru(lru) {
1692 int file = is_file_lru(lru);
76a33fc3 1693 unsigned long scan;
6e08a369 1694
074291fe 1695 scan = get_lruvec_size(lruvec, lru);
9e3b2f8c
KK
1696 if (sc->priority || noswap || !vmscan_swappiness(sc)) {
1697 scan >>= sc->priority;
f11c0ca5
JW
1698 if (!scan && force_scan)
1699 scan = SWAP_CLUSTER_MAX;
76a33fc3
SL
1700 scan = div64_u64(scan * fraction[file], denominator);
1701 }
4111304d 1702 nr[lru] = scan;
76a33fc3 1703 }
6e08a369 1704}
4f98a2fe 1705
23b9da55 1706/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 1707static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55
MG
1708{
1709 if (COMPACTION_BUILD && sc->order &&
1710 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 1711 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
1712 return true;
1713
1714 return false;
1715}
1716
3e7d3449 1717/*
23b9da55
MG
1718 * Reclaim/compaction is used for high-order allocation requests. It reclaims
1719 * order-0 pages before compacting the zone. should_continue_reclaim() returns
1720 * true if more pages should be reclaimed such that when the page allocator
1721 * calls try_to_compact_zone() that it will have enough free pages to succeed.
1722 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 1723 */
f16015fb 1724static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
3e7d3449
MG
1725 unsigned long nr_reclaimed,
1726 unsigned long nr_scanned,
1727 struct scan_control *sc)
1728{
1729 unsigned long pages_for_compaction;
1730 unsigned long inactive_lru_pages;
074291fe 1731 struct lruvec *lruvec;
3e7d3449
MG
1732
1733 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 1734 if (!in_reclaim_compaction(sc))
3e7d3449
MG
1735 return false;
1736
2876592f
MG
1737 /* Consider stopping depending on scan and reclaim activity */
1738 if (sc->gfp_mask & __GFP_REPEAT) {
1739 /*
1740 * For __GFP_REPEAT allocations, stop reclaiming if the
1741 * full LRU list has been scanned and we are still failing
1742 * to reclaim pages. This full LRU scan is potentially
1743 * expensive but a __GFP_REPEAT caller really wants to succeed
1744 */
1745 if (!nr_reclaimed && !nr_scanned)
1746 return false;
1747 } else {
1748 /*
1749 * For non-__GFP_REPEAT allocations which can presumably
1750 * fail without consequence, stop if we failed to reclaim
1751 * any pages from the last SWAP_CLUSTER_MAX number of
1752 * pages that were scanned. This will return to the
1753 * caller faster at the risk reclaim/compaction and
1754 * the resulting allocation attempt fails
1755 */
1756 if (!nr_reclaimed)
1757 return false;
1758 }
3e7d3449
MG
1759
1760 /*
1761 * If we have not reclaimed enough pages for compaction and the
1762 * inactive lists are large enough, continue reclaiming
1763 */
074291fe 1764 lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
3e7d3449 1765 pages_for_compaction = (2UL << sc->order);
074291fe 1766 inactive_lru_pages = get_lruvec_size(lruvec, LRU_INACTIVE_FILE);
86cfd3a4 1767 if (nr_swap_pages > 0)
074291fe
KK
1768 inactive_lru_pages += get_lruvec_size(lruvec,
1769 LRU_INACTIVE_ANON);
3e7d3449
MG
1770 if (sc->nr_reclaimed < pages_for_compaction &&
1771 inactive_lru_pages > pages_for_compaction)
1772 return true;
1773
1774 /* If compaction would go ahead or the allocation would succeed, stop */
f16015fb 1775 switch (compaction_suitable(mz->zone, sc->order)) {
3e7d3449
MG
1776 case COMPACT_PARTIAL:
1777 case COMPACT_CONTINUE:
1778 return false;
1779 default:
1780 return true;
1781 }
1782}
1783
1da177e4
LT
1784/*
1785 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1786 */
9e3b2f8c 1787static void shrink_mem_cgroup_zone(struct mem_cgroup_zone *mz,
f16015fb 1788 struct scan_control *sc)
1da177e4 1789{
b69408e8 1790 unsigned long nr[NR_LRU_LISTS];
8695949a 1791 unsigned long nr_to_scan;
4111304d 1792 enum lru_list lru;
f0fdc5e8 1793 unsigned long nr_reclaimed, nr_scanned;
22fba335 1794 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
3da367c3 1795 struct blk_plug plug;
c56d5c7d
KK
1796 struct lruvec *lruvec;
1797
1798 lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
e0f79b8f 1799
3e7d3449
MG
1800restart:
1801 nr_reclaimed = 0;
f0fdc5e8 1802 nr_scanned = sc->nr_scanned;
9e3b2f8c 1803 get_scan_count(mz, sc, nr);
1da177e4 1804
3da367c3 1805 blk_start_plug(&plug);
556adecb
RR
1806 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1807 nr[LRU_INACTIVE_FILE]) {
4111304d
HD
1808 for_each_evictable_lru(lru) {
1809 if (nr[lru]) {
ece74b2e 1810 nr_to_scan = min_t(unsigned long,
4111304d
HD
1811 nr[lru], SWAP_CLUSTER_MAX);
1812 nr[lru] -= nr_to_scan;
1da177e4 1813
4111304d 1814 nr_reclaimed += shrink_list(lru, nr_to_scan,
9e3b2f8c 1815 mz, sc);
b69408e8 1816 }
1da177e4 1817 }
a79311c1
RR
1818 /*
1819 * On large memory systems, scan >> priority can become
1820 * really large. This is fine for the starting priority;
1821 * we want to put equal scanning pressure on each zone.
1822 * However, if the VM has a harder time of freeing pages,
1823 * with multiple processes reclaiming pages, the total
1824 * freeing target can get unreasonably large.
1825 */
9e3b2f8c
KK
1826 if (nr_reclaimed >= nr_to_reclaim &&
1827 sc->priority < DEF_PRIORITY)
a79311c1 1828 break;
1da177e4 1829 }
3da367c3 1830 blk_finish_plug(&plug);
3e7d3449 1831 sc->nr_reclaimed += nr_reclaimed;
01dbe5c9 1832
556adecb
RR
1833 /*
1834 * Even if we did not try to evict anon pages at all, we want to
1835 * rebalance the anon lru active/inactive ratio.
1836 */
c56d5c7d 1837 if (inactive_anon_is_low(lruvec))
3cb99451 1838 shrink_active_list(SWAP_CLUSTER_MAX, mz,
9e3b2f8c 1839 sc, LRU_ACTIVE_ANON);
556adecb 1840
3e7d3449 1841 /* reclaim/compaction might need reclaim to continue */
f16015fb 1842 if (should_continue_reclaim(mz, nr_reclaimed,
9e3b2f8c 1843 sc->nr_scanned - nr_scanned, sc))
3e7d3449
MG
1844 goto restart;
1845
232ea4d6 1846 throttle_vm_writeout(sc->gfp_mask);
1da177e4
LT
1847}
1848
9e3b2f8c 1849static void shrink_zone(struct zone *zone, struct scan_control *sc)
f16015fb 1850{
5660048c
JW
1851 struct mem_cgroup *root = sc->target_mem_cgroup;
1852 struct mem_cgroup_reclaim_cookie reclaim = {
f16015fb 1853 .zone = zone,
9e3b2f8c 1854 .priority = sc->priority,
f16015fb 1855 };
5660048c
JW
1856 struct mem_cgroup *memcg;
1857
5660048c
JW
1858 memcg = mem_cgroup_iter(root, NULL, &reclaim);
1859 do {
1860 struct mem_cgroup_zone mz = {
1861 .mem_cgroup = memcg,
1862 .zone = zone,
1863 };
f16015fb 1864
9e3b2f8c 1865 shrink_mem_cgroup_zone(&mz, sc);
5660048c
JW
1866 /*
1867 * Limit reclaim has historically picked one memcg and
1868 * scanned it with decreasing priority levels until
1869 * nr_to_reclaim had been reclaimed. This priority
1870 * cycle is thus over after a single memcg.
b95a2f2d
JW
1871 *
1872 * Direct reclaim and kswapd, on the other hand, have
1873 * to scan all memory cgroups to fulfill the overall
1874 * scan target for the zone.
5660048c
JW
1875 */
1876 if (!global_reclaim(sc)) {
1877 mem_cgroup_iter_break(root, memcg);
1878 break;
1879 }
1880 memcg = mem_cgroup_iter(root, memcg, &reclaim);
1881 } while (memcg);
f16015fb
JW
1882}
1883
fe4b1b24
MG
1884/* Returns true if compaction should go ahead for a high-order request */
1885static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1886{
1887 unsigned long balance_gap, watermark;
1888 bool watermark_ok;
1889
1890 /* Do not consider compaction for orders reclaim is meant to satisfy */
1891 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
1892 return false;
1893
1894 /*
1895 * Compaction takes time to run and there are potentially other
1896 * callers using the pages just freed. Continue reclaiming until
1897 * there is a buffer of free pages available to give compaction
1898 * a reasonable chance of completing and allocating the page
1899 */
1900 balance_gap = min(low_wmark_pages(zone),
1901 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1902 KSWAPD_ZONE_BALANCE_GAP_RATIO);
1903 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1904 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1905
1906 /*
1907 * If compaction is deferred, reclaim up to a point where
1908 * compaction will have a chance of success when re-enabled
1909 */
aff62249 1910 if (compaction_deferred(zone, sc->order))
fe4b1b24
MG
1911 return watermark_ok;
1912
1913 /* If compaction is not ready to start, keep reclaiming */
1914 if (!compaction_suitable(zone, sc->order))
1915 return false;
1916
1917 return watermark_ok;
1918}
1919
1da177e4
LT
1920/*
1921 * This is the direct reclaim path, for page-allocating processes. We only
1922 * try to reclaim pages from zones which will satisfy the caller's allocation
1923 * request.
1924 *
41858966
MG
1925 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1926 * Because:
1da177e4
LT
1927 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1928 * allocation or
41858966
MG
1929 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1930 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1931 * zone defense algorithm.
1da177e4 1932 *
1da177e4
LT
1933 * If a zone is deemed to be full of pinned pages then just give it a light
1934 * scan then give up on it.
e0c23279
MG
1935 *
1936 * This function returns true if a zone is being reclaimed for a costly
fe4b1b24 1937 * high-order allocation and compaction is ready to begin. This indicates to
0cee34fd
MG
1938 * the caller that it should consider retrying the allocation instead of
1939 * further reclaim.
1da177e4 1940 */
9e3b2f8c 1941static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 1942{
dd1a239f 1943 struct zoneref *z;
54a6eb5c 1944 struct zone *zone;
d149e3b2
YH
1945 unsigned long nr_soft_reclaimed;
1946 unsigned long nr_soft_scanned;
0cee34fd 1947 bool aborted_reclaim = false;
1cfb419b 1948
cc715d99
MG
1949 /*
1950 * If the number of buffer_heads in the machine exceeds the maximum
1951 * allowed level, force direct reclaim to scan the highmem zone as
1952 * highmem pages could be pinning lowmem pages storing buffer_heads
1953 */
1954 if (buffer_heads_over_limit)
1955 sc->gfp_mask |= __GFP_HIGHMEM;
1956
d4debc66
MG
1957 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1958 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 1959 if (!populated_zone(zone))
1da177e4 1960 continue;
1cfb419b
KH
1961 /*
1962 * Take care memory controller reclaiming has small influence
1963 * to global LRU.
1964 */
89b5fae5 1965 if (global_reclaim(sc)) {
1cfb419b
KH
1966 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1967 continue;
9e3b2f8c
KK
1968 if (zone->all_unreclaimable &&
1969 sc->priority != DEF_PRIORITY)
1cfb419b 1970 continue; /* Let kswapd poll it */
e0887c19
RR
1971 if (COMPACTION_BUILD) {
1972 /*
e0c23279
MG
1973 * If we already have plenty of memory free for
1974 * compaction in this zone, don't free any more.
1975 * Even though compaction is invoked for any
1976 * non-zero order, only frequent costly order
1977 * reclamation is disruptive enough to become a
c7cfa37b
CA
1978 * noticeable problem, like transparent huge
1979 * page allocations.
e0887c19 1980 */
fe4b1b24 1981 if (compaction_ready(zone, sc)) {
0cee34fd 1982 aborted_reclaim = true;
e0887c19 1983 continue;
e0c23279 1984 }
e0887c19 1985 }
ac34a1a3
KH
1986 /*
1987 * This steals pages from memory cgroups over softlimit
1988 * and returns the number of reclaimed pages and
1989 * scanned pages. This works for global memory pressure
1990 * and balancing, not for a memcg's limit.
1991 */
1992 nr_soft_scanned = 0;
1993 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
1994 sc->order, sc->gfp_mask,
1995 &nr_soft_scanned);
1996 sc->nr_reclaimed += nr_soft_reclaimed;
1997 sc->nr_scanned += nr_soft_scanned;
1998 /* need some check for avoid more shrink_zone() */
1cfb419b 1999 }
408d8544 2000
9e3b2f8c 2001 shrink_zone(zone, sc);
1da177e4 2002 }
e0c23279 2003
0cee34fd 2004 return aborted_reclaim;
d1908362
MK
2005}
2006
2007static bool zone_reclaimable(struct zone *zone)
2008{
2009 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2010}
2011
929bea7c 2012/* All zones in zonelist are unreclaimable? */
d1908362
MK
2013static bool all_unreclaimable(struct zonelist *zonelist,
2014 struct scan_control *sc)
2015{
2016 struct zoneref *z;
2017 struct zone *zone;
d1908362
MK
2018
2019 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2020 gfp_zone(sc->gfp_mask), sc->nodemask) {
2021 if (!populated_zone(zone))
2022 continue;
2023 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2024 continue;
929bea7c
KM
2025 if (!zone->all_unreclaimable)
2026 return false;
d1908362
MK
2027 }
2028
929bea7c 2029 return true;
1da177e4 2030}
4f98a2fe 2031
1da177e4
LT
2032/*
2033 * This is the main entry point to direct page reclaim.
2034 *
2035 * If a full scan of the inactive list fails to free enough memory then we
2036 * are "out of memory" and something needs to be killed.
2037 *
2038 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2039 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2040 * caller can't do much about. We kick the writeback threads and take explicit
2041 * naps in the hope that some of these pages can be written. But if the
2042 * allocating task holds filesystem locks which prevent writeout this might not
2043 * work, and the allocation attempt will fail.
a41f24ea
NA
2044 *
2045 * returns: 0, if no pages reclaimed
2046 * else, the number of pages reclaimed
1da177e4 2047 */
dac1d27b 2048static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
a09ed5e0
YH
2049 struct scan_control *sc,
2050 struct shrink_control *shrink)
1da177e4 2051{
69e05944 2052 unsigned long total_scanned = 0;
1da177e4 2053 struct reclaim_state *reclaim_state = current->reclaim_state;
dd1a239f 2054 struct zoneref *z;
54a6eb5c 2055 struct zone *zone;
22fba335 2056 unsigned long writeback_threshold;
0cee34fd 2057 bool aborted_reclaim;
1da177e4 2058
873b4771
KK
2059 delayacct_freepages_start();
2060
89b5fae5 2061 if (global_reclaim(sc))
1cfb419b 2062 count_vm_event(ALLOCSTALL);
1da177e4 2063
9e3b2f8c 2064 do {
66e1707b 2065 sc->nr_scanned = 0;
9e3b2f8c 2066 aborted_reclaim = shrink_zones(zonelist, sc);
e0c23279 2067
66e1707b
BS
2068 /*
2069 * Don't shrink slabs when reclaiming memory from
2070 * over limit cgroups
2071 */
89b5fae5 2072 if (global_reclaim(sc)) {
c6a8a8c5 2073 unsigned long lru_pages = 0;
d4debc66
MG
2074 for_each_zone_zonelist(zone, z, zonelist,
2075 gfp_zone(sc->gfp_mask)) {
c6a8a8c5
KM
2076 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2077 continue;
2078
2079 lru_pages += zone_reclaimable_pages(zone);
2080 }
2081
1495f230 2082 shrink_slab(shrink, sc->nr_scanned, lru_pages);
91a45470 2083 if (reclaim_state) {
a79311c1 2084 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
2085 reclaim_state->reclaimed_slab = 0;
2086 }
1da177e4 2087 }
66e1707b 2088 total_scanned += sc->nr_scanned;
bb21c7ce 2089 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1da177e4 2090 goto out;
1da177e4
LT
2091
2092 /*
2093 * Try to write back as many pages as we just scanned. This
2094 * tends to cause slow streaming writers to write data to the
2095 * disk smoothly, at the dirtying rate, which is nice. But
2096 * that's undesirable in laptop mode, where we *want* lumpy
2097 * writeout. So in laptop mode, write out the whole world.
2098 */
22fba335
KM
2099 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2100 if (total_scanned > writeback_threshold) {
0e175a18
CW
2101 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2102 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2103 sc->may_writepage = 1;
1da177e4
LT
2104 }
2105
2106 /* Take a nap, wait for some writeback to complete */
7b51755c 2107 if (!sc->hibernation_mode && sc->nr_scanned &&
9e3b2f8c 2108 sc->priority < DEF_PRIORITY - 2) {
0e093d99
MG
2109 struct zone *preferred_zone;
2110
2111 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
f33261d7
DR
2112 &cpuset_current_mems_allowed,
2113 &preferred_zone);
0e093d99
MG
2114 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2115 }
9e3b2f8c 2116 } while (--sc->priority >= 0);
bb21c7ce 2117
1da177e4 2118out:
873b4771
KK
2119 delayacct_freepages_end();
2120
bb21c7ce
KM
2121 if (sc->nr_reclaimed)
2122 return sc->nr_reclaimed;
2123
929bea7c
KM
2124 /*
2125 * As hibernation is going on, kswapd is freezed so that it can't mark
2126 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2127 * check.
2128 */
2129 if (oom_killer_disabled)
2130 return 0;
2131
0cee34fd
MG
2132 /* Aborted reclaim to try compaction? don't OOM, then */
2133 if (aborted_reclaim)
7335084d
MG
2134 return 1;
2135
bb21c7ce 2136 /* top priority shrink_zones still had more to do? don't OOM, then */
89b5fae5 2137 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
bb21c7ce
KM
2138 return 1;
2139
2140 return 0;
1da177e4
LT
2141}
2142
dac1d27b 2143unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2144 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2145{
33906bc5 2146 unsigned long nr_reclaimed;
66e1707b
BS
2147 struct scan_control sc = {
2148 .gfp_mask = gfp_mask,
2149 .may_writepage = !laptop_mode,
22fba335 2150 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 2151 .may_unmap = 1,
2e2e4259 2152 .may_swap = 1,
66e1707b 2153 .order = order,
9e3b2f8c 2154 .priority = DEF_PRIORITY,
f16015fb 2155 .target_mem_cgroup = NULL,
327c0e96 2156 .nodemask = nodemask,
66e1707b 2157 };
a09ed5e0
YH
2158 struct shrink_control shrink = {
2159 .gfp_mask = sc.gfp_mask,
2160 };
66e1707b 2161
33906bc5
MG
2162 trace_mm_vmscan_direct_reclaim_begin(order,
2163 sc.may_writepage,
2164 gfp_mask);
2165
a09ed5e0 2166 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
33906bc5
MG
2167
2168 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2169
2170 return nr_reclaimed;
66e1707b
BS
2171}
2172
00f0b825 2173#ifdef CONFIG_CGROUP_MEM_RES_CTLR
66e1707b 2174
72835c86 2175unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2176 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2177 struct zone *zone,
2178 unsigned long *nr_scanned)
4e416953
BS
2179{
2180 struct scan_control sc = {
0ae5e89c 2181 .nr_scanned = 0,
b8f5c566 2182 .nr_to_reclaim = SWAP_CLUSTER_MAX,
4e416953
BS
2183 .may_writepage = !laptop_mode,
2184 .may_unmap = 1,
2185 .may_swap = !noswap,
4e416953 2186 .order = 0,
9e3b2f8c 2187 .priority = 0,
72835c86 2188 .target_mem_cgroup = memcg,
4e416953 2189 };
5660048c 2190 struct mem_cgroup_zone mz = {
72835c86 2191 .mem_cgroup = memcg,
5660048c
JW
2192 .zone = zone,
2193 };
0ae5e89c 2194
4e416953
BS
2195 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2196 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2197
9e3b2f8c 2198 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e
KM
2199 sc.may_writepage,
2200 sc.gfp_mask);
2201
4e416953
BS
2202 /*
2203 * NOTE: Although we can get the priority field, using it
2204 * here is not a good idea, since it limits the pages we can scan.
2205 * if we don't reclaim here, the shrink_zone from balance_pgdat
2206 * will pick up pages from other mem cgroup's as well. We hack
2207 * the priority and make it zero.
2208 */
9e3b2f8c 2209 shrink_mem_cgroup_zone(&mz, &sc);
bdce6d9e
KM
2210
2211 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2212
0ae5e89c 2213 *nr_scanned = sc.nr_scanned;
4e416953
BS
2214 return sc.nr_reclaimed;
2215}
2216
72835c86 2217unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
a7885eb8 2218 gfp_t gfp_mask,
185efc0f 2219 bool noswap)
66e1707b 2220{
4e416953 2221 struct zonelist *zonelist;
bdce6d9e 2222 unsigned long nr_reclaimed;
889976db 2223 int nid;
66e1707b 2224 struct scan_control sc = {
66e1707b 2225 .may_writepage = !laptop_mode,
a6dc60f8 2226 .may_unmap = 1,
2e2e4259 2227 .may_swap = !noswap,
22fba335 2228 .nr_to_reclaim = SWAP_CLUSTER_MAX,
66e1707b 2229 .order = 0,
9e3b2f8c 2230 .priority = DEF_PRIORITY,
72835c86 2231 .target_mem_cgroup = memcg,
327c0e96 2232 .nodemask = NULL, /* we don't care the placement */
a09ed5e0
YH
2233 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2234 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2235 };
2236 struct shrink_control shrink = {
2237 .gfp_mask = sc.gfp_mask,
66e1707b 2238 };
66e1707b 2239
889976db
YH
2240 /*
2241 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2242 * take care of from where we get pages. So the node where we start the
2243 * scan does not need to be the current node.
2244 */
72835c86 2245 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2246
2247 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2248
2249 trace_mm_vmscan_memcg_reclaim_begin(0,
2250 sc.may_writepage,
2251 sc.gfp_mask);
2252
a09ed5e0 2253 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
bdce6d9e
KM
2254
2255 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2256
2257 return nr_reclaimed;
66e1707b
BS
2258}
2259#endif
2260
9e3b2f8c 2261static void age_active_anon(struct zone *zone, struct scan_control *sc)
f16015fb 2262{
b95a2f2d 2263 struct mem_cgroup *memcg;
f16015fb 2264
b95a2f2d
JW
2265 if (!total_swap_pages)
2266 return;
2267
2268 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2269 do {
c56d5c7d 2270 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
b95a2f2d
JW
2271 struct mem_cgroup_zone mz = {
2272 .mem_cgroup = memcg,
2273 .zone = zone,
2274 };
2275
c56d5c7d 2276 if (inactive_anon_is_low(lruvec))
b95a2f2d 2277 shrink_active_list(SWAP_CLUSTER_MAX, &mz,
9e3b2f8c 2278 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
2279
2280 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2281 } while (memcg);
f16015fb
JW
2282}
2283
1741c877
MG
2284/*
2285 * pgdat_balanced is used when checking if a node is balanced for high-order
2286 * allocations. Only zones that meet watermarks and are in a zone allowed
2287 * by the callers classzone_idx are added to balanced_pages. The total of
2288 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2289 * for the node to be considered balanced. Forcing all zones to be balanced
2290 * for high orders can cause excessive reclaim when there are imbalanced zones.
2291 * The choice of 25% is due to
2292 * o a 16M DMA zone that is balanced will not balance a zone on any
2293 * reasonable sized machine
2294 * o On all other machines, the top zone must be at least a reasonable
25985edc 2295 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2296 * would need to be at least 256M for it to be balance a whole node.
2297 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2298 * to balance a node on its own. These seemed like reasonable ratios.
2299 */
2300static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2301 int classzone_idx)
2302{
2303 unsigned long present_pages = 0;
2304 int i;
2305
2306 for (i = 0; i <= classzone_idx; i++)
2307 present_pages += pgdat->node_zones[i].present_pages;
2308
4746efde
SL
2309 /* A special case here: if zone has no page, we think it's balanced */
2310 return balanced_pages >= (present_pages >> 2);
1741c877
MG
2311}
2312
f50de2d3 2313/* is kswapd sleeping prematurely? */
dc83edd9
MG
2314static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2315 int classzone_idx)
f50de2d3 2316{
bb3ab596 2317 int i;
1741c877
MG
2318 unsigned long balanced = 0;
2319 bool all_zones_ok = true;
f50de2d3
MG
2320
2321 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2322 if (remaining)
dc83edd9 2323 return true;
f50de2d3 2324
0abdee2b 2325 /* Check the watermark levels */
08951e54 2326 for (i = 0; i <= classzone_idx; i++) {
bb3ab596
KM
2327 struct zone *zone = pgdat->node_zones + i;
2328
2329 if (!populated_zone(zone))
2330 continue;
2331
355b09c4
MG
2332 /*
2333 * balance_pgdat() skips over all_unreclaimable after
2334 * DEF_PRIORITY. Effectively, it considers them balanced so
2335 * they must be considered balanced here as well if kswapd
2336 * is to sleep
2337 */
2338 if (zone->all_unreclaimable) {
2339 balanced += zone->present_pages;
de3fab39 2340 continue;
355b09c4 2341 }
de3fab39 2342
88f5acf8 2343 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
da175d06 2344 i, 0))
1741c877
MG
2345 all_zones_ok = false;
2346 else
2347 balanced += zone->present_pages;
bb3ab596 2348 }
f50de2d3 2349
1741c877
MG
2350 /*
2351 * For high-order requests, the balanced zones must contain at least
2352 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2353 * must be balanced
2354 */
2355 if (order)
afc7e326 2356 return !pgdat_balanced(pgdat, balanced, classzone_idx);
1741c877
MG
2357 else
2358 return !all_zones_ok;
f50de2d3
MG
2359}
2360
1da177e4
LT
2361/*
2362 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2363 * they are all at high_wmark_pages(zone).
1da177e4 2364 *
0abdee2b 2365 * Returns the final order kswapd was reclaiming at
1da177e4
LT
2366 *
2367 * There is special handling here for zones which are full of pinned pages.
2368 * This can happen if the pages are all mlocked, or if they are all used by
2369 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2370 * What we do is to detect the case where all pages in the zone have been
2371 * scanned twice and there has been zero successful reclaim. Mark the zone as
2372 * dead and from now on, only perform a short scan. Basically we're polling
2373 * the zone for when the problem goes away.
2374 *
2375 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
2376 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2377 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2378 * lower zones regardless of the number of free pages in the lower zones. This
2379 * interoperates with the page allocator fallback scheme to ensure that aging
2380 * of pages is balanced across the zones.
1da177e4 2381 */
99504748 2382static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 2383 int *classzone_idx)
1da177e4 2384{
1da177e4 2385 int all_zones_ok;
1741c877 2386 unsigned long balanced;
1da177e4 2387 int i;
99504748 2388 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
69e05944 2389 unsigned long total_scanned;
1da177e4 2390 struct reclaim_state *reclaim_state = current->reclaim_state;
0ae5e89c
YH
2391 unsigned long nr_soft_reclaimed;
2392 unsigned long nr_soft_scanned;
179e9639
AM
2393 struct scan_control sc = {
2394 .gfp_mask = GFP_KERNEL,
a6dc60f8 2395 .may_unmap = 1,
2e2e4259 2396 .may_swap = 1,
22fba335
KM
2397 /*
2398 * kswapd doesn't want to be bailed out while reclaim. because
2399 * we want to put equal scanning pressure on each zone.
2400 */
2401 .nr_to_reclaim = ULONG_MAX,
5ad333eb 2402 .order = order,
f16015fb 2403 .target_mem_cgroup = NULL,
179e9639 2404 };
a09ed5e0
YH
2405 struct shrink_control shrink = {
2406 .gfp_mask = sc.gfp_mask,
2407 };
1da177e4
LT
2408loop_again:
2409 total_scanned = 0;
9e3b2f8c 2410 sc.priority = DEF_PRIORITY;
a79311c1 2411 sc.nr_reclaimed = 0;
c0bbbc73 2412 sc.may_writepage = !laptop_mode;
f8891e5e 2413 count_vm_event(PAGEOUTRUN);
1da177e4 2414
9e3b2f8c 2415 do {
1da177e4 2416 unsigned long lru_pages = 0;
bb3ab596 2417 int has_under_min_watermark_zone = 0;
1da177e4
LT
2418
2419 all_zones_ok = 1;
1741c877 2420 balanced = 0;
1da177e4 2421
d6277db4
RW
2422 /*
2423 * Scan in the highmem->dma direction for the highest
2424 * zone which needs scanning
2425 */
2426 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2427 struct zone *zone = pgdat->node_zones + i;
1da177e4 2428
d6277db4
RW
2429 if (!populated_zone(zone))
2430 continue;
1da177e4 2431
9e3b2f8c
KK
2432 if (zone->all_unreclaimable &&
2433 sc.priority != DEF_PRIORITY)
d6277db4 2434 continue;
1da177e4 2435
556adecb
RR
2436 /*
2437 * Do some background aging of the anon list, to give
2438 * pages a chance to be referenced before reclaiming.
2439 */
9e3b2f8c 2440 age_active_anon(zone, &sc);
556adecb 2441
cc715d99
MG
2442 /*
2443 * If the number of buffer_heads in the machine
2444 * exceeds the maximum allowed level and this node
2445 * has a highmem zone, force kswapd to reclaim from
2446 * it to relieve lowmem pressure.
2447 */
2448 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2449 end_zone = i;
2450 break;
2451 }
2452
88f5acf8 2453 if (!zone_watermark_ok_safe(zone, order,
41858966 2454 high_wmark_pages(zone), 0, 0)) {
d6277db4 2455 end_zone = i;
e1dbeda6 2456 break;
439423f6
SL
2457 } else {
2458 /* If balanced, clear the congested flag */
2459 zone_clear_flag(zone, ZONE_CONGESTED);
1da177e4 2460 }
1da177e4 2461 }
e1dbeda6
AM
2462 if (i < 0)
2463 goto out;
2464
1da177e4
LT
2465 for (i = 0; i <= end_zone; i++) {
2466 struct zone *zone = pgdat->node_zones + i;
2467
adea02a1 2468 lru_pages += zone_reclaimable_pages(zone);
1da177e4
LT
2469 }
2470
2471 /*
2472 * Now scan the zone in the dma->highmem direction, stopping
2473 * at the last zone which needs scanning.
2474 *
2475 * We do this because the page allocator works in the opposite
2476 * direction. This prevents the page allocator from allocating
2477 * pages behind kswapd's direction of progress, which would
2478 * cause too much scanning of the lower zones.
2479 */
2480 for (i = 0; i <= end_zone; i++) {
2481 struct zone *zone = pgdat->node_zones + i;
fe2c2a10 2482 int nr_slab, testorder;
8afdcece 2483 unsigned long balance_gap;
1da177e4 2484
f3fe6512 2485 if (!populated_zone(zone))
1da177e4
LT
2486 continue;
2487
9e3b2f8c
KK
2488 if (zone->all_unreclaimable &&
2489 sc.priority != DEF_PRIORITY)
1da177e4
LT
2490 continue;
2491
1da177e4 2492 sc.nr_scanned = 0;
4e416953 2493
0ae5e89c 2494 nr_soft_scanned = 0;
4e416953
BS
2495 /*
2496 * Call soft limit reclaim before calling shrink_zone.
4e416953 2497 */
0ae5e89c
YH
2498 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2499 order, sc.gfp_mask,
2500 &nr_soft_scanned);
2501 sc.nr_reclaimed += nr_soft_reclaimed;
2502 total_scanned += nr_soft_scanned;
00918b6a 2503
32a4330d 2504 /*
8afdcece
MG
2505 * We put equal pressure on every zone, unless
2506 * one zone has way too many pages free
2507 * already. The "too many pages" is defined
2508 * as the high wmark plus a "gap" where the
2509 * gap is either the low watermark or 1%
2510 * of the zone, whichever is smaller.
32a4330d 2511 */
8afdcece
MG
2512 balance_gap = min(low_wmark_pages(zone),
2513 (zone->present_pages +
2514 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2515 KSWAPD_ZONE_BALANCE_GAP_RATIO);
fe2c2a10
RR
2516 /*
2517 * Kswapd reclaims only single pages with compaction
2518 * enabled. Trying too hard to reclaim until contiguous
2519 * free pages have become available can hurt performance
2520 * by evicting too much useful data from memory.
2521 * Do not reclaim more than needed for compaction.
2522 */
2523 testorder = order;
2524 if (COMPACTION_BUILD && order &&
2525 compaction_suitable(zone, order) !=
2526 COMPACT_SKIPPED)
2527 testorder = 0;
2528
cc715d99 2529 if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
643ac9fc 2530 !zone_watermark_ok_safe(zone, testorder,
8afdcece 2531 high_wmark_pages(zone) + balance_gap,
d7868dae 2532 end_zone, 0)) {
9e3b2f8c 2533 shrink_zone(zone, &sc);
5a03b051 2534
d7868dae
MG
2535 reclaim_state->reclaimed_slab = 0;
2536 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2537 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2538 total_scanned += sc.nr_scanned;
2539
2540 if (nr_slab == 0 && !zone_reclaimable(zone))
2541 zone->all_unreclaimable = 1;
2542 }
2543
1da177e4
LT
2544 /*
2545 * If we've done a decent amount of scanning and
2546 * the reclaim ratio is low, start doing writepage
2547 * even in laptop mode
2548 */
2549 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
a79311c1 2550 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1da177e4 2551 sc.may_writepage = 1;
bb3ab596 2552
215ddd66
MG
2553 if (zone->all_unreclaimable) {
2554 if (end_zone && end_zone == i)
2555 end_zone--;
d7868dae 2556 continue;
215ddd66 2557 }
d7868dae 2558
fe2c2a10 2559 if (!zone_watermark_ok_safe(zone, testorder,
45973d74
MK
2560 high_wmark_pages(zone), end_zone, 0)) {
2561 all_zones_ok = 0;
2562 /*
2563 * We are still under min water mark. This
2564 * means that we have a GFP_ATOMIC allocation
2565 * failure risk. Hurry up!
2566 */
88f5acf8 2567 if (!zone_watermark_ok_safe(zone, order,
45973d74
MK
2568 min_wmark_pages(zone), end_zone, 0))
2569 has_under_min_watermark_zone = 1;
0e093d99
MG
2570 } else {
2571 /*
2572 * If a zone reaches its high watermark,
2573 * consider it to be no longer congested. It's
2574 * possible there are dirty pages backed by
2575 * congested BDIs but as pressure is relieved,
2576 * spectulatively avoid congestion waits
2577 */
2578 zone_clear_flag(zone, ZONE_CONGESTED);
dc83edd9 2579 if (i <= *classzone_idx)
1741c877 2580 balanced += zone->present_pages;
45973d74 2581 }
bb3ab596 2582
1da177e4 2583 }
dc83edd9 2584 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
1da177e4
LT
2585 break; /* kswapd: all done */
2586 /*
2587 * OK, kswapd is getting into trouble. Take a nap, then take
2588 * another pass across the zones.
2589 */
9e3b2f8c 2590 if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
bb3ab596
KM
2591 if (has_under_min_watermark_zone)
2592 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2593 else
2594 congestion_wait(BLK_RW_ASYNC, HZ/10);
2595 }
1da177e4
LT
2596
2597 /*
2598 * We do this so kswapd doesn't build up large priorities for
2599 * example when it is freeing in parallel with allocators. It
2600 * matches the direct reclaim path behaviour in terms of impact
2601 * on zone->*_priority.
2602 */
a79311c1 2603 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4 2604 break;
9e3b2f8c 2605 } while (--sc.priority >= 0);
1da177e4 2606out:
99504748
MG
2607
2608 /*
2609 * order-0: All zones must meet high watermark for a balanced node
1741c877
MG
2610 * high-order: Balanced zones must make up at least 25% of the node
2611 * for the node to be balanced
99504748 2612 */
dc83edd9 2613 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
1da177e4 2614 cond_resched();
8357376d
RW
2615
2616 try_to_freeze();
2617
73ce02e9
KM
2618 /*
2619 * Fragmentation may mean that the system cannot be
2620 * rebalanced for high-order allocations in all zones.
2621 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2622 * it means the zones have been fully scanned and are still
2623 * not balanced. For high-order allocations, there is
2624 * little point trying all over again as kswapd may
2625 * infinite loop.
2626 *
2627 * Instead, recheck all watermarks at order-0 as they
2628 * are the most important. If watermarks are ok, kswapd will go
2629 * back to sleep. High-order users can still perform direct
2630 * reclaim if they wish.
2631 */
2632 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2633 order = sc.order = 0;
2634
1da177e4
LT
2635 goto loop_again;
2636 }
2637
99504748
MG
2638 /*
2639 * If kswapd was reclaiming at a higher order, it has the option of
2640 * sleeping without all zones being balanced. Before it does, it must
2641 * ensure that the watermarks for order-0 on *all* zones are met and
2642 * that the congestion flags are cleared. The congestion flag must
2643 * be cleared as kswapd is the only mechanism that clears the flag
2644 * and it is potentially going to sleep here.
2645 */
2646 if (order) {
7be62de9
RR
2647 int zones_need_compaction = 1;
2648
99504748
MG
2649 for (i = 0; i <= end_zone; i++) {
2650 struct zone *zone = pgdat->node_zones + i;
2651
2652 if (!populated_zone(zone))
2653 continue;
2654
9e3b2f8c
KK
2655 if (zone->all_unreclaimable &&
2656 sc.priority != DEF_PRIORITY)
99504748
MG
2657 continue;
2658
fe2c2a10 2659 /* Would compaction fail due to lack of free memory? */
496b919b
RR
2660 if (COMPACTION_BUILD &&
2661 compaction_suitable(zone, order) == COMPACT_SKIPPED)
fe2c2a10
RR
2662 goto loop_again;
2663
99504748
MG
2664 /* Confirm the zone is balanced for order-0 */
2665 if (!zone_watermark_ok(zone, 0,
2666 high_wmark_pages(zone), 0, 0)) {
2667 order = sc.order = 0;
2668 goto loop_again;
2669 }
2670
7be62de9
RR
2671 /* Check if the memory needs to be defragmented. */
2672 if (zone_watermark_ok(zone, order,
2673 low_wmark_pages(zone), *classzone_idx, 0))
2674 zones_need_compaction = 0;
2675
99504748
MG
2676 /* If balanced, clear the congested flag */
2677 zone_clear_flag(zone, ZONE_CONGESTED);
2678 }
7be62de9
RR
2679
2680 if (zones_need_compaction)
2681 compact_pgdat(pgdat, order);
99504748
MG
2682 }
2683
0abdee2b
MG
2684 /*
2685 * Return the order we were reclaiming at so sleeping_prematurely()
2686 * makes a decision on the order we were last reclaiming at. However,
2687 * if another caller entered the allocator slow path while kswapd
2688 * was awake, order will remain at the higher level
2689 */
dc83edd9 2690 *classzone_idx = end_zone;
0abdee2b 2691 return order;
1da177e4
LT
2692}
2693
dc83edd9 2694static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
2695{
2696 long remaining = 0;
2697 DEFINE_WAIT(wait);
2698
2699 if (freezing(current) || kthread_should_stop())
2700 return;
2701
2702 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2703
2704 /* Try to sleep for a short interval */
dc83edd9 2705 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2706 remaining = schedule_timeout(HZ/10);
2707 finish_wait(&pgdat->kswapd_wait, &wait);
2708 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2709 }
2710
2711 /*
2712 * After a short sleep, check if it was a premature sleep. If not, then
2713 * go fully to sleep until explicitly woken up.
2714 */
dc83edd9 2715 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2716 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2717
2718 /*
2719 * vmstat counters are not perfectly accurate and the estimated
2720 * value for counters such as NR_FREE_PAGES can deviate from the
2721 * true value by nr_online_cpus * threshold. To avoid the zone
2722 * watermarks being breached while under pressure, we reduce the
2723 * per-cpu vmstat threshold while kswapd is awake and restore
2724 * them before going back to sleep.
2725 */
2726 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2727 schedule();
2728 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2729 } else {
2730 if (remaining)
2731 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2732 else
2733 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2734 }
2735 finish_wait(&pgdat->kswapd_wait, &wait);
2736}
2737
1da177e4
LT
2738/*
2739 * The background pageout daemon, started as a kernel thread
4f98a2fe 2740 * from the init process.
1da177e4
LT
2741 *
2742 * This basically trickles out pages so that we have _some_
2743 * free memory available even if there is no other activity
2744 * that frees anything up. This is needed for things like routing
2745 * etc, where we otherwise might have all activity going on in
2746 * asynchronous contexts that cannot page things out.
2747 *
2748 * If there are applications that are active memory-allocators
2749 * (most normal use), this basically shouldn't matter.
2750 */
2751static int kswapd(void *p)
2752{
215ddd66 2753 unsigned long order, new_order;
d2ebd0f6 2754 unsigned balanced_order;
215ddd66 2755 int classzone_idx, new_classzone_idx;
d2ebd0f6 2756 int balanced_classzone_idx;
1da177e4
LT
2757 pg_data_t *pgdat = (pg_data_t*)p;
2758 struct task_struct *tsk = current;
f0bc0a60 2759
1da177e4
LT
2760 struct reclaim_state reclaim_state = {
2761 .reclaimed_slab = 0,
2762 };
a70f7302 2763 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 2764
cf40bd16
NP
2765 lockdep_set_current_reclaim_state(GFP_KERNEL);
2766
174596a0 2767 if (!cpumask_empty(cpumask))
c5f59f08 2768 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
2769 current->reclaim_state = &reclaim_state;
2770
2771 /*
2772 * Tell the memory management that we're a "memory allocator",
2773 * and that if we need more memory we should get access to it
2774 * regardless (see "__alloc_pages()"). "kswapd" should
2775 * never get caught in the normal page freeing logic.
2776 *
2777 * (Kswapd normally doesn't need memory anyway, but sometimes
2778 * you need a small amount of memory in order to be able to
2779 * page out something else, and this flag essentially protects
2780 * us from recursively trying to free more memory as we're
2781 * trying to free the first piece of memory in the first place).
2782 */
930d9152 2783 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 2784 set_freezable();
1da177e4 2785
215ddd66 2786 order = new_order = 0;
d2ebd0f6 2787 balanced_order = 0;
215ddd66 2788 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 2789 balanced_classzone_idx = classzone_idx;
1da177e4 2790 for ( ; ; ) {
8fe23e05 2791 int ret;
3e1d1d28 2792
215ddd66
MG
2793 /*
2794 * If the last balance_pgdat was unsuccessful it's unlikely a
2795 * new request of a similar or harder type will succeed soon
2796 * so consider going to sleep on the basis we reclaimed at
2797 */
d2ebd0f6
AS
2798 if (balanced_classzone_idx >= new_classzone_idx &&
2799 balanced_order == new_order) {
215ddd66
MG
2800 new_order = pgdat->kswapd_max_order;
2801 new_classzone_idx = pgdat->classzone_idx;
2802 pgdat->kswapd_max_order = 0;
2803 pgdat->classzone_idx = pgdat->nr_zones - 1;
2804 }
2805
99504748 2806 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
2807 /*
2808 * Don't sleep if someone wants a larger 'order'
99504748 2809 * allocation or has tigher zone constraints
1da177e4
LT
2810 */
2811 order = new_order;
99504748 2812 classzone_idx = new_classzone_idx;
1da177e4 2813 } else {
d2ebd0f6
AS
2814 kswapd_try_to_sleep(pgdat, balanced_order,
2815 balanced_classzone_idx);
1da177e4 2816 order = pgdat->kswapd_max_order;
99504748 2817 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
2818 new_order = order;
2819 new_classzone_idx = classzone_idx;
4d40502e 2820 pgdat->kswapd_max_order = 0;
215ddd66 2821 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 2822 }
1da177e4 2823
8fe23e05
DR
2824 ret = try_to_freeze();
2825 if (kthread_should_stop())
2826 break;
2827
2828 /*
2829 * We can speed up thawing tasks if we don't call balance_pgdat
2830 * after returning from the refrigerator
2831 */
33906bc5
MG
2832 if (!ret) {
2833 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
2834 balanced_classzone_idx = classzone_idx;
2835 balanced_order = balance_pgdat(pgdat, order,
2836 &balanced_classzone_idx);
33906bc5 2837 }
1da177e4
LT
2838 }
2839 return 0;
2840}
2841
2842/*
2843 * A zone is low on free memory, so wake its kswapd task to service it.
2844 */
99504748 2845void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
2846{
2847 pg_data_t *pgdat;
2848
f3fe6512 2849 if (!populated_zone(zone))
1da177e4
LT
2850 return;
2851
88f5acf8 2852 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 2853 return;
88f5acf8 2854 pgdat = zone->zone_pgdat;
99504748 2855 if (pgdat->kswapd_max_order < order) {
1da177e4 2856 pgdat->kswapd_max_order = order;
99504748
MG
2857 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2858 }
8d0986e2 2859 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 2860 return;
88f5acf8
MG
2861 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2862 return;
2863
2864 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 2865 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
2866}
2867
adea02a1
WF
2868/*
2869 * The reclaimable count would be mostly accurate.
2870 * The less reclaimable pages may be
2871 * - mlocked pages, which will be moved to unevictable list when encountered
2872 * - mapped pages, which may require several travels to be reclaimed
2873 * - dirty pages, which is not "instantly" reclaimable
2874 */
2875unsigned long global_reclaimable_pages(void)
4f98a2fe 2876{
adea02a1
WF
2877 int nr;
2878
2879 nr = global_page_state(NR_ACTIVE_FILE) +
2880 global_page_state(NR_INACTIVE_FILE);
2881
2882 if (nr_swap_pages > 0)
2883 nr += global_page_state(NR_ACTIVE_ANON) +
2884 global_page_state(NR_INACTIVE_ANON);
2885
2886 return nr;
2887}
2888
2889unsigned long zone_reclaimable_pages(struct zone *zone)
2890{
2891 int nr;
2892
2893 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2894 zone_page_state(zone, NR_INACTIVE_FILE);
2895
2896 if (nr_swap_pages > 0)
2897 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2898 zone_page_state(zone, NR_INACTIVE_ANON);
2899
2900 return nr;
4f98a2fe
RR
2901}
2902
c6f37f12 2903#ifdef CONFIG_HIBERNATION
1da177e4 2904/*
7b51755c 2905 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
2906 * freed pages.
2907 *
2908 * Rather than trying to age LRUs the aim is to preserve the overall
2909 * LRU order by reclaiming preferentially
2910 * inactive > active > active referenced > active mapped
1da177e4 2911 */
7b51755c 2912unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 2913{
d6277db4 2914 struct reclaim_state reclaim_state;
d6277db4 2915 struct scan_control sc = {
7b51755c
KM
2916 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2917 .may_swap = 1,
2918 .may_unmap = 1,
d6277db4 2919 .may_writepage = 1,
7b51755c
KM
2920 .nr_to_reclaim = nr_to_reclaim,
2921 .hibernation_mode = 1,
7b51755c 2922 .order = 0,
9e3b2f8c 2923 .priority = DEF_PRIORITY,
1da177e4 2924 };
a09ed5e0
YH
2925 struct shrink_control shrink = {
2926 .gfp_mask = sc.gfp_mask,
2927 };
2928 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
2929 struct task_struct *p = current;
2930 unsigned long nr_reclaimed;
1da177e4 2931
7b51755c
KM
2932 p->flags |= PF_MEMALLOC;
2933 lockdep_set_current_reclaim_state(sc.gfp_mask);
2934 reclaim_state.reclaimed_slab = 0;
2935 p->reclaim_state = &reclaim_state;
d6277db4 2936
a09ed5e0 2937 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
d979677c 2938
7b51755c
KM
2939 p->reclaim_state = NULL;
2940 lockdep_clear_current_reclaim_state();
2941 p->flags &= ~PF_MEMALLOC;
d6277db4 2942
7b51755c 2943 return nr_reclaimed;
1da177e4 2944}
c6f37f12 2945#endif /* CONFIG_HIBERNATION */
1da177e4 2946
1da177e4
LT
2947/* It's optimal to keep kswapds on the same CPUs as their memory, but
2948 not required for correctness. So if the last cpu in a node goes
2949 away, we get changed to run anywhere: as the first one comes back,
2950 restore their cpu bindings. */
9c7b216d 2951static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 2952 unsigned long action, void *hcpu)
1da177e4 2953{
58c0a4a7 2954 int nid;
1da177e4 2955
8bb78442 2956 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 2957 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08 2958 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
2959 const struct cpumask *mask;
2960
2961 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 2962
3e597945 2963 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 2964 /* One of our CPUs online: restore mask */
c5f59f08 2965 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
2966 }
2967 }
2968 return NOTIFY_OK;
2969}
1da177e4 2970
3218ae14
YG
2971/*
2972 * This kswapd start function will be called by init and node-hot-add.
2973 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2974 */
2975int kswapd_run(int nid)
2976{
2977 pg_data_t *pgdat = NODE_DATA(nid);
2978 int ret = 0;
2979
2980 if (pgdat->kswapd)
2981 return 0;
2982
2983 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2984 if (IS_ERR(pgdat->kswapd)) {
2985 /* failure at boot is fatal */
2986 BUG_ON(system_state == SYSTEM_BOOTING);
2987 printk("Failed to start kswapd on node %d\n",nid);
2988 ret = -1;
2989 }
2990 return ret;
2991}
2992
8fe23e05
DR
2993/*
2994 * Called by memory hotplug when all memory in a node is offlined.
2995 */
2996void kswapd_stop(int nid)
2997{
2998 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2999
3000 if (kswapd)
3001 kthread_stop(kswapd);
3002}
3003
1da177e4
LT
3004static int __init kswapd_init(void)
3005{
3218ae14 3006 int nid;
69e05944 3007
1da177e4 3008 swap_setup();
9422ffba 3009 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 3010 kswapd_run(nid);
1da177e4
LT
3011 hotcpu_notifier(cpu_callback, 0);
3012 return 0;
3013}
3014
3015module_init(kswapd_init)
9eeff239
CL
3016
3017#ifdef CONFIG_NUMA
3018/*
3019 * Zone reclaim mode
3020 *
3021 * If non-zero call zone_reclaim when the number of free pages falls below
3022 * the watermarks.
9eeff239
CL
3023 */
3024int zone_reclaim_mode __read_mostly;
3025
1b2ffb78 3026#define RECLAIM_OFF 0
7d03431c 3027#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3028#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3029#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3030
a92f7126
CL
3031/*
3032 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3033 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3034 * a zone.
3035 */
3036#define ZONE_RECLAIM_PRIORITY 4
3037
9614634f
CL
3038/*
3039 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3040 * occur.
3041 */
3042int sysctl_min_unmapped_ratio = 1;
3043
0ff38490
CL
3044/*
3045 * If the number of slab pages in a zone grows beyond this percentage then
3046 * slab reclaim needs to occur.
3047 */
3048int sysctl_min_slab_ratio = 5;
3049
90afa5de
MG
3050static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3051{
3052 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3053 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3054 zone_page_state(zone, NR_ACTIVE_FILE);
3055
3056 /*
3057 * It's possible for there to be more file mapped pages than
3058 * accounted for by the pages on the file LRU lists because
3059 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3060 */
3061 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3062}
3063
3064/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3065static long zone_pagecache_reclaimable(struct zone *zone)
3066{
3067 long nr_pagecache_reclaimable;
3068 long delta = 0;
3069
3070 /*
3071 * If RECLAIM_SWAP is set, then all file pages are considered
3072 * potentially reclaimable. Otherwise, we have to worry about
3073 * pages like swapcache and zone_unmapped_file_pages() provides
3074 * a better estimate
3075 */
3076 if (zone_reclaim_mode & RECLAIM_SWAP)
3077 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3078 else
3079 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3080
3081 /* If we can't clean pages, remove dirty pages from consideration */
3082 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3083 delta += zone_page_state(zone, NR_FILE_DIRTY);
3084
3085 /* Watch for any possible underflows due to delta */
3086 if (unlikely(delta > nr_pagecache_reclaimable))
3087 delta = nr_pagecache_reclaimable;
3088
3089 return nr_pagecache_reclaimable - delta;
3090}
3091
9eeff239
CL
3092/*
3093 * Try to free up some pages from this zone through reclaim.
3094 */
179e9639 3095static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3096{
7fb2d46d 3097 /* Minimum pages needed in order to stay on node */
69e05944 3098 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3099 struct task_struct *p = current;
3100 struct reclaim_state reclaim_state;
179e9639
AM
3101 struct scan_control sc = {
3102 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 3103 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 3104 .may_swap = 1,
22fba335
KM
3105 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3106 SWAP_CLUSTER_MAX),
179e9639 3107 .gfp_mask = gfp_mask,
bd2f6199 3108 .order = order,
9e3b2f8c 3109 .priority = ZONE_RECLAIM_PRIORITY,
179e9639 3110 };
a09ed5e0
YH
3111 struct shrink_control shrink = {
3112 .gfp_mask = sc.gfp_mask,
3113 };
15748048 3114 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3115
9eeff239 3116 cond_resched();
d4f7796e
CL
3117 /*
3118 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3119 * and we also need to be able to write out pages for RECLAIM_WRITE
3120 * and RECLAIM_SWAP.
3121 */
3122 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3123 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3124 reclaim_state.reclaimed_slab = 0;
3125 p->reclaim_state = &reclaim_state;
c84db23c 3126
90afa5de 3127 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3128 /*
3129 * Free memory by calling shrink zone with increasing
3130 * priorities until we have enough memory freed.
3131 */
0ff38490 3132 do {
9e3b2f8c
KK
3133 shrink_zone(zone, &sc);
3134 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3135 }
c84db23c 3136
15748048
KM
3137 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3138 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3139 /*
7fb2d46d 3140 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3141 * many pages were freed in this zone. So we take the current
3142 * number of slab pages and shake the slab until it is reduced
3143 * by the same nr_pages that we used for reclaiming unmapped
3144 * pages.
2a16e3f4 3145 *
0ff38490
CL
3146 * Note that shrink_slab will free memory on all zones and may
3147 * take a long time.
2a16e3f4 3148 */
4dc4b3d9
KM
3149 for (;;) {
3150 unsigned long lru_pages = zone_reclaimable_pages(zone);
3151
3152 /* No reclaimable slab or very low memory pressure */
1495f230 3153 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3154 break;
3155
3156 /* Freed enough memory */
3157 nr_slab_pages1 = zone_page_state(zone,
3158 NR_SLAB_RECLAIMABLE);
3159 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3160 break;
3161 }
83e33a47
CL
3162
3163 /*
3164 * Update nr_reclaimed by the number of slab pages we
3165 * reclaimed from this zone.
3166 */
15748048
KM
3167 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3168 if (nr_slab_pages1 < nr_slab_pages0)
3169 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3170 }
3171
9eeff239 3172 p->reclaim_state = NULL;
d4f7796e 3173 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3174 lockdep_clear_current_reclaim_state();
a79311c1 3175 return sc.nr_reclaimed >= nr_pages;
9eeff239 3176}
179e9639
AM
3177
3178int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3179{
179e9639 3180 int node_id;
d773ed6b 3181 int ret;
179e9639
AM
3182
3183 /*
0ff38490
CL
3184 * Zone reclaim reclaims unmapped file backed pages and
3185 * slab pages if we are over the defined limits.
34aa1330 3186 *
9614634f
CL
3187 * A small portion of unmapped file backed pages is needed for
3188 * file I/O otherwise pages read by file I/O will be immediately
3189 * thrown out if the zone is overallocated. So we do not reclaim
3190 * if less than a specified percentage of the zone is used by
3191 * unmapped file backed pages.
179e9639 3192 */
90afa5de
MG
3193 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3194 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3195 return ZONE_RECLAIM_FULL;
179e9639 3196
93e4a89a 3197 if (zone->all_unreclaimable)
fa5e084e 3198 return ZONE_RECLAIM_FULL;
d773ed6b 3199
179e9639 3200 /*
d773ed6b 3201 * Do not scan if the allocation should not be delayed.
179e9639 3202 */
d773ed6b 3203 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3204 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3205
3206 /*
3207 * Only run zone reclaim on the local zone or on zones that do not
3208 * have associated processors. This will favor the local processor
3209 * over remote processors and spread off node memory allocations
3210 * as wide as possible.
3211 */
89fa3024 3212 node_id = zone_to_nid(zone);
37c0708d 3213 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3214 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
3215
3216 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
3217 return ZONE_RECLAIM_NOSCAN;
3218
d773ed6b
DR
3219 ret = __zone_reclaim(zone, gfp_mask, order);
3220 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3221
24cf7251
MG
3222 if (!ret)
3223 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3224
d773ed6b 3225 return ret;
179e9639 3226}
9eeff239 3227#endif
894bc310 3228
894bc310
LS
3229/*
3230 * page_evictable - test whether a page is evictable
3231 * @page: the page to test
3232 * @vma: the VMA in which the page is or will be mapped, may be NULL
3233 *
3234 * Test whether page is evictable--i.e., should be placed on active/inactive
b291f000
NP
3235 * lists vs unevictable list. The vma argument is !NULL when called from the
3236 * fault path to determine how to instantate a new page.
894bc310
LS
3237 *
3238 * Reasons page might not be evictable:
ba9ddf49 3239 * (1) page's mapping marked unevictable
b291f000 3240 * (2) page is part of an mlocked VMA
ba9ddf49 3241 *
894bc310
LS
3242 */
3243int page_evictable(struct page *page, struct vm_area_struct *vma)
3244{
3245
ba9ddf49
LS
3246 if (mapping_unevictable(page_mapping(page)))
3247 return 0;
3248
096a7cf4 3249 if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page)))
b291f000 3250 return 0;
894bc310
LS
3251
3252 return 1;
3253}
89e004ea 3254
85046579 3255#ifdef CONFIG_SHMEM
89e004ea 3256/**
24513264
HD
3257 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3258 * @pages: array of pages to check
3259 * @nr_pages: number of pages to check
89e004ea 3260 *
24513264 3261 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3262 *
3263 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3264 */
24513264 3265void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3266{
925b7673 3267 struct lruvec *lruvec;
24513264
HD
3268 struct zone *zone = NULL;
3269 int pgscanned = 0;
3270 int pgrescued = 0;
3271 int i;
89e004ea 3272
24513264
HD
3273 for (i = 0; i < nr_pages; i++) {
3274 struct page *page = pages[i];
3275 struct zone *pagezone;
89e004ea 3276
24513264
HD
3277 pgscanned++;
3278 pagezone = page_zone(page);
3279 if (pagezone != zone) {
3280 if (zone)
3281 spin_unlock_irq(&zone->lru_lock);
3282 zone = pagezone;
3283 spin_lock_irq(&zone->lru_lock);
3284 }
89e004ea 3285
24513264
HD
3286 if (!PageLRU(page) || !PageUnevictable(page))
3287 continue;
89e004ea 3288
24513264
HD
3289 if (page_evictable(page, NULL)) {
3290 enum lru_list lru = page_lru_base_type(page);
3291
3292 VM_BUG_ON(PageActive(page));
3293 ClearPageUnevictable(page);
3294 __dec_zone_state(zone, NR_UNEVICTABLE);
3295 lruvec = mem_cgroup_lru_move_lists(zone, page,
3296 LRU_UNEVICTABLE, lru);
3297 list_move(&page->lru, &lruvec->lists[lru]);
3298 __inc_zone_state(zone, NR_INACTIVE_ANON + lru);
3299 pgrescued++;
89e004ea 3300 }
24513264 3301 }
89e004ea 3302
24513264
HD
3303 if (zone) {
3304 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3305 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3306 spin_unlock_irq(&zone->lru_lock);
89e004ea 3307 }
89e004ea 3308}
85046579 3309#endif /* CONFIG_SHMEM */
af936a16 3310
264e56d8 3311static void warn_scan_unevictable_pages(void)
af936a16 3312{
264e56d8 3313 printk_once(KERN_WARNING
25bd91bd 3314 "%s: The scan_unevictable_pages sysctl/node-interface has been "
264e56d8 3315 "disabled for lack of a legitimate use case. If you have "
25bd91bd
KM
3316 "one, please send an email to linux-mm@kvack.org.\n",
3317 current->comm);
af936a16
LS
3318}
3319
3320/*
3321 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3322 * all nodes' unevictable lists for evictable pages
3323 */
3324unsigned long scan_unevictable_pages;
3325
3326int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 3327 void __user *buffer,
af936a16
LS
3328 size_t *length, loff_t *ppos)
3329{
264e56d8 3330 warn_scan_unevictable_pages();
8d65af78 3331 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
3332 scan_unevictable_pages = 0;
3333 return 0;
3334}
3335
e4455abb 3336#ifdef CONFIG_NUMA
af936a16
LS
3337/*
3338 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3339 * a specified node's per zone unevictable lists for evictable pages.
3340 */
3341
10fbcf4c
KS
3342static ssize_t read_scan_unevictable_node(struct device *dev,
3343 struct device_attribute *attr,
af936a16
LS
3344 char *buf)
3345{
264e56d8 3346 warn_scan_unevictable_pages();
af936a16
LS
3347 return sprintf(buf, "0\n"); /* always zero; should fit... */
3348}
3349
10fbcf4c
KS
3350static ssize_t write_scan_unevictable_node(struct device *dev,
3351 struct device_attribute *attr,
af936a16
LS
3352 const char *buf, size_t count)
3353{
264e56d8 3354 warn_scan_unevictable_pages();
af936a16
LS
3355 return 1;
3356}
3357
3358
10fbcf4c 3359static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
af936a16
LS
3360 read_scan_unevictable_node,
3361 write_scan_unevictable_node);
3362
3363int scan_unevictable_register_node(struct node *node)
3364{
10fbcf4c 3365 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16
LS
3366}
3367
3368void scan_unevictable_unregister_node(struct node *node)
3369{
10fbcf4c 3370 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16 3371}
e4455abb 3372#endif