mm: vmscan: remove lumpy reclaim
[linux-2.6-block.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
1da177e4
LT
29#include <linux/backing-dev.h>
30#include <linux/rmap.h>
31#include <linux/topology.h>
32#include <linux/cpu.h>
33#include <linux/cpuset.h>
3e7d3449 34#include <linux/compaction.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
248a0301 37#include <linux/delay.h>
3218ae14 38#include <linux/kthread.h>
7dfb7103 39#include <linux/freezer.h>
66e1707b 40#include <linux/memcontrol.h>
873b4771 41#include <linux/delayacct.h>
af936a16 42#include <linux/sysctl.h>
929bea7c 43#include <linux/oom.h>
268bb0ce 44#include <linux/prefetch.h>
1da177e4
LT
45
46#include <asm/tlbflush.h>
47#include <asm/div64.h>
48
49#include <linux/swapops.h>
50
0f8053a5
NP
51#include "internal.h"
52
33906bc5
MG
53#define CREATE_TRACE_POINTS
54#include <trace/events/vmscan.h>
55
ee64fc93 56/*
f3a310bc
MG
57 * reclaim_mode determines how the inactive list is shrunk
58 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
59 * RECLAIM_MODE_ASYNC: Do not block
60 * RECLAIM_MODE_SYNC: Allow blocking e.g. call wait_on_page_writeback
f3a310bc 61 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
3e7d3449 62 * order-0 pages and then compact the zone
ee64fc93 63 */
f3a310bc
MG
64typedef unsigned __bitwise__ reclaim_mode_t;
65#define RECLAIM_MODE_SINGLE ((__force reclaim_mode_t)0x01u)
66#define RECLAIM_MODE_ASYNC ((__force reclaim_mode_t)0x02u)
67#define RECLAIM_MODE_SYNC ((__force reclaim_mode_t)0x04u)
f3a310bc 68#define RECLAIM_MODE_COMPACTION ((__force reclaim_mode_t)0x10u)
7d3579e8 69
1da177e4 70struct scan_control {
1da177e4
LT
71 /* Incremented by the number of inactive pages that were scanned */
72 unsigned long nr_scanned;
73
a79311c1
RR
74 /* Number of pages freed so far during a call to shrink_zones() */
75 unsigned long nr_reclaimed;
76
22fba335
KM
77 /* How many pages shrink_list() should reclaim */
78 unsigned long nr_to_reclaim;
79
7b51755c
KM
80 unsigned long hibernation_mode;
81
1da177e4 82 /* This context's GFP mask */
6daa0e28 83 gfp_t gfp_mask;
1da177e4
LT
84
85 int may_writepage;
86
a6dc60f8
JW
87 /* Can mapped pages be reclaimed? */
88 int may_unmap;
f1fd1067 89
2e2e4259
KM
90 /* Can pages be swapped as part of reclaim? */
91 int may_swap;
92
5ad333eb 93 int order;
66e1707b 94
5f53e762 95 /*
415b54e3
NK
96 * Intend to reclaim enough continuous memory rather than reclaim
97 * enough amount of memory. i.e, mode for high order allocation.
5f53e762 98 */
f3a310bc 99 reclaim_mode_t reclaim_mode;
5f53e762 100
f16015fb
JW
101 /*
102 * The memory cgroup that hit its limit and as a result is the
103 * primary target of this reclaim invocation.
104 */
105 struct mem_cgroup *target_mem_cgroup;
66e1707b 106
327c0e96
KH
107 /*
108 * Nodemask of nodes allowed by the caller. If NULL, all nodes
109 * are scanned.
110 */
111 nodemask_t *nodemask;
1da177e4
LT
112};
113
f16015fb
JW
114struct mem_cgroup_zone {
115 struct mem_cgroup *mem_cgroup;
116 struct zone *zone;
117};
118
1da177e4
LT
119#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
120
121#ifdef ARCH_HAS_PREFETCH
122#define prefetch_prev_lru_page(_page, _base, _field) \
123 do { \
124 if ((_page)->lru.prev != _base) { \
125 struct page *prev; \
126 \
127 prev = lru_to_page(&(_page->lru)); \
128 prefetch(&prev->_field); \
129 } \
130 } while (0)
131#else
132#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
133#endif
134
135#ifdef ARCH_HAS_PREFETCHW
136#define prefetchw_prev_lru_page(_page, _base, _field) \
137 do { \
138 if ((_page)->lru.prev != _base) { \
139 struct page *prev; \
140 \
141 prev = lru_to_page(&(_page->lru)); \
142 prefetchw(&prev->_field); \
143 } \
144 } while (0)
145#else
146#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
147#endif
148
149/*
150 * From 0 .. 100. Higher means more swappy.
151 */
152int vm_swappiness = 60;
bd1e22b8 153long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
154
155static LIST_HEAD(shrinker_list);
156static DECLARE_RWSEM(shrinker_rwsem);
157
00f0b825 158#ifdef CONFIG_CGROUP_MEM_RES_CTLR
89b5fae5
JW
159static bool global_reclaim(struct scan_control *sc)
160{
f16015fb 161 return !sc->target_mem_cgroup;
89b5fae5
JW
162}
163
f16015fb 164static bool scanning_global_lru(struct mem_cgroup_zone *mz)
89b5fae5 165{
f16015fb 166 return !mz->mem_cgroup;
89b5fae5 167}
91a45470 168#else
89b5fae5
JW
169static bool global_reclaim(struct scan_control *sc)
170{
171 return true;
172}
173
f16015fb 174static bool scanning_global_lru(struct mem_cgroup_zone *mz)
89b5fae5
JW
175{
176 return true;
177}
91a45470
KH
178#endif
179
f16015fb 180static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
6e901571 181{
f16015fb
JW
182 if (!scanning_global_lru(mz))
183 return mem_cgroup_get_reclaim_stat(mz->mem_cgroup, mz->zone);
3e2f41f1 184
f16015fb 185 return &mz->zone->reclaim_stat;
6e901571
KM
186}
187
f16015fb
JW
188static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
189 enum lru_list lru)
c9f299d9 190{
f16015fb
JW
191 if (!scanning_global_lru(mz))
192 return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
193 zone_to_nid(mz->zone),
194 zone_idx(mz->zone),
195 BIT(lru));
a3d8e054 196
f16015fb 197 return zone_page_state(mz->zone, NR_LRU_BASE + lru);
c9f299d9
KM
198}
199
200
1da177e4
LT
201/*
202 * Add a shrinker callback to be called from the vm
203 */
8e1f936b 204void register_shrinker(struct shrinker *shrinker)
1da177e4 205{
83aeeada 206 atomic_long_set(&shrinker->nr_in_batch, 0);
8e1f936b
RR
207 down_write(&shrinker_rwsem);
208 list_add_tail(&shrinker->list, &shrinker_list);
209 up_write(&shrinker_rwsem);
1da177e4 210}
8e1f936b 211EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
212
213/*
214 * Remove one
215 */
8e1f936b 216void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
217{
218 down_write(&shrinker_rwsem);
219 list_del(&shrinker->list);
220 up_write(&shrinker_rwsem);
1da177e4 221}
8e1f936b 222EXPORT_SYMBOL(unregister_shrinker);
1da177e4 223
1495f230
YH
224static inline int do_shrinker_shrink(struct shrinker *shrinker,
225 struct shrink_control *sc,
226 unsigned long nr_to_scan)
227{
228 sc->nr_to_scan = nr_to_scan;
229 return (*shrinker->shrink)(shrinker, sc);
230}
231
1da177e4
LT
232#define SHRINK_BATCH 128
233/*
234 * Call the shrink functions to age shrinkable caches
235 *
236 * Here we assume it costs one seek to replace a lru page and that it also
237 * takes a seek to recreate a cache object. With this in mind we age equal
238 * percentages of the lru and ageable caches. This should balance the seeks
239 * generated by these structures.
240 *
183ff22b 241 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
242 * slab to avoid swapping.
243 *
244 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
245 *
246 * `lru_pages' represents the number of on-LRU pages in all the zones which
247 * are eligible for the caller's allocation attempt. It is used for balancing
248 * slab reclaim versus page reclaim.
b15e0905 249 *
250 * Returns the number of slab objects which we shrunk.
1da177e4 251 */
a09ed5e0 252unsigned long shrink_slab(struct shrink_control *shrink,
1495f230 253 unsigned long nr_pages_scanned,
a09ed5e0 254 unsigned long lru_pages)
1da177e4
LT
255{
256 struct shrinker *shrinker;
69e05944 257 unsigned long ret = 0;
1da177e4 258
1495f230
YH
259 if (nr_pages_scanned == 0)
260 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 261
f06590bd
MK
262 if (!down_read_trylock(&shrinker_rwsem)) {
263 /* Assume we'll be able to shrink next time */
264 ret = 1;
265 goto out;
266 }
1da177e4
LT
267
268 list_for_each_entry(shrinker, &shrinker_list, list) {
269 unsigned long long delta;
635697c6
KK
270 long total_scan;
271 long max_pass;
09576073 272 int shrink_ret = 0;
acf92b48
DC
273 long nr;
274 long new_nr;
e9299f50
DC
275 long batch_size = shrinker->batch ? shrinker->batch
276 : SHRINK_BATCH;
1da177e4 277
635697c6
KK
278 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
279 if (max_pass <= 0)
280 continue;
281
acf92b48
DC
282 /*
283 * copy the current shrinker scan count into a local variable
284 * and zero it so that other concurrent shrinker invocations
285 * don't also do this scanning work.
286 */
83aeeada 287 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
acf92b48
DC
288
289 total_scan = nr;
1495f230 290 delta = (4 * nr_pages_scanned) / shrinker->seeks;
ea164d73 291 delta *= max_pass;
1da177e4 292 do_div(delta, lru_pages + 1);
acf92b48
DC
293 total_scan += delta;
294 if (total_scan < 0) {
88c3bd70
DR
295 printk(KERN_ERR "shrink_slab: %pF negative objects to "
296 "delete nr=%ld\n",
acf92b48
DC
297 shrinker->shrink, total_scan);
298 total_scan = max_pass;
ea164d73
AA
299 }
300
3567b59a
DC
301 /*
302 * We need to avoid excessive windup on filesystem shrinkers
303 * due to large numbers of GFP_NOFS allocations causing the
304 * shrinkers to return -1 all the time. This results in a large
305 * nr being built up so when a shrink that can do some work
306 * comes along it empties the entire cache due to nr >>>
307 * max_pass. This is bad for sustaining a working set in
308 * memory.
309 *
310 * Hence only allow the shrinker to scan the entire cache when
311 * a large delta change is calculated directly.
312 */
313 if (delta < max_pass / 4)
314 total_scan = min(total_scan, max_pass / 2);
315
ea164d73
AA
316 /*
317 * Avoid risking looping forever due to too large nr value:
318 * never try to free more than twice the estimate number of
319 * freeable entries.
320 */
acf92b48
DC
321 if (total_scan > max_pass * 2)
322 total_scan = max_pass * 2;
1da177e4 323
acf92b48 324 trace_mm_shrink_slab_start(shrinker, shrink, nr,
09576073
DC
325 nr_pages_scanned, lru_pages,
326 max_pass, delta, total_scan);
327
e9299f50 328 while (total_scan >= batch_size) {
b15e0905 329 int nr_before;
1da177e4 330
1495f230
YH
331 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
332 shrink_ret = do_shrinker_shrink(shrinker, shrink,
e9299f50 333 batch_size);
1da177e4
LT
334 if (shrink_ret == -1)
335 break;
b15e0905 336 if (shrink_ret < nr_before)
337 ret += nr_before - shrink_ret;
e9299f50
DC
338 count_vm_events(SLABS_SCANNED, batch_size);
339 total_scan -= batch_size;
1da177e4
LT
340
341 cond_resched();
342 }
343
acf92b48
DC
344 /*
345 * move the unused scan count back into the shrinker in a
346 * manner that handles concurrent updates. If we exhausted the
347 * scan, there is no need to do an update.
348 */
83aeeada
KK
349 if (total_scan > 0)
350 new_nr = atomic_long_add_return(total_scan,
351 &shrinker->nr_in_batch);
352 else
353 new_nr = atomic_long_read(&shrinker->nr_in_batch);
acf92b48
DC
354
355 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
1da177e4
LT
356 }
357 up_read(&shrinker_rwsem);
f06590bd
MK
358out:
359 cond_resched();
b15e0905 360 return ret;
1da177e4
LT
361}
362
f3a310bc 363static void set_reclaim_mode(int priority, struct scan_control *sc,
7d3579e8
KM
364 bool sync)
365{
c53919ad 366 /* Sync reclaim used only for compaction */
f3a310bc 367 reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
7d3579e8
KM
368
369 /*
c53919ad 370 * Restrict reclaim/compaction to costly allocations or when
3e7d3449 371 * under memory pressure
7d3579e8 372 */
c53919ad
MG
373 if (COMPACTION_BUILD && sc->order &&
374 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
375 priority < DEF_PRIORITY - 2))
376 sc->reclaim_mode = RECLAIM_MODE_COMPACTION | syncmode;
7d3579e8 377 else
f3a310bc 378 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
7d3579e8
KM
379}
380
f3a310bc 381static void reset_reclaim_mode(struct scan_control *sc)
7d3579e8 382{
f3a310bc 383 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
7d3579e8
KM
384}
385
1da177e4
LT
386static inline int is_page_cache_freeable(struct page *page)
387{
ceddc3a5
JW
388 /*
389 * A freeable page cache page is referenced only by the caller
390 * that isolated the page, the page cache radix tree and
391 * optional buffer heads at page->private.
392 */
edcf4748 393 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
394}
395
7d3579e8
KM
396static int may_write_to_queue(struct backing_dev_info *bdi,
397 struct scan_control *sc)
1da177e4 398{
930d9152 399 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
400 return 1;
401 if (!bdi_write_congested(bdi))
402 return 1;
403 if (bdi == current->backing_dev_info)
404 return 1;
405 return 0;
406}
407
408/*
409 * We detected a synchronous write error writing a page out. Probably
410 * -ENOSPC. We need to propagate that into the address_space for a subsequent
411 * fsync(), msync() or close().
412 *
413 * The tricky part is that after writepage we cannot touch the mapping: nothing
414 * prevents it from being freed up. But we have a ref on the page and once
415 * that page is locked, the mapping is pinned.
416 *
417 * We're allowed to run sleeping lock_page() here because we know the caller has
418 * __GFP_FS.
419 */
420static void handle_write_error(struct address_space *mapping,
421 struct page *page, int error)
422{
7eaceacc 423 lock_page(page);
3e9f45bd
GC
424 if (page_mapping(page) == mapping)
425 mapping_set_error(mapping, error);
1da177e4
LT
426 unlock_page(page);
427}
428
04e62a29
CL
429/* possible outcome of pageout() */
430typedef enum {
431 /* failed to write page out, page is locked */
432 PAGE_KEEP,
433 /* move page to the active list, page is locked */
434 PAGE_ACTIVATE,
435 /* page has been sent to the disk successfully, page is unlocked */
436 PAGE_SUCCESS,
437 /* page is clean and locked */
438 PAGE_CLEAN,
439} pageout_t;
440
1da177e4 441/*
1742f19f
AM
442 * pageout is called by shrink_page_list() for each dirty page.
443 * Calls ->writepage().
1da177e4 444 */
c661b078 445static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 446 struct scan_control *sc)
1da177e4
LT
447{
448 /*
449 * If the page is dirty, only perform writeback if that write
450 * will be non-blocking. To prevent this allocation from being
451 * stalled by pagecache activity. But note that there may be
452 * stalls if we need to run get_block(). We could test
453 * PagePrivate for that.
454 *
6aceb53b 455 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
456 * this page's queue, we can perform writeback even if that
457 * will block.
458 *
459 * If the page is swapcache, write it back even if that would
460 * block, for some throttling. This happens by accident, because
461 * swap_backing_dev_info is bust: it doesn't reflect the
462 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
463 */
464 if (!is_page_cache_freeable(page))
465 return PAGE_KEEP;
466 if (!mapping) {
467 /*
468 * Some data journaling orphaned pages can have
469 * page->mapping == NULL while being dirty with clean buffers.
470 */
266cf658 471 if (page_has_private(page)) {
1da177e4
LT
472 if (try_to_free_buffers(page)) {
473 ClearPageDirty(page);
d40cee24 474 printk("%s: orphaned page\n", __func__);
1da177e4
LT
475 return PAGE_CLEAN;
476 }
477 }
478 return PAGE_KEEP;
479 }
480 if (mapping->a_ops->writepage == NULL)
481 return PAGE_ACTIVATE;
0e093d99 482 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
483 return PAGE_KEEP;
484
485 if (clear_page_dirty_for_io(page)) {
486 int res;
487 struct writeback_control wbc = {
488 .sync_mode = WB_SYNC_NONE,
489 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
490 .range_start = 0,
491 .range_end = LLONG_MAX,
1da177e4
LT
492 .for_reclaim = 1,
493 };
494
495 SetPageReclaim(page);
496 res = mapping->a_ops->writepage(page, &wbc);
497 if (res < 0)
498 handle_write_error(mapping, page, res);
994fc28c 499 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
500 ClearPageReclaim(page);
501 return PAGE_ACTIVATE;
502 }
c661b078 503
1da177e4
LT
504 if (!PageWriteback(page)) {
505 /* synchronous write or broken a_ops? */
506 ClearPageReclaim(page);
507 }
755f0225 508 trace_mm_vmscan_writepage(page,
f3a310bc 509 trace_reclaim_flags(page, sc->reclaim_mode));
e129b5c2 510 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
511 return PAGE_SUCCESS;
512 }
513
514 return PAGE_CLEAN;
515}
516
a649fd92 517/*
e286781d
NP
518 * Same as remove_mapping, but if the page is removed from the mapping, it
519 * gets returned with a refcount of 0.
a649fd92 520 */
e286781d 521static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 522{
28e4d965
NP
523 BUG_ON(!PageLocked(page));
524 BUG_ON(mapping != page_mapping(page));
49d2e9cc 525
19fd6231 526 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 527 /*
0fd0e6b0
NP
528 * The non racy check for a busy page.
529 *
530 * Must be careful with the order of the tests. When someone has
531 * a ref to the page, it may be possible that they dirty it then
532 * drop the reference. So if PageDirty is tested before page_count
533 * here, then the following race may occur:
534 *
535 * get_user_pages(&page);
536 * [user mapping goes away]
537 * write_to(page);
538 * !PageDirty(page) [good]
539 * SetPageDirty(page);
540 * put_page(page);
541 * !page_count(page) [good, discard it]
542 *
543 * [oops, our write_to data is lost]
544 *
545 * Reversing the order of the tests ensures such a situation cannot
546 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
547 * load is not satisfied before that of page->_count.
548 *
549 * Note that if SetPageDirty is always performed via set_page_dirty,
550 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 551 */
e286781d 552 if (!page_freeze_refs(page, 2))
49d2e9cc 553 goto cannot_free;
e286781d
NP
554 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
555 if (unlikely(PageDirty(page))) {
556 page_unfreeze_refs(page, 2);
49d2e9cc 557 goto cannot_free;
e286781d 558 }
49d2e9cc
CL
559
560 if (PageSwapCache(page)) {
561 swp_entry_t swap = { .val = page_private(page) };
562 __delete_from_swap_cache(page);
19fd6231 563 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 564 swapcache_free(swap, page);
e286781d 565 } else {
6072d13c
LT
566 void (*freepage)(struct page *);
567
568 freepage = mapping->a_ops->freepage;
569
e64a782f 570 __delete_from_page_cache(page);
19fd6231 571 spin_unlock_irq(&mapping->tree_lock);
e767e056 572 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
573
574 if (freepage != NULL)
575 freepage(page);
49d2e9cc
CL
576 }
577
49d2e9cc
CL
578 return 1;
579
580cannot_free:
19fd6231 581 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
582 return 0;
583}
584
e286781d
NP
585/*
586 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
587 * someone else has a ref on the page, abort and return 0. If it was
588 * successfully detached, return 1. Assumes the caller has a single ref on
589 * this page.
590 */
591int remove_mapping(struct address_space *mapping, struct page *page)
592{
593 if (__remove_mapping(mapping, page)) {
594 /*
595 * Unfreezing the refcount with 1 rather than 2 effectively
596 * drops the pagecache ref for us without requiring another
597 * atomic operation.
598 */
599 page_unfreeze_refs(page, 1);
600 return 1;
601 }
602 return 0;
603}
604
894bc310
LS
605/**
606 * putback_lru_page - put previously isolated page onto appropriate LRU list
607 * @page: page to be put back to appropriate lru list
608 *
609 * Add previously isolated @page to appropriate LRU list.
610 * Page may still be unevictable for other reasons.
611 *
612 * lru_lock must not be held, interrupts must be enabled.
613 */
894bc310
LS
614void putback_lru_page(struct page *page)
615{
616 int lru;
617 int active = !!TestClearPageActive(page);
bbfd28ee 618 int was_unevictable = PageUnevictable(page);
894bc310
LS
619
620 VM_BUG_ON(PageLRU(page));
621
622redo:
623 ClearPageUnevictable(page);
624
625 if (page_evictable(page, NULL)) {
626 /*
627 * For evictable pages, we can use the cache.
628 * In event of a race, worst case is we end up with an
629 * unevictable page on [in]active list.
630 * We know how to handle that.
631 */
401a8e1c 632 lru = active + page_lru_base_type(page);
894bc310
LS
633 lru_cache_add_lru(page, lru);
634 } else {
635 /*
636 * Put unevictable pages directly on zone's unevictable
637 * list.
638 */
639 lru = LRU_UNEVICTABLE;
640 add_page_to_unevictable_list(page);
6a7b9548 641 /*
21ee9f39
MK
642 * When racing with an mlock or AS_UNEVICTABLE clearing
643 * (page is unlocked) make sure that if the other thread
644 * does not observe our setting of PG_lru and fails
24513264 645 * isolation/check_move_unevictable_pages,
21ee9f39 646 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
647 * the page back to the evictable list.
648 *
21ee9f39 649 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
650 */
651 smp_mb();
894bc310 652 }
894bc310
LS
653
654 /*
655 * page's status can change while we move it among lru. If an evictable
656 * page is on unevictable list, it never be freed. To avoid that,
657 * check after we added it to the list, again.
658 */
659 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
660 if (!isolate_lru_page(page)) {
661 put_page(page);
662 goto redo;
663 }
664 /* This means someone else dropped this page from LRU
665 * So, it will be freed or putback to LRU again. There is
666 * nothing to do here.
667 */
668 }
669
bbfd28ee
LS
670 if (was_unevictable && lru != LRU_UNEVICTABLE)
671 count_vm_event(UNEVICTABLE_PGRESCUED);
672 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
673 count_vm_event(UNEVICTABLE_PGCULLED);
674
894bc310
LS
675 put_page(page); /* drop ref from isolate */
676}
677
dfc8d636
JW
678enum page_references {
679 PAGEREF_RECLAIM,
680 PAGEREF_RECLAIM_CLEAN,
64574746 681 PAGEREF_KEEP,
dfc8d636
JW
682 PAGEREF_ACTIVATE,
683};
684
685static enum page_references page_check_references(struct page *page,
f16015fb 686 struct mem_cgroup_zone *mz,
dfc8d636
JW
687 struct scan_control *sc)
688{
64574746 689 int referenced_ptes, referenced_page;
dfc8d636 690 unsigned long vm_flags;
dfc8d636 691
f16015fb 692 referenced_ptes = page_referenced(page, 1, mz->mem_cgroup, &vm_flags);
64574746 693 referenced_page = TestClearPageReferenced(page);
dfc8d636 694
dfc8d636
JW
695 /*
696 * Mlock lost the isolation race with us. Let try_to_unmap()
697 * move the page to the unevictable list.
698 */
699 if (vm_flags & VM_LOCKED)
700 return PAGEREF_RECLAIM;
701
64574746
JW
702 if (referenced_ptes) {
703 if (PageAnon(page))
704 return PAGEREF_ACTIVATE;
705 /*
706 * All mapped pages start out with page table
707 * references from the instantiating fault, so we need
708 * to look twice if a mapped file page is used more
709 * than once.
710 *
711 * Mark it and spare it for another trip around the
712 * inactive list. Another page table reference will
713 * lead to its activation.
714 *
715 * Note: the mark is set for activated pages as well
716 * so that recently deactivated but used pages are
717 * quickly recovered.
718 */
719 SetPageReferenced(page);
720
34dbc67a 721 if (referenced_page || referenced_ptes > 1)
64574746
JW
722 return PAGEREF_ACTIVATE;
723
c909e993
KK
724 /*
725 * Activate file-backed executable pages after first usage.
726 */
727 if (vm_flags & VM_EXEC)
728 return PAGEREF_ACTIVATE;
729
64574746
JW
730 return PAGEREF_KEEP;
731 }
dfc8d636
JW
732
733 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 734 if (referenced_page && !PageSwapBacked(page))
64574746
JW
735 return PAGEREF_RECLAIM_CLEAN;
736
737 return PAGEREF_RECLAIM;
dfc8d636
JW
738}
739
1da177e4 740/*
1742f19f 741 * shrink_page_list() returns the number of reclaimed pages
1da177e4 742 */
1742f19f 743static unsigned long shrink_page_list(struct list_head *page_list,
f16015fb 744 struct mem_cgroup_zone *mz,
f84f6e2b 745 struct scan_control *sc,
92df3a72
MG
746 int priority,
747 unsigned long *ret_nr_dirty,
748 unsigned long *ret_nr_writeback)
1da177e4
LT
749{
750 LIST_HEAD(ret_pages);
abe4c3b5 751 LIST_HEAD(free_pages);
1da177e4 752 int pgactivate = 0;
0e093d99
MG
753 unsigned long nr_dirty = 0;
754 unsigned long nr_congested = 0;
05ff5137 755 unsigned long nr_reclaimed = 0;
92df3a72 756 unsigned long nr_writeback = 0;
1da177e4
LT
757
758 cond_resched();
759
1da177e4 760 while (!list_empty(page_list)) {
dfc8d636 761 enum page_references references;
1da177e4
LT
762 struct address_space *mapping;
763 struct page *page;
764 int may_enter_fs;
1da177e4
LT
765
766 cond_resched();
767
768 page = lru_to_page(page_list);
769 list_del(&page->lru);
770
529ae9aa 771 if (!trylock_page(page))
1da177e4
LT
772 goto keep;
773
725d704e 774 VM_BUG_ON(PageActive(page));
f16015fb 775 VM_BUG_ON(page_zone(page) != mz->zone);
1da177e4
LT
776
777 sc->nr_scanned++;
80e43426 778
b291f000
NP
779 if (unlikely(!page_evictable(page, NULL)))
780 goto cull_mlocked;
894bc310 781
a6dc60f8 782 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
783 goto keep_locked;
784
1da177e4
LT
785 /* Double the slab pressure for mapped and swapcache pages */
786 if (page_mapped(page) || PageSwapCache(page))
787 sc->nr_scanned++;
788
c661b078
AW
789 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
790 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
791
792 if (PageWriteback(page)) {
92df3a72 793 nr_writeback++;
c661b078 794 /*
a18bba06
MG
795 * Synchronous reclaim cannot queue pages for
796 * writeback due to the possibility of stack overflow
797 * but if it encounters a page under writeback, wait
798 * for the IO to complete.
c661b078 799 */
f3a310bc 800 if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
7d3579e8 801 may_enter_fs)
c661b078 802 wait_on_page_writeback(page);
7d3579e8
KM
803 else {
804 unlock_page(page);
c53919ad 805 goto keep_reclaim_mode;
7d3579e8 806 }
c661b078 807 }
1da177e4 808
f16015fb 809 references = page_check_references(page, mz, sc);
dfc8d636
JW
810 switch (references) {
811 case PAGEREF_ACTIVATE:
1da177e4 812 goto activate_locked;
64574746
JW
813 case PAGEREF_KEEP:
814 goto keep_locked;
dfc8d636
JW
815 case PAGEREF_RECLAIM:
816 case PAGEREF_RECLAIM_CLEAN:
817 ; /* try to reclaim the page below */
818 }
1da177e4 819
1da177e4
LT
820 /*
821 * Anonymous process memory has backing store?
822 * Try to allocate it some swap space here.
823 */
b291f000 824 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
825 if (!(sc->gfp_mask & __GFP_IO))
826 goto keep_locked;
ac47b003 827 if (!add_to_swap(page))
1da177e4 828 goto activate_locked;
63eb6b93 829 may_enter_fs = 1;
b291f000 830 }
1da177e4
LT
831
832 mapping = page_mapping(page);
1da177e4
LT
833
834 /*
835 * The page is mapped into the page tables of one or more
836 * processes. Try to unmap it here.
837 */
838 if (page_mapped(page) && mapping) {
14fa31b8 839 switch (try_to_unmap(page, TTU_UNMAP)) {
1da177e4
LT
840 case SWAP_FAIL:
841 goto activate_locked;
842 case SWAP_AGAIN:
843 goto keep_locked;
b291f000
NP
844 case SWAP_MLOCK:
845 goto cull_mlocked;
1da177e4
LT
846 case SWAP_SUCCESS:
847 ; /* try to free the page below */
848 }
849 }
850
851 if (PageDirty(page)) {
0e093d99
MG
852 nr_dirty++;
853
ee72886d
MG
854 /*
855 * Only kswapd can writeback filesystem pages to
f84f6e2b
MG
856 * avoid risk of stack overflow but do not writeback
857 * unless under significant pressure.
ee72886d 858 */
f84f6e2b
MG
859 if (page_is_file_cache(page) &&
860 (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
49ea7eb6
MG
861 /*
862 * Immediately reclaim when written back.
863 * Similar in principal to deactivate_page()
864 * except we already have the page isolated
865 * and know it's dirty
866 */
867 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
868 SetPageReclaim(page);
869
ee72886d
MG
870 goto keep_locked;
871 }
872
dfc8d636 873 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 874 goto keep_locked;
4dd4b920 875 if (!may_enter_fs)
1da177e4 876 goto keep_locked;
52a8363e 877 if (!sc->may_writepage)
1da177e4
LT
878 goto keep_locked;
879
880 /* Page is dirty, try to write it out here */
7d3579e8 881 switch (pageout(page, mapping, sc)) {
1da177e4 882 case PAGE_KEEP:
0e093d99 883 nr_congested++;
1da177e4
LT
884 goto keep_locked;
885 case PAGE_ACTIVATE:
886 goto activate_locked;
887 case PAGE_SUCCESS:
7d3579e8 888 if (PageWriteback(page))
c53919ad 889 goto keep_reclaim_mode;
7d3579e8 890 if (PageDirty(page))
1da177e4 891 goto keep;
7d3579e8 892
1da177e4
LT
893 /*
894 * A synchronous write - probably a ramdisk. Go
895 * ahead and try to reclaim the page.
896 */
529ae9aa 897 if (!trylock_page(page))
1da177e4
LT
898 goto keep;
899 if (PageDirty(page) || PageWriteback(page))
900 goto keep_locked;
901 mapping = page_mapping(page);
902 case PAGE_CLEAN:
903 ; /* try to free the page below */
904 }
905 }
906
907 /*
908 * If the page has buffers, try to free the buffer mappings
909 * associated with this page. If we succeed we try to free
910 * the page as well.
911 *
912 * We do this even if the page is PageDirty().
913 * try_to_release_page() does not perform I/O, but it is
914 * possible for a page to have PageDirty set, but it is actually
915 * clean (all its buffers are clean). This happens if the
916 * buffers were written out directly, with submit_bh(). ext3
894bc310 917 * will do this, as well as the blockdev mapping.
1da177e4
LT
918 * try_to_release_page() will discover that cleanness and will
919 * drop the buffers and mark the page clean - it can be freed.
920 *
921 * Rarely, pages can have buffers and no ->mapping. These are
922 * the pages which were not successfully invalidated in
923 * truncate_complete_page(). We try to drop those buffers here
924 * and if that worked, and the page is no longer mapped into
925 * process address space (page_count == 1) it can be freed.
926 * Otherwise, leave the page on the LRU so it is swappable.
927 */
266cf658 928 if (page_has_private(page)) {
1da177e4
LT
929 if (!try_to_release_page(page, sc->gfp_mask))
930 goto activate_locked;
e286781d
NP
931 if (!mapping && page_count(page) == 1) {
932 unlock_page(page);
933 if (put_page_testzero(page))
934 goto free_it;
935 else {
936 /*
937 * rare race with speculative reference.
938 * the speculative reference will free
939 * this page shortly, so we may
940 * increment nr_reclaimed here (and
941 * leave it off the LRU).
942 */
943 nr_reclaimed++;
944 continue;
945 }
946 }
1da177e4
LT
947 }
948
e286781d 949 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 950 goto keep_locked;
1da177e4 951
a978d6f5
NP
952 /*
953 * At this point, we have no other references and there is
954 * no way to pick any more up (removed from LRU, removed
955 * from pagecache). Can use non-atomic bitops now (and
956 * we obviously don't have to worry about waking up a process
957 * waiting on the page lock, because there are no references.
958 */
959 __clear_page_locked(page);
e286781d 960free_it:
05ff5137 961 nr_reclaimed++;
abe4c3b5
MG
962
963 /*
964 * Is there need to periodically free_page_list? It would
965 * appear not as the counts should be low
966 */
967 list_add(&page->lru, &free_pages);
1da177e4
LT
968 continue;
969
b291f000 970cull_mlocked:
63d6c5ad
HD
971 if (PageSwapCache(page))
972 try_to_free_swap(page);
b291f000
NP
973 unlock_page(page);
974 putback_lru_page(page);
f3a310bc 975 reset_reclaim_mode(sc);
b291f000
NP
976 continue;
977
1da177e4 978activate_locked:
68a22394
RR
979 /* Not a candidate for swapping, so reclaim swap space. */
980 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 981 try_to_free_swap(page);
894bc310 982 VM_BUG_ON(PageActive(page));
1da177e4
LT
983 SetPageActive(page);
984 pgactivate++;
985keep_locked:
986 unlock_page(page);
987keep:
f3a310bc 988 reset_reclaim_mode(sc);
c53919ad 989keep_reclaim_mode:
1da177e4 990 list_add(&page->lru, &ret_pages);
b291f000 991 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4 992 }
abe4c3b5 993
0e093d99
MG
994 /*
995 * Tag a zone as congested if all the dirty pages encountered were
996 * backed by a congested BDI. In this case, reclaimers should just
997 * back off and wait for congestion to clear because further reclaim
998 * will encounter the same problem
999 */
89b5fae5 1000 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
f16015fb 1001 zone_set_flag(mz->zone, ZONE_CONGESTED);
0e093d99 1002
cc59850e 1003 free_hot_cold_page_list(&free_pages, 1);
abe4c3b5 1004
1da177e4 1005 list_splice(&ret_pages, page_list);
f8891e5e 1006 count_vm_events(PGACTIVATE, pgactivate);
92df3a72
MG
1007 *ret_nr_dirty += nr_dirty;
1008 *ret_nr_writeback += nr_writeback;
05ff5137 1009 return nr_reclaimed;
1da177e4
LT
1010}
1011
5ad333eb
AW
1012/*
1013 * Attempt to remove the specified page from its LRU. Only take this page
1014 * if it is of the appropriate PageActive status. Pages which are being
1015 * freed elsewhere are also ignored.
1016 *
1017 * page: page to consider
1018 * mode: one of the LRU isolation modes defined above
1019 *
1020 * returns 0 on success, -ve errno on failure.
1021 */
4356f21d 1022int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
5ad333eb 1023{
4356f21d 1024 bool all_lru_mode;
5ad333eb
AW
1025 int ret = -EINVAL;
1026
1027 /* Only take pages on the LRU. */
1028 if (!PageLRU(page))
1029 return ret;
1030
4356f21d
MK
1031 all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1032 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1033
5ad333eb
AW
1034 /*
1035 * When checking the active state, we need to be sure we are
1036 * dealing with comparible boolean values. Take the logical not
1037 * of each.
1038 */
4356f21d 1039 if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
5ad333eb
AW
1040 return ret;
1041
4356f21d 1042 if (!all_lru_mode && !!page_is_file_cache(page) != file)
4f98a2fe
RR
1043 return ret;
1044
c53919ad 1045 /* Do not give back unevictable pages for compaction */
894bc310
LS
1046 if (PageUnevictable(page))
1047 return ret;
1048
5ad333eb 1049 ret = -EBUSY;
08e552c6 1050
c8244935
MG
1051 /*
1052 * To minimise LRU disruption, the caller can indicate that it only
1053 * wants to isolate pages it will be able to operate on without
1054 * blocking - clean pages for the most part.
1055 *
1056 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1057 * is used by reclaim when it is cannot write to backing storage
1058 *
1059 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1060 * that it is possible to migrate without blocking
1061 */
1062 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1063 /* All the caller can do on PageWriteback is block */
1064 if (PageWriteback(page))
1065 return ret;
1066
1067 if (PageDirty(page)) {
1068 struct address_space *mapping;
1069
1070 /* ISOLATE_CLEAN means only clean pages */
1071 if (mode & ISOLATE_CLEAN)
1072 return ret;
1073
1074 /*
1075 * Only pages without mappings or that have a
1076 * ->migratepage callback are possible to migrate
1077 * without blocking
1078 */
1079 mapping = page_mapping(page);
1080 if (mapping && !mapping->a_ops->migratepage)
1081 return ret;
1082 }
1083 }
39deaf85 1084
f80c0673
MK
1085 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1086 return ret;
1087
5ad333eb
AW
1088 if (likely(get_page_unless_zero(page))) {
1089 /*
1090 * Be careful not to clear PageLRU until after we're
1091 * sure the page is not being freed elsewhere -- the
1092 * page release code relies on it.
1093 */
1094 ClearPageLRU(page);
1095 ret = 0;
1096 }
1097
1098 return ret;
1099}
1100
1da177e4
LT
1101/*
1102 * zone->lru_lock is heavily contended. Some of the functions that
1103 * shrink the lists perform better by taking out a batch of pages
1104 * and working on them outside the LRU lock.
1105 *
1106 * For pagecache intensive workloads, this function is the hottest
1107 * spot in the kernel (apart from copy_*_user functions).
1108 *
1109 * Appropriate locks must be held before calling this function.
1110 *
1111 * @nr_to_scan: The number of pages to look through on the list.
f626012d 1112 * @mz: The mem_cgroup_zone to pull pages from.
1da177e4 1113 * @dst: The temp list to put pages on to.
f626012d 1114 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1115 * @sc: The scan_control struct for this reclaim session
5ad333eb 1116 * @mode: One of the LRU isolation modes
f626012d 1117 * @active: True [1] if isolating active pages
4f98a2fe 1118 * @file: True [1] if isolating file [!anon] pages
1da177e4
LT
1119 *
1120 * returns how many pages were moved onto *@dst.
1121 */
69e05944 1122static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
f626012d 1123 struct mem_cgroup_zone *mz, struct list_head *dst,
fe2c2a10
RR
1124 unsigned long *nr_scanned, struct scan_control *sc,
1125 isolate_mode_t mode, int active, int file)
1da177e4 1126{
f626012d
HD
1127 struct lruvec *lruvec;
1128 struct list_head *src;
69e05944 1129 unsigned long nr_taken = 0;
c9b02d97 1130 unsigned long scan;
f626012d
HD
1131 int lru = LRU_BASE;
1132
1133 lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1134 if (active)
1135 lru += LRU_ACTIVE;
1136 if (file)
1137 lru += LRU_FILE;
1138 src = &lruvec->lists[lru];
1da177e4 1139
c9b02d97 1140 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb 1141 struct page *page;
5ad333eb 1142
1da177e4
LT
1143 page = lru_to_page(src);
1144 prefetchw_prev_lru_page(page, src, flags);
1145
725d704e 1146 VM_BUG_ON(!PageLRU(page));
8d438f96 1147
4f98a2fe 1148 switch (__isolate_lru_page(page, mode, file)) {
5ad333eb 1149 case 0:
925b7673 1150 mem_cgroup_lru_del(page);
5ad333eb 1151 list_move(&page->lru, dst);
2c888cfb 1152 nr_taken += hpage_nr_pages(page);
5ad333eb
AW
1153 break;
1154
1155 case -EBUSY:
1156 /* else it is being freed elsewhere */
1157 list_move(&page->lru, src);
1158 continue;
46453a6e 1159
5ad333eb
AW
1160 default:
1161 BUG();
1162 }
1da177e4
LT
1163 }
1164
f626012d 1165 *nr_scanned = scan;
a8a94d15 1166
fe2c2a10 1167 trace_mm_vmscan_lru_isolate(sc->order,
a8a94d15
MG
1168 nr_to_scan, scan,
1169 nr_taken,
ea4d349f 1170 mode, file);
1da177e4
LT
1171 return nr_taken;
1172}
1173
62695a84
NP
1174/**
1175 * isolate_lru_page - tries to isolate a page from its LRU list
1176 * @page: page to isolate from its LRU list
1177 *
1178 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1179 * vmstat statistic corresponding to whatever LRU list the page was on.
1180 *
1181 * Returns 0 if the page was removed from an LRU list.
1182 * Returns -EBUSY if the page was not on an LRU list.
1183 *
1184 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1185 * the active list, it will have PageActive set. If it was found on
1186 * the unevictable list, it will have the PageUnevictable bit set. That flag
1187 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1188 *
1189 * The vmstat statistic corresponding to the list on which the page was
1190 * found will be decremented.
1191 *
1192 * Restrictions:
1193 * (1) Must be called with an elevated refcount on the page. This is a
1194 * fundamentnal difference from isolate_lru_pages (which is called
1195 * without a stable reference).
1196 * (2) the lru_lock must not be held.
1197 * (3) interrupts must be enabled.
1198 */
1199int isolate_lru_page(struct page *page)
1200{
1201 int ret = -EBUSY;
1202
0c917313
KK
1203 VM_BUG_ON(!page_count(page));
1204
62695a84
NP
1205 if (PageLRU(page)) {
1206 struct zone *zone = page_zone(page);
1207
1208 spin_lock_irq(&zone->lru_lock);
0c917313 1209 if (PageLRU(page)) {
894bc310 1210 int lru = page_lru(page);
62695a84 1211 ret = 0;
0c917313 1212 get_page(page);
62695a84 1213 ClearPageLRU(page);
4f98a2fe 1214
4f98a2fe 1215 del_page_from_lru_list(zone, page, lru);
62695a84
NP
1216 }
1217 spin_unlock_irq(&zone->lru_lock);
1218 }
1219 return ret;
1220}
1221
35cd7815
RR
1222/*
1223 * Are there way too many processes in the direct reclaim path already?
1224 */
1225static int too_many_isolated(struct zone *zone, int file,
1226 struct scan_control *sc)
1227{
1228 unsigned long inactive, isolated;
1229
1230 if (current_is_kswapd())
1231 return 0;
1232
89b5fae5 1233 if (!global_reclaim(sc))
35cd7815
RR
1234 return 0;
1235
1236 if (file) {
1237 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1238 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1239 } else {
1240 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1241 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1242 }
1243
1244 return isolated > inactive;
1245}
1246
66635629 1247static noinline_for_stack void
3f79768f
HD
1248putback_inactive_pages(struct mem_cgroup_zone *mz,
1249 struct list_head *page_list)
66635629 1250{
f16015fb 1251 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
3f79768f
HD
1252 struct zone *zone = mz->zone;
1253 LIST_HEAD(pages_to_free);
66635629 1254
66635629
MG
1255 /*
1256 * Put back any unfreeable pages.
1257 */
66635629 1258 while (!list_empty(page_list)) {
3f79768f 1259 struct page *page = lru_to_page(page_list);
66635629 1260 int lru;
3f79768f 1261
66635629
MG
1262 VM_BUG_ON(PageLRU(page));
1263 list_del(&page->lru);
1264 if (unlikely(!page_evictable(page, NULL))) {
1265 spin_unlock_irq(&zone->lru_lock);
1266 putback_lru_page(page);
1267 spin_lock_irq(&zone->lru_lock);
1268 continue;
1269 }
7a608572 1270 SetPageLRU(page);
66635629 1271 lru = page_lru(page);
7a608572 1272 add_page_to_lru_list(zone, page, lru);
66635629
MG
1273 if (is_active_lru(lru)) {
1274 int file = is_file_lru(lru);
9992af10
RR
1275 int numpages = hpage_nr_pages(page);
1276 reclaim_stat->recent_rotated[file] += numpages;
66635629 1277 }
2bcf8879
HD
1278 if (put_page_testzero(page)) {
1279 __ClearPageLRU(page);
1280 __ClearPageActive(page);
1281 del_page_from_lru_list(zone, page, lru);
1282
1283 if (unlikely(PageCompound(page))) {
1284 spin_unlock_irq(&zone->lru_lock);
1285 (*get_compound_page_dtor(page))(page);
1286 spin_lock_irq(&zone->lru_lock);
1287 } else
1288 list_add(&page->lru, &pages_to_free);
66635629
MG
1289 }
1290 }
66635629 1291
3f79768f
HD
1292 /*
1293 * To save our caller's stack, now use input list for pages to free.
1294 */
1295 list_splice(&pages_to_free, page_list);
66635629
MG
1296}
1297
f16015fb
JW
1298static noinline_for_stack void
1299update_isolated_counts(struct mem_cgroup_zone *mz,
3f79768f 1300 struct list_head *page_list,
f16015fb 1301 unsigned long *nr_anon,
3f79768f 1302 unsigned long *nr_file)
1489fa14 1303{
f16015fb 1304 struct zone *zone = mz->zone;
1489fa14 1305 unsigned int count[NR_LRU_LISTS] = { 0, };
3f79768f
HD
1306 unsigned long nr_active = 0;
1307 struct page *page;
1308 int lru;
1309
1310 /*
1311 * Count pages and clear active flags
1312 */
1313 list_for_each_entry(page, page_list, lru) {
1314 int numpages = hpage_nr_pages(page);
1315 lru = page_lru_base_type(page);
1316 if (PageActive(page)) {
1317 lru += LRU_ACTIVE;
1318 ClearPageActive(page);
1319 nr_active += numpages;
1320 }
1321 count[lru] += numpages;
1322 }
1489fa14 1323
d563c050 1324 preempt_disable();
1489fa14
MG
1325 __count_vm_events(PGDEACTIVATE, nr_active);
1326
1327 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1328 -count[LRU_ACTIVE_FILE]);
1329 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1330 -count[LRU_INACTIVE_FILE]);
1331 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1332 -count[LRU_ACTIVE_ANON]);
1333 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1334 -count[LRU_INACTIVE_ANON]);
1335
1336 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1337 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1489fa14 1338
d563c050
HD
1339 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1340 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1341 preempt_enable();
1489fa14
MG
1342}
1343
e31f3698 1344/*
a18bba06 1345 * Returns true if a direct reclaim should wait on pages under writeback.
e31f3698
WF
1346 *
1347 * If we are direct reclaiming for contiguous pages and we do not reclaim
1348 * everything in the list, try again and wait for writeback IO to complete.
1349 * This will stall high-order allocations noticeably. Only do that when really
1350 * need to free the pages under high memory pressure.
1351 */
1352static inline bool should_reclaim_stall(unsigned long nr_taken,
1353 unsigned long nr_freed,
1354 int priority,
1355 struct scan_control *sc)
1356{
c53919ad 1357 int stall_priority;
e31f3698
WF
1358
1359 /* kswapd should not stall on sync IO */
1360 if (current_is_kswapd())
1361 return false;
1362
c53919ad 1363 /* Only stall for memory compaction */
f3a310bc 1364 if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
e31f3698
WF
1365 return false;
1366
81d66c70 1367 /* If we have reclaimed everything on the isolated list, no stall */
e31f3698
WF
1368 if (nr_freed == nr_taken)
1369 return false;
1370
1371 /*
1372 * For high-order allocations, there are two stall thresholds.
1373 * High-cost allocations stall immediately where as lower
1374 * order allocations such as stacks require the scanning
1375 * priority to be much higher before stalling.
1376 */
1377 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
c53919ad 1378 stall_priority = DEF_PRIORITY;
e31f3698 1379 else
c53919ad 1380 stall_priority = DEF_PRIORITY / 3;
e31f3698 1381
c53919ad 1382 return priority <= stall_priority;
e31f3698
WF
1383}
1384
1da177e4 1385/*
1742f19f
AM
1386 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1387 * of reclaimed pages
1da177e4 1388 */
66635629 1389static noinline_for_stack unsigned long
f16015fb
JW
1390shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
1391 struct scan_control *sc, int priority, int file)
1da177e4
LT
1392{
1393 LIST_HEAD(page_list);
e247dbce 1394 unsigned long nr_scanned;
05ff5137 1395 unsigned long nr_reclaimed = 0;
e247dbce 1396 unsigned long nr_taken;
e247dbce
KM
1397 unsigned long nr_anon;
1398 unsigned long nr_file;
92df3a72
MG
1399 unsigned long nr_dirty = 0;
1400 unsigned long nr_writeback = 0;
61317289 1401 isolate_mode_t isolate_mode = ISOLATE_INACTIVE;
f16015fb 1402 struct zone *zone = mz->zone;
d563c050 1403 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
78dc583d 1404
35cd7815 1405 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1406 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1407
1408 /* We are about to die and free our memory. Return now. */
1409 if (fatal_signal_pending(current))
1410 return SWAP_CLUSTER_MAX;
1411 }
1412
f3a310bc 1413 set_reclaim_mode(priority, sc, false);
4356f21d 1414
1da177e4 1415 lru_add_drain();
f80c0673
MK
1416
1417 if (!sc->may_unmap)
61317289 1418 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1419 if (!sc->may_writepage)
61317289 1420 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1421
1da177e4 1422 spin_lock_irq(&zone->lru_lock);
b35ea17b 1423
fe2c2a10
RR
1424 nr_taken = isolate_lru_pages(nr_to_scan, mz, &page_list, &nr_scanned,
1425 sc, isolate_mode, 0, file);
89b5fae5 1426 if (global_reclaim(sc)) {
e247dbce
KM
1427 zone->pages_scanned += nr_scanned;
1428 if (current_is_kswapd())
1429 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1430 nr_scanned);
1431 else
1432 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1433 nr_scanned);
e247dbce 1434 }
d563c050 1435 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1436
d563c050 1437 if (nr_taken == 0)
66635629 1438 return 0;
5ad333eb 1439
3f79768f
HD
1440 update_isolated_counts(mz, &page_list, &nr_anon, &nr_file);
1441
f16015fb 1442 nr_reclaimed = shrink_page_list(&page_list, mz, sc, priority,
92df3a72 1443 &nr_dirty, &nr_writeback);
c661b078 1444
e31f3698
WF
1445 /* Check if we should syncronously wait for writeback */
1446 if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
f3a310bc 1447 set_reclaim_mode(priority, sc, true);
f16015fb 1448 nr_reclaimed += shrink_page_list(&page_list, mz, sc,
92df3a72 1449 priority, &nr_dirty, &nr_writeback);
e247dbce 1450 }
b35ea17b 1451
3f79768f
HD
1452 spin_lock_irq(&zone->lru_lock);
1453
d563c050
HD
1454 reclaim_stat->recent_scanned[0] += nr_anon;
1455 reclaim_stat->recent_scanned[1] += nr_file;
1456
904249aa
YH
1457 if (global_reclaim(sc)) {
1458 if (current_is_kswapd())
1459 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1460 nr_reclaimed);
1461 else
1462 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1463 nr_reclaimed);
1464 }
a74609fa 1465
3f79768f
HD
1466 putback_inactive_pages(mz, &page_list);
1467
1468 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1469 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1470
1471 spin_unlock_irq(&zone->lru_lock);
1472
1473 free_hot_cold_page_list(&page_list, 1);
e11da5b4 1474
92df3a72
MG
1475 /*
1476 * If reclaim is isolating dirty pages under writeback, it implies
1477 * that the long-lived page allocation rate is exceeding the page
1478 * laundering rate. Either the global limits are not being effective
1479 * at throttling processes due to the page distribution throughout
1480 * zones or there is heavy usage of a slow backing device. The
1481 * only option is to throttle from reclaim context which is not ideal
1482 * as there is no guarantee the dirtying process is throttled in the
1483 * same way balance_dirty_pages() manages.
1484 *
1485 * This scales the number of dirty pages that must be under writeback
1486 * before throttling depending on priority. It is a simple backoff
1487 * function that has the most effect in the range DEF_PRIORITY to
1488 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1489 * in trouble and reclaim is considered to be in trouble.
1490 *
1491 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1492 * DEF_PRIORITY-1 50% must be PageWriteback
1493 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1494 * ...
1495 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1496 * isolated page is PageWriteback
1497 */
1498 if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1499 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1500
e11da5b4
MG
1501 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1502 zone_idx(zone),
1503 nr_scanned, nr_reclaimed,
1504 priority,
f3a310bc 1505 trace_shrink_flags(file, sc->reclaim_mode));
05ff5137 1506 return nr_reclaimed;
1da177e4
LT
1507}
1508
1509/*
1510 * This moves pages from the active list to the inactive list.
1511 *
1512 * We move them the other way if the page is referenced by one or more
1513 * processes, from rmap.
1514 *
1515 * If the pages are mostly unmapped, the processing is fast and it is
1516 * appropriate to hold zone->lru_lock across the whole operation. But if
1517 * the pages are mapped, the processing is slow (page_referenced()) so we
1518 * should drop zone->lru_lock around each page. It's impossible to balance
1519 * this, so instead we remove the pages from the LRU while processing them.
1520 * It is safe to rely on PG_active against the non-LRU pages in here because
1521 * nobody will play with that bit on a non-LRU page.
1522 *
1523 * The downside is that we have to touch page->_count against each page.
1524 * But we had to alter page->flags anyway.
1525 */
1cfb419b 1526
3eb4140f
WF
1527static void move_active_pages_to_lru(struct zone *zone,
1528 struct list_head *list,
2bcf8879 1529 struct list_head *pages_to_free,
3eb4140f
WF
1530 enum lru_list lru)
1531{
1532 unsigned long pgmoved = 0;
3eb4140f
WF
1533 struct page *page;
1534
3eb4140f 1535 while (!list_empty(list)) {
925b7673
JW
1536 struct lruvec *lruvec;
1537
3eb4140f 1538 page = lru_to_page(list);
3eb4140f
WF
1539
1540 VM_BUG_ON(PageLRU(page));
1541 SetPageLRU(page);
1542
925b7673
JW
1543 lruvec = mem_cgroup_lru_add_list(zone, page, lru);
1544 list_move(&page->lru, &lruvec->lists[lru]);
2c888cfb 1545 pgmoved += hpage_nr_pages(page);
3eb4140f 1546
2bcf8879
HD
1547 if (put_page_testzero(page)) {
1548 __ClearPageLRU(page);
1549 __ClearPageActive(page);
1550 del_page_from_lru_list(zone, page, lru);
1551
1552 if (unlikely(PageCompound(page))) {
1553 spin_unlock_irq(&zone->lru_lock);
1554 (*get_compound_page_dtor(page))(page);
1555 spin_lock_irq(&zone->lru_lock);
1556 } else
1557 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1558 }
1559 }
1560 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1561 if (!is_active_lru(lru))
1562 __count_vm_events(PGDEACTIVATE, pgmoved);
1563}
1cfb419b 1564
f626012d 1565static void shrink_active_list(unsigned long nr_to_scan,
f16015fb
JW
1566 struct mem_cgroup_zone *mz,
1567 struct scan_control *sc,
1568 int priority, int file)
1da177e4 1569{
44c241f1 1570 unsigned long nr_taken;
f626012d 1571 unsigned long nr_scanned;
6fe6b7e3 1572 unsigned long vm_flags;
1da177e4 1573 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1574 LIST_HEAD(l_active);
b69408e8 1575 LIST_HEAD(l_inactive);
1da177e4 1576 struct page *page;
f16015fb 1577 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
44c241f1 1578 unsigned long nr_rotated = 0;
61317289 1579 isolate_mode_t isolate_mode = ISOLATE_ACTIVE;
f16015fb 1580 struct zone *zone = mz->zone;
1da177e4
LT
1581
1582 lru_add_drain();
f80c0673 1583
1480de03
KK
1584 reset_reclaim_mode(sc);
1585
f80c0673 1586 if (!sc->may_unmap)
61317289 1587 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1588 if (!sc->may_writepage)
61317289 1589 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1590
1da177e4 1591 spin_lock_irq(&zone->lru_lock);
925b7673 1592
fe2c2a10 1593 nr_taken = isolate_lru_pages(nr_to_scan, mz, &l_hold, &nr_scanned, sc,
61317289 1594 isolate_mode, 1, file);
89b5fae5 1595 if (global_reclaim(sc))
f626012d 1596 zone->pages_scanned += nr_scanned;
89b5fae5 1597
b7c46d15 1598 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1599
f626012d 1600 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
4f98a2fe 1601 if (file)
44c241f1 1602 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
4f98a2fe 1603 else
44c241f1 1604 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
a731286d 1605 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1606 spin_unlock_irq(&zone->lru_lock);
1607
1da177e4
LT
1608 while (!list_empty(&l_hold)) {
1609 cond_resched();
1610 page = lru_to_page(&l_hold);
1611 list_del(&page->lru);
7e9cd484 1612
894bc310
LS
1613 if (unlikely(!page_evictable(page, NULL))) {
1614 putback_lru_page(page);
1615 continue;
1616 }
1617
cc715d99
MG
1618 if (unlikely(buffer_heads_over_limit)) {
1619 if (page_has_private(page) && trylock_page(page)) {
1620 if (page_has_private(page))
1621 try_to_release_page(page, 0);
1622 unlock_page(page);
1623 }
1624 }
1625
f16015fb 1626 if (page_referenced(page, 0, mz->mem_cgroup, &vm_flags)) {
9992af10 1627 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1628 /*
1629 * Identify referenced, file-backed active pages and
1630 * give them one more trip around the active list. So
1631 * that executable code get better chances to stay in
1632 * memory under moderate memory pressure. Anon pages
1633 * are not likely to be evicted by use-once streaming
1634 * IO, plus JVM can create lots of anon VM_EXEC pages,
1635 * so we ignore them here.
1636 */
41e20983 1637 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1638 list_add(&page->lru, &l_active);
1639 continue;
1640 }
1641 }
7e9cd484 1642
5205e56e 1643 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1644 list_add(&page->lru, &l_inactive);
1645 }
1646
b555749a 1647 /*
8cab4754 1648 * Move pages back to the lru list.
b555749a 1649 */
2a1dc509 1650 spin_lock_irq(&zone->lru_lock);
556adecb 1651 /*
8cab4754
WF
1652 * Count referenced pages from currently used mappings as rotated,
1653 * even though only some of them are actually re-activated. This
1654 * helps balance scan pressure between file and anonymous pages in
1655 * get_scan_ratio.
7e9cd484 1656 */
b7c46d15 1657 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1658
2bcf8879 1659 move_active_pages_to_lru(zone, &l_active, &l_hold,
3eb4140f 1660 LRU_ACTIVE + file * LRU_FILE);
2bcf8879 1661 move_active_pages_to_lru(zone, &l_inactive, &l_hold,
3eb4140f 1662 LRU_BASE + file * LRU_FILE);
a731286d 1663 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1664 spin_unlock_irq(&zone->lru_lock);
2bcf8879
HD
1665
1666 free_hot_cold_page_list(&l_hold, 1);
1da177e4
LT
1667}
1668
74e3f3c3 1669#ifdef CONFIG_SWAP
14797e23 1670static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1671{
1672 unsigned long active, inactive;
1673
1674 active = zone_page_state(zone, NR_ACTIVE_ANON);
1675 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1676
1677 if (inactive * zone->inactive_ratio < active)
1678 return 1;
1679
1680 return 0;
1681}
1682
14797e23
KM
1683/**
1684 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1685 * @zone: zone to check
1686 * @sc: scan control of this context
1687 *
1688 * Returns true if the zone does not have enough inactive anon pages,
1689 * meaning some active anon pages need to be deactivated.
1690 */
f16015fb 1691static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
14797e23 1692{
74e3f3c3
MK
1693 /*
1694 * If we don't have swap space, anonymous page deactivation
1695 * is pointless.
1696 */
1697 if (!total_swap_pages)
1698 return 0;
1699
f16015fb
JW
1700 if (!scanning_global_lru(mz))
1701 return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
1702 mz->zone);
1703
1704 return inactive_anon_is_low_global(mz->zone);
14797e23 1705}
74e3f3c3 1706#else
f16015fb 1707static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
74e3f3c3
MK
1708{
1709 return 0;
1710}
1711#endif
14797e23 1712
56e49d21
RR
1713static int inactive_file_is_low_global(struct zone *zone)
1714{
1715 unsigned long active, inactive;
1716
1717 active = zone_page_state(zone, NR_ACTIVE_FILE);
1718 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1719
1720 return (active > inactive);
1721}
1722
1723/**
1724 * inactive_file_is_low - check if file pages need to be deactivated
f16015fb 1725 * @mz: memory cgroup and zone to check
56e49d21
RR
1726 *
1727 * When the system is doing streaming IO, memory pressure here
1728 * ensures that active file pages get deactivated, until more
1729 * than half of the file pages are on the inactive list.
1730 *
1731 * Once we get to that situation, protect the system's working
1732 * set from being evicted by disabling active file page aging.
1733 *
1734 * This uses a different ratio than the anonymous pages, because
1735 * the page cache uses a use-once replacement algorithm.
1736 */
f16015fb 1737static int inactive_file_is_low(struct mem_cgroup_zone *mz)
56e49d21 1738{
f16015fb
JW
1739 if (!scanning_global_lru(mz))
1740 return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
1741 mz->zone);
56e49d21 1742
f16015fb 1743 return inactive_file_is_low_global(mz->zone);
56e49d21
RR
1744}
1745
f16015fb 1746static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
b39415b2
RR
1747{
1748 if (file)
f16015fb 1749 return inactive_file_is_low(mz);
b39415b2 1750 else
f16015fb 1751 return inactive_anon_is_low(mz);
b39415b2
RR
1752}
1753
4f98a2fe 1754static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
f16015fb
JW
1755 struct mem_cgroup_zone *mz,
1756 struct scan_control *sc, int priority)
b69408e8 1757{
4f98a2fe
RR
1758 int file = is_file_lru(lru);
1759
b39415b2 1760 if (is_active_lru(lru)) {
f16015fb
JW
1761 if (inactive_list_is_low(mz, file))
1762 shrink_active_list(nr_to_scan, mz, sc, priority, file);
556adecb
RR
1763 return 0;
1764 }
1765
f16015fb 1766 return shrink_inactive_list(nr_to_scan, mz, sc, priority, file);
4f98a2fe
RR
1767}
1768
f16015fb
JW
1769static int vmscan_swappiness(struct mem_cgroup_zone *mz,
1770 struct scan_control *sc)
1f4c025b 1771{
89b5fae5 1772 if (global_reclaim(sc))
1f4c025b 1773 return vm_swappiness;
f16015fb 1774 return mem_cgroup_swappiness(mz->mem_cgroup);
1f4c025b
KH
1775}
1776
4f98a2fe
RR
1777/*
1778 * Determine how aggressively the anon and file LRU lists should be
1779 * scanned. The relative value of each set of LRU lists is determined
1780 * by looking at the fraction of the pages scanned we did rotate back
1781 * onto the active list instead of evict.
1782 *
76a33fc3 1783 * nr[0] = anon pages to scan; nr[1] = file pages to scan
4f98a2fe 1784 */
f16015fb
JW
1785static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
1786 unsigned long *nr, int priority)
4f98a2fe
RR
1787{
1788 unsigned long anon, file, free;
1789 unsigned long anon_prio, file_prio;
1790 unsigned long ap, fp;
f16015fb 1791 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
76a33fc3 1792 u64 fraction[2], denominator;
4111304d 1793 enum lru_list lru;
76a33fc3 1794 int noswap = 0;
a4d3e9e7 1795 bool force_scan = false;
246e87a9 1796
f11c0ca5
JW
1797 /*
1798 * If the zone or memcg is small, nr[l] can be 0. This
1799 * results in no scanning on this priority and a potential
1800 * priority drop. Global direct reclaim can go to the next
1801 * zone and tends to have no problems. Global kswapd is for
1802 * zone balancing and it needs to scan a minimum amount. When
1803 * reclaiming for a memcg, a priority drop can cause high
1804 * latencies, so it's better to scan a minimum amount there as
1805 * well.
1806 */
b95a2f2d 1807 if (current_is_kswapd() && mz->zone->all_unreclaimable)
a4d3e9e7 1808 force_scan = true;
89b5fae5 1809 if (!global_reclaim(sc))
a4d3e9e7 1810 force_scan = true;
76a33fc3
SL
1811
1812 /* If we have no swap space, do not bother scanning anon pages. */
1813 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1814 noswap = 1;
1815 fraction[0] = 0;
1816 fraction[1] = 1;
1817 denominator = 1;
1818 goto out;
1819 }
4f98a2fe 1820
f16015fb
JW
1821 anon = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
1822 zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1823 file = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
1824 zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
a4d3e9e7 1825
89b5fae5 1826 if (global_reclaim(sc)) {
f16015fb 1827 free = zone_page_state(mz->zone, NR_FREE_PAGES);
eeee9a8c
KM
1828 /* If we have very few page cache pages,
1829 force-scan anon pages. */
f16015fb 1830 if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
76a33fc3
SL
1831 fraction[0] = 1;
1832 fraction[1] = 0;
1833 denominator = 1;
1834 goto out;
eeee9a8c 1835 }
4f98a2fe
RR
1836 }
1837
58c37f6e
KM
1838 /*
1839 * With swappiness at 100, anonymous and file have the same priority.
1840 * This scanning priority is essentially the inverse of IO cost.
1841 */
f16015fb
JW
1842 anon_prio = vmscan_swappiness(mz, sc);
1843 file_prio = 200 - vmscan_swappiness(mz, sc);
58c37f6e 1844
4f98a2fe
RR
1845 /*
1846 * OK, so we have swap space and a fair amount of page cache
1847 * pages. We use the recently rotated / recently scanned
1848 * ratios to determine how valuable each cache is.
1849 *
1850 * Because workloads change over time (and to avoid overflow)
1851 * we keep these statistics as a floating average, which ends
1852 * up weighing recent references more than old ones.
1853 *
1854 * anon in [0], file in [1]
1855 */
f16015fb 1856 spin_lock_irq(&mz->zone->lru_lock);
6e901571 1857 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1858 reclaim_stat->recent_scanned[0] /= 2;
1859 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1860 }
1861
6e901571 1862 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1863 reclaim_stat->recent_scanned[1] /= 2;
1864 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1865 }
1866
4f98a2fe 1867 /*
00d8089c
RR
1868 * The amount of pressure on anon vs file pages is inversely
1869 * proportional to the fraction of recently scanned pages on
1870 * each list that were recently referenced and in active use.
4f98a2fe 1871 */
6e901571
KM
1872 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1873 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1874
6e901571
KM
1875 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1876 fp /= reclaim_stat->recent_rotated[1] + 1;
f16015fb 1877 spin_unlock_irq(&mz->zone->lru_lock);
4f98a2fe 1878
76a33fc3
SL
1879 fraction[0] = ap;
1880 fraction[1] = fp;
1881 denominator = ap + fp + 1;
1882out:
4111304d
HD
1883 for_each_evictable_lru(lru) {
1884 int file = is_file_lru(lru);
76a33fc3 1885 unsigned long scan;
6e08a369 1886
4111304d 1887 scan = zone_nr_lru_pages(mz, lru);
76a33fc3
SL
1888 if (priority || noswap) {
1889 scan >>= priority;
f11c0ca5
JW
1890 if (!scan && force_scan)
1891 scan = SWAP_CLUSTER_MAX;
76a33fc3
SL
1892 scan = div64_u64(scan * fraction[file], denominator);
1893 }
4111304d 1894 nr[lru] = scan;
76a33fc3 1895 }
6e08a369 1896}
4f98a2fe 1897
3e7d3449
MG
1898/*
1899 * Reclaim/compaction depends on a number of pages being freed. To avoid
1900 * disruption to the system, a small number of order-0 pages continue to be
1901 * rotated and reclaimed in the normal fashion. However, by the time we get
1902 * back to the allocator and call try_to_compact_zone(), we ensure that
1903 * there are enough free pages for it to be likely successful
1904 */
f16015fb 1905static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
3e7d3449
MG
1906 unsigned long nr_reclaimed,
1907 unsigned long nr_scanned,
1908 struct scan_control *sc)
1909{
1910 unsigned long pages_for_compaction;
1911 unsigned long inactive_lru_pages;
1912
1913 /* If not in reclaim/compaction mode, stop */
f3a310bc 1914 if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
3e7d3449
MG
1915 return false;
1916
2876592f
MG
1917 /* Consider stopping depending on scan and reclaim activity */
1918 if (sc->gfp_mask & __GFP_REPEAT) {
1919 /*
1920 * For __GFP_REPEAT allocations, stop reclaiming if the
1921 * full LRU list has been scanned and we are still failing
1922 * to reclaim pages. This full LRU scan is potentially
1923 * expensive but a __GFP_REPEAT caller really wants to succeed
1924 */
1925 if (!nr_reclaimed && !nr_scanned)
1926 return false;
1927 } else {
1928 /*
1929 * For non-__GFP_REPEAT allocations which can presumably
1930 * fail without consequence, stop if we failed to reclaim
1931 * any pages from the last SWAP_CLUSTER_MAX number of
1932 * pages that were scanned. This will return to the
1933 * caller faster at the risk reclaim/compaction and
1934 * the resulting allocation attempt fails
1935 */
1936 if (!nr_reclaimed)
1937 return false;
1938 }
3e7d3449
MG
1939
1940 /*
1941 * If we have not reclaimed enough pages for compaction and the
1942 * inactive lists are large enough, continue reclaiming
1943 */
1944 pages_for_compaction = (2UL << sc->order);
f16015fb 1945 inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
86cfd3a4 1946 if (nr_swap_pages > 0)
f16015fb 1947 inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
3e7d3449
MG
1948 if (sc->nr_reclaimed < pages_for_compaction &&
1949 inactive_lru_pages > pages_for_compaction)
1950 return true;
1951
1952 /* If compaction would go ahead or the allocation would succeed, stop */
f16015fb 1953 switch (compaction_suitable(mz->zone, sc->order)) {
3e7d3449
MG
1954 case COMPACT_PARTIAL:
1955 case COMPACT_CONTINUE:
1956 return false;
1957 default:
1958 return true;
1959 }
1960}
1961
1da177e4
LT
1962/*
1963 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1964 */
f16015fb
JW
1965static void shrink_mem_cgroup_zone(int priority, struct mem_cgroup_zone *mz,
1966 struct scan_control *sc)
1da177e4 1967{
b69408e8 1968 unsigned long nr[NR_LRU_LISTS];
8695949a 1969 unsigned long nr_to_scan;
4111304d 1970 enum lru_list lru;
f0fdc5e8 1971 unsigned long nr_reclaimed, nr_scanned;
22fba335 1972 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
3da367c3 1973 struct blk_plug plug;
e0f79b8f 1974
3e7d3449
MG
1975restart:
1976 nr_reclaimed = 0;
f0fdc5e8 1977 nr_scanned = sc->nr_scanned;
f16015fb 1978 get_scan_count(mz, sc, nr, priority);
1da177e4 1979
3da367c3 1980 blk_start_plug(&plug);
556adecb
RR
1981 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1982 nr[LRU_INACTIVE_FILE]) {
4111304d
HD
1983 for_each_evictable_lru(lru) {
1984 if (nr[lru]) {
ece74b2e 1985 nr_to_scan = min_t(unsigned long,
4111304d
HD
1986 nr[lru], SWAP_CLUSTER_MAX);
1987 nr[lru] -= nr_to_scan;
1da177e4 1988
4111304d 1989 nr_reclaimed += shrink_list(lru, nr_to_scan,
f16015fb 1990 mz, sc, priority);
b69408e8 1991 }
1da177e4 1992 }
a79311c1
RR
1993 /*
1994 * On large memory systems, scan >> priority can become
1995 * really large. This is fine for the starting priority;
1996 * we want to put equal scanning pressure on each zone.
1997 * However, if the VM has a harder time of freeing pages,
1998 * with multiple processes reclaiming pages, the total
1999 * freeing target can get unreasonably large.
2000 */
41c93088 2001 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
a79311c1 2002 break;
1da177e4 2003 }
3da367c3 2004 blk_finish_plug(&plug);
3e7d3449 2005 sc->nr_reclaimed += nr_reclaimed;
01dbe5c9 2006
556adecb
RR
2007 /*
2008 * Even if we did not try to evict anon pages at all, we want to
2009 * rebalance the anon lru active/inactive ratio.
2010 */
f16015fb
JW
2011 if (inactive_anon_is_low(mz))
2012 shrink_active_list(SWAP_CLUSTER_MAX, mz, sc, priority, 0);
556adecb 2013
3e7d3449 2014 /* reclaim/compaction might need reclaim to continue */
f16015fb 2015 if (should_continue_reclaim(mz, nr_reclaimed,
3e7d3449
MG
2016 sc->nr_scanned - nr_scanned, sc))
2017 goto restart;
2018
232ea4d6 2019 throttle_vm_writeout(sc->gfp_mask);
1da177e4
LT
2020}
2021
f16015fb
JW
2022static void shrink_zone(int priority, struct zone *zone,
2023 struct scan_control *sc)
2024{
5660048c
JW
2025 struct mem_cgroup *root = sc->target_mem_cgroup;
2026 struct mem_cgroup_reclaim_cookie reclaim = {
f16015fb 2027 .zone = zone,
5660048c 2028 .priority = priority,
f16015fb 2029 };
5660048c
JW
2030 struct mem_cgroup *memcg;
2031
5660048c
JW
2032 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2033 do {
2034 struct mem_cgroup_zone mz = {
2035 .mem_cgroup = memcg,
2036 .zone = zone,
2037 };
f16015fb 2038
5660048c
JW
2039 shrink_mem_cgroup_zone(priority, &mz, sc);
2040 /*
2041 * Limit reclaim has historically picked one memcg and
2042 * scanned it with decreasing priority levels until
2043 * nr_to_reclaim had been reclaimed. This priority
2044 * cycle is thus over after a single memcg.
b95a2f2d
JW
2045 *
2046 * Direct reclaim and kswapd, on the other hand, have
2047 * to scan all memory cgroups to fulfill the overall
2048 * scan target for the zone.
5660048c
JW
2049 */
2050 if (!global_reclaim(sc)) {
2051 mem_cgroup_iter_break(root, memcg);
2052 break;
2053 }
2054 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2055 } while (memcg);
f16015fb
JW
2056}
2057
fe4b1b24
MG
2058/* Returns true if compaction should go ahead for a high-order request */
2059static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2060{
2061 unsigned long balance_gap, watermark;
2062 bool watermark_ok;
2063
2064 /* Do not consider compaction for orders reclaim is meant to satisfy */
2065 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2066 return false;
2067
2068 /*
2069 * Compaction takes time to run and there are potentially other
2070 * callers using the pages just freed. Continue reclaiming until
2071 * there is a buffer of free pages available to give compaction
2072 * a reasonable chance of completing and allocating the page
2073 */
2074 balance_gap = min(low_wmark_pages(zone),
2075 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2076 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2077 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2078 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2079
2080 /*
2081 * If compaction is deferred, reclaim up to a point where
2082 * compaction will have a chance of success when re-enabled
2083 */
aff62249 2084 if (compaction_deferred(zone, sc->order))
fe4b1b24
MG
2085 return watermark_ok;
2086
2087 /* If compaction is not ready to start, keep reclaiming */
2088 if (!compaction_suitable(zone, sc->order))
2089 return false;
2090
2091 return watermark_ok;
2092}
2093
1da177e4
LT
2094/*
2095 * This is the direct reclaim path, for page-allocating processes. We only
2096 * try to reclaim pages from zones which will satisfy the caller's allocation
2097 * request.
2098 *
41858966
MG
2099 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2100 * Because:
1da177e4
LT
2101 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2102 * allocation or
41858966
MG
2103 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2104 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2105 * zone defense algorithm.
1da177e4 2106 *
1da177e4
LT
2107 * If a zone is deemed to be full of pinned pages then just give it a light
2108 * scan then give up on it.
e0c23279
MG
2109 *
2110 * This function returns true if a zone is being reclaimed for a costly
fe4b1b24 2111 * high-order allocation and compaction is ready to begin. This indicates to
0cee34fd
MG
2112 * the caller that it should consider retrying the allocation instead of
2113 * further reclaim.
1da177e4 2114 */
e0c23279 2115static bool shrink_zones(int priority, struct zonelist *zonelist,
05ff5137 2116 struct scan_control *sc)
1da177e4 2117{
dd1a239f 2118 struct zoneref *z;
54a6eb5c 2119 struct zone *zone;
d149e3b2
YH
2120 unsigned long nr_soft_reclaimed;
2121 unsigned long nr_soft_scanned;
0cee34fd 2122 bool aborted_reclaim = false;
1cfb419b 2123
cc715d99
MG
2124 /*
2125 * If the number of buffer_heads in the machine exceeds the maximum
2126 * allowed level, force direct reclaim to scan the highmem zone as
2127 * highmem pages could be pinning lowmem pages storing buffer_heads
2128 */
2129 if (buffer_heads_over_limit)
2130 sc->gfp_mask |= __GFP_HIGHMEM;
2131
d4debc66
MG
2132 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2133 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 2134 if (!populated_zone(zone))
1da177e4 2135 continue;
1cfb419b
KH
2136 /*
2137 * Take care memory controller reclaiming has small influence
2138 * to global LRU.
2139 */
89b5fae5 2140 if (global_reclaim(sc)) {
1cfb419b
KH
2141 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2142 continue;
93e4a89a 2143 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1cfb419b 2144 continue; /* Let kswapd poll it */
e0887c19
RR
2145 if (COMPACTION_BUILD) {
2146 /*
e0c23279
MG
2147 * If we already have plenty of memory free for
2148 * compaction in this zone, don't free any more.
2149 * Even though compaction is invoked for any
2150 * non-zero order, only frequent costly order
2151 * reclamation is disruptive enough to become a
c7cfa37b
CA
2152 * noticeable problem, like transparent huge
2153 * page allocations.
e0887c19 2154 */
fe4b1b24 2155 if (compaction_ready(zone, sc)) {
0cee34fd 2156 aborted_reclaim = true;
e0887c19 2157 continue;
e0c23279 2158 }
e0887c19 2159 }
ac34a1a3
KH
2160 /*
2161 * This steals pages from memory cgroups over softlimit
2162 * and returns the number of reclaimed pages and
2163 * scanned pages. This works for global memory pressure
2164 * and balancing, not for a memcg's limit.
2165 */
2166 nr_soft_scanned = 0;
2167 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2168 sc->order, sc->gfp_mask,
2169 &nr_soft_scanned);
2170 sc->nr_reclaimed += nr_soft_reclaimed;
2171 sc->nr_scanned += nr_soft_scanned;
2172 /* need some check for avoid more shrink_zone() */
1cfb419b 2173 }
408d8544 2174
a79311c1 2175 shrink_zone(priority, zone, sc);
1da177e4 2176 }
e0c23279 2177
0cee34fd 2178 return aborted_reclaim;
d1908362
MK
2179}
2180
2181static bool zone_reclaimable(struct zone *zone)
2182{
2183 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2184}
2185
929bea7c 2186/* All zones in zonelist are unreclaimable? */
d1908362
MK
2187static bool all_unreclaimable(struct zonelist *zonelist,
2188 struct scan_control *sc)
2189{
2190 struct zoneref *z;
2191 struct zone *zone;
d1908362
MK
2192
2193 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2194 gfp_zone(sc->gfp_mask), sc->nodemask) {
2195 if (!populated_zone(zone))
2196 continue;
2197 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2198 continue;
929bea7c
KM
2199 if (!zone->all_unreclaimable)
2200 return false;
d1908362
MK
2201 }
2202
929bea7c 2203 return true;
1da177e4 2204}
4f98a2fe 2205
1da177e4
LT
2206/*
2207 * This is the main entry point to direct page reclaim.
2208 *
2209 * If a full scan of the inactive list fails to free enough memory then we
2210 * are "out of memory" and something needs to be killed.
2211 *
2212 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2213 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2214 * caller can't do much about. We kick the writeback threads and take explicit
2215 * naps in the hope that some of these pages can be written. But if the
2216 * allocating task holds filesystem locks which prevent writeout this might not
2217 * work, and the allocation attempt will fail.
a41f24ea
NA
2218 *
2219 * returns: 0, if no pages reclaimed
2220 * else, the number of pages reclaimed
1da177e4 2221 */
dac1d27b 2222static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
a09ed5e0
YH
2223 struct scan_control *sc,
2224 struct shrink_control *shrink)
1da177e4
LT
2225{
2226 int priority;
69e05944 2227 unsigned long total_scanned = 0;
1da177e4 2228 struct reclaim_state *reclaim_state = current->reclaim_state;
dd1a239f 2229 struct zoneref *z;
54a6eb5c 2230 struct zone *zone;
22fba335 2231 unsigned long writeback_threshold;
0cee34fd 2232 bool aborted_reclaim;
1da177e4 2233
873b4771
KK
2234 delayacct_freepages_start();
2235
89b5fae5 2236 if (global_reclaim(sc))
1cfb419b 2237 count_vm_event(ALLOCSTALL);
1da177e4
LT
2238
2239 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
66e1707b 2240 sc->nr_scanned = 0;
0cee34fd 2241 aborted_reclaim = shrink_zones(priority, zonelist, sc);
e0c23279 2242
66e1707b
BS
2243 /*
2244 * Don't shrink slabs when reclaiming memory from
2245 * over limit cgroups
2246 */
89b5fae5 2247 if (global_reclaim(sc)) {
c6a8a8c5 2248 unsigned long lru_pages = 0;
d4debc66
MG
2249 for_each_zone_zonelist(zone, z, zonelist,
2250 gfp_zone(sc->gfp_mask)) {
c6a8a8c5
KM
2251 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2252 continue;
2253
2254 lru_pages += zone_reclaimable_pages(zone);
2255 }
2256
1495f230 2257 shrink_slab(shrink, sc->nr_scanned, lru_pages);
91a45470 2258 if (reclaim_state) {
a79311c1 2259 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
2260 reclaim_state->reclaimed_slab = 0;
2261 }
1da177e4 2262 }
66e1707b 2263 total_scanned += sc->nr_scanned;
bb21c7ce 2264 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1da177e4 2265 goto out;
1da177e4
LT
2266
2267 /*
2268 * Try to write back as many pages as we just scanned. This
2269 * tends to cause slow streaming writers to write data to the
2270 * disk smoothly, at the dirtying rate, which is nice. But
2271 * that's undesirable in laptop mode, where we *want* lumpy
2272 * writeout. So in laptop mode, write out the whole world.
2273 */
22fba335
KM
2274 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2275 if (total_scanned > writeback_threshold) {
0e175a18
CW
2276 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2277 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2278 sc->may_writepage = 1;
1da177e4
LT
2279 }
2280
2281 /* Take a nap, wait for some writeback to complete */
7b51755c 2282 if (!sc->hibernation_mode && sc->nr_scanned &&
0e093d99
MG
2283 priority < DEF_PRIORITY - 2) {
2284 struct zone *preferred_zone;
2285
2286 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
f33261d7
DR
2287 &cpuset_current_mems_allowed,
2288 &preferred_zone);
0e093d99
MG
2289 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2290 }
1da177e4 2291 }
bb21c7ce 2292
1da177e4 2293out:
873b4771
KK
2294 delayacct_freepages_end();
2295
bb21c7ce
KM
2296 if (sc->nr_reclaimed)
2297 return sc->nr_reclaimed;
2298
929bea7c
KM
2299 /*
2300 * As hibernation is going on, kswapd is freezed so that it can't mark
2301 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2302 * check.
2303 */
2304 if (oom_killer_disabled)
2305 return 0;
2306
0cee34fd
MG
2307 /* Aborted reclaim to try compaction? don't OOM, then */
2308 if (aborted_reclaim)
7335084d
MG
2309 return 1;
2310
bb21c7ce 2311 /* top priority shrink_zones still had more to do? don't OOM, then */
89b5fae5 2312 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
bb21c7ce
KM
2313 return 1;
2314
2315 return 0;
1da177e4
LT
2316}
2317
dac1d27b 2318unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2319 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2320{
33906bc5 2321 unsigned long nr_reclaimed;
66e1707b
BS
2322 struct scan_control sc = {
2323 .gfp_mask = gfp_mask,
2324 .may_writepage = !laptop_mode,
22fba335 2325 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 2326 .may_unmap = 1,
2e2e4259 2327 .may_swap = 1,
66e1707b 2328 .order = order,
f16015fb 2329 .target_mem_cgroup = NULL,
327c0e96 2330 .nodemask = nodemask,
66e1707b 2331 };
a09ed5e0
YH
2332 struct shrink_control shrink = {
2333 .gfp_mask = sc.gfp_mask,
2334 };
66e1707b 2335
33906bc5
MG
2336 trace_mm_vmscan_direct_reclaim_begin(order,
2337 sc.may_writepage,
2338 gfp_mask);
2339
a09ed5e0 2340 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
33906bc5
MG
2341
2342 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2343
2344 return nr_reclaimed;
66e1707b
BS
2345}
2346
00f0b825 2347#ifdef CONFIG_CGROUP_MEM_RES_CTLR
66e1707b 2348
72835c86 2349unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2350 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2351 struct zone *zone,
2352 unsigned long *nr_scanned)
4e416953
BS
2353{
2354 struct scan_control sc = {
0ae5e89c 2355 .nr_scanned = 0,
b8f5c566 2356 .nr_to_reclaim = SWAP_CLUSTER_MAX,
4e416953
BS
2357 .may_writepage = !laptop_mode,
2358 .may_unmap = 1,
2359 .may_swap = !noswap,
4e416953 2360 .order = 0,
72835c86 2361 .target_mem_cgroup = memcg,
4e416953 2362 };
5660048c 2363 struct mem_cgroup_zone mz = {
72835c86 2364 .mem_cgroup = memcg,
5660048c
JW
2365 .zone = zone,
2366 };
0ae5e89c 2367
4e416953
BS
2368 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2369 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e
KM
2370
2371 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2372 sc.may_writepage,
2373 sc.gfp_mask);
2374
4e416953
BS
2375 /*
2376 * NOTE: Although we can get the priority field, using it
2377 * here is not a good idea, since it limits the pages we can scan.
2378 * if we don't reclaim here, the shrink_zone from balance_pgdat
2379 * will pick up pages from other mem cgroup's as well. We hack
2380 * the priority and make it zero.
2381 */
5660048c 2382 shrink_mem_cgroup_zone(0, &mz, &sc);
bdce6d9e
KM
2383
2384 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2385
0ae5e89c 2386 *nr_scanned = sc.nr_scanned;
4e416953
BS
2387 return sc.nr_reclaimed;
2388}
2389
72835c86 2390unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
a7885eb8 2391 gfp_t gfp_mask,
185efc0f 2392 bool noswap)
66e1707b 2393{
4e416953 2394 struct zonelist *zonelist;
bdce6d9e 2395 unsigned long nr_reclaimed;
889976db 2396 int nid;
66e1707b 2397 struct scan_control sc = {
66e1707b 2398 .may_writepage = !laptop_mode,
a6dc60f8 2399 .may_unmap = 1,
2e2e4259 2400 .may_swap = !noswap,
22fba335 2401 .nr_to_reclaim = SWAP_CLUSTER_MAX,
66e1707b 2402 .order = 0,
72835c86 2403 .target_mem_cgroup = memcg,
327c0e96 2404 .nodemask = NULL, /* we don't care the placement */
a09ed5e0
YH
2405 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2406 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2407 };
2408 struct shrink_control shrink = {
2409 .gfp_mask = sc.gfp_mask,
66e1707b 2410 };
66e1707b 2411
889976db
YH
2412 /*
2413 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2414 * take care of from where we get pages. So the node where we start the
2415 * scan does not need to be the current node.
2416 */
72835c86 2417 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2418
2419 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2420
2421 trace_mm_vmscan_memcg_reclaim_begin(0,
2422 sc.may_writepage,
2423 sc.gfp_mask);
2424
a09ed5e0 2425 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
bdce6d9e
KM
2426
2427 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2428
2429 return nr_reclaimed;
66e1707b
BS
2430}
2431#endif
2432
f16015fb
JW
2433static void age_active_anon(struct zone *zone, struct scan_control *sc,
2434 int priority)
2435{
b95a2f2d 2436 struct mem_cgroup *memcg;
f16015fb 2437
b95a2f2d
JW
2438 if (!total_swap_pages)
2439 return;
2440
2441 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2442 do {
2443 struct mem_cgroup_zone mz = {
2444 .mem_cgroup = memcg,
2445 .zone = zone,
2446 };
2447
2448 if (inactive_anon_is_low(&mz))
2449 shrink_active_list(SWAP_CLUSTER_MAX, &mz,
2450 sc, priority, 0);
2451
2452 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2453 } while (memcg);
f16015fb
JW
2454}
2455
1741c877
MG
2456/*
2457 * pgdat_balanced is used when checking if a node is balanced for high-order
2458 * allocations. Only zones that meet watermarks and are in a zone allowed
2459 * by the callers classzone_idx are added to balanced_pages. The total of
2460 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2461 * for the node to be considered balanced. Forcing all zones to be balanced
2462 * for high orders can cause excessive reclaim when there are imbalanced zones.
2463 * The choice of 25% is due to
2464 * o a 16M DMA zone that is balanced will not balance a zone on any
2465 * reasonable sized machine
2466 * o On all other machines, the top zone must be at least a reasonable
25985edc 2467 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2468 * would need to be at least 256M for it to be balance a whole node.
2469 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2470 * to balance a node on its own. These seemed like reasonable ratios.
2471 */
2472static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2473 int classzone_idx)
2474{
2475 unsigned long present_pages = 0;
2476 int i;
2477
2478 for (i = 0; i <= classzone_idx; i++)
2479 present_pages += pgdat->node_zones[i].present_pages;
2480
4746efde
SL
2481 /* A special case here: if zone has no page, we think it's balanced */
2482 return balanced_pages >= (present_pages >> 2);
1741c877
MG
2483}
2484
f50de2d3 2485/* is kswapd sleeping prematurely? */
dc83edd9
MG
2486static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2487 int classzone_idx)
f50de2d3 2488{
bb3ab596 2489 int i;
1741c877
MG
2490 unsigned long balanced = 0;
2491 bool all_zones_ok = true;
f50de2d3
MG
2492
2493 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2494 if (remaining)
dc83edd9 2495 return true;
f50de2d3 2496
0abdee2b 2497 /* Check the watermark levels */
08951e54 2498 for (i = 0; i <= classzone_idx; i++) {
bb3ab596
KM
2499 struct zone *zone = pgdat->node_zones + i;
2500
2501 if (!populated_zone(zone))
2502 continue;
2503
355b09c4
MG
2504 /*
2505 * balance_pgdat() skips over all_unreclaimable after
2506 * DEF_PRIORITY. Effectively, it considers them balanced so
2507 * they must be considered balanced here as well if kswapd
2508 * is to sleep
2509 */
2510 if (zone->all_unreclaimable) {
2511 balanced += zone->present_pages;
de3fab39 2512 continue;
355b09c4 2513 }
de3fab39 2514
88f5acf8 2515 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
da175d06 2516 i, 0))
1741c877
MG
2517 all_zones_ok = false;
2518 else
2519 balanced += zone->present_pages;
bb3ab596 2520 }
f50de2d3 2521
1741c877
MG
2522 /*
2523 * For high-order requests, the balanced zones must contain at least
2524 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2525 * must be balanced
2526 */
2527 if (order)
afc7e326 2528 return !pgdat_balanced(pgdat, balanced, classzone_idx);
1741c877
MG
2529 else
2530 return !all_zones_ok;
f50de2d3
MG
2531}
2532
1da177e4
LT
2533/*
2534 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2535 * they are all at high_wmark_pages(zone).
1da177e4 2536 *
0abdee2b 2537 * Returns the final order kswapd was reclaiming at
1da177e4
LT
2538 *
2539 * There is special handling here for zones which are full of pinned pages.
2540 * This can happen if the pages are all mlocked, or if they are all used by
2541 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2542 * What we do is to detect the case where all pages in the zone have been
2543 * scanned twice and there has been zero successful reclaim. Mark the zone as
2544 * dead and from now on, only perform a short scan. Basically we're polling
2545 * the zone for when the problem goes away.
2546 *
2547 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
2548 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2549 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2550 * lower zones regardless of the number of free pages in the lower zones. This
2551 * interoperates with the page allocator fallback scheme to ensure that aging
2552 * of pages is balanced across the zones.
1da177e4 2553 */
99504748 2554static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 2555 int *classzone_idx)
1da177e4 2556{
1da177e4 2557 int all_zones_ok;
1741c877 2558 unsigned long balanced;
1da177e4
LT
2559 int priority;
2560 int i;
99504748 2561 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
69e05944 2562 unsigned long total_scanned;
1da177e4 2563 struct reclaim_state *reclaim_state = current->reclaim_state;
0ae5e89c
YH
2564 unsigned long nr_soft_reclaimed;
2565 unsigned long nr_soft_scanned;
179e9639
AM
2566 struct scan_control sc = {
2567 .gfp_mask = GFP_KERNEL,
a6dc60f8 2568 .may_unmap = 1,
2e2e4259 2569 .may_swap = 1,
22fba335
KM
2570 /*
2571 * kswapd doesn't want to be bailed out while reclaim. because
2572 * we want to put equal scanning pressure on each zone.
2573 */
2574 .nr_to_reclaim = ULONG_MAX,
5ad333eb 2575 .order = order,
f16015fb 2576 .target_mem_cgroup = NULL,
179e9639 2577 };
a09ed5e0
YH
2578 struct shrink_control shrink = {
2579 .gfp_mask = sc.gfp_mask,
2580 };
1da177e4
LT
2581loop_again:
2582 total_scanned = 0;
a79311c1 2583 sc.nr_reclaimed = 0;
c0bbbc73 2584 sc.may_writepage = !laptop_mode;
f8891e5e 2585 count_vm_event(PAGEOUTRUN);
1da177e4 2586
1da177e4 2587 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1da177e4 2588 unsigned long lru_pages = 0;
bb3ab596 2589 int has_under_min_watermark_zone = 0;
1da177e4
LT
2590
2591 all_zones_ok = 1;
1741c877 2592 balanced = 0;
1da177e4 2593
d6277db4
RW
2594 /*
2595 * Scan in the highmem->dma direction for the highest
2596 * zone which needs scanning
2597 */
2598 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2599 struct zone *zone = pgdat->node_zones + i;
1da177e4 2600
d6277db4
RW
2601 if (!populated_zone(zone))
2602 continue;
1da177e4 2603
93e4a89a 2604 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
d6277db4 2605 continue;
1da177e4 2606
556adecb
RR
2607 /*
2608 * Do some background aging of the anon list, to give
2609 * pages a chance to be referenced before reclaiming.
2610 */
f16015fb 2611 age_active_anon(zone, &sc, priority);
556adecb 2612
cc715d99
MG
2613 /*
2614 * If the number of buffer_heads in the machine
2615 * exceeds the maximum allowed level and this node
2616 * has a highmem zone, force kswapd to reclaim from
2617 * it to relieve lowmem pressure.
2618 */
2619 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2620 end_zone = i;
2621 break;
2622 }
2623
88f5acf8 2624 if (!zone_watermark_ok_safe(zone, order,
41858966 2625 high_wmark_pages(zone), 0, 0)) {
d6277db4 2626 end_zone = i;
e1dbeda6 2627 break;
439423f6
SL
2628 } else {
2629 /* If balanced, clear the congested flag */
2630 zone_clear_flag(zone, ZONE_CONGESTED);
1da177e4 2631 }
1da177e4 2632 }
e1dbeda6
AM
2633 if (i < 0)
2634 goto out;
2635
1da177e4
LT
2636 for (i = 0; i <= end_zone; i++) {
2637 struct zone *zone = pgdat->node_zones + i;
2638
adea02a1 2639 lru_pages += zone_reclaimable_pages(zone);
1da177e4
LT
2640 }
2641
2642 /*
2643 * Now scan the zone in the dma->highmem direction, stopping
2644 * at the last zone which needs scanning.
2645 *
2646 * We do this because the page allocator works in the opposite
2647 * direction. This prevents the page allocator from allocating
2648 * pages behind kswapd's direction of progress, which would
2649 * cause too much scanning of the lower zones.
2650 */
2651 for (i = 0; i <= end_zone; i++) {
2652 struct zone *zone = pgdat->node_zones + i;
fe2c2a10 2653 int nr_slab, testorder;
8afdcece 2654 unsigned long balance_gap;
1da177e4 2655
f3fe6512 2656 if (!populated_zone(zone))
1da177e4
LT
2657 continue;
2658
93e4a89a 2659 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1da177e4
LT
2660 continue;
2661
1da177e4 2662 sc.nr_scanned = 0;
4e416953 2663
0ae5e89c 2664 nr_soft_scanned = 0;
4e416953
BS
2665 /*
2666 * Call soft limit reclaim before calling shrink_zone.
4e416953 2667 */
0ae5e89c
YH
2668 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2669 order, sc.gfp_mask,
2670 &nr_soft_scanned);
2671 sc.nr_reclaimed += nr_soft_reclaimed;
2672 total_scanned += nr_soft_scanned;
00918b6a 2673
32a4330d 2674 /*
8afdcece
MG
2675 * We put equal pressure on every zone, unless
2676 * one zone has way too many pages free
2677 * already. The "too many pages" is defined
2678 * as the high wmark plus a "gap" where the
2679 * gap is either the low watermark or 1%
2680 * of the zone, whichever is smaller.
32a4330d 2681 */
8afdcece
MG
2682 balance_gap = min(low_wmark_pages(zone),
2683 (zone->present_pages +
2684 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2685 KSWAPD_ZONE_BALANCE_GAP_RATIO);
fe2c2a10
RR
2686 /*
2687 * Kswapd reclaims only single pages with compaction
2688 * enabled. Trying too hard to reclaim until contiguous
2689 * free pages have become available can hurt performance
2690 * by evicting too much useful data from memory.
2691 * Do not reclaim more than needed for compaction.
2692 */
2693 testorder = order;
2694 if (COMPACTION_BUILD && order &&
2695 compaction_suitable(zone, order) !=
2696 COMPACT_SKIPPED)
2697 testorder = 0;
2698
cc715d99 2699 if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
643ac9fc 2700 !zone_watermark_ok_safe(zone, testorder,
8afdcece 2701 high_wmark_pages(zone) + balance_gap,
d7868dae 2702 end_zone, 0)) {
a79311c1 2703 shrink_zone(priority, zone, &sc);
5a03b051 2704
d7868dae
MG
2705 reclaim_state->reclaimed_slab = 0;
2706 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2707 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2708 total_scanned += sc.nr_scanned;
2709
2710 if (nr_slab == 0 && !zone_reclaimable(zone))
2711 zone->all_unreclaimable = 1;
2712 }
2713
1da177e4
LT
2714 /*
2715 * If we've done a decent amount of scanning and
2716 * the reclaim ratio is low, start doing writepage
2717 * even in laptop mode
2718 */
2719 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
a79311c1 2720 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1da177e4 2721 sc.may_writepage = 1;
bb3ab596 2722
215ddd66
MG
2723 if (zone->all_unreclaimable) {
2724 if (end_zone && end_zone == i)
2725 end_zone--;
d7868dae 2726 continue;
215ddd66 2727 }
d7868dae 2728
fe2c2a10 2729 if (!zone_watermark_ok_safe(zone, testorder,
45973d74
MK
2730 high_wmark_pages(zone), end_zone, 0)) {
2731 all_zones_ok = 0;
2732 /*
2733 * We are still under min water mark. This
2734 * means that we have a GFP_ATOMIC allocation
2735 * failure risk. Hurry up!
2736 */
88f5acf8 2737 if (!zone_watermark_ok_safe(zone, order,
45973d74
MK
2738 min_wmark_pages(zone), end_zone, 0))
2739 has_under_min_watermark_zone = 1;
0e093d99
MG
2740 } else {
2741 /*
2742 * If a zone reaches its high watermark,
2743 * consider it to be no longer congested. It's
2744 * possible there are dirty pages backed by
2745 * congested BDIs but as pressure is relieved,
2746 * spectulatively avoid congestion waits
2747 */
2748 zone_clear_flag(zone, ZONE_CONGESTED);
dc83edd9 2749 if (i <= *classzone_idx)
1741c877 2750 balanced += zone->present_pages;
45973d74 2751 }
bb3ab596 2752
1da177e4 2753 }
dc83edd9 2754 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
1da177e4
LT
2755 break; /* kswapd: all done */
2756 /*
2757 * OK, kswapd is getting into trouble. Take a nap, then take
2758 * another pass across the zones.
2759 */
bb3ab596
KM
2760 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2761 if (has_under_min_watermark_zone)
2762 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2763 else
2764 congestion_wait(BLK_RW_ASYNC, HZ/10);
2765 }
1da177e4
LT
2766
2767 /*
2768 * We do this so kswapd doesn't build up large priorities for
2769 * example when it is freeing in parallel with allocators. It
2770 * matches the direct reclaim path behaviour in terms of impact
2771 * on zone->*_priority.
2772 */
a79311c1 2773 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4
LT
2774 break;
2775 }
2776out:
99504748
MG
2777
2778 /*
2779 * order-0: All zones must meet high watermark for a balanced node
1741c877
MG
2780 * high-order: Balanced zones must make up at least 25% of the node
2781 * for the node to be balanced
99504748 2782 */
dc83edd9 2783 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
1da177e4 2784 cond_resched();
8357376d
RW
2785
2786 try_to_freeze();
2787
73ce02e9
KM
2788 /*
2789 * Fragmentation may mean that the system cannot be
2790 * rebalanced for high-order allocations in all zones.
2791 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2792 * it means the zones have been fully scanned and are still
2793 * not balanced. For high-order allocations, there is
2794 * little point trying all over again as kswapd may
2795 * infinite loop.
2796 *
2797 * Instead, recheck all watermarks at order-0 as they
2798 * are the most important. If watermarks are ok, kswapd will go
2799 * back to sleep. High-order users can still perform direct
2800 * reclaim if they wish.
2801 */
2802 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2803 order = sc.order = 0;
2804
1da177e4
LT
2805 goto loop_again;
2806 }
2807
99504748
MG
2808 /*
2809 * If kswapd was reclaiming at a higher order, it has the option of
2810 * sleeping without all zones being balanced. Before it does, it must
2811 * ensure that the watermarks for order-0 on *all* zones are met and
2812 * that the congestion flags are cleared. The congestion flag must
2813 * be cleared as kswapd is the only mechanism that clears the flag
2814 * and it is potentially going to sleep here.
2815 */
2816 if (order) {
7be62de9
RR
2817 int zones_need_compaction = 1;
2818
99504748
MG
2819 for (i = 0; i <= end_zone; i++) {
2820 struct zone *zone = pgdat->node_zones + i;
2821
2822 if (!populated_zone(zone))
2823 continue;
2824
2825 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2826 continue;
2827
fe2c2a10 2828 /* Would compaction fail due to lack of free memory? */
496b919b
RR
2829 if (COMPACTION_BUILD &&
2830 compaction_suitable(zone, order) == COMPACT_SKIPPED)
fe2c2a10
RR
2831 goto loop_again;
2832
99504748
MG
2833 /* Confirm the zone is balanced for order-0 */
2834 if (!zone_watermark_ok(zone, 0,
2835 high_wmark_pages(zone), 0, 0)) {
2836 order = sc.order = 0;
2837 goto loop_again;
2838 }
2839
7be62de9
RR
2840 /* Check if the memory needs to be defragmented. */
2841 if (zone_watermark_ok(zone, order,
2842 low_wmark_pages(zone), *classzone_idx, 0))
2843 zones_need_compaction = 0;
2844
99504748
MG
2845 /* If balanced, clear the congested flag */
2846 zone_clear_flag(zone, ZONE_CONGESTED);
2847 }
7be62de9
RR
2848
2849 if (zones_need_compaction)
2850 compact_pgdat(pgdat, order);
99504748
MG
2851 }
2852
0abdee2b
MG
2853 /*
2854 * Return the order we were reclaiming at so sleeping_prematurely()
2855 * makes a decision on the order we were last reclaiming at. However,
2856 * if another caller entered the allocator slow path while kswapd
2857 * was awake, order will remain at the higher level
2858 */
dc83edd9 2859 *classzone_idx = end_zone;
0abdee2b 2860 return order;
1da177e4
LT
2861}
2862
dc83edd9 2863static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
2864{
2865 long remaining = 0;
2866 DEFINE_WAIT(wait);
2867
2868 if (freezing(current) || kthread_should_stop())
2869 return;
2870
2871 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2872
2873 /* Try to sleep for a short interval */
dc83edd9 2874 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2875 remaining = schedule_timeout(HZ/10);
2876 finish_wait(&pgdat->kswapd_wait, &wait);
2877 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2878 }
2879
2880 /*
2881 * After a short sleep, check if it was a premature sleep. If not, then
2882 * go fully to sleep until explicitly woken up.
2883 */
dc83edd9 2884 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2885 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2886
2887 /*
2888 * vmstat counters are not perfectly accurate and the estimated
2889 * value for counters such as NR_FREE_PAGES can deviate from the
2890 * true value by nr_online_cpus * threshold. To avoid the zone
2891 * watermarks being breached while under pressure, we reduce the
2892 * per-cpu vmstat threshold while kswapd is awake and restore
2893 * them before going back to sleep.
2894 */
2895 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2896 schedule();
2897 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2898 } else {
2899 if (remaining)
2900 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2901 else
2902 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2903 }
2904 finish_wait(&pgdat->kswapd_wait, &wait);
2905}
2906
1da177e4
LT
2907/*
2908 * The background pageout daemon, started as a kernel thread
4f98a2fe 2909 * from the init process.
1da177e4
LT
2910 *
2911 * This basically trickles out pages so that we have _some_
2912 * free memory available even if there is no other activity
2913 * that frees anything up. This is needed for things like routing
2914 * etc, where we otherwise might have all activity going on in
2915 * asynchronous contexts that cannot page things out.
2916 *
2917 * If there are applications that are active memory-allocators
2918 * (most normal use), this basically shouldn't matter.
2919 */
2920static int kswapd(void *p)
2921{
215ddd66 2922 unsigned long order, new_order;
d2ebd0f6 2923 unsigned balanced_order;
215ddd66 2924 int classzone_idx, new_classzone_idx;
d2ebd0f6 2925 int balanced_classzone_idx;
1da177e4
LT
2926 pg_data_t *pgdat = (pg_data_t*)p;
2927 struct task_struct *tsk = current;
f0bc0a60 2928
1da177e4
LT
2929 struct reclaim_state reclaim_state = {
2930 .reclaimed_slab = 0,
2931 };
a70f7302 2932 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 2933
cf40bd16
NP
2934 lockdep_set_current_reclaim_state(GFP_KERNEL);
2935
174596a0 2936 if (!cpumask_empty(cpumask))
c5f59f08 2937 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
2938 current->reclaim_state = &reclaim_state;
2939
2940 /*
2941 * Tell the memory management that we're a "memory allocator",
2942 * and that if we need more memory we should get access to it
2943 * regardless (see "__alloc_pages()"). "kswapd" should
2944 * never get caught in the normal page freeing logic.
2945 *
2946 * (Kswapd normally doesn't need memory anyway, but sometimes
2947 * you need a small amount of memory in order to be able to
2948 * page out something else, and this flag essentially protects
2949 * us from recursively trying to free more memory as we're
2950 * trying to free the first piece of memory in the first place).
2951 */
930d9152 2952 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 2953 set_freezable();
1da177e4 2954
215ddd66 2955 order = new_order = 0;
d2ebd0f6 2956 balanced_order = 0;
215ddd66 2957 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 2958 balanced_classzone_idx = classzone_idx;
1da177e4 2959 for ( ; ; ) {
8fe23e05 2960 int ret;
3e1d1d28 2961
215ddd66
MG
2962 /*
2963 * If the last balance_pgdat was unsuccessful it's unlikely a
2964 * new request of a similar or harder type will succeed soon
2965 * so consider going to sleep on the basis we reclaimed at
2966 */
d2ebd0f6
AS
2967 if (balanced_classzone_idx >= new_classzone_idx &&
2968 balanced_order == new_order) {
215ddd66
MG
2969 new_order = pgdat->kswapd_max_order;
2970 new_classzone_idx = pgdat->classzone_idx;
2971 pgdat->kswapd_max_order = 0;
2972 pgdat->classzone_idx = pgdat->nr_zones - 1;
2973 }
2974
99504748 2975 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
2976 /*
2977 * Don't sleep if someone wants a larger 'order'
99504748 2978 * allocation or has tigher zone constraints
1da177e4
LT
2979 */
2980 order = new_order;
99504748 2981 classzone_idx = new_classzone_idx;
1da177e4 2982 } else {
d2ebd0f6
AS
2983 kswapd_try_to_sleep(pgdat, balanced_order,
2984 balanced_classzone_idx);
1da177e4 2985 order = pgdat->kswapd_max_order;
99504748 2986 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
2987 new_order = order;
2988 new_classzone_idx = classzone_idx;
4d40502e 2989 pgdat->kswapd_max_order = 0;
215ddd66 2990 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 2991 }
1da177e4 2992
8fe23e05
DR
2993 ret = try_to_freeze();
2994 if (kthread_should_stop())
2995 break;
2996
2997 /*
2998 * We can speed up thawing tasks if we don't call balance_pgdat
2999 * after returning from the refrigerator
3000 */
33906bc5
MG
3001 if (!ret) {
3002 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
3003 balanced_classzone_idx = classzone_idx;
3004 balanced_order = balance_pgdat(pgdat, order,
3005 &balanced_classzone_idx);
33906bc5 3006 }
1da177e4
LT
3007 }
3008 return 0;
3009}
3010
3011/*
3012 * A zone is low on free memory, so wake its kswapd task to service it.
3013 */
99504748 3014void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3015{
3016 pg_data_t *pgdat;
3017
f3fe6512 3018 if (!populated_zone(zone))
1da177e4
LT
3019 return;
3020
88f5acf8 3021 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 3022 return;
88f5acf8 3023 pgdat = zone->zone_pgdat;
99504748 3024 if (pgdat->kswapd_max_order < order) {
1da177e4 3025 pgdat->kswapd_max_order = order;
99504748
MG
3026 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3027 }
8d0986e2 3028 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3029 return;
88f5acf8
MG
3030 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3031 return;
3032
3033 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3034 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3035}
3036
adea02a1
WF
3037/*
3038 * The reclaimable count would be mostly accurate.
3039 * The less reclaimable pages may be
3040 * - mlocked pages, which will be moved to unevictable list when encountered
3041 * - mapped pages, which may require several travels to be reclaimed
3042 * - dirty pages, which is not "instantly" reclaimable
3043 */
3044unsigned long global_reclaimable_pages(void)
4f98a2fe 3045{
adea02a1
WF
3046 int nr;
3047
3048 nr = global_page_state(NR_ACTIVE_FILE) +
3049 global_page_state(NR_INACTIVE_FILE);
3050
3051 if (nr_swap_pages > 0)
3052 nr += global_page_state(NR_ACTIVE_ANON) +
3053 global_page_state(NR_INACTIVE_ANON);
3054
3055 return nr;
3056}
3057
3058unsigned long zone_reclaimable_pages(struct zone *zone)
3059{
3060 int nr;
3061
3062 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3063 zone_page_state(zone, NR_INACTIVE_FILE);
3064
3065 if (nr_swap_pages > 0)
3066 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3067 zone_page_state(zone, NR_INACTIVE_ANON);
3068
3069 return nr;
4f98a2fe
RR
3070}
3071
c6f37f12 3072#ifdef CONFIG_HIBERNATION
1da177e4 3073/*
7b51755c 3074 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3075 * freed pages.
3076 *
3077 * Rather than trying to age LRUs the aim is to preserve the overall
3078 * LRU order by reclaiming preferentially
3079 * inactive > active > active referenced > active mapped
1da177e4 3080 */
7b51755c 3081unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3082{
d6277db4 3083 struct reclaim_state reclaim_state;
d6277db4 3084 struct scan_control sc = {
7b51755c
KM
3085 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3086 .may_swap = 1,
3087 .may_unmap = 1,
d6277db4 3088 .may_writepage = 1,
7b51755c
KM
3089 .nr_to_reclaim = nr_to_reclaim,
3090 .hibernation_mode = 1,
7b51755c 3091 .order = 0,
1da177e4 3092 };
a09ed5e0
YH
3093 struct shrink_control shrink = {
3094 .gfp_mask = sc.gfp_mask,
3095 };
3096 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3097 struct task_struct *p = current;
3098 unsigned long nr_reclaimed;
1da177e4 3099
7b51755c
KM
3100 p->flags |= PF_MEMALLOC;
3101 lockdep_set_current_reclaim_state(sc.gfp_mask);
3102 reclaim_state.reclaimed_slab = 0;
3103 p->reclaim_state = &reclaim_state;
d6277db4 3104
a09ed5e0 3105 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
d979677c 3106
7b51755c
KM
3107 p->reclaim_state = NULL;
3108 lockdep_clear_current_reclaim_state();
3109 p->flags &= ~PF_MEMALLOC;
d6277db4 3110
7b51755c 3111 return nr_reclaimed;
1da177e4 3112}
c6f37f12 3113#endif /* CONFIG_HIBERNATION */
1da177e4 3114
1da177e4
LT
3115/* It's optimal to keep kswapds on the same CPUs as their memory, but
3116 not required for correctness. So if the last cpu in a node goes
3117 away, we get changed to run anywhere: as the first one comes back,
3118 restore their cpu bindings. */
9c7b216d 3119static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 3120 unsigned long action, void *hcpu)
1da177e4 3121{
58c0a4a7 3122 int nid;
1da177e4 3123
8bb78442 3124 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 3125 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08 3126 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3127 const struct cpumask *mask;
3128
3129 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3130
3e597945 3131 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3132 /* One of our CPUs online: restore mask */
c5f59f08 3133 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3134 }
3135 }
3136 return NOTIFY_OK;
3137}
1da177e4 3138
3218ae14
YG
3139/*
3140 * This kswapd start function will be called by init and node-hot-add.
3141 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3142 */
3143int kswapd_run(int nid)
3144{
3145 pg_data_t *pgdat = NODE_DATA(nid);
3146 int ret = 0;
3147
3148 if (pgdat->kswapd)
3149 return 0;
3150
3151 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3152 if (IS_ERR(pgdat->kswapd)) {
3153 /* failure at boot is fatal */
3154 BUG_ON(system_state == SYSTEM_BOOTING);
3155 printk("Failed to start kswapd on node %d\n",nid);
3156 ret = -1;
3157 }
3158 return ret;
3159}
3160
8fe23e05
DR
3161/*
3162 * Called by memory hotplug when all memory in a node is offlined.
3163 */
3164void kswapd_stop(int nid)
3165{
3166 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3167
3168 if (kswapd)
3169 kthread_stop(kswapd);
3170}
3171
1da177e4
LT
3172static int __init kswapd_init(void)
3173{
3218ae14 3174 int nid;
69e05944 3175
1da177e4 3176 swap_setup();
9422ffba 3177 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 3178 kswapd_run(nid);
1da177e4
LT
3179 hotcpu_notifier(cpu_callback, 0);
3180 return 0;
3181}
3182
3183module_init(kswapd_init)
9eeff239
CL
3184
3185#ifdef CONFIG_NUMA
3186/*
3187 * Zone reclaim mode
3188 *
3189 * If non-zero call zone_reclaim when the number of free pages falls below
3190 * the watermarks.
9eeff239
CL
3191 */
3192int zone_reclaim_mode __read_mostly;
3193
1b2ffb78 3194#define RECLAIM_OFF 0
7d03431c 3195#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3196#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3197#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3198
a92f7126
CL
3199/*
3200 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3201 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3202 * a zone.
3203 */
3204#define ZONE_RECLAIM_PRIORITY 4
3205
9614634f
CL
3206/*
3207 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3208 * occur.
3209 */
3210int sysctl_min_unmapped_ratio = 1;
3211
0ff38490
CL
3212/*
3213 * If the number of slab pages in a zone grows beyond this percentage then
3214 * slab reclaim needs to occur.
3215 */
3216int sysctl_min_slab_ratio = 5;
3217
90afa5de
MG
3218static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3219{
3220 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3221 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3222 zone_page_state(zone, NR_ACTIVE_FILE);
3223
3224 /*
3225 * It's possible for there to be more file mapped pages than
3226 * accounted for by the pages on the file LRU lists because
3227 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3228 */
3229 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3230}
3231
3232/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3233static long zone_pagecache_reclaimable(struct zone *zone)
3234{
3235 long nr_pagecache_reclaimable;
3236 long delta = 0;
3237
3238 /*
3239 * If RECLAIM_SWAP is set, then all file pages are considered
3240 * potentially reclaimable. Otherwise, we have to worry about
3241 * pages like swapcache and zone_unmapped_file_pages() provides
3242 * a better estimate
3243 */
3244 if (zone_reclaim_mode & RECLAIM_SWAP)
3245 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3246 else
3247 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3248
3249 /* If we can't clean pages, remove dirty pages from consideration */
3250 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3251 delta += zone_page_state(zone, NR_FILE_DIRTY);
3252
3253 /* Watch for any possible underflows due to delta */
3254 if (unlikely(delta > nr_pagecache_reclaimable))
3255 delta = nr_pagecache_reclaimable;
3256
3257 return nr_pagecache_reclaimable - delta;
3258}
3259
9eeff239
CL
3260/*
3261 * Try to free up some pages from this zone through reclaim.
3262 */
179e9639 3263static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3264{
7fb2d46d 3265 /* Minimum pages needed in order to stay on node */
69e05944 3266 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3267 struct task_struct *p = current;
3268 struct reclaim_state reclaim_state;
8695949a 3269 int priority;
179e9639
AM
3270 struct scan_control sc = {
3271 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 3272 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 3273 .may_swap = 1,
22fba335
KM
3274 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3275 SWAP_CLUSTER_MAX),
179e9639 3276 .gfp_mask = gfp_mask,
bd2f6199 3277 .order = order,
179e9639 3278 };
a09ed5e0
YH
3279 struct shrink_control shrink = {
3280 .gfp_mask = sc.gfp_mask,
3281 };
15748048 3282 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3283
9eeff239 3284 cond_resched();
d4f7796e
CL
3285 /*
3286 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3287 * and we also need to be able to write out pages for RECLAIM_WRITE
3288 * and RECLAIM_SWAP.
3289 */
3290 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3291 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3292 reclaim_state.reclaimed_slab = 0;
3293 p->reclaim_state = &reclaim_state;
c84db23c 3294
90afa5de 3295 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3296 /*
3297 * Free memory by calling shrink zone with increasing
3298 * priorities until we have enough memory freed.
3299 */
3300 priority = ZONE_RECLAIM_PRIORITY;
3301 do {
a79311c1 3302 shrink_zone(priority, zone, &sc);
0ff38490 3303 priority--;
a79311c1 3304 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
0ff38490 3305 }
c84db23c 3306
15748048
KM
3307 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3308 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3309 /*
7fb2d46d 3310 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3311 * many pages were freed in this zone. So we take the current
3312 * number of slab pages and shake the slab until it is reduced
3313 * by the same nr_pages that we used for reclaiming unmapped
3314 * pages.
2a16e3f4 3315 *
0ff38490
CL
3316 * Note that shrink_slab will free memory on all zones and may
3317 * take a long time.
2a16e3f4 3318 */
4dc4b3d9
KM
3319 for (;;) {
3320 unsigned long lru_pages = zone_reclaimable_pages(zone);
3321
3322 /* No reclaimable slab or very low memory pressure */
1495f230 3323 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3324 break;
3325
3326 /* Freed enough memory */
3327 nr_slab_pages1 = zone_page_state(zone,
3328 NR_SLAB_RECLAIMABLE);
3329 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3330 break;
3331 }
83e33a47
CL
3332
3333 /*
3334 * Update nr_reclaimed by the number of slab pages we
3335 * reclaimed from this zone.
3336 */
15748048
KM
3337 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3338 if (nr_slab_pages1 < nr_slab_pages0)
3339 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3340 }
3341
9eeff239 3342 p->reclaim_state = NULL;
d4f7796e 3343 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3344 lockdep_clear_current_reclaim_state();
a79311c1 3345 return sc.nr_reclaimed >= nr_pages;
9eeff239 3346}
179e9639
AM
3347
3348int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3349{
179e9639 3350 int node_id;
d773ed6b 3351 int ret;
179e9639
AM
3352
3353 /*
0ff38490
CL
3354 * Zone reclaim reclaims unmapped file backed pages and
3355 * slab pages if we are over the defined limits.
34aa1330 3356 *
9614634f
CL
3357 * A small portion of unmapped file backed pages is needed for
3358 * file I/O otherwise pages read by file I/O will be immediately
3359 * thrown out if the zone is overallocated. So we do not reclaim
3360 * if less than a specified percentage of the zone is used by
3361 * unmapped file backed pages.
179e9639 3362 */
90afa5de
MG
3363 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3364 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3365 return ZONE_RECLAIM_FULL;
179e9639 3366
93e4a89a 3367 if (zone->all_unreclaimable)
fa5e084e 3368 return ZONE_RECLAIM_FULL;
d773ed6b 3369
179e9639 3370 /*
d773ed6b 3371 * Do not scan if the allocation should not be delayed.
179e9639 3372 */
d773ed6b 3373 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3374 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3375
3376 /*
3377 * Only run zone reclaim on the local zone or on zones that do not
3378 * have associated processors. This will favor the local processor
3379 * over remote processors and spread off node memory allocations
3380 * as wide as possible.
3381 */
89fa3024 3382 node_id = zone_to_nid(zone);
37c0708d 3383 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3384 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
3385
3386 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
3387 return ZONE_RECLAIM_NOSCAN;
3388
d773ed6b
DR
3389 ret = __zone_reclaim(zone, gfp_mask, order);
3390 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3391
24cf7251
MG
3392 if (!ret)
3393 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3394
d773ed6b 3395 return ret;
179e9639 3396}
9eeff239 3397#endif
894bc310 3398
894bc310
LS
3399/*
3400 * page_evictable - test whether a page is evictable
3401 * @page: the page to test
3402 * @vma: the VMA in which the page is or will be mapped, may be NULL
3403 *
3404 * Test whether page is evictable--i.e., should be placed on active/inactive
b291f000
NP
3405 * lists vs unevictable list. The vma argument is !NULL when called from the
3406 * fault path to determine how to instantate a new page.
894bc310
LS
3407 *
3408 * Reasons page might not be evictable:
ba9ddf49 3409 * (1) page's mapping marked unevictable
b291f000 3410 * (2) page is part of an mlocked VMA
ba9ddf49 3411 *
894bc310
LS
3412 */
3413int page_evictable(struct page *page, struct vm_area_struct *vma)
3414{
3415
ba9ddf49
LS
3416 if (mapping_unevictable(page_mapping(page)))
3417 return 0;
3418
b291f000
NP
3419 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3420 return 0;
894bc310
LS
3421
3422 return 1;
3423}
89e004ea 3424
85046579 3425#ifdef CONFIG_SHMEM
89e004ea 3426/**
24513264
HD
3427 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3428 * @pages: array of pages to check
3429 * @nr_pages: number of pages to check
89e004ea 3430 *
24513264 3431 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3432 *
3433 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3434 */
24513264 3435void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3436{
925b7673 3437 struct lruvec *lruvec;
24513264
HD
3438 struct zone *zone = NULL;
3439 int pgscanned = 0;
3440 int pgrescued = 0;
3441 int i;
89e004ea 3442
24513264
HD
3443 for (i = 0; i < nr_pages; i++) {
3444 struct page *page = pages[i];
3445 struct zone *pagezone;
89e004ea 3446
24513264
HD
3447 pgscanned++;
3448 pagezone = page_zone(page);
3449 if (pagezone != zone) {
3450 if (zone)
3451 spin_unlock_irq(&zone->lru_lock);
3452 zone = pagezone;
3453 spin_lock_irq(&zone->lru_lock);
3454 }
89e004ea 3455
24513264
HD
3456 if (!PageLRU(page) || !PageUnevictable(page))
3457 continue;
89e004ea 3458
24513264
HD
3459 if (page_evictable(page, NULL)) {
3460 enum lru_list lru = page_lru_base_type(page);
3461
3462 VM_BUG_ON(PageActive(page));
3463 ClearPageUnevictable(page);
3464 __dec_zone_state(zone, NR_UNEVICTABLE);
3465 lruvec = mem_cgroup_lru_move_lists(zone, page,
3466 LRU_UNEVICTABLE, lru);
3467 list_move(&page->lru, &lruvec->lists[lru]);
3468 __inc_zone_state(zone, NR_INACTIVE_ANON + lru);
3469 pgrescued++;
89e004ea 3470 }
24513264 3471 }
89e004ea 3472
24513264
HD
3473 if (zone) {
3474 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3475 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3476 spin_unlock_irq(&zone->lru_lock);
89e004ea 3477 }
89e004ea 3478}
85046579 3479#endif /* CONFIG_SHMEM */
af936a16 3480
264e56d8 3481static void warn_scan_unevictable_pages(void)
af936a16 3482{
264e56d8 3483 printk_once(KERN_WARNING
25bd91bd 3484 "%s: The scan_unevictable_pages sysctl/node-interface has been "
264e56d8 3485 "disabled for lack of a legitimate use case. If you have "
25bd91bd
KM
3486 "one, please send an email to linux-mm@kvack.org.\n",
3487 current->comm);
af936a16
LS
3488}
3489
3490/*
3491 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3492 * all nodes' unevictable lists for evictable pages
3493 */
3494unsigned long scan_unevictable_pages;
3495
3496int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 3497 void __user *buffer,
af936a16
LS
3498 size_t *length, loff_t *ppos)
3499{
264e56d8 3500 warn_scan_unevictable_pages();
8d65af78 3501 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
3502 scan_unevictable_pages = 0;
3503 return 0;
3504}
3505
e4455abb 3506#ifdef CONFIG_NUMA
af936a16
LS
3507/*
3508 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3509 * a specified node's per zone unevictable lists for evictable pages.
3510 */
3511
10fbcf4c
KS
3512static ssize_t read_scan_unevictable_node(struct device *dev,
3513 struct device_attribute *attr,
af936a16
LS
3514 char *buf)
3515{
264e56d8 3516 warn_scan_unevictable_pages();
af936a16
LS
3517 return sprintf(buf, "0\n"); /* always zero; should fit... */
3518}
3519
10fbcf4c
KS
3520static ssize_t write_scan_unevictable_node(struct device *dev,
3521 struct device_attribute *attr,
af936a16
LS
3522 const char *buf, size_t count)
3523{
264e56d8 3524 warn_scan_unevictable_pages();
af936a16
LS
3525 return 1;
3526}
3527
3528
10fbcf4c 3529static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
af936a16
LS
3530 read_scan_unevictable_node,
3531 write_scan_unevictable_node);
3532
3533int scan_unevictable_register_node(struct node *node)
3534{
10fbcf4c 3535 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16
LS
3536}
3537
3538void scan_unevictable_unregister_node(struct node *node)
3539{
10fbcf4c 3540 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16 3541}
e4455abb 3542#endif