vmscan: move ClearPageActive from move_active_pages() to shrink_active_list()
[linux-block.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
248a0301 37#include <linux/delay.h>
3218ae14 38#include <linux/kthread.h>
7dfb7103 39#include <linux/freezer.h>
66e1707b 40#include <linux/memcontrol.h>
873b4771 41#include <linux/delayacct.h>
af936a16 42#include <linux/sysctl.h>
1da177e4
LT
43
44#include <asm/tlbflush.h>
45#include <asm/div64.h>
46
47#include <linux/swapops.h>
48
0f8053a5
NP
49#include "internal.h"
50
1da177e4 51struct scan_control {
1da177e4
LT
52 /* Incremented by the number of inactive pages that were scanned */
53 unsigned long nr_scanned;
54
a79311c1
RR
55 /* Number of pages freed so far during a call to shrink_zones() */
56 unsigned long nr_reclaimed;
57
1da177e4 58 /* This context's GFP mask */
6daa0e28 59 gfp_t gfp_mask;
1da177e4
LT
60
61 int may_writepage;
62
a6dc60f8
JW
63 /* Can mapped pages be reclaimed? */
64 int may_unmap;
f1fd1067 65
2e2e4259
KM
66 /* Can pages be swapped as part of reclaim? */
67 int may_swap;
68
1da177e4
LT
69 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
70 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
71 * In this context, it doesn't matter that we scan the
72 * whole list at once. */
73 int swap_cluster_max;
d6277db4
RW
74
75 int swappiness;
408d8544
NP
76
77 int all_unreclaimable;
5ad333eb
AW
78
79 int order;
66e1707b
BS
80
81 /* Which cgroup do we reclaim from */
82 struct mem_cgroup *mem_cgroup;
83
327c0e96
KH
84 /*
85 * Nodemask of nodes allowed by the caller. If NULL, all nodes
86 * are scanned.
87 */
88 nodemask_t *nodemask;
89
66e1707b
BS
90 /* Pluggable isolate pages callback */
91 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
92 unsigned long *scanned, int order, int mode,
93 struct zone *z, struct mem_cgroup *mem_cont,
4f98a2fe 94 int active, int file);
1da177e4
LT
95};
96
1da177e4
LT
97#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98
99#ifdef ARCH_HAS_PREFETCH
100#define prefetch_prev_lru_page(_page, _base, _field) \
101 do { \
102 if ((_page)->lru.prev != _base) { \
103 struct page *prev; \
104 \
105 prev = lru_to_page(&(_page->lru)); \
106 prefetch(&prev->_field); \
107 } \
108 } while (0)
109#else
110#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111#endif
112
113#ifdef ARCH_HAS_PREFETCHW
114#define prefetchw_prev_lru_page(_page, _base, _field) \
115 do { \
116 if ((_page)->lru.prev != _base) { \
117 struct page *prev; \
118 \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetchw(&prev->_field); \
121 } \
122 } while (0)
123#else
124#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125#endif
126
127/*
128 * From 0 .. 100. Higher means more swappy.
129 */
130int vm_swappiness = 60;
bd1e22b8 131long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
132
133static LIST_HEAD(shrinker_list);
134static DECLARE_RWSEM(shrinker_rwsem);
135
00f0b825 136#ifdef CONFIG_CGROUP_MEM_RES_CTLR
e72e2bd6 137#define scanning_global_lru(sc) (!(sc)->mem_cgroup)
91a45470 138#else
e72e2bd6 139#define scanning_global_lru(sc) (1)
91a45470
KH
140#endif
141
6e901571
KM
142static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
143 struct scan_control *sc)
144{
e72e2bd6 145 if (!scanning_global_lru(sc))
3e2f41f1
KM
146 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
147
6e901571
KM
148 return &zone->reclaim_stat;
149}
150
c9f299d9
KM
151static unsigned long zone_nr_pages(struct zone *zone, struct scan_control *sc,
152 enum lru_list lru)
153{
e72e2bd6 154 if (!scanning_global_lru(sc))
a3d8e054
KM
155 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
156
c9f299d9
KM
157 return zone_page_state(zone, NR_LRU_BASE + lru);
158}
159
160
1da177e4
LT
161/*
162 * Add a shrinker callback to be called from the vm
163 */
8e1f936b 164void register_shrinker(struct shrinker *shrinker)
1da177e4 165{
8e1f936b
RR
166 shrinker->nr = 0;
167 down_write(&shrinker_rwsem);
168 list_add_tail(&shrinker->list, &shrinker_list);
169 up_write(&shrinker_rwsem);
1da177e4 170}
8e1f936b 171EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
172
173/*
174 * Remove one
175 */
8e1f936b 176void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
177{
178 down_write(&shrinker_rwsem);
179 list_del(&shrinker->list);
180 up_write(&shrinker_rwsem);
1da177e4 181}
8e1f936b 182EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
183
184#define SHRINK_BATCH 128
185/*
186 * Call the shrink functions to age shrinkable caches
187 *
188 * Here we assume it costs one seek to replace a lru page and that it also
189 * takes a seek to recreate a cache object. With this in mind we age equal
190 * percentages of the lru and ageable caches. This should balance the seeks
191 * generated by these structures.
192 *
183ff22b 193 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
194 * slab to avoid swapping.
195 *
196 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
197 *
198 * `lru_pages' represents the number of on-LRU pages in all the zones which
199 * are eligible for the caller's allocation attempt. It is used for balancing
200 * slab reclaim versus page reclaim.
b15e0905 201 *
202 * Returns the number of slab objects which we shrunk.
1da177e4 203 */
69e05944
AM
204unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
205 unsigned long lru_pages)
1da177e4
LT
206{
207 struct shrinker *shrinker;
69e05944 208 unsigned long ret = 0;
1da177e4
LT
209
210 if (scanned == 0)
211 scanned = SWAP_CLUSTER_MAX;
212
213 if (!down_read_trylock(&shrinker_rwsem))
b15e0905 214 return 1; /* Assume we'll be able to shrink next time */
1da177e4
LT
215
216 list_for_each_entry(shrinker, &shrinker_list, list) {
217 unsigned long long delta;
218 unsigned long total_scan;
8e1f936b 219 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
1da177e4
LT
220
221 delta = (4 * scanned) / shrinker->seeks;
ea164d73 222 delta *= max_pass;
1da177e4
LT
223 do_div(delta, lru_pages + 1);
224 shrinker->nr += delta;
ea164d73 225 if (shrinker->nr < 0) {
88c3bd70
DR
226 printk(KERN_ERR "shrink_slab: %pF negative objects to "
227 "delete nr=%ld\n",
228 shrinker->shrink, shrinker->nr);
ea164d73
AA
229 shrinker->nr = max_pass;
230 }
231
232 /*
233 * Avoid risking looping forever due to too large nr value:
234 * never try to free more than twice the estimate number of
235 * freeable entries.
236 */
237 if (shrinker->nr > max_pass * 2)
238 shrinker->nr = max_pass * 2;
1da177e4
LT
239
240 total_scan = shrinker->nr;
241 shrinker->nr = 0;
242
243 while (total_scan >= SHRINK_BATCH) {
244 long this_scan = SHRINK_BATCH;
245 int shrink_ret;
b15e0905 246 int nr_before;
1da177e4 247
8e1f936b
RR
248 nr_before = (*shrinker->shrink)(0, gfp_mask);
249 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
1da177e4
LT
250 if (shrink_ret == -1)
251 break;
b15e0905 252 if (shrink_ret < nr_before)
253 ret += nr_before - shrink_ret;
f8891e5e 254 count_vm_events(SLABS_SCANNED, this_scan);
1da177e4
LT
255 total_scan -= this_scan;
256
257 cond_resched();
258 }
259
260 shrinker->nr += total_scan;
261 }
262 up_read(&shrinker_rwsem);
b15e0905 263 return ret;
1da177e4
LT
264}
265
266/* Called without lock on whether page is mapped, so answer is unstable */
267static inline int page_mapping_inuse(struct page *page)
268{
269 struct address_space *mapping;
270
271 /* Page is in somebody's page tables. */
272 if (page_mapped(page))
273 return 1;
274
275 /* Be more reluctant to reclaim swapcache than pagecache */
276 if (PageSwapCache(page))
277 return 1;
278
279 mapping = page_mapping(page);
280 if (!mapping)
281 return 0;
282
283 /* File is mmap'd by somebody? */
284 return mapping_mapped(mapping);
285}
286
287static inline int is_page_cache_freeable(struct page *page)
288{
266cf658 289 return page_count(page) - !!page_has_private(page) == 2;
1da177e4
LT
290}
291
292static int may_write_to_queue(struct backing_dev_info *bdi)
293{
930d9152 294 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
295 return 1;
296 if (!bdi_write_congested(bdi))
297 return 1;
298 if (bdi == current->backing_dev_info)
299 return 1;
300 return 0;
301}
302
303/*
304 * We detected a synchronous write error writing a page out. Probably
305 * -ENOSPC. We need to propagate that into the address_space for a subsequent
306 * fsync(), msync() or close().
307 *
308 * The tricky part is that after writepage we cannot touch the mapping: nothing
309 * prevents it from being freed up. But we have a ref on the page and once
310 * that page is locked, the mapping is pinned.
311 *
312 * We're allowed to run sleeping lock_page() here because we know the caller has
313 * __GFP_FS.
314 */
315static void handle_write_error(struct address_space *mapping,
316 struct page *page, int error)
317{
318 lock_page(page);
3e9f45bd
GC
319 if (page_mapping(page) == mapping)
320 mapping_set_error(mapping, error);
1da177e4
LT
321 unlock_page(page);
322}
323
c661b078
AW
324/* Request for sync pageout. */
325enum pageout_io {
326 PAGEOUT_IO_ASYNC,
327 PAGEOUT_IO_SYNC,
328};
329
04e62a29
CL
330/* possible outcome of pageout() */
331typedef enum {
332 /* failed to write page out, page is locked */
333 PAGE_KEEP,
334 /* move page to the active list, page is locked */
335 PAGE_ACTIVATE,
336 /* page has been sent to the disk successfully, page is unlocked */
337 PAGE_SUCCESS,
338 /* page is clean and locked */
339 PAGE_CLEAN,
340} pageout_t;
341
1da177e4 342/*
1742f19f
AM
343 * pageout is called by shrink_page_list() for each dirty page.
344 * Calls ->writepage().
1da177e4 345 */
c661b078
AW
346static pageout_t pageout(struct page *page, struct address_space *mapping,
347 enum pageout_io sync_writeback)
1da177e4
LT
348{
349 /*
350 * If the page is dirty, only perform writeback if that write
351 * will be non-blocking. To prevent this allocation from being
352 * stalled by pagecache activity. But note that there may be
353 * stalls if we need to run get_block(). We could test
354 * PagePrivate for that.
355 *
356 * If this process is currently in generic_file_write() against
357 * this page's queue, we can perform writeback even if that
358 * will block.
359 *
360 * If the page is swapcache, write it back even if that would
361 * block, for some throttling. This happens by accident, because
362 * swap_backing_dev_info is bust: it doesn't reflect the
363 * congestion state of the swapdevs. Easy to fix, if needed.
364 * See swapfile.c:page_queue_congested().
365 */
366 if (!is_page_cache_freeable(page))
367 return PAGE_KEEP;
368 if (!mapping) {
369 /*
370 * Some data journaling orphaned pages can have
371 * page->mapping == NULL while being dirty with clean buffers.
372 */
266cf658 373 if (page_has_private(page)) {
1da177e4
LT
374 if (try_to_free_buffers(page)) {
375 ClearPageDirty(page);
d40cee24 376 printk("%s: orphaned page\n", __func__);
1da177e4
LT
377 return PAGE_CLEAN;
378 }
379 }
380 return PAGE_KEEP;
381 }
382 if (mapping->a_ops->writepage == NULL)
383 return PAGE_ACTIVATE;
384 if (!may_write_to_queue(mapping->backing_dev_info))
385 return PAGE_KEEP;
386
387 if (clear_page_dirty_for_io(page)) {
388 int res;
389 struct writeback_control wbc = {
390 .sync_mode = WB_SYNC_NONE,
391 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
392 .range_start = 0,
393 .range_end = LLONG_MAX,
1da177e4
LT
394 .nonblocking = 1,
395 .for_reclaim = 1,
396 };
397
398 SetPageReclaim(page);
399 res = mapping->a_ops->writepage(page, &wbc);
400 if (res < 0)
401 handle_write_error(mapping, page, res);
994fc28c 402 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
403 ClearPageReclaim(page);
404 return PAGE_ACTIVATE;
405 }
c661b078
AW
406
407 /*
408 * Wait on writeback if requested to. This happens when
409 * direct reclaiming a large contiguous area and the
410 * first attempt to free a range of pages fails.
411 */
412 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
413 wait_on_page_writeback(page);
414
1da177e4
LT
415 if (!PageWriteback(page)) {
416 /* synchronous write or broken a_ops? */
417 ClearPageReclaim(page);
418 }
e129b5c2 419 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
420 return PAGE_SUCCESS;
421 }
422
423 return PAGE_CLEAN;
424}
425
a649fd92 426/*
e286781d
NP
427 * Same as remove_mapping, but if the page is removed from the mapping, it
428 * gets returned with a refcount of 0.
a649fd92 429 */
e286781d 430static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 431{
28e4d965
NP
432 BUG_ON(!PageLocked(page));
433 BUG_ON(mapping != page_mapping(page));
49d2e9cc 434
19fd6231 435 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 436 /*
0fd0e6b0
NP
437 * The non racy check for a busy page.
438 *
439 * Must be careful with the order of the tests. When someone has
440 * a ref to the page, it may be possible that they dirty it then
441 * drop the reference. So if PageDirty is tested before page_count
442 * here, then the following race may occur:
443 *
444 * get_user_pages(&page);
445 * [user mapping goes away]
446 * write_to(page);
447 * !PageDirty(page) [good]
448 * SetPageDirty(page);
449 * put_page(page);
450 * !page_count(page) [good, discard it]
451 *
452 * [oops, our write_to data is lost]
453 *
454 * Reversing the order of the tests ensures such a situation cannot
455 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
456 * load is not satisfied before that of page->_count.
457 *
458 * Note that if SetPageDirty is always performed via set_page_dirty,
459 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 460 */
e286781d 461 if (!page_freeze_refs(page, 2))
49d2e9cc 462 goto cannot_free;
e286781d
NP
463 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
464 if (unlikely(PageDirty(page))) {
465 page_unfreeze_refs(page, 2);
49d2e9cc 466 goto cannot_free;
e286781d 467 }
49d2e9cc
CL
468
469 if (PageSwapCache(page)) {
470 swp_entry_t swap = { .val = page_private(page) };
471 __delete_from_swap_cache(page);
19fd6231 472 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 473 swapcache_free(swap, page);
e286781d
NP
474 } else {
475 __remove_from_page_cache(page);
19fd6231 476 spin_unlock_irq(&mapping->tree_lock);
e767e056 477 mem_cgroup_uncharge_cache_page(page);
49d2e9cc
CL
478 }
479
49d2e9cc
CL
480 return 1;
481
482cannot_free:
19fd6231 483 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
484 return 0;
485}
486
e286781d
NP
487/*
488 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
489 * someone else has a ref on the page, abort and return 0. If it was
490 * successfully detached, return 1. Assumes the caller has a single ref on
491 * this page.
492 */
493int remove_mapping(struct address_space *mapping, struct page *page)
494{
495 if (__remove_mapping(mapping, page)) {
496 /*
497 * Unfreezing the refcount with 1 rather than 2 effectively
498 * drops the pagecache ref for us without requiring another
499 * atomic operation.
500 */
501 page_unfreeze_refs(page, 1);
502 return 1;
503 }
504 return 0;
505}
506
894bc310
LS
507/**
508 * putback_lru_page - put previously isolated page onto appropriate LRU list
509 * @page: page to be put back to appropriate lru list
510 *
511 * Add previously isolated @page to appropriate LRU list.
512 * Page may still be unevictable for other reasons.
513 *
514 * lru_lock must not be held, interrupts must be enabled.
515 */
894bc310
LS
516void putback_lru_page(struct page *page)
517{
518 int lru;
519 int active = !!TestClearPageActive(page);
bbfd28ee 520 int was_unevictable = PageUnevictable(page);
894bc310
LS
521
522 VM_BUG_ON(PageLRU(page));
523
524redo:
525 ClearPageUnevictable(page);
526
527 if (page_evictable(page, NULL)) {
528 /*
529 * For evictable pages, we can use the cache.
530 * In event of a race, worst case is we end up with an
531 * unevictable page on [in]active list.
532 * We know how to handle that.
533 */
534 lru = active + page_is_file_cache(page);
535 lru_cache_add_lru(page, lru);
536 } else {
537 /*
538 * Put unevictable pages directly on zone's unevictable
539 * list.
540 */
541 lru = LRU_UNEVICTABLE;
542 add_page_to_unevictable_list(page);
543 }
894bc310
LS
544
545 /*
546 * page's status can change while we move it among lru. If an evictable
547 * page is on unevictable list, it never be freed. To avoid that,
548 * check after we added it to the list, again.
549 */
550 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
551 if (!isolate_lru_page(page)) {
552 put_page(page);
553 goto redo;
554 }
555 /* This means someone else dropped this page from LRU
556 * So, it will be freed or putback to LRU again. There is
557 * nothing to do here.
558 */
559 }
560
bbfd28ee
LS
561 if (was_unevictable && lru != LRU_UNEVICTABLE)
562 count_vm_event(UNEVICTABLE_PGRESCUED);
563 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
564 count_vm_event(UNEVICTABLE_PGCULLED);
565
894bc310
LS
566 put_page(page); /* drop ref from isolate */
567}
568
1da177e4 569/*
1742f19f 570 * shrink_page_list() returns the number of reclaimed pages
1da177e4 571 */
1742f19f 572static unsigned long shrink_page_list(struct list_head *page_list,
c661b078
AW
573 struct scan_control *sc,
574 enum pageout_io sync_writeback)
1da177e4
LT
575{
576 LIST_HEAD(ret_pages);
577 struct pagevec freed_pvec;
578 int pgactivate = 0;
05ff5137 579 unsigned long nr_reclaimed = 0;
6fe6b7e3 580 unsigned long vm_flags;
1da177e4
LT
581
582 cond_resched();
583
584 pagevec_init(&freed_pvec, 1);
585 while (!list_empty(page_list)) {
586 struct address_space *mapping;
587 struct page *page;
588 int may_enter_fs;
589 int referenced;
590
591 cond_resched();
592
593 page = lru_to_page(page_list);
594 list_del(&page->lru);
595
529ae9aa 596 if (!trylock_page(page))
1da177e4
LT
597 goto keep;
598
725d704e 599 VM_BUG_ON(PageActive(page));
1da177e4
LT
600
601 sc->nr_scanned++;
80e43426 602
b291f000
NP
603 if (unlikely(!page_evictable(page, NULL)))
604 goto cull_mlocked;
894bc310 605
a6dc60f8 606 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
607 goto keep_locked;
608
1da177e4
LT
609 /* Double the slab pressure for mapped and swapcache pages */
610 if (page_mapped(page) || PageSwapCache(page))
611 sc->nr_scanned++;
612
c661b078
AW
613 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
614 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
615
616 if (PageWriteback(page)) {
617 /*
618 * Synchronous reclaim is performed in two passes,
619 * first an asynchronous pass over the list to
620 * start parallel writeback, and a second synchronous
621 * pass to wait for the IO to complete. Wait here
622 * for any page for which writeback has already
623 * started.
624 */
625 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
626 wait_on_page_writeback(page);
4dd4b920 627 else
c661b078
AW
628 goto keep_locked;
629 }
1da177e4 630
6fe6b7e3
WF
631 referenced = page_referenced(page, 1,
632 sc->mem_cgroup, &vm_flags);
03ef83af
MK
633 /*
634 * In active use or really unfreeable? Activate it.
635 * If page which have PG_mlocked lost isoltation race,
636 * try_to_unmap moves it to unevictable list
637 */
5ad333eb 638 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
03ef83af
MK
639 referenced && page_mapping_inuse(page)
640 && !(vm_flags & VM_LOCKED))
1da177e4
LT
641 goto activate_locked;
642
1da177e4
LT
643 /*
644 * Anonymous process memory has backing store?
645 * Try to allocate it some swap space here.
646 */
b291f000 647 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
648 if (!(sc->gfp_mask & __GFP_IO))
649 goto keep_locked;
ac47b003 650 if (!add_to_swap(page))
1da177e4 651 goto activate_locked;
63eb6b93 652 may_enter_fs = 1;
b291f000 653 }
1da177e4
LT
654
655 mapping = page_mapping(page);
1da177e4
LT
656
657 /*
658 * The page is mapped into the page tables of one or more
659 * processes. Try to unmap it here.
660 */
661 if (page_mapped(page) && mapping) {
a48d07af 662 switch (try_to_unmap(page, 0)) {
1da177e4
LT
663 case SWAP_FAIL:
664 goto activate_locked;
665 case SWAP_AGAIN:
666 goto keep_locked;
b291f000
NP
667 case SWAP_MLOCK:
668 goto cull_mlocked;
1da177e4
LT
669 case SWAP_SUCCESS:
670 ; /* try to free the page below */
671 }
672 }
673
674 if (PageDirty(page)) {
5ad333eb 675 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
1da177e4 676 goto keep_locked;
4dd4b920 677 if (!may_enter_fs)
1da177e4 678 goto keep_locked;
52a8363e 679 if (!sc->may_writepage)
1da177e4
LT
680 goto keep_locked;
681
682 /* Page is dirty, try to write it out here */
c661b078 683 switch (pageout(page, mapping, sync_writeback)) {
1da177e4
LT
684 case PAGE_KEEP:
685 goto keep_locked;
686 case PAGE_ACTIVATE:
687 goto activate_locked;
688 case PAGE_SUCCESS:
4dd4b920 689 if (PageWriteback(page) || PageDirty(page))
1da177e4
LT
690 goto keep;
691 /*
692 * A synchronous write - probably a ramdisk. Go
693 * ahead and try to reclaim the page.
694 */
529ae9aa 695 if (!trylock_page(page))
1da177e4
LT
696 goto keep;
697 if (PageDirty(page) || PageWriteback(page))
698 goto keep_locked;
699 mapping = page_mapping(page);
700 case PAGE_CLEAN:
701 ; /* try to free the page below */
702 }
703 }
704
705 /*
706 * If the page has buffers, try to free the buffer mappings
707 * associated with this page. If we succeed we try to free
708 * the page as well.
709 *
710 * We do this even if the page is PageDirty().
711 * try_to_release_page() does not perform I/O, but it is
712 * possible for a page to have PageDirty set, but it is actually
713 * clean (all its buffers are clean). This happens if the
714 * buffers were written out directly, with submit_bh(). ext3
894bc310 715 * will do this, as well as the blockdev mapping.
1da177e4
LT
716 * try_to_release_page() will discover that cleanness and will
717 * drop the buffers and mark the page clean - it can be freed.
718 *
719 * Rarely, pages can have buffers and no ->mapping. These are
720 * the pages which were not successfully invalidated in
721 * truncate_complete_page(). We try to drop those buffers here
722 * and if that worked, and the page is no longer mapped into
723 * process address space (page_count == 1) it can be freed.
724 * Otherwise, leave the page on the LRU so it is swappable.
725 */
266cf658 726 if (page_has_private(page)) {
1da177e4
LT
727 if (!try_to_release_page(page, sc->gfp_mask))
728 goto activate_locked;
e286781d
NP
729 if (!mapping && page_count(page) == 1) {
730 unlock_page(page);
731 if (put_page_testzero(page))
732 goto free_it;
733 else {
734 /*
735 * rare race with speculative reference.
736 * the speculative reference will free
737 * this page shortly, so we may
738 * increment nr_reclaimed here (and
739 * leave it off the LRU).
740 */
741 nr_reclaimed++;
742 continue;
743 }
744 }
1da177e4
LT
745 }
746
e286781d 747 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 748 goto keep_locked;
1da177e4 749
a978d6f5
NP
750 /*
751 * At this point, we have no other references and there is
752 * no way to pick any more up (removed from LRU, removed
753 * from pagecache). Can use non-atomic bitops now (and
754 * we obviously don't have to worry about waking up a process
755 * waiting on the page lock, because there are no references.
756 */
757 __clear_page_locked(page);
e286781d 758free_it:
05ff5137 759 nr_reclaimed++;
e286781d
NP
760 if (!pagevec_add(&freed_pvec, page)) {
761 __pagevec_free(&freed_pvec);
762 pagevec_reinit(&freed_pvec);
763 }
1da177e4
LT
764 continue;
765
b291f000 766cull_mlocked:
63d6c5ad
HD
767 if (PageSwapCache(page))
768 try_to_free_swap(page);
b291f000
NP
769 unlock_page(page);
770 putback_lru_page(page);
771 continue;
772
1da177e4 773activate_locked:
68a22394
RR
774 /* Not a candidate for swapping, so reclaim swap space. */
775 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 776 try_to_free_swap(page);
894bc310 777 VM_BUG_ON(PageActive(page));
1da177e4
LT
778 SetPageActive(page);
779 pgactivate++;
780keep_locked:
781 unlock_page(page);
782keep:
783 list_add(&page->lru, &ret_pages);
b291f000 784 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4
LT
785 }
786 list_splice(&ret_pages, page_list);
787 if (pagevec_count(&freed_pvec))
e286781d 788 __pagevec_free(&freed_pvec);
f8891e5e 789 count_vm_events(PGACTIVATE, pgactivate);
05ff5137 790 return nr_reclaimed;
1da177e4
LT
791}
792
5ad333eb
AW
793/* LRU Isolation modes. */
794#define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
795#define ISOLATE_ACTIVE 1 /* Isolate active pages. */
796#define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
797
798/*
799 * Attempt to remove the specified page from its LRU. Only take this page
800 * if it is of the appropriate PageActive status. Pages which are being
801 * freed elsewhere are also ignored.
802 *
803 * page: page to consider
804 * mode: one of the LRU isolation modes defined above
805 *
806 * returns 0 on success, -ve errno on failure.
807 */
4f98a2fe 808int __isolate_lru_page(struct page *page, int mode, int file)
5ad333eb
AW
809{
810 int ret = -EINVAL;
811
812 /* Only take pages on the LRU. */
813 if (!PageLRU(page))
814 return ret;
815
816 /*
817 * When checking the active state, we need to be sure we are
818 * dealing with comparible boolean values. Take the logical not
819 * of each.
820 */
821 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
822 return ret;
823
4f98a2fe
RR
824 if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
825 return ret;
826
894bc310
LS
827 /*
828 * When this function is being called for lumpy reclaim, we
829 * initially look into all LRU pages, active, inactive and
830 * unevictable; only give shrink_page_list evictable pages.
831 */
832 if (PageUnevictable(page))
833 return ret;
834
5ad333eb 835 ret = -EBUSY;
08e552c6 836
5ad333eb
AW
837 if (likely(get_page_unless_zero(page))) {
838 /*
839 * Be careful not to clear PageLRU until after we're
840 * sure the page is not being freed elsewhere -- the
841 * page release code relies on it.
842 */
843 ClearPageLRU(page);
844 ret = 0;
845 }
846
847 return ret;
848}
849
1da177e4
LT
850/*
851 * zone->lru_lock is heavily contended. Some of the functions that
852 * shrink the lists perform better by taking out a batch of pages
853 * and working on them outside the LRU lock.
854 *
855 * For pagecache intensive workloads, this function is the hottest
856 * spot in the kernel (apart from copy_*_user functions).
857 *
858 * Appropriate locks must be held before calling this function.
859 *
860 * @nr_to_scan: The number of pages to look through on the list.
861 * @src: The LRU list to pull pages off.
862 * @dst: The temp list to put pages on to.
863 * @scanned: The number of pages that were scanned.
5ad333eb
AW
864 * @order: The caller's attempted allocation order
865 * @mode: One of the LRU isolation modes
4f98a2fe 866 * @file: True [1] if isolating file [!anon] pages
1da177e4
LT
867 *
868 * returns how many pages were moved onto *@dst.
869 */
69e05944
AM
870static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
871 struct list_head *src, struct list_head *dst,
4f98a2fe 872 unsigned long *scanned, int order, int mode, int file)
1da177e4 873{
69e05944 874 unsigned long nr_taken = 0;
c9b02d97 875 unsigned long scan;
1da177e4 876
c9b02d97 877 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb
AW
878 struct page *page;
879 unsigned long pfn;
880 unsigned long end_pfn;
881 unsigned long page_pfn;
882 int zone_id;
883
1da177e4
LT
884 page = lru_to_page(src);
885 prefetchw_prev_lru_page(page, src, flags);
886
725d704e 887 VM_BUG_ON(!PageLRU(page));
8d438f96 888
4f98a2fe 889 switch (__isolate_lru_page(page, mode, file)) {
5ad333eb
AW
890 case 0:
891 list_move(&page->lru, dst);
2ffebca6 892 mem_cgroup_del_lru(page);
7c8ee9a8 893 nr_taken++;
5ad333eb
AW
894 break;
895
896 case -EBUSY:
897 /* else it is being freed elsewhere */
898 list_move(&page->lru, src);
2ffebca6 899 mem_cgroup_rotate_lru_list(page, page_lru(page));
5ad333eb 900 continue;
46453a6e 901
5ad333eb
AW
902 default:
903 BUG();
904 }
905
906 if (!order)
907 continue;
908
909 /*
910 * Attempt to take all pages in the order aligned region
911 * surrounding the tag page. Only take those pages of
912 * the same active state as that tag page. We may safely
913 * round the target page pfn down to the requested order
914 * as the mem_map is guarenteed valid out to MAX_ORDER,
915 * where that page is in a different zone we will detect
916 * it from its zone id and abort this block scan.
917 */
918 zone_id = page_zone_id(page);
919 page_pfn = page_to_pfn(page);
920 pfn = page_pfn & ~((1 << order) - 1);
921 end_pfn = pfn + (1 << order);
922 for (; pfn < end_pfn; pfn++) {
923 struct page *cursor_page;
924
925 /* The target page is in the block, ignore it. */
926 if (unlikely(pfn == page_pfn))
927 continue;
928
929 /* Avoid holes within the zone. */
930 if (unlikely(!pfn_valid_within(pfn)))
931 break;
932
933 cursor_page = pfn_to_page(pfn);
4f98a2fe 934
5ad333eb
AW
935 /* Check that we have not crossed a zone boundary. */
936 if (unlikely(page_zone_id(cursor_page) != zone_id))
937 continue;
de2e7567
MK
938
939 /*
940 * If we don't have enough swap space, reclaiming of
941 * anon page which don't already have a swap slot is
942 * pointless.
943 */
944 if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
945 !PageSwapCache(cursor_page))
946 continue;
947
ee993b13 948 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
5ad333eb 949 list_move(&cursor_page->lru, dst);
cb4cbcf6 950 mem_cgroup_del_lru(cursor_page);
5ad333eb
AW
951 nr_taken++;
952 scan++;
5ad333eb
AW
953 }
954 }
1da177e4
LT
955 }
956
957 *scanned = scan;
958 return nr_taken;
959}
960
66e1707b
BS
961static unsigned long isolate_pages_global(unsigned long nr,
962 struct list_head *dst,
963 unsigned long *scanned, int order,
964 int mode, struct zone *z,
965 struct mem_cgroup *mem_cont,
4f98a2fe 966 int active, int file)
66e1707b 967{
4f98a2fe 968 int lru = LRU_BASE;
66e1707b 969 if (active)
4f98a2fe
RR
970 lru += LRU_ACTIVE;
971 if (file)
972 lru += LRU_FILE;
973 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
974 mode, !!file);
66e1707b
BS
975}
976
5ad333eb
AW
977/*
978 * clear_active_flags() is a helper for shrink_active_list(), clearing
979 * any active bits from the pages in the list.
980 */
4f98a2fe
RR
981static unsigned long clear_active_flags(struct list_head *page_list,
982 unsigned int *count)
5ad333eb
AW
983{
984 int nr_active = 0;
4f98a2fe 985 int lru;
5ad333eb
AW
986 struct page *page;
987
4f98a2fe
RR
988 list_for_each_entry(page, page_list, lru) {
989 lru = page_is_file_cache(page);
5ad333eb 990 if (PageActive(page)) {
4f98a2fe 991 lru += LRU_ACTIVE;
5ad333eb
AW
992 ClearPageActive(page);
993 nr_active++;
994 }
4f98a2fe
RR
995 count[lru]++;
996 }
5ad333eb
AW
997
998 return nr_active;
999}
1000
62695a84
NP
1001/**
1002 * isolate_lru_page - tries to isolate a page from its LRU list
1003 * @page: page to isolate from its LRU list
1004 *
1005 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1006 * vmstat statistic corresponding to whatever LRU list the page was on.
1007 *
1008 * Returns 0 if the page was removed from an LRU list.
1009 * Returns -EBUSY if the page was not on an LRU list.
1010 *
1011 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1012 * the active list, it will have PageActive set. If it was found on
1013 * the unevictable list, it will have the PageUnevictable bit set. That flag
1014 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1015 *
1016 * The vmstat statistic corresponding to the list on which the page was
1017 * found will be decremented.
1018 *
1019 * Restrictions:
1020 * (1) Must be called with an elevated refcount on the page. This is a
1021 * fundamentnal difference from isolate_lru_pages (which is called
1022 * without a stable reference).
1023 * (2) the lru_lock must not be held.
1024 * (3) interrupts must be enabled.
1025 */
1026int isolate_lru_page(struct page *page)
1027{
1028 int ret = -EBUSY;
1029
1030 if (PageLRU(page)) {
1031 struct zone *zone = page_zone(page);
1032
1033 spin_lock_irq(&zone->lru_lock);
1034 if (PageLRU(page) && get_page_unless_zero(page)) {
894bc310 1035 int lru = page_lru(page);
62695a84
NP
1036 ret = 0;
1037 ClearPageLRU(page);
4f98a2fe 1038
4f98a2fe 1039 del_page_from_lru_list(zone, page, lru);
62695a84
NP
1040 }
1041 spin_unlock_irq(&zone->lru_lock);
1042 }
1043 return ret;
1044}
1045
35cd7815
RR
1046/*
1047 * Are there way too many processes in the direct reclaim path already?
1048 */
1049static int too_many_isolated(struct zone *zone, int file,
1050 struct scan_control *sc)
1051{
1052 unsigned long inactive, isolated;
1053
1054 if (current_is_kswapd())
1055 return 0;
1056
1057 if (!scanning_global_lru(sc))
1058 return 0;
1059
1060 if (file) {
1061 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1062 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1063 } else {
1064 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1065 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1066 }
1067
1068 return isolated > inactive;
1069}
1070
1da177e4 1071/*
1742f19f
AM
1072 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1073 * of reclaimed pages
1da177e4 1074 */
1742f19f 1075static unsigned long shrink_inactive_list(unsigned long max_scan,
33c120ed
RR
1076 struct zone *zone, struct scan_control *sc,
1077 int priority, int file)
1da177e4
LT
1078{
1079 LIST_HEAD(page_list);
1080 struct pagevec pvec;
69e05944 1081 unsigned long nr_scanned = 0;
05ff5137 1082 unsigned long nr_reclaimed = 0;
6e901571 1083 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
78dc583d
KM
1084 int lumpy_reclaim = 0;
1085
35cd7815
RR
1086 while (unlikely(too_many_isolated(zone, file, sc))) {
1087 congestion_wait(WRITE, HZ/10);
1088
1089 /* We are about to die and free our memory. Return now. */
1090 if (fatal_signal_pending(current))
1091 return SWAP_CLUSTER_MAX;
1092 }
1093
78dc583d
KM
1094 /*
1095 * If we need a large contiguous chunk of memory, or have
1096 * trouble getting a small set of contiguous pages, we
1097 * will reclaim both active and inactive pages.
1098 *
1099 * We use the same threshold as pageout congestion_wait below.
1100 */
1101 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1102 lumpy_reclaim = 1;
1103 else if (sc->order && priority < DEF_PRIORITY - 2)
1104 lumpy_reclaim = 1;
1da177e4
LT
1105
1106 pagevec_init(&pvec, 1);
1107
1108 lru_add_drain();
1109 spin_lock_irq(&zone->lru_lock);
69e05944 1110 do {
1da177e4 1111 struct page *page;
69e05944
AM
1112 unsigned long nr_taken;
1113 unsigned long nr_scan;
1114 unsigned long nr_freed;
5ad333eb 1115 unsigned long nr_active;
4f98a2fe 1116 unsigned int count[NR_LRU_LISTS] = { 0, };
78dc583d 1117 int mode = lumpy_reclaim ? ISOLATE_BOTH : ISOLATE_INACTIVE;
a731286d
KM
1118 unsigned long nr_anon;
1119 unsigned long nr_file;
1da177e4 1120
66e1707b 1121 nr_taken = sc->isolate_pages(sc->swap_cluster_max,
4f98a2fe
RR
1122 &page_list, &nr_scan, sc->order, mode,
1123 zone, sc->mem_cgroup, 0, file);
b35ea17b
KM
1124
1125 if (scanning_global_lru(sc)) {
1126 zone->pages_scanned += nr_scan;
1127 if (current_is_kswapd())
1128 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1129 nr_scan);
1130 else
1131 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1132 nr_scan);
1133 }
1134
1135 if (nr_taken == 0)
1136 goto done;
1137
4f98a2fe 1138 nr_active = clear_active_flags(&page_list, count);
e9187bdc 1139 __count_vm_events(PGDEACTIVATE, nr_active);
5ad333eb 1140
4f98a2fe
RR
1141 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1142 -count[LRU_ACTIVE_FILE]);
1143 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1144 -count[LRU_INACTIVE_FILE]);
1145 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1146 -count[LRU_ACTIVE_ANON]);
1147 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1148 -count[LRU_INACTIVE_ANON]);
1149
a731286d
KM
1150 nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1151 nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1152 __mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon);
1153 __mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file);
3e2f41f1
KM
1154
1155 reclaim_stat->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1156 reclaim_stat->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1157 reclaim_stat->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1158 reclaim_stat->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1159
1da177e4
LT
1160 spin_unlock_irq(&zone->lru_lock);
1161
69e05944 1162 nr_scanned += nr_scan;
c661b078
AW
1163 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1164
1165 /*
1166 * If we are direct reclaiming for contiguous pages and we do
1167 * not reclaim everything in the list, try again and wait
1168 * for IO to complete. This will stall high-order allocations
1169 * but that should be acceptable to the caller
1170 */
1171 if (nr_freed < nr_taken && !current_is_kswapd() &&
78dc583d 1172 lumpy_reclaim) {
8aa7e847 1173 congestion_wait(BLK_RW_ASYNC, HZ/10);
c661b078
AW
1174
1175 /*
1176 * The attempt at page out may have made some
1177 * of the pages active, mark them inactive again.
1178 */
4f98a2fe 1179 nr_active = clear_active_flags(&page_list, count);
c661b078
AW
1180 count_vm_events(PGDEACTIVATE, nr_active);
1181
1182 nr_freed += shrink_page_list(&page_list, sc,
1183 PAGEOUT_IO_SYNC);
1184 }
1185
05ff5137 1186 nr_reclaimed += nr_freed;
b35ea17b 1187
a74609fa 1188 local_irq_disable();
b35ea17b 1189 if (current_is_kswapd())
f8891e5e 1190 __count_vm_events(KSWAPD_STEAL, nr_freed);
918d3f90 1191 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
a74609fa
NP
1192
1193 spin_lock(&zone->lru_lock);
1da177e4
LT
1194 /*
1195 * Put back any unfreeable pages.
1196 */
1197 while (!list_empty(&page_list)) {
894bc310 1198 int lru;
1da177e4 1199 page = lru_to_page(&page_list);
725d704e 1200 VM_BUG_ON(PageLRU(page));
1da177e4 1201 list_del(&page->lru);
894bc310
LS
1202 if (unlikely(!page_evictable(page, NULL))) {
1203 spin_unlock_irq(&zone->lru_lock);
1204 putback_lru_page(page);
1205 spin_lock_irq(&zone->lru_lock);
1206 continue;
1207 }
1208 SetPageLRU(page);
1209 lru = page_lru(page);
1210 add_page_to_lru_list(zone, page, lru);
3e2f41f1 1211 if (PageActive(page)) {
4f98a2fe 1212 int file = !!page_is_file_cache(page);
6e901571 1213 reclaim_stat->recent_rotated[file]++;
4f98a2fe 1214 }
1da177e4
LT
1215 if (!pagevec_add(&pvec, page)) {
1216 spin_unlock_irq(&zone->lru_lock);
1217 __pagevec_release(&pvec);
1218 spin_lock_irq(&zone->lru_lock);
1219 }
1220 }
a731286d
KM
1221 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1222 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1223
69e05944 1224 } while (nr_scanned < max_scan);
b35ea17b 1225
1da177e4 1226done:
b35ea17b 1227 spin_unlock_irq(&zone->lru_lock);
1da177e4 1228 pagevec_release(&pvec);
05ff5137 1229 return nr_reclaimed;
1da177e4
LT
1230}
1231
3bb1a852
MB
1232/*
1233 * We are about to scan this zone at a certain priority level. If that priority
1234 * level is smaller (ie: more urgent) than the previous priority, then note
1235 * that priority level within the zone. This is done so that when the next
1236 * process comes in to scan this zone, it will immediately start out at this
1237 * priority level rather than having to build up its own scanning priority.
1238 * Here, this priority affects only the reclaim-mapped threshold.
1239 */
1240static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1241{
1242 if (priority < zone->prev_priority)
1243 zone->prev_priority = priority;
1244}
1245
1da177e4
LT
1246/*
1247 * This moves pages from the active list to the inactive list.
1248 *
1249 * We move them the other way if the page is referenced by one or more
1250 * processes, from rmap.
1251 *
1252 * If the pages are mostly unmapped, the processing is fast and it is
1253 * appropriate to hold zone->lru_lock across the whole operation. But if
1254 * the pages are mapped, the processing is slow (page_referenced()) so we
1255 * should drop zone->lru_lock around each page. It's impossible to balance
1256 * this, so instead we remove the pages from the LRU while processing them.
1257 * It is safe to rely on PG_active against the non-LRU pages in here because
1258 * nobody will play with that bit on a non-LRU page.
1259 *
1260 * The downside is that we have to touch page->_count against each page.
1261 * But we had to alter page->flags anyway.
1262 */
1cfb419b 1263
3eb4140f
WF
1264static void move_active_pages_to_lru(struct zone *zone,
1265 struct list_head *list,
1266 enum lru_list lru)
1267{
1268 unsigned long pgmoved = 0;
1269 struct pagevec pvec;
1270 struct page *page;
1271
1272 pagevec_init(&pvec, 1);
1273
1274 while (!list_empty(list)) {
1275 page = lru_to_page(list);
1276 prefetchw_prev_lru_page(page, list, flags);
1277
1278 VM_BUG_ON(PageLRU(page));
1279 SetPageLRU(page);
1280
3eb4140f
WF
1281 list_move(&page->lru, &zone->lru[lru].list);
1282 mem_cgroup_add_lru_list(page, lru);
1283 pgmoved++;
1284
1285 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1286 spin_unlock_irq(&zone->lru_lock);
1287 if (buffer_heads_over_limit)
1288 pagevec_strip(&pvec);
1289 __pagevec_release(&pvec);
1290 spin_lock_irq(&zone->lru_lock);
1291 }
1292 }
1293 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1294 if (!is_active_lru(lru))
1295 __count_vm_events(PGDEACTIVATE, pgmoved);
1296}
1cfb419b 1297
1742f19f 1298static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
4f98a2fe 1299 struct scan_control *sc, int priority, int file)
1da177e4 1300{
44c241f1 1301 unsigned long nr_taken;
69e05944 1302 unsigned long pgscanned;
6fe6b7e3 1303 unsigned long vm_flags;
1da177e4 1304 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1305 LIST_HEAD(l_active);
b69408e8 1306 LIST_HEAD(l_inactive);
1da177e4 1307 struct page *page;
6e901571 1308 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
44c241f1 1309 unsigned long nr_rotated = 0;
1da177e4
LT
1310
1311 lru_add_drain();
1312 spin_lock_irq(&zone->lru_lock);
44c241f1 1313 nr_taken = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
66e1707b 1314 ISOLATE_ACTIVE, zone,
4f98a2fe 1315 sc->mem_cgroup, 1, file);
1cfb419b
KH
1316 /*
1317 * zone->pages_scanned is used for detect zone's oom
1318 * mem_cgroup remembers nr_scan by itself.
1319 */
e72e2bd6 1320 if (scanning_global_lru(sc)) {
1cfb419b 1321 zone->pages_scanned += pgscanned;
4f98a2fe 1322 }
44c241f1 1323 reclaim_stat->recent_scanned[!!file] += nr_taken;
1cfb419b 1324
3eb4140f 1325 __count_zone_vm_events(PGREFILL, zone, pgscanned);
4f98a2fe 1326 if (file)
44c241f1 1327 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
4f98a2fe 1328 else
44c241f1 1329 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
a731286d 1330 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1331 spin_unlock_irq(&zone->lru_lock);
1332
1da177e4
LT
1333 while (!list_empty(&l_hold)) {
1334 cond_resched();
1335 page = lru_to_page(&l_hold);
1336 list_del(&page->lru);
7e9cd484 1337
894bc310
LS
1338 if (unlikely(!page_evictable(page, NULL))) {
1339 putback_lru_page(page);
1340 continue;
1341 }
1342
7e9cd484
RR
1343 /* page_referenced clears PageReferenced */
1344 if (page_mapping_inuse(page) &&
8cab4754 1345 page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
44c241f1 1346 nr_rotated++;
8cab4754
WF
1347 /*
1348 * Identify referenced, file-backed active pages and
1349 * give them one more trip around the active list. So
1350 * that executable code get better chances to stay in
1351 * memory under moderate memory pressure. Anon pages
1352 * are not likely to be evicted by use-once streaming
1353 * IO, plus JVM can create lots of anon VM_EXEC pages,
1354 * so we ignore them here.
1355 */
1356 if ((vm_flags & VM_EXEC) && !PageAnon(page)) {
1357 list_add(&page->lru, &l_active);
1358 continue;
1359 }
1360 }
7e9cd484 1361
5205e56e 1362 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1363 list_add(&page->lru, &l_inactive);
1364 }
1365
b555749a 1366 /*
8cab4754 1367 * Move pages back to the lru list.
b555749a 1368 */
2a1dc509 1369 spin_lock_irq(&zone->lru_lock);
556adecb 1370 /*
8cab4754
WF
1371 * Count referenced pages from currently used mappings as rotated,
1372 * even though only some of them are actually re-activated. This
1373 * helps balance scan pressure between file and anonymous pages in
1374 * get_scan_ratio.
7e9cd484 1375 */
44c241f1 1376 reclaim_stat->recent_rotated[!!file] += nr_rotated;
556adecb 1377
3eb4140f
WF
1378 move_active_pages_to_lru(zone, &l_active,
1379 LRU_ACTIVE + file * LRU_FILE);
1380 move_active_pages_to_lru(zone, &l_inactive,
1381 LRU_BASE + file * LRU_FILE);
a731286d 1382 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1383 spin_unlock_irq(&zone->lru_lock);
1da177e4
LT
1384}
1385
14797e23 1386static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1387{
1388 unsigned long active, inactive;
1389
1390 active = zone_page_state(zone, NR_ACTIVE_ANON);
1391 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1392
1393 if (inactive * zone->inactive_ratio < active)
1394 return 1;
1395
1396 return 0;
1397}
1398
14797e23
KM
1399/**
1400 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1401 * @zone: zone to check
1402 * @sc: scan control of this context
1403 *
1404 * Returns true if the zone does not have enough inactive anon pages,
1405 * meaning some active anon pages need to be deactivated.
1406 */
1407static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1408{
1409 int low;
1410
e72e2bd6 1411 if (scanning_global_lru(sc))
14797e23
KM
1412 low = inactive_anon_is_low_global(zone);
1413 else
c772be93 1414 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
14797e23
KM
1415 return low;
1416}
1417
56e49d21
RR
1418static int inactive_file_is_low_global(struct zone *zone)
1419{
1420 unsigned long active, inactive;
1421
1422 active = zone_page_state(zone, NR_ACTIVE_FILE);
1423 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1424
1425 return (active > inactive);
1426}
1427
1428/**
1429 * inactive_file_is_low - check if file pages need to be deactivated
1430 * @zone: zone to check
1431 * @sc: scan control of this context
1432 *
1433 * When the system is doing streaming IO, memory pressure here
1434 * ensures that active file pages get deactivated, until more
1435 * than half of the file pages are on the inactive list.
1436 *
1437 * Once we get to that situation, protect the system's working
1438 * set from being evicted by disabling active file page aging.
1439 *
1440 * This uses a different ratio than the anonymous pages, because
1441 * the page cache uses a use-once replacement algorithm.
1442 */
1443static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1444{
1445 int low;
1446
1447 if (scanning_global_lru(sc))
1448 low = inactive_file_is_low_global(zone);
1449 else
1450 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1451 return low;
1452}
1453
4f98a2fe 1454static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
b69408e8
CL
1455 struct zone *zone, struct scan_control *sc, int priority)
1456{
4f98a2fe
RR
1457 int file = is_file_lru(lru);
1458
56e49d21 1459 if (lru == LRU_ACTIVE_FILE && inactive_file_is_low(zone, sc)) {
556adecb
RR
1460 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1461 return 0;
1462 }
1463
14797e23 1464 if (lru == LRU_ACTIVE_ANON && inactive_anon_is_low(zone, sc)) {
4f98a2fe 1465 shrink_active_list(nr_to_scan, zone, sc, priority, file);
b69408e8
CL
1466 return 0;
1467 }
33c120ed 1468 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
4f98a2fe
RR
1469}
1470
1471/*
1472 * Determine how aggressively the anon and file LRU lists should be
1473 * scanned. The relative value of each set of LRU lists is determined
1474 * by looking at the fraction of the pages scanned we did rotate back
1475 * onto the active list instead of evict.
1476 *
1477 * percent[0] specifies how much pressure to put on ram/swap backed
1478 * memory, while percent[1] determines pressure on the file LRUs.
1479 */
1480static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1481 unsigned long *percent)
1482{
1483 unsigned long anon, file, free;
1484 unsigned long anon_prio, file_prio;
1485 unsigned long ap, fp;
6e901571 1486 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
4f98a2fe 1487
c9f299d9
KM
1488 anon = zone_nr_pages(zone, sc, LRU_ACTIVE_ANON) +
1489 zone_nr_pages(zone, sc, LRU_INACTIVE_ANON);
1490 file = zone_nr_pages(zone, sc, LRU_ACTIVE_FILE) +
1491 zone_nr_pages(zone, sc, LRU_INACTIVE_FILE);
b962716b 1492
e72e2bd6 1493 if (scanning_global_lru(sc)) {
eeee9a8c
KM
1494 free = zone_page_state(zone, NR_FREE_PAGES);
1495 /* If we have very few page cache pages,
1496 force-scan anon pages. */
41858966 1497 if (unlikely(file + free <= high_wmark_pages(zone))) {
eeee9a8c
KM
1498 percent[0] = 100;
1499 percent[1] = 0;
1500 return;
1501 }
4f98a2fe
RR
1502 }
1503
1504 /*
1505 * OK, so we have swap space and a fair amount of page cache
1506 * pages. We use the recently rotated / recently scanned
1507 * ratios to determine how valuable each cache is.
1508 *
1509 * Because workloads change over time (and to avoid overflow)
1510 * we keep these statistics as a floating average, which ends
1511 * up weighing recent references more than old ones.
1512 *
1513 * anon in [0], file in [1]
1514 */
6e901571 1515 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
4f98a2fe 1516 spin_lock_irq(&zone->lru_lock);
6e901571
KM
1517 reclaim_stat->recent_scanned[0] /= 2;
1518 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1519 spin_unlock_irq(&zone->lru_lock);
1520 }
1521
6e901571 1522 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
4f98a2fe 1523 spin_lock_irq(&zone->lru_lock);
6e901571
KM
1524 reclaim_stat->recent_scanned[1] /= 2;
1525 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1526 spin_unlock_irq(&zone->lru_lock);
1527 }
1528
1529 /*
1530 * With swappiness at 100, anonymous and file have the same priority.
1531 * This scanning priority is essentially the inverse of IO cost.
1532 */
1533 anon_prio = sc->swappiness;
1534 file_prio = 200 - sc->swappiness;
1535
1536 /*
00d8089c
RR
1537 * The amount of pressure on anon vs file pages is inversely
1538 * proportional to the fraction of recently scanned pages on
1539 * each list that were recently referenced and in active use.
4f98a2fe 1540 */
6e901571
KM
1541 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1542 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1543
6e901571
KM
1544 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1545 fp /= reclaim_stat->recent_rotated[1] + 1;
4f98a2fe
RR
1546
1547 /* Normalize to percentages */
1548 percent[0] = 100 * ap / (ap + fp + 1);
1549 percent[1] = 100 - percent[0];
b69408e8
CL
1550}
1551
6e08a369
WF
1552/*
1553 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1554 * until we collected @swap_cluster_max pages to scan.
1555 */
1556static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1557 unsigned long *nr_saved_scan,
1558 unsigned long swap_cluster_max)
1559{
1560 unsigned long nr;
1561
1562 *nr_saved_scan += nr_to_scan;
1563 nr = *nr_saved_scan;
1564
1565 if (nr >= swap_cluster_max)
1566 *nr_saved_scan = 0;
1567 else
1568 nr = 0;
1569
1570 return nr;
1571}
4f98a2fe 1572
1da177e4
LT
1573/*
1574 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1575 */
a79311c1 1576static void shrink_zone(int priority, struct zone *zone,
05ff5137 1577 struct scan_control *sc)
1da177e4 1578{
b69408e8 1579 unsigned long nr[NR_LRU_LISTS];
8695949a 1580 unsigned long nr_to_scan;
4f98a2fe 1581 unsigned long percent[2]; /* anon @ 0; file @ 1 */
b69408e8 1582 enum lru_list l;
01dbe5c9
KM
1583 unsigned long nr_reclaimed = sc->nr_reclaimed;
1584 unsigned long swap_cluster_max = sc->swap_cluster_max;
9198e96c 1585 int noswap = 0;
1da177e4 1586
9198e96c
DN
1587 /* If we have no swap space, do not bother scanning anon pages. */
1588 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1589 noswap = 1;
1590 percent[0] = 0;
1591 percent[1] = 100;
1592 } else
1593 get_scan_ratio(zone, sc, percent);
4f98a2fe 1594
894bc310 1595 for_each_evictable_lru(l) {
9439c1c9 1596 int file = is_file_lru(l);
8713e012 1597 unsigned long scan;
e0f79b8f 1598
f272b7bc 1599 scan = zone_nr_pages(zone, sc, l);
9198e96c 1600 if (priority || noswap) {
9439c1c9
KM
1601 scan >>= priority;
1602 scan = (scan * percent[file]) / 100;
1603 }
6e08a369
WF
1604 if (scanning_global_lru(sc))
1605 nr[l] = nr_scan_try_batch(scan,
1606 &zone->lru[l].nr_saved_scan,
1607 swap_cluster_max);
1608 else
9439c1c9 1609 nr[l] = scan;
1cfb419b 1610 }
1da177e4 1611
556adecb
RR
1612 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1613 nr[LRU_INACTIVE_FILE]) {
894bc310 1614 for_each_evictable_lru(l) {
b69408e8 1615 if (nr[l]) {
01dbe5c9 1616 nr_to_scan = min(nr[l], swap_cluster_max);
b69408e8 1617 nr[l] -= nr_to_scan;
1da177e4 1618
01dbe5c9
KM
1619 nr_reclaimed += shrink_list(l, nr_to_scan,
1620 zone, sc, priority);
b69408e8 1621 }
1da177e4 1622 }
a79311c1
RR
1623 /*
1624 * On large memory systems, scan >> priority can become
1625 * really large. This is fine for the starting priority;
1626 * we want to put equal scanning pressure on each zone.
1627 * However, if the VM has a harder time of freeing pages,
1628 * with multiple processes reclaiming pages, the total
1629 * freeing target can get unreasonably large.
1630 */
01dbe5c9 1631 if (nr_reclaimed > swap_cluster_max &&
a79311c1
RR
1632 priority < DEF_PRIORITY && !current_is_kswapd())
1633 break;
1da177e4
LT
1634 }
1635
01dbe5c9
KM
1636 sc->nr_reclaimed = nr_reclaimed;
1637
556adecb
RR
1638 /*
1639 * Even if we did not try to evict anon pages at all, we want to
1640 * rebalance the anon lru active/inactive ratio.
1641 */
69c85481 1642 if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
556adecb
RR
1643 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1644
232ea4d6 1645 throttle_vm_writeout(sc->gfp_mask);
1da177e4
LT
1646}
1647
1648/*
1649 * This is the direct reclaim path, for page-allocating processes. We only
1650 * try to reclaim pages from zones which will satisfy the caller's allocation
1651 * request.
1652 *
41858966
MG
1653 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1654 * Because:
1da177e4
LT
1655 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1656 * allocation or
41858966
MG
1657 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1658 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1659 * zone defense algorithm.
1da177e4 1660 *
1da177e4
LT
1661 * If a zone is deemed to be full of pinned pages then just give it a light
1662 * scan then give up on it.
1663 */
a79311c1 1664static void shrink_zones(int priority, struct zonelist *zonelist,
05ff5137 1665 struct scan_control *sc)
1da177e4 1666{
54a6eb5c 1667 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
dd1a239f 1668 struct zoneref *z;
54a6eb5c 1669 struct zone *zone;
1cfb419b 1670
408d8544 1671 sc->all_unreclaimable = 1;
327c0e96
KH
1672 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1673 sc->nodemask) {
f3fe6512 1674 if (!populated_zone(zone))
1da177e4 1675 continue;
1cfb419b
KH
1676 /*
1677 * Take care memory controller reclaiming has small influence
1678 * to global LRU.
1679 */
e72e2bd6 1680 if (scanning_global_lru(sc)) {
1cfb419b
KH
1681 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1682 continue;
1683 note_zone_scanning_priority(zone, priority);
1da177e4 1684
1cfb419b
KH
1685 if (zone_is_all_unreclaimable(zone) &&
1686 priority != DEF_PRIORITY)
1687 continue; /* Let kswapd poll it */
1688 sc->all_unreclaimable = 0;
1689 } else {
1690 /*
1691 * Ignore cpuset limitation here. We just want to reduce
1692 * # of used pages by us regardless of memory shortage.
1693 */
1694 sc->all_unreclaimable = 0;
1695 mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1696 priority);
1697 }
408d8544 1698
a79311c1 1699 shrink_zone(priority, zone, sc);
1da177e4
LT
1700 }
1701}
4f98a2fe 1702
1da177e4
LT
1703/*
1704 * This is the main entry point to direct page reclaim.
1705 *
1706 * If a full scan of the inactive list fails to free enough memory then we
1707 * are "out of memory" and something needs to be killed.
1708 *
1709 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1710 * high - the zone may be full of dirty or under-writeback pages, which this
1711 * caller can't do much about. We kick pdflush and take explicit naps in the
1712 * hope that some of these pages can be written. But if the allocating task
1713 * holds filesystem locks which prevent writeout this might not work, and the
1714 * allocation attempt will fail.
a41f24ea
NA
1715 *
1716 * returns: 0, if no pages reclaimed
1717 * else, the number of pages reclaimed
1da177e4 1718 */
dac1d27b 1719static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
dd1a239f 1720 struct scan_control *sc)
1da177e4
LT
1721{
1722 int priority;
c700be3d 1723 unsigned long ret = 0;
69e05944 1724 unsigned long total_scanned = 0;
1da177e4 1725 struct reclaim_state *reclaim_state = current->reclaim_state;
1da177e4 1726 unsigned long lru_pages = 0;
dd1a239f 1727 struct zoneref *z;
54a6eb5c 1728 struct zone *zone;
dd1a239f 1729 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1da177e4 1730
873b4771
KK
1731 delayacct_freepages_start();
1732
e72e2bd6 1733 if (scanning_global_lru(sc))
1cfb419b
KH
1734 count_vm_event(ALLOCSTALL);
1735 /*
1736 * mem_cgroup will not do shrink_slab.
1737 */
e72e2bd6 1738 if (scanning_global_lru(sc)) {
54a6eb5c 1739 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1da177e4 1740
1cfb419b
KH
1741 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1742 continue;
1da177e4 1743
adea02a1 1744 lru_pages += zone_reclaimable_pages(zone);
1cfb419b 1745 }
1da177e4
LT
1746 }
1747
1748 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
66e1707b 1749 sc->nr_scanned = 0;
f7b7fd8f
RR
1750 if (!priority)
1751 disable_swap_token();
a79311c1 1752 shrink_zones(priority, zonelist, sc);
66e1707b
BS
1753 /*
1754 * Don't shrink slabs when reclaiming memory from
1755 * over limit cgroups
1756 */
e72e2bd6 1757 if (scanning_global_lru(sc)) {
dd1a239f 1758 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
91a45470 1759 if (reclaim_state) {
a79311c1 1760 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
1761 reclaim_state->reclaimed_slab = 0;
1762 }
1da177e4 1763 }
66e1707b 1764 total_scanned += sc->nr_scanned;
a79311c1
RR
1765 if (sc->nr_reclaimed >= sc->swap_cluster_max) {
1766 ret = sc->nr_reclaimed;
1da177e4
LT
1767 goto out;
1768 }
1769
1770 /*
1771 * Try to write back as many pages as we just scanned. This
1772 * tends to cause slow streaming writers to write data to the
1773 * disk smoothly, at the dirtying rate, which is nice. But
1774 * that's undesirable in laptop mode, where we *want* lumpy
1775 * writeout. So in laptop mode, write out the whole world.
1776 */
66e1707b
BS
1777 if (total_scanned > sc->swap_cluster_max +
1778 sc->swap_cluster_max / 2) {
03ba3782 1779 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
66e1707b 1780 sc->may_writepage = 1;
1da177e4
LT
1781 }
1782
1783 /* Take a nap, wait for some writeback to complete */
4dd4b920 1784 if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
8aa7e847 1785 congestion_wait(BLK_RW_ASYNC, HZ/10);
1da177e4 1786 }
87547ee9 1787 /* top priority shrink_zones still had more to do? don't OOM, then */
e72e2bd6 1788 if (!sc->all_unreclaimable && scanning_global_lru(sc))
a79311c1 1789 ret = sc->nr_reclaimed;
1da177e4 1790out:
3bb1a852
MB
1791 /*
1792 * Now that we've scanned all the zones at this priority level, note
1793 * that level within the zone so that the next thread which performs
1794 * scanning of this zone will immediately start out at this priority
1795 * level. This affects only the decision whether or not to bring
1796 * mapped pages onto the inactive list.
1797 */
1798 if (priority < 0)
1799 priority = 0;
1da177e4 1800
e72e2bd6 1801 if (scanning_global_lru(sc)) {
54a6eb5c 1802 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1cfb419b
KH
1803
1804 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1805 continue;
1806
1807 zone->prev_priority = priority;
1808 }
1809 } else
1810 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1da177e4 1811
873b4771
KK
1812 delayacct_freepages_end();
1813
1da177e4
LT
1814 return ret;
1815}
1816
dac1d27b 1817unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 1818 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b
BS
1819{
1820 struct scan_control sc = {
1821 .gfp_mask = gfp_mask,
1822 .may_writepage = !laptop_mode,
1823 .swap_cluster_max = SWAP_CLUSTER_MAX,
a6dc60f8 1824 .may_unmap = 1,
2e2e4259 1825 .may_swap = 1,
66e1707b
BS
1826 .swappiness = vm_swappiness,
1827 .order = order,
1828 .mem_cgroup = NULL,
1829 .isolate_pages = isolate_pages_global,
327c0e96 1830 .nodemask = nodemask,
66e1707b
BS
1831 };
1832
dd1a239f 1833 return do_try_to_free_pages(zonelist, &sc);
66e1707b
BS
1834}
1835
00f0b825 1836#ifdef CONFIG_CGROUP_MEM_RES_CTLR
66e1707b 1837
e1a1cd59 1838unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
a7885eb8
KM
1839 gfp_t gfp_mask,
1840 bool noswap,
1841 unsigned int swappiness)
66e1707b
BS
1842{
1843 struct scan_control sc = {
66e1707b 1844 .may_writepage = !laptop_mode,
a6dc60f8 1845 .may_unmap = 1,
2e2e4259 1846 .may_swap = !noswap,
66e1707b 1847 .swap_cluster_max = SWAP_CLUSTER_MAX,
a7885eb8 1848 .swappiness = swappiness,
66e1707b
BS
1849 .order = 0,
1850 .mem_cgroup = mem_cont,
1851 .isolate_pages = mem_cgroup_isolate_pages,
327c0e96 1852 .nodemask = NULL, /* we don't care the placement */
66e1707b 1853 };
dac1d27b 1854 struct zonelist *zonelist;
66e1707b 1855
dd1a239f
MG
1856 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1857 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1858 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1859 return do_try_to_free_pages(zonelist, &sc);
66e1707b
BS
1860}
1861#endif
1862
1da177e4
LT
1863/*
1864 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 1865 * they are all at high_wmark_pages(zone).
1da177e4 1866 *
1da177e4
LT
1867 * Returns the number of pages which were actually freed.
1868 *
1869 * There is special handling here for zones which are full of pinned pages.
1870 * This can happen if the pages are all mlocked, or if they are all used by
1871 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1872 * What we do is to detect the case where all pages in the zone have been
1873 * scanned twice and there has been zero successful reclaim. Mark the zone as
1874 * dead and from now on, only perform a short scan. Basically we're polling
1875 * the zone for when the problem goes away.
1876 *
1877 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
1878 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1879 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
1880 * lower zones regardless of the number of free pages in the lower zones. This
1881 * interoperates with the page allocator fallback scheme to ensure that aging
1882 * of pages is balanced across the zones.
1da177e4 1883 */
d6277db4 1884static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1da177e4 1885{
1da177e4
LT
1886 int all_zones_ok;
1887 int priority;
1888 int i;
69e05944 1889 unsigned long total_scanned;
1da177e4 1890 struct reclaim_state *reclaim_state = current->reclaim_state;
179e9639
AM
1891 struct scan_control sc = {
1892 .gfp_mask = GFP_KERNEL,
a6dc60f8 1893 .may_unmap = 1,
2e2e4259 1894 .may_swap = 1,
d6277db4
RW
1895 .swap_cluster_max = SWAP_CLUSTER_MAX,
1896 .swappiness = vm_swappiness,
5ad333eb 1897 .order = order,
66e1707b
BS
1898 .mem_cgroup = NULL,
1899 .isolate_pages = isolate_pages_global,
179e9639 1900 };
3bb1a852
MB
1901 /*
1902 * temp_priority is used to remember the scanning priority at which
41858966
MG
1903 * this zone was successfully refilled to
1904 * free_pages == high_wmark_pages(zone).
3bb1a852
MB
1905 */
1906 int temp_priority[MAX_NR_ZONES];
1da177e4
LT
1907
1908loop_again:
1909 total_scanned = 0;
a79311c1 1910 sc.nr_reclaimed = 0;
c0bbbc73 1911 sc.may_writepage = !laptop_mode;
f8891e5e 1912 count_vm_event(PAGEOUTRUN);
1da177e4 1913
3bb1a852
MB
1914 for (i = 0; i < pgdat->nr_zones; i++)
1915 temp_priority[i] = DEF_PRIORITY;
1da177e4
LT
1916
1917 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1918 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1919 unsigned long lru_pages = 0;
1920
f7b7fd8f
RR
1921 /* The swap token gets in the way of swapout... */
1922 if (!priority)
1923 disable_swap_token();
1924
1da177e4
LT
1925 all_zones_ok = 1;
1926
d6277db4
RW
1927 /*
1928 * Scan in the highmem->dma direction for the highest
1929 * zone which needs scanning
1930 */
1931 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1932 struct zone *zone = pgdat->node_zones + i;
1da177e4 1933
d6277db4
RW
1934 if (!populated_zone(zone))
1935 continue;
1da177e4 1936
e815af95
DR
1937 if (zone_is_all_unreclaimable(zone) &&
1938 priority != DEF_PRIORITY)
d6277db4 1939 continue;
1da177e4 1940
556adecb
RR
1941 /*
1942 * Do some background aging of the anon list, to give
1943 * pages a chance to be referenced before reclaiming.
1944 */
14797e23 1945 if (inactive_anon_is_low(zone, &sc))
556adecb
RR
1946 shrink_active_list(SWAP_CLUSTER_MAX, zone,
1947 &sc, priority, 0);
1948
41858966
MG
1949 if (!zone_watermark_ok(zone, order,
1950 high_wmark_pages(zone), 0, 0)) {
d6277db4 1951 end_zone = i;
e1dbeda6 1952 break;
1da177e4 1953 }
1da177e4 1954 }
e1dbeda6
AM
1955 if (i < 0)
1956 goto out;
1957
1da177e4
LT
1958 for (i = 0; i <= end_zone; i++) {
1959 struct zone *zone = pgdat->node_zones + i;
1960
adea02a1 1961 lru_pages += zone_reclaimable_pages(zone);
1da177e4
LT
1962 }
1963
1964 /*
1965 * Now scan the zone in the dma->highmem direction, stopping
1966 * at the last zone which needs scanning.
1967 *
1968 * We do this because the page allocator works in the opposite
1969 * direction. This prevents the page allocator from allocating
1970 * pages behind kswapd's direction of progress, which would
1971 * cause too much scanning of the lower zones.
1972 */
1973 for (i = 0; i <= end_zone; i++) {
1974 struct zone *zone = pgdat->node_zones + i;
b15e0905 1975 int nr_slab;
1da177e4 1976
f3fe6512 1977 if (!populated_zone(zone))
1da177e4
LT
1978 continue;
1979
e815af95
DR
1980 if (zone_is_all_unreclaimable(zone) &&
1981 priority != DEF_PRIORITY)
1da177e4
LT
1982 continue;
1983
41858966
MG
1984 if (!zone_watermark_ok(zone, order,
1985 high_wmark_pages(zone), end_zone, 0))
d6277db4 1986 all_zones_ok = 0;
3bb1a852 1987 temp_priority[i] = priority;
1da177e4 1988 sc.nr_scanned = 0;
3bb1a852 1989 note_zone_scanning_priority(zone, priority);
32a4330d
RR
1990 /*
1991 * We put equal pressure on every zone, unless one
1992 * zone has way too many pages free already.
1993 */
41858966
MG
1994 if (!zone_watermark_ok(zone, order,
1995 8*high_wmark_pages(zone), end_zone, 0))
a79311c1 1996 shrink_zone(priority, zone, &sc);
1da177e4 1997 reclaim_state->reclaimed_slab = 0;
b15e0905 1998 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1999 lru_pages);
a79311c1 2000 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1da177e4 2001 total_scanned += sc.nr_scanned;
e815af95 2002 if (zone_is_all_unreclaimable(zone))
1da177e4 2003 continue;
b15e0905 2004 if (nr_slab == 0 && zone->pages_scanned >=
adea02a1 2005 (zone_reclaimable_pages(zone) * 6))
e815af95
DR
2006 zone_set_flag(zone,
2007 ZONE_ALL_UNRECLAIMABLE);
1da177e4
LT
2008 /*
2009 * If we've done a decent amount of scanning and
2010 * the reclaim ratio is low, start doing writepage
2011 * even in laptop mode
2012 */
2013 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
a79311c1 2014 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1da177e4
LT
2015 sc.may_writepage = 1;
2016 }
1da177e4
LT
2017 if (all_zones_ok)
2018 break; /* kswapd: all done */
2019 /*
2020 * OK, kswapd is getting into trouble. Take a nap, then take
2021 * another pass across the zones.
2022 */
4dd4b920 2023 if (total_scanned && priority < DEF_PRIORITY - 2)
8aa7e847 2024 congestion_wait(BLK_RW_ASYNC, HZ/10);
1da177e4
LT
2025
2026 /*
2027 * We do this so kswapd doesn't build up large priorities for
2028 * example when it is freeing in parallel with allocators. It
2029 * matches the direct reclaim path behaviour in terms of impact
2030 * on zone->*_priority.
2031 */
a79311c1 2032 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4
LT
2033 break;
2034 }
2035out:
3bb1a852
MB
2036 /*
2037 * Note within each zone the priority level at which this zone was
2038 * brought into a happy state. So that the next thread which scans this
2039 * zone will start out at that priority level.
2040 */
1da177e4
LT
2041 for (i = 0; i < pgdat->nr_zones; i++) {
2042 struct zone *zone = pgdat->node_zones + i;
2043
3bb1a852 2044 zone->prev_priority = temp_priority[i];
1da177e4
LT
2045 }
2046 if (!all_zones_ok) {
2047 cond_resched();
8357376d
RW
2048
2049 try_to_freeze();
2050
73ce02e9
KM
2051 /*
2052 * Fragmentation may mean that the system cannot be
2053 * rebalanced for high-order allocations in all zones.
2054 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2055 * it means the zones have been fully scanned and are still
2056 * not balanced. For high-order allocations, there is
2057 * little point trying all over again as kswapd may
2058 * infinite loop.
2059 *
2060 * Instead, recheck all watermarks at order-0 as they
2061 * are the most important. If watermarks are ok, kswapd will go
2062 * back to sleep. High-order users can still perform direct
2063 * reclaim if they wish.
2064 */
2065 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2066 order = sc.order = 0;
2067
1da177e4
LT
2068 goto loop_again;
2069 }
2070
a79311c1 2071 return sc.nr_reclaimed;
1da177e4
LT
2072}
2073
2074/*
2075 * The background pageout daemon, started as a kernel thread
4f98a2fe 2076 * from the init process.
1da177e4
LT
2077 *
2078 * This basically trickles out pages so that we have _some_
2079 * free memory available even if there is no other activity
2080 * that frees anything up. This is needed for things like routing
2081 * etc, where we otherwise might have all activity going on in
2082 * asynchronous contexts that cannot page things out.
2083 *
2084 * If there are applications that are active memory-allocators
2085 * (most normal use), this basically shouldn't matter.
2086 */
2087static int kswapd(void *p)
2088{
2089 unsigned long order;
2090 pg_data_t *pgdat = (pg_data_t*)p;
2091 struct task_struct *tsk = current;
2092 DEFINE_WAIT(wait);
2093 struct reclaim_state reclaim_state = {
2094 .reclaimed_slab = 0,
2095 };
a70f7302 2096 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 2097
cf40bd16
NP
2098 lockdep_set_current_reclaim_state(GFP_KERNEL);
2099
174596a0 2100 if (!cpumask_empty(cpumask))
c5f59f08 2101 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
2102 current->reclaim_state = &reclaim_state;
2103
2104 /*
2105 * Tell the memory management that we're a "memory allocator",
2106 * and that if we need more memory we should get access to it
2107 * regardless (see "__alloc_pages()"). "kswapd" should
2108 * never get caught in the normal page freeing logic.
2109 *
2110 * (Kswapd normally doesn't need memory anyway, but sometimes
2111 * you need a small amount of memory in order to be able to
2112 * page out something else, and this flag essentially protects
2113 * us from recursively trying to free more memory as we're
2114 * trying to free the first piece of memory in the first place).
2115 */
930d9152 2116 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 2117 set_freezable();
1da177e4
LT
2118
2119 order = 0;
2120 for ( ; ; ) {
2121 unsigned long new_order;
3e1d1d28 2122
1da177e4
LT
2123 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2124 new_order = pgdat->kswapd_max_order;
2125 pgdat->kswapd_max_order = 0;
2126 if (order < new_order) {
2127 /*
2128 * Don't sleep if someone wants a larger 'order'
2129 * allocation
2130 */
2131 order = new_order;
2132 } else {
b1296cc4
RW
2133 if (!freezing(current))
2134 schedule();
2135
1da177e4
LT
2136 order = pgdat->kswapd_max_order;
2137 }
2138 finish_wait(&pgdat->kswapd_wait, &wait);
2139
b1296cc4
RW
2140 if (!try_to_freeze()) {
2141 /* We can speed up thawing tasks if we don't call
2142 * balance_pgdat after returning from the refrigerator
2143 */
2144 balance_pgdat(pgdat, order);
2145 }
1da177e4
LT
2146 }
2147 return 0;
2148}
2149
2150/*
2151 * A zone is low on free memory, so wake its kswapd task to service it.
2152 */
2153void wakeup_kswapd(struct zone *zone, int order)
2154{
2155 pg_data_t *pgdat;
2156
f3fe6512 2157 if (!populated_zone(zone))
1da177e4
LT
2158 return;
2159
2160 pgdat = zone->zone_pgdat;
41858966 2161 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
1da177e4
LT
2162 return;
2163 if (pgdat->kswapd_max_order < order)
2164 pgdat->kswapd_max_order = order;
02a0e53d 2165 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 2166 return;
8d0986e2 2167 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 2168 return;
8d0986e2 2169 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
2170}
2171
adea02a1
WF
2172/*
2173 * The reclaimable count would be mostly accurate.
2174 * The less reclaimable pages may be
2175 * - mlocked pages, which will be moved to unevictable list when encountered
2176 * - mapped pages, which may require several travels to be reclaimed
2177 * - dirty pages, which is not "instantly" reclaimable
2178 */
2179unsigned long global_reclaimable_pages(void)
4f98a2fe 2180{
adea02a1
WF
2181 int nr;
2182
2183 nr = global_page_state(NR_ACTIVE_FILE) +
2184 global_page_state(NR_INACTIVE_FILE);
2185
2186 if (nr_swap_pages > 0)
2187 nr += global_page_state(NR_ACTIVE_ANON) +
2188 global_page_state(NR_INACTIVE_ANON);
2189
2190 return nr;
2191}
2192
2193unsigned long zone_reclaimable_pages(struct zone *zone)
2194{
2195 int nr;
2196
2197 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2198 zone_page_state(zone, NR_INACTIVE_FILE);
2199
2200 if (nr_swap_pages > 0)
2201 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2202 zone_page_state(zone, NR_INACTIVE_ANON);
2203
2204 return nr;
4f98a2fe
RR
2205}
2206
c6f37f12 2207#ifdef CONFIG_HIBERNATION
1da177e4 2208/*
d6277db4 2209 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
d979677c 2210 * from LRU lists system-wide, for given pass and priority.
d6277db4
RW
2211 *
2212 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
2213 */
d979677c 2214static void shrink_all_zones(unsigned long nr_pages, int prio,
e07aa05b 2215 int pass, struct scan_control *sc)
d6277db4
RW
2216{
2217 struct zone *zone;
d979677c 2218 unsigned long nr_reclaimed = 0;
d6277db4 2219
ee99c71c 2220 for_each_populated_zone(zone) {
0cb57258 2221 enum lru_list l;
d6277db4 2222
e815af95 2223 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
d6277db4
RW
2224 continue;
2225
894bc310 2226 for_each_evictable_lru(l) {
0cb57258
JW
2227 enum zone_stat_item ls = NR_LRU_BASE + l;
2228 unsigned long lru_pages = zone_page_state(zone, ls);
2229
894bc310 2230 /* For pass = 0, we don't shrink the active list */
0cb57258
JW
2231 if (pass == 0 && (l == LRU_ACTIVE_ANON ||
2232 l == LRU_ACTIVE_FILE))
b69408e8
CL
2233 continue;
2234
6e08a369
WF
2235 zone->lru[l].nr_saved_scan += (lru_pages >> prio) + 1;
2236 if (zone->lru[l].nr_saved_scan >= nr_pages || pass > 3) {
0cb57258
JW
2237 unsigned long nr_to_scan;
2238
6e08a369 2239 zone->lru[l].nr_saved_scan = 0;
0cb57258 2240 nr_to_scan = min(nr_pages, lru_pages);
d979677c 2241 nr_reclaimed += shrink_list(l, nr_to_scan, zone,
b69408e8 2242 sc, prio);
d979677c 2243 if (nr_reclaimed >= nr_pages) {
a21e2553 2244 sc->nr_reclaimed += nr_reclaimed;
d979677c
MK
2245 return;
2246 }
d6277db4
RW
2247 }
2248 }
d6277db4 2249 }
a21e2553 2250 sc->nr_reclaimed += nr_reclaimed;
d6277db4
RW
2251}
2252
2253/*
2254 * Try to free `nr_pages' of memory, system-wide, and return the number of
2255 * freed pages.
2256 *
2257 * Rather than trying to age LRUs the aim is to preserve the overall
2258 * LRU order by reclaiming preferentially
2259 * inactive > active > active referenced > active mapped
1da177e4 2260 */
69e05944 2261unsigned long shrink_all_memory(unsigned long nr_pages)
1da177e4 2262{
d6277db4 2263 unsigned long lru_pages, nr_slab;
d6277db4
RW
2264 int pass;
2265 struct reclaim_state reclaim_state;
d6277db4
RW
2266 struct scan_control sc = {
2267 .gfp_mask = GFP_KERNEL,
a6dc60f8 2268 .may_unmap = 0,
d6277db4 2269 .may_writepage = 1,
66e1707b 2270 .isolate_pages = isolate_pages_global,
a21e2553 2271 .nr_reclaimed = 0,
1da177e4
LT
2272 };
2273
2274 current->reclaim_state = &reclaim_state;
69e05944 2275
adea02a1 2276 lru_pages = global_reclaimable_pages();
972d1a7b 2277 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
d6277db4
RW
2278 /* If slab caches are huge, it's better to hit them first */
2279 while (nr_slab >= lru_pages) {
2280 reclaim_state.reclaimed_slab = 0;
2281 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2282 if (!reclaim_state.reclaimed_slab)
1da177e4 2283 break;
d6277db4 2284
d979677c
MK
2285 sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2286 if (sc.nr_reclaimed >= nr_pages)
d6277db4
RW
2287 goto out;
2288
2289 nr_slab -= reclaim_state.reclaimed_slab;
1da177e4 2290 }
d6277db4
RW
2291
2292 /*
2293 * We try to shrink LRUs in 5 passes:
2294 * 0 = Reclaim from inactive_list only
2295 * 1 = Reclaim from active list but don't reclaim mapped
2296 * 2 = 2nd pass of type 1
2297 * 3 = Reclaim mapped (normal reclaim)
2298 * 4 = 2nd pass of type 3
2299 */
2300 for (pass = 0; pass < 5; pass++) {
2301 int prio;
2302
d6277db4 2303 /* Force reclaiming mapped pages in the passes #3 and #4 */
3049103d 2304 if (pass > 2)
a6dc60f8 2305 sc.may_unmap = 1;
d6277db4
RW
2306
2307 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
d979677c 2308 unsigned long nr_to_scan = nr_pages - sc.nr_reclaimed;
d6277db4 2309
d6277db4 2310 sc.nr_scanned = 0;
9786bf84 2311 sc.swap_cluster_max = nr_to_scan;
d979677c
MK
2312 shrink_all_zones(nr_to_scan, prio, pass, &sc);
2313 if (sc.nr_reclaimed >= nr_pages)
d6277db4
RW
2314 goto out;
2315
2316 reclaim_state.reclaimed_slab = 0;
76395d37 2317 shrink_slab(sc.nr_scanned, sc.gfp_mask,
adea02a1 2318 global_reclaimable_pages());
d979677c
MK
2319 sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2320 if (sc.nr_reclaimed >= nr_pages)
d6277db4
RW
2321 goto out;
2322
2323 if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
8aa7e847 2324 congestion_wait(BLK_RW_ASYNC, HZ / 10);
d6277db4 2325 }
248a0301 2326 }
d6277db4
RW
2327
2328 /*
d979677c
MK
2329 * If sc.nr_reclaimed = 0, we could not shrink LRUs, but there may be
2330 * something in slab caches
d6277db4 2331 */
d979677c 2332 if (!sc.nr_reclaimed) {
d6277db4
RW
2333 do {
2334 reclaim_state.reclaimed_slab = 0;
adea02a1
WF
2335 shrink_slab(nr_pages, sc.gfp_mask,
2336 global_reclaimable_pages());
d979677c
MK
2337 sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2338 } while (sc.nr_reclaimed < nr_pages &&
2339 reclaim_state.reclaimed_slab > 0);
76395d37 2340 }
d6277db4 2341
d979677c 2342
d6277db4 2343out:
1da177e4 2344 current->reclaim_state = NULL;
d6277db4 2345
d979677c 2346 return sc.nr_reclaimed;
1da177e4 2347}
c6f37f12 2348#endif /* CONFIG_HIBERNATION */
1da177e4 2349
1da177e4
LT
2350/* It's optimal to keep kswapds on the same CPUs as their memory, but
2351 not required for correctness. So if the last cpu in a node goes
2352 away, we get changed to run anywhere: as the first one comes back,
2353 restore their cpu bindings. */
9c7b216d 2354static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 2355 unsigned long action, void *hcpu)
1da177e4 2356{
58c0a4a7 2357 int nid;
1da177e4 2358
8bb78442 2359 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 2360 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08 2361 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
2362 const struct cpumask *mask;
2363
2364 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 2365
3e597945 2366 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 2367 /* One of our CPUs online: restore mask */
c5f59f08 2368 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
2369 }
2370 }
2371 return NOTIFY_OK;
2372}
1da177e4 2373
3218ae14
YG
2374/*
2375 * This kswapd start function will be called by init and node-hot-add.
2376 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2377 */
2378int kswapd_run(int nid)
2379{
2380 pg_data_t *pgdat = NODE_DATA(nid);
2381 int ret = 0;
2382
2383 if (pgdat->kswapd)
2384 return 0;
2385
2386 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2387 if (IS_ERR(pgdat->kswapd)) {
2388 /* failure at boot is fatal */
2389 BUG_ON(system_state == SYSTEM_BOOTING);
2390 printk("Failed to start kswapd on node %d\n",nid);
2391 ret = -1;
2392 }
2393 return ret;
2394}
2395
1da177e4
LT
2396static int __init kswapd_init(void)
2397{
3218ae14 2398 int nid;
69e05944 2399
1da177e4 2400 swap_setup();
9422ffba 2401 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 2402 kswapd_run(nid);
1da177e4
LT
2403 hotcpu_notifier(cpu_callback, 0);
2404 return 0;
2405}
2406
2407module_init(kswapd_init)
9eeff239
CL
2408
2409#ifdef CONFIG_NUMA
2410/*
2411 * Zone reclaim mode
2412 *
2413 * If non-zero call zone_reclaim when the number of free pages falls below
2414 * the watermarks.
9eeff239
CL
2415 */
2416int zone_reclaim_mode __read_mostly;
2417
1b2ffb78 2418#define RECLAIM_OFF 0
7d03431c 2419#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
2420#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2421#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2422
a92f7126
CL
2423/*
2424 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2425 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2426 * a zone.
2427 */
2428#define ZONE_RECLAIM_PRIORITY 4
2429
9614634f
CL
2430/*
2431 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2432 * occur.
2433 */
2434int sysctl_min_unmapped_ratio = 1;
2435
0ff38490
CL
2436/*
2437 * If the number of slab pages in a zone grows beyond this percentage then
2438 * slab reclaim needs to occur.
2439 */
2440int sysctl_min_slab_ratio = 5;
2441
90afa5de
MG
2442static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2443{
2444 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2445 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2446 zone_page_state(zone, NR_ACTIVE_FILE);
2447
2448 /*
2449 * It's possible for there to be more file mapped pages than
2450 * accounted for by the pages on the file LRU lists because
2451 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2452 */
2453 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2454}
2455
2456/* Work out how many page cache pages we can reclaim in this reclaim_mode */
2457static long zone_pagecache_reclaimable(struct zone *zone)
2458{
2459 long nr_pagecache_reclaimable;
2460 long delta = 0;
2461
2462 /*
2463 * If RECLAIM_SWAP is set, then all file pages are considered
2464 * potentially reclaimable. Otherwise, we have to worry about
2465 * pages like swapcache and zone_unmapped_file_pages() provides
2466 * a better estimate
2467 */
2468 if (zone_reclaim_mode & RECLAIM_SWAP)
2469 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2470 else
2471 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2472
2473 /* If we can't clean pages, remove dirty pages from consideration */
2474 if (!(zone_reclaim_mode & RECLAIM_WRITE))
2475 delta += zone_page_state(zone, NR_FILE_DIRTY);
2476
2477 /* Watch for any possible underflows due to delta */
2478 if (unlikely(delta > nr_pagecache_reclaimable))
2479 delta = nr_pagecache_reclaimable;
2480
2481 return nr_pagecache_reclaimable - delta;
2482}
2483
9eeff239
CL
2484/*
2485 * Try to free up some pages from this zone through reclaim.
2486 */
179e9639 2487static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 2488{
7fb2d46d 2489 /* Minimum pages needed in order to stay on node */
69e05944 2490 const unsigned long nr_pages = 1 << order;
9eeff239
CL
2491 struct task_struct *p = current;
2492 struct reclaim_state reclaim_state;
8695949a 2493 int priority;
179e9639
AM
2494 struct scan_control sc = {
2495 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 2496 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 2497 .may_swap = 1,
69e05944
AM
2498 .swap_cluster_max = max_t(unsigned long, nr_pages,
2499 SWAP_CLUSTER_MAX),
179e9639 2500 .gfp_mask = gfp_mask,
d6277db4 2501 .swappiness = vm_swappiness,
bd2f6199 2502 .order = order,
66e1707b 2503 .isolate_pages = isolate_pages_global,
179e9639 2504 };
83e33a47 2505 unsigned long slab_reclaimable;
9eeff239
CL
2506
2507 disable_swap_token();
9eeff239 2508 cond_resched();
d4f7796e
CL
2509 /*
2510 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2511 * and we also need to be able to write out pages for RECLAIM_WRITE
2512 * and RECLAIM_SWAP.
2513 */
2514 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
9eeff239
CL
2515 reclaim_state.reclaimed_slab = 0;
2516 p->reclaim_state = &reclaim_state;
c84db23c 2517
90afa5de 2518 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
2519 /*
2520 * Free memory by calling shrink zone with increasing
2521 * priorities until we have enough memory freed.
2522 */
2523 priority = ZONE_RECLAIM_PRIORITY;
2524 do {
3bb1a852 2525 note_zone_scanning_priority(zone, priority);
a79311c1 2526 shrink_zone(priority, zone, &sc);
0ff38490 2527 priority--;
a79311c1 2528 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
0ff38490 2529 }
c84db23c 2530
83e33a47
CL
2531 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2532 if (slab_reclaimable > zone->min_slab_pages) {
2a16e3f4 2533 /*
7fb2d46d 2534 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
2535 * many pages were freed in this zone. So we take the current
2536 * number of slab pages and shake the slab until it is reduced
2537 * by the same nr_pages that we used for reclaiming unmapped
2538 * pages.
2a16e3f4 2539 *
0ff38490
CL
2540 * Note that shrink_slab will free memory on all zones and may
2541 * take a long time.
2a16e3f4 2542 */
0ff38490 2543 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
83e33a47
CL
2544 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2545 slab_reclaimable - nr_pages)
0ff38490 2546 ;
83e33a47
CL
2547
2548 /*
2549 * Update nr_reclaimed by the number of slab pages we
2550 * reclaimed from this zone.
2551 */
a79311c1 2552 sc.nr_reclaimed += slab_reclaimable -
83e33a47 2553 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2a16e3f4
CL
2554 }
2555
9eeff239 2556 p->reclaim_state = NULL;
d4f7796e 2557 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
a79311c1 2558 return sc.nr_reclaimed >= nr_pages;
9eeff239 2559}
179e9639
AM
2560
2561int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2562{
179e9639 2563 int node_id;
d773ed6b 2564 int ret;
179e9639
AM
2565
2566 /*
0ff38490
CL
2567 * Zone reclaim reclaims unmapped file backed pages and
2568 * slab pages if we are over the defined limits.
34aa1330 2569 *
9614634f
CL
2570 * A small portion of unmapped file backed pages is needed for
2571 * file I/O otherwise pages read by file I/O will be immediately
2572 * thrown out if the zone is overallocated. So we do not reclaim
2573 * if less than a specified percentage of the zone is used by
2574 * unmapped file backed pages.
179e9639 2575 */
90afa5de
MG
2576 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
2577 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 2578 return ZONE_RECLAIM_FULL;
179e9639 2579
d773ed6b 2580 if (zone_is_all_unreclaimable(zone))
fa5e084e 2581 return ZONE_RECLAIM_FULL;
d773ed6b 2582
179e9639 2583 /*
d773ed6b 2584 * Do not scan if the allocation should not be delayed.
179e9639 2585 */
d773ed6b 2586 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 2587 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
2588
2589 /*
2590 * Only run zone reclaim on the local zone or on zones that do not
2591 * have associated processors. This will favor the local processor
2592 * over remote processors and spread off node memory allocations
2593 * as wide as possible.
2594 */
89fa3024 2595 node_id = zone_to_nid(zone);
37c0708d 2596 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 2597 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
2598
2599 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
2600 return ZONE_RECLAIM_NOSCAN;
2601
d773ed6b
DR
2602 ret = __zone_reclaim(zone, gfp_mask, order);
2603 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2604
24cf7251
MG
2605 if (!ret)
2606 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
2607
d773ed6b 2608 return ret;
179e9639 2609}
9eeff239 2610#endif
894bc310 2611
894bc310
LS
2612/*
2613 * page_evictable - test whether a page is evictable
2614 * @page: the page to test
2615 * @vma: the VMA in which the page is or will be mapped, may be NULL
2616 *
2617 * Test whether page is evictable--i.e., should be placed on active/inactive
b291f000
NP
2618 * lists vs unevictable list. The vma argument is !NULL when called from the
2619 * fault path to determine how to instantate a new page.
894bc310
LS
2620 *
2621 * Reasons page might not be evictable:
ba9ddf49 2622 * (1) page's mapping marked unevictable
b291f000 2623 * (2) page is part of an mlocked VMA
ba9ddf49 2624 *
894bc310
LS
2625 */
2626int page_evictable(struct page *page, struct vm_area_struct *vma)
2627{
2628
ba9ddf49
LS
2629 if (mapping_unevictable(page_mapping(page)))
2630 return 0;
2631
b291f000
NP
2632 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2633 return 0;
894bc310
LS
2634
2635 return 1;
2636}
89e004ea
LS
2637
2638/**
2639 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2640 * @page: page to check evictability and move to appropriate lru list
2641 * @zone: zone page is in
2642 *
2643 * Checks a page for evictability and moves the page to the appropriate
2644 * zone lru list.
2645 *
2646 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2647 * have PageUnevictable set.
2648 */
2649static void check_move_unevictable_page(struct page *page, struct zone *zone)
2650{
2651 VM_BUG_ON(PageActive(page));
2652
2653retry:
2654 ClearPageUnevictable(page);
2655 if (page_evictable(page, NULL)) {
2656 enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page);
af936a16 2657
89e004ea
LS
2658 __dec_zone_state(zone, NR_UNEVICTABLE);
2659 list_move(&page->lru, &zone->lru[l].list);
08e552c6 2660 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
89e004ea
LS
2661 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2662 __count_vm_event(UNEVICTABLE_PGRESCUED);
2663 } else {
2664 /*
2665 * rotate unevictable list
2666 */
2667 SetPageUnevictable(page);
2668 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
08e552c6 2669 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
89e004ea
LS
2670 if (page_evictable(page, NULL))
2671 goto retry;
2672 }
2673}
2674
2675/**
2676 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2677 * @mapping: struct address_space to scan for evictable pages
2678 *
2679 * Scan all pages in mapping. Check unevictable pages for
2680 * evictability and move them to the appropriate zone lru list.
2681 */
2682void scan_mapping_unevictable_pages(struct address_space *mapping)
2683{
2684 pgoff_t next = 0;
2685 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2686 PAGE_CACHE_SHIFT;
2687 struct zone *zone;
2688 struct pagevec pvec;
2689
2690 if (mapping->nrpages == 0)
2691 return;
2692
2693 pagevec_init(&pvec, 0);
2694 while (next < end &&
2695 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2696 int i;
2697 int pg_scanned = 0;
2698
2699 zone = NULL;
2700
2701 for (i = 0; i < pagevec_count(&pvec); i++) {
2702 struct page *page = pvec.pages[i];
2703 pgoff_t page_index = page->index;
2704 struct zone *pagezone = page_zone(page);
2705
2706 pg_scanned++;
2707 if (page_index > next)
2708 next = page_index;
2709 next++;
2710
2711 if (pagezone != zone) {
2712 if (zone)
2713 spin_unlock_irq(&zone->lru_lock);
2714 zone = pagezone;
2715 spin_lock_irq(&zone->lru_lock);
2716 }
2717
2718 if (PageLRU(page) && PageUnevictable(page))
2719 check_move_unevictable_page(page, zone);
2720 }
2721 if (zone)
2722 spin_unlock_irq(&zone->lru_lock);
2723 pagevec_release(&pvec);
2724
2725 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2726 }
2727
2728}
af936a16
LS
2729
2730/**
2731 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2732 * @zone - zone of which to scan the unevictable list
2733 *
2734 * Scan @zone's unevictable LRU lists to check for pages that have become
2735 * evictable. Move those that have to @zone's inactive list where they
2736 * become candidates for reclaim, unless shrink_inactive_zone() decides
2737 * to reactivate them. Pages that are still unevictable are rotated
2738 * back onto @zone's unevictable list.
2739 */
2740#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
14b90b22 2741static void scan_zone_unevictable_pages(struct zone *zone)
af936a16
LS
2742{
2743 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2744 unsigned long scan;
2745 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2746
2747 while (nr_to_scan > 0) {
2748 unsigned long batch_size = min(nr_to_scan,
2749 SCAN_UNEVICTABLE_BATCH_SIZE);
2750
2751 spin_lock_irq(&zone->lru_lock);
2752 for (scan = 0; scan < batch_size; scan++) {
2753 struct page *page = lru_to_page(l_unevictable);
2754
2755 if (!trylock_page(page))
2756 continue;
2757
2758 prefetchw_prev_lru_page(page, l_unevictable, flags);
2759
2760 if (likely(PageLRU(page) && PageUnevictable(page)))
2761 check_move_unevictable_page(page, zone);
2762
2763 unlock_page(page);
2764 }
2765 spin_unlock_irq(&zone->lru_lock);
2766
2767 nr_to_scan -= batch_size;
2768 }
2769}
2770
2771
2772/**
2773 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2774 *
2775 * A really big hammer: scan all zones' unevictable LRU lists to check for
2776 * pages that have become evictable. Move those back to the zones'
2777 * inactive list where they become candidates for reclaim.
2778 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2779 * and we add swap to the system. As such, it runs in the context of a task
2780 * that has possibly/probably made some previously unevictable pages
2781 * evictable.
2782 */
ff30153b 2783static void scan_all_zones_unevictable_pages(void)
af936a16
LS
2784{
2785 struct zone *zone;
2786
2787 for_each_zone(zone) {
2788 scan_zone_unevictable_pages(zone);
2789 }
2790}
2791
2792/*
2793 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2794 * all nodes' unevictable lists for evictable pages
2795 */
2796unsigned long scan_unevictable_pages;
2797
2798int scan_unevictable_handler(struct ctl_table *table, int write,
2799 struct file *file, void __user *buffer,
2800 size_t *length, loff_t *ppos)
2801{
2802 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
2803
2804 if (write && *(unsigned long *)table->data)
2805 scan_all_zones_unevictable_pages();
2806
2807 scan_unevictable_pages = 0;
2808 return 0;
2809}
2810
2811/*
2812 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2813 * a specified node's per zone unevictable lists for evictable pages.
2814 */
2815
2816static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2817 struct sysdev_attribute *attr,
2818 char *buf)
2819{
2820 return sprintf(buf, "0\n"); /* always zero; should fit... */
2821}
2822
2823static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2824 struct sysdev_attribute *attr,
2825 const char *buf, size_t count)
2826{
2827 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2828 struct zone *zone;
2829 unsigned long res;
2830 unsigned long req = strict_strtoul(buf, 10, &res);
2831
2832 if (!req)
2833 return 1; /* zero is no-op */
2834
2835 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2836 if (!populated_zone(zone))
2837 continue;
2838 scan_zone_unevictable_pages(zone);
2839 }
2840 return 1;
2841}
2842
2843
2844static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2845 read_scan_unevictable_node,
2846 write_scan_unevictable_node);
2847
2848int scan_unevictable_register_node(struct node *node)
2849{
2850 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2851}
2852
2853void scan_unevictable_unregister_node(struct node *node)
2854{
2855 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2856}
2857