mm/memory.c: don't forget to set softdirty on file mapped fault
[linux-2.6-block.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
b1de0d13
MH
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
1da177e4
LT
16#include <linux/mm.h>
17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
29#include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31#include <linux/mm_inline.h>
1da177e4
LT
32#include <linux/backing-dev.h>
33#include <linux/rmap.h>
34#include <linux/topology.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
3e7d3449 37#include <linux/compaction.h>
1da177e4
LT
38#include <linux/notifier.h>
39#include <linux/rwsem.h>
248a0301 40#include <linux/delay.h>
3218ae14 41#include <linux/kthread.h>
7dfb7103 42#include <linux/freezer.h>
66e1707b 43#include <linux/memcontrol.h>
873b4771 44#include <linux/delayacct.h>
af936a16 45#include <linux/sysctl.h>
929bea7c 46#include <linux/oom.h>
268bb0ce 47#include <linux/prefetch.h>
b1de0d13 48#include <linux/printk.h>
1da177e4
LT
49
50#include <asm/tlbflush.h>
51#include <asm/div64.h>
52
53#include <linux/swapops.h>
117aad1e 54#include <linux/balloon_compaction.h>
1da177e4 55
0f8053a5
NP
56#include "internal.h"
57
33906bc5
MG
58#define CREATE_TRACE_POINTS
59#include <trace/events/vmscan.h>
60
1da177e4 61struct scan_control {
22fba335
KM
62 /* How many pages shrink_list() should reclaim */
63 unsigned long nr_to_reclaim;
64
1da177e4 65 /* This context's GFP mask */
6daa0e28 66 gfp_t gfp_mask;
1da177e4 67
ee814fe2 68 /* Allocation order */
5ad333eb 69 int order;
66e1707b 70
ee814fe2
JW
71 /*
72 * Nodemask of nodes allowed by the caller. If NULL, all nodes
73 * are scanned.
74 */
75 nodemask_t *nodemask;
9e3b2f8c 76
f16015fb
JW
77 /*
78 * The memory cgroup that hit its limit and as a result is the
79 * primary target of this reclaim invocation.
80 */
81 struct mem_cgroup *target_mem_cgroup;
66e1707b 82
ee814fe2
JW
83 /* Scan (total_size >> priority) pages at once */
84 int priority;
85
86 unsigned int may_writepage:1;
87
88 /* Can mapped pages be reclaimed? */
89 unsigned int may_unmap:1;
90
91 /* Can pages be swapped as part of reclaim? */
92 unsigned int may_swap:1;
93
94 unsigned int hibernation_mode:1;
95
96 /* One of the zones is ready for compaction */
97 unsigned int compaction_ready:1;
98
99 /* Incremented by the number of inactive pages that were scanned */
100 unsigned long nr_scanned;
101
102 /* Number of pages freed so far during a call to shrink_zones() */
103 unsigned long nr_reclaimed;
1da177e4
LT
104};
105
1da177e4
LT
106#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
107
108#ifdef ARCH_HAS_PREFETCH
109#define prefetch_prev_lru_page(_page, _base, _field) \
110 do { \
111 if ((_page)->lru.prev != _base) { \
112 struct page *prev; \
113 \
114 prev = lru_to_page(&(_page->lru)); \
115 prefetch(&prev->_field); \
116 } \
117 } while (0)
118#else
119#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
120#endif
121
122#ifdef ARCH_HAS_PREFETCHW
123#define prefetchw_prev_lru_page(_page, _base, _field) \
124 do { \
125 if ((_page)->lru.prev != _base) { \
126 struct page *prev; \
127 \
128 prev = lru_to_page(&(_page->lru)); \
129 prefetchw(&prev->_field); \
130 } \
131 } while (0)
132#else
133#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
134#endif
135
136/*
137 * From 0 .. 100. Higher means more swappy.
138 */
139int vm_swappiness = 60;
b21e0b90 140unsigned long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
141
142static LIST_HEAD(shrinker_list);
143static DECLARE_RWSEM(shrinker_rwsem);
144
c255a458 145#ifdef CONFIG_MEMCG
89b5fae5
JW
146static bool global_reclaim(struct scan_control *sc)
147{
f16015fb 148 return !sc->target_mem_cgroup;
89b5fae5 149}
91a45470 150#else
89b5fae5
JW
151static bool global_reclaim(struct scan_control *sc)
152{
153 return true;
154}
91a45470
KH
155#endif
156
a1c3bfb2 157static unsigned long zone_reclaimable_pages(struct zone *zone)
6e543d57
LD
158{
159 int nr;
160
161 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
162 zone_page_state(zone, NR_INACTIVE_FILE);
163
164 if (get_nr_swap_pages() > 0)
165 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
166 zone_page_state(zone, NR_INACTIVE_ANON);
167
168 return nr;
169}
170
171bool zone_reclaimable(struct zone *zone)
172{
173 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
174}
175
4d7dcca2 176static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
c9f299d9 177{
c3c787e8 178 if (!mem_cgroup_disabled())
4d7dcca2 179 return mem_cgroup_get_lru_size(lruvec, lru);
a3d8e054 180
074291fe 181 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
c9f299d9
KM
182}
183
1da177e4 184/*
1d3d4437 185 * Add a shrinker callback to be called from the vm.
1da177e4 186 */
1d3d4437 187int register_shrinker(struct shrinker *shrinker)
1da177e4 188{
1d3d4437
GC
189 size_t size = sizeof(*shrinker->nr_deferred);
190
191 /*
192 * If we only have one possible node in the system anyway, save
193 * ourselves the trouble and disable NUMA aware behavior. This way we
194 * will save memory and some small loop time later.
195 */
196 if (nr_node_ids == 1)
197 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
198
199 if (shrinker->flags & SHRINKER_NUMA_AWARE)
200 size *= nr_node_ids;
201
202 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
203 if (!shrinker->nr_deferred)
204 return -ENOMEM;
205
8e1f936b
RR
206 down_write(&shrinker_rwsem);
207 list_add_tail(&shrinker->list, &shrinker_list);
208 up_write(&shrinker_rwsem);
1d3d4437 209 return 0;
1da177e4 210}
8e1f936b 211EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
212
213/*
214 * Remove one
215 */
8e1f936b 216void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
217{
218 down_write(&shrinker_rwsem);
219 list_del(&shrinker->list);
220 up_write(&shrinker_rwsem);
ae393321 221 kfree(shrinker->nr_deferred);
1da177e4 222}
8e1f936b 223EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
224
225#define SHRINK_BATCH 128
1d3d4437
GC
226
227static unsigned long
228shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
229 unsigned long nr_pages_scanned, unsigned long lru_pages)
230{
231 unsigned long freed = 0;
232 unsigned long long delta;
233 long total_scan;
d5bc5fd3 234 long freeable;
1d3d4437
GC
235 long nr;
236 long new_nr;
237 int nid = shrinkctl->nid;
238 long batch_size = shrinker->batch ? shrinker->batch
239 : SHRINK_BATCH;
240
d5bc5fd3
VD
241 freeable = shrinker->count_objects(shrinker, shrinkctl);
242 if (freeable == 0)
1d3d4437
GC
243 return 0;
244
245 /*
246 * copy the current shrinker scan count into a local variable
247 * and zero it so that other concurrent shrinker invocations
248 * don't also do this scanning work.
249 */
250 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
251
252 total_scan = nr;
253 delta = (4 * nr_pages_scanned) / shrinker->seeks;
d5bc5fd3 254 delta *= freeable;
1d3d4437
GC
255 do_div(delta, lru_pages + 1);
256 total_scan += delta;
257 if (total_scan < 0) {
258 printk(KERN_ERR
259 "shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 260 shrinker->scan_objects, total_scan);
d5bc5fd3 261 total_scan = freeable;
1d3d4437
GC
262 }
263
264 /*
265 * We need to avoid excessive windup on filesystem shrinkers
266 * due to large numbers of GFP_NOFS allocations causing the
267 * shrinkers to return -1 all the time. This results in a large
268 * nr being built up so when a shrink that can do some work
269 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 270 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
271 * memory.
272 *
273 * Hence only allow the shrinker to scan the entire cache when
274 * a large delta change is calculated directly.
275 */
d5bc5fd3
VD
276 if (delta < freeable / 4)
277 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
278
279 /*
280 * Avoid risking looping forever due to too large nr value:
281 * never try to free more than twice the estimate number of
282 * freeable entries.
283 */
d5bc5fd3
VD
284 if (total_scan > freeable * 2)
285 total_scan = freeable * 2;
1d3d4437
GC
286
287 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
288 nr_pages_scanned, lru_pages,
d5bc5fd3 289 freeable, delta, total_scan);
1d3d4437 290
0b1fb40a
VD
291 /*
292 * Normally, we should not scan less than batch_size objects in one
293 * pass to avoid too frequent shrinker calls, but if the slab has less
294 * than batch_size objects in total and we are really tight on memory,
295 * we will try to reclaim all available objects, otherwise we can end
296 * up failing allocations although there are plenty of reclaimable
297 * objects spread over several slabs with usage less than the
298 * batch_size.
299 *
300 * We detect the "tight on memory" situations by looking at the total
301 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 302 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
303 * scanning at high prio and therefore should try to reclaim as much as
304 * possible.
305 */
306 while (total_scan >= batch_size ||
d5bc5fd3 307 total_scan >= freeable) {
a0b02131 308 unsigned long ret;
0b1fb40a 309 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 310
0b1fb40a 311 shrinkctl->nr_to_scan = nr_to_scan;
a0b02131
DC
312 ret = shrinker->scan_objects(shrinker, shrinkctl);
313 if (ret == SHRINK_STOP)
314 break;
315 freed += ret;
1d3d4437 316
0b1fb40a
VD
317 count_vm_events(SLABS_SCANNED, nr_to_scan);
318 total_scan -= nr_to_scan;
1d3d4437
GC
319
320 cond_resched();
321 }
322
323 /*
324 * move the unused scan count back into the shrinker in a
325 * manner that handles concurrent updates. If we exhausted the
326 * scan, there is no need to do an update.
327 */
328 if (total_scan > 0)
329 new_nr = atomic_long_add_return(total_scan,
330 &shrinker->nr_deferred[nid]);
331 else
332 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
333
df9024a8 334 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 335 return freed;
1495f230
YH
336}
337
1da177e4
LT
338/*
339 * Call the shrink functions to age shrinkable caches
340 *
341 * Here we assume it costs one seek to replace a lru page and that it also
342 * takes a seek to recreate a cache object. With this in mind we age equal
343 * percentages of the lru and ageable caches. This should balance the seeks
344 * generated by these structures.
345 *
183ff22b 346 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
347 * slab to avoid swapping.
348 *
349 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
350 *
351 * `lru_pages' represents the number of on-LRU pages in all the zones which
352 * are eligible for the caller's allocation attempt. It is used for balancing
353 * slab reclaim versus page reclaim.
b15e0905 354 *
355 * Returns the number of slab objects which we shrunk.
1da177e4 356 */
24f7c6b9 357unsigned long shrink_slab(struct shrink_control *shrinkctl,
1495f230 358 unsigned long nr_pages_scanned,
a09ed5e0 359 unsigned long lru_pages)
1da177e4
LT
360{
361 struct shrinker *shrinker;
24f7c6b9 362 unsigned long freed = 0;
1da177e4 363
1495f230
YH
364 if (nr_pages_scanned == 0)
365 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 366
f06590bd 367 if (!down_read_trylock(&shrinker_rwsem)) {
24f7c6b9
DC
368 /*
369 * If we would return 0, our callers would understand that we
370 * have nothing else to shrink and give up trying. By returning
371 * 1 we keep it going and assume we'll be able to shrink next
372 * time.
373 */
374 freed = 1;
f06590bd
MK
375 goto out;
376 }
1da177e4
LT
377
378 list_for_each_entry(shrinker, &shrinker_list, list) {
ec97097b
VD
379 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) {
380 shrinkctl->nid = 0;
1d3d4437 381 freed += shrink_slab_node(shrinkctl, shrinker,
ec97097b
VD
382 nr_pages_scanned, lru_pages);
383 continue;
384 }
385
386 for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
387 if (node_online(shrinkctl->nid))
388 freed += shrink_slab_node(shrinkctl, shrinker,
389 nr_pages_scanned, lru_pages);
1da177e4 390
1da177e4 391 }
1da177e4
LT
392 }
393 up_read(&shrinker_rwsem);
f06590bd
MK
394out:
395 cond_resched();
24f7c6b9 396 return freed;
1da177e4
LT
397}
398
1da177e4
LT
399static inline int is_page_cache_freeable(struct page *page)
400{
ceddc3a5
JW
401 /*
402 * A freeable page cache page is referenced only by the caller
403 * that isolated the page, the page cache radix tree and
404 * optional buffer heads at page->private.
405 */
edcf4748 406 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
407}
408
7d3579e8
KM
409static int may_write_to_queue(struct backing_dev_info *bdi,
410 struct scan_control *sc)
1da177e4 411{
930d9152 412 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
413 return 1;
414 if (!bdi_write_congested(bdi))
415 return 1;
416 if (bdi == current->backing_dev_info)
417 return 1;
418 return 0;
419}
420
421/*
422 * We detected a synchronous write error writing a page out. Probably
423 * -ENOSPC. We need to propagate that into the address_space for a subsequent
424 * fsync(), msync() or close().
425 *
426 * The tricky part is that after writepage we cannot touch the mapping: nothing
427 * prevents it from being freed up. But we have a ref on the page and once
428 * that page is locked, the mapping is pinned.
429 *
430 * We're allowed to run sleeping lock_page() here because we know the caller has
431 * __GFP_FS.
432 */
433static void handle_write_error(struct address_space *mapping,
434 struct page *page, int error)
435{
7eaceacc 436 lock_page(page);
3e9f45bd
GC
437 if (page_mapping(page) == mapping)
438 mapping_set_error(mapping, error);
1da177e4
LT
439 unlock_page(page);
440}
441
04e62a29
CL
442/* possible outcome of pageout() */
443typedef enum {
444 /* failed to write page out, page is locked */
445 PAGE_KEEP,
446 /* move page to the active list, page is locked */
447 PAGE_ACTIVATE,
448 /* page has been sent to the disk successfully, page is unlocked */
449 PAGE_SUCCESS,
450 /* page is clean and locked */
451 PAGE_CLEAN,
452} pageout_t;
453
1da177e4 454/*
1742f19f
AM
455 * pageout is called by shrink_page_list() for each dirty page.
456 * Calls ->writepage().
1da177e4 457 */
c661b078 458static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 459 struct scan_control *sc)
1da177e4
LT
460{
461 /*
462 * If the page is dirty, only perform writeback if that write
463 * will be non-blocking. To prevent this allocation from being
464 * stalled by pagecache activity. But note that there may be
465 * stalls if we need to run get_block(). We could test
466 * PagePrivate for that.
467 *
8174202b 468 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
469 * this page's queue, we can perform writeback even if that
470 * will block.
471 *
472 * If the page is swapcache, write it back even if that would
473 * block, for some throttling. This happens by accident, because
474 * swap_backing_dev_info is bust: it doesn't reflect the
475 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
476 */
477 if (!is_page_cache_freeable(page))
478 return PAGE_KEEP;
479 if (!mapping) {
480 /*
481 * Some data journaling orphaned pages can have
482 * page->mapping == NULL while being dirty with clean buffers.
483 */
266cf658 484 if (page_has_private(page)) {
1da177e4
LT
485 if (try_to_free_buffers(page)) {
486 ClearPageDirty(page);
b1de0d13 487 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
488 return PAGE_CLEAN;
489 }
490 }
491 return PAGE_KEEP;
492 }
493 if (mapping->a_ops->writepage == NULL)
494 return PAGE_ACTIVATE;
0e093d99 495 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
496 return PAGE_KEEP;
497
498 if (clear_page_dirty_for_io(page)) {
499 int res;
500 struct writeback_control wbc = {
501 .sync_mode = WB_SYNC_NONE,
502 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
503 .range_start = 0,
504 .range_end = LLONG_MAX,
1da177e4
LT
505 .for_reclaim = 1,
506 };
507
508 SetPageReclaim(page);
509 res = mapping->a_ops->writepage(page, &wbc);
510 if (res < 0)
511 handle_write_error(mapping, page, res);
994fc28c 512 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
513 ClearPageReclaim(page);
514 return PAGE_ACTIVATE;
515 }
c661b078 516
1da177e4
LT
517 if (!PageWriteback(page)) {
518 /* synchronous write or broken a_ops? */
519 ClearPageReclaim(page);
520 }
23b9da55 521 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
e129b5c2 522 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
523 return PAGE_SUCCESS;
524 }
525
526 return PAGE_CLEAN;
527}
528
a649fd92 529/*
e286781d
NP
530 * Same as remove_mapping, but if the page is removed from the mapping, it
531 * gets returned with a refcount of 0.
a649fd92 532 */
a528910e
JW
533static int __remove_mapping(struct address_space *mapping, struct page *page,
534 bool reclaimed)
49d2e9cc 535{
28e4d965
NP
536 BUG_ON(!PageLocked(page));
537 BUG_ON(mapping != page_mapping(page));
49d2e9cc 538
19fd6231 539 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 540 /*
0fd0e6b0
NP
541 * The non racy check for a busy page.
542 *
543 * Must be careful with the order of the tests. When someone has
544 * a ref to the page, it may be possible that they dirty it then
545 * drop the reference. So if PageDirty is tested before page_count
546 * here, then the following race may occur:
547 *
548 * get_user_pages(&page);
549 * [user mapping goes away]
550 * write_to(page);
551 * !PageDirty(page) [good]
552 * SetPageDirty(page);
553 * put_page(page);
554 * !page_count(page) [good, discard it]
555 *
556 * [oops, our write_to data is lost]
557 *
558 * Reversing the order of the tests ensures such a situation cannot
559 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
560 * load is not satisfied before that of page->_count.
561 *
562 * Note that if SetPageDirty is always performed via set_page_dirty,
563 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 564 */
e286781d 565 if (!page_freeze_refs(page, 2))
49d2e9cc 566 goto cannot_free;
e286781d
NP
567 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
568 if (unlikely(PageDirty(page))) {
569 page_unfreeze_refs(page, 2);
49d2e9cc 570 goto cannot_free;
e286781d 571 }
49d2e9cc
CL
572
573 if (PageSwapCache(page)) {
574 swp_entry_t swap = { .val = page_private(page) };
575 __delete_from_swap_cache(page);
19fd6231 576 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 577 swapcache_free(swap, page);
e286781d 578 } else {
6072d13c 579 void (*freepage)(struct page *);
a528910e 580 void *shadow = NULL;
6072d13c
LT
581
582 freepage = mapping->a_ops->freepage;
a528910e
JW
583 /*
584 * Remember a shadow entry for reclaimed file cache in
585 * order to detect refaults, thus thrashing, later on.
586 *
587 * But don't store shadows in an address space that is
588 * already exiting. This is not just an optizimation,
589 * inode reclaim needs to empty out the radix tree or
590 * the nodes are lost. Don't plant shadows behind its
591 * back.
592 */
593 if (reclaimed && page_is_file_cache(page) &&
594 !mapping_exiting(mapping))
595 shadow = workingset_eviction(mapping, page);
596 __delete_from_page_cache(page, shadow);
19fd6231 597 spin_unlock_irq(&mapping->tree_lock);
e767e056 598 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
599
600 if (freepage != NULL)
601 freepage(page);
49d2e9cc
CL
602 }
603
49d2e9cc
CL
604 return 1;
605
606cannot_free:
19fd6231 607 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
608 return 0;
609}
610
e286781d
NP
611/*
612 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
613 * someone else has a ref on the page, abort and return 0. If it was
614 * successfully detached, return 1. Assumes the caller has a single ref on
615 * this page.
616 */
617int remove_mapping(struct address_space *mapping, struct page *page)
618{
a528910e 619 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
620 /*
621 * Unfreezing the refcount with 1 rather than 2 effectively
622 * drops the pagecache ref for us without requiring another
623 * atomic operation.
624 */
625 page_unfreeze_refs(page, 1);
626 return 1;
627 }
628 return 0;
629}
630
894bc310
LS
631/**
632 * putback_lru_page - put previously isolated page onto appropriate LRU list
633 * @page: page to be put back to appropriate lru list
634 *
635 * Add previously isolated @page to appropriate LRU list.
636 * Page may still be unevictable for other reasons.
637 *
638 * lru_lock must not be held, interrupts must be enabled.
639 */
894bc310
LS
640void putback_lru_page(struct page *page)
641{
0ec3b74c 642 bool is_unevictable;
bbfd28ee 643 int was_unevictable = PageUnevictable(page);
894bc310 644
309381fe 645 VM_BUG_ON_PAGE(PageLRU(page), page);
894bc310
LS
646
647redo:
648 ClearPageUnevictable(page);
649
39b5f29a 650 if (page_evictable(page)) {
894bc310
LS
651 /*
652 * For evictable pages, we can use the cache.
653 * In event of a race, worst case is we end up with an
654 * unevictable page on [in]active list.
655 * We know how to handle that.
656 */
0ec3b74c 657 is_unevictable = false;
c53954a0 658 lru_cache_add(page);
894bc310
LS
659 } else {
660 /*
661 * Put unevictable pages directly on zone's unevictable
662 * list.
663 */
0ec3b74c 664 is_unevictable = true;
894bc310 665 add_page_to_unevictable_list(page);
6a7b9548 666 /*
21ee9f39
MK
667 * When racing with an mlock or AS_UNEVICTABLE clearing
668 * (page is unlocked) make sure that if the other thread
669 * does not observe our setting of PG_lru and fails
24513264 670 * isolation/check_move_unevictable_pages,
21ee9f39 671 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
672 * the page back to the evictable list.
673 *
21ee9f39 674 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
675 */
676 smp_mb();
894bc310 677 }
894bc310
LS
678
679 /*
680 * page's status can change while we move it among lru. If an evictable
681 * page is on unevictable list, it never be freed. To avoid that,
682 * check after we added it to the list, again.
683 */
0ec3b74c 684 if (is_unevictable && page_evictable(page)) {
894bc310
LS
685 if (!isolate_lru_page(page)) {
686 put_page(page);
687 goto redo;
688 }
689 /* This means someone else dropped this page from LRU
690 * So, it will be freed or putback to LRU again. There is
691 * nothing to do here.
692 */
693 }
694
0ec3b74c 695 if (was_unevictable && !is_unevictable)
bbfd28ee 696 count_vm_event(UNEVICTABLE_PGRESCUED);
0ec3b74c 697 else if (!was_unevictable && is_unevictable)
bbfd28ee
LS
698 count_vm_event(UNEVICTABLE_PGCULLED);
699
894bc310
LS
700 put_page(page); /* drop ref from isolate */
701}
702
dfc8d636
JW
703enum page_references {
704 PAGEREF_RECLAIM,
705 PAGEREF_RECLAIM_CLEAN,
64574746 706 PAGEREF_KEEP,
dfc8d636
JW
707 PAGEREF_ACTIVATE,
708};
709
710static enum page_references page_check_references(struct page *page,
711 struct scan_control *sc)
712{
64574746 713 int referenced_ptes, referenced_page;
dfc8d636 714 unsigned long vm_flags;
dfc8d636 715
c3ac9a8a
JW
716 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
717 &vm_flags);
64574746 718 referenced_page = TestClearPageReferenced(page);
dfc8d636 719
dfc8d636
JW
720 /*
721 * Mlock lost the isolation race with us. Let try_to_unmap()
722 * move the page to the unevictable list.
723 */
724 if (vm_flags & VM_LOCKED)
725 return PAGEREF_RECLAIM;
726
64574746 727 if (referenced_ptes) {
e4898273 728 if (PageSwapBacked(page))
64574746
JW
729 return PAGEREF_ACTIVATE;
730 /*
731 * All mapped pages start out with page table
732 * references from the instantiating fault, so we need
733 * to look twice if a mapped file page is used more
734 * than once.
735 *
736 * Mark it and spare it for another trip around the
737 * inactive list. Another page table reference will
738 * lead to its activation.
739 *
740 * Note: the mark is set for activated pages as well
741 * so that recently deactivated but used pages are
742 * quickly recovered.
743 */
744 SetPageReferenced(page);
745
34dbc67a 746 if (referenced_page || referenced_ptes > 1)
64574746
JW
747 return PAGEREF_ACTIVATE;
748
c909e993
KK
749 /*
750 * Activate file-backed executable pages after first usage.
751 */
752 if (vm_flags & VM_EXEC)
753 return PAGEREF_ACTIVATE;
754
64574746
JW
755 return PAGEREF_KEEP;
756 }
dfc8d636
JW
757
758 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 759 if (referenced_page && !PageSwapBacked(page))
64574746
JW
760 return PAGEREF_RECLAIM_CLEAN;
761
762 return PAGEREF_RECLAIM;
dfc8d636
JW
763}
764
e2be15f6
MG
765/* Check if a page is dirty or under writeback */
766static void page_check_dirty_writeback(struct page *page,
767 bool *dirty, bool *writeback)
768{
b4597226
MG
769 struct address_space *mapping;
770
e2be15f6
MG
771 /*
772 * Anonymous pages are not handled by flushers and must be written
773 * from reclaim context. Do not stall reclaim based on them
774 */
775 if (!page_is_file_cache(page)) {
776 *dirty = false;
777 *writeback = false;
778 return;
779 }
780
781 /* By default assume that the page flags are accurate */
782 *dirty = PageDirty(page);
783 *writeback = PageWriteback(page);
b4597226
MG
784
785 /* Verify dirty/writeback state if the filesystem supports it */
786 if (!page_has_private(page))
787 return;
788
789 mapping = page_mapping(page);
790 if (mapping && mapping->a_ops->is_dirty_writeback)
791 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
792}
793
1da177e4 794/*
1742f19f 795 * shrink_page_list() returns the number of reclaimed pages
1da177e4 796 */
1742f19f 797static unsigned long shrink_page_list(struct list_head *page_list,
6a18adb3 798 struct zone *zone,
f84f6e2b 799 struct scan_control *sc,
02c6de8d 800 enum ttu_flags ttu_flags,
8e950282 801 unsigned long *ret_nr_dirty,
d43006d5 802 unsigned long *ret_nr_unqueued_dirty,
8e950282 803 unsigned long *ret_nr_congested,
02c6de8d 804 unsigned long *ret_nr_writeback,
b1a6f21e 805 unsigned long *ret_nr_immediate,
02c6de8d 806 bool force_reclaim)
1da177e4
LT
807{
808 LIST_HEAD(ret_pages);
abe4c3b5 809 LIST_HEAD(free_pages);
1da177e4 810 int pgactivate = 0;
d43006d5 811 unsigned long nr_unqueued_dirty = 0;
0e093d99
MG
812 unsigned long nr_dirty = 0;
813 unsigned long nr_congested = 0;
05ff5137 814 unsigned long nr_reclaimed = 0;
92df3a72 815 unsigned long nr_writeback = 0;
b1a6f21e 816 unsigned long nr_immediate = 0;
1da177e4
LT
817
818 cond_resched();
819
69980e31 820 mem_cgroup_uncharge_start();
1da177e4
LT
821 while (!list_empty(page_list)) {
822 struct address_space *mapping;
823 struct page *page;
824 int may_enter_fs;
02c6de8d 825 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 826 bool dirty, writeback;
1da177e4
LT
827
828 cond_resched();
829
830 page = lru_to_page(page_list);
831 list_del(&page->lru);
832
529ae9aa 833 if (!trylock_page(page))
1da177e4
LT
834 goto keep;
835
309381fe
SL
836 VM_BUG_ON_PAGE(PageActive(page), page);
837 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1da177e4
LT
838
839 sc->nr_scanned++;
80e43426 840
39b5f29a 841 if (unlikely(!page_evictable(page)))
b291f000 842 goto cull_mlocked;
894bc310 843
a6dc60f8 844 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
845 goto keep_locked;
846
1da177e4
LT
847 /* Double the slab pressure for mapped and swapcache pages */
848 if (page_mapped(page) || PageSwapCache(page))
849 sc->nr_scanned++;
850
c661b078
AW
851 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
852 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
853
e2be15f6
MG
854 /*
855 * The number of dirty pages determines if a zone is marked
856 * reclaim_congested which affects wait_iff_congested. kswapd
857 * will stall and start writing pages if the tail of the LRU
858 * is all dirty unqueued pages.
859 */
860 page_check_dirty_writeback(page, &dirty, &writeback);
861 if (dirty || writeback)
862 nr_dirty++;
863
864 if (dirty && !writeback)
865 nr_unqueued_dirty++;
866
d04e8acd
MG
867 /*
868 * Treat this page as congested if the underlying BDI is or if
869 * pages are cycling through the LRU so quickly that the
870 * pages marked for immediate reclaim are making it to the
871 * end of the LRU a second time.
872 */
e2be15f6 873 mapping = page_mapping(page);
d04e8acd
MG
874 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
875 (writeback && PageReclaim(page)))
e2be15f6
MG
876 nr_congested++;
877
283aba9f
MG
878 /*
879 * If a page at the tail of the LRU is under writeback, there
880 * are three cases to consider.
881 *
882 * 1) If reclaim is encountering an excessive number of pages
883 * under writeback and this page is both under writeback and
884 * PageReclaim then it indicates that pages are being queued
885 * for IO but are being recycled through the LRU before the
886 * IO can complete. Waiting on the page itself risks an
887 * indefinite stall if it is impossible to writeback the
888 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
889 * note that the LRU is being scanned too quickly and the
890 * caller can stall after page list has been processed.
283aba9f
MG
891 *
892 * 2) Global reclaim encounters a page, memcg encounters a
893 * page that is not marked for immediate reclaim or
894 * the caller does not have __GFP_IO. In this case mark
895 * the page for immediate reclaim and continue scanning.
896 *
897 * __GFP_IO is checked because a loop driver thread might
898 * enter reclaim, and deadlock if it waits on a page for
899 * which it is needed to do the write (loop masks off
900 * __GFP_IO|__GFP_FS for this reason); but more thought
901 * would probably show more reasons.
902 *
903 * Don't require __GFP_FS, since we're not going into the
904 * FS, just waiting on its writeback completion. Worryingly,
905 * ext4 gfs2 and xfs allocate pages with
906 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
907 * may_enter_fs here is liable to OOM on them.
908 *
909 * 3) memcg encounters a page that is not already marked
910 * PageReclaim. memcg does not have any dirty pages
911 * throttling so we could easily OOM just because too many
912 * pages are in writeback and there is nothing else to
913 * reclaim. Wait for the writeback to complete.
914 */
c661b078 915 if (PageWriteback(page)) {
283aba9f
MG
916 /* Case 1 above */
917 if (current_is_kswapd() &&
918 PageReclaim(page) &&
919 zone_is_reclaim_writeback(zone)) {
b1a6f21e
MG
920 nr_immediate++;
921 goto keep_locked;
283aba9f
MG
922
923 /* Case 2 above */
924 } else if (global_reclaim(sc) ||
c3b94f44
HD
925 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
926 /*
927 * This is slightly racy - end_page_writeback()
928 * might have just cleared PageReclaim, then
929 * setting PageReclaim here end up interpreted
930 * as PageReadahead - but that does not matter
931 * enough to care. What we do want is for this
932 * page to have PageReclaim set next time memcg
933 * reclaim reaches the tests above, so it will
934 * then wait_on_page_writeback() to avoid OOM;
935 * and it's also appropriate in global reclaim.
936 */
937 SetPageReclaim(page);
e62e384e 938 nr_writeback++;
283aba9f 939
c3b94f44 940 goto keep_locked;
283aba9f
MG
941
942 /* Case 3 above */
943 } else {
944 wait_on_page_writeback(page);
e62e384e 945 }
c661b078 946 }
1da177e4 947
02c6de8d
MK
948 if (!force_reclaim)
949 references = page_check_references(page, sc);
950
dfc8d636
JW
951 switch (references) {
952 case PAGEREF_ACTIVATE:
1da177e4 953 goto activate_locked;
64574746
JW
954 case PAGEREF_KEEP:
955 goto keep_locked;
dfc8d636
JW
956 case PAGEREF_RECLAIM:
957 case PAGEREF_RECLAIM_CLEAN:
958 ; /* try to reclaim the page below */
959 }
1da177e4 960
1da177e4
LT
961 /*
962 * Anonymous process memory has backing store?
963 * Try to allocate it some swap space here.
964 */
b291f000 965 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
966 if (!(sc->gfp_mask & __GFP_IO))
967 goto keep_locked;
5bc7b8ac 968 if (!add_to_swap(page, page_list))
1da177e4 969 goto activate_locked;
63eb6b93 970 may_enter_fs = 1;
1da177e4 971
e2be15f6
MG
972 /* Adding to swap updated mapping */
973 mapping = page_mapping(page);
974 }
1da177e4
LT
975
976 /*
977 * The page is mapped into the page tables of one or more
978 * processes. Try to unmap it here.
979 */
980 if (page_mapped(page) && mapping) {
02c6de8d 981 switch (try_to_unmap(page, ttu_flags)) {
1da177e4
LT
982 case SWAP_FAIL:
983 goto activate_locked;
984 case SWAP_AGAIN:
985 goto keep_locked;
b291f000
NP
986 case SWAP_MLOCK:
987 goto cull_mlocked;
1da177e4
LT
988 case SWAP_SUCCESS:
989 ; /* try to free the page below */
990 }
991 }
992
993 if (PageDirty(page)) {
ee72886d
MG
994 /*
995 * Only kswapd can writeback filesystem pages to
d43006d5
MG
996 * avoid risk of stack overflow but only writeback
997 * if many dirty pages have been encountered.
ee72886d 998 */
f84f6e2b 999 if (page_is_file_cache(page) &&
9e3b2f8c 1000 (!current_is_kswapd() ||
d43006d5 1001 !zone_is_reclaim_dirty(zone))) {
49ea7eb6
MG
1002 /*
1003 * Immediately reclaim when written back.
1004 * Similar in principal to deactivate_page()
1005 * except we already have the page isolated
1006 * and know it's dirty
1007 */
1008 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1009 SetPageReclaim(page);
1010
ee72886d
MG
1011 goto keep_locked;
1012 }
1013
dfc8d636 1014 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1015 goto keep_locked;
4dd4b920 1016 if (!may_enter_fs)
1da177e4 1017 goto keep_locked;
52a8363e 1018 if (!sc->may_writepage)
1da177e4
LT
1019 goto keep_locked;
1020
1021 /* Page is dirty, try to write it out here */
7d3579e8 1022 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1023 case PAGE_KEEP:
1024 goto keep_locked;
1025 case PAGE_ACTIVATE:
1026 goto activate_locked;
1027 case PAGE_SUCCESS:
7d3579e8 1028 if (PageWriteback(page))
41ac1999 1029 goto keep;
7d3579e8 1030 if (PageDirty(page))
1da177e4 1031 goto keep;
7d3579e8 1032
1da177e4
LT
1033 /*
1034 * A synchronous write - probably a ramdisk. Go
1035 * ahead and try to reclaim the page.
1036 */
529ae9aa 1037 if (!trylock_page(page))
1da177e4
LT
1038 goto keep;
1039 if (PageDirty(page) || PageWriteback(page))
1040 goto keep_locked;
1041 mapping = page_mapping(page);
1042 case PAGE_CLEAN:
1043 ; /* try to free the page below */
1044 }
1045 }
1046
1047 /*
1048 * If the page has buffers, try to free the buffer mappings
1049 * associated with this page. If we succeed we try to free
1050 * the page as well.
1051 *
1052 * We do this even if the page is PageDirty().
1053 * try_to_release_page() does not perform I/O, but it is
1054 * possible for a page to have PageDirty set, but it is actually
1055 * clean (all its buffers are clean). This happens if the
1056 * buffers were written out directly, with submit_bh(). ext3
894bc310 1057 * will do this, as well as the blockdev mapping.
1da177e4
LT
1058 * try_to_release_page() will discover that cleanness and will
1059 * drop the buffers and mark the page clean - it can be freed.
1060 *
1061 * Rarely, pages can have buffers and no ->mapping. These are
1062 * the pages which were not successfully invalidated in
1063 * truncate_complete_page(). We try to drop those buffers here
1064 * and if that worked, and the page is no longer mapped into
1065 * process address space (page_count == 1) it can be freed.
1066 * Otherwise, leave the page on the LRU so it is swappable.
1067 */
266cf658 1068 if (page_has_private(page)) {
1da177e4
LT
1069 if (!try_to_release_page(page, sc->gfp_mask))
1070 goto activate_locked;
e286781d
NP
1071 if (!mapping && page_count(page) == 1) {
1072 unlock_page(page);
1073 if (put_page_testzero(page))
1074 goto free_it;
1075 else {
1076 /*
1077 * rare race with speculative reference.
1078 * the speculative reference will free
1079 * this page shortly, so we may
1080 * increment nr_reclaimed here (and
1081 * leave it off the LRU).
1082 */
1083 nr_reclaimed++;
1084 continue;
1085 }
1086 }
1da177e4
LT
1087 }
1088
a528910e 1089 if (!mapping || !__remove_mapping(mapping, page, true))
49d2e9cc 1090 goto keep_locked;
1da177e4 1091
a978d6f5
NP
1092 /*
1093 * At this point, we have no other references and there is
1094 * no way to pick any more up (removed from LRU, removed
1095 * from pagecache). Can use non-atomic bitops now (and
1096 * we obviously don't have to worry about waking up a process
1097 * waiting on the page lock, because there are no references.
1098 */
1099 __clear_page_locked(page);
e286781d 1100free_it:
05ff5137 1101 nr_reclaimed++;
abe4c3b5
MG
1102
1103 /*
1104 * Is there need to periodically free_page_list? It would
1105 * appear not as the counts should be low
1106 */
1107 list_add(&page->lru, &free_pages);
1da177e4
LT
1108 continue;
1109
b291f000 1110cull_mlocked:
63d6c5ad
HD
1111 if (PageSwapCache(page))
1112 try_to_free_swap(page);
b291f000
NP
1113 unlock_page(page);
1114 putback_lru_page(page);
1115 continue;
1116
1da177e4 1117activate_locked:
68a22394
RR
1118 /* Not a candidate for swapping, so reclaim swap space. */
1119 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 1120 try_to_free_swap(page);
309381fe 1121 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
1122 SetPageActive(page);
1123 pgactivate++;
1124keep_locked:
1125 unlock_page(page);
1126keep:
1127 list_add(&page->lru, &ret_pages);
309381fe 1128 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1129 }
abe4c3b5 1130
b745bc85 1131 free_hot_cold_page_list(&free_pages, true);
abe4c3b5 1132
1da177e4 1133 list_splice(&ret_pages, page_list);
f8891e5e 1134 count_vm_events(PGACTIVATE, pgactivate);
69980e31 1135 mem_cgroup_uncharge_end();
8e950282
MG
1136 *ret_nr_dirty += nr_dirty;
1137 *ret_nr_congested += nr_congested;
d43006d5 1138 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
92df3a72 1139 *ret_nr_writeback += nr_writeback;
b1a6f21e 1140 *ret_nr_immediate += nr_immediate;
05ff5137 1141 return nr_reclaimed;
1da177e4
LT
1142}
1143
02c6de8d
MK
1144unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1145 struct list_head *page_list)
1146{
1147 struct scan_control sc = {
1148 .gfp_mask = GFP_KERNEL,
1149 .priority = DEF_PRIORITY,
1150 .may_unmap = 1,
1151 };
8e950282 1152 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
02c6de8d
MK
1153 struct page *page, *next;
1154 LIST_HEAD(clean_pages);
1155
1156 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e
RA
1157 if (page_is_file_cache(page) && !PageDirty(page) &&
1158 !isolated_balloon_page(page)) {
02c6de8d
MK
1159 ClearPageActive(page);
1160 list_move(&page->lru, &clean_pages);
1161 }
1162 }
1163
1164 ret = shrink_page_list(&clean_pages, zone, &sc,
8e950282
MG
1165 TTU_UNMAP|TTU_IGNORE_ACCESS,
1166 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
02c6de8d 1167 list_splice(&clean_pages, page_list);
83da7510 1168 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1169 return ret;
1170}
1171
5ad333eb
AW
1172/*
1173 * Attempt to remove the specified page from its LRU. Only take this page
1174 * if it is of the appropriate PageActive status. Pages which are being
1175 * freed elsewhere are also ignored.
1176 *
1177 * page: page to consider
1178 * mode: one of the LRU isolation modes defined above
1179 *
1180 * returns 0 on success, -ve errno on failure.
1181 */
f3fd4a61 1182int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1183{
1184 int ret = -EINVAL;
1185
1186 /* Only take pages on the LRU. */
1187 if (!PageLRU(page))
1188 return ret;
1189
e46a2879
MK
1190 /* Compaction should not handle unevictable pages but CMA can do so */
1191 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1192 return ret;
1193
5ad333eb 1194 ret = -EBUSY;
08e552c6 1195
c8244935
MG
1196 /*
1197 * To minimise LRU disruption, the caller can indicate that it only
1198 * wants to isolate pages it will be able to operate on without
1199 * blocking - clean pages for the most part.
1200 *
1201 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1202 * is used by reclaim when it is cannot write to backing storage
1203 *
1204 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1205 * that it is possible to migrate without blocking
1206 */
1207 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1208 /* All the caller can do on PageWriteback is block */
1209 if (PageWriteback(page))
1210 return ret;
1211
1212 if (PageDirty(page)) {
1213 struct address_space *mapping;
1214
1215 /* ISOLATE_CLEAN means only clean pages */
1216 if (mode & ISOLATE_CLEAN)
1217 return ret;
1218
1219 /*
1220 * Only pages without mappings or that have a
1221 * ->migratepage callback are possible to migrate
1222 * without blocking
1223 */
1224 mapping = page_mapping(page);
1225 if (mapping && !mapping->a_ops->migratepage)
1226 return ret;
1227 }
1228 }
39deaf85 1229
f80c0673
MK
1230 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1231 return ret;
1232
5ad333eb
AW
1233 if (likely(get_page_unless_zero(page))) {
1234 /*
1235 * Be careful not to clear PageLRU until after we're
1236 * sure the page is not being freed elsewhere -- the
1237 * page release code relies on it.
1238 */
1239 ClearPageLRU(page);
1240 ret = 0;
1241 }
1242
1243 return ret;
1244}
1245
1da177e4
LT
1246/*
1247 * zone->lru_lock is heavily contended. Some of the functions that
1248 * shrink the lists perform better by taking out a batch of pages
1249 * and working on them outside the LRU lock.
1250 *
1251 * For pagecache intensive workloads, this function is the hottest
1252 * spot in the kernel (apart from copy_*_user functions).
1253 *
1254 * Appropriate locks must be held before calling this function.
1255 *
1256 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1257 * @lruvec: The LRU vector to pull pages from.
1da177e4 1258 * @dst: The temp list to put pages on to.
f626012d 1259 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1260 * @sc: The scan_control struct for this reclaim session
5ad333eb 1261 * @mode: One of the LRU isolation modes
3cb99451 1262 * @lru: LRU list id for isolating
1da177e4
LT
1263 *
1264 * returns how many pages were moved onto *@dst.
1265 */
69e05944 1266static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1267 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1268 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1269 isolate_mode_t mode, enum lru_list lru)
1da177e4 1270{
75b00af7 1271 struct list_head *src = &lruvec->lists[lru];
69e05944 1272 unsigned long nr_taken = 0;
c9b02d97 1273 unsigned long scan;
1da177e4 1274
c9b02d97 1275 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb 1276 struct page *page;
fa9add64 1277 int nr_pages;
5ad333eb 1278
1da177e4
LT
1279 page = lru_to_page(src);
1280 prefetchw_prev_lru_page(page, src, flags);
1281
309381fe 1282 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1283
f3fd4a61 1284 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1285 case 0:
fa9add64
HD
1286 nr_pages = hpage_nr_pages(page);
1287 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
5ad333eb 1288 list_move(&page->lru, dst);
fa9add64 1289 nr_taken += nr_pages;
5ad333eb
AW
1290 break;
1291
1292 case -EBUSY:
1293 /* else it is being freed elsewhere */
1294 list_move(&page->lru, src);
1295 continue;
46453a6e 1296
5ad333eb
AW
1297 default:
1298 BUG();
1299 }
1da177e4
LT
1300 }
1301
f626012d 1302 *nr_scanned = scan;
75b00af7
HD
1303 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1304 nr_taken, mode, is_file_lru(lru));
1da177e4
LT
1305 return nr_taken;
1306}
1307
62695a84
NP
1308/**
1309 * isolate_lru_page - tries to isolate a page from its LRU list
1310 * @page: page to isolate from its LRU list
1311 *
1312 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1313 * vmstat statistic corresponding to whatever LRU list the page was on.
1314 *
1315 * Returns 0 if the page was removed from an LRU list.
1316 * Returns -EBUSY if the page was not on an LRU list.
1317 *
1318 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1319 * the active list, it will have PageActive set. If it was found on
1320 * the unevictable list, it will have the PageUnevictable bit set. That flag
1321 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1322 *
1323 * The vmstat statistic corresponding to the list on which the page was
1324 * found will be decremented.
1325 *
1326 * Restrictions:
1327 * (1) Must be called with an elevated refcount on the page. This is a
1328 * fundamentnal difference from isolate_lru_pages (which is called
1329 * without a stable reference).
1330 * (2) the lru_lock must not be held.
1331 * (3) interrupts must be enabled.
1332 */
1333int isolate_lru_page(struct page *page)
1334{
1335 int ret = -EBUSY;
1336
309381fe 1337 VM_BUG_ON_PAGE(!page_count(page), page);
0c917313 1338
62695a84
NP
1339 if (PageLRU(page)) {
1340 struct zone *zone = page_zone(page);
fa9add64 1341 struct lruvec *lruvec;
62695a84
NP
1342
1343 spin_lock_irq(&zone->lru_lock);
fa9add64 1344 lruvec = mem_cgroup_page_lruvec(page, zone);
0c917313 1345 if (PageLRU(page)) {
894bc310 1346 int lru = page_lru(page);
0c917313 1347 get_page(page);
62695a84 1348 ClearPageLRU(page);
fa9add64
HD
1349 del_page_from_lru_list(page, lruvec, lru);
1350 ret = 0;
62695a84
NP
1351 }
1352 spin_unlock_irq(&zone->lru_lock);
1353 }
1354 return ret;
1355}
1356
35cd7815 1357/*
d37dd5dc
FW
1358 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1359 * then get resheduled. When there are massive number of tasks doing page
1360 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1361 * the LRU list will go small and be scanned faster than necessary, leading to
1362 * unnecessary swapping, thrashing and OOM.
35cd7815
RR
1363 */
1364static int too_many_isolated(struct zone *zone, int file,
1365 struct scan_control *sc)
1366{
1367 unsigned long inactive, isolated;
1368
1369 if (current_is_kswapd())
1370 return 0;
1371
89b5fae5 1372 if (!global_reclaim(sc))
35cd7815
RR
1373 return 0;
1374
1375 if (file) {
1376 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1377 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1378 } else {
1379 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1380 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1381 }
1382
3cf23841
FW
1383 /*
1384 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1385 * won't get blocked by normal direct-reclaimers, forming a circular
1386 * deadlock.
1387 */
1388 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1389 inactive >>= 3;
1390
35cd7815
RR
1391 return isolated > inactive;
1392}
1393
66635629 1394static noinline_for_stack void
75b00af7 1395putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1396{
27ac81d8
KK
1397 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1398 struct zone *zone = lruvec_zone(lruvec);
3f79768f 1399 LIST_HEAD(pages_to_free);
66635629 1400
66635629
MG
1401 /*
1402 * Put back any unfreeable pages.
1403 */
66635629 1404 while (!list_empty(page_list)) {
3f79768f 1405 struct page *page = lru_to_page(page_list);
66635629 1406 int lru;
3f79768f 1407
309381fe 1408 VM_BUG_ON_PAGE(PageLRU(page), page);
66635629 1409 list_del(&page->lru);
39b5f29a 1410 if (unlikely(!page_evictable(page))) {
66635629
MG
1411 spin_unlock_irq(&zone->lru_lock);
1412 putback_lru_page(page);
1413 spin_lock_irq(&zone->lru_lock);
1414 continue;
1415 }
fa9add64
HD
1416
1417 lruvec = mem_cgroup_page_lruvec(page, zone);
1418
7a608572 1419 SetPageLRU(page);
66635629 1420 lru = page_lru(page);
fa9add64
HD
1421 add_page_to_lru_list(page, lruvec, lru);
1422
66635629
MG
1423 if (is_active_lru(lru)) {
1424 int file = is_file_lru(lru);
9992af10
RR
1425 int numpages = hpage_nr_pages(page);
1426 reclaim_stat->recent_rotated[file] += numpages;
66635629 1427 }
2bcf8879
HD
1428 if (put_page_testzero(page)) {
1429 __ClearPageLRU(page);
1430 __ClearPageActive(page);
fa9add64 1431 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1432
1433 if (unlikely(PageCompound(page))) {
1434 spin_unlock_irq(&zone->lru_lock);
1435 (*get_compound_page_dtor(page))(page);
1436 spin_lock_irq(&zone->lru_lock);
1437 } else
1438 list_add(&page->lru, &pages_to_free);
66635629
MG
1439 }
1440 }
66635629 1441
3f79768f
HD
1442 /*
1443 * To save our caller's stack, now use input list for pages to free.
1444 */
1445 list_splice(&pages_to_free, page_list);
66635629
MG
1446}
1447
399ba0b9
N
1448/*
1449 * If a kernel thread (such as nfsd for loop-back mounts) services
1450 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1451 * In that case we should only throttle if the backing device it is
1452 * writing to is congested. In other cases it is safe to throttle.
1453 */
1454static int current_may_throttle(void)
1455{
1456 return !(current->flags & PF_LESS_THROTTLE) ||
1457 current->backing_dev_info == NULL ||
1458 bdi_write_congested(current->backing_dev_info);
1459}
1460
1da177e4 1461/*
1742f19f
AM
1462 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1463 * of reclaimed pages
1da177e4 1464 */
66635629 1465static noinline_for_stack unsigned long
1a93be0e 1466shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1467 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1468{
1469 LIST_HEAD(page_list);
e247dbce 1470 unsigned long nr_scanned;
05ff5137 1471 unsigned long nr_reclaimed = 0;
e247dbce 1472 unsigned long nr_taken;
8e950282
MG
1473 unsigned long nr_dirty = 0;
1474 unsigned long nr_congested = 0;
e2be15f6 1475 unsigned long nr_unqueued_dirty = 0;
92df3a72 1476 unsigned long nr_writeback = 0;
b1a6f21e 1477 unsigned long nr_immediate = 0;
f3fd4a61 1478 isolate_mode_t isolate_mode = 0;
3cb99451 1479 int file = is_file_lru(lru);
1a93be0e
KK
1480 struct zone *zone = lruvec_zone(lruvec);
1481 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1482
35cd7815 1483 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1484 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1485
1486 /* We are about to die and free our memory. Return now. */
1487 if (fatal_signal_pending(current))
1488 return SWAP_CLUSTER_MAX;
1489 }
1490
1da177e4 1491 lru_add_drain();
f80c0673
MK
1492
1493 if (!sc->may_unmap)
61317289 1494 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1495 if (!sc->may_writepage)
61317289 1496 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1497
1da177e4 1498 spin_lock_irq(&zone->lru_lock);
b35ea17b 1499
5dc35979
KK
1500 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1501 &nr_scanned, sc, isolate_mode, lru);
95d918fc
KK
1502
1503 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1504 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1505
89b5fae5 1506 if (global_reclaim(sc)) {
e247dbce
KM
1507 zone->pages_scanned += nr_scanned;
1508 if (current_is_kswapd())
75b00af7 1509 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
e247dbce 1510 else
75b00af7 1511 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
e247dbce 1512 }
d563c050 1513 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1514
d563c050 1515 if (nr_taken == 0)
66635629 1516 return 0;
5ad333eb 1517
02c6de8d 1518 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
8e950282
MG
1519 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1520 &nr_writeback, &nr_immediate,
1521 false);
c661b078 1522
3f79768f
HD
1523 spin_lock_irq(&zone->lru_lock);
1524
95d918fc 1525 reclaim_stat->recent_scanned[file] += nr_taken;
d563c050 1526
904249aa
YH
1527 if (global_reclaim(sc)) {
1528 if (current_is_kswapd())
1529 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1530 nr_reclaimed);
1531 else
1532 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1533 nr_reclaimed);
1534 }
a74609fa 1535
27ac81d8 1536 putback_inactive_pages(lruvec, &page_list);
3f79768f 1537
95d918fc 1538 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f
HD
1539
1540 spin_unlock_irq(&zone->lru_lock);
1541
b745bc85 1542 free_hot_cold_page_list(&page_list, true);
e11da5b4 1543
92df3a72
MG
1544 /*
1545 * If reclaim is isolating dirty pages under writeback, it implies
1546 * that the long-lived page allocation rate is exceeding the page
1547 * laundering rate. Either the global limits are not being effective
1548 * at throttling processes due to the page distribution throughout
1549 * zones or there is heavy usage of a slow backing device. The
1550 * only option is to throttle from reclaim context which is not ideal
1551 * as there is no guarantee the dirtying process is throttled in the
1552 * same way balance_dirty_pages() manages.
1553 *
8e950282
MG
1554 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1555 * of pages under pages flagged for immediate reclaim and stall if any
1556 * are encountered in the nr_immediate check below.
92df3a72 1557 */
918fc718 1558 if (nr_writeback && nr_writeback == nr_taken)
283aba9f 1559 zone_set_flag(zone, ZONE_WRITEBACK);
92df3a72 1560
d43006d5 1561 /*
b1a6f21e
MG
1562 * memcg will stall in page writeback so only consider forcibly
1563 * stalling for global reclaim
d43006d5 1564 */
b1a6f21e 1565 if (global_reclaim(sc)) {
8e950282
MG
1566 /*
1567 * Tag a zone as congested if all the dirty pages scanned were
1568 * backed by a congested BDI and wait_iff_congested will stall.
1569 */
1570 if (nr_dirty && nr_dirty == nr_congested)
1571 zone_set_flag(zone, ZONE_CONGESTED);
1572
b1a6f21e
MG
1573 /*
1574 * If dirty pages are scanned that are not queued for IO, it
1575 * implies that flushers are not keeping up. In this case, flag
1576 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
b738d764 1577 * pages from reclaim context.
b1a6f21e
MG
1578 */
1579 if (nr_unqueued_dirty == nr_taken)
1580 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1581
1582 /*
b738d764
LT
1583 * If kswapd scans pages marked marked for immediate
1584 * reclaim and under writeback (nr_immediate), it implies
1585 * that pages are cycling through the LRU faster than
b1a6f21e
MG
1586 * they are written so also forcibly stall.
1587 */
b738d764 1588 if (nr_immediate && current_may_throttle())
b1a6f21e 1589 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1590 }
d43006d5 1591
8e950282
MG
1592 /*
1593 * Stall direct reclaim for IO completions if underlying BDIs or zone
1594 * is congested. Allow kswapd to continue until it starts encountering
1595 * unqueued dirty pages or cycling through the LRU too quickly.
1596 */
399ba0b9
N
1597 if (!sc->hibernation_mode && !current_is_kswapd() &&
1598 current_may_throttle())
8e950282
MG
1599 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1600
e11da5b4
MG
1601 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1602 zone_idx(zone),
1603 nr_scanned, nr_reclaimed,
9e3b2f8c 1604 sc->priority,
23b9da55 1605 trace_shrink_flags(file));
05ff5137 1606 return nr_reclaimed;
1da177e4
LT
1607}
1608
1609/*
1610 * This moves pages from the active list to the inactive list.
1611 *
1612 * We move them the other way if the page is referenced by one or more
1613 * processes, from rmap.
1614 *
1615 * If the pages are mostly unmapped, the processing is fast and it is
1616 * appropriate to hold zone->lru_lock across the whole operation. But if
1617 * the pages are mapped, the processing is slow (page_referenced()) so we
1618 * should drop zone->lru_lock around each page. It's impossible to balance
1619 * this, so instead we remove the pages from the LRU while processing them.
1620 * It is safe to rely on PG_active against the non-LRU pages in here because
1621 * nobody will play with that bit on a non-LRU page.
1622 *
1623 * The downside is that we have to touch page->_count against each page.
1624 * But we had to alter page->flags anyway.
1625 */
1cfb419b 1626
fa9add64 1627static void move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1628 struct list_head *list,
2bcf8879 1629 struct list_head *pages_to_free,
3eb4140f
WF
1630 enum lru_list lru)
1631{
fa9add64 1632 struct zone *zone = lruvec_zone(lruvec);
3eb4140f 1633 unsigned long pgmoved = 0;
3eb4140f 1634 struct page *page;
fa9add64 1635 int nr_pages;
3eb4140f 1636
3eb4140f
WF
1637 while (!list_empty(list)) {
1638 page = lru_to_page(list);
fa9add64 1639 lruvec = mem_cgroup_page_lruvec(page, zone);
3eb4140f 1640
309381fe 1641 VM_BUG_ON_PAGE(PageLRU(page), page);
3eb4140f
WF
1642 SetPageLRU(page);
1643
fa9add64
HD
1644 nr_pages = hpage_nr_pages(page);
1645 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
925b7673 1646 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1647 pgmoved += nr_pages;
3eb4140f 1648
2bcf8879
HD
1649 if (put_page_testzero(page)) {
1650 __ClearPageLRU(page);
1651 __ClearPageActive(page);
fa9add64 1652 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1653
1654 if (unlikely(PageCompound(page))) {
1655 spin_unlock_irq(&zone->lru_lock);
1656 (*get_compound_page_dtor(page))(page);
1657 spin_lock_irq(&zone->lru_lock);
1658 } else
1659 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1660 }
1661 }
1662 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1663 if (!is_active_lru(lru))
1664 __count_vm_events(PGDEACTIVATE, pgmoved);
1665}
1cfb419b 1666
f626012d 1667static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1668 struct lruvec *lruvec,
f16015fb 1669 struct scan_control *sc,
9e3b2f8c 1670 enum lru_list lru)
1da177e4 1671{
44c241f1 1672 unsigned long nr_taken;
f626012d 1673 unsigned long nr_scanned;
6fe6b7e3 1674 unsigned long vm_flags;
1da177e4 1675 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1676 LIST_HEAD(l_active);
b69408e8 1677 LIST_HEAD(l_inactive);
1da177e4 1678 struct page *page;
1a93be0e 1679 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
44c241f1 1680 unsigned long nr_rotated = 0;
f3fd4a61 1681 isolate_mode_t isolate_mode = 0;
3cb99451 1682 int file = is_file_lru(lru);
1a93be0e 1683 struct zone *zone = lruvec_zone(lruvec);
1da177e4
LT
1684
1685 lru_add_drain();
f80c0673
MK
1686
1687 if (!sc->may_unmap)
61317289 1688 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1689 if (!sc->may_writepage)
61317289 1690 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1691
1da177e4 1692 spin_lock_irq(&zone->lru_lock);
925b7673 1693
5dc35979
KK
1694 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1695 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1696 if (global_reclaim(sc))
f626012d 1697 zone->pages_scanned += nr_scanned;
89b5fae5 1698
b7c46d15 1699 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1700
f626012d 1701 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
3cb99451 1702 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
a731286d 1703 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1704 spin_unlock_irq(&zone->lru_lock);
1705
1da177e4
LT
1706 while (!list_empty(&l_hold)) {
1707 cond_resched();
1708 page = lru_to_page(&l_hold);
1709 list_del(&page->lru);
7e9cd484 1710
39b5f29a 1711 if (unlikely(!page_evictable(page))) {
894bc310
LS
1712 putback_lru_page(page);
1713 continue;
1714 }
1715
cc715d99
MG
1716 if (unlikely(buffer_heads_over_limit)) {
1717 if (page_has_private(page) && trylock_page(page)) {
1718 if (page_has_private(page))
1719 try_to_release_page(page, 0);
1720 unlock_page(page);
1721 }
1722 }
1723
c3ac9a8a
JW
1724 if (page_referenced(page, 0, sc->target_mem_cgroup,
1725 &vm_flags)) {
9992af10 1726 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1727 /*
1728 * Identify referenced, file-backed active pages and
1729 * give them one more trip around the active list. So
1730 * that executable code get better chances to stay in
1731 * memory under moderate memory pressure. Anon pages
1732 * are not likely to be evicted by use-once streaming
1733 * IO, plus JVM can create lots of anon VM_EXEC pages,
1734 * so we ignore them here.
1735 */
41e20983 1736 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1737 list_add(&page->lru, &l_active);
1738 continue;
1739 }
1740 }
7e9cd484 1741
5205e56e 1742 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1743 list_add(&page->lru, &l_inactive);
1744 }
1745
b555749a 1746 /*
8cab4754 1747 * Move pages back to the lru list.
b555749a 1748 */
2a1dc509 1749 spin_lock_irq(&zone->lru_lock);
556adecb 1750 /*
8cab4754
WF
1751 * Count referenced pages from currently used mappings as rotated,
1752 * even though only some of them are actually re-activated. This
1753 * helps balance scan pressure between file and anonymous pages in
1754 * get_scan_ratio.
7e9cd484 1755 */
b7c46d15 1756 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1757
fa9add64
HD
1758 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1759 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
a731286d 1760 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1761 spin_unlock_irq(&zone->lru_lock);
2bcf8879 1762
b745bc85 1763 free_hot_cold_page_list(&l_hold, true);
1da177e4
LT
1764}
1765
74e3f3c3 1766#ifdef CONFIG_SWAP
14797e23 1767static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1768{
1769 unsigned long active, inactive;
1770
1771 active = zone_page_state(zone, NR_ACTIVE_ANON);
1772 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1773
1774 if (inactive * zone->inactive_ratio < active)
1775 return 1;
1776
1777 return 0;
1778}
1779
14797e23
KM
1780/**
1781 * inactive_anon_is_low - check if anonymous pages need to be deactivated
c56d5c7d 1782 * @lruvec: LRU vector to check
14797e23
KM
1783 *
1784 * Returns true if the zone does not have enough inactive anon pages,
1785 * meaning some active anon pages need to be deactivated.
1786 */
c56d5c7d 1787static int inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1788{
74e3f3c3
MK
1789 /*
1790 * If we don't have swap space, anonymous page deactivation
1791 * is pointless.
1792 */
1793 if (!total_swap_pages)
1794 return 0;
1795
c3c787e8 1796 if (!mem_cgroup_disabled())
c56d5c7d 1797 return mem_cgroup_inactive_anon_is_low(lruvec);
f16015fb 1798
c56d5c7d 1799 return inactive_anon_is_low_global(lruvec_zone(lruvec));
14797e23 1800}
74e3f3c3 1801#else
c56d5c7d 1802static inline int inactive_anon_is_low(struct lruvec *lruvec)
74e3f3c3
MK
1803{
1804 return 0;
1805}
1806#endif
14797e23 1807
56e49d21
RR
1808/**
1809 * inactive_file_is_low - check if file pages need to be deactivated
c56d5c7d 1810 * @lruvec: LRU vector to check
56e49d21
RR
1811 *
1812 * When the system is doing streaming IO, memory pressure here
1813 * ensures that active file pages get deactivated, until more
1814 * than half of the file pages are on the inactive list.
1815 *
1816 * Once we get to that situation, protect the system's working
1817 * set from being evicted by disabling active file page aging.
1818 *
1819 * This uses a different ratio than the anonymous pages, because
1820 * the page cache uses a use-once replacement algorithm.
1821 */
c56d5c7d 1822static int inactive_file_is_low(struct lruvec *lruvec)
56e49d21 1823{
e3790144
JW
1824 unsigned long inactive;
1825 unsigned long active;
1826
1827 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1828 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21 1829
e3790144 1830 return active > inactive;
56e49d21
RR
1831}
1832
75b00af7 1833static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
b39415b2 1834{
75b00af7 1835 if (is_file_lru(lru))
c56d5c7d 1836 return inactive_file_is_low(lruvec);
b39415b2 1837 else
c56d5c7d 1838 return inactive_anon_is_low(lruvec);
b39415b2
RR
1839}
1840
4f98a2fe 1841static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 1842 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 1843{
b39415b2 1844 if (is_active_lru(lru)) {
75b00af7 1845 if (inactive_list_is_low(lruvec, lru))
1a93be0e 1846 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
1847 return 0;
1848 }
1849
1a93be0e 1850 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
1851}
1852
9a265114
JW
1853enum scan_balance {
1854 SCAN_EQUAL,
1855 SCAN_FRACT,
1856 SCAN_ANON,
1857 SCAN_FILE,
1858};
1859
4f98a2fe
RR
1860/*
1861 * Determine how aggressively the anon and file LRU lists should be
1862 * scanned. The relative value of each set of LRU lists is determined
1863 * by looking at the fraction of the pages scanned we did rotate back
1864 * onto the active list instead of evict.
1865 *
be7bd59d
WL
1866 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1867 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 1868 */
02695175
JW
1869static void get_scan_count(struct lruvec *lruvec, int swappiness,
1870 struct scan_control *sc, unsigned long *nr)
4f98a2fe 1871{
9a265114
JW
1872 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1873 u64 fraction[2];
1874 u64 denominator = 0; /* gcc */
1875 struct zone *zone = lruvec_zone(lruvec);
4f98a2fe 1876 unsigned long anon_prio, file_prio;
9a265114 1877 enum scan_balance scan_balance;
0bf1457f 1878 unsigned long anon, file;
9a265114 1879 bool force_scan = false;
4f98a2fe 1880 unsigned long ap, fp;
4111304d 1881 enum lru_list lru;
6f04f48d
SS
1882 bool some_scanned;
1883 int pass;
246e87a9 1884
f11c0ca5
JW
1885 /*
1886 * If the zone or memcg is small, nr[l] can be 0. This
1887 * results in no scanning on this priority and a potential
1888 * priority drop. Global direct reclaim can go to the next
1889 * zone and tends to have no problems. Global kswapd is for
1890 * zone balancing and it needs to scan a minimum amount. When
1891 * reclaiming for a memcg, a priority drop can cause high
1892 * latencies, so it's better to scan a minimum amount there as
1893 * well.
1894 */
6e543d57 1895 if (current_is_kswapd() && !zone_reclaimable(zone))
a4d3e9e7 1896 force_scan = true;
89b5fae5 1897 if (!global_reclaim(sc))
a4d3e9e7 1898 force_scan = true;
76a33fc3
SL
1899
1900 /* If we have no swap space, do not bother scanning anon pages. */
ec8acf20 1901 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
9a265114 1902 scan_balance = SCAN_FILE;
76a33fc3
SL
1903 goto out;
1904 }
4f98a2fe 1905
10316b31
JW
1906 /*
1907 * Global reclaim will swap to prevent OOM even with no
1908 * swappiness, but memcg users want to use this knob to
1909 * disable swapping for individual groups completely when
1910 * using the memory controller's swap limit feature would be
1911 * too expensive.
1912 */
02695175 1913 if (!global_reclaim(sc) && !swappiness) {
9a265114 1914 scan_balance = SCAN_FILE;
10316b31
JW
1915 goto out;
1916 }
1917
1918 /*
1919 * Do not apply any pressure balancing cleverness when the
1920 * system is close to OOM, scan both anon and file equally
1921 * (unless the swappiness setting disagrees with swapping).
1922 */
02695175 1923 if (!sc->priority && swappiness) {
9a265114 1924 scan_balance = SCAN_EQUAL;
10316b31
JW
1925 goto out;
1926 }
1927
4d7dcca2
HD
1928 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1929 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1930 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1931 get_lru_size(lruvec, LRU_INACTIVE_FILE);
a4d3e9e7 1932
62376251
JW
1933 /*
1934 * Prevent the reclaimer from falling into the cache trap: as
1935 * cache pages start out inactive, every cache fault will tip
1936 * the scan balance towards the file LRU. And as the file LRU
1937 * shrinks, so does the window for rotation from references.
1938 * This means we have a runaway feedback loop where a tiny
1939 * thrashing file LRU becomes infinitely more attractive than
1940 * anon pages. Try to detect this based on file LRU size.
1941 */
1942 if (global_reclaim(sc)) {
1943 unsigned long free = zone_page_state(zone, NR_FREE_PAGES);
1944
1945 if (unlikely(file + free <= high_wmark_pages(zone))) {
1946 scan_balance = SCAN_ANON;
1947 goto out;
1948 }
1949 }
1950
7c5bd705
JW
1951 /*
1952 * There is enough inactive page cache, do not reclaim
1953 * anything from the anonymous working set right now.
1954 */
1955 if (!inactive_file_is_low(lruvec)) {
9a265114 1956 scan_balance = SCAN_FILE;
7c5bd705
JW
1957 goto out;
1958 }
1959
9a265114
JW
1960 scan_balance = SCAN_FRACT;
1961
58c37f6e
KM
1962 /*
1963 * With swappiness at 100, anonymous and file have the same priority.
1964 * This scanning priority is essentially the inverse of IO cost.
1965 */
02695175 1966 anon_prio = swappiness;
75b00af7 1967 file_prio = 200 - anon_prio;
58c37f6e 1968
4f98a2fe
RR
1969 /*
1970 * OK, so we have swap space and a fair amount of page cache
1971 * pages. We use the recently rotated / recently scanned
1972 * ratios to determine how valuable each cache is.
1973 *
1974 * Because workloads change over time (and to avoid overflow)
1975 * we keep these statistics as a floating average, which ends
1976 * up weighing recent references more than old ones.
1977 *
1978 * anon in [0], file in [1]
1979 */
90126375 1980 spin_lock_irq(&zone->lru_lock);
6e901571 1981 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1982 reclaim_stat->recent_scanned[0] /= 2;
1983 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1984 }
1985
6e901571 1986 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1987 reclaim_stat->recent_scanned[1] /= 2;
1988 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1989 }
1990
4f98a2fe 1991 /*
00d8089c
RR
1992 * The amount of pressure on anon vs file pages is inversely
1993 * proportional to the fraction of recently scanned pages on
1994 * each list that were recently referenced and in active use.
4f98a2fe 1995 */
fe35004f 1996 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 1997 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1998
fe35004f 1999 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2000 fp /= reclaim_stat->recent_rotated[1] + 1;
90126375 2001 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 2002
76a33fc3
SL
2003 fraction[0] = ap;
2004 fraction[1] = fp;
2005 denominator = ap + fp + 1;
2006out:
6f04f48d
SS
2007 some_scanned = false;
2008 /* Only use force_scan on second pass. */
2009 for (pass = 0; !some_scanned && pass < 2; pass++) {
2010 for_each_evictable_lru(lru) {
2011 int file = is_file_lru(lru);
2012 unsigned long size;
2013 unsigned long scan;
6e08a369 2014
6f04f48d
SS
2015 size = get_lru_size(lruvec, lru);
2016 scan = size >> sc->priority;
9a265114 2017
6f04f48d
SS
2018 if (!scan && pass && force_scan)
2019 scan = min(size, SWAP_CLUSTER_MAX);
9a265114 2020
6f04f48d
SS
2021 switch (scan_balance) {
2022 case SCAN_EQUAL:
2023 /* Scan lists relative to size */
2024 break;
2025 case SCAN_FRACT:
2026 /*
2027 * Scan types proportional to swappiness and
2028 * their relative recent reclaim efficiency.
2029 */
2030 scan = div64_u64(scan * fraction[file],
2031 denominator);
2032 break;
2033 case SCAN_FILE:
2034 case SCAN_ANON:
2035 /* Scan one type exclusively */
2036 if ((scan_balance == SCAN_FILE) != file)
2037 scan = 0;
2038 break;
2039 default:
2040 /* Look ma, no brain */
2041 BUG();
2042 }
2043 nr[lru] = scan;
9a265114 2044 /*
6f04f48d
SS
2045 * Skip the second pass and don't force_scan,
2046 * if we found something to scan.
9a265114 2047 */
6f04f48d 2048 some_scanned |= !!scan;
9a265114 2049 }
76a33fc3 2050 }
6e08a369 2051}
4f98a2fe 2052
9b4f98cd
JW
2053/*
2054 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2055 */
02695175
JW
2056static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
2057 struct scan_control *sc)
9b4f98cd
JW
2058{
2059 unsigned long nr[NR_LRU_LISTS];
e82e0561 2060 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2061 unsigned long nr_to_scan;
2062 enum lru_list lru;
2063 unsigned long nr_reclaimed = 0;
2064 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2065 struct blk_plug plug;
1a501907 2066 bool scan_adjusted;
9b4f98cd 2067
02695175 2068 get_scan_count(lruvec, swappiness, sc, nr);
9b4f98cd 2069
e82e0561
MG
2070 /* Record the original scan target for proportional adjustments later */
2071 memcpy(targets, nr, sizeof(nr));
2072
1a501907
MG
2073 /*
2074 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2075 * event that can occur when there is little memory pressure e.g.
2076 * multiple streaming readers/writers. Hence, we do not abort scanning
2077 * when the requested number of pages are reclaimed when scanning at
2078 * DEF_PRIORITY on the assumption that the fact we are direct
2079 * reclaiming implies that kswapd is not keeping up and it is best to
2080 * do a batch of work at once. For memcg reclaim one check is made to
2081 * abort proportional reclaim if either the file or anon lru has already
2082 * dropped to zero at the first pass.
2083 */
2084 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2085 sc->priority == DEF_PRIORITY);
2086
9b4f98cd
JW
2087 blk_start_plug(&plug);
2088 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2089 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2090 unsigned long nr_anon, nr_file, percentage;
2091 unsigned long nr_scanned;
2092
9b4f98cd
JW
2093 for_each_evictable_lru(lru) {
2094 if (nr[lru]) {
2095 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2096 nr[lru] -= nr_to_scan;
2097
2098 nr_reclaimed += shrink_list(lru, nr_to_scan,
2099 lruvec, sc);
2100 }
2101 }
e82e0561
MG
2102
2103 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2104 continue;
2105
e82e0561
MG
2106 /*
2107 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2108 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2109 * proportionally what was requested by get_scan_count(). We
2110 * stop reclaiming one LRU and reduce the amount scanning
2111 * proportional to the original scan target.
2112 */
2113 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2114 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2115
1a501907
MG
2116 /*
2117 * It's just vindictive to attack the larger once the smaller
2118 * has gone to zero. And given the way we stop scanning the
2119 * smaller below, this makes sure that we only make one nudge
2120 * towards proportionality once we've got nr_to_reclaim.
2121 */
2122 if (!nr_file || !nr_anon)
2123 break;
2124
e82e0561
MG
2125 if (nr_file > nr_anon) {
2126 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2127 targets[LRU_ACTIVE_ANON] + 1;
2128 lru = LRU_BASE;
2129 percentage = nr_anon * 100 / scan_target;
2130 } else {
2131 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2132 targets[LRU_ACTIVE_FILE] + 1;
2133 lru = LRU_FILE;
2134 percentage = nr_file * 100 / scan_target;
2135 }
2136
2137 /* Stop scanning the smaller of the LRU */
2138 nr[lru] = 0;
2139 nr[lru + LRU_ACTIVE] = 0;
2140
2141 /*
2142 * Recalculate the other LRU scan count based on its original
2143 * scan target and the percentage scanning already complete
2144 */
2145 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2146 nr_scanned = targets[lru] - nr[lru];
2147 nr[lru] = targets[lru] * (100 - percentage) / 100;
2148 nr[lru] -= min(nr[lru], nr_scanned);
2149
2150 lru += LRU_ACTIVE;
2151 nr_scanned = targets[lru] - nr[lru];
2152 nr[lru] = targets[lru] * (100 - percentage) / 100;
2153 nr[lru] -= min(nr[lru], nr_scanned);
2154
2155 scan_adjusted = true;
9b4f98cd
JW
2156 }
2157 blk_finish_plug(&plug);
2158 sc->nr_reclaimed += nr_reclaimed;
2159
2160 /*
2161 * Even if we did not try to evict anon pages at all, we want to
2162 * rebalance the anon lru active/inactive ratio.
2163 */
2164 if (inactive_anon_is_low(lruvec))
2165 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2166 sc, LRU_ACTIVE_ANON);
2167
2168 throttle_vm_writeout(sc->gfp_mask);
2169}
2170
23b9da55 2171/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2172static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2173{
d84da3f9 2174 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2175 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2176 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2177 return true;
2178
2179 return false;
2180}
2181
3e7d3449 2182/*
23b9da55
MG
2183 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2184 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2185 * true if more pages should be reclaimed such that when the page allocator
2186 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2187 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2188 */
9b4f98cd 2189static inline bool should_continue_reclaim(struct zone *zone,
3e7d3449
MG
2190 unsigned long nr_reclaimed,
2191 unsigned long nr_scanned,
2192 struct scan_control *sc)
2193{
2194 unsigned long pages_for_compaction;
2195 unsigned long inactive_lru_pages;
2196
2197 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2198 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2199 return false;
2200
2876592f
MG
2201 /* Consider stopping depending on scan and reclaim activity */
2202 if (sc->gfp_mask & __GFP_REPEAT) {
2203 /*
2204 * For __GFP_REPEAT allocations, stop reclaiming if the
2205 * full LRU list has been scanned and we are still failing
2206 * to reclaim pages. This full LRU scan is potentially
2207 * expensive but a __GFP_REPEAT caller really wants to succeed
2208 */
2209 if (!nr_reclaimed && !nr_scanned)
2210 return false;
2211 } else {
2212 /*
2213 * For non-__GFP_REPEAT allocations which can presumably
2214 * fail without consequence, stop if we failed to reclaim
2215 * any pages from the last SWAP_CLUSTER_MAX number of
2216 * pages that were scanned. This will return to the
2217 * caller faster at the risk reclaim/compaction and
2218 * the resulting allocation attempt fails
2219 */
2220 if (!nr_reclaimed)
2221 return false;
2222 }
3e7d3449
MG
2223
2224 /*
2225 * If we have not reclaimed enough pages for compaction and the
2226 * inactive lists are large enough, continue reclaiming
2227 */
2228 pages_for_compaction = (2UL << sc->order);
9b4f98cd 2229 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
ec8acf20 2230 if (get_nr_swap_pages() > 0)
9b4f98cd 2231 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
3e7d3449
MG
2232 if (sc->nr_reclaimed < pages_for_compaction &&
2233 inactive_lru_pages > pages_for_compaction)
2234 return true;
2235
2236 /* If compaction would go ahead or the allocation would succeed, stop */
9b4f98cd 2237 switch (compaction_suitable(zone, sc->order)) {
3e7d3449
MG
2238 case COMPACT_PARTIAL:
2239 case COMPACT_CONTINUE:
2240 return false;
2241 default:
2242 return true;
2243 }
2244}
2245
2344d7e4 2246static bool shrink_zone(struct zone *zone, struct scan_control *sc)
1da177e4 2247{
f0fdc5e8 2248 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2249 bool reclaimable = false;
1da177e4 2250
9b4f98cd
JW
2251 do {
2252 struct mem_cgroup *root = sc->target_mem_cgroup;
2253 struct mem_cgroup_reclaim_cookie reclaim = {
2254 .zone = zone,
2255 .priority = sc->priority,
2256 };
694fbc0f 2257 struct mem_cgroup *memcg;
3e7d3449 2258
9b4f98cd
JW
2259 nr_reclaimed = sc->nr_reclaimed;
2260 nr_scanned = sc->nr_scanned;
1da177e4 2261
694fbc0f
AM
2262 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2263 do {
9b4f98cd 2264 struct lruvec *lruvec;
02695175 2265 int swappiness;
5660048c 2266
9b4f98cd 2267 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
02695175 2268 swappiness = mem_cgroup_swappiness(memcg);
f9be23d6 2269
02695175 2270 shrink_lruvec(lruvec, swappiness, sc);
f16015fb 2271
9b4f98cd 2272 /*
a394cb8e
MH
2273 * Direct reclaim and kswapd have to scan all memory
2274 * cgroups to fulfill the overall scan target for the
9b4f98cd 2275 * zone.
a394cb8e
MH
2276 *
2277 * Limit reclaim, on the other hand, only cares about
2278 * nr_to_reclaim pages to be reclaimed and it will
2279 * retry with decreasing priority if one round over the
2280 * whole hierarchy is not sufficient.
9b4f98cd 2281 */
a394cb8e
MH
2282 if (!global_reclaim(sc) &&
2283 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2284 mem_cgroup_iter_break(root, memcg);
2285 break;
2286 }
694fbc0f
AM
2287 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2288 } while (memcg);
70ddf637
AV
2289
2290 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2291 sc->nr_scanned - nr_scanned,
2292 sc->nr_reclaimed - nr_reclaimed);
2293
2344d7e4
JW
2294 if (sc->nr_reclaimed - nr_reclaimed)
2295 reclaimable = true;
2296
9b4f98cd
JW
2297 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2298 sc->nr_scanned - nr_scanned, sc));
2344d7e4
JW
2299
2300 return reclaimable;
f16015fb
JW
2301}
2302
fe4b1b24 2303/* Returns true if compaction should go ahead for a high-order request */
0b06496a 2304static inline bool compaction_ready(struct zone *zone, int order)
fe4b1b24
MG
2305{
2306 unsigned long balance_gap, watermark;
2307 bool watermark_ok;
2308
fe4b1b24
MG
2309 /*
2310 * Compaction takes time to run and there are potentially other
2311 * callers using the pages just freed. Continue reclaiming until
2312 * there is a buffer of free pages available to give compaction
2313 * a reasonable chance of completing and allocating the page
2314 */
4be89a34
JZ
2315 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2316 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
0b06496a 2317 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
fe4b1b24
MG
2318 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2319
2320 /*
2321 * If compaction is deferred, reclaim up to a point where
2322 * compaction will have a chance of success when re-enabled
2323 */
0b06496a 2324 if (compaction_deferred(zone, order))
fe4b1b24
MG
2325 return watermark_ok;
2326
2327 /* If compaction is not ready to start, keep reclaiming */
0b06496a 2328 if (!compaction_suitable(zone, order))
fe4b1b24
MG
2329 return false;
2330
2331 return watermark_ok;
2332}
2333
1da177e4
LT
2334/*
2335 * This is the direct reclaim path, for page-allocating processes. We only
2336 * try to reclaim pages from zones which will satisfy the caller's allocation
2337 * request.
2338 *
41858966
MG
2339 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2340 * Because:
1da177e4
LT
2341 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2342 * allocation or
41858966
MG
2343 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2344 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2345 * zone defense algorithm.
1da177e4 2346 *
1da177e4
LT
2347 * If a zone is deemed to be full of pinned pages then just give it a light
2348 * scan then give up on it.
2344d7e4
JW
2349 *
2350 * Returns true if a zone was reclaimable.
1da177e4 2351 */
2344d7e4 2352static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2353{
dd1a239f 2354 struct zoneref *z;
54a6eb5c 2355 struct zone *zone;
0608f43d
AM
2356 unsigned long nr_soft_reclaimed;
2357 unsigned long nr_soft_scanned;
65ec02cb 2358 unsigned long lru_pages = 0;
65ec02cb 2359 struct reclaim_state *reclaim_state = current->reclaim_state;
619d0d76 2360 gfp_t orig_mask;
3115cd91
VD
2361 struct shrink_control shrink = {
2362 .gfp_mask = sc->gfp_mask,
2363 };
9bbc04ee 2364 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2344d7e4 2365 bool reclaimable = false;
1cfb419b 2366
cc715d99
MG
2367 /*
2368 * If the number of buffer_heads in the machine exceeds the maximum
2369 * allowed level, force direct reclaim to scan the highmem zone as
2370 * highmem pages could be pinning lowmem pages storing buffer_heads
2371 */
619d0d76 2372 orig_mask = sc->gfp_mask;
cc715d99
MG
2373 if (buffer_heads_over_limit)
2374 sc->gfp_mask |= __GFP_HIGHMEM;
2375
3115cd91 2376 nodes_clear(shrink.nodes_to_scan);
65ec02cb 2377
d4debc66
MG
2378 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2379 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 2380 if (!populated_zone(zone))
1da177e4 2381 continue;
1cfb419b
KH
2382 /*
2383 * Take care memory controller reclaiming has small influence
2384 * to global LRU.
2385 */
89b5fae5 2386 if (global_reclaim(sc)) {
1cfb419b
KH
2387 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2388 continue;
65ec02cb
VD
2389
2390 lru_pages += zone_reclaimable_pages(zone);
3115cd91 2391 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
65ec02cb 2392
6e543d57
LD
2393 if (sc->priority != DEF_PRIORITY &&
2394 !zone_reclaimable(zone))
1cfb419b 2395 continue; /* Let kswapd poll it */
0b06496a
JW
2396
2397 /*
2398 * If we already have plenty of memory free for
2399 * compaction in this zone, don't free any more.
2400 * Even though compaction is invoked for any
2401 * non-zero order, only frequent costly order
2402 * reclamation is disruptive enough to become a
2403 * noticeable problem, like transparent huge
2404 * page allocations.
2405 */
2406 if (IS_ENABLED(CONFIG_COMPACTION) &&
2407 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2408 zonelist_zone_idx(z) <= requested_highidx &&
2409 compaction_ready(zone, sc->order)) {
2410 sc->compaction_ready = true;
2411 continue;
e0887c19 2412 }
0b06496a 2413
0608f43d
AM
2414 /*
2415 * This steals pages from memory cgroups over softlimit
2416 * and returns the number of reclaimed pages and
2417 * scanned pages. This works for global memory pressure
2418 * and balancing, not for a memcg's limit.
2419 */
2420 nr_soft_scanned = 0;
2421 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2422 sc->order, sc->gfp_mask,
2423 &nr_soft_scanned);
2424 sc->nr_reclaimed += nr_soft_reclaimed;
2425 sc->nr_scanned += nr_soft_scanned;
2344d7e4
JW
2426 if (nr_soft_reclaimed)
2427 reclaimable = true;
ac34a1a3 2428 /* need some check for avoid more shrink_zone() */
1cfb419b 2429 }
408d8544 2430
2344d7e4
JW
2431 if (shrink_zone(zone, sc))
2432 reclaimable = true;
2433
2434 if (global_reclaim(sc) &&
2435 !reclaimable && zone_reclaimable(zone))
2436 reclaimable = true;
1da177e4 2437 }
e0c23279 2438
65ec02cb
VD
2439 /*
2440 * Don't shrink slabs when reclaiming memory from over limit cgroups
2441 * but do shrink slab at least once when aborting reclaim for
2442 * compaction to avoid unevenly scanning file/anon LRU pages over slab
2443 * pages.
2444 */
2445 if (global_reclaim(sc)) {
3115cd91 2446 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
65ec02cb
VD
2447 if (reclaim_state) {
2448 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2449 reclaim_state->reclaimed_slab = 0;
2450 }
2451 }
2452
619d0d76
WY
2453 /*
2454 * Restore to original mask to avoid the impact on the caller if we
2455 * promoted it to __GFP_HIGHMEM.
2456 */
2457 sc->gfp_mask = orig_mask;
d1908362 2458
2344d7e4 2459 return reclaimable;
1da177e4 2460}
4f98a2fe 2461
1da177e4
LT
2462/*
2463 * This is the main entry point to direct page reclaim.
2464 *
2465 * If a full scan of the inactive list fails to free enough memory then we
2466 * are "out of memory" and something needs to be killed.
2467 *
2468 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2469 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2470 * caller can't do much about. We kick the writeback threads and take explicit
2471 * naps in the hope that some of these pages can be written. But if the
2472 * allocating task holds filesystem locks which prevent writeout this might not
2473 * work, and the allocation attempt will fail.
a41f24ea
NA
2474 *
2475 * returns: 0, if no pages reclaimed
2476 * else, the number of pages reclaimed
1da177e4 2477 */
dac1d27b 2478static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 2479 struct scan_control *sc)
1da177e4 2480{
69e05944 2481 unsigned long total_scanned = 0;
22fba335 2482 unsigned long writeback_threshold;
2344d7e4 2483 bool zones_reclaimable;
1da177e4 2484
873b4771
KK
2485 delayacct_freepages_start();
2486
89b5fae5 2487 if (global_reclaim(sc))
1cfb419b 2488 count_vm_event(ALLOCSTALL);
1da177e4 2489
9e3b2f8c 2490 do {
70ddf637
AV
2491 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2492 sc->priority);
66e1707b 2493 sc->nr_scanned = 0;
2344d7e4 2494 zones_reclaimable = shrink_zones(zonelist, sc);
c6a8a8c5 2495
66e1707b 2496 total_scanned += sc->nr_scanned;
bb21c7ce 2497 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
2498 break;
2499
2500 if (sc->compaction_ready)
2501 break;
1da177e4 2502
0e50ce3b
MK
2503 /*
2504 * If we're getting trouble reclaiming, start doing
2505 * writepage even in laptop mode.
2506 */
2507 if (sc->priority < DEF_PRIORITY - 2)
2508 sc->may_writepage = 1;
2509
1da177e4
LT
2510 /*
2511 * Try to write back as many pages as we just scanned. This
2512 * tends to cause slow streaming writers to write data to the
2513 * disk smoothly, at the dirtying rate, which is nice. But
2514 * that's undesirable in laptop mode, where we *want* lumpy
2515 * writeout. So in laptop mode, write out the whole world.
2516 */
22fba335
KM
2517 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2518 if (total_scanned > writeback_threshold) {
0e175a18
CW
2519 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2520 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2521 sc->may_writepage = 1;
1da177e4 2522 }
0b06496a 2523 } while (--sc->priority >= 0);
bb21c7ce 2524
873b4771
KK
2525 delayacct_freepages_end();
2526
bb21c7ce
KM
2527 if (sc->nr_reclaimed)
2528 return sc->nr_reclaimed;
2529
0cee34fd 2530 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 2531 if (sc->compaction_ready)
7335084d
MG
2532 return 1;
2533
2344d7e4
JW
2534 /* Any of the zones still reclaimable? Don't OOM. */
2535 if (zones_reclaimable)
bb21c7ce
KM
2536 return 1;
2537
2538 return 0;
1da177e4
LT
2539}
2540
5515061d
MG
2541static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2542{
2543 struct zone *zone;
2544 unsigned long pfmemalloc_reserve = 0;
2545 unsigned long free_pages = 0;
2546 int i;
2547 bool wmark_ok;
2548
2549 for (i = 0; i <= ZONE_NORMAL; i++) {
2550 zone = &pgdat->node_zones[i];
675becce
MG
2551 if (!populated_zone(zone))
2552 continue;
2553
5515061d
MG
2554 pfmemalloc_reserve += min_wmark_pages(zone);
2555 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2556 }
2557
675becce
MG
2558 /* If there are no reserves (unexpected config) then do not throttle */
2559 if (!pfmemalloc_reserve)
2560 return true;
2561
5515061d
MG
2562 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2563
2564 /* kswapd must be awake if processes are being throttled */
2565 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2566 pgdat->classzone_idx = min(pgdat->classzone_idx,
2567 (enum zone_type)ZONE_NORMAL);
2568 wake_up_interruptible(&pgdat->kswapd_wait);
2569 }
2570
2571 return wmark_ok;
2572}
2573
2574/*
2575 * Throttle direct reclaimers if backing storage is backed by the network
2576 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2577 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2578 * when the low watermark is reached.
2579 *
2580 * Returns true if a fatal signal was delivered during throttling. If this
2581 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2582 */
50694c28 2583static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2584 nodemask_t *nodemask)
2585{
675becce 2586 struct zoneref *z;
5515061d 2587 struct zone *zone;
675becce 2588 pg_data_t *pgdat = NULL;
5515061d
MG
2589
2590 /*
2591 * Kernel threads should not be throttled as they may be indirectly
2592 * responsible for cleaning pages necessary for reclaim to make forward
2593 * progress. kjournald for example may enter direct reclaim while
2594 * committing a transaction where throttling it could forcing other
2595 * processes to block on log_wait_commit().
2596 */
2597 if (current->flags & PF_KTHREAD)
50694c28
MG
2598 goto out;
2599
2600 /*
2601 * If a fatal signal is pending, this process should not throttle.
2602 * It should return quickly so it can exit and free its memory
2603 */
2604 if (fatal_signal_pending(current))
2605 goto out;
5515061d 2606
675becce
MG
2607 /*
2608 * Check if the pfmemalloc reserves are ok by finding the first node
2609 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2610 * GFP_KERNEL will be required for allocating network buffers when
2611 * swapping over the network so ZONE_HIGHMEM is unusable.
2612 *
2613 * Throttling is based on the first usable node and throttled processes
2614 * wait on a queue until kswapd makes progress and wakes them. There
2615 * is an affinity then between processes waking up and where reclaim
2616 * progress has been made assuming the process wakes on the same node.
2617 * More importantly, processes running on remote nodes will not compete
2618 * for remote pfmemalloc reserves and processes on different nodes
2619 * should make reasonable progress.
2620 */
2621 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2622 gfp_mask, nodemask) {
2623 if (zone_idx(zone) > ZONE_NORMAL)
2624 continue;
2625
2626 /* Throttle based on the first usable node */
2627 pgdat = zone->zone_pgdat;
2628 if (pfmemalloc_watermark_ok(pgdat))
2629 goto out;
2630 break;
2631 }
2632
2633 /* If no zone was usable by the allocation flags then do not throttle */
2634 if (!pgdat)
50694c28 2635 goto out;
5515061d 2636
68243e76
MG
2637 /* Account for the throttling */
2638 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2639
5515061d
MG
2640 /*
2641 * If the caller cannot enter the filesystem, it's possible that it
2642 * is due to the caller holding an FS lock or performing a journal
2643 * transaction in the case of a filesystem like ext[3|4]. In this case,
2644 * it is not safe to block on pfmemalloc_wait as kswapd could be
2645 * blocked waiting on the same lock. Instead, throttle for up to a
2646 * second before continuing.
2647 */
2648 if (!(gfp_mask & __GFP_FS)) {
2649 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2650 pfmemalloc_watermark_ok(pgdat), HZ);
50694c28
MG
2651
2652 goto check_pending;
5515061d
MG
2653 }
2654
2655 /* Throttle until kswapd wakes the process */
2656 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2657 pfmemalloc_watermark_ok(pgdat));
50694c28
MG
2658
2659check_pending:
2660 if (fatal_signal_pending(current))
2661 return true;
2662
2663out:
2664 return false;
5515061d
MG
2665}
2666
dac1d27b 2667unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2668 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2669{
33906bc5 2670 unsigned long nr_reclaimed;
66e1707b 2671 struct scan_control sc = {
ee814fe2 2672 .nr_to_reclaim = SWAP_CLUSTER_MAX,
21caf2fc 2673 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
ee814fe2
JW
2674 .order = order,
2675 .nodemask = nodemask,
2676 .priority = DEF_PRIORITY,
66e1707b 2677 .may_writepage = !laptop_mode,
a6dc60f8 2678 .may_unmap = 1,
2e2e4259 2679 .may_swap = 1,
66e1707b
BS
2680 };
2681
5515061d 2682 /*
50694c28
MG
2683 * Do not enter reclaim if fatal signal was delivered while throttled.
2684 * 1 is returned so that the page allocator does not OOM kill at this
2685 * point.
5515061d 2686 */
50694c28 2687 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
2688 return 1;
2689
33906bc5
MG
2690 trace_mm_vmscan_direct_reclaim_begin(order,
2691 sc.may_writepage,
2692 gfp_mask);
2693
3115cd91 2694 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
2695
2696 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2697
2698 return nr_reclaimed;
66e1707b
BS
2699}
2700
c255a458 2701#ifdef CONFIG_MEMCG
66e1707b 2702
72835c86 2703unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2704 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2705 struct zone *zone,
2706 unsigned long *nr_scanned)
4e416953
BS
2707{
2708 struct scan_control sc = {
b8f5c566 2709 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 2710 .target_mem_cgroup = memcg,
4e416953
BS
2711 .may_writepage = !laptop_mode,
2712 .may_unmap = 1,
2713 .may_swap = !noswap,
4e416953 2714 };
f9be23d6 2715 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
02695175 2716 int swappiness = mem_cgroup_swappiness(memcg);
0ae5e89c 2717
4e416953
BS
2718 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2719 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2720
9e3b2f8c 2721 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e
KM
2722 sc.may_writepage,
2723 sc.gfp_mask);
2724
4e416953
BS
2725 /*
2726 * NOTE: Although we can get the priority field, using it
2727 * here is not a good idea, since it limits the pages we can scan.
2728 * if we don't reclaim here, the shrink_zone from balance_pgdat
2729 * will pick up pages from other mem cgroup's as well. We hack
2730 * the priority and make it zero.
2731 */
02695175 2732 shrink_lruvec(lruvec, swappiness, &sc);
bdce6d9e
KM
2733
2734 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2735
0ae5e89c 2736 *nr_scanned = sc.nr_scanned;
4e416953
BS
2737 return sc.nr_reclaimed;
2738}
2739
72835c86 2740unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
a7885eb8 2741 gfp_t gfp_mask,
185efc0f 2742 bool noswap)
66e1707b 2743{
4e416953 2744 struct zonelist *zonelist;
bdce6d9e 2745 unsigned long nr_reclaimed;
889976db 2746 int nid;
66e1707b 2747 struct scan_control sc = {
22fba335 2748 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a09ed5e0
YH
2749 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2750 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
ee814fe2
JW
2751 .target_mem_cgroup = memcg,
2752 .priority = DEF_PRIORITY,
2753 .may_writepage = !laptop_mode,
2754 .may_unmap = 1,
2755 .may_swap = !noswap,
a09ed5e0 2756 };
66e1707b 2757
889976db
YH
2758 /*
2759 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2760 * take care of from where we get pages. So the node where we start the
2761 * scan does not need to be the current node.
2762 */
72835c86 2763 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2764
2765 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2766
2767 trace_mm_vmscan_memcg_reclaim_begin(0,
2768 sc.may_writepage,
2769 sc.gfp_mask);
2770
3115cd91 2771 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
bdce6d9e
KM
2772
2773 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2774
2775 return nr_reclaimed;
66e1707b
BS
2776}
2777#endif
2778
9e3b2f8c 2779static void age_active_anon(struct zone *zone, struct scan_control *sc)
f16015fb 2780{
b95a2f2d 2781 struct mem_cgroup *memcg;
f16015fb 2782
b95a2f2d
JW
2783 if (!total_swap_pages)
2784 return;
2785
2786 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2787 do {
c56d5c7d 2788 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
b95a2f2d 2789
c56d5c7d 2790 if (inactive_anon_is_low(lruvec))
1a93be0e 2791 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 2792 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
2793
2794 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2795 } while (memcg);
f16015fb
JW
2796}
2797
60cefed4
JW
2798static bool zone_balanced(struct zone *zone, int order,
2799 unsigned long balance_gap, int classzone_idx)
2800{
2801 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2802 balance_gap, classzone_idx, 0))
2803 return false;
2804
d84da3f9
KS
2805 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2806 !compaction_suitable(zone, order))
60cefed4
JW
2807 return false;
2808
2809 return true;
2810}
2811
1741c877 2812/*
4ae0a48b
ZC
2813 * pgdat_balanced() is used when checking if a node is balanced.
2814 *
2815 * For order-0, all zones must be balanced!
2816 *
2817 * For high-order allocations only zones that meet watermarks and are in a
2818 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2819 * total of balanced pages must be at least 25% of the zones allowed by
2820 * classzone_idx for the node to be considered balanced. Forcing all zones to
2821 * be balanced for high orders can cause excessive reclaim when there are
2822 * imbalanced zones.
1741c877
MG
2823 * The choice of 25% is due to
2824 * o a 16M DMA zone that is balanced will not balance a zone on any
2825 * reasonable sized machine
2826 * o On all other machines, the top zone must be at least a reasonable
25985edc 2827 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2828 * would need to be at least 256M for it to be balance a whole node.
2829 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2830 * to balance a node on its own. These seemed like reasonable ratios.
2831 */
4ae0a48b 2832static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
1741c877 2833{
b40da049 2834 unsigned long managed_pages = 0;
4ae0a48b 2835 unsigned long balanced_pages = 0;
1741c877
MG
2836 int i;
2837
4ae0a48b
ZC
2838 /* Check the watermark levels */
2839 for (i = 0; i <= classzone_idx; i++) {
2840 struct zone *zone = pgdat->node_zones + i;
1741c877 2841
4ae0a48b
ZC
2842 if (!populated_zone(zone))
2843 continue;
2844
b40da049 2845 managed_pages += zone->managed_pages;
4ae0a48b
ZC
2846
2847 /*
2848 * A special case here:
2849 *
2850 * balance_pgdat() skips over all_unreclaimable after
2851 * DEF_PRIORITY. Effectively, it considers them balanced so
2852 * they must be considered balanced here as well!
2853 */
6e543d57 2854 if (!zone_reclaimable(zone)) {
b40da049 2855 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2856 continue;
2857 }
2858
2859 if (zone_balanced(zone, order, 0, i))
b40da049 2860 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2861 else if (!order)
2862 return false;
2863 }
2864
2865 if (order)
b40da049 2866 return balanced_pages >= (managed_pages >> 2);
4ae0a48b
ZC
2867 else
2868 return true;
1741c877
MG
2869}
2870
5515061d
MG
2871/*
2872 * Prepare kswapd for sleeping. This verifies that there are no processes
2873 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2874 *
2875 * Returns true if kswapd is ready to sleep
2876 */
2877static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
dc83edd9 2878 int classzone_idx)
f50de2d3 2879{
f50de2d3
MG
2880 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2881 if (remaining)
5515061d
MG
2882 return false;
2883
2884 /*
2885 * There is a potential race between when kswapd checks its watermarks
2886 * and a process gets throttled. There is also a potential race if
2887 * processes get throttled, kswapd wakes, a large process exits therby
2888 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2889 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2890 * so wake them now if necessary. If necessary, processes will wake
2891 * kswapd and get throttled again
2892 */
2893 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2894 wake_up(&pgdat->pfmemalloc_wait);
2895 return false;
2896 }
f50de2d3 2897
4ae0a48b 2898 return pgdat_balanced(pgdat, order, classzone_idx);
f50de2d3
MG
2899}
2900
75485363
MG
2901/*
2902 * kswapd shrinks the zone by the number of pages required to reach
2903 * the high watermark.
b8e83b94
MG
2904 *
2905 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
2906 * reclaim or if the lack of progress was due to pages under writeback.
2907 * This is used to determine if the scanning priority needs to be raised.
75485363 2908 */
b8e83b94 2909static bool kswapd_shrink_zone(struct zone *zone,
7c954f6d 2910 int classzone_idx,
75485363 2911 struct scan_control *sc,
2ab44f43
MG
2912 unsigned long lru_pages,
2913 unsigned long *nr_attempted)
75485363 2914{
7c954f6d
MG
2915 int testorder = sc->order;
2916 unsigned long balance_gap;
75485363
MG
2917 struct reclaim_state *reclaim_state = current->reclaim_state;
2918 struct shrink_control shrink = {
2919 .gfp_mask = sc->gfp_mask,
2920 };
7c954f6d 2921 bool lowmem_pressure;
75485363
MG
2922
2923 /* Reclaim above the high watermark. */
2924 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
7c954f6d
MG
2925
2926 /*
2927 * Kswapd reclaims only single pages with compaction enabled. Trying
2928 * too hard to reclaim until contiguous free pages have become
2929 * available can hurt performance by evicting too much useful data
2930 * from memory. Do not reclaim more than needed for compaction.
2931 */
2932 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2933 compaction_suitable(zone, sc->order) !=
2934 COMPACT_SKIPPED)
2935 testorder = 0;
2936
2937 /*
2938 * We put equal pressure on every zone, unless one zone has way too
2939 * many pages free already. The "too many pages" is defined as the
2940 * high wmark plus a "gap" where the gap is either the low
2941 * watermark or 1% of the zone, whichever is smaller.
2942 */
4be89a34
JZ
2943 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2944 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
7c954f6d
MG
2945
2946 /*
2947 * If there is no low memory pressure or the zone is balanced then no
2948 * reclaim is necessary
2949 */
2950 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2951 if (!lowmem_pressure && zone_balanced(zone, testorder,
2952 balance_gap, classzone_idx))
2953 return true;
2954
75485363 2955 shrink_zone(zone, sc);
0ce3d744
DC
2956 nodes_clear(shrink.nodes_to_scan);
2957 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
75485363
MG
2958
2959 reclaim_state->reclaimed_slab = 0;
6e543d57 2960 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
75485363
MG
2961 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2962
2ab44f43
MG
2963 /* Account for the number of pages attempted to reclaim */
2964 *nr_attempted += sc->nr_to_reclaim;
2965
283aba9f
MG
2966 zone_clear_flag(zone, ZONE_WRITEBACK);
2967
7c954f6d
MG
2968 /*
2969 * If a zone reaches its high watermark, consider it to be no longer
2970 * congested. It's possible there are dirty pages backed by congested
2971 * BDIs but as pressure is relieved, speculatively avoid congestion
2972 * waits.
2973 */
6e543d57 2974 if (zone_reclaimable(zone) &&
7c954f6d
MG
2975 zone_balanced(zone, testorder, 0, classzone_idx)) {
2976 zone_clear_flag(zone, ZONE_CONGESTED);
2977 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2978 }
2979
b8e83b94 2980 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
2981}
2982
1da177e4
LT
2983/*
2984 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2985 * they are all at high_wmark_pages(zone).
1da177e4 2986 *
0abdee2b 2987 * Returns the final order kswapd was reclaiming at
1da177e4
LT
2988 *
2989 * There is special handling here for zones which are full of pinned pages.
2990 * This can happen if the pages are all mlocked, or if they are all used by
2991 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2992 * What we do is to detect the case where all pages in the zone have been
2993 * scanned twice and there has been zero successful reclaim. Mark the zone as
2994 * dead and from now on, only perform a short scan. Basically we're polling
2995 * the zone for when the problem goes away.
2996 *
2997 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
2998 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2999 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3000 * lower zones regardless of the number of free pages in the lower zones. This
3001 * interoperates with the page allocator fallback scheme to ensure that aging
3002 * of pages is balanced across the zones.
1da177e4 3003 */
99504748 3004static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 3005 int *classzone_idx)
1da177e4 3006{
1da177e4 3007 int i;
99504748 3008 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
0608f43d
AM
3009 unsigned long nr_soft_reclaimed;
3010 unsigned long nr_soft_scanned;
179e9639
AM
3011 struct scan_control sc = {
3012 .gfp_mask = GFP_KERNEL,
ee814fe2 3013 .order = order,
b8e83b94 3014 .priority = DEF_PRIORITY,
ee814fe2 3015 .may_writepage = !laptop_mode,
a6dc60f8 3016 .may_unmap = 1,
2e2e4259 3017 .may_swap = 1,
179e9639 3018 };
f8891e5e 3019 count_vm_event(PAGEOUTRUN);
1da177e4 3020
9e3b2f8c 3021 do {
1da177e4 3022 unsigned long lru_pages = 0;
2ab44f43 3023 unsigned long nr_attempted = 0;
b8e83b94 3024 bool raise_priority = true;
2ab44f43 3025 bool pgdat_needs_compaction = (order > 0);
b8e83b94
MG
3026
3027 sc.nr_reclaimed = 0;
1da177e4 3028
d6277db4
RW
3029 /*
3030 * Scan in the highmem->dma direction for the highest
3031 * zone which needs scanning
3032 */
3033 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3034 struct zone *zone = pgdat->node_zones + i;
1da177e4 3035
d6277db4
RW
3036 if (!populated_zone(zone))
3037 continue;
1da177e4 3038
6e543d57
LD
3039 if (sc.priority != DEF_PRIORITY &&
3040 !zone_reclaimable(zone))
d6277db4 3041 continue;
1da177e4 3042
556adecb
RR
3043 /*
3044 * Do some background aging of the anon list, to give
3045 * pages a chance to be referenced before reclaiming.
3046 */
9e3b2f8c 3047 age_active_anon(zone, &sc);
556adecb 3048
cc715d99
MG
3049 /*
3050 * If the number of buffer_heads in the machine
3051 * exceeds the maximum allowed level and this node
3052 * has a highmem zone, force kswapd to reclaim from
3053 * it to relieve lowmem pressure.
3054 */
3055 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3056 end_zone = i;
3057 break;
3058 }
3059
60cefed4 3060 if (!zone_balanced(zone, order, 0, 0)) {
d6277db4 3061 end_zone = i;
e1dbeda6 3062 break;
439423f6 3063 } else {
d43006d5
MG
3064 /*
3065 * If balanced, clear the dirty and congested
3066 * flags
3067 */
439423f6 3068 zone_clear_flag(zone, ZONE_CONGESTED);
d43006d5 3069 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
1da177e4 3070 }
1da177e4 3071 }
dafcb73e 3072
b8e83b94 3073 if (i < 0)
e1dbeda6
AM
3074 goto out;
3075
1da177e4
LT
3076 for (i = 0; i <= end_zone; i++) {
3077 struct zone *zone = pgdat->node_zones + i;
3078
2ab44f43
MG
3079 if (!populated_zone(zone))
3080 continue;
3081
adea02a1 3082 lru_pages += zone_reclaimable_pages(zone);
2ab44f43
MG
3083
3084 /*
3085 * If any zone is currently balanced then kswapd will
3086 * not call compaction as it is expected that the
3087 * necessary pages are already available.
3088 */
3089 if (pgdat_needs_compaction &&
3090 zone_watermark_ok(zone, order,
3091 low_wmark_pages(zone),
3092 *classzone_idx, 0))
3093 pgdat_needs_compaction = false;
1da177e4
LT
3094 }
3095
b7ea3c41
MG
3096 /*
3097 * If we're getting trouble reclaiming, start doing writepage
3098 * even in laptop mode.
3099 */
3100 if (sc.priority < DEF_PRIORITY - 2)
3101 sc.may_writepage = 1;
3102
1da177e4
LT
3103 /*
3104 * Now scan the zone in the dma->highmem direction, stopping
3105 * at the last zone which needs scanning.
3106 *
3107 * We do this because the page allocator works in the opposite
3108 * direction. This prevents the page allocator from allocating
3109 * pages behind kswapd's direction of progress, which would
3110 * cause too much scanning of the lower zones.
3111 */
3112 for (i = 0; i <= end_zone; i++) {
3113 struct zone *zone = pgdat->node_zones + i;
3114
f3fe6512 3115 if (!populated_zone(zone))
1da177e4
LT
3116 continue;
3117
6e543d57
LD
3118 if (sc.priority != DEF_PRIORITY &&
3119 !zone_reclaimable(zone))
1da177e4
LT
3120 continue;
3121
1da177e4 3122 sc.nr_scanned = 0;
4e416953 3123
0608f43d
AM
3124 nr_soft_scanned = 0;
3125 /*
3126 * Call soft limit reclaim before calling shrink_zone.
3127 */
3128 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3129 order, sc.gfp_mask,
3130 &nr_soft_scanned);
3131 sc.nr_reclaimed += nr_soft_reclaimed;
3132
32a4330d 3133 /*
7c954f6d
MG
3134 * There should be no need to raise the scanning
3135 * priority if enough pages are already being scanned
3136 * that that high watermark would be met at 100%
3137 * efficiency.
fe2c2a10 3138 */
7c954f6d
MG
3139 if (kswapd_shrink_zone(zone, end_zone, &sc,
3140 lru_pages, &nr_attempted))
3141 raise_priority = false;
1da177e4 3142 }
5515061d
MG
3143
3144 /*
3145 * If the low watermark is met there is no need for processes
3146 * to be throttled on pfmemalloc_wait as they should not be
3147 * able to safely make forward progress. Wake them
3148 */
3149 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3150 pfmemalloc_watermark_ok(pgdat))
3151 wake_up(&pgdat->pfmemalloc_wait);
3152
1da177e4 3153 /*
b8e83b94
MG
3154 * Fragmentation may mean that the system cannot be rebalanced
3155 * for high-order allocations in all zones. If twice the
3156 * allocation size has been reclaimed and the zones are still
3157 * not balanced then recheck the watermarks at order-0 to
3158 * prevent kswapd reclaiming excessively. Assume that a
3159 * process requested a high-order can direct reclaim/compact.
1da177e4 3160 */
b8e83b94
MG
3161 if (order && sc.nr_reclaimed >= 2UL << order)
3162 order = sc.order = 0;
8357376d 3163
b8e83b94
MG
3164 /* Check if kswapd should be suspending */
3165 if (try_to_freeze() || kthread_should_stop())
3166 break;
8357376d 3167
2ab44f43
MG
3168 /*
3169 * Compact if necessary and kswapd is reclaiming at least the
3170 * high watermark number of pages as requsted
3171 */
3172 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3173 compact_pgdat(pgdat, order);
3174
73ce02e9 3175 /*
b8e83b94
MG
3176 * Raise priority if scanning rate is too low or there was no
3177 * progress in reclaiming pages
73ce02e9 3178 */
b8e83b94
MG
3179 if (raise_priority || !sc.nr_reclaimed)
3180 sc.priority--;
9aa41348 3181 } while (sc.priority >= 1 &&
b8e83b94 3182 !pgdat_balanced(pgdat, order, *classzone_idx));
1da177e4 3183
b8e83b94 3184out:
0abdee2b 3185 /*
5515061d 3186 * Return the order we were reclaiming at so prepare_kswapd_sleep()
0abdee2b
MG
3187 * makes a decision on the order we were last reclaiming at. However,
3188 * if another caller entered the allocator slow path while kswapd
3189 * was awake, order will remain at the higher level
3190 */
dc83edd9 3191 *classzone_idx = end_zone;
0abdee2b 3192 return order;
1da177e4
LT
3193}
3194
dc83edd9 3195static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
3196{
3197 long remaining = 0;
3198 DEFINE_WAIT(wait);
3199
3200 if (freezing(current) || kthread_should_stop())
3201 return;
3202
3203 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3204
3205 /* Try to sleep for a short interval */
5515061d 3206 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3207 remaining = schedule_timeout(HZ/10);
3208 finish_wait(&pgdat->kswapd_wait, &wait);
3209 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3210 }
3211
3212 /*
3213 * After a short sleep, check if it was a premature sleep. If not, then
3214 * go fully to sleep until explicitly woken up.
3215 */
5515061d 3216 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3217 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3218
3219 /*
3220 * vmstat counters are not perfectly accurate and the estimated
3221 * value for counters such as NR_FREE_PAGES can deviate from the
3222 * true value by nr_online_cpus * threshold. To avoid the zone
3223 * watermarks being breached while under pressure, we reduce the
3224 * per-cpu vmstat threshold while kswapd is awake and restore
3225 * them before going back to sleep.
3226 */
3227 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c 3228
62997027
MG
3229 /*
3230 * Compaction records what page blocks it recently failed to
3231 * isolate pages from and skips them in the future scanning.
3232 * When kswapd is going to sleep, it is reasonable to assume
3233 * that pages and compaction may succeed so reset the cache.
3234 */
3235 reset_isolation_suitable(pgdat);
3236
1c7e7f6c
AK
3237 if (!kthread_should_stop())
3238 schedule();
3239
f0bc0a60
KM
3240 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3241 } else {
3242 if (remaining)
3243 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3244 else
3245 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3246 }
3247 finish_wait(&pgdat->kswapd_wait, &wait);
3248}
3249
1da177e4
LT
3250/*
3251 * The background pageout daemon, started as a kernel thread
4f98a2fe 3252 * from the init process.
1da177e4
LT
3253 *
3254 * This basically trickles out pages so that we have _some_
3255 * free memory available even if there is no other activity
3256 * that frees anything up. This is needed for things like routing
3257 * etc, where we otherwise might have all activity going on in
3258 * asynchronous contexts that cannot page things out.
3259 *
3260 * If there are applications that are active memory-allocators
3261 * (most normal use), this basically shouldn't matter.
3262 */
3263static int kswapd(void *p)
3264{
215ddd66 3265 unsigned long order, new_order;
d2ebd0f6 3266 unsigned balanced_order;
215ddd66 3267 int classzone_idx, new_classzone_idx;
d2ebd0f6 3268 int balanced_classzone_idx;
1da177e4
LT
3269 pg_data_t *pgdat = (pg_data_t*)p;
3270 struct task_struct *tsk = current;
f0bc0a60 3271
1da177e4
LT
3272 struct reclaim_state reclaim_state = {
3273 .reclaimed_slab = 0,
3274 };
a70f7302 3275 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3276
cf40bd16
NP
3277 lockdep_set_current_reclaim_state(GFP_KERNEL);
3278
174596a0 3279 if (!cpumask_empty(cpumask))
c5f59f08 3280 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3281 current->reclaim_state = &reclaim_state;
3282
3283 /*
3284 * Tell the memory management that we're a "memory allocator",
3285 * and that if we need more memory we should get access to it
3286 * regardless (see "__alloc_pages()"). "kswapd" should
3287 * never get caught in the normal page freeing logic.
3288 *
3289 * (Kswapd normally doesn't need memory anyway, but sometimes
3290 * you need a small amount of memory in order to be able to
3291 * page out something else, and this flag essentially protects
3292 * us from recursively trying to free more memory as we're
3293 * trying to free the first piece of memory in the first place).
3294 */
930d9152 3295 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3296 set_freezable();
1da177e4 3297
215ddd66 3298 order = new_order = 0;
d2ebd0f6 3299 balanced_order = 0;
215ddd66 3300 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 3301 balanced_classzone_idx = classzone_idx;
1da177e4 3302 for ( ; ; ) {
6f6313d4 3303 bool ret;
3e1d1d28 3304
215ddd66
MG
3305 /*
3306 * If the last balance_pgdat was unsuccessful it's unlikely a
3307 * new request of a similar or harder type will succeed soon
3308 * so consider going to sleep on the basis we reclaimed at
3309 */
d2ebd0f6
AS
3310 if (balanced_classzone_idx >= new_classzone_idx &&
3311 balanced_order == new_order) {
215ddd66
MG
3312 new_order = pgdat->kswapd_max_order;
3313 new_classzone_idx = pgdat->classzone_idx;
3314 pgdat->kswapd_max_order = 0;
3315 pgdat->classzone_idx = pgdat->nr_zones - 1;
3316 }
3317
99504748 3318 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
3319 /*
3320 * Don't sleep if someone wants a larger 'order'
99504748 3321 * allocation or has tigher zone constraints
1da177e4
LT
3322 */
3323 order = new_order;
99504748 3324 classzone_idx = new_classzone_idx;
1da177e4 3325 } else {
d2ebd0f6
AS
3326 kswapd_try_to_sleep(pgdat, balanced_order,
3327 balanced_classzone_idx);
1da177e4 3328 order = pgdat->kswapd_max_order;
99504748 3329 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
3330 new_order = order;
3331 new_classzone_idx = classzone_idx;
4d40502e 3332 pgdat->kswapd_max_order = 0;
215ddd66 3333 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 3334 }
1da177e4 3335
8fe23e05
DR
3336 ret = try_to_freeze();
3337 if (kthread_should_stop())
3338 break;
3339
3340 /*
3341 * We can speed up thawing tasks if we don't call balance_pgdat
3342 * after returning from the refrigerator
3343 */
33906bc5
MG
3344 if (!ret) {
3345 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
3346 balanced_classzone_idx = classzone_idx;
3347 balanced_order = balance_pgdat(pgdat, order,
3348 &balanced_classzone_idx);
33906bc5 3349 }
1da177e4 3350 }
b0a8cc58 3351
71abdc15 3352 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
b0a8cc58 3353 current->reclaim_state = NULL;
71abdc15
JW
3354 lockdep_clear_current_reclaim_state();
3355
1da177e4
LT
3356 return 0;
3357}
3358
3359/*
3360 * A zone is low on free memory, so wake its kswapd task to service it.
3361 */
99504748 3362void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3363{
3364 pg_data_t *pgdat;
3365
f3fe6512 3366 if (!populated_zone(zone))
1da177e4
LT
3367 return;
3368
88f5acf8 3369 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 3370 return;
88f5acf8 3371 pgdat = zone->zone_pgdat;
99504748 3372 if (pgdat->kswapd_max_order < order) {
1da177e4 3373 pgdat->kswapd_max_order = order;
99504748
MG
3374 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3375 }
8d0986e2 3376 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3377 return;
892f795d 3378 if (zone_balanced(zone, order, 0, 0))
88f5acf8
MG
3379 return;
3380
3381 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3382 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3383}
3384
c6f37f12 3385#ifdef CONFIG_HIBERNATION
1da177e4 3386/*
7b51755c 3387 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3388 * freed pages.
3389 *
3390 * Rather than trying to age LRUs the aim is to preserve the overall
3391 * LRU order by reclaiming preferentially
3392 * inactive > active > active referenced > active mapped
1da177e4 3393 */
7b51755c 3394unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3395{
d6277db4 3396 struct reclaim_state reclaim_state;
d6277db4 3397 struct scan_control sc = {
ee814fe2 3398 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3399 .gfp_mask = GFP_HIGHUSER_MOVABLE,
ee814fe2 3400 .priority = DEF_PRIORITY,
d6277db4 3401 .may_writepage = 1,
ee814fe2
JW
3402 .may_unmap = 1,
3403 .may_swap = 1,
7b51755c 3404 .hibernation_mode = 1,
1da177e4 3405 };
a09ed5e0 3406 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3407 struct task_struct *p = current;
3408 unsigned long nr_reclaimed;
1da177e4 3409
7b51755c
KM
3410 p->flags |= PF_MEMALLOC;
3411 lockdep_set_current_reclaim_state(sc.gfp_mask);
3412 reclaim_state.reclaimed_slab = 0;
3413 p->reclaim_state = &reclaim_state;
d6277db4 3414
3115cd91 3415 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3416
7b51755c
KM
3417 p->reclaim_state = NULL;
3418 lockdep_clear_current_reclaim_state();
3419 p->flags &= ~PF_MEMALLOC;
d6277db4 3420
7b51755c 3421 return nr_reclaimed;
1da177e4 3422}
c6f37f12 3423#endif /* CONFIG_HIBERNATION */
1da177e4 3424
1da177e4
LT
3425/* It's optimal to keep kswapds on the same CPUs as their memory, but
3426 not required for correctness. So if the last cpu in a node goes
3427 away, we get changed to run anywhere: as the first one comes back,
3428 restore their cpu bindings. */
fcb35a9b
GKH
3429static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3430 void *hcpu)
1da177e4 3431{
58c0a4a7 3432 int nid;
1da177e4 3433
8bb78442 3434 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
48fb2e24 3435 for_each_node_state(nid, N_MEMORY) {
c5f59f08 3436 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3437 const struct cpumask *mask;
3438
3439 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3440
3e597945 3441 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3442 /* One of our CPUs online: restore mask */
c5f59f08 3443 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3444 }
3445 }
3446 return NOTIFY_OK;
3447}
1da177e4 3448
3218ae14
YG
3449/*
3450 * This kswapd start function will be called by init and node-hot-add.
3451 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3452 */
3453int kswapd_run(int nid)
3454{
3455 pg_data_t *pgdat = NODE_DATA(nid);
3456 int ret = 0;
3457
3458 if (pgdat->kswapd)
3459 return 0;
3460
3461 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3462 if (IS_ERR(pgdat->kswapd)) {
3463 /* failure at boot is fatal */
3464 BUG_ON(system_state == SYSTEM_BOOTING);
d5dc0ad9
GS
3465 pr_err("Failed to start kswapd on node %d\n", nid);
3466 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3467 pgdat->kswapd = NULL;
3218ae14
YG
3468 }
3469 return ret;
3470}
3471
8fe23e05 3472/*
d8adde17 3473 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 3474 * hold mem_hotplug_begin/end().
8fe23e05
DR
3475 */
3476void kswapd_stop(int nid)
3477{
3478 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3479
d8adde17 3480 if (kswapd) {
8fe23e05 3481 kthread_stop(kswapd);
d8adde17
JL
3482 NODE_DATA(nid)->kswapd = NULL;
3483 }
8fe23e05
DR
3484}
3485
1da177e4
LT
3486static int __init kswapd_init(void)
3487{
3218ae14 3488 int nid;
69e05944 3489
1da177e4 3490 swap_setup();
48fb2e24 3491 for_each_node_state(nid, N_MEMORY)
3218ae14 3492 kswapd_run(nid);
1da177e4
LT
3493 hotcpu_notifier(cpu_callback, 0);
3494 return 0;
3495}
3496
3497module_init(kswapd_init)
9eeff239
CL
3498
3499#ifdef CONFIG_NUMA
3500/*
3501 * Zone reclaim mode
3502 *
3503 * If non-zero call zone_reclaim when the number of free pages falls below
3504 * the watermarks.
9eeff239
CL
3505 */
3506int zone_reclaim_mode __read_mostly;
3507
1b2ffb78 3508#define RECLAIM_OFF 0
7d03431c 3509#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3510#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3511#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3512
a92f7126
CL
3513/*
3514 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3515 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3516 * a zone.
3517 */
3518#define ZONE_RECLAIM_PRIORITY 4
3519
9614634f
CL
3520/*
3521 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3522 * occur.
3523 */
3524int sysctl_min_unmapped_ratio = 1;
3525
0ff38490
CL
3526/*
3527 * If the number of slab pages in a zone grows beyond this percentage then
3528 * slab reclaim needs to occur.
3529 */
3530int sysctl_min_slab_ratio = 5;
3531
90afa5de
MG
3532static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3533{
3534 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3535 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3536 zone_page_state(zone, NR_ACTIVE_FILE);
3537
3538 /*
3539 * It's possible for there to be more file mapped pages than
3540 * accounted for by the pages on the file LRU lists because
3541 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3542 */
3543 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3544}
3545
3546/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3547static long zone_pagecache_reclaimable(struct zone *zone)
3548{
3549 long nr_pagecache_reclaimable;
3550 long delta = 0;
3551
3552 /*
3553 * If RECLAIM_SWAP is set, then all file pages are considered
3554 * potentially reclaimable. Otherwise, we have to worry about
3555 * pages like swapcache and zone_unmapped_file_pages() provides
3556 * a better estimate
3557 */
3558 if (zone_reclaim_mode & RECLAIM_SWAP)
3559 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3560 else
3561 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3562
3563 /* If we can't clean pages, remove dirty pages from consideration */
3564 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3565 delta += zone_page_state(zone, NR_FILE_DIRTY);
3566
3567 /* Watch for any possible underflows due to delta */
3568 if (unlikely(delta > nr_pagecache_reclaimable))
3569 delta = nr_pagecache_reclaimable;
3570
3571 return nr_pagecache_reclaimable - delta;
3572}
3573
9eeff239
CL
3574/*
3575 * Try to free up some pages from this zone through reclaim.
3576 */
179e9639 3577static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3578{
7fb2d46d 3579 /* Minimum pages needed in order to stay on node */
69e05944 3580 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3581 struct task_struct *p = current;
3582 struct reclaim_state reclaim_state;
179e9639 3583 struct scan_control sc = {
62b726c1 3584 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
21caf2fc 3585 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
bd2f6199 3586 .order = order,
9e3b2f8c 3587 .priority = ZONE_RECLAIM_PRIORITY,
ee814fe2
JW
3588 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3589 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3590 .may_swap = 1,
179e9639 3591 };
a09ed5e0
YH
3592 struct shrink_control shrink = {
3593 .gfp_mask = sc.gfp_mask,
3594 };
15748048 3595 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3596
9eeff239 3597 cond_resched();
d4f7796e
CL
3598 /*
3599 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3600 * and we also need to be able to write out pages for RECLAIM_WRITE
3601 * and RECLAIM_SWAP.
3602 */
3603 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3604 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3605 reclaim_state.reclaimed_slab = 0;
3606 p->reclaim_state = &reclaim_state;
c84db23c 3607
90afa5de 3608 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3609 /*
3610 * Free memory by calling shrink zone with increasing
3611 * priorities until we have enough memory freed.
3612 */
0ff38490 3613 do {
9e3b2f8c
KK
3614 shrink_zone(zone, &sc);
3615 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3616 }
c84db23c 3617
15748048
KM
3618 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3619 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3620 /*
7fb2d46d 3621 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3622 * many pages were freed in this zone. So we take the current
3623 * number of slab pages and shake the slab until it is reduced
3624 * by the same nr_pages that we used for reclaiming unmapped
3625 * pages.
2a16e3f4 3626 */
0ce3d744
DC
3627 nodes_clear(shrink.nodes_to_scan);
3628 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
4dc4b3d9
KM
3629 for (;;) {
3630 unsigned long lru_pages = zone_reclaimable_pages(zone);
3631
3632 /* No reclaimable slab or very low memory pressure */
1495f230 3633 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3634 break;
3635
3636 /* Freed enough memory */
3637 nr_slab_pages1 = zone_page_state(zone,
3638 NR_SLAB_RECLAIMABLE);
3639 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3640 break;
3641 }
83e33a47
CL
3642
3643 /*
3644 * Update nr_reclaimed by the number of slab pages we
3645 * reclaimed from this zone.
3646 */
15748048
KM
3647 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3648 if (nr_slab_pages1 < nr_slab_pages0)
3649 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3650 }
3651
9eeff239 3652 p->reclaim_state = NULL;
d4f7796e 3653 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3654 lockdep_clear_current_reclaim_state();
a79311c1 3655 return sc.nr_reclaimed >= nr_pages;
9eeff239 3656}
179e9639
AM
3657
3658int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3659{
179e9639 3660 int node_id;
d773ed6b 3661 int ret;
179e9639
AM
3662
3663 /*
0ff38490
CL
3664 * Zone reclaim reclaims unmapped file backed pages and
3665 * slab pages if we are over the defined limits.
34aa1330 3666 *
9614634f
CL
3667 * A small portion of unmapped file backed pages is needed for
3668 * file I/O otherwise pages read by file I/O will be immediately
3669 * thrown out if the zone is overallocated. So we do not reclaim
3670 * if less than a specified percentage of the zone is used by
3671 * unmapped file backed pages.
179e9639 3672 */
90afa5de
MG
3673 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3674 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3675 return ZONE_RECLAIM_FULL;
179e9639 3676
6e543d57 3677 if (!zone_reclaimable(zone))
fa5e084e 3678 return ZONE_RECLAIM_FULL;
d773ed6b 3679
179e9639 3680 /*
d773ed6b 3681 * Do not scan if the allocation should not be delayed.
179e9639 3682 */
d773ed6b 3683 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3684 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3685
3686 /*
3687 * Only run zone reclaim on the local zone or on zones that do not
3688 * have associated processors. This will favor the local processor
3689 * over remote processors and spread off node memory allocations
3690 * as wide as possible.
3691 */
89fa3024 3692 node_id = zone_to_nid(zone);
37c0708d 3693 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3694 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
3695
3696 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
3697 return ZONE_RECLAIM_NOSCAN;
3698
d773ed6b
DR
3699 ret = __zone_reclaim(zone, gfp_mask, order);
3700 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3701
24cf7251
MG
3702 if (!ret)
3703 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3704
d773ed6b 3705 return ret;
179e9639 3706}
9eeff239 3707#endif
894bc310 3708
894bc310
LS
3709/*
3710 * page_evictable - test whether a page is evictable
3711 * @page: the page to test
894bc310
LS
3712 *
3713 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3714 * lists vs unevictable list.
894bc310
LS
3715 *
3716 * Reasons page might not be evictable:
ba9ddf49 3717 * (1) page's mapping marked unevictable
b291f000 3718 * (2) page is part of an mlocked VMA
ba9ddf49 3719 *
894bc310 3720 */
39b5f29a 3721int page_evictable(struct page *page)
894bc310 3722{
39b5f29a 3723 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3724}
89e004ea 3725
85046579 3726#ifdef CONFIG_SHMEM
89e004ea 3727/**
24513264
HD
3728 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3729 * @pages: array of pages to check
3730 * @nr_pages: number of pages to check
89e004ea 3731 *
24513264 3732 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3733 *
3734 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3735 */
24513264 3736void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3737{
925b7673 3738 struct lruvec *lruvec;
24513264
HD
3739 struct zone *zone = NULL;
3740 int pgscanned = 0;
3741 int pgrescued = 0;
3742 int i;
89e004ea 3743
24513264
HD
3744 for (i = 0; i < nr_pages; i++) {
3745 struct page *page = pages[i];
3746 struct zone *pagezone;
89e004ea 3747
24513264
HD
3748 pgscanned++;
3749 pagezone = page_zone(page);
3750 if (pagezone != zone) {
3751 if (zone)
3752 spin_unlock_irq(&zone->lru_lock);
3753 zone = pagezone;
3754 spin_lock_irq(&zone->lru_lock);
3755 }
fa9add64 3756 lruvec = mem_cgroup_page_lruvec(page, zone);
89e004ea 3757
24513264
HD
3758 if (!PageLRU(page) || !PageUnevictable(page))
3759 continue;
89e004ea 3760
39b5f29a 3761 if (page_evictable(page)) {
24513264
HD
3762 enum lru_list lru = page_lru_base_type(page);
3763
309381fe 3764 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 3765 ClearPageUnevictable(page);
fa9add64
HD
3766 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3767 add_page_to_lru_list(page, lruvec, lru);
24513264 3768 pgrescued++;
89e004ea 3769 }
24513264 3770 }
89e004ea 3771
24513264
HD
3772 if (zone) {
3773 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3774 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3775 spin_unlock_irq(&zone->lru_lock);
89e004ea 3776 }
89e004ea 3777}
85046579 3778#endif /* CONFIG_SHMEM */
af936a16 3779
264e56d8 3780static void warn_scan_unevictable_pages(void)
af936a16 3781{
264e56d8 3782 printk_once(KERN_WARNING
25bd91bd 3783 "%s: The scan_unevictable_pages sysctl/node-interface has been "
264e56d8 3784 "disabled for lack of a legitimate use case. If you have "
25bd91bd
KM
3785 "one, please send an email to linux-mm@kvack.org.\n",
3786 current->comm);
af936a16
LS
3787}
3788
3789/*
3790 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3791 * all nodes' unevictable lists for evictable pages
3792 */
3793unsigned long scan_unevictable_pages;
3794
3795int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 3796 void __user *buffer,
af936a16
LS
3797 size_t *length, loff_t *ppos)
3798{
264e56d8 3799 warn_scan_unevictable_pages();
8d65af78 3800 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
3801 scan_unevictable_pages = 0;
3802 return 0;
3803}
3804
e4455abb 3805#ifdef CONFIG_NUMA
af936a16
LS
3806/*
3807 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3808 * a specified node's per zone unevictable lists for evictable pages.
3809 */
3810
10fbcf4c
KS
3811static ssize_t read_scan_unevictable_node(struct device *dev,
3812 struct device_attribute *attr,
af936a16
LS
3813 char *buf)
3814{
264e56d8 3815 warn_scan_unevictable_pages();
af936a16
LS
3816 return sprintf(buf, "0\n"); /* always zero; should fit... */
3817}
3818
10fbcf4c
KS
3819static ssize_t write_scan_unevictable_node(struct device *dev,
3820 struct device_attribute *attr,
af936a16
LS
3821 const char *buf, size_t count)
3822{
264e56d8 3823 warn_scan_unevictable_pages();
af936a16
LS
3824 return 1;
3825}
3826
3827
10fbcf4c 3828static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
af936a16
LS
3829 read_scan_unevictable_node,
3830 write_scan_unevictable_node);
3831
3832int scan_unevictable_register_node(struct node *node)
3833{
10fbcf4c 3834 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16
LS
3835}
3836
3837void scan_unevictable_unregister_node(struct node *node)
3838{
10fbcf4c 3839 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16 3840}
e4455abb 3841#endif