Merge tag 'samsung-fixes-1' of git://git.kernel.org/pub/scm/linux/kernel/git/kgene...
[linux-2.6-block.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
b1de0d13
MH
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
1da177e4
LT
16#include <linux/mm.h>
17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
29#include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31#include <linux/mm_inline.h>
1da177e4
LT
32#include <linux/backing-dev.h>
33#include <linux/rmap.h>
34#include <linux/topology.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
3e7d3449 37#include <linux/compaction.h>
1da177e4
LT
38#include <linux/notifier.h>
39#include <linux/rwsem.h>
248a0301 40#include <linux/delay.h>
3218ae14 41#include <linux/kthread.h>
7dfb7103 42#include <linux/freezer.h>
66e1707b 43#include <linux/memcontrol.h>
873b4771 44#include <linux/delayacct.h>
af936a16 45#include <linux/sysctl.h>
929bea7c 46#include <linux/oom.h>
268bb0ce 47#include <linux/prefetch.h>
b1de0d13 48#include <linux/printk.h>
1da177e4
LT
49
50#include <asm/tlbflush.h>
51#include <asm/div64.h>
52
53#include <linux/swapops.h>
117aad1e 54#include <linux/balloon_compaction.h>
1da177e4 55
0f8053a5
NP
56#include "internal.h"
57
33906bc5
MG
58#define CREATE_TRACE_POINTS
59#include <trace/events/vmscan.h>
60
1da177e4 61struct scan_control {
22fba335
KM
62 /* How many pages shrink_list() should reclaim */
63 unsigned long nr_to_reclaim;
64
1da177e4 65 /* This context's GFP mask */
6daa0e28 66 gfp_t gfp_mask;
1da177e4 67
ee814fe2 68 /* Allocation order */
5ad333eb 69 int order;
66e1707b 70
ee814fe2
JW
71 /*
72 * Nodemask of nodes allowed by the caller. If NULL, all nodes
73 * are scanned.
74 */
75 nodemask_t *nodemask;
9e3b2f8c 76
f16015fb
JW
77 /*
78 * The memory cgroup that hit its limit and as a result is the
79 * primary target of this reclaim invocation.
80 */
81 struct mem_cgroup *target_mem_cgroup;
66e1707b 82
ee814fe2
JW
83 /* Scan (total_size >> priority) pages at once */
84 int priority;
85
86 unsigned int may_writepage:1;
87
88 /* Can mapped pages be reclaimed? */
89 unsigned int may_unmap:1;
90
91 /* Can pages be swapped as part of reclaim? */
92 unsigned int may_swap:1;
93
241994ed
JW
94 /* Can cgroups be reclaimed below their normal consumption range? */
95 unsigned int may_thrash:1;
96
ee814fe2
JW
97 unsigned int hibernation_mode:1;
98
99 /* One of the zones is ready for compaction */
100 unsigned int compaction_ready:1;
101
102 /* Incremented by the number of inactive pages that were scanned */
103 unsigned long nr_scanned;
104
105 /* Number of pages freed so far during a call to shrink_zones() */
106 unsigned long nr_reclaimed;
1da177e4
LT
107};
108
1da177e4
LT
109#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
110
111#ifdef ARCH_HAS_PREFETCH
112#define prefetch_prev_lru_page(_page, _base, _field) \
113 do { \
114 if ((_page)->lru.prev != _base) { \
115 struct page *prev; \
116 \
117 prev = lru_to_page(&(_page->lru)); \
118 prefetch(&prev->_field); \
119 } \
120 } while (0)
121#else
122#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
123#endif
124
125#ifdef ARCH_HAS_PREFETCHW
126#define prefetchw_prev_lru_page(_page, _base, _field) \
127 do { \
128 if ((_page)->lru.prev != _base) { \
129 struct page *prev; \
130 \
131 prev = lru_to_page(&(_page->lru)); \
132 prefetchw(&prev->_field); \
133 } \
134 } while (0)
135#else
136#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
137#endif
138
139/*
140 * From 0 .. 100. Higher means more swappy.
141 */
142int vm_swappiness = 60;
d0480be4
WSH
143/*
144 * The total number of pages which are beyond the high watermark within all
145 * zones.
146 */
147unsigned long vm_total_pages;
1da177e4
LT
148
149static LIST_HEAD(shrinker_list);
150static DECLARE_RWSEM(shrinker_rwsem);
151
c255a458 152#ifdef CONFIG_MEMCG
89b5fae5
JW
153static bool global_reclaim(struct scan_control *sc)
154{
f16015fb 155 return !sc->target_mem_cgroup;
89b5fae5 156}
97c9341f
TH
157
158/**
159 * sane_reclaim - is the usual dirty throttling mechanism operational?
160 * @sc: scan_control in question
161 *
162 * The normal page dirty throttling mechanism in balance_dirty_pages() is
163 * completely broken with the legacy memcg and direct stalling in
164 * shrink_page_list() is used for throttling instead, which lacks all the
165 * niceties such as fairness, adaptive pausing, bandwidth proportional
166 * allocation and configurability.
167 *
168 * This function tests whether the vmscan currently in progress can assume
169 * that the normal dirty throttling mechanism is operational.
170 */
171static bool sane_reclaim(struct scan_control *sc)
172{
173 struct mem_cgroup *memcg = sc->target_mem_cgroup;
174
175 if (!memcg)
176 return true;
177#ifdef CONFIG_CGROUP_WRITEBACK
178 if (cgroup_on_dfl(mem_cgroup_css(memcg)->cgroup))
179 return true;
180#endif
181 return false;
182}
91a45470 183#else
89b5fae5
JW
184static bool global_reclaim(struct scan_control *sc)
185{
186 return true;
187}
97c9341f
TH
188
189static bool sane_reclaim(struct scan_control *sc)
190{
191 return true;
192}
91a45470
KH
193#endif
194
a1c3bfb2 195static unsigned long zone_reclaimable_pages(struct zone *zone)
6e543d57
LD
196{
197 int nr;
198
199 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
200 zone_page_state(zone, NR_INACTIVE_FILE);
201
202 if (get_nr_swap_pages() > 0)
203 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
204 zone_page_state(zone, NR_INACTIVE_ANON);
205
206 return nr;
207}
208
209bool zone_reclaimable(struct zone *zone)
210{
0d5d823a
MG
211 return zone_page_state(zone, NR_PAGES_SCANNED) <
212 zone_reclaimable_pages(zone) * 6;
6e543d57
LD
213}
214
4d7dcca2 215static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
c9f299d9 216{
c3c787e8 217 if (!mem_cgroup_disabled())
4d7dcca2 218 return mem_cgroup_get_lru_size(lruvec, lru);
a3d8e054 219
074291fe 220 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
c9f299d9
KM
221}
222
1da177e4 223/*
1d3d4437 224 * Add a shrinker callback to be called from the vm.
1da177e4 225 */
1d3d4437 226int register_shrinker(struct shrinker *shrinker)
1da177e4 227{
1d3d4437
GC
228 size_t size = sizeof(*shrinker->nr_deferred);
229
230 /*
231 * If we only have one possible node in the system anyway, save
232 * ourselves the trouble and disable NUMA aware behavior. This way we
233 * will save memory and some small loop time later.
234 */
235 if (nr_node_ids == 1)
236 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
237
238 if (shrinker->flags & SHRINKER_NUMA_AWARE)
239 size *= nr_node_ids;
240
241 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
242 if (!shrinker->nr_deferred)
243 return -ENOMEM;
244
8e1f936b
RR
245 down_write(&shrinker_rwsem);
246 list_add_tail(&shrinker->list, &shrinker_list);
247 up_write(&shrinker_rwsem);
1d3d4437 248 return 0;
1da177e4 249}
8e1f936b 250EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
251
252/*
253 * Remove one
254 */
8e1f936b 255void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
256{
257 down_write(&shrinker_rwsem);
258 list_del(&shrinker->list);
259 up_write(&shrinker_rwsem);
ae393321 260 kfree(shrinker->nr_deferred);
1da177e4 261}
8e1f936b 262EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
263
264#define SHRINK_BATCH 128
1d3d4437 265
cb731d6c
VD
266static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
267 struct shrinker *shrinker,
268 unsigned long nr_scanned,
269 unsigned long nr_eligible)
1d3d4437
GC
270{
271 unsigned long freed = 0;
272 unsigned long long delta;
273 long total_scan;
d5bc5fd3 274 long freeable;
1d3d4437
GC
275 long nr;
276 long new_nr;
277 int nid = shrinkctl->nid;
278 long batch_size = shrinker->batch ? shrinker->batch
279 : SHRINK_BATCH;
280
d5bc5fd3
VD
281 freeable = shrinker->count_objects(shrinker, shrinkctl);
282 if (freeable == 0)
1d3d4437
GC
283 return 0;
284
285 /*
286 * copy the current shrinker scan count into a local variable
287 * and zero it so that other concurrent shrinker invocations
288 * don't also do this scanning work.
289 */
290 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
291
292 total_scan = nr;
6b4f7799 293 delta = (4 * nr_scanned) / shrinker->seeks;
d5bc5fd3 294 delta *= freeable;
6b4f7799 295 do_div(delta, nr_eligible + 1);
1d3d4437
GC
296 total_scan += delta;
297 if (total_scan < 0) {
8612c663 298 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 299 shrinker->scan_objects, total_scan);
d5bc5fd3 300 total_scan = freeable;
1d3d4437
GC
301 }
302
303 /*
304 * We need to avoid excessive windup on filesystem shrinkers
305 * due to large numbers of GFP_NOFS allocations causing the
306 * shrinkers to return -1 all the time. This results in a large
307 * nr being built up so when a shrink that can do some work
308 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 309 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
310 * memory.
311 *
312 * Hence only allow the shrinker to scan the entire cache when
313 * a large delta change is calculated directly.
314 */
d5bc5fd3
VD
315 if (delta < freeable / 4)
316 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
317
318 /*
319 * Avoid risking looping forever due to too large nr value:
320 * never try to free more than twice the estimate number of
321 * freeable entries.
322 */
d5bc5fd3
VD
323 if (total_scan > freeable * 2)
324 total_scan = freeable * 2;
1d3d4437
GC
325
326 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
6b4f7799
JW
327 nr_scanned, nr_eligible,
328 freeable, delta, total_scan);
1d3d4437 329
0b1fb40a
VD
330 /*
331 * Normally, we should not scan less than batch_size objects in one
332 * pass to avoid too frequent shrinker calls, but if the slab has less
333 * than batch_size objects in total and we are really tight on memory,
334 * we will try to reclaim all available objects, otherwise we can end
335 * up failing allocations although there are plenty of reclaimable
336 * objects spread over several slabs with usage less than the
337 * batch_size.
338 *
339 * We detect the "tight on memory" situations by looking at the total
340 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 341 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
342 * scanning at high prio and therefore should try to reclaim as much as
343 * possible.
344 */
345 while (total_scan >= batch_size ||
d5bc5fd3 346 total_scan >= freeable) {
a0b02131 347 unsigned long ret;
0b1fb40a 348 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 349
0b1fb40a 350 shrinkctl->nr_to_scan = nr_to_scan;
a0b02131
DC
351 ret = shrinker->scan_objects(shrinker, shrinkctl);
352 if (ret == SHRINK_STOP)
353 break;
354 freed += ret;
1d3d4437 355
0b1fb40a
VD
356 count_vm_events(SLABS_SCANNED, nr_to_scan);
357 total_scan -= nr_to_scan;
1d3d4437
GC
358
359 cond_resched();
360 }
361
362 /*
363 * move the unused scan count back into the shrinker in a
364 * manner that handles concurrent updates. If we exhausted the
365 * scan, there is no need to do an update.
366 */
367 if (total_scan > 0)
368 new_nr = atomic_long_add_return(total_scan,
369 &shrinker->nr_deferred[nid]);
370 else
371 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
372
df9024a8 373 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 374 return freed;
1495f230
YH
375}
376
6b4f7799 377/**
cb731d6c 378 * shrink_slab - shrink slab caches
6b4f7799
JW
379 * @gfp_mask: allocation context
380 * @nid: node whose slab caches to target
cb731d6c 381 * @memcg: memory cgroup whose slab caches to target
6b4f7799
JW
382 * @nr_scanned: pressure numerator
383 * @nr_eligible: pressure denominator
1da177e4 384 *
6b4f7799 385 * Call the shrink functions to age shrinkable caches.
1da177e4 386 *
6b4f7799
JW
387 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
388 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 389 *
cb731d6c
VD
390 * @memcg specifies the memory cgroup to target. If it is not NULL,
391 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
392 * objects from the memory cgroup specified. Otherwise all shrinkers
393 * are called, and memcg aware shrinkers are supposed to scan the
394 * global list then.
395 *
6b4f7799
JW
396 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
397 * the available objects should be scanned. Page reclaim for example
398 * passes the number of pages scanned and the number of pages on the
399 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
400 * when it encountered mapped pages. The ratio is further biased by
401 * the ->seeks setting of the shrink function, which indicates the
402 * cost to recreate an object relative to that of an LRU page.
b15e0905 403 *
6b4f7799 404 * Returns the number of reclaimed slab objects.
1da177e4 405 */
cb731d6c
VD
406static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
407 struct mem_cgroup *memcg,
408 unsigned long nr_scanned,
409 unsigned long nr_eligible)
1da177e4
LT
410{
411 struct shrinker *shrinker;
24f7c6b9 412 unsigned long freed = 0;
1da177e4 413
cb731d6c
VD
414 if (memcg && !memcg_kmem_is_active(memcg))
415 return 0;
416
6b4f7799
JW
417 if (nr_scanned == 0)
418 nr_scanned = SWAP_CLUSTER_MAX;
1da177e4 419
f06590bd 420 if (!down_read_trylock(&shrinker_rwsem)) {
24f7c6b9
DC
421 /*
422 * If we would return 0, our callers would understand that we
423 * have nothing else to shrink and give up trying. By returning
424 * 1 we keep it going and assume we'll be able to shrink next
425 * time.
426 */
427 freed = 1;
f06590bd
MK
428 goto out;
429 }
1da177e4
LT
430
431 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
432 struct shrink_control sc = {
433 .gfp_mask = gfp_mask,
434 .nid = nid,
cb731d6c 435 .memcg = memcg,
6b4f7799 436 };
ec97097b 437
cb731d6c
VD
438 if (memcg && !(shrinker->flags & SHRINKER_MEMCG_AWARE))
439 continue;
440
6b4f7799
JW
441 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
442 sc.nid = 0;
1da177e4 443
cb731d6c 444 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
1da177e4 445 }
6b4f7799 446
1da177e4 447 up_read(&shrinker_rwsem);
f06590bd
MK
448out:
449 cond_resched();
24f7c6b9 450 return freed;
1da177e4
LT
451}
452
cb731d6c
VD
453void drop_slab_node(int nid)
454{
455 unsigned long freed;
456
457 do {
458 struct mem_cgroup *memcg = NULL;
459
460 freed = 0;
461 do {
462 freed += shrink_slab(GFP_KERNEL, nid, memcg,
463 1000, 1000);
464 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
465 } while (freed > 10);
466}
467
468void drop_slab(void)
469{
470 int nid;
471
472 for_each_online_node(nid)
473 drop_slab_node(nid);
474}
475
1da177e4
LT
476static inline int is_page_cache_freeable(struct page *page)
477{
ceddc3a5
JW
478 /*
479 * A freeable page cache page is referenced only by the caller
480 * that isolated the page, the page cache radix tree and
481 * optional buffer heads at page->private.
482 */
edcf4748 483 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
484}
485
703c2708 486static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
1da177e4 487{
930d9152 488 if (current->flags & PF_SWAPWRITE)
1da177e4 489 return 1;
703c2708 490 if (!inode_write_congested(inode))
1da177e4 491 return 1;
703c2708 492 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
493 return 1;
494 return 0;
495}
496
497/*
498 * We detected a synchronous write error writing a page out. Probably
499 * -ENOSPC. We need to propagate that into the address_space for a subsequent
500 * fsync(), msync() or close().
501 *
502 * The tricky part is that after writepage we cannot touch the mapping: nothing
503 * prevents it from being freed up. But we have a ref on the page and once
504 * that page is locked, the mapping is pinned.
505 *
506 * We're allowed to run sleeping lock_page() here because we know the caller has
507 * __GFP_FS.
508 */
509static void handle_write_error(struct address_space *mapping,
510 struct page *page, int error)
511{
7eaceacc 512 lock_page(page);
3e9f45bd
GC
513 if (page_mapping(page) == mapping)
514 mapping_set_error(mapping, error);
1da177e4
LT
515 unlock_page(page);
516}
517
04e62a29
CL
518/* possible outcome of pageout() */
519typedef enum {
520 /* failed to write page out, page is locked */
521 PAGE_KEEP,
522 /* move page to the active list, page is locked */
523 PAGE_ACTIVATE,
524 /* page has been sent to the disk successfully, page is unlocked */
525 PAGE_SUCCESS,
526 /* page is clean and locked */
527 PAGE_CLEAN,
528} pageout_t;
529
1da177e4 530/*
1742f19f
AM
531 * pageout is called by shrink_page_list() for each dirty page.
532 * Calls ->writepage().
1da177e4 533 */
c661b078 534static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 535 struct scan_control *sc)
1da177e4
LT
536{
537 /*
538 * If the page is dirty, only perform writeback if that write
539 * will be non-blocking. To prevent this allocation from being
540 * stalled by pagecache activity. But note that there may be
541 * stalls if we need to run get_block(). We could test
542 * PagePrivate for that.
543 *
8174202b 544 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
545 * this page's queue, we can perform writeback even if that
546 * will block.
547 *
548 * If the page is swapcache, write it back even if that would
549 * block, for some throttling. This happens by accident, because
550 * swap_backing_dev_info is bust: it doesn't reflect the
551 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
552 */
553 if (!is_page_cache_freeable(page))
554 return PAGE_KEEP;
555 if (!mapping) {
556 /*
557 * Some data journaling orphaned pages can have
558 * page->mapping == NULL while being dirty with clean buffers.
559 */
266cf658 560 if (page_has_private(page)) {
1da177e4
LT
561 if (try_to_free_buffers(page)) {
562 ClearPageDirty(page);
b1de0d13 563 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
564 return PAGE_CLEAN;
565 }
566 }
567 return PAGE_KEEP;
568 }
569 if (mapping->a_ops->writepage == NULL)
570 return PAGE_ACTIVATE;
703c2708 571 if (!may_write_to_inode(mapping->host, sc))
1da177e4
LT
572 return PAGE_KEEP;
573
574 if (clear_page_dirty_for_io(page)) {
575 int res;
576 struct writeback_control wbc = {
577 .sync_mode = WB_SYNC_NONE,
578 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
579 .range_start = 0,
580 .range_end = LLONG_MAX,
1da177e4
LT
581 .for_reclaim = 1,
582 };
583
584 SetPageReclaim(page);
585 res = mapping->a_ops->writepage(page, &wbc);
586 if (res < 0)
587 handle_write_error(mapping, page, res);
994fc28c 588 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
589 ClearPageReclaim(page);
590 return PAGE_ACTIVATE;
591 }
c661b078 592
1da177e4
LT
593 if (!PageWriteback(page)) {
594 /* synchronous write or broken a_ops? */
595 ClearPageReclaim(page);
596 }
23b9da55 597 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
e129b5c2 598 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
599 return PAGE_SUCCESS;
600 }
601
602 return PAGE_CLEAN;
603}
604
a649fd92 605/*
e286781d
NP
606 * Same as remove_mapping, but if the page is removed from the mapping, it
607 * gets returned with a refcount of 0.
a649fd92 608 */
a528910e
JW
609static int __remove_mapping(struct address_space *mapping, struct page *page,
610 bool reclaimed)
49d2e9cc 611{
c4843a75
GT
612 unsigned long flags;
613 struct mem_cgroup *memcg;
614
28e4d965
NP
615 BUG_ON(!PageLocked(page));
616 BUG_ON(mapping != page_mapping(page));
49d2e9cc 617
c4843a75
GT
618 memcg = mem_cgroup_begin_page_stat(page);
619 spin_lock_irqsave(&mapping->tree_lock, flags);
49d2e9cc 620 /*
0fd0e6b0
NP
621 * The non racy check for a busy page.
622 *
623 * Must be careful with the order of the tests. When someone has
624 * a ref to the page, it may be possible that they dirty it then
625 * drop the reference. So if PageDirty is tested before page_count
626 * here, then the following race may occur:
627 *
628 * get_user_pages(&page);
629 * [user mapping goes away]
630 * write_to(page);
631 * !PageDirty(page) [good]
632 * SetPageDirty(page);
633 * put_page(page);
634 * !page_count(page) [good, discard it]
635 *
636 * [oops, our write_to data is lost]
637 *
638 * Reversing the order of the tests ensures such a situation cannot
639 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
640 * load is not satisfied before that of page->_count.
641 *
642 * Note that if SetPageDirty is always performed via set_page_dirty,
643 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 644 */
e286781d 645 if (!page_freeze_refs(page, 2))
49d2e9cc 646 goto cannot_free;
e286781d
NP
647 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
648 if (unlikely(PageDirty(page))) {
649 page_unfreeze_refs(page, 2);
49d2e9cc 650 goto cannot_free;
e286781d 651 }
49d2e9cc
CL
652
653 if (PageSwapCache(page)) {
654 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 655 mem_cgroup_swapout(page, swap);
49d2e9cc 656 __delete_from_swap_cache(page);
c4843a75
GT
657 spin_unlock_irqrestore(&mapping->tree_lock, flags);
658 mem_cgroup_end_page_stat(memcg);
0a31bc97 659 swapcache_free(swap);
e286781d 660 } else {
6072d13c 661 void (*freepage)(struct page *);
a528910e 662 void *shadow = NULL;
6072d13c
LT
663
664 freepage = mapping->a_ops->freepage;
a528910e
JW
665 /*
666 * Remember a shadow entry for reclaimed file cache in
667 * order to detect refaults, thus thrashing, later on.
668 *
669 * But don't store shadows in an address space that is
670 * already exiting. This is not just an optizimation,
671 * inode reclaim needs to empty out the radix tree or
672 * the nodes are lost. Don't plant shadows behind its
673 * back.
674 */
675 if (reclaimed && page_is_file_cache(page) &&
676 !mapping_exiting(mapping))
677 shadow = workingset_eviction(mapping, page);
c4843a75
GT
678 __delete_from_page_cache(page, shadow, memcg);
679 spin_unlock_irqrestore(&mapping->tree_lock, flags);
680 mem_cgroup_end_page_stat(memcg);
6072d13c
LT
681
682 if (freepage != NULL)
683 freepage(page);
49d2e9cc
CL
684 }
685
49d2e9cc
CL
686 return 1;
687
688cannot_free:
c4843a75
GT
689 spin_unlock_irqrestore(&mapping->tree_lock, flags);
690 mem_cgroup_end_page_stat(memcg);
49d2e9cc
CL
691 return 0;
692}
693
e286781d
NP
694/*
695 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
696 * someone else has a ref on the page, abort and return 0. If it was
697 * successfully detached, return 1. Assumes the caller has a single ref on
698 * this page.
699 */
700int remove_mapping(struct address_space *mapping, struct page *page)
701{
a528910e 702 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
703 /*
704 * Unfreezing the refcount with 1 rather than 2 effectively
705 * drops the pagecache ref for us without requiring another
706 * atomic operation.
707 */
708 page_unfreeze_refs(page, 1);
709 return 1;
710 }
711 return 0;
712}
713
894bc310
LS
714/**
715 * putback_lru_page - put previously isolated page onto appropriate LRU list
716 * @page: page to be put back to appropriate lru list
717 *
718 * Add previously isolated @page to appropriate LRU list.
719 * Page may still be unevictable for other reasons.
720 *
721 * lru_lock must not be held, interrupts must be enabled.
722 */
894bc310
LS
723void putback_lru_page(struct page *page)
724{
0ec3b74c 725 bool is_unevictable;
bbfd28ee 726 int was_unevictable = PageUnevictable(page);
894bc310 727
309381fe 728 VM_BUG_ON_PAGE(PageLRU(page), page);
894bc310
LS
729
730redo:
731 ClearPageUnevictable(page);
732
39b5f29a 733 if (page_evictable(page)) {
894bc310
LS
734 /*
735 * For evictable pages, we can use the cache.
736 * In event of a race, worst case is we end up with an
737 * unevictable page on [in]active list.
738 * We know how to handle that.
739 */
0ec3b74c 740 is_unevictable = false;
c53954a0 741 lru_cache_add(page);
894bc310
LS
742 } else {
743 /*
744 * Put unevictable pages directly on zone's unevictable
745 * list.
746 */
0ec3b74c 747 is_unevictable = true;
894bc310 748 add_page_to_unevictable_list(page);
6a7b9548 749 /*
21ee9f39
MK
750 * When racing with an mlock or AS_UNEVICTABLE clearing
751 * (page is unlocked) make sure that if the other thread
752 * does not observe our setting of PG_lru and fails
24513264 753 * isolation/check_move_unevictable_pages,
21ee9f39 754 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
755 * the page back to the evictable list.
756 *
21ee9f39 757 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
758 */
759 smp_mb();
894bc310 760 }
894bc310
LS
761
762 /*
763 * page's status can change while we move it among lru. If an evictable
764 * page is on unevictable list, it never be freed. To avoid that,
765 * check after we added it to the list, again.
766 */
0ec3b74c 767 if (is_unevictable && page_evictable(page)) {
894bc310
LS
768 if (!isolate_lru_page(page)) {
769 put_page(page);
770 goto redo;
771 }
772 /* This means someone else dropped this page from LRU
773 * So, it will be freed or putback to LRU again. There is
774 * nothing to do here.
775 */
776 }
777
0ec3b74c 778 if (was_unevictable && !is_unevictable)
bbfd28ee 779 count_vm_event(UNEVICTABLE_PGRESCUED);
0ec3b74c 780 else if (!was_unevictable && is_unevictable)
bbfd28ee
LS
781 count_vm_event(UNEVICTABLE_PGCULLED);
782
894bc310
LS
783 put_page(page); /* drop ref from isolate */
784}
785
dfc8d636
JW
786enum page_references {
787 PAGEREF_RECLAIM,
788 PAGEREF_RECLAIM_CLEAN,
64574746 789 PAGEREF_KEEP,
dfc8d636
JW
790 PAGEREF_ACTIVATE,
791};
792
793static enum page_references page_check_references(struct page *page,
794 struct scan_control *sc)
795{
64574746 796 int referenced_ptes, referenced_page;
dfc8d636 797 unsigned long vm_flags;
dfc8d636 798
c3ac9a8a
JW
799 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
800 &vm_flags);
64574746 801 referenced_page = TestClearPageReferenced(page);
dfc8d636 802
dfc8d636
JW
803 /*
804 * Mlock lost the isolation race with us. Let try_to_unmap()
805 * move the page to the unevictable list.
806 */
807 if (vm_flags & VM_LOCKED)
808 return PAGEREF_RECLAIM;
809
64574746 810 if (referenced_ptes) {
e4898273 811 if (PageSwapBacked(page))
64574746
JW
812 return PAGEREF_ACTIVATE;
813 /*
814 * All mapped pages start out with page table
815 * references from the instantiating fault, so we need
816 * to look twice if a mapped file page is used more
817 * than once.
818 *
819 * Mark it and spare it for another trip around the
820 * inactive list. Another page table reference will
821 * lead to its activation.
822 *
823 * Note: the mark is set for activated pages as well
824 * so that recently deactivated but used pages are
825 * quickly recovered.
826 */
827 SetPageReferenced(page);
828
34dbc67a 829 if (referenced_page || referenced_ptes > 1)
64574746
JW
830 return PAGEREF_ACTIVATE;
831
c909e993
KK
832 /*
833 * Activate file-backed executable pages after first usage.
834 */
835 if (vm_flags & VM_EXEC)
836 return PAGEREF_ACTIVATE;
837
64574746
JW
838 return PAGEREF_KEEP;
839 }
dfc8d636
JW
840
841 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 842 if (referenced_page && !PageSwapBacked(page))
64574746
JW
843 return PAGEREF_RECLAIM_CLEAN;
844
845 return PAGEREF_RECLAIM;
dfc8d636
JW
846}
847
e2be15f6
MG
848/* Check if a page is dirty or under writeback */
849static void page_check_dirty_writeback(struct page *page,
850 bool *dirty, bool *writeback)
851{
b4597226
MG
852 struct address_space *mapping;
853
e2be15f6
MG
854 /*
855 * Anonymous pages are not handled by flushers and must be written
856 * from reclaim context. Do not stall reclaim based on them
857 */
858 if (!page_is_file_cache(page)) {
859 *dirty = false;
860 *writeback = false;
861 return;
862 }
863
864 /* By default assume that the page flags are accurate */
865 *dirty = PageDirty(page);
866 *writeback = PageWriteback(page);
b4597226
MG
867
868 /* Verify dirty/writeback state if the filesystem supports it */
869 if (!page_has_private(page))
870 return;
871
872 mapping = page_mapping(page);
873 if (mapping && mapping->a_ops->is_dirty_writeback)
874 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
875}
876
1da177e4 877/*
1742f19f 878 * shrink_page_list() returns the number of reclaimed pages
1da177e4 879 */
1742f19f 880static unsigned long shrink_page_list(struct list_head *page_list,
6a18adb3 881 struct zone *zone,
f84f6e2b 882 struct scan_control *sc,
02c6de8d 883 enum ttu_flags ttu_flags,
8e950282 884 unsigned long *ret_nr_dirty,
d43006d5 885 unsigned long *ret_nr_unqueued_dirty,
8e950282 886 unsigned long *ret_nr_congested,
02c6de8d 887 unsigned long *ret_nr_writeback,
b1a6f21e 888 unsigned long *ret_nr_immediate,
02c6de8d 889 bool force_reclaim)
1da177e4
LT
890{
891 LIST_HEAD(ret_pages);
abe4c3b5 892 LIST_HEAD(free_pages);
1da177e4 893 int pgactivate = 0;
d43006d5 894 unsigned long nr_unqueued_dirty = 0;
0e093d99
MG
895 unsigned long nr_dirty = 0;
896 unsigned long nr_congested = 0;
05ff5137 897 unsigned long nr_reclaimed = 0;
92df3a72 898 unsigned long nr_writeback = 0;
b1a6f21e 899 unsigned long nr_immediate = 0;
1da177e4
LT
900
901 cond_resched();
902
1da177e4
LT
903 while (!list_empty(page_list)) {
904 struct address_space *mapping;
905 struct page *page;
906 int may_enter_fs;
02c6de8d 907 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 908 bool dirty, writeback;
1da177e4
LT
909
910 cond_resched();
911
912 page = lru_to_page(page_list);
913 list_del(&page->lru);
914
529ae9aa 915 if (!trylock_page(page))
1da177e4
LT
916 goto keep;
917
309381fe
SL
918 VM_BUG_ON_PAGE(PageActive(page), page);
919 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1da177e4
LT
920
921 sc->nr_scanned++;
80e43426 922
39b5f29a 923 if (unlikely(!page_evictable(page)))
b291f000 924 goto cull_mlocked;
894bc310 925
a6dc60f8 926 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
927 goto keep_locked;
928
1da177e4
LT
929 /* Double the slab pressure for mapped and swapcache pages */
930 if (page_mapped(page) || PageSwapCache(page))
931 sc->nr_scanned++;
932
c661b078
AW
933 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
934 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
935
e2be15f6
MG
936 /*
937 * The number of dirty pages determines if a zone is marked
938 * reclaim_congested which affects wait_iff_congested. kswapd
939 * will stall and start writing pages if the tail of the LRU
940 * is all dirty unqueued pages.
941 */
942 page_check_dirty_writeback(page, &dirty, &writeback);
943 if (dirty || writeback)
944 nr_dirty++;
945
946 if (dirty && !writeback)
947 nr_unqueued_dirty++;
948
d04e8acd
MG
949 /*
950 * Treat this page as congested if the underlying BDI is or if
951 * pages are cycling through the LRU so quickly that the
952 * pages marked for immediate reclaim are making it to the
953 * end of the LRU a second time.
954 */
e2be15f6 955 mapping = page_mapping(page);
1da58ee2 956 if (((dirty || writeback) && mapping &&
703c2708 957 inode_write_congested(mapping->host)) ||
d04e8acd 958 (writeback && PageReclaim(page)))
e2be15f6
MG
959 nr_congested++;
960
283aba9f
MG
961 /*
962 * If a page at the tail of the LRU is under writeback, there
963 * are three cases to consider.
964 *
965 * 1) If reclaim is encountering an excessive number of pages
966 * under writeback and this page is both under writeback and
967 * PageReclaim then it indicates that pages are being queued
968 * for IO but are being recycled through the LRU before the
969 * IO can complete. Waiting on the page itself risks an
970 * indefinite stall if it is impossible to writeback the
971 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
972 * note that the LRU is being scanned too quickly and the
973 * caller can stall after page list has been processed.
283aba9f 974 *
97c9341f
TH
975 * 2) Global or new memcg reclaim encounters a page that is
976 * not marked for immediate reclaim or the caller does not
977 * have __GFP_IO. In this case mark the page for immediate
978 * reclaim and continue scanning.
283aba9f
MG
979 *
980 * __GFP_IO is checked because a loop driver thread might
981 * enter reclaim, and deadlock if it waits on a page for
982 * which it is needed to do the write (loop masks off
983 * __GFP_IO|__GFP_FS for this reason); but more thought
984 * would probably show more reasons.
985 *
986 * Don't require __GFP_FS, since we're not going into the
987 * FS, just waiting on its writeback completion. Worryingly,
988 * ext4 gfs2 and xfs allocate pages with
989 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
990 * may_enter_fs here is liable to OOM on them.
991 *
97c9341f 992 * 3) Legacy memcg encounters a page that is not already marked
283aba9f
MG
993 * PageReclaim. memcg does not have any dirty pages
994 * throttling so we could easily OOM just because too many
995 * pages are in writeback and there is nothing else to
996 * reclaim. Wait for the writeback to complete.
997 */
c661b078 998 if (PageWriteback(page)) {
283aba9f
MG
999 /* Case 1 above */
1000 if (current_is_kswapd() &&
1001 PageReclaim(page) &&
57054651 1002 test_bit(ZONE_WRITEBACK, &zone->flags)) {
b1a6f21e
MG
1003 nr_immediate++;
1004 goto keep_locked;
283aba9f
MG
1005
1006 /* Case 2 above */
97c9341f 1007 } else if (sane_reclaim(sc) ||
c3b94f44
HD
1008 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
1009 /*
1010 * This is slightly racy - end_page_writeback()
1011 * might have just cleared PageReclaim, then
1012 * setting PageReclaim here end up interpreted
1013 * as PageReadahead - but that does not matter
1014 * enough to care. What we do want is for this
1015 * page to have PageReclaim set next time memcg
1016 * reclaim reaches the tests above, so it will
1017 * then wait_on_page_writeback() to avoid OOM;
1018 * and it's also appropriate in global reclaim.
1019 */
1020 SetPageReclaim(page);
e62e384e 1021 nr_writeback++;
283aba9f 1022
c3b94f44 1023 goto keep_locked;
283aba9f
MG
1024
1025 /* Case 3 above */
1026 } else {
1027 wait_on_page_writeback(page);
e62e384e 1028 }
c661b078 1029 }
1da177e4 1030
02c6de8d
MK
1031 if (!force_reclaim)
1032 references = page_check_references(page, sc);
1033
dfc8d636
JW
1034 switch (references) {
1035 case PAGEREF_ACTIVATE:
1da177e4 1036 goto activate_locked;
64574746
JW
1037 case PAGEREF_KEEP:
1038 goto keep_locked;
dfc8d636
JW
1039 case PAGEREF_RECLAIM:
1040 case PAGEREF_RECLAIM_CLEAN:
1041 ; /* try to reclaim the page below */
1042 }
1da177e4 1043
1da177e4
LT
1044 /*
1045 * Anonymous process memory has backing store?
1046 * Try to allocate it some swap space here.
1047 */
b291f000 1048 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
1049 if (!(sc->gfp_mask & __GFP_IO))
1050 goto keep_locked;
5bc7b8ac 1051 if (!add_to_swap(page, page_list))
1da177e4 1052 goto activate_locked;
63eb6b93 1053 may_enter_fs = 1;
1da177e4 1054
e2be15f6
MG
1055 /* Adding to swap updated mapping */
1056 mapping = page_mapping(page);
1057 }
1da177e4
LT
1058
1059 /*
1060 * The page is mapped into the page tables of one or more
1061 * processes. Try to unmap it here.
1062 */
1063 if (page_mapped(page) && mapping) {
02c6de8d 1064 switch (try_to_unmap(page, ttu_flags)) {
1da177e4
LT
1065 case SWAP_FAIL:
1066 goto activate_locked;
1067 case SWAP_AGAIN:
1068 goto keep_locked;
b291f000
NP
1069 case SWAP_MLOCK:
1070 goto cull_mlocked;
1da177e4
LT
1071 case SWAP_SUCCESS:
1072 ; /* try to free the page below */
1073 }
1074 }
1075
1076 if (PageDirty(page)) {
ee72886d
MG
1077 /*
1078 * Only kswapd can writeback filesystem pages to
d43006d5
MG
1079 * avoid risk of stack overflow but only writeback
1080 * if many dirty pages have been encountered.
ee72886d 1081 */
f84f6e2b 1082 if (page_is_file_cache(page) &&
9e3b2f8c 1083 (!current_is_kswapd() ||
57054651 1084 !test_bit(ZONE_DIRTY, &zone->flags))) {
49ea7eb6
MG
1085 /*
1086 * Immediately reclaim when written back.
1087 * Similar in principal to deactivate_page()
1088 * except we already have the page isolated
1089 * and know it's dirty
1090 */
1091 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1092 SetPageReclaim(page);
1093
ee72886d
MG
1094 goto keep_locked;
1095 }
1096
dfc8d636 1097 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1098 goto keep_locked;
4dd4b920 1099 if (!may_enter_fs)
1da177e4 1100 goto keep_locked;
52a8363e 1101 if (!sc->may_writepage)
1da177e4
LT
1102 goto keep_locked;
1103
1104 /* Page is dirty, try to write it out here */
7d3579e8 1105 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1106 case PAGE_KEEP:
1107 goto keep_locked;
1108 case PAGE_ACTIVATE:
1109 goto activate_locked;
1110 case PAGE_SUCCESS:
7d3579e8 1111 if (PageWriteback(page))
41ac1999 1112 goto keep;
7d3579e8 1113 if (PageDirty(page))
1da177e4 1114 goto keep;
7d3579e8 1115
1da177e4
LT
1116 /*
1117 * A synchronous write - probably a ramdisk. Go
1118 * ahead and try to reclaim the page.
1119 */
529ae9aa 1120 if (!trylock_page(page))
1da177e4
LT
1121 goto keep;
1122 if (PageDirty(page) || PageWriteback(page))
1123 goto keep_locked;
1124 mapping = page_mapping(page);
1125 case PAGE_CLEAN:
1126 ; /* try to free the page below */
1127 }
1128 }
1129
1130 /*
1131 * If the page has buffers, try to free the buffer mappings
1132 * associated with this page. If we succeed we try to free
1133 * the page as well.
1134 *
1135 * We do this even if the page is PageDirty().
1136 * try_to_release_page() does not perform I/O, but it is
1137 * possible for a page to have PageDirty set, but it is actually
1138 * clean (all its buffers are clean). This happens if the
1139 * buffers were written out directly, with submit_bh(). ext3
894bc310 1140 * will do this, as well as the blockdev mapping.
1da177e4
LT
1141 * try_to_release_page() will discover that cleanness and will
1142 * drop the buffers and mark the page clean - it can be freed.
1143 *
1144 * Rarely, pages can have buffers and no ->mapping. These are
1145 * the pages which were not successfully invalidated in
1146 * truncate_complete_page(). We try to drop those buffers here
1147 * and if that worked, and the page is no longer mapped into
1148 * process address space (page_count == 1) it can be freed.
1149 * Otherwise, leave the page on the LRU so it is swappable.
1150 */
266cf658 1151 if (page_has_private(page)) {
1da177e4
LT
1152 if (!try_to_release_page(page, sc->gfp_mask))
1153 goto activate_locked;
e286781d
NP
1154 if (!mapping && page_count(page) == 1) {
1155 unlock_page(page);
1156 if (put_page_testzero(page))
1157 goto free_it;
1158 else {
1159 /*
1160 * rare race with speculative reference.
1161 * the speculative reference will free
1162 * this page shortly, so we may
1163 * increment nr_reclaimed here (and
1164 * leave it off the LRU).
1165 */
1166 nr_reclaimed++;
1167 continue;
1168 }
1169 }
1da177e4
LT
1170 }
1171
a528910e 1172 if (!mapping || !__remove_mapping(mapping, page, true))
49d2e9cc 1173 goto keep_locked;
1da177e4 1174
a978d6f5
NP
1175 /*
1176 * At this point, we have no other references and there is
1177 * no way to pick any more up (removed from LRU, removed
1178 * from pagecache). Can use non-atomic bitops now (and
1179 * we obviously don't have to worry about waking up a process
1180 * waiting on the page lock, because there are no references.
1181 */
1182 __clear_page_locked(page);
e286781d 1183free_it:
05ff5137 1184 nr_reclaimed++;
abe4c3b5
MG
1185
1186 /*
1187 * Is there need to periodically free_page_list? It would
1188 * appear not as the counts should be low
1189 */
1190 list_add(&page->lru, &free_pages);
1da177e4
LT
1191 continue;
1192
b291f000 1193cull_mlocked:
63d6c5ad
HD
1194 if (PageSwapCache(page))
1195 try_to_free_swap(page);
b291f000
NP
1196 unlock_page(page);
1197 putback_lru_page(page);
1198 continue;
1199
1da177e4 1200activate_locked:
68a22394
RR
1201 /* Not a candidate for swapping, so reclaim swap space. */
1202 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 1203 try_to_free_swap(page);
309381fe 1204 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
1205 SetPageActive(page);
1206 pgactivate++;
1207keep_locked:
1208 unlock_page(page);
1209keep:
1210 list_add(&page->lru, &ret_pages);
309381fe 1211 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1212 }
abe4c3b5 1213
747db954 1214 mem_cgroup_uncharge_list(&free_pages);
b745bc85 1215 free_hot_cold_page_list(&free_pages, true);
abe4c3b5 1216
1da177e4 1217 list_splice(&ret_pages, page_list);
f8891e5e 1218 count_vm_events(PGACTIVATE, pgactivate);
0a31bc97 1219
8e950282
MG
1220 *ret_nr_dirty += nr_dirty;
1221 *ret_nr_congested += nr_congested;
d43006d5 1222 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
92df3a72 1223 *ret_nr_writeback += nr_writeback;
b1a6f21e 1224 *ret_nr_immediate += nr_immediate;
05ff5137 1225 return nr_reclaimed;
1da177e4
LT
1226}
1227
02c6de8d
MK
1228unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1229 struct list_head *page_list)
1230{
1231 struct scan_control sc = {
1232 .gfp_mask = GFP_KERNEL,
1233 .priority = DEF_PRIORITY,
1234 .may_unmap = 1,
1235 };
8e950282 1236 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
02c6de8d
MK
1237 struct page *page, *next;
1238 LIST_HEAD(clean_pages);
1239
1240 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e
RA
1241 if (page_is_file_cache(page) && !PageDirty(page) &&
1242 !isolated_balloon_page(page)) {
02c6de8d
MK
1243 ClearPageActive(page);
1244 list_move(&page->lru, &clean_pages);
1245 }
1246 }
1247
1248 ret = shrink_page_list(&clean_pages, zone, &sc,
8e950282
MG
1249 TTU_UNMAP|TTU_IGNORE_ACCESS,
1250 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
02c6de8d 1251 list_splice(&clean_pages, page_list);
83da7510 1252 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1253 return ret;
1254}
1255
5ad333eb
AW
1256/*
1257 * Attempt to remove the specified page from its LRU. Only take this page
1258 * if it is of the appropriate PageActive status. Pages which are being
1259 * freed elsewhere are also ignored.
1260 *
1261 * page: page to consider
1262 * mode: one of the LRU isolation modes defined above
1263 *
1264 * returns 0 on success, -ve errno on failure.
1265 */
f3fd4a61 1266int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1267{
1268 int ret = -EINVAL;
1269
1270 /* Only take pages on the LRU. */
1271 if (!PageLRU(page))
1272 return ret;
1273
e46a2879
MK
1274 /* Compaction should not handle unevictable pages but CMA can do so */
1275 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1276 return ret;
1277
5ad333eb 1278 ret = -EBUSY;
08e552c6 1279
c8244935
MG
1280 /*
1281 * To minimise LRU disruption, the caller can indicate that it only
1282 * wants to isolate pages it will be able to operate on without
1283 * blocking - clean pages for the most part.
1284 *
1285 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1286 * is used by reclaim when it is cannot write to backing storage
1287 *
1288 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1289 * that it is possible to migrate without blocking
1290 */
1291 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1292 /* All the caller can do on PageWriteback is block */
1293 if (PageWriteback(page))
1294 return ret;
1295
1296 if (PageDirty(page)) {
1297 struct address_space *mapping;
1298
1299 /* ISOLATE_CLEAN means only clean pages */
1300 if (mode & ISOLATE_CLEAN)
1301 return ret;
1302
1303 /*
1304 * Only pages without mappings or that have a
1305 * ->migratepage callback are possible to migrate
1306 * without blocking
1307 */
1308 mapping = page_mapping(page);
1309 if (mapping && !mapping->a_ops->migratepage)
1310 return ret;
1311 }
1312 }
39deaf85 1313
f80c0673
MK
1314 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1315 return ret;
1316
5ad333eb
AW
1317 if (likely(get_page_unless_zero(page))) {
1318 /*
1319 * Be careful not to clear PageLRU until after we're
1320 * sure the page is not being freed elsewhere -- the
1321 * page release code relies on it.
1322 */
1323 ClearPageLRU(page);
1324 ret = 0;
1325 }
1326
1327 return ret;
1328}
1329
1da177e4
LT
1330/*
1331 * zone->lru_lock is heavily contended. Some of the functions that
1332 * shrink the lists perform better by taking out a batch of pages
1333 * and working on them outside the LRU lock.
1334 *
1335 * For pagecache intensive workloads, this function is the hottest
1336 * spot in the kernel (apart from copy_*_user functions).
1337 *
1338 * Appropriate locks must be held before calling this function.
1339 *
1340 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1341 * @lruvec: The LRU vector to pull pages from.
1da177e4 1342 * @dst: The temp list to put pages on to.
f626012d 1343 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1344 * @sc: The scan_control struct for this reclaim session
5ad333eb 1345 * @mode: One of the LRU isolation modes
3cb99451 1346 * @lru: LRU list id for isolating
1da177e4
LT
1347 *
1348 * returns how many pages were moved onto *@dst.
1349 */
69e05944 1350static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1351 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1352 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1353 isolate_mode_t mode, enum lru_list lru)
1da177e4 1354{
75b00af7 1355 struct list_head *src = &lruvec->lists[lru];
69e05944 1356 unsigned long nr_taken = 0;
c9b02d97 1357 unsigned long scan;
1da177e4 1358
c9b02d97 1359 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb 1360 struct page *page;
fa9add64 1361 int nr_pages;
5ad333eb 1362
1da177e4
LT
1363 page = lru_to_page(src);
1364 prefetchw_prev_lru_page(page, src, flags);
1365
309381fe 1366 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1367
f3fd4a61 1368 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1369 case 0:
fa9add64
HD
1370 nr_pages = hpage_nr_pages(page);
1371 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
5ad333eb 1372 list_move(&page->lru, dst);
fa9add64 1373 nr_taken += nr_pages;
5ad333eb
AW
1374 break;
1375
1376 case -EBUSY:
1377 /* else it is being freed elsewhere */
1378 list_move(&page->lru, src);
1379 continue;
46453a6e 1380
5ad333eb
AW
1381 default:
1382 BUG();
1383 }
1da177e4
LT
1384 }
1385
f626012d 1386 *nr_scanned = scan;
75b00af7
HD
1387 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1388 nr_taken, mode, is_file_lru(lru));
1da177e4
LT
1389 return nr_taken;
1390}
1391
62695a84
NP
1392/**
1393 * isolate_lru_page - tries to isolate a page from its LRU list
1394 * @page: page to isolate from its LRU list
1395 *
1396 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1397 * vmstat statistic corresponding to whatever LRU list the page was on.
1398 *
1399 * Returns 0 if the page was removed from an LRU list.
1400 * Returns -EBUSY if the page was not on an LRU list.
1401 *
1402 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1403 * the active list, it will have PageActive set. If it was found on
1404 * the unevictable list, it will have the PageUnevictable bit set. That flag
1405 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1406 *
1407 * The vmstat statistic corresponding to the list on which the page was
1408 * found will be decremented.
1409 *
1410 * Restrictions:
1411 * (1) Must be called with an elevated refcount on the page. This is a
1412 * fundamentnal difference from isolate_lru_pages (which is called
1413 * without a stable reference).
1414 * (2) the lru_lock must not be held.
1415 * (3) interrupts must be enabled.
1416 */
1417int isolate_lru_page(struct page *page)
1418{
1419 int ret = -EBUSY;
1420
309381fe 1421 VM_BUG_ON_PAGE(!page_count(page), page);
0c917313 1422
62695a84
NP
1423 if (PageLRU(page)) {
1424 struct zone *zone = page_zone(page);
fa9add64 1425 struct lruvec *lruvec;
62695a84
NP
1426
1427 spin_lock_irq(&zone->lru_lock);
fa9add64 1428 lruvec = mem_cgroup_page_lruvec(page, zone);
0c917313 1429 if (PageLRU(page)) {
894bc310 1430 int lru = page_lru(page);
0c917313 1431 get_page(page);
62695a84 1432 ClearPageLRU(page);
fa9add64
HD
1433 del_page_from_lru_list(page, lruvec, lru);
1434 ret = 0;
62695a84
NP
1435 }
1436 spin_unlock_irq(&zone->lru_lock);
1437 }
1438 return ret;
1439}
1440
35cd7815 1441/*
d37dd5dc
FW
1442 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1443 * then get resheduled. When there are massive number of tasks doing page
1444 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1445 * the LRU list will go small and be scanned faster than necessary, leading to
1446 * unnecessary swapping, thrashing and OOM.
35cd7815
RR
1447 */
1448static int too_many_isolated(struct zone *zone, int file,
1449 struct scan_control *sc)
1450{
1451 unsigned long inactive, isolated;
1452
1453 if (current_is_kswapd())
1454 return 0;
1455
97c9341f 1456 if (!sane_reclaim(sc))
35cd7815
RR
1457 return 0;
1458
1459 if (file) {
1460 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1461 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1462 } else {
1463 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1464 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1465 }
1466
3cf23841
FW
1467 /*
1468 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1469 * won't get blocked by normal direct-reclaimers, forming a circular
1470 * deadlock.
1471 */
1472 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1473 inactive >>= 3;
1474
35cd7815
RR
1475 return isolated > inactive;
1476}
1477
66635629 1478static noinline_for_stack void
75b00af7 1479putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1480{
27ac81d8
KK
1481 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1482 struct zone *zone = lruvec_zone(lruvec);
3f79768f 1483 LIST_HEAD(pages_to_free);
66635629 1484
66635629
MG
1485 /*
1486 * Put back any unfreeable pages.
1487 */
66635629 1488 while (!list_empty(page_list)) {
3f79768f 1489 struct page *page = lru_to_page(page_list);
66635629 1490 int lru;
3f79768f 1491
309381fe 1492 VM_BUG_ON_PAGE(PageLRU(page), page);
66635629 1493 list_del(&page->lru);
39b5f29a 1494 if (unlikely(!page_evictable(page))) {
66635629
MG
1495 spin_unlock_irq(&zone->lru_lock);
1496 putback_lru_page(page);
1497 spin_lock_irq(&zone->lru_lock);
1498 continue;
1499 }
fa9add64
HD
1500
1501 lruvec = mem_cgroup_page_lruvec(page, zone);
1502
7a608572 1503 SetPageLRU(page);
66635629 1504 lru = page_lru(page);
fa9add64
HD
1505 add_page_to_lru_list(page, lruvec, lru);
1506
66635629
MG
1507 if (is_active_lru(lru)) {
1508 int file = is_file_lru(lru);
9992af10
RR
1509 int numpages = hpage_nr_pages(page);
1510 reclaim_stat->recent_rotated[file] += numpages;
66635629 1511 }
2bcf8879
HD
1512 if (put_page_testzero(page)) {
1513 __ClearPageLRU(page);
1514 __ClearPageActive(page);
fa9add64 1515 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1516
1517 if (unlikely(PageCompound(page))) {
1518 spin_unlock_irq(&zone->lru_lock);
747db954 1519 mem_cgroup_uncharge(page);
2bcf8879
HD
1520 (*get_compound_page_dtor(page))(page);
1521 spin_lock_irq(&zone->lru_lock);
1522 } else
1523 list_add(&page->lru, &pages_to_free);
66635629
MG
1524 }
1525 }
66635629 1526
3f79768f
HD
1527 /*
1528 * To save our caller's stack, now use input list for pages to free.
1529 */
1530 list_splice(&pages_to_free, page_list);
66635629
MG
1531}
1532
399ba0b9
N
1533/*
1534 * If a kernel thread (such as nfsd for loop-back mounts) services
1535 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1536 * In that case we should only throttle if the backing device it is
1537 * writing to is congested. In other cases it is safe to throttle.
1538 */
1539static int current_may_throttle(void)
1540{
1541 return !(current->flags & PF_LESS_THROTTLE) ||
1542 current->backing_dev_info == NULL ||
1543 bdi_write_congested(current->backing_dev_info);
1544}
1545
1da177e4 1546/*
1742f19f
AM
1547 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1548 * of reclaimed pages
1da177e4 1549 */
66635629 1550static noinline_for_stack unsigned long
1a93be0e 1551shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1552 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1553{
1554 LIST_HEAD(page_list);
e247dbce 1555 unsigned long nr_scanned;
05ff5137 1556 unsigned long nr_reclaimed = 0;
e247dbce 1557 unsigned long nr_taken;
8e950282
MG
1558 unsigned long nr_dirty = 0;
1559 unsigned long nr_congested = 0;
e2be15f6 1560 unsigned long nr_unqueued_dirty = 0;
92df3a72 1561 unsigned long nr_writeback = 0;
b1a6f21e 1562 unsigned long nr_immediate = 0;
f3fd4a61 1563 isolate_mode_t isolate_mode = 0;
3cb99451 1564 int file = is_file_lru(lru);
1a93be0e
KK
1565 struct zone *zone = lruvec_zone(lruvec);
1566 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1567
35cd7815 1568 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1569 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1570
1571 /* We are about to die and free our memory. Return now. */
1572 if (fatal_signal_pending(current))
1573 return SWAP_CLUSTER_MAX;
1574 }
1575
1da177e4 1576 lru_add_drain();
f80c0673
MK
1577
1578 if (!sc->may_unmap)
61317289 1579 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1580 if (!sc->may_writepage)
61317289 1581 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1582
1da177e4 1583 spin_lock_irq(&zone->lru_lock);
b35ea17b 1584
5dc35979
KK
1585 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1586 &nr_scanned, sc, isolate_mode, lru);
95d918fc
KK
1587
1588 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1589 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1590
89b5fae5 1591 if (global_reclaim(sc)) {
0d5d823a 1592 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
e247dbce 1593 if (current_is_kswapd())
75b00af7 1594 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
e247dbce 1595 else
75b00af7 1596 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
e247dbce 1597 }
d563c050 1598 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1599
d563c050 1600 if (nr_taken == 0)
66635629 1601 return 0;
5ad333eb 1602
02c6de8d 1603 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
8e950282
MG
1604 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1605 &nr_writeback, &nr_immediate,
1606 false);
c661b078 1607
3f79768f
HD
1608 spin_lock_irq(&zone->lru_lock);
1609
95d918fc 1610 reclaim_stat->recent_scanned[file] += nr_taken;
d563c050 1611
904249aa
YH
1612 if (global_reclaim(sc)) {
1613 if (current_is_kswapd())
1614 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1615 nr_reclaimed);
1616 else
1617 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1618 nr_reclaimed);
1619 }
a74609fa 1620
27ac81d8 1621 putback_inactive_pages(lruvec, &page_list);
3f79768f 1622
95d918fc 1623 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f
HD
1624
1625 spin_unlock_irq(&zone->lru_lock);
1626
747db954 1627 mem_cgroup_uncharge_list(&page_list);
b745bc85 1628 free_hot_cold_page_list(&page_list, true);
e11da5b4 1629
92df3a72
MG
1630 /*
1631 * If reclaim is isolating dirty pages under writeback, it implies
1632 * that the long-lived page allocation rate is exceeding the page
1633 * laundering rate. Either the global limits are not being effective
1634 * at throttling processes due to the page distribution throughout
1635 * zones or there is heavy usage of a slow backing device. The
1636 * only option is to throttle from reclaim context which is not ideal
1637 * as there is no guarantee the dirtying process is throttled in the
1638 * same way balance_dirty_pages() manages.
1639 *
8e950282
MG
1640 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1641 * of pages under pages flagged for immediate reclaim and stall if any
1642 * are encountered in the nr_immediate check below.
92df3a72 1643 */
918fc718 1644 if (nr_writeback && nr_writeback == nr_taken)
57054651 1645 set_bit(ZONE_WRITEBACK, &zone->flags);
92df3a72 1646
d43006d5 1647 /*
97c9341f
TH
1648 * Legacy memcg will stall in page writeback so avoid forcibly
1649 * stalling here.
d43006d5 1650 */
97c9341f 1651 if (sane_reclaim(sc)) {
8e950282
MG
1652 /*
1653 * Tag a zone as congested if all the dirty pages scanned were
1654 * backed by a congested BDI and wait_iff_congested will stall.
1655 */
1656 if (nr_dirty && nr_dirty == nr_congested)
57054651 1657 set_bit(ZONE_CONGESTED, &zone->flags);
8e950282 1658
b1a6f21e
MG
1659 /*
1660 * If dirty pages are scanned that are not queued for IO, it
1661 * implies that flushers are not keeping up. In this case, flag
57054651
JW
1662 * the zone ZONE_DIRTY and kswapd will start writing pages from
1663 * reclaim context.
b1a6f21e
MG
1664 */
1665 if (nr_unqueued_dirty == nr_taken)
57054651 1666 set_bit(ZONE_DIRTY, &zone->flags);
b1a6f21e
MG
1667
1668 /*
b738d764
LT
1669 * If kswapd scans pages marked marked for immediate
1670 * reclaim and under writeback (nr_immediate), it implies
1671 * that pages are cycling through the LRU faster than
b1a6f21e
MG
1672 * they are written so also forcibly stall.
1673 */
b738d764 1674 if (nr_immediate && current_may_throttle())
b1a6f21e 1675 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1676 }
d43006d5 1677
8e950282
MG
1678 /*
1679 * Stall direct reclaim for IO completions if underlying BDIs or zone
1680 * is congested. Allow kswapd to continue until it starts encountering
1681 * unqueued dirty pages or cycling through the LRU too quickly.
1682 */
399ba0b9
N
1683 if (!sc->hibernation_mode && !current_is_kswapd() &&
1684 current_may_throttle())
8e950282
MG
1685 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1686
e11da5b4
MG
1687 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1688 zone_idx(zone),
1689 nr_scanned, nr_reclaimed,
9e3b2f8c 1690 sc->priority,
23b9da55 1691 trace_shrink_flags(file));
05ff5137 1692 return nr_reclaimed;
1da177e4
LT
1693}
1694
1695/*
1696 * This moves pages from the active list to the inactive list.
1697 *
1698 * We move them the other way if the page is referenced by one or more
1699 * processes, from rmap.
1700 *
1701 * If the pages are mostly unmapped, the processing is fast and it is
1702 * appropriate to hold zone->lru_lock across the whole operation. But if
1703 * the pages are mapped, the processing is slow (page_referenced()) so we
1704 * should drop zone->lru_lock around each page. It's impossible to balance
1705 * this, so instead we remove the pages from the LRU while processing them.
1706 * It is safe to rely on PG_active against the non-LRU pages in here because
1707 * nobody will play with that bit on a non-LRU page.
1708 *
1709 * The downside is that we have to touch page->_count against each page.
1710 * But we had to alter page->flags anyway.
1711 */
1cfb419b 1712
fa9add64 1713static void move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1714 struct list_head *list,
2bcf8879 1715 struct list_head *pages_to_free,
3eb4140f
WF
1716 enum lru_list lru)
1717{
fa9add64 1718 struct zone *zone = lruvec_zone(lruvec);
3eb4140f 1719 unsigned long pgmoved = 0;
3eb4140f 1720 struct page *page;
fa9add64 1721 int nr_pages;
3eb4140f 1722
3eb4140f
WF
1723 while (!list_empty(list)) {
1724 page = lru_to_page(list);
fa9add64 1725 lruvec = mem_cgroup_page_lruvec(page, zone);
3eb4140f 1726
309381fe 1727 VM_BUG_ON_PAGE(PageLRU(page), page);
3eb4140f
WF
1728 SetPageLRU(page);
1729
fa9add64
HD
1730 nr_pages = hpage_nr_pages(page);
1731 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
925b7673 1732 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1733 pgmoved += nr_pages;
3eb4140f 1734
2bcf8879
HD
1735 if (put_page_testzero(page)) {
1736 __ClearPageLRU(page);
1737 __ClearPageActive(page);
fa9add64 1738 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1739
1740 if (unlikely(PageCompound(page))) {
1741 spin_unlock_irq(&zone->lru_lock);
747db954 1742 mem_cgroup_uncharge(page);
2bcf8879
HD
1743 (*get_compound_page_dtor(page))(page);
1744 spin_lock_irq(&zone->lru_lock);
1745 } else
1746 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1747 }
1748 }
1749 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1750 if (!is_active_lru(lru))
1751 __count_vm_events(PGDEACTIVATE, pgmoved);
1752}
1cfb419b 1753
f626012d 1754static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1755 struct lruvec *lruvec,
f16015fb 1756 struct scan_control *sc,
9e3b2f8c 1757 enum lru_list lru)
1da177e4 1758{
44c241f1 1759 unsigned long nr_taken;
f626012d 1760 unsigned long nr_scanned;
6fe6b7e3 1761 unsigned long vm_flags;
1da177e4 1762 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1763 LIST_HEAD(l_active);
b69408e8 1764 LIST_HEAD(l_inactive);
1da177e4 1765 struct page *page;
1a93be0e 1766 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
44c241f1 1767 unsigned long nr_rotated = 0;
f3fd4a61 1768 isolate_mode_t isolate_mode = 0;
3cb99451 1769 int file = is_file_lru(lru);
1a93be0e 1770 struct zone *zone = lruvec_zone(lruvec);
1da177e4
LT
1771
1772 lru_add_drain();
f80c0673
MK
1773
1774 if (!sc->may_unmap)
61317289 1775 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1776 if (!sc->may_writepage)
61317289 1777 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1778
1da177e4 1779 spin_lock_irq(&zone->lru_lock);
925b7673 1780
5dc35979
KK
1781 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1782 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1783 if (global_reclaim(sc))
0d5d823a 1784 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
89b5fae5 1785
b7c46d15 1786 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1787
f626012d 1788 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
3cb99451 1789 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
a731286d 1790 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1791 spin_unlock_irq(&zone->lru_lock);
1792
1da177e4
LT
1793 while (!list_empty(&l_hold)) {
1794 cond_resched();
1795 page = lru_to_page(&l_hold);
1796 list_del(&page->lru);
7e9cd484 1797
39b5f29a 1798 if (unlikely(!page_evictable(page))) {
894bc310
LS
1799 putback_lru_page(page);
1800 continue;
1801 }
1802
cc715d99
MG
1803 if (unlikely(buffer_heads_over_limit)) {
1804 if (page_has_private(page) && trylock_page(page)) {
1805 if (page_has_private(page))
1806 try_to_release_page(page, 0);
1807 unlock_page(page);
1808 }
1809 }
1810
c3ac9a8a
JW
1811 if (page_referenced(page, 0, sc->target_mem_cgroup,
1812 &vm_flags)) {
9992af10 1813 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1814 /*
1815 * Identify referenced, file-backed active pages and
1816 * give them one more trip around the active list. So
1817 * that executable code get better chances to stay in
1818 * memory under moderate memory pressure. Anon pages
1819 * are not likely to be evicted by use-once streaming
1820 * IO, plus JVM can create lots of anon VM_EXEC pages,
1821 * so we ignore them here.
1822 */
41e20983 1823 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1824 list_add(&page->lru, &l_active);
1825 continue;
1826 }
1827 }
7e9cd484 1828
5205e56e 1829 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1830 list_add(&page->lru, &l_inactive);
1831 }
1832
b555749a 1833 /*
8cab4754 1834 * Move pages back to the lru list.
b555749a 1835 */
2a1dc509 1836 spin_lock_irq(&zone->lru_lock);
556adecb 1837 /*
8cab4754
WF
1838 * Count referenced pages from currently used mappings as rotated,
1839 * even though only some of them are actually re-activated. This
1840 * helps balance scan pressure between file and anonymous pages in
7c0db9e9 1841 * get_scan_count.
7e9cd484 1842 */
b7c46d15 1843 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1844
fa9add64
HD
1845 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1846 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
a731286d 1847 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1848 spin_unlock_irq(&zone->lru_lock);
2bcf8879 1849
747db954 1850 mem_cgroup_uncharge_list(&l_hold);
b745bc85 1851 free_hot_cold_page_list(&l_hold, true);
1da177e4
LT
1852}
1853
74e3f3c3 1854#ifdef CONFIG_SWAP
14797e23 1855static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1856{
1857 unsigned long active, inactive;
1858
1859 active = zone_page_state(zone, NR_ACTIVE_ANON);
1860 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1861
1862 if (inactive * zone->inactive_ratio < active)
1863 return 1;
1864
1865 return 0;
1866}
1867
14797e23
KM
1868/**
1869 * inactive_anon_is_low - check if anonymous pages need to be deactivated
c56d5c7d 1870 * @lruvec: LRU vector to check
14797e23
KM
1871 *
1872 * Returns true if the zone does not have enough inactive anon pages,
1873 * meaning some active anon pages need to be deactivated.
1874 */
c56d5c7d 1875static int inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1876{
74e3f3c3
MK
1877 /*
1878 * If we don't have swap space, anonymous page deactivation
1879 * is pointless.
1880 */
1881 if (!total_swap_pages)
1882 return 0;
1883
c3c787e8 1884 if (!mem_cgroup_disabled())
c56d5c7d 1885 return mem_cgroup_inactive_anon_is_low(lruvec);
f16015fb 1886
c56d5c7d 1887 return inactive_anon_is_low_global(lruvec_zone(lruvec));
14797e23 1888}
74e3f3c3 1889#else
c56d5c7d 1890static inline int inactive_anon_is_low(struct lruvec *lruvec)
74e3f3c3
MK
1891{
1892 return 0;
1893}
1894#endif
14797e23 1895
56e49d21
RR
1896/**
1897 * inactive_file_is_low - check if file pages need to be deactivated
c56d5c7d 1898 * @lruvec: LRU vector to check
56e49d21
RR
1899 *
1900 * When the system is doing streaming IO, memory pressure here
1901 * ensures that active file pages get deactivated, until more
1902 * than half of the file pages are on the inactive list.
1903 *
1904 * Once we get to that situation, protect the system's working
1905 * set from being evicted by disabling active file page aging.
1906 *
1907 * This uses a different ratio than the anonymous pages, because
1908 * the page cache uses a use-once replacement algorithm.
1909 */
c56d5c7d 1910static int inactive_file_is_low(struct lruvec *lruvec)
56e49d21 1911{
e3790144
JW
1912 unsigned long inactive;
1913 unsigned long active;
1914
1915 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1916 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21 1917
e3790144 1918 return active > inactive;
56e49d21
RR
1919}
1920
75b00af7 1921static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
b39415b2 1922{
75b00af7 1923 if (is_file_lru(lru))
c56d5c7d 1924 return inactive_file_is_low(lruvec);
b39415b2 1925 else
c56d5c7d 1926 return inactive_anon_is_low(lruvec);
b39415b2
RR
1927}
1928
4f98a2fe 1929static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 1930 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 1931{
b39415b2 1932 if (is_active_lru(lru)) {
75b00af7 1933 if (inactive_list_is_low(lruvec, lru))
1a93be0e 1934 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
1935 return 0;
1936 }
1937
1a93be0e 1938 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
1939}
1940
9a265114
JW
1941enum scan_balance {
1942 SCAN_EQUAL,
1943 SCAN_FRACT,
1944 SCAN_ANON,
1945 SCAN_FILE,
1946};
1947
4f98a2fe
RR
1948/*
1949 * Determine how aggressively the anon and file LRU lists should be
1950 * scanned. The relative value of each set of LRU lists is determined
1951 * by looking at the fraction of the pages scanned we did rotate back
1952 * onto the active list instead of evict.
1953 *
be7bd59d
WL
1954 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1955 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 1956 */
02695175 1957static void get_scan_count(struct lruvec *lruvec, int swappiness,
6b4f7799
JW
1958 struct scan_control *sc, unsigned long *nr,
1959 unsigned long *lru_pages)
4f98a2fe 1960{
9a265114
JW
1961 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1962 u64 fraction[2];
1963 u64 denominator = 0; /* gcc */
1964 struct zone *zone = lruvec_zone(lruvec);
4f98a2fe 1965 unsigned long anon_prio, file_prio;
9a265114 1966 enum scan_balance scan_balance;
0bf1457f 1967 unsigned long anon, file;
9a265114 1968 bool force_scan = false;
4f98a2fe 1969 unsigned long ap, fp;
4111304d 1970 enum lru_list lru;
6f04f48d
SS
1971 bool some_scanned;
1972 int pass;
246e87a9 1973
f11c0ca5
JW
1974 /*
1975 * If the zone or memcg is small, nr[l] can be 0. This
1976 * results in no scanning on this priority and a potential
1977 * priority drop. Global direct reclaim can go to the next
1978 * zone and tends to have no problems. Global kswapd is for
1979 * zone balancing and it needs to scan a minimum amount. When
1980 * reclaiming for a memcg, a priority drop can cause high
1981 * latencies, so it's better to scan a minimum amount there as
1982 * well.
1983 */
90cbc250
VD
1984 if (current_is_kswapd()) {
1985 if (!zone_reclaimable(zone))
1986 force_scan = true;
1987 if (!mem_cgroup_lruvec_online(lruvec))
1988 force_scan = true;
1989 }
89b5fae5 1990 if (!global_reclaim(sc))
a4d3e9e7 1991 force_scan = true;
76a33fc3
SL
1992
1993 /* If we have no swap space, do not bother scanning anon pages. */
ec8acf20 1994 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
9a265114 1995 scan_balance = SCAN_FILE;
76a33fc3
SL
1996 goto out;
1997 }
4f98a2fe 1998
10316b31
JW
1999 /*
2000 * Global reclaim will swap to prevent OOM even with no
2001 * swappiness, but memcg users want to use this knob to
2002 * disable swapping for individual groups completely when
2003 * using the memory controller's swap limit feature would be
2004 * too expensive.
2005 */
02695175 2006 if (!global_reclaim(sc) && !swappiness) {
9a265114 2007 scan_balance = SCAN_FILE;
10316b31
JW
2008 goto out;
2009 }
2010
2011 /*
2012 * Do not apply any pressure balancing cleverness when the
2013 * system is close to OOM, scan both anon and file equally
2014 * (unless the swappiness setting disagrees with swapping).
2015 */
02695175 2016 if (!sc->priority && swappiness) {
9a265114 2017 scan_balance = SCAN_EQUAL;
10316b31
JW
2018 goto out;
2019 }
2020
62376251
JW
2021 /*
2022 * Prevent the reclaimer from falling into the cache trap: as
2023 * cache pages start out inactive, every cache fault will tip
2024 * the scan balance towards the file LRU. And as the file LRU
2025 * shrinks, so does the window for rotation from references.
2026 * This means we have a runaway feedback loop where a tiny
2027 * thrashing file LRU becomes infinitely more attractive than
2028 * anon pages. Try to detect this based on file LRU size.
2029 */
2030 if (global_reclaim(sc)) {
2ab051e1
JM
2031 unsigned long zonefile;
2032 unsigned long zonefree;
2033
2034 zonefree = zone_page_state(zone, NR_FREE_PAGES);
2035 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
2036 zone_page_state(zone, NR_INACTIVE_FILE);
62376251 2037
2ab051e1 2038 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
62376251
JW
2039 scan_balance = SCAN_ANON;
2040 goto out;
2041 }
2042 }
2043
7c5bd705
JW
2044 /*
2045 * There is enough inactive page cache, do not reclaim
2046 * anything from the anonymous working set right now.
2047 */
2048 if (!inactive_file_is_low(lruvec)) {
9a265114 2049 scan_balance = SCAN_FILE;
7c5bd705
JW
2050 goto out;
2051 }
2052
9a265114
JW
2053 scan_balance = SCAN_FRACT;
2054
58c37f6e
KM
2055 /*
2056 * With swappiness at 100, anonymous and file have the same priority.
2057 * This scanning priority is essentially the inverse of IO cost.
2058 */
02695175 2059 anon_prio = swappiness;
75b00af7 2060 file_prio = 200 - anon_prio;
58c37f6e 2061
4f98a2fe
RR
2062 /*
2063 * OK, so we have swap space and a fair amount of page cache
2064 * pages. We use the recently rotated / recently scanned
2065 * ratios to determine how valuable each cache is.
2066 *
2067 * Because workloads change over time (and to avoid overflow)
2068 * we keep these statistics as a floating average, which ends
2069 * up weighing recent references more than old ones.
2070 *
2071 * anon in [0], file in [1]
2072 */
2ab051e1
JM
2073
2074 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
2075 get_lru_size(lruvec, LRU_INACTIVE_ANON);
2076 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
2077 get_lru_size(lruvec, LRU_INACTIVE_FILE);
2078
90126375 2079 spin_lock_irq(&zone->lru_lock);
6e901571 2080 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
2081 reclaim_stat->recent_scanned[0] /= 2;
2082 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
2083 }
2084
6e901571 2085 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
2086 reclaim_stat->recent_scanned[1] /= 2;
2087 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
2088 }
2089
4f98a2fe 2090 /*
00d8089c
RR
2091 * The amount of pressure on anon vs file pages is inversely
2092 * proportional to the fraction of recently scanned pages on
2093 * each list that were recently referenced and in active use.
4f98a2fe 2094 */
fe35004f 2095 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2096 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2097
fe35004f 2098 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2099 fp /= reclaim_stat->recent_rotated[1] + 1;
90126375 2100 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 2101
76a33fc3
SL
2102 fraction[0] = ap;
2103 fraction[1] = fp;
2104 denominator = ap + fp + 1;
2105out:
6f04f48d
SS
2106 some_scanned = false;
2107 /* Only use force_scan on second pass. */
2108 for (pass = 0; !some_scanned && pass < 2; pass++) {
6b4f7799 2109 *lru_pages = 0;
6f04f48d
SS
2110 for_each_evictable_lru(lru) {
2111 int file = is_file_lru(lru);
2112 unsigned long size;
2113 unsigned long scan;
6e08a369 2114
6f04f48d
SS
2115 size = get_lru_size(lruvec, lru);
2116 scan = size >> sc->priority;
9a265114 2117
6f04f48d
SS
2118 if (!scan && pass && force_scan)
2119 scan = min(size, SWAP_CLUSTER_MAX);
9a265114 2120
6f04f48d
SS
2121 switch (scan_balance) {
2122 case SCAN_EQUAL:
2123 /* Scan lists relative to size */
2124 break;
2125 case SCAN_FRACT:
2126 /*
2127 * Scan types proportional to swappiness and
2128 * their relative recent reclaim efficiency.
2129 */
2130 scan = div64_u64(scan * fraction[file],
2131 denominator);
2132 break;
2133 case SCAN_FILE:
2134 case SCAN_ANON:
2135 /* Scan one type exclusively */
6b4f7799
JW
2136 if ((scan_balance == SCAN_FILE) != file) {
2137 size = 0;
6f04f48d 2138 scan = 0;
6b4f7799 2139 }
6f04f48d
SS
2140 break;
2141 default:
2142 /* Look ma, no brain */
2143 BUG();
2144 }
6b4f7799
JW
2145
2146 *lru_pages += size;
6f04f48d 2147 nr[lru] = scan;
6b4f7799 2148
9a265114 2149 /*
6f04f48d
SS
2150 * Skip the second pass and don't force_scan,
2151 * if we found something to scan.
9a265114 2152 */
6f04f48d 2153 some_scanned |= !!scan;
9a265114 2154 }
76a33fc3 2155 }
6e08a369 2156}
4f98a2fe 2157
9b4f98cd
JW
2158/*
2159 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2160 */
02695175 2161static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
6b4f7799 2162 struct scan_control *sc, unsigned long *lru_pages)
9b4f98cd
JW
2163{
2164 unsigned long nr[NR_LRU_LISTS];
e82e0561 2165 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2166 unsigned long nr_to_scan;
2167 enum lru_list lru;
2168 unsigned long nr_reclaimed = 0;
2169 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2170 struct blk_plug plug;
1a501907 2171 bool scan_adjusted;
9b4f98cd 2172
6b4f7799 2173 get_scan_count(lruvec, swappiness, sc, nr, lru_pages);
9b4f98cd 2174
e82e0561
MG
2175 /* Record the original scan target for proportional adjustments later */
2176 memcpy(targets, nr, sizeof(nr));
2177
1a501907
MG
2178 /*
2179 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2180 * event that can occur when there is little memory pressure e.g.
2181 * multiple streaming readers/writers. Hence, we do not abort scanning
2182 * when the requested number of pages are reclaimed when scanning at
2183 * DEF_PRIORITY on the assumption that the fact we are direct
2184 * reclaiming implies that kswapd is not keeping up and it is best to
2185 * do a batch of work at once. For memcg reclaim one check is made to
2186 * abort proportional reclaim if either the file or anon lru has already
2187 * dropped to zero at the first pass.
2188 */
2189 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2190 sc->priority == DEF_PRIORITY);
2191
9b4f98cd
JW
2192 blk_start_plug(&plug);
2193 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2194 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2195 unsigned long nr_anon, nr_file, percentage;
2196 unsigned long nr_scanned;
2197
9b4f98cd
JW
2198 for_each_evictable_lru(lru) {
2199 if (nr[lru]) {
2200 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2201 nr[lru] -= nr_to_scan;
2202
2203 nr_reclaimed += shrink_list(lru, nr_to_scan,
2204 lruvec, sc);
2205 }
2206 }
e82e0561
MG
2207
2208 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2209 continue;
2210
e82e0561
MG
2211 /*
2212 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2213 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2214 * proportionally what was requested by get_scan_count(). We
2215 * stop reclaiming one LRU and reduce the amount scanning
2216 * proportional to the original scan target.
2217 */
2218 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2219 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2220
1a501907
MG
2221 /*
2222 * It's just vindictive to attack the larger once the smaller
2223 * has gone to zero. And given the way we stop scanning the
2224 * smaller below, this makes sure that we only make one nudge
2225 * towards proportionality once we've got nr_to_reclaim.
2226 */
2227 if (!nr_file || !nr_anon)
2228 break;
2229
e82e0561
MG
2230 if (nr_file > nr_anon) {
2231 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2232 targets[LRU_ACTIVE_ANON] + 1;
2233 lru = LRU_BASE;
2234 percentage = nr_anon * 100 / scan_target;
2235 } else {
2236 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2237 targets[LRU_ACTIVE_FILE] + 1;
2238 lru = LRU_FILE;
2239 percentage = nr_file * 100 / scan_target;
2240 }
2241
2242 /* Stop scanning the smaller of the LRU */
2243 nr[lru] = 0;
2244 nr[lru + LRU_ACTIVE] = 0;
2245
2246 /*
2247 * Recalculate the other LRU scan count based on its original
2248 * scan target and the percentage scanning already complete
2249 */
2250 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2251 nr_scanned = targets[lru] - nr[lru];
2252 nr[lru] = targets[lru] * (100 - percentage) / 100;
2253 nr[lru] -= min(nr[lru], nr_scanned);
2254
2255 lru += LRU_ACTIVE;
2256 nr_scanned = targets[lru] - nr[lru];
2257 nr[lru] = targets[lru] * (100 - percentage) / 100;
2258 nr[lru] -= min(nr[lru], nr_scanned);
2259
2260 scan_adjusted = true;
9b4f98cd
JW
2261 }
2262 blk_finish_plug(&plug);
2263 sc->nr_reclaimed += nr_reclaimed;
2264
2265 /*
2266 * Even if we did not try to evict anon pages at all, we want to
2267 * rebalance the anon lru active/inactive ratio.
2268 */
2269 if (inactive_anon_is_low(lruvec))
2270 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2271 sc, LRU_ACTIVE_ANON);
2272
2273 throttle_vm_writeout(sc->gfp_mask);
2274}
2275
23b9da55 2276/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2277static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2278{
d84da3f9 2279 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2280 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2281 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2282 return true;
2283
2284 return false;
2285}
2286
3e7d3449 2287/*
23b9da55
MG
2288 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2289 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2290 * true if more pages should be reclaimed such that when the page allocator
2291 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2292 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2293 */
9b4f98cd 2294static inline bool should_continue_reclaim(struct zone *zone,
3e7d3449
MG
2295 unsigned long nr_reclaimed,
2296 unsigned long nr_scanned,
2297 struct scan_control *sc)
2298{
2299 unsigned long pages_for_compaction;
2300 unsigned long inactive_lru_pages;
2301
2302 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2303 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2304 return false;
2305
2876592f
MG
2306 /* Consider stopping depending on scan and reclaim activity */
2307 if (sc->gfp_mask & __GFP_REPEAT) {
2308 /*
2309 * For __GFP_REPEAT allocations, stop reclaiming if the
2310 * full LRU list has been scanned and we are still failing
2311 * to reclaim pages. This full LRU scan is potentially
2312 * expensive but a __GFP_REPEAT caller really wants to succeed
2313 */
2314 if (!nr_reclaimed && !nr_scanned)
2315 return false;
2316 } else {
2317 /*
2318 * For non-__GFP_REPEAT allocations which can presumably
2319 * fail without consequence, stop if we failed to reclaim
2320 * any pages from the last SWAP_CLUSTER_MAX number of
2321 * pages that were scanned. This will return to the
2322 * caller faster at the risk reclaim/compaction and
2323 * the resulting allocation attempt fails
2324 */
2325 if (!nr_reclaimed)
2326 return false;
2327 }
3e7d3449
MG
2328
2329 /*
2330 * If we have not reclaimed enough pages for compaction and the
2331 * inactive lists are large enough, continue reclaiming
2332 */
2333 pages_for_compaction = (2UL << sc->order);
9b4f98cd 2334 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
ec8acf20 2335 if (get_nr_swap_pages() > 0)
9b4f98cd 2336 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
3e7d3449
MG
2337 if (sc->nr_reclaimed < pages_for_compaction &&
2338 inactive_lru_pages > pages_for_compaction)
2339 return true;
2340
2341 /* If compaction would go ahead or the allocation would succeed, stop */
ebff3980 2342 switch (compaction_suitable(zone, sc->order, 0, 0)) {
3e7d3449
MG
2343 case COMPACT_PARTIAL:
2344 case COMPACT_CONTINUE:
2345 return false;
2346 default:
2347 return true;
2348 }
2349}
2350
6b4f7799
JW
2351static bool shrink_zone(struct zone *zone, struct scan_control *sc,
2352 bool is_classzone)
1da177e4 2353{
cb731d6c 2354 struct reclaim_state *reclaim_state = current->reclaim_state;
f0fdc5e8 2355 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2356 bool reclaimable = false;
1da177e4 2357
9b4f98cd
JW
2358 do {
2359 struct mem_cgroup *root = sc->target_mem_cgroup;
2360 struct mem_cgroup_reclaim_cookie reclaim = {
2361 .zone = zone,
2362 .priority = sc->priority,
2363 };
6b4f7799 2364 unsigned long zone_lru_pages = 0;
694fbc0f 2365 struct mem_cgroup *memcg;
3e7d3449 2366
9b4f98cd
JW
2367 nr_reclaimed = sc->nr_reclaimed;
2368 nr_scanned = sc->nr_scanned;
1da177e4 2369
694fbc0f
AM
2370 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2371 do {
6b4f7799 2372 unsigned long lru_pages;
cb731d6c 2373 unsigned long scanned;
9b4f98cd 2374 struct lruvec *lruvec;
02695175 2375 int swappiness;
5660048c 2376
241994ed
JW
2377 if (mem_cgroup_low(root, memcg)) {
2378 if (!sc->may_thrash)
2379 continue;
2380 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2381 }
2382
9b4f98cd 2383 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
02695175 2384 swappiness = mem_cgroup_swappiness(memcg);
cb731d6c 2385 scanned = sc->nr_scanned;
f9be23d6 2386
6b4f7799
JW
2387 shrink_lruvec(lruvec, swappiness, sc, &lru_pages);
2388 zone_lru_pages += lru_pages;
f16015fb 2389
cb731d6c
VD
2390 if (memcg && is_classzone)
2391 shrink_slab(sc->gfp_mask, zone_to_nid(zone),
2392 memcg, sc->nr_scanned - scanned,
2393 lru_pages);
2394
9b4f98cd 2395 /*
a394cb8e
MH
2396 * Direct reclaim and kswapd have to scan all memory
2397 * cgroups to fulfill the overall scan target for the
9b4f98cd 2398 * zone.
a394cb8e
MH
2399 *
2400 * Limit reclaim, on the other hand, only cares about
2401 * nr_to_reclaim pages to be reclaimed and it will
2402 * retry with decreasing priority if one round over the
2403 * whole hierarchy is not sufficient.
9b4f98cd 2404 */
a394cb8e
MH
2405 if (!global_reclaim(sc) &&
2406 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2407 mem_cgroup_iter_break(root, memcg);
2408 break;
2409 }
241994ed 2410 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
70ddf637 2411
6b4f7799
JW
2412 /*
2413 * Shrink the slab caches in the same proportion that
2414 * the eligible LRU pages were scanned.
2415 */
cb731d6c
VD
2416 if (global_reclaim(sc) && is_classzone)
2417 shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
2418 sc->nr_scanned - nr_scanned,
2419 zone_lru_pages);
2420
2421 if (reclaim_state) {
2422 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2423 reclaim_state->reclaimed_slab = 0;
6b4f7799
JW
2424 }
2425
70ddf637
AV
2426 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2427 sc->nr_scanned - nr_scanned,
2428 sc->nr_reclaimed - nr_reclaimed);
2429
2344d7e4
JW
2430 if (sc->nr_reclaimed - nr_reclaimed)
2431 reclaimable = true;
2432
9b4f98cd
JW
2433 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2434 sc->nr_scanned - nr_scanned, sc));
2344d7e4
JW
2435
2436 return reclaimable;
f16015fb
JW
2437}
2438
53853e2d
VB
2439/*
2440 * Returns true if compaction should go ahead for a high-order request, or
2441 * the high-order allocation would succeed without compaction.
2442 */
0b06496a 2443static inline bool compaction_ready(struct zone *zone, int order)
fe4b1b24
MG
2444{
2445 unsigned long balance_gap, watermark;
2446 bool watermark_ok;
2447
fe4b1b24
MG
2448 /*
2449 * Compaction takes time to run and there are potentially other
2450 * callers using the pages just freed. Continue reclaiming until
2451 * there is a buffer of free pages available to give compaction
2452 * a reasonable chance of completing and allocating the page
2453 */
4be89a34
JZ
2454 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2455 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
0b06496a 2456 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
fe4b1b24
MG
2457 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2458
2459 /*
2460 * If compaction is deferred, reclaim up to a point where
2461 * compaction will have a chance of success when re-enabled
2462 */
0b06496a 2463 if (compaction_deferred(zone, order))
fe4b1b24
MG
2464 return watermark_ok;
2465
53853e2d
VB
2466 /*
2467 * If compaction is not ready to start and allocation is not likely
2468 * to succeed without it, then keep reclaiming.
2469 */
ebff3980 2470 if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED)
fe4b1b24
MG
2471 return false;
2472
2473 return watermark_ok;
2474}
2475
1da177e4
LT
2476/*
2477 * This is the direct reclaim path, for page-allocating processes. We only
2478 * try to reclaim pages from zones which will satisfy the caller's allocation
2479 * request.
2480 *
41858966
MG
2481 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2482 * Because:
1da177e4
LT
2483 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2484 * allocation or
41858966
MG
2485 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2486 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2487 * zone defense algorithm.
1da177e4 2488 *
1da177e4
LT
2489 * If a zone is deemed to be full of pinned pages then just give it a light
2490 * scan then give up on it.
2344d7e4
JW
2491 *
2492 * Returns true if a zone was reclaimable.
1da177e4 2493 */
2344d7e4 2494static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2495{
dd1a239f 2496 struct zoneref *z;
54a6eb5c 2497 struct zone *zone;
0608f43d
AM
2498 unsigned long nr_soft_reclaimed;
2499 unsigned long nr_soft_scanned;
619d0d76 2500 gfp_t orig_mask;
9bbc04ee 2501 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2344d7e4 2502 bool reclaimable = false;
1cfb419b 2503
cc715d99
MG
2504 /*
2505 * If the number of buffer_heads in the machine exceeds the maximum
2506 * allowed level, force direct reclaim to scan the highmem zone as
2507 * highmem pages could be pinning lowmem pages storing buffer_heads
2508 */
619d0d76 2509 orig_mask = sc->gfp_mask;
cc715d99
MG
2510 if (buffer_heads_over_limit)
2511 sc->gfp_mask |= __GFP_HIGHMEM;
2512
d4debc66 2513 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6b4f7799
JW
2514 requested_highidx, sc->nodemask) {
2515 enum zone_type classzone_idx;
2516
f3fe6512 2517 if (!populated_zone(zone))
1da177e4 2518 continue;
6b4f7799
JW
2519
2520 classzone_idx = requested_highidx;
2521 while (!populated_zone(zone->zone_pgdat->node_zones +
2522 classzone_idx))
2523 classzone_idx--;
2524
1cfb419b
KH
2525 /*
2526 * Take care memory controller reclaiming has small influence
2527 * to global LRU.
2528 */
89b5fae5 2529 if (global_reclaim(sc)) {
344736f2
VD
2530 if (!cpuset_zone_allowed(zone,
2531 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2532 continue;
65ec02cb 2533
6e543d57
LD
2534 if (sc->priority != DEF_PRIORITY &&
2535 !zone_reclaimable(zone))
1cfb419b 2536 continue; /* Let kswapd poll it */
0b06496a
JW
2537
2538 /*
2539 * If we already have plenty of memory free for
2540 * compaction in this zone, don't free any more.
2541 * Even though compaction is invoked for any
2542 * non-zero order, only frequent costly order
2543 * reclamation is disruptive enough to become a
2544 * noticeable problem, like transparent huge
2545 * page allocations.
2546 */
2547 if (IS_ENABLED(CONFIG_COMPACTION) &&
2548 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2549 zonelist_zone_idx(z) <= requested_highidx &&
2550 compaction_ready(zone, sc->order)) {
2551 sc->compaction_ready = true;
2552 continue;
e0887c19 2553 }
0b06496a 2554
0608f43d
AM
2555 /*
2556 * This steals pages from memory cgroups over softlimit
2557 * and returns the number of reclaimed pages and
2558 * scanned pages. This works for global memory pressure
2559 * and balancing, not for a memcg's limit.
2560 */
2561 nr_soft_scanned = 0;
2562 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2563 sc->order, sc->gfp_mask,
2564 &nr_soft_scanned);
2565 sc->nr_reclaimed += nr_soft_reclaimed;
2566 sc->nr_scanned += nr_soft_scanned;
2344d7e4
JW
2567 if (nr_soft_reclaimed)
2568 reclaimable = true;
ac34a1a3 2569 /* need some check for avoid more shrink_zone() */
1cfb419b 2570 }
408d8544 2571
6b4f7799 2572 if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx))
2344d7e4
JW
2573 reclaimable = true;
2574
2575 if (global_reclaim(sc) &&
2576 !reclaimable && zone_reclaimable(zone))
2577 reclaimable = true;
1da177e4 2578 }
e0c23279 2579
619d0d76
WY
2580 /*
2581 * Restore to original mask to avoid the impact on the caller if we
2582 * promoted it to __GFP_HIGHMEM.
2583 */
2584 sc->gfp_mask = orig_mask;
d1908362 2585
2344d7e4 2586 return reclaimable;
1da177e4 2587}
4f98a2fe 2588
1da177e4
LT
2589/*
2590 * This is the main entry point to direct page reclaim.
2591 *
2592 * If a full scan of the inactive list fails to free enough memory then we
2593 * are "out of memory" and something needs to be killed.
2594 *
2595 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2596 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2597 * caller can't do much about. We kick the writeback threads and take explicit
2598 * naps in the hope that some of these pages can be written. But if the
2599 * allocating task holds filesystem locks which prevent writeout this might not
2600 * work, and the allocation attempt will fail.
a41f24ea
NA
2601 *
2602 * returns: 0, if no pages reclaimed
2603 * else, the number of pages reclaimed
1da177e4 2604 */
dac1d27b 2605static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 2606 struct scan_control *sc)
1da177e4 2607{
241994ed 2608 int initial_priority = sc->priority;
69e05944 2609 unsigned long total_scanned = 0;
22fba335 2610 unsigned long writeback_threshold;
2344d7e4 2611 bool zones_reclaimable;
241994ed 2612retry:
873b4771
KK
2613 delayacct_freepages_start();
2614
89b5fae5 2615 if (global_reclaim(sc))
1cfb419b 2616 count_vm_event(ALLOCSTALL);
1da177e4 2617
9e3b2f8c 2618 do {
70ddf637
AV
2619 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2620 sc->priority);
66e1707b 2621 sc->nr_scanned = 0;
2344d7e4 2622 zones_reclaimable = shrink_zones(zonelist, sc);
c6a8a8c5 2623
66e1707b 2624 total_scanned += sc->nr_scanned;
bb21c7ce 2625 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
2626 break;
2627
2628 if (sc->compaction_ready)
2629 break;
1da177e4 2630
0e50ce3b
MK
2631 /*
2632 * If we're getting trouble reclaiming, start doing
2633 * writepage even in laptop mode.
2634 */
2635 if (sc->priority < DEF_PRIORITY - 2)
2636 sc->may_writepage = 1;
2637
1da177e4
LT
2638 /*
2639 * Try to write back as many pages as we just scanned. This
2640 * tends to cause slow streaming writers to write data to the
2641 * disk smoothly, at the dirtying rate, which is nice. But
2642 * that's undesirable in laptop mode, where we *want* lumpy
2643 * writeout. So in laptop mode, write out the whole world.
2644 */
22fba335
KM
2645 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2646 if (total_scanned > writeback_threshold) {
0e175a18
CW
2647 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2648 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2649 sc->may_writepage = 1;
1da177e4 2650 }
0b06496a 2651 } while (--sc->priority >= 0);
bb21c7ce 2652
873b4771
KK
2653 delayacct_freepages_end();
2654
bb21c7ce
KM
2655 if (sc->nr_reclaimed)
2656 return sc->nr_reclaimed;
2657
0cee34fd 2658 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 2659 if (sc->compaction_ready)
7335084d
MG
2660 return 1;
2661
241994ed
JW
2662 /* Untapped cgroup reserves? Don't OOM, retry. */
2663 if (!sc->may_thrash) {
2664 sc->priority = initial_priority;
2665 sc->may_thrash = 1;
2666 goto retry;
2667 }
2668
2344d7e4
JW
2669 /* Any of the zones still reclaimable? Don't OOM. */
2670 if (zones_reclaimable)
bb21c7ce
KM
2671 return 1;
2672
2673 return 0;
1da177e4
LT
2674}
2675
5515061d
MG
2676static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2677{
2678 struct zone *zone;
2679 unsigned long pfmemalloc_reserve = 0;
2680 unsigned long free_pages = 0;
2681 int i;
2682 bool wmark_ok;
2683
2684 for (i = 0; i <= ZONE_NORMAL; i++) {
2685 zone = &pgdat->node_zones[i];
f012a84a
NA
2686 if (!populated_zone(zone) ||
2687 zone_reclaimable_pages(zone) == 0)
675becce
MG
2688 continue;
2689
5515061d
MG
2690 pfmemalloc_reserve += min_wmark_pages(zone);
2691 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2692 }
2693
675becce
MG
2694 /* If there are no reserves (unexpected config) then do not throttle */
2695 if (!pfmemalloc_reserve)
2696 return true;
2697
5515061d
MG
2698 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2699
2700 /* kswapd must be awake if processes are being throttled */
2701 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2702 pgdat->classzone_idx = min(pgdat->classzone_idx,
2703 (enum zone_type)ZONE_NORMAL);
2704 wake_up_interruptible(&pgdat->kswapd_wait);
2705 }
2706
2707 return wmark_ok;
2708}
2709
2710/*
2711 * Throttle direct reclaimers if backing storage is backed by the network
2712 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2713 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2714 * when the low watermark is reached.
2715 *
2716 * Returns true if a fatal signal was delivered during throttling. If this
2717 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2718 */
50694c28 2719static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2720 nodemask_t *nodemask)
2721{
675becce 2722 struct zoneref *z;
5515061d 2723 struct zone *zone;
675becce 2724 pg_data_t *pgdat = NULL;
5515061d
MG
2725
2726 /*
2727 * Kernel threads should not be throttled as they may be indirectly
2728 * responsible for cleaning pages necessary for reclaim to make forward
2729 * progress. kjournald for example may enter direct reclaim while
2730 * committing a transaction where throttling it could forcing other
2731 * processes to block on log_wait_commit().
2732 */
2733 if (current->flags & PF_KTHREAD)
50694c28
MG
2734 goto out;
2735
2736 /*
2737 * If a fatal signal is pending, this process should not throttle.
2738 * It should return quickly so it can exit and free its memory
2739 */
2740 if (fatal_signal_pending(current))
2741 goto out;
5515061d 2742
675becce
MG
2743 /*
2744 * Check if the pfmemalloc reserves are ok by finding the first node
2745 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2746 * GFP_KERNEL will be required for allocating network buffers when
2747 * swapping over the network so ZONE_HIGHMEM is unusable.
2748 *
2749 * Throttling is based on the first usable node and throttled processes
2750 * wait on a queue until kswapd makes progress and wakes them. There
2751 * is an affinity then between processes waking up and where reclaim
2752 * progress has been made assuming the process wakes on the same node.
2753 * More importantly, processes running on remote nodes will not compete
2754 * for remote pfmemalloc reserves and processes on different nodes
2755 * should make reasonable progress.
2756 */
2757 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 2758 gfp_zone(gfp_mask), nodemask) {
675becce
MG
2759 if (zone_idx(zone) > ZONE_NORMAL)
2760 continue;
2761
2762 /* Throttle based on the first usable node */
2763 pgdat = zone->zone_pgdat;
2764 if (pfmemalloc_watermark_ok(pgdat))
2765 goto out;
2766 break;
2767 }
2768
2769 /* If no zone was usable by the allocation flags then do not throttle */
2770 if (!pgdat)
50694c28 2771 goto out;
5515061d 2772
68243e76
MG
2773 /* Account for the throttling */
2774 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2775
5515061d
MG
2776 /*
2777 * If the caller cannot enter the filesystem, it's possible that it
2778 * is due to the caller holding an FS lock or performing a journal
2779 * transaction in the case of a filesystem like ext[3|4]. In this case,
2780 * it is not safe to block on pfmemalloc_wait as kswapd could be
2781 * blocked waiting on the same lock. Instead, throttle for up to a
2782 * second before continuing.
2783 */
2784 if (!(gfp_mask & __GFP_FS)) {
2785 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2786 pfmemalloc_watermark_ok(pgdat), HZ);
50694c28
MG
2787
2788 goto check_pending;
5515061d
MG
2789 }
2790
2791 /* Throttle until kswapd wakes the process */
2792 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2793 pfmemalloc_watermark_ok(pgdat));
50694c28
MG
2794
2795check_pending:
2796 if (fatal_signal_pending(current))
2797 return true;
2798
2799out:
2800 return false;
5515061d
MG
2801}
2802
dac1d27b 2803unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2804 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2805{
33906bc5 2806 unsigned long nr_reclaimed;
66e1707b 2807 struct scan_control sc = {
ee814fe2 2808 .nr_to_reclaim = SWAP_CLUSTER_MAX,
21caf2fc 2809 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
ee814fe2
JW
2810 .order = order,
2811 .nodemask = nodemask,
2812 .priority = DEF_PRIORITY,
66e1707b 2813 .may_writepage = !laptop_mode,
a6dc60f8 2814 .may_unmap = 1,
2e2e4259 2815 .may_swap = 1,
66e1707b
BS
2816 };
2817
5515061d 2818 /*
50694c28
MG
2819 * Do not enter reclaim if fatal signal was delivered while throttled.
2820 * 1 is returned so that the page allocator does not OOM kill at this
2821 * point.
5515061d 2822 */
50694c28 2823 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
2824 return 1;
2825
33906bc5
MG
2826 trace_mm_vmscan_direct_reclaim_begin(order,
2827 sc.may_writepage,
2828 gfp_mask);
2829
3115cd91 2830 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
2831
2832 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2833
2834 return nr_reclaimed;
66e1707b
BS
2835}
2836
c255a458 2837#ifdef CONFIG_MEMCG
66e1707b 2838
72835c86 2839unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2840 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2841 struct zone *zone,
2842 unsigned long *nr_scanned)
4e416953
BS
2843{
2844 struct scan_control sc = {
b8f5c566 2845 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 2846 .target_mem_cgroup = memcg,
4e416953
BS
2847 .may_writepage = !laptop_mode,
2848 .may_unmap = 1,
2849 .may_swap = !noswap,
4e416953 2850 };
f9be23d6 2851 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
02695175 2852 int swappiness = mem_cgroup_swappiness(memcg);
6b4f7799 2853 unsigned long lru_pages;
0ae5e89c 2854
4e416953
BS
2855 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2856 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2857
9e3b2f8c 2858 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e
KM
2859 sc.may_writepage,
2860 sc.gfp_mask);
2861
4e416953
BS
2862 /*
2863 * NOTE: Although we can get the priority field, using it
2864 * here is not a good idea, since it limits the pages we can scan.
2865 * if we don't reclaim here, the shrink_zone from balance_pgdat
2866 * will pick up pages from other mem cgroup's as well. We hack
2867 * the priority and make it zero.
2868 */
6b4f7799 2869 shrink_lruvec(lruvec, swappiness, &sc, &lru_pages);
bdce6d9e
KM
2870
2871 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2872
0ae5e89c 2873 *nr_scanned = sc.nr_scanned;
4e416953
BS
2874 return sc.nr_reclaimed;
2875}
2876
72835c86 2877unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 2878 unsigned long nr_pages,
a7885eb8 2879 gfp_t gfp_mask,
b70a2a21 2880 bool may_swap)
66e1707b 2881{
4e416953 2882 struct zonelist *zonelist;
bdce6d9e 2883 unsigned long nr_reclaimed;
889976db 2884 int nid;
66e1707b 2885 struct scan_control sc = {
b70a2a21 2886 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
a09ed5e0
YH
2887 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2888 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
ee814fe2
JW
2889 .target_mem_cgroup = memcg,
2890 .priority = DEF_PRIORITY,
2891 .may_writepage = !laptop_mode,
2892 .may_unmap = 1,
b70a2a21 2893 .may_swap = may_swap,
a09ed5e0 2894 };
66e1707b 2895
889976db
YH
2896 /*
2897 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2898 * take care of from where we get pages. So the node where we start the
2899 * scan does not need to be the current node.
2900 */
72835c86 2901 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2902
2903 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2904
2905 trace_mm_vmscan_memcg_reclaim_begin(0,
2906 sc.may_writepage,
2907 sc.gfp_mask);
2908
3115cd91 2909 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
bdce6d9e
KM
2910
2911 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2912
2913 return nr_reclaimed;
66e1707b
BS
2914}
2915#endif
2916
9e3b2f8c 2917static void age_active_anon(struct zone *zone, struct scan_control *sc)
f16015fb 2918{
b95a2f2d 2919 struct mem_cgroup *memcg;
f16015fb 2920
b95a2f2d
JW
2921 if (!total_swap_pages)
2922 return;
2923
2924 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2925 do {
c56d5c7d 2926 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
b95a2f2d 2927
c56d5c7d 2928 if (inactive_anon_is_low(lruvec))
1a93be0e 2929 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 2930 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
2931
2932 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2933 } while (memcg);
f16015fb
JW
2934}
2935
60cefed4
JW
2936static bool zone_balanced(struct zone *zone, int order,
2937 unsigned long balance_gap, int classzone_idx)
2938{
2939 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2940 balance_gap, classzone_idx, 0))
2941 return false;
2942
ebff3980
VB
2943 if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone,
2944 order, 0, classzone_idx) == COMPACT_SKIPPED)
60cefed4
JW
2945 return false;
2946
2947 return true;
2948}
2949
1741c877 2950/*
4ae0a48b
ZC
2951 * pgdat_balanced() is used when checking if a node is balanced.
2952 *
2953 * For order-0, all zones must be balanced!
2954 *
2955 * For high-order allocations only zones that meet watermarks and are in a
2956 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2957 * total of balanced pages must be at least 25% of the zones allowed by
2958 * classzone_idx for the node to be considered balanced. Forcing all zones to
2959 * be balanced for high orders can cause excessive reclaim when there are
2960 * imbalanced zones.
1741c877
MG
2961 * The choice of 25% is due to
2962 * o a 16M DMA zone that is balanced will not balance a zone on any
2963 * reasonable sized machine
2964 * o On all other machines, the top zone must be at least a reasonable
25985edc 2965 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2966 * would need to be at least 256M for it to be balance a whole node.
2967 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2968 * to balance a node on its own. These seemed like reasonable ratios.
2969 */
4ae0a48b 2970static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
1741c877 2971{
b40da049 2972 unsigned long managed_pages = 0;
4ae0a48b 2973 unsigned long balanced_pages = 0;
1741c877
MG
2974 int i;
2975
4ae0a48b
ZC
2976 /* Check the watermark levels */
2977 for (i = 0; i <= classzone_idx; i++) {
2978 struct zone *zone = pgdat->node_zones + i;
1741c877 2979
4ae0a48b
ZC
2980 if (!populated_zone(zone))
2981 continue;
2982
b40da049 2983 managed_pages += zone->managed_pages;
4ae0a48b
ZC
2984
2985 /*
2986 * A special case here:
2987 *
2988 * balance_pgdat() skips over all_unreclaimable after
2989 * DEF_PRIORITY. Effectively, it considers them balanced so
2990 * they must be considered balanced here as well!
2991 */
6e543d57 2992 if (!zone_reclaimable(zone)) {
b40da049 2993 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2994 continue;
2995 }
2996
2997 if (zone_balanced(zone, order, 0, i))
b40da049 2998 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2999 else if (!order)
3000 return false;
3001 }
3002
3003 if (order)
b40da049 3004 return balanced_pages >= (managed_pages >> 2);
4ae0a48b
ZC
3005 else
3006 return true;
1741c877
MG
3007}
3008
5515061d
MG
3009/*
3010 * Prepare kswapd for sleeping. This verifies that there are no processes
3011 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3012 *
3013 * Returns true if kswapd is ready to sleep
3014 */
3015static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
dc83edd9 3016 int classzone_idx)
f50de2d3 3017{
f50de2d3
MG
3018 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
3019 if (remaining)
5515061d
MG
3020 return false;
3021
3022 /*
9e5e3661
VB
3023 * The throttled processes are normally woken up in balance_pgdat() as
3024 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3025 * race between when kswapd checks the watermarks and a process gets
3026 * throttled. There is also a potential race if processes get
3027 * throttled, kswapd wakes, a large process exits thereby balancing the
3028 * zones, which causes kswapd to exit balance_pgdat() before reaching
3029 * the wake up checks. If kswapd is going to sleep, no process should
3030 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3031 * the wake up is premature, processes will wake kswapd and get
3032 * throttled again. The difference from wake ups in balance_pgdat() is
3033 * that here we are under prepare_to_wait().
5515061d 3034 */
9e5e3661
VB
3035 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3036 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3037
4ae0a48b 3038 return pgdat_balanced(pgdat, order, classzone_idx);
f50de2d3
MG
3039}
3040
75485363
MG
3041/*
3042 * kswapd shrinks the zone by the number of pages required to reach
3043 * the high watermark.
b8e83b94
MG
3044 *
3045 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3046 * reclaim or if the lack of progress was due to pages under writeback.
3047 * This is used to determine if the scanning priority needs to be raised.
75485363 3048 */
b8e83b94 3049static bool kswapd_shrink_zone(struct zone *zone,
7c954f6d 3050 int classzone_idx,
75485363 3051 struct scan_control *sc,
2ab44f43 3052 unsigned long *nr_attempted)
75485363 3053{
7c954f6d
MG
3054 int testorder = sc->order;
3055 unsigned long balance_gap;
7c954f6d 3056 bool lowmem_pressure;
75485363
MG
3057
3058 /* Reclaim above the high watermark. */
3059 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
7c954f6d
MG
3060
3061 /*
3062 * Kswapd reclaims only single pages with compaction enabled. Trying
3063 * too hard to reclaim until contiguous free pages have become
3064 * available can hurt performance by evicting too much useful data
3065 * from memory. Do not reclaim more than needed for compaction.
3066 */
3067 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
ebff3980
VB
3068 compaction_suitable(zone, sc->order, 0, classzone_idx)
3069 != COMPACT_SKIPPED)
7c954f6d
MG
3070 testorder = 0;
3071
3072 /*
3073 * We put equal pressure on every zone, unless one zone has way too
3074 * many pages free already. The "too many pages" is defined as the
3075 * high wmark plus a "gap" where the gap is either the low
3076 * watermark or 1% of the zone, whichever is smaller.
3077 */
4be89a34
JZ
3078 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
3079 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
7c954f6d
MG
3080
3081 /*
3082 * If there is no low memory pressure or the zone is balanced then no
3083 * reclaim is necessary
3084 */
3085 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
3086 if (!lowmem_pressure && zone_balanced(zone, testorder,
3087 balance_gap, classzone_idx))
3088 return true;
3089
6b4f7799 3090 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
75485363 3091
2ab44f43
MG
3092 /* Account for the number of pages attempted to reclaim */
3093 *nr_attempted += sc->nr_to_reclaim;
3094
57054651 3095 clear_bit(ZONE_WRITEBACK, &zone->flags);
283aba9f 3096
7c954f6d
MG
3097 /*
3098 * If a zone reaches its high watermark, consider it to be no longer
3099 * congested. It's possible there are dirty pages backed by congested
3100 * BDIs but as pressure is relieved, speculatively avoid congestion
3101 * waits.
3102 */
6e543d57 3103 if (zone_reclaimable(zone) &&
7c954f6d 3104 zone_balanced(zone, testorder, 0, classzone_idx)) {
57054651
JW
3105 clear_bit(ZONE_CONGESTED, &zone->flags);
3106 clear_bit(ZONE_DIRTY, &zone->flags);
7c954f6d
MG
3107 }
3108
b8e83b94 3109 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3110}
3111
1da177e4
LT
3112/*
3113 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 3114 * they are all at high_wmark_pages(zone).
1da177e4 3115 *
0abdee2b 3116 * Returns the final order kswapd was reclaiming at
1da177e4
LT
3117 *
3118 * There is special handling here for zones which are full of pinned pages.
3119 * This can happen if the pages are all mlocked, or if they are all used by
3120 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
3121 * What we do is to detect the case where all pages in the zone have been
3122 * scanned twice and there has been zero successful reclaim. Mark the zone as
3123 * dead and from now on, only perform a short scan. Basically we're polling
3124 * the zone for when the problem goes away.
3125 *
3126 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
3127 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3128 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3129 * lower zones regardless of the number of free pages in the lower zones. This
3130 * interoperates with the page allocator fallback scheme to ensure that aging
3131 * of pages is balanced across the zones.
1da177e4 3132 */
99504748 3133static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 3134 int *classzone_idx)
1da177e4 3135{
1da177e4 3136 int i;
99504748 3137 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
0608f43d
AM
3138 unsigned long nr_soft_reclaimed;
3139 unsigned long nr_soft_scanned;
179e9639
AM
3140 struct scan_control sc = {
3141 .gfp_mask = GFP_KERNEL,
ee814fe2 3142 .order = order,
b8e83b94 3143 .priority = DEF_PRIORITY,
ee814fe2 3144 .may_writepage = !laptop_mode,
a6dc60f8 3145 .may_unmap = 1,
2e2e4259 3146 .may_swap = 1,
179e9639 3147 };
f8891e5e 3148 count_vm_event(PAGEOUTRUN);
1da177e4 3149
9e3b2f8c 3150 do {
2ab44f43 3151 unsigned long nr_attempted = 0;
b8e83b94 3152 bool raise_priority = true;
2ab44f43 3153 bool pgdat_needs_compaction = (order > 0);
b8e83b94
MG
3154
3155 sc.nr_reclaimed = 0;
1da177e4 3156
d6277db4
RW
3157 /*
3158 * Scan in the highmem->dma direction for the highest
3159 * zone which needs scanning
3160 */
3161 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3162 struct zone *zone = pgdat->node_zones + i;
1da177e4 3163
d6277db4
RW
3164 if (!populated_zone(zone))
3165 continue;
1da177e4 3166
6e543d57
LD
3167 if (sc.priority != DEF_PRIORITY &&
3168 !zone_reclaimable(zone))
d6277db4 3169 continue;
1da177e4 3170
556adecb
RR
3171 /*
3172 * Do some background aging of the anon list, to give
3173 * pages a chance to be referenced before reclaiming.
3174 */
9e3b2f8c 3175 age_active_anon(zone, &sc);
556adecb 3176
cc715d99
MG
3177 /*
3178 * If the number of buffer_heads in the machine
3179 * exceeds the maximum allowed level and this node
3180 * has a highmem zone, force kswapd to reclaim from
3181 * it to relieve lowmem pressure.
3182 */
3183 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3184 end_zone = i;
3185 break;
3186 }
3187
60cefed4 3188 if (!zone_balanced(zone, order, 0, 0)) {
d6277db4 3189 end_zone = i;
e1dbeda6 3190 break;
439423f6 3191 } else {
d43006d5
MG
3192 /*
3193 * If balanced, clear the dirty and congested
3194 * flags
3195 */
57054651
JW
3196 clear_bit(ZONE_CONGESTED, &zone->flags);
3197 clear_bit(ZONE_DIRTY, &zone->flags);
1da177e4 3198 }
1da177e4 3199 }
dafcb73e 3200
b8e83b94 3201 if (i < 0)
e1dbeda6
AM
3202 goto out;
3203
1da177e4
LT
3204 for (i = 0; i <= end_zone; i++) {
3205 struct zone *zone = pgdat->node_zones + i;
3206
2ab44f43
MG
3207 if (!populated_zone(zone))
3208 continue;
3209
2ab44f43
MG
3210 /*
3211 * If any zone is currently balanced then kswapd will
3212 * not call compaction as it is expected that the
3213 * necessary pages are already available.
3214 */
3215 if (pgdat_needs_compaction &&
3216 zone_watermark_ok(zone, order,
3217 low_wmark_pages(zone),
3218 *classzone_idx, 0))
3219 pgdat_needs_compaction = false;
1da177e4
LT
3220 }
3221
b7ea3c41
MG
3222 /*
3223 * If we're getting trouble reclaiming, start doing writepage
3224 * even in laptop mode.
3225 */
3226 if (sc.priority < DEF_PRIORITY - 2)
3227 sc.may_writepage = 1;
3228
1da177e4
LT
3229 /*
3230 * Now scan the zone in the dma->highmem direction, stopping
3231 * at the last zone which needs scanning.
3232 *
3233 * We do this because the page allocator works in the opposite
3234 * direction. This prevents the page allocator from allocating
3235 * pages behind kswapd's direction of progress, which would
3236 * cause too much scanning of the lower zones.
3237 */
3238 for (i = 0; i <= end_zone; i++) {
3239 struct zone *zone = pgdat->node_zones + i;
3240
f3fe6512 3241 if (!populated_zone(zone))
1da177e4
LT
3242 continue;
3243
6e543d57
LD
3244 if (sc.priority != DEF_PRIORITY &&
3245 !zone_reclaimable(zone))
1da177e4
LT
3246 continue;
3247
1da177e4 3248 sc.nr_scanned = 0;
4e416953 3249
0608f43d
AM
3250 nr_soft_scanned = 0;
3251 /*
3252 * Call soft limit reclaim before calling shrink_zone.
3253 */
3254 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3255 order, sc.gfp_mask,
3256 &nr_soft_scanned);
3257 sc.nr_reclaimed += nr_soft_reclaimed;
3258
32a4330d 3259 /*
7c954f6d
MG
3260 * There should be no need to raise the scanning
3261 * priority if enough pages are already being scanned
3262 * that that high watermark would be met at 100%
3263 * efficiency.
fe2c2a10 3264 */
6b4f7799
JW
3265 if (kswapd_shrink_zone(zone, end_zone,
3266 &sc, &nr_attempted))
7c954f6d 3267 raise_priority = false;
1da177e4 3268 }
5515061d
MG
3269
3270 /*
3271 * If the low watermark is met there is no need for processes
3272 * to be throttled on pfmemalloc_wait as they should not be
3273 * able to safely make forward progress. Wake them
3274 */
3275 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3276 pfmemalloc_watermark_ok(pgdat))
cfc51155 3277 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3278
1da177e4 3279 /*
b8e83b94
MG
3280 * Fragmentation may mean that the system cannot be rebalanced
3281 * for high-order allocations in all zones. If twice the
3282 * allocation size has been reclaimed and the zones are still
3283 * not balanced then recheck the watermarks at order-0 to
3284 * prevent kswapd reclaiming excessively. Assume that a
3285 * process requested a high-order can direct reclaim/compact.
1da177e4 3286 */
b8e83b94
MG
3287 if (order && sc.nr_reclaimed >= 2UL << order)
3288 order = sc.order = 0;
8357376d 3289
b8e83b94
MG
3290 /* Check if kswapd should be suspending */
3291 if (try_to_freeze() || kthread_should_stop())
3292 break;
8357376d 3293
2ab44f43
MG
3294 /*
3295 * Compact if necessary and kswapd is reclaiming at least the
3296 * high watermark number of pages as requsted
3297 */
3298 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3299 compact_pgdat(pgdat, order);
3300
73ce02e9 3301 /*
b8e83b94
MG
3302 * Raise priority if scanning rate is too low or there was no
3303 * progress in reclaiming pages
73ce02e9 3304 */
b8e83b94
MG
3305 if (raise_priority || !sc.nr_reclaimed)
3306 sc.priority--;
9aa41348 3307 } while (sc.priority >= 1 &&
b8e83b94 3308 !pgdat_balanced(pgdat, order, *classzone_idx));
1da177e4 3309
b8e83b94 3310out:
0abdee2b 3311 /*
5515061d 3312 * Return the order we were reclaiming at so prepare_kswapd_sleep()
0abdee2b
MG
3313 * makes a decision on the order we were last reclaiming at. However,
3314 * if another caller entered the allocator slow path while kswapd
3315 * was awake, order will remain at the higher level
3316 */
dc83edd9 3317 *classzone_idx = end_zone;
0abdee2b 3318 return order;
1da177e4
LT
3319}
3320
dc83edd9 3321static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
3322{
3323 long remaining = 0;
3324 DEFINE_WAIT(wait);
3325
3326 if (freezing(current) || kthread_should_stop())
3327 return;
3328
3329 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3330
3331 /* Try to sleep for a short interval */
5515061d 3332 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3333 remaining = schedule_timeout(HZ/10);
3334 finish_wait(&pgdat->kswapd_wait, &wait);
3335 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3336 }
3337
3338 /*
3339 * After a short sleep, check if it was a premature sleep. If not, then
3340 * go fully to sleep until explicitly woken up.
3341 */
5515061d 3342 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3343 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3344
3345 /*
3346 * vmstat counters are not perfectly accurate and the estimated
3347 * value for counters such as NR_FREE_PAGES can deviate from the
3348 * true value by nr_online_cpus * threshold. To avoid the zone
3349 * watermarks being breached while under pressure, we reduce the
3350 * per-cpu vmstat threshold while kswapd is awake and restore
3351 * them before going back to sleep.
3352 */
3353 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c 3354
62997027
MG
3355 /*
3356 * Compaction records what page blocks it recently failed to
3357 * isolate pages from and skips them in the future scanning.
3358 * When kswapd is going to sleep, it is reasonable to assume
3359 * that pages and compaction may succeed so reset the cache.
3360 */
3361 reset_isolation_suitable(pgdat);
3362
1c7e7f6c
AK
3363 if (!kthread_should_stop())
3364 schedule();
3365
f0bc0a60
KM
3366 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3367 } else {
3368 if (remaining)
3369 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3370 else
3371 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3372 }
3373 finish_wait(&pgdat->kswapd_wait, &wait);
3374}
3375
1da177e4
LT
3376/*
3377 * The background pageout daemon, started as a kernel thread
4f98a2fe 3378 * from the init process.
1da177e4
LT
3379 *
3380 * This basically trickles out pages so that we have _some_
3381 * free memory available even if there is no other activity
3382 * that frees anything up. This is needed for things like routing
3383 * etc, where we otherwise might have all activity going on in
3384 * asynchronous contexts that cannot page things out.
3385 *
3386 * If there are applications that are active memory-allocators
3387 * (most normal use), this basically shouldn't matter.
3388 */
3389static int kswapd(void *p)
3390{
215ddd66 3391 unsigned long order, new_order;
d2ebd0f6 3392 unsigned balanced_order;
215ddd66 3393 int classzone_idx, new_classzone_idx;
d2ebd0f6 3394 int balanced_classzone_idx;
1da177e4
LT
3395 pg_data_t *pgdat = (pg_data_t*)p;
3396 struct task_struct *tsk = current;
f0bc0a60 3397
1da177e4
LT
3398 struct reclaim_state reclaim_state = {
3399 .reclaimed_slab = 0,
3400 };
a70f7302 3401 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3402
cf40bd16
NP
3403 lockdep_set_current_reclaim_state(GFP_KERNEL);
3404
174596a0 3405 if (!cpumask_empty(cpumask))
c5f59f08 3406 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3407 current->reclaim_state = &reclaim_state;
3408
3409 /*
3410 * Tell the memory management that we're a "memory allocator",
3411 * and that if we need more memory we should get access to it
3412 * regardless (see "__alloc_pages()"). "kswapd" should
3413 * never get caught in the normal page freeing logic.
3414 *
3415 * (Kswapd normally doesn't need memory anyway, but sometimes
3416 * you need a small amount of memory in order to be able to
3417 * page out something else, and this flag essentially protects
3418 * us from recursively trying to free more memory as we're
3419 * trying to free the first piece of memory in the first place).
3420 */
930d9152 3421 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3422 set_freezable();
1da177e4 3423
215ddd66 3424 order = new_order = 0;
d2ebd0f6 3425 balanced_order = 0;
215ddd66 3426 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 3427 balanced_classzone_idx = classzone_idx;
1da177e4 3428 for ( ; ; ) {
6f6313d4 3429 bool ret;
3e1d1d28 3430
215ddd66
MG
3431 /*
3432 * If the last balance_pgdat was unsuccessful it's unlikely a
3433 * new request of a similar or harder type will succeed soon
3434 * so consider going to sleep on the basis we reclaimed at
3435 */
d2ebd0f6
AS
3436 if (balanced_classzone_idx >= new_classzone_idx &&
3437 balanced_order == new_order) {
215ddd66
MG
3438 new_order = pgdat->kswapd_max_order;
3439 new_classzone_idx = pgdat->classzone_idx;
3440 pgdat->kswapd_max_order = 0;
3441 pgdat->classzone_idx = pgdat->nr_zones - 1;
3442 }
3443
99504748 3444 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
3445 /*
3446 * Don't sleep if someone wants a larger 'order'
99504748 3447 * allocation or has tigher zone constraints
1da177e4
LT
3448 */
3449 order = new_order;
99504748 3450 classzone_idx = new_classzone_idx;
1da177e4 3451 } else {
d2ebd0f6
AS
3452 kswapd_try_to_sleep(pgdat, balanced_order,
3453 balanced_classzone_idx);
1da177e4 3454 order = pgdat->kswapd_max_order;
99504748 3455 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
3456 new_order = order;
3457 new_classzone_idx = classzone_idx;
4d40502e 3458 pgdat->kswapd_max_order = 0;
215ddd66 3459 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 3460 }
1da177e4 3461
8fe23e05
DR
3462 ret = try_to_freeze();
3463 if (kthread_should_stop())
3464 break;
3465
3466 /*
3467 * We can speed up thawing tasks if we don't call balance_pgdat
3468 * after returning from the refrigerator
3469 */
33906bc5
MG
3470 if (!ret) {
3471 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
3472 balanced_classzone_idx = classzone_idx;
3473 balanced_order = balance_pgdat(pgdat, order,
3474 &balanced_classzone_idx);
33906bc5 3475 }
1da177e4 3476 }
b0a8cc58 3477
71abdc15 3478 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
b0a8cc58 3479 current->reclaim_state = NULL;
71abdc15
JW
3480 lockdep_clear_current_reclaim_state();
3481
1da177e4
LT
3482 return 0;
3483}
3484
3485/*
3486 * A zone is low on free memory, so wake its kswapd task to service it.
3487 */
99504748 3488void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3489{
3490 pg_data_t *pgdat;
3491
f3fe6512 3492 if (!populated_zone(zone))
1da177e4
LT
3493 return;
3494
344736f2 3495 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
1da177e4 3496 return;
88f5acf8 3497 pgdat = zone->zone_pgdat;
99504748 3498 if (pgdat->kswapd_max_order < order) {
1da177e4 3499 pgdat->kswapd_max_order = order;
99504748
MG
3500 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3501 }
8d0986e2 3502 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3503 return;
892f795d 3504 if (zone_balanced(zone, order, 0, 0))
88f5acf8
MG
3505 return;
3506
3507 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3508 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3509}
3510
c6f37f12 3511#ifdef CONFIG_HIBERNATION
1da177e4 3512/*
7b51755c 3513 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3514 * freed pages.
3515 *
3516 * Rather than trying to age LRUs the aim is to preserve the overall
3517 * LRU order by reclaiming preferentially
3518 * inactive > active > active referenced > active mapped
1da177e4 3519 */
7b51755c 3520unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3521{
d6277db4 3522 struct reclaim_state reclaim_state;
d6277db4 3523 struct scan_control sc = {
ee814fe2 3524 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3525 .gfp_mask = GFP_HIGHUSER_MOVABLE,
ee814fe2 3526 .priority = DEF_PRIORITY,
d6277db4 3527 .may_writepage = 1,
ee814fe2
JW
3528 .may_unmap = 1,
3529 .may_swap = 1,
7b51755c 3530 .hibernation_mode = 1,
1da177e4 3531 };
a09ed5e0 3532 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3533 struct task_struct *p = current;
3534 unsigned long nr_reclaimed;
1da177e4 3535
7b51755c
KM
3536 p->flags |= PF_MEMALLOC;
3537 lockdep_set_current_reclaim_state(sc.gfp_mask);
3538 reclaim_state.reclaimed_slab = 0;
3539 p->reclaim_state = &reclaim_state;
d6277db4 3540
3115cd91 3541 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3542
7b51755c
KM
3543 p->reclaim_state = NULL;
3544 lockdep_clear_current_reclaim_state();
3545 p->flags &= ~PF_MEMALLOC;
d6277db4 3546
7b51755c 3547 return nr_reclaimed;
1da177e4 3548}
c6f37f12 3549#endif /* CONFIG_HIBERNATION */
1da177e4 3550
1da177e4
LT
3551/* It's optimal to keep kswapds on the same CPUs as their memory, but
3552 not required for correctness. So if the last cpu in a node goes
3553 away, we get changed to run anywhere: as the first one comes back,
3554 restore their cpu bindings. */
fcb35a9b
GKH
3555static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3556 void *hcpu)
1da177e4 3557{
58c0a4a7 3558 int nid;
1da177e4 3559
8bb78442 3560 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
48fb2e24 3561 for_each_node_state(nid, N_MEMORY) {
c5f59f08 3562 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3563 const struct cpumask *mask;
3564
3565 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3566
3e597945 3567 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3568 /* One of our CPUs online: restore mask */
c5f59f08 3569 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3570 }
3571 }
3572 return NOTIFY_OK;
3573}
1da177e4 3574
3218ae14
YG
3575/*
3576 * This kswapd start function will be called by init and node-hot-add.
3577 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3578 */
3579int kswapd_run(int nid)
3580{
3581 pg_data_t *pgdat = NODE_DATA(nid);
3582 int ret = 0;
3583
3584 if (pgdat->kswapd)
3585 return 0;
3586
3587 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3588 if (IS_ERR(pgdat->kswapd)) {
3589 /* failure at boot is fatal */
3590 BUG_ON(system_state == SYSTEM_BOOTING);
d5dc0ad9
GS
3591 pr_err("Failed to start kswapd on node %d\n", nid);
3592 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3593 pgdat->kswapd = NULL;
3218ae14
YG
3594 }
3595 return ret;
3596}
3597
8fe23e05 3598/*
d8adde17 3599 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 3600 * hold mem_hotplug_begin/end().
8fe23e05
DR
3601 */
3602void kswapd_stop(int nid)
3603{
3604 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3605
d8adde17 3606 if (kswapd) {
8fe23e05 3607 kthread_stop(kswapd);
d8adde17
JL
3608 NODE_DATA(nid)->kswapd = NULL;
3609 }
8fe23e05
DR
3610}
3611
1da177e4
LT
3612static int __init kswapd_init(void)
3613{
3218ae14 3614 int nid;
69e05944 3615
1da177e4 3616 swap_setup();
48fb2e24 3617 for_each_node_state(nid, N_MEMORY)
3218ae14 3618 kswapd_run(nid);
1da177e4
LT
3619 hotcpu_notifier(cpu_callback, 0);
3620 return 0;
3621}
3622
3623module_init(kswapd_init)
9eeff239
CL
3624
3625#ifdef CONFIG_NUMA
3626/*
3627 * Zone reclaim mode
3628 *
3629 * If non-zero call zone_reclaim when the number of free pages falls below
3630 * the watermarks.
9eeff239
CL
3631 */
3632int zone_reclaim_mode __read_mostly;
3633
1b2ffb78 3634#define RECLAIM_OFF 0
7d03431c 3635#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78 3636#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
95bbc0c7 3637#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
1b2ffb78 3638
a92f7126
CL
3639/*
3640 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3641 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3642 * a zone.
3643 */
3644#define ZONE_RECLAIM_PRIORITY 4
3645
9614634f
CL
3646/*
3647 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3648 * occur.
3649 */
3650int sysctl_min_unmapped_ratio = 1;
3651
0ff38490
CL
3652/*
3653 * If the number of slab pages in a zone grows beyond this percentage then
3654 * slab reclaim needs to occur.
3655 */
3656int sysctl_min_slab_ratio = 5;
3657
90afa5de
MG
3658static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3659{
3660 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3661 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3662 zone_page_state(zone, NR_ACTIVE_FILE);
3663
3664 /*
3665 * It's possible for there to be more file mapped pages than
3666 * accounted for by the pages on the file LRU lists because
3667 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3668 */
3669 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3670}
3671
3672/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3673static long zone_pagecache_reclaimable(struct zone *zone)
3674{
3675 long nr_pagecache_reclaimable;
3676 long delta = 0;
3677
3678 /*
95bbc0c7 3679 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de
MG
3680 * potentially reclaimable. Otherwise, we have to worry about
3681 * pages like swapcache and zone_unmapped_file_pages() provides
3682 * a better estimate
3683 */
95bbc0c7 3684 if (zone_reclaim_mode & RECLAIM_UNMAP)
90afa5de
MG
3685 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3686 else
3687 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3688
3689 /* If we can't clean pages, remove dirty pages from consideration */
3690 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3691 delta += zone_page_state(zone, NR_FILE_DIRTY);
3692
3693 /* Watch for any possible underflows due to delta */
3694 if (unlikely(delta > nr_pagecache_reclaimable))
3695 delta = nr_pagecache_reclaimable;
3696
3697 return nr_pagecache_reclaimable - delta;
3698}
3699
9eeff239
CL
3700/*
3701 * Try to free up some pages from this zone through reclaim.
3702 */
179e9639 3703static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3704{
7fb2d46d 3705 /* Minimum pages needed in order to stay on node */
69e05944 3706 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3707 struct task_struct *p = current;
3708 struct reclaim_state reclaim_state;
179e9639 3709 struct scan_control sc = {
62b726c1 3710 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
21caf2fc 3711 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
bd2f6199 3712 .order = order,
9e3b2f8c 3713 .priority = ZONE_RECLAIM_PRIORITY,
ee814fe2 3714 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
95bbc0c7 3715 .may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 3716 .may_swap = 1,
179e9639 3717 };
9eeff239 3718
9eeff239 3719 cond_resched();
d4f7796e 3720 /*
95bbc0c7 3721 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 3722 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 3723 * and RECLAIM_UNMAP.
d4f7796e
CL
3724 */
3725 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3726 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3727 reclaim_state.reclaimed_slab = 0;
3728 p->reclaim_state = &reclaim_state;
c84db23c 3729
90afa5de 3730 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3731 /*
3732 * Free memory by calling shrink zone with increasing
3733 * priorities until we have enough memory freed.
3734 */
0ff38490 3735 do {
6b4f7799 3736 shrink_zone(zone, &sc, true);
9e3b2f8c 3737 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3738 }
c84db23c 3739
9eeff239 3740 p->reclaim_state = NULL;
d4f7796e 3741 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3742 lockdep_clear_current_reclaim_state();
a79311c1 3743 return sc.nr_reclaimed >= nr_pages;
9eeff239 3744}
179e9639
AM
3745
3746int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3747{
179e9639 3748 int node_id;
d773ed6b 3749 int ret;
179e9639
AM
3750
3751 /*
0ff38490
CL
3752 * Zone reclaim reclaims unmapped file backed pages and
3753 * slab pages if we are over the defined limits.
34aa1330 3754 *
9614634f
CL
3755 * A small portion of unmapped file backed pages is needed for
3756 * file I/O otherwise pages read by file I/O will be immediately
3757 * thrown out if the zone is overallocated. So we do not reclaim
3758 * if less than a specified percentage of the zone is used by
3759 * unmapped file backed pages.
179e9639 3760 */
90afa5de
MG
3761 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3762 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3763 return ZONE_RECLAIM_FULL;
179e9639 3764
6e543d57 3765 if (!zone_reclaimable(zone))
fa5e084e 3766 return ZONE_RECLAIM_FULL;
d773ed6b 3767
179e9639 3768 /*
d773ed6b 3769 * Do not scan if the allocation should not be delayed.
179e9639 3770 */
d773ed6b 3771 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3772 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3773
3774 /*
3775 * Only run zone reclaim on the local zone or on zones that do not
3776 * have associated processors. This will favor the local processor
3777 * over remote processors and spread off node memory allocations
3778 * as wide as possible.
3779 */
89fa3024 3780 node_id = zone_to_nid(zone);
37c0708d 3781 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3782 return ZONE_RECLAIM_NOSCAN;
d773ed6b 3783
57054651 3784 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
fa5e084e
MG
3785 return ZONE_RECLAIM_NOSCAN;
3786
d773ed6b 3787 ret = __zone_reclaim(zone, gfp_mask, order);
57054651 3788 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
d773ed6b 3789
24cf7251
MG
3790 if (!ret)
3791 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3792
d773ed6b 3793 return ret;
179e9639 3794}
9eeff239 3795#endif
894bc310 3796
894bc310
LS
3797/*
3798 * page_evictable - test whether a page is evictable
3799 * @page: the page to test
894bc310
LS
3800 *
3801 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3802 * lists vs unevictable list.
894bc310
LS
3803 *
3804 * Reasons page might not be evictable:
ba9ddf49 3805 * (1) page's mapping marked unevictable
b291f000 3806 * (2) page is part of an mlocked VMA
ba9ddf49 3807 *
894bc310 3808 */
39b5f29a 3809int page_evictable(struct page *page)
894bc310 3810{
39b5f29a 3811 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3812}
89e004ea 3813
85046579 3814#ifdef CONFIG_SHMEM
89e004ea 3815/**
24513264
HD
3816 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3817 * @pages: array of pages to check
3818 * @nr_pages: number of pages to check
89e004ea 3819 *
24513264 3820 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3821 *
3822 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3823 */
24513264 3824void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3825{
925b7673 3826 struct lruvec *lruvec;
24513264
HD
3827 struct zone *zone = NULL;
3828 int pgscanned = 0;
3829 int pgrescued = 0;
3830 int i;
89e004ea 3831
24513264
HD
3832 for (i = 0; i < nr_pages; i++) {
3833 struct page *page = pages[i];
3834 struct zone *pagezone;
89e004ea 3835
24513264
HD
3836 pgscanned++;
3837 pagezone = page_zone(page);
3838 if (pagezone != zone) {
3839 if (zone)
3840 spin_unlock_irq(&zone->lru_lock);
3841 zone = pagezone;
3842 spin_lock_irq(&zone->lru_lock);
3843 }
fa9add64 3844 lruvec = mem_cgroup_page_lruvec(page, zone);
89e004ea 3845
24513264
HD
3846 if (!PageLRU(page) || !PageUnevictable(page))
3847 continue;
89e004ea 3848
39b5f29a 3849 if (page_evictable(page)) {
24513264
HD
3850 enum lru_list lru = page_lru_base_type(page);
3851
309381fe 3852 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 3853 ClearPageUnevictable(page);
fa9add64
HD
3854 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3855 add_page_to_lru_list(page, lruvec, lru);
24513264 3856 pgrescued++;
89e004ea 3857 }
24513264 3858 }
89e004ea 3859
24513264
HD
3860 if (zone) {
3861 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3862 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3863 spin_unlock_irq(&zone->lru_lock);
89e004ea 3864 }
89e004ea 3865}
85046579 3866#endif /* CONFIG_SHMEM */