Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[linux-2.6-block.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
b1de0d13
MH
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
1da177e4
LT
16#include <linux/mm.h>
17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
29#include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31#include <linux/mm_inline.h>
1da177e4
LT
32#include <linux/backing-dev.h>
33#include <linux/rmap.h>
34#include <linux/topology.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
3e7d3449 37#include <linux/compaction.h>
1da177e4
LT
38#include <linux/notifier.h>
39#include <linux/rwsem.h>
248a0301 40#include <linux/delay.h>
3218ae14 41#include <linux/kthread.h>
7dfb7103 42#include <linux/freezer.h>
66e1707b 43#include <linux/memcontrol.h>
873b4771 44#include <linux/delayacct.h>
af936a16 45#include <linux/sysctl.h>
929bea7c 46#include <linux/oom.h>
268bb0ce 47#include <linux/prefetch.h>
b1de0d13 48#include <linux/printk.h>
f9fe48be 49#include <linux/dax.h>
1da177e4
LT
50
51#include <asm/tlbflush.h>
52#include <asm/div64.h>
53
54#include <linux/swapops.h>
117aad1e 55#include <linux/balloon_compaction.h>
1da177e4 56
0f8053a5
NP
57#include "internal.h"
58
33906bc5
MG
59#define CREATE_TRACE_POINTS
60#include <trace/events/vmscan.h>
61
1da177e4 62struct scan_control {
22fba335
KM
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
65
1da177e4 66 /* This context's GFP mask */
6daa0e28 67 gfp_t gfp_mask;
1da177e4 68
ee814fe2 69 /* Allocation order */
5ad333eb 70 int order;
66e1707b 71
ee814fe2
JW
72 /*
73 * Nodemask of nodes allowed by the caller. If NULL, all nodes
74 * are scanned.
75 */
76 nodemask_t *nodemask;
9e3b2f8c 77
f16015fb
JW
78 /*
79 * The memory cgroup that hit its limit and as a result is the
80 * primary target of this reclaim invocation.
81 */
82 struct mem_cgroup *target_mem_cgroup;
66e1707b 83
ee814fe2
JW
84 /* Scan (total_size >> priority) pages at once */
85 int priority;
86
87 unsigned int may_writepage:1;
88
89 /* Can mapped pages be reclaimed? */
90 unsigned int may_unmap:1;
91
92 /* Can pages be swapped as part of reclaim? */
93 unsigned int may_swap:1;
94
241994ed
JW
95 /* Can cgroups be reclaimed below their normal consumption range? */
96 unsigned int may_thrash:1;
97
ee814fe2
JW
98 unsigned int hibernation_mode:1;
99
100 /* One of the zones is ready for compaction */
101 unsigned int compaction_ready:1;
102
103 /* Incremented by the number of inactive pages that were scanned */
104 unsigned long nr_scanned;
105
106 /* Number of pages freed so far during a call to shrink_zones() */
107 unsigned long nr_reclaimed;
1da177e4
LT
108};
109
1da177e4
LT
110#ifdef ARCH_HAS_PREFETCH
111#define prefetch_prev_lru_page(_page, _base, _field) \
112 do { \
113 if ((_page)->lru.prev != _base) { \
114 struct page *prev; \
115 \
116 prev = lru_to_page(&(_page->lru)); \
117 prefetch(&prev->_field); \
118 } \
119 } while (0)
120#else
121#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
122#endif
123
124#ifdef ARCH_HAS_PREFETCHW
125#define prefetchw_prev_lru_page(_page, _base, _field) \
126 do { \
127 if ((_page)->lru.prev != _base) { \
128 struct page *prev; \
129 \
130 prev = lru_to_page(&(_page->lru)); \
131 prefetchw(&prev->_field); \
132 } \
133 } while (0)
134#else
135#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
136#endif
137
138/*
139 * From 0 .. 100. Higher means more swappy.
140 */
141int vm_swappiness = 60;
d0480be4
WSH
142/*
143 * The total number of pages which are beyond the high watermark within all
144 * zones.
145 */
146unsigned long vm_total_pages;
1da177e4
LT
147
148static LIST_HEAD(shrinker_list);
149static DECLARE_RWSEM(shrinker_rwsem);
150
c255a458 151#ifdef CONFIG_MEMCG
89b5fae5
JW
152static bool global_reclaim(struct scan_control *sc)
153{
f16015fb 154 return !sc->target_mem_cgroup;
89b5fae5 155}
97c9341f
TH
156
157/**
158 * sane_reclaim - is the usual dirty throttling mechanism operational?
159 * @sc: scan_control in question
160 *
161 * The normal page dirty throttling mechanism in balance_dirty_pages() is
162 * completely broken with the legacy memcg and direct stalling in
163 * shrink_page_list() is used for throttling instead, which lacks all the
164 * niceties such as fairness, adaptive pausing, bandwidth proportional
165 * allocation and configurability.
166 *
167 * This function tests whether the vmscan currently in progress can assume
168 * that the normal dirty throttling mechanism is operational.
169 */
170static bool sane_reclaim(struct scan_control *sc)
171{
172 struct mem_cgroup *memcg = sc->target_mem_cgroup;
173
174 if (!memcg)
175 return true;
176#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 177 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
178 return true;
179#endif
180 return false;
181}
91a45470 182#else
89b5fae5
JW
183static bool global_reclaim(struct scan_control *sc)
184{
185 return true;
186}
97c9341f
TH
187
188static bool sane_reclaim(struct scan_control *sc)
189{
190 return true;
191}
91a45470
KH
192#endif
193
0a0337e0 194unsigned long zone_reclaimable_pages(struct zone *zone)
6e543d57 195{
d031a157 196 unsigned long nr;
6e543d57 197
0db2cb8d
MH
198 nr = zone_page_state_snapshot(zone, NR_ACTIVE_FILE) +
199 zone_page_state_snapshot(zone, NR_INACTIVE_FILE) +
200 zone_page_state_snapshot(zone, NR_ISOLATED_FILE);
6e543d57
LD
201
202 if (get_nr_swap_pages() > 0)
0db2cb8d
MH
203 nr += zone_page_state_snapshot(zone, NR_ACTIVE_ANON) +
204 zone_page_state_snapshot(zone, NR_INACTIVE_ANON) +
205 zone_page_state_snapshot(zone, NR_ISOLATED_ANON);
6e543d57
LD
206
207 return nr;
208}
209
210bool zone_reclaimable(struct zone *zone)
211{
0db2cb8d 212 return zone_page_state_snapshot(zone, NR_PAGES_SCANNED) <
0d5d823a 213 zone_reclaimable_pages(zone) * 6;
6e543d57
LD
214}
215
23047a96 216unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru)
c9f299d9 217{
c3c787e8 218 if (!mem_cgroup_disabled())
4d7dcca2 219 return mem_cgroup_get_lru_size(lruvec, lru);
a3d8e054 220
074291fe 221 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
c9f299d9
KM
222}
223
1da177e4 224/*
1d3d4437 225 * Add a shrinker callback to be called from the vm.
1da177e4 226 */
1d3d4437 227int register_shrinker(struct shrinker *shrinker)
1da177e4 228{
1d3d4437
GC
229 size_t size = sizeof(*shrinker->nr_deferred);
230
1d3d4437
GC
231 if (shrinker->flags & SHRINKER_NUMA_AWARE)
232 size *= nr_node_ids;
233
234 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
235 if (!shrinker->nr_deferred)
236 return -ENOMEM;
237
8e1f936b
RR
238 down_write(&shrinker_rwsem);
239 list_add_tail(&shrinker->list, &shrinker_list);
240 up_write(&shrinker_rwsem);
1d3d4437 241 return 0;
1da177e4 242}
8e1f936b 243EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
244
245/*
246 * Remove one
247 */
8e1f936b 248void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
249{
250 down_write(&shrinker_rwsem);
251 list_del(&shrinker->list);
252 up_write(&shrinker_rwsem);
ae393321 253 kfree(shrinker->nr_deferred);
1da177e4 254}
8e1f936b 255EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
256
257#define SHRINK_BATCH 128
1d3d4437 258
cb731d6c
VD
259static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
260 struct shrinker *shrinker,
261 unsigned long nr_scanned,
262 unsigned long nr_eligible)
1d3d4437
GC
263{
264 unsigned long freed = 0;
265 unsigned long long delta;
266 long total_scan;
d5bc5fd3 267 long freeable;
1d3d4437
GC
268 long nr;
269 long new_nr;
270 int nid = shrinkctl->nid;
271 long batch_size = shrinker->batch ? shrinker->batch
272 : SHRINK_BATCH;
273
d5bc5fd3
VD
274 freeable = shrinker->count_objects(shrinker, shrinkctl);
275 if (freeable == 0)
1d3d4437
GC
276 return 0;
277
278 /*
279 * copy the current shrinker scan count into a local variable
280 * and zero it so that other concurrent shrinker invocations
281 * don't also do this scanning work.
282 */
283 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
284
285 total_scan = nr;
6b4f7799 286 delta = (4 * nr_scanned) / shrinker->seeks;
d5bc5fd3 287 delta *= freeable;
6b4f7799 288 do_div(delta, nr_eligible + 1);
1d3d4437
GC
289 total_scan += delta;
290 if (total_scan < 0) {
8612c663 291 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 292 shrinker->scan_objects, total_scan);
d5bc5fd3 293 total_scan = freeable;
1d3d4437
GC
294 }
295
296 /*
297 * We need to avoid excessive windup on filesystem shrinkers
298 * due to large numbers of GFP_NOFS allocations causing the
299 * shrinkers to return -1 all the time. This results in a large
300 * nr being built up so when a shrink that can do some work
301 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 302 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
303 * memory.
304 *
305 * Hence only allow the shrinker to scan the entire cache when
306 * a large delta change is calculated directly.
307 */
d5bc5fd3
VD
308 if (delta < freeable / 4)
309 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
310
311 /*
312 * Avoid risking looping forever due to too large nr value:
313 * never try to free more than twice the estimate number of
314 * freeable entries.
315 */
d5bc5fd3
VD
316 if (total_scan > freeable * 2)
317 total_scan = freeable * 2;
1d3d4437
GC
318
319 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
6b4f7799
JW
320 nr_scanned, nr_eligible,
321 freeable, delta, total_scan);
1d3d4437 322
0b1fb40a
VD
323 /*
324 * Normally, we should not scan less than batch_size objects in one
325 * pass to avoid too frequent shrinker calls, but if the slab has less
326 * than batch_size objects in total and we are really tight on memory,
327 * we will try to reclaim all available objects, otherwise we can end
328 * up failing allocations although there are plenty of reclaimable
329 * objects spread over several slabs with usage less than the
330 * batch_size.
331 *
332 * We detect the "tight on memory" situations by looking at the total
333 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 334 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
335 * scanning at high prio and therefore should try to reclaim as much as
336 * possible.
337 */
338 while (total_scan >= batch_size ||
d5bc5fd3 339 total_scan >= freeable) {
a0b02131 340 unsigned long ret;
0b1fb40a 341 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 342
0b1fb40a 343 shrinkctl->nr_to_scan = nr_to_scan;
a0b02131
DC
344 ret = shrinker->scan_objects(shrinker, shrinkctl);
345 if (ret == SHRINK_STOP)
346 break;
347 freed += ret;
1d3d4437 348
0b1fb40a
VD
349 count_vm_events(SLABS_SCANNED, nr_to_scan);
350 total_scan -= nr_to_scan;
1d3d4437
GC
351
352 cond_resched();
353 }
354
355 /*
356 * move the unused scan count back into the shrinker in a
357 * manner that handles concurrent updates. If we exhausted the
358 * scan, there is no need to do an update.
359 */
360 if (total_scan > 0)
361 new_nr = atomic_long_add_return(total_scan,
362 &shrinker->nr_deferred[nid]);
363 else
364 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
365
df9024a8 366 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 367 return freed;
1495f230
YH
368}
369
6b4f7799 370/**
cb731d6c 371 * shrink_slab - shrink slab caches
6b4f7799
JW
372 * @gfp_mask: allocation context
373 * @nid: node whose slab caches to target
cb731d6c 374 * @memcg: memory cgroup whose slab caches to target
6b4f7799
JW
375 * @nr_scanned: pressure numerator
376 * @nr_eligible: pressure denominator
1da177e4 377 *
6b4f7799 378 * Call the shrink functions to age shrinkable caches.
1da177e4 379 *
6b4f7799
JW
380 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
381 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 382 *
cb731d6c
VD
383 * @memcg specifies the memory cgroup to target. If it is not NULL,
384 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
0fc9f58a
VD
385 * objects from the memory cgroup specified. Otherwise, only unaware
386 * shrinkers are called.
cb731d6c 387 *
6b4f7799
JW
388 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
389 * the available objects should be scanned. Page reclaim for example
390 * passes the number of pages scanned and the number of pages on the
391 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
392 * when it encountered mapped pages. The ratio is further biased by
393 * the ->seeks setting of the shrink function, which indicates the
394 * cost to recreate an object relative to that of an LRU page.
b15e0905 395 *
6b4f7799 396 * Returns the number of reclaimed slab objects.
1da177e4 397 */
cb731d6c
VD
398static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
399 struct mem_cgroup *memcg,
400 unsigned long nr_scanned,
401 unsigned long nr_eligible)
1da177e4
LT
402{
403 struct shrinker *shrinker;
24f7c6b9 404 unsigned long freed = 0;
1da177e4 405
0fc9f58a 406 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
cb731d6c
VD
407 return 0;
408
6b4f7799
JW
409 if (nr_scanned == 0)
410 nr_scanned = SWAP_CLUSTER_MAX;
1da177e4 411
f06590bd 412 if (!down_read_trylock(&shrinker_rwsem)) {
24f7c6b9
DC
413 /*
414 * If we would return 0, our callers would understand that we
415 * have nothing else to shrink and give up trying. By returning
416 * 1 we keep it going and assume we'll be able to shrink next
417 * time.
418 */
419 freed = 1;
f06590bd
MK
420 goto out;
421 }
1da177e4
LT
422
423 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
424 struct shrink_control sc = {
425 .gfp_mask = gfp_mask,
426 .nid = nid,
cb731d6c 427 .memcg = memcg,
6b4f7799 428 };
ec97097b 429
0fc9f58a
VD
430 /*
431 * If kernel memory accounting is disabled, we ignore
432 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
433 * passing NULL for memcg.
434 */
435 if (memcg_kmem_enabled() &&
436 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
cb731d6c
VD
437 continue;
438
6b4f7799
JW
439 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
440 sc.nid = 0;
1da177e4 441
cb731d6c 442 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
1da177e4 443 }
6b4f7799 444
1da177e4 445 up_read(&shrinker_rwsem);
f06590bd
MK
446out:
447 cond_resched();
24f7c6b9 448 return freed;
1da177e4
LT
449}
450
cb731d6c
VD
451void drop_slab_node(int nid)
452{
453 unsigned long freed;
454
455 do {
456 struct mem_cgroup *memcg = NULL;
457
458 freed = 0;
459 do {
460 freed += shrink_slab(GFP_KERNEL, nid, memcg,
461 1000, 1000);
462 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
463 } while (freed > 10);
464}
465
466void drop_slab(void)
467{
468 int nid;
469
470 for_each_online_node(nid)
471 drop_slab_node(nid);
472}
473
1da177e4
LT
474static inline int is_page_cache_freeable(struct page *page)
475{
ceddc3a5
JW
476 /*
477 * A freeable page cache page is referenced only by the caller
478 * that isolated the page, the page cache radix tree and
479 * optional buffer heads at page->private.
480 */
edcf4748 481 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
482}
483
703c2708 484static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
1da177e4 485{
930d9152 486 if (current->flags & PF_SWAPWRITE)
1da177e4 487 return 1;
703c2708 488 if (!inode_write_congested(inode))
1da177e4 489 return 1;
703c2708 490 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
491 return 1;
492 return 0;
493}
494
495/*
496 * We detected a synchronous write error writing a page out. Probably
497 * -ENOSPC. We need to propagate that into the address_space for a subsequent
498 * fsync(), msync() or close().
499 *
500 * The tricky part is that after writepage we cannot touch the mapping: nothing
501 * prevents it from being freed up. But we have a ref on the page and once
502 * that page is locked, the mapping is pinned.
503 *
504 * We're allowed to run sleeping lock_page() here because we know the caller has
505 * __GFP_FS.
506 */
507static void handle_write_error(struct address_space *mapping,
508 struct page *page, int error)
509{
7eaceacc 510 lock_page(page);
3e9f45bd
GC
511 if (page_mapping(page) == mapping)
512 mapping_set_error(mapping, error);
1da177e4
LT
513 unlock_page(page);
514}
515
04e62a29
CL
516/* possible outcome of pageout() */
517typedef enum {
518 /* failed to write page out, page is locked */
519 PAGE_KEEP,
520 /* move page to the active list, page is locked */
521 PAGE_ACTIVATE,
522 /* page has been sent to the disk successfully, page is unlocked */
523 PAGE_SUCCESS,
524 /* page is clean and locked */
525 PAGE_CLEAN,
526} pageout_t;
527
1da177e4 528/*
1742f19f
AM
529 * pageout is called by shrink_page_list() for each dirty page.
530 * Calls ->writepage().
1da177e4 531 */
c661b078 532static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 533 struct scan_control *sc)
1da177e4
LT
534{
535 /*
536 * If the page is dirty, only perform writeback if that write
537 * will be non-blocking. To prevent this allocation from being
538 * stalled by pagecache activity. But note that there may be
539 * stalls if we need to run get_block(). We could test
540 * PagePrivate for that.
541 *
8174202b 542 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
543 * this page's queue, we can perform writeback even if that
544 * will block.
545 *
546 * If the page is swapcache, write it back even if that would
547 * block, for some throttling. This happens by accident, because
548 * swap_backing_dev_info is bust: it doesn't reflect the
549 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
550 */
551 if (!is_page_cache_freeable(page))
552 return PAGE_KEEP;
553 if (!mapping) {
554 /*
555 * Some data journaling orphaned pages can have
556 * page->mapping == NULL while being dirty with clean buffers.
557 */
266cf658 558 if (page_has_private(page)) {
1da177e4
LT
559 if (try_to_free_buffers(page)) {
560 ClearPageDirty(page);
b1de0d13 561 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
562 return PAGE_CLEAN;
563 }
564 }
565 return PAGE_KEEP;
566 }
567 if (mapping->a_ops->writepage == NULL)
568 return PAGE_ACTIVATE;
703c2708 569 if (!may_write_to_inode(mapping->host, sc))
1da177e4
LT
570 return PAGE_KEEP;
571
572 if (clear_page_dirty_for_io(page)) {
573 int res;
574 struct writeback_control wbc = {
575 .sync_mode = WB_SYNC_NONE,
576 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
577 .range_start = 0,
578 .range_end = LLONG_MAX,
1da177e4
LT
579 .for_reclaim = 1,
580 };
581
582 SetPageReclaim(page);
583 res = mapping->a_ops->writepage(page, &wbc);
584 if (res < 0)
585 handle_write_error(mapping, page, res);
994fc28c 586 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
587 ClearPageReclaim(page);
588 return PAGE_ACTIVATE;
589 }
c661b078 590
1da177e4
LT
591 if (!PageWriteback(page)) {
592 /* synchronous write or broken a_ops? */
593 ClearPageReclaim(page);
594 }
3aa23851 595 trace_mm_vmscan_writepage(page);
e129b5c2 596 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
597 return PAGE_SUCCESS;
598 }
599
600 return PAGE_CLEAN;
601}
602
a649fd92 603/*
e286781d
NP
604 * Same as remove_mapping, but if the page is removed from the mapping, it
605 * gets returned with a refcount of 0.
a649fd92 606 */
a528910e
JW
607static int __remove_mapping(struct address_space *mapping, struct page *page,
608 bool reclaimed)
49d2e9cc 609{
c4843a75 610 unsigned long flags;
c4843a75 611
28e4d965
NP
612 BUG_ON(!PageLocked(page));
613 BUG_ON(mapping != page_mapping(page));
49d2e9cc 614
c4843a75 615 spin_lock_irqsave(&mapping->tree_lock, flags);
49d2e9cc 616 /*
0fd0e6b0
NP
617 * The non racy check for a busy page.
618 *
619 * Must be careful with the order of the tests. When someone has
620 * a ref to the page, it may be possible that they dirty it then
621 * drop the reference. So if PageDirty is tested before page_count
622 * here, then the following race may occur:
623 *
624 * get_user_pages(&page);
625 * [user mapping goes away]
626 * write_to(page);
627 * !PageDirty(page) [good]
628 * SetPageDirty(page);
629 * put_page(page);
630 * !page_count(page) [good, discard it]
631 *
632 * [oops, our write_to data is lost]
633 *
634 * Reversing the order of the tests ensures such a situation cannot
635 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 636 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
637 *
638 * Note that if SetPageDirty is always performed via set_page_dirty,
639 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 640 */
fe896d18 641 if (!page_ref_freeze(page, 2))
49d2e9cc 642 goto cannot_free;
e286781d
NP
643 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
644 if (unlikely(PageDirty(page))) {
fe896d18 645 page_ref_unfreeze(page, 2);
49d2e9cc 646 goto cannot_free;
e286781d 647 }
49d2e9cc
CL
648
649 if (PageSwapCache(page)) {
650 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 651 mem_cgroup_swapout(page, swap);
49d2e9cc 652 __delete_from_swap_cache(page);
c4843a75 653 spin_unlock_irqrestore(&mapping->tree_lock, flags);
0a31bc97 654 swapcache_free(swap);
e286781d 655 } else {
6072d13c 656 void (*freepage)(struct page *);
a528910e 657 void *shadow = NULL;
6072d13c
LT
658
659 freepage = mapping->a_ops->freepage;
a528910e
JW
660 /*
661 * Remember a shadow entry for reclaimed file cache in
662 * order to detect refaults, thus thrashing, later on.
663 *
664 * But don't store shadows in an address space that is
665 * already exiting. This is not just an optizimation,
666 * inode reclaim needs to empty out the radix tree or
667 * the nodes are lost. Don't plant shadows behind its
668 * back.
f9fe48be
RZ
669 *
670 * We also don't store shadows for DAX mappings because the
671 * only page cache pages found in these are zero pages
672 * covering holes, and because we don't want to mix DAX
673 * exceptional entries and shadow exceptional entries in the
674 * same page_tree.
a528910e
JW
675 */
676 if (reclaimed && page_is_file_cache(page) &&
f9fe48be 677 !mapping_exiting(mapping) && !dax_mapping(mapping))
a528910e 678 shadow = workingset_eviction(mapping, page);
62cccb8c 679 __delete_from_page_cache(page, shadow);
c4843a75 680 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6072d13c
LT
681
682 if (freepage != NULL)
683 freepage(page);
49d2e9cc
CL
684 }
685
49d2e9cc
CL
686 return 1;
687
688cannot_free:
c4843a75 689 spin_unlock_irqrestore(&mapping->tree_lock, flags);
49d2e9cc
CL
690 return 0;
691}
692
e286781d
NP
693/*
694 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
695 * someone else has a ref on the page, abort and return 0. If it was
696 * successfully detached, return 1. Assumes the caller has a single ref on
697 * this page.
698 */
699int remove_mapping(struct address_space *mapping, struct page *page)
700{
a528910e 701 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
702 /*
703 * Unfreezing the refcount with 1 rather than 2 effectively
704 * drops the pagecache ref for us without requiring another
705 * atomic operation.
706 */
fe896d18 707 page_ref_unfreeze(page, 1);
e286781d
NP
708 return 1;
709 }
710 return 0;
711}
712
894bc310
LS
713/**
714 * putback_lru_page - put previously isolated page onto appropriate LRU list
715 * @page: page to be put back to appropriate lru list
716 *
717 * Add previously isolated @page to appropriate LRU list.
718 * Page may still be unevictable for other reasons.
719 *
720 * lru_lock must not be held, interrupts must be enabled.
721 */
894bc310
LS
722void putback_lru_page(struct page *page)
723{
0ec3b74c 724 bool is_unevictable;
bbfd28ee 725 int was_unevictable = PageUnevictable(page);
894bc310 726
309381fe 727 VM_BUG_ON_PAGE(PageLRU(page), page);
894bc310
LS
728
729redo:
730 ClearPageUnevictable(page);
731
39b5f29a 732 if (page_evictable(page)) {
894bc310
LS
733 /*
734 * For evictable pages, we can use the cache.
735 * In event of a race, worst case is we end up with an
736 * unevictable page on [in]active list.
737 * We know how to handle that.
738 */
0ec3b74c 739 is_unevictable = false;
c53954a0 740 lru_cache_add(page);
894bc310
LS
741 } else {
742 /*
743 * Put unevictable pages directly on zone's unevictable
744 * list.
745 */
0ec3b74c 746 is_unevictable = true;
894bc310 747 add_page_to_unevictable_list(page);
6a7b9548 748 /*
21ee9f39
MK
749 * When racing with an mlock or AS_UNEVICTABLE clearing
750 * (page is unlocked) make sure that if the other thread
751 * does not observe our setting of PG_lru and fails
24513264 752 * isolation/check_move_unevictable_pages,
21ee9f39 753 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
754 * the page back to the evictable list.
755 *
21ee9f39 756 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
757 */
758 smp_mb();
894bc310 759 }
894bc310
LS
760
761 /*
762 * page's status can change while we move it among lru. If an evictable
763 * page is on unevictable list, it never be freed. To avoid that,
764 * check after we added it to the list, again.
765 */
0ec3b74c 766 if (is_unevictable && page_evictable(page)) {
894bc310
LS
767 if (!isolate_lru_page(page)) {
768 put_page(page);
769 goto redo;
770 }
771 /* This means someone else dropped this page from LRU
772 * So, it will be freed or putback to LRU again. There is
773 * nothing to do here.
774 */
775 }
776
0ec3b74c 777 if (was_unevictable && !is_unevictable)
bbfd28ee 778 count_vm_event(UNEVICTABLE_PGRESCUED);
0ec3b74c 779 else if (!was_unevictable && is_unevictable)
bbfd28ee
LS
780 count_vm_event(UNEVICTABLE_PGCULLED);
781
894bc310
LS
782 put_page(page); /* drop ref from isolate */
783}
784
dfc8d636
JW
785enum page_references {
786 PAGEREF_RECLAIM,
787 PAGEREF_RECLAIM_CLEAN,
64574746 788 PAGEREF_KEEP,
dfc8d636
JW
789 PAGEREF_ACTIVATE,
790};
791
792static enum page_references page_check_references(struct page *page,
793 struct scan_control *sc)
794{
64574746 795 int referenced_ptes, referenced_page;
dfc8d636 796 unsigned long vm_flags;
dfc8d636 797
c3ac9a8a
JW
798 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
799 &vm_flags);
64574746 800 referenced_page = TestClearPageReferenced(page);
dfc8d636 801
dfc8d636
JW
802 /*
803 * Mlock lost the isolation race with us. Let try_to_unmap()
804 * move the page to the unevictable list.
805 */
806 if (vm_flags & VM_LOCKED)
807 return PAGEREF_RECLAIM;
808
64574746 809 if (referenced_ptes) {
e4898273 810 if (PageSwapBacked(page))
64574746
JW
811 return PAGEREF_ACTIVATE;
812 /*
813 * All mapped pages start out with page table
814 * references from the instantiating fault, so we need
815 * to look twice if a mapped file page is used more
816 * than once.
817 *
818 * Mark it and spare it for another trip around the
819 * inactive list. Another page table reference will
820 * lead to its activation.
821 *
822 * Note: the mark is set for activated pages as well
823 * so that recently deactivated but used pages are
824 * quickly recovered.
825 */
826 SetPageReferenced(page);
827
34dbc67a 828 if (referenced_page || referenced_ptes > 1)
64574746
JW
829 return PAGEREF_ACTIVATE;
830
c909e993
KK
831 /*
832 * Activate file-backed executable pages after first usage.
833 */
834 if (vm_flags & VM_EXEC)
835 return PAGEREF_ACTIVATE;
836
64574746
JW
837 return PAGEREF_KEEP;
838 }
dfc8d636
JW
839
840 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 841 if (referenced_page && !PageSwapBacked(page))
64574746
JW
842 return PAGEREF_RECLAIM_CLEAN;
843
844 return PAGEREF_RECLAIM;
dfc8d636
JW
845}
846
e2be15f6
MG
847/* Check if a page is dirty or under writeback */
848static void page_check_dirty_writeback(struct page *page,
849 bool *dirty, bool *writeback)
850{
b4597226
MG
851 struct address_space *mapping;
852
e2be15f6
MG
853 /*
854 * Anonymous pages are not handled by flushers and must be written
855 * from reclaim context. Do not stall reclaim based on them
856 */
857 if (!page_is_file_cache(page)) {
858 *dirty = false;
859 *writeback = false;
860 return;
861 }
862
863 /* By default assume that the page flags are accurate */
864 *dirty = PageDirty(page);
865 *writeback = PageWriteback(page);
b4597226
MG
866
867 /* Verify dirty/writeback state if the filesystem supports it */
868 if (!page_has_private(page))
869 return;
870
871 mapping = page_mapping(page);
872 if (mapping && mapping->a_ops->is_dirty_writeback)
873 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
874}
875
1da177e4 876/*
1742f19f 877 * shrink_page_list() returns the number of reclaimed pages
1da177e4 878 */
1742f19f 879static unsigned long shrink_page_list(struct list_head *page_list,
6a18adb3 880 struct zone *zone,
f84f6e2b 881 struct scan_control *sc,
02c6de8d 882 enum ttu_flags ttu_flags,
8e950282 883 unsigned long *ret_nr_dirty,
d43006d5 884 unsigned long *ret_nr_unqueued_dirty,
8e950282 885 unsigned long *ret_nr_congested,
02c6de8d 886 unsigned long *ret_nr_writeback,
b1a6f21e 887 unsigned long *ret_nr_immediate,
02c6de8d 888 bool force_reclaim)
1da177e4
LT
889{
890 LIST_HEAD(ret_pages);
abe4c3b5 891 LIST_HEAD(free_pages);
1da177e4 892 int pgactivate = 0;
d43006d5 893 unsigned long nr_unqueued_dirty = 0;
0e093d99
MG
894 unsigned long nr_dirty = 0;
895 unsigned long nr_congested = 0;
05ff5137 896 unsigned long nr_reclaimed = 0;
92df3a72 897 unsigned long nr_writeback = 0;
b1a6f21e 898 unsigned long nr_immediate = 0;
1da177e4
LT
899
900 cond_resched();
901
1da177e4
LT
902 while (!list_empty(page_list)) {
903 struct address_space *mapping;
904 struct page *page;
905 int may_enter_fs;
02c6de8d 906 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 907 bool dirty, writeback;
854e9ed0
MK
908 bool lazyfree = false;
909 int ret = SWAP_SUCCESS;
1da177e4
LT
910
911 cond_resched();
912
913 page = lru_to_page(page_list);
914 list_del(&page->lru);
915
529ae9aa 916 if (!trylock_page(page))
1da177e4
LT
917 goto keep;
918
309381fe
SL
919 VM_BUG_ON_PAGE(PageActive(page), page);
920 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1da177e4
LT
921
922 sc->nr_scanned++;
80e43426 923
39b5f29a 924 if (unlikely(!page_evictable(page)))
b291f000 925 goto cull_mlocked;
894bc310 926
a6dc60f8 927 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
928 goto keep_locked;
929
1da177e4
LT
930 /* Double the slab pressure for mapped and swapcache pages */
931 if (page_mapped(page) || PageSwapCache(page))
932 sc->nr_scanned++;
933
c661b078
AW
934 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
935 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
936
e2be15f6
MG
937 /*
938 * The number of dirty pages determines if a zone is marked
939 * reclaim_congested which affects wait_iff_congested. kswapd
940 * will stall and start writing pages if the tail of the LRU
941 * is all dirty unqueued pages.
942 */
943 page_check_dirty_writeback(page, &dirty, &writeback);
944 if (dirty || writeback)
945 nr_dirty++;
946
947 if (dirty && !writeback)
948 nr_unqueued_dirty++;
949
d04e8acd
MG
950 /*
951 * Treat this page as congested if the underlying BDI is or if
952 * pages are cycling through the LRU so quickly that the
953 * pages marked for immediate reclaim are making it to the
954 * end of the LRU a second time.
955 */
e2be15f6 956 mapping = page_mapping(page);
1da58ee2 957 if (((dirty || writeback) && mapping &&
703c2708 958 inode_write_congested(mapping->host)) ||
d04e8acd 959 (writeback && PageReclaim(page)))
e2be15f6
MG
960 nr_congested++;
961
283aba9f
MG
962 /*
963 * If a page at the tail of the LRU is under writeback, there
964 * are three cases to consider.
965 *
966 * 1) If reclaim is encountering an excessive number of pages
967 * under writeback and this page is both under writeback and
968 * PageReclaim then it indicates that pages are being queued
969 * for IO but are being recycled through the LRU before the
970 * IO can complete. Waiting on the page itself risks an
971 * indefinite stall if it is impossible to writeback the
972 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
973 * note that the LRU is being scanned too quickly and the
974 * caller can stall after page list has been processed.
283aba9f 975 *
97c9341f 976 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
977 * not marked for immediate reclaim, or the caller does not
978 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
979 * not to fs). In this case mark the page for immediate
97c9341f 980 * reclaim and continue scanning.
283aba9f 981 *
ecf5fc6e
MH
982 * Require may_enter_fs because we would wait on fs, which
983 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
984 * enter reclaim, and deadlock if it waits on a page for
985 * which it is needed to do the write (loop masks off
986 * __GFP_IO|__GFP_FS for this reason); but more thought
987 * would probably show more reasons.
988 *
7fadc820 989 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
990 * PageReclaim. memcg does not have any dirty pages
991 * throttling so we could easily OOM just because too many
992 * pages are in writeback and there is nothing else to
993 * reclaim. Wait for the writeback to complete.
994 */
c661b078 995 if (PageWriteback(page)) {
283aba9f
MG
996 /* Case 1 above */
997 if (current_is_kswapd() &&
998 PageReclaim(page) &&
57054651 999 test_bit(ZONE_WRITEBACK, &zone->flags)) {
b1a6f21e
MG
1000 nr_immediate++;
1001 goto keep_locked;
283aba9f
MG
1002
1003 /* Case 2 above */
97c9341f 1004 } else if (sane_reclaim(sc) ||
ecf5fc6e 1005 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1006 /*
1007 * This is slightly racy - end_page_writeback()
1008 * might have just cleared PageReclaim, then
1009 * setting PageReclaim here end up interpreted
1010 * as PageReadahead - but that does not matter
1011 * enough to care. What we do want is for this
1012 * page to have PageReclaim set next time memcg
1013 * reclaim reaches the tests above, so it will
1014 * then wait_on_page_writeback() to avoid OOM;
1015 * and it's also appropriate in global reclaim.
1016 */
1017 SetPageReclaim(page);
e62e384e 1018 nr_writeback++;
c3b94f44 1019 goto keep_locked;
283aba9f
MG
1020
1021 /* Case 3 above */
1022 } else {
7fadc820 1023 unlock_page(page);
283aba9f 1024 wait_on_page_writeback(page);
7fadc820
HD
1025 /* then go back and try same page again */
1026 list_add_tail(&page->lru, page_list);
1027 continue;
e62e384e 1028 }
c661b078 1029 }
1da177e4 1030
02c6de8d
MK
1031 if (!force_reclaim)
1032 references = page_check_references(page, sc);
1033
dfc8d636
JW
1034 switch (references) {
1035 case PAGEREF_ACTIVATE:
1da177e4 1036 goto activate_locked;
64574746
JW
1037 case PAGEREF_KEEP:
1038 goto keep_locked;
dfc8d636
JW
1039 case PAGEREF_RECLAIM:
1040 case PAGEREF_RECLAIM_CLEAN:
1041 ; /* try to reclaim the page below */
1042 }
1da177e4 1043
1da177e4
LT
1044 /*
1045 * Anonymous process memory has backing store?
1046 * Try to allocate it some swap space here.
1047 */
b291f000 1048 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
1049 if (!(sc->gfp_mask & __GFP_IO))
1050 goto keep_locked;
5bc7b8ac 1051 if (!add_to_swap(page, page_list))
1da177e4 1052 goto activate_locked;
854e9ed0 1053 lazyfree = true;
63eb6b93 1054 may_enter_fs = 1;
1da177e4 1055
e2be15f6
MG
1056 /* Adding to swap updated mapping */
1057 mapping = page_mapping(page);
1058 }
1da177e4
LT
1059
1060 /*
1061 * The page is mapped into the page tables of one or more
1062 * processes. Try to unmap it here.
1063 */
1064 if (page_mapped(page) && mapping) {
854e9ed0
MK
1065 switch (ret = try_to_unmap(page, lazyfree ?
1066 (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1067 (ttu_flags | TTU_BATCH_FLUSH))) {
1da177e4
LT
1068 case SWAP_FAIL:
1069 goto activate_locked;
1070 case SWAP_AGAIN:
1071 goto keep_locked;
b291f000
NP
1072 case SWAP_MLOCK:
1073 goto cull_mlocked;
854e9ed0
MK
1074 case SWAP_LZFREE:
1075 goto lazyfree;
1da177e4
LT
1076 case SWAP_SUCCESS:
1077 ; /* try to free the page below */
1078 }
1079 }
1080
1081 if (PageDirty(page)) {
ee72886d
MG
1082 /*
1083 * Only kswapd can writeback filesystem pages to
d43006d5
MG
1084 * avoid risk of stack overflow but only writeback
1085 * if many dirty pages have been encountered.
ee72886d 1086 */
f84f6e2b 1087 if (page_is_file_cache(page) &&
9e3b2f8c 1088 (!current_is_kswapd() ||
57054651 1089 !test_bit(ZONE_DIRTY, &zone->flags))) {
49ea7eb6
MG
1090 /*
1091 * Immediately reclaim when written back.
1092 * Similar in principal to deactivate_page()
1093 * except we already have the page isolated
1094 * and know it's dirty
1095 */
1096 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1097 SetPageReclaim(page);
1098
ee72886d
MG
1099 goto keep_locked;
1100 }
1101
dfc8d636 1102 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1103 goto keep_locked;
4dd4b920 1104 if (!may_enter_fs)
1da177e4 1105 goto keep_locked;
52a8363e 1106 if (!sc->may_writepage)
1da177e4
LT
1107 goto keep_locked;
1108
d950c947
MG
1109 /*
1110 * Page is dirty. Flush the TLB if a writable entry
1111 * potentially exists to avoid CPU writes after IO
1112 * starts and then write it out here.
1113 */
1114 try_to_unmap_flush_dirty();
7d3579e8 1115 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1116 case PAGE_KEEP:
1117 goto keep_locked;
1118 case PAGE_ACTIVATE:
1119 goto activate_locked;
1120 case PAGE_SUCCESS:
7d3579e8 1121 if (PageWriteback(page))
41ac1999 1122 goto keep;
7d3579e8 1123 if (PageDirty(page))
1da177e4 1124 goto keep;
7d3579e8 1125
1da177e4
LT
1126 /*
1127 * A synchronous write - probably a ramdisk. Go
1128 * ahead and try to reclaim the page.
1129 */
529ae9aa 1130 if (!trylock_page(page))
1da177e4
LT
1131 goto keep;
1132 if (PageDirty(page) || PageWriteback(page))
1133 goto keep_locked;
1134 mapping = page_mapping(page);
1135 case PAGE_CLEAN:
1136 ; /* try to free the page below */
1137 }
1138 }
1139
1140 /*
1141 * If the page has buffers, try to free the buffer mappings
1142 * associated with this page. If we succeed we try to free
1143 * the page as well.
1144 *
1145 * We do this even if the page is PageDirty().
1146 * try_to_release_page() does not perform I/O, but it is
1147 * possible for a page to have PageDirty set, but it is actually
1148 * clean (all its buffers are clean). This happens if the
1149 * buffers were written out directly, with submit_bh(). ext3
894bc310 1150 * will do this, as well as the blockdev mapping.
1da177e4
LT
1151 * try_to_release_page() will discover that cleanness and will
1152 * drop the buffers and mark the page clean - it can be freed.
1153 *
1154 * Rarely, pages can have buffers and no ->mapping. These are
1155 * the pages which were not successfully invalidated in
1156 * truncate_complete_page(). We try to drop those buffers here
1157 * and if that worked, and the page is no longer mapped into
1158 * process address space (page_count == 1) it can be freed.
1159 * Otherwise, leave the page on the LRU so it is swappable.
1160 */
266cf658 1161 if (page_has_private(page)) {
1da177e4
LT
1162 if (!try_to_release_page(page, sc->gfp_mask))
1163 goto activate_locked;
e286781d
NP
1164 if (!mapping && page_count(page) == 1) {
1165 unlock_page(page);
1166 if (put_page_testzero(page))
1167 goto free_it;
1168 else {
1169 /*
1170 * rare race with speculative reference.
1171 * the speculative reference will free
1172 * this page shortly, so we may
1173 * increment nr_reclaimed here (and
1174 * leave it off the LRU).
1175 */
1176 nr_reclaimed++;
1177 continue;
1178 }
1179 }
1da177e4
LT
1180 }
1181
854e9ed0 1182lazyfree:
a528910e 1183 if (!mapping || !__remove_mapping(mapping, page, true))
49d2e9cc 1184 goto keep_locked;
1da177e4 1185
a978d6f5
NP
1186 /*
1187 * At this point, we have no other references and there is
1188 * no way to pick any more up (removed from LRU, removed
1189 * from pagecache). Can use non-atomic bitops now (and
1190 * we obviously don't have to worry about waking up a process
1191 * waiting on the page lock, because there are no references.
1192 */
48c935ad 1193 __ClearPageLocked(page);
e286781d 1194free_it:
854e9ed0
MK
1195 if (ret == SWAP_LZFREE)
1196 count_vm_event(PGLAZYFREED);
1197
05ff5137 1198 nr_reclaimed++;
abe4c3b5
MG
1199
1200 /*
1201 * Is there need to periodically free_page_list? It would
1202 * appear not as the counts should be low
1203 */
1204 list_add(&page->lru, &free_pages);
1da177e4
LT
1205 continue;
1206
b291f000 1207cull_mlocked:
63d6c5ad
HD
1208 if (PageSwapCache(page))
1209 try_to_free_swap(page);
b291f000 1210 unlock_page(page);
c54839a7 1211 list_add(&page->lru, &ret_pages);
b291f000
NP
1212 continue;
1213
1da177e4 1214activate_locked:
68a22394 1215 /* Not a candidate for swapping, so reclaim swap space. */
5ccc5aba 1216 if (PageSwapCache(page) && mem_cgroup_swap_full(page))
a2c43eed 1217 try_to_free_swap(page);
309381fe 1218 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
1219 SetPageActive(page);
1220 pgactivate++;
1221keep_locked:
1222 unlock_page(page);
1223keep:
1224 list_add(&page->lru, &ret_pages);
309381fe 1225 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1226 }
abe4c3b5 1227
747db954 1228 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1229 try_to_unmap_flush();
b745bc85 1230 free_hot_cold_page_list(&free_pages, true);
abe4c3b5 1231
1da177e4 1232 list_splice(&ret_pages, page_list);
f8891e5e 1233 count_vm_events(PGACTIVATE, pgactivate);
0a31bc97 1234
8e950282
MG
1235 *ret_nr_dirty += nr_dirty;
1236 *ret_nr_congested += nr_congested;
d43006d5 1237 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
92df3a72 1238 *ret_nr_writeback += nr_writeback;
b1a6f21e 1239 *ret_nr_immediate += nr_immediate;
05ff5137 1240 return nr_reclaimed;
1da177e4
LT
1241}
1242
02c6de8d
MK
1243unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1244 struct list_head *page_list)
1245{
1246 struct scan_control sc = {
1247 .gfp_mask = GFP_KERNEL,
1248 .priority = DEF_PRIORITY,
1249 .may_unmap = 1,
1250 };
8e950282 1251 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
02c6de8d
MK
1252 struct page *page, *next;
1253 LIST_HEAD(clean_pages);
1254
1255 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e
RA
1256 if (page_is_file_cache(page) && !PageDirty(page) &&
1257 !isolated_balloon_page(page)) {
02c6de8d
MK
1258 ClearPageActive(page);
1259 list_move(&page->lru, &clean_pages);
1260 }
1261 }
1262
1263 ret = shrink_page_list(&clean_pages, zone, &sc,
8e950282
MG
1264 TTU_UNMAP|TTU_IGNORE_ACCESS,
1265 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
02c6de8d 1266 list_splice(&clean_pages, page_list);
83da7510 1267 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1268 return ret;
1269}
1270
5ad333eb
AW
1271/*
1272 * Attempt to remove the specified page from its LRU. Only take this page
1273 * if it is of the appropriate PageActive status. Pages which are being
1274 * freed elsewhere are also ignored.
1275 *
1276 * page: page to consider
1277 * mode: one of the LRU isolation modes defined above
1278 *
1279 * returns 0 on success, -ve errno on failure.
1280 */
f3fd4a61 1281int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1282{
1283 int ret = -EINVAL;
1284
1285 /* Only take pages on the LRU. */
1286 if (!PageLRU(page))
1287 return ret;
1288
e46a2879
MK
1289 /* Compaction should not handle unevictable pages but CMA can do so */
1290 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1291 return ret;
1292
5ad333eb 1293 ret = -EBUSY;
08e552c6 1294
c8244935
MG
1295 /*
1296 * To minimise LRU disruption, the caller can indicate that it only
1297 * wants to isolate pages it will be able to operate on without
1298 * blocking - clean pages for the most part.
1299 *
1300 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1301 * is used by reclaim when it is cannot write to backing storage
1302 *
1303 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1304 * that it is possible to migrate without blocking
1305 */
1306 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1307 /* All the caller can do on PageWriteback is block */
1308 if (PageWriteback(page))
1309 return ret;
1310
1311 if (PageDirty(page)) {
1312 struct address_space *mapping;
1313
1314 /* ISOLATE_CLEAN means only clean pages */
1315 if (mode & ISOLATE_CLEAN)
1316 return ret;
1317
1318 /*
1319 * Only pages without mappings or that have a
1320 * ->migratepage callback are possible to migrate
1321 * without blocking
1322 */
1323 mapping = page_mapping(page);
1324 if (mapping && !mapping->a_ops->migratepage)
1325 return ret;
1326 }
1327 }
39deaf85 1328
f80c0673
MK
1329 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1330 return ret;
1331
5ad333eb
AW
1332 if (likely(get_page_unless_zero(page))) {
1333 /*
1334 * Be careful not to clear PageLRU until after we're
1335 * sure the page is not being freed elsewhere -- the
1336 * page release code relies on it.
1337 */
1338 ClearPageLRU(page);
1339 ret = 0;
1340 }
1341
1342 return ret;
1343}
1344
1da177e4
LT
1345/*
1346 * zone->lru_lock is heavily contended. Some of the functions that
1347 * shrink the lists perform better by taking out a batch of pages
1348 * and working on them outside the LRU lock.
1349 *
1350 * For pagecache intensive workloads, this function is the hottest
1351 * spot in the kernel (apart from copy_*_user functions).
1352 *
1353 * Appropriate locks must be held before calling this function.
1354 *
1355 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1356 * @lruvec: The LRU vector to pull pages from.
1da177e4 1357 * @dst: The temp list to put pages on to.
f626012d 1358 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1359 * @sc: The scan_control struct for this reclaim session
5ad333eb 1360 * @mode: One of the LRU isolation modes
3cb99451 1361 * @lru: LRU list id for isolating
1da177e4
LT
1362 *
1363 * returns how many pages were moved onto *@dst.
1364 */
69e05944 1365static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1366 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1367 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1368 isolate_mode_t mode, enum lru_list lru)
1da177e4 1369{
75b00af7 1370 struct list_head *src = &lruvec->lists[lru];
69e05944 1371 unsigned long nr_taken = 0;
c9b02d97 1372 unsigned long scan;
1da177e4 1373
0b802f10
VD
1374 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1375 !list_empty(src); scan++) {
5ad333eb 1376 struct page *page;
5ad333eb 1377
1da177e4
LT
1378 page = lru_to_page(src);
1379 prefetchw_prev_lru_page(page, src, flags);
1380
309381fe 1381 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1382
f3fd4a61 1383 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1384 case 0:
9d5e6a9f 1385 nr_taken += hpage_nr_pages(page);
5ad333eb 1386 list_move(&page->lru, dst);
5ad333eb
AW
1387 break;
1388
1389 case -EBUSY:
1390 /* else it is being freed elsewhere */
1391 list_move(&page->lru, src);
1392 continue;
46453a6e 1393
5ad333eb
AW
1394 default:
1395 BUG();
1396 }
1da177e4
LT
1397 }
1398
f626012d 1399 *nr_scanned = scan;
75b00af7
HD
1400 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1401 nr_taken, mode, is_file_lru(lru));
1da177e4
LT
1402 return nr_taken;
1403}
1404
62695a84
NP
1405/**
1406 * isolate_lru_page - tries to isolate a page from its LRU list
1407 * @page: page to isolate from its LRU list
1408 *
1409 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1410 * vmstat statistic corresponding to whatever LRU list the page was on.
1411 *
1412 * Returns 0 if the page was removed from an LRU list.
1413 * Returns -EBUSY if the page was not on an LRU list.
1414 *
1415 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1416 * the active list, it will have PageActive set. If it was found on
1417 * the unevictable list, it will have the PageUnevictable bit set. That flag
1418 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1419 *
1420 * The vmstat statistic corresponding to the list on which the page was
1421 * found will be decremented.
1422 *
1423 * Restrictions:
1424 * (1) Must be called with an elevated refcount on the page. This is a
1425 * fundamentnal difference from isolate_lru_pages (which is called
1426 * without a stable reference).
1427 * (2) the lru_lock must not be held.
1428 * (3) interrupts must be enabled.
1429 */
1430int isolate_lru_page(struct page *page)
1431{
1432 int ret = -EBUSY;
1433
309381fe 1434 VM_BUG_ON_PAGE(!page_count(page), page);
cf2a82ee 1435 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
0c917313 1436
62695a84
NP
1437 if (PageLRU(page)) {
1438 struct zone *zone = page_zone(page);
fa9add64 1439 struct lruvec *lruvec;
62695a84
NP
1440
1441 spin_lock_irq(&zone->lru_lock);
fa9add64 1442 lruvec = mem_cgroup_page_lruvec(page, zone);
0c917313 1443 if (PageLRU(page)) {
894bc310 1444 int lru = page_lru(page);
0c917313 1445 get_page(page);
62695a84 1446 ClearPageLRU(page);
fa9add64
HD
1447 del_page_from_lru_list(page, lruvec, lru);
1448 ret = 0;
62695a84
NP
1449 }
1450 spin_unlock_irq(&zone->lru_lock);
1451 }
1452 return ret;
1453}
1454
35cd7815 1455/*
d37dd5dc
FW
1456 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1457 * then get resheduled. When there are massive number of tasks doing page
1458 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1459 * the LRU list will go small and be scanned faster than necessary, leading to
1460 * unnecessary swapping, thrashing and OOM.
35cd7815
RR
1461 */
1462static int too_many_isolated(struct zone *zone, int file,
1463 struct scan_control *sc)
1464{
1465 unsigned long inactive, isolated;
1466
1467 if (current_is_kswapd())
1468 return 0;
1469
97c9341f 1470 if (!sane_reclaim(sc))
35cd7815
RR
1471 return 0;
1472
1473 if (file) {
1474 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1475 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1476 } else {
1477 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1478 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1479 }
1480
3cf23841
FW
1481 /*
1482 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1483 * won't get blocked by normal direct-reclaimers, forming a circular
1484 * deadlock.
1485 */
d0164adc 1486 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
1487 inactive >>= 3;
1488
35cd7815
RR
1489 return isolated > inactive;
1490}
1491
66635629 1492static noinline_for_stack void
75b00af7 1493putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1494{
27ac81d8
KK
1495 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1496 struct zone *zone = lruvec_zone(lruvec);
3f79768f 1497 LIST_HEAD(pages_to_free);
66635629 1498
66635629
MG
1499 /*
1500 * Put back any unfreeable pages.
1501 */
66635629 1502 while (!list_empty(page_list)) {
3f79768f 1503 struct page *page = lru_to_page(page_list);
66635629 1504 int lru;
3f79768f 1505
309381fe 1506 VM_BUG_ON_PAGE(PageLRU(page), page);
66635629 1507 list_del(&page->lru);
39b5f29a 1508 if (unlikely(!page_evictable(page))) {
66635629
MG
1509 spin_unlock_irq(&zone->lru_lock);
1510 putback_lru_page(page);
1511 spin_lock_irq(&zone->lru_lock);
1512 continue;
1513 }
fa9add64
HD
1514
1515 lruvec = mem_cgroup_page_lruvec(page, zone);
1516
7a608572 1517 SetPageLRU(page);
66635629 1518 lru = page_lru(page);
fa9add64
HD
1519 add_page_to_lru_list(page, lruvec, lru);
1520
66635629
MG
1521 if (is_active_lru(lru)) {
1522 int file = is_file_lru(lru);
9992af10
RR
1523 int numpages = hpage_nr_pages(page);
1524 reclaim_stat->recent_rotated[file] += numpages;
66635629 1525 }
2bcf8879
HD
1526 if (put_page_testzero(page)) {
1527 __ClearPageLRU(page);
1528 __ClearPageActive(page);
fa9add64 1529 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1530
1531 if (unlikely(PageCompound(page))) {
1532 spin_unlock_irq(&zone->lru_lock);
747db954 1533 mem_cgroup_uncharge(page);
2bcf8879
HD
1534 (*get_compound_page_dtor(page))(page);
1535 spin_lock_irq(&zone->lru_lock);
1536 } else
1537 list_add(&page->lru, &pages_to_free);
66635629
MG
1538 }
1539 }
66635629 1540
3f79768f
HD
1541 /*
1542 * To save our caller's stack, now use input list for pages to free.
1543 */
1544 list_splice(&pages_to_free, page_list);
66635629
MG
1545}
1546
399ba0b9
N
1547/*
1548 * If a kernel thread (such as nfsd for loop-back mounts) services
1549 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1550 * In that case we should only throttle if the backing device it is
1551 * writing to is congested. In other cases it is safe to throttle.
1552 */
1553static int current_may_throttle(void)
1554{
1555 return !(current->flags & PF_LESS_THROTTLE) ||
1556 current->backing_dev_info == NULL ||
1557 bdi_write_congested(current->backing_dev_info);
1558}
1559
1da177e4 1560/*
1742f19f
AM
1561 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1562 * of reclaimed pages
1da177e4 1563 */
66635629 1564static noinline_for_stack unsigned long
1a93be0e 1565shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1566 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1567{
1568 LIST_HEAD(page_list);
e247dbce 1569 unsigned long nr_scanned;
05ff5137 1570 unsigned long nr_reclaimed = 0;
e247dbce 1571 unsigned long nr_taken;
8e950282
MG
1572 unsigned long nr_dirty = 0;
1573 unsigned long nr_congested = 0;
e2be15f6 1574 unsigned long nr_unqueued_dirty = 0;
92df3a72 1575 unsigned long nr_writeback = 0;
b1a6f21e 1576 unsigned long nr_immediate = 0;
f3fd4a61 1577 isolate_mode_t isolate_mode = 0;
3cb99451 1578 int file = is_file_lru(lru);
1a93be0e
KK
1579 struct zone *zone = lruvec_zone(lruvec);
1580 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1581
35cd7815 1582 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1583 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1584
1585 /* We are about to die and free our memory. Return now. */
1586 if (fatal_signal_pending(current))
1587 return SWAP_CLUSTER_MAX;
1588 }
1589
1da177e4 1590 lru_add_drain();
f80c0673
MK
1591
1592 if (!sc->may_unmap)
61317289 1593 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1594 if (!sc->may_writepage)
61317289 1595 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1596
1da177e4 1597 spin_lock_irq(&zone->lru_lock);
b35ea17b 1598
5dc35979
KK
1599 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1600 &nr_scanned, sc, isolate_mode, lru);
95d918fc 1601
9d5e6a9f 1602 update_lru_size(lruvec, lru, -nr_taken);
95d918fc 1603 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
9d5e6a9f 1604 reclaim_stat->recent_scanned[file] += nr_taken;
95d918fc 1605
89b5fae5 1606 if (global_reclaim(sc)) {
0d5d823a 1607 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
e247dbce 1608 if (current_is_kswapd())
75b00af7 1609 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
e247dbce 1610 else
75b00af7 1611 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
e247dbce 1612 }
d563c050 1613 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1614
d563c050 1615 if (nr_taken == 0)
66635629 1616 return 0;
5ad333eb 1617
02c6de8d 1618 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
8e950282
MG
1619 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1620 &nr_writeback, &nr_immediate,
1621 false);
c661b078 1622
3f79768f
HD
1623 spin_lock_irq(&zone->lru_lock);
1624
904249aa
YH
1625 if (global_reclaim(sc)) {
1626 if (current_is_kswapd())
1627 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1628 nr_reclaimed);
1629 else
1630 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1631 nr_reclaimed);
1632 }
a74609fa 1633
27ac81d8 1634 putback_inactive_pages(lruvec, &page_list);
3f79768f 1635
95d918fc 1636 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f
HD
1637
1638 spin_unlock_irq(&zone->lru_lock);
1639
747db954 1640 mem_cgroup_uncharge_list(&page_list);
b745bc85 1641 free_hot_cold_page_list(&page_list, true);
e11da5b4 1642
92df3a72
MG
1643 /*
1644 * If reclaim is isolating dirty pages under writeback, it implies
1645 * that the long-lived page allocation rate is exceeding the page
1646 * laundering rate. Either the global limits are not being effective
1647 * at throttling processes due to the page distribution throughout
1648 * zones or there is heavy usage of a slow backing device. The
1649 * only option is to throttle from reclaim context which is not ideal
1650 * as there is no guarantee the dirtying process is throttled in the
1651 * same way balance_dirty_pages() manages.
1652 *
8e950282
MG
1653 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1654 * of pages under pages flagged for immediate reclaim and stall if any
1655 * are encountered in the nr_immediate check below.
92df3a72 1656 */
918fc718 1657 if (nr_writeback && nr_writeback == nr_taken)
57054651 1658 set_bit(ZONE_WRITEBACK, &zone->flags);
92df3a72 1659
d43006d5 1660 /*
97c9341f
TH
1661 * Legacy memcg will stall in page writeback so avoid forcibly
1662 * stalling here.
d43006d5 1663 */
97c9341f 1664 if (sane_reclaim(sc)) {
8e950282
MG
1665 /*
1666 * Tag a zone as congested if all the dirty pages scanned were
1667 * backed by a congested BDI and wait_iff_congested will stall.
1668 */
1669 if (nr_dirty && nr_dirty == nr_congested)
57054651 1670 set_bit(ZONE_CONGESTED, &zone->flags);
8e950282 1671
b1a6f21e
MG
1672 /*
1673 * If dirty pages are scanned that are not queued for IO, it
1674 * implies that flushers are not keeping up. In this case, flag
57054651
JW
1675 * the zone ZONE_DIRTY and kswapd will start writing pages from
1676 * reclaim context.
b1a6f21e
MG
1677 */
1678 if (nr_unqueued_dirty == nr_taken)
57054651 1679 set_bit(ZONE_DIRTY, &zone->flags);
b1a6f21e
MG
1680
1681 /*
b738d764
LT
1682 * If kswapd scans pages marked marked for immediate
1683 * reclaim and under writeback (nr_immediate), it implies
1684 * that pages are cycling through the LRU faster than
b1a6f21e
MG
1685 * they are written so also forcibly stall.
1686 */
b738d764 1687 if (nr_immediate && current_may_throttle())
b1a6f21e 1688 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1689 }
d43006d5 1690
8e950282
MG
1691 /*
1692 * Stall direct reclaim for IO completions if underlying BDIs or zone
1693 * is congested. Allow kswapd to continue until it starts encountering
1694 * unqueued dirty pages or cycling through the LRU too quickly.
1695 */
399ba0b9
N
1696 if (!sc->hibernation_mode && !current_is_kswapd() &&
1697 current_may_throttle())
8e950282
MG
1698 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1699
ba5e9579 1700 trace_mm_vmscan_lru_shrink_inactive(zone, nr_scanned, nr_reclaimed,
1701 sc->priority, file);
05ff5137 1702 return nr_reclaimed;
1da177e4
LT
1703}
1704
1705/*
1706 * This moves pages from the active list to the inactive list.
1707 *
1708 * We move them the other way if the page is referenced by one or more
1709 * processes, from rmap.
1710 *
1711 * If the pages are mostly unmapped, the processing is fast and it is
1712 * appropriate to hold zone->lru_lock across the whole operation. But if
1713 * the pages are mapped, the processing is slow (page_referenced()) so we
1714 * should drop zone->lru_lock around each page. It's impossible to balance
1715 * this, so instead we remove the pages from the LRU while processing them.
1716 * It is safe to rely on PG_active against the non-LRU pages in here because
1717 * nobody will play with that bit on a non-LRU page.
1718 *
0139aa7b 1719 * The downside is that we have to touch page->_refcount against each page.
1da177e4
LT
1720 * But we had to alter page->flags anyway.
1721 */
1cfb419b 1722
fa9add64 1723static void move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1724 struct list_head *list,
2bcf8879 1725 struct list_head *pages_to_free,
3eb4140f
WF
1726 enum lru_list lru)
1727{
fa9add64 1728 struct zone *zone = lruvec_zone(lruvec);
3eb4140f 1729 unsigned long pgmoved = 0;
3eb4140f 1730 struct page *page;
fa9add64 1731 int nr_pages;
3eb4140f 1732
3eb4140f
WF
1733 while (!list_empty(list)) {
1734 page = lru_to_page(list);
fa9add64 1735 lruvec = mem_cgroup_page_lruvec(page, zone);
3eb4140f 1736
309381fe 1737 VM_BUG_ON_PAGE(PageLRU(page), page);
3eb4140f
WF
1738 SetPageLRU(page);
1739
fa9add64 1740 nr_pages = hpage_nr_pages(page);
9d5e6a9f 1741 update_lru_size(lruvec, lru, nr_pages);
925b7673 1742 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1743 pgmoved += nr_pages;
3eb4140f 1744
2bcf8879
HD
1745 if (put_page_testzero(page)) {
1746 __ClearPageLRU(page);
1747 __ClearPageActive(page);
fa9add64 1748 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1749
1750 if (unlikely(PageCompound(page))) {
1751 spin_unlock_irq(&zone->lru_lock);
747db954 1752 mem_cgroup_uncharge(page);
2bcf8879
HD
1753 (*get_compound_page_dtor(page))(page);
1754 spin_lock_irq(&zone->lru_lock);
1755 } else
1756 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1757 }
1758 }
9d5e6a9f 1759
3eb4140f
WF
1760 if (!is_active_lru(lru))
1761 __count_vm_events(PGDEACTIVATE, pgmoved);
1762}
1cfb419b 1763
f626012d 1764static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1765 struct lruvec *lruvec,
f16015fb 1766 struct scan_control *sc,
9e3b2f8c 1767 enum lru_list lru)
1da177e4 1768{
44c241f1 1769 unsigned long nr_taken;
f626012d 1770 unsigned long nr_scanned;
6fe6b7e3 1771 unsigned long vm_flags;
1da177e4 1772 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1773 LIST_HEAD(l_active);
b69408e8 1774 LIST_HEAD(l_inactive);
1da177e4 1775 struct page *page;
1a93be0e 1776 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
44c241f1 1777 unsigned long nr_rotated = 0;
f3fd4a61 1778 isolate_mode_t isolate_mode = 0;
3cb99451 1779 int file = is_file_lru(lru);
1a93be0e 1780 struct zone *zone = lruvec_zone(lruvec);
1da177e4
LT
1781
1782 lru_add_drain();
f80c0673
MK
1783
1784 if (!sc->may_unmap)
61317289 1785 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1786 if (!sc->may_writepage)
61317289 1787 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1788
1da177e4 1789 spin_lock_irq(&zone->lru_lock);
925b7673 1790
5dc35979
KK
1791 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1792 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1793
9d5e6a9f
HD
1794 update_lru_size(lruvec, lru, -nr_taken);
1795 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
b7c46d15 1796 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1797
9d5e6a9f
HD
1798 if (global_reclaim(sc))
1799 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
f626012d 1800 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
9d5e6a9f 1801
1da177e4
LT
1802 spin_unlock_irq(&zone->lru_lock);
1803
1da177e4
LT
1804 while (!list_empty(&l_hold)) {
1805 cond_resched();
1806 page = lru_to_page(&l_hold);
1807 list_del(&page->lru);
7e9cd484 1808
39b5f29a 1809 if (unlikely(!page_evictable(page))) {
894bc310
LS
1810 putback_lru_page(page);
1811 continue;
1812 }
1813
cc715d99
MG
1814 if (unlikely(buffer_heads_over_limit)) {
1815 if (page_has_private(page) && trylock_page(page)) {
1816 if (page_has_private(page))
1817 try_to_release_page(page, 0);
1818 unlock_page(page);
1819 }
1820 }
1821
c3ac9a8a
JW
1822 if (page_referenced(page, 0, sc->target_mem_cgroup,
1823 &vm_flags)) {
9992af10 1824 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1825 /*
1826 * Identify referenced, file-backed active pages and
1827 * give them one more trip around the active list. So
1828 * that executable code get better chances to stay in
1829 * memory under moderate memory pressure. Anon pages
1830 * are not likely to be evicted by use-once streaming
1831 * IO, plus JVM can create lots of anon VM_EXEC pages,
1832 * so we ignore them here.
1833 */
41e20983 1834 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1835 list_add(&page->lru, &l_active);
1836 continue;
1837 }
1838 }
7e9cd484 1839
5205e56e 1840 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1841 list_add(&page->lru, &l_inactive);
1842 }
1843
b555749a 1844 /*
8cab4754 1845 * Move pages back to the lru list.
b555749a 1846 */
2a1dc509 1847 spin_lock_irq(&zone->lru_lock);
556adecb 1848 /*
8cab4754
WF
1849 * Count referenced pages from currently used mappings as rotated,
1850 * even though only some of them are actually re-activated. This
1851 * helps balance scan pressure between file and anonymous pages in
7c0db9e9 1852 * get_scan_count.
7e9cd484 1853 */
b7c46d15 1854 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1855
fa9add64
HD
1856 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1857 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
a731286d 1858 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1859 spin_unlock_irq(&zone->lru_lock);
2bcf8879 1860
747db954 1861 mem_cgroup_uncharge_list(&l_hold);
b745bc85 1862 free_hot_cold_page_list(&l_hold, true);
1da177e4
LT
1863}
1864
59dc76b0
RR
1865/*
1866 * The inactive anon list should be small enough that the VM never has
1867 * to do too much work.
14797e23 1868 *
59dc76b0
RR
1869 * The inactive file list should be small enough to leave most memory
1870 * to the established workingset on the scan-resistant active list,
1871 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 1872 *
59dc76b0
RR
1873 * Both inactive lists should also be large enough that each inactive
1874 * page has a chance to be referenced again before it is reclaimed.
56e49d21 1875 *
59dc76b0
RR
1876 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
1877 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
1878 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 1879 *
59dc76b0
RR
1880 * total target max
1881 * memory ratio inactive
1882 * -------------------------------------
1883 * 10MB 1 5MB
1884 * 100MB 1 50MB
1885 * 1GB 3 250MB
1886 * 10GB 10 0.9GB
1887 * 100GB 31 3GB
1888 * 1TB 101 10GB
1889 * 10TB 320 32GB
56e49d21 1890 */
59dc76b0 1891static bool inactive_list_is_low(struct lruvec *lruvec, bool file)
56e49d21 1892{
59dc76b0 1893 unsigned long inactive_ratio;
e3790144
JW
1894 unsigned long inactive;
1895 unsigned long active;
59dc76b0 1896 unsigned long gb;
e3790144 1897
59dc76b0
RR
1898 /*
1899 * If we don't have swap space, anonymous page deactivation
1900 * is pointless.
1901 */
1902 if (!file && !total_swap_pages)
1903 return false;
56e49d21 1904
59dc76b0
RR
1905 inactive = lruvec_lru_size(lruvec, file * LRU_FILE);
1906 active = lruvec_lru_size(lruvec, file * LRU_FILE + LRU_ACTIVE);
56e49d21 1907
59dc76b0
RR
1908 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1909 if (gb)
1910 inactive_ratio = int_sqrt(10 * gb);
b39415b2 1911 else
59dc76b0
RR
1912 inactive_ratio = 1;
1913
1914 return inactive * inactive_ratio < active;
b39415b2
RR
1915}
1916
4f98a2fe 1917static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 1918 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 1919{
b39415b2 1920 if (is_active_lru(lru)) {
59dc76b0 1921 if (inactive_list_is_low(lruvec, is_file_lru(lru)))
1a93be0e 1922 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
1923 return 0;
1924 }
1925
1a93be0e 1926 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
1927}
1928
9a265114
JW
1929enum scan_balance {
1930 SCAN_EQUAL,
1931 SCAN_FRACT,
1932 SCAN_ANON,
1933 SCAN_FILE,
1934};
1935
4f98a2fe
RR
1936/*
1937 * Determine how aggressively the anon and file LRU lists should be
1938 * scanned. The relative value of each set of LRU lists is determined
1939 * by looking at the fraction of the pages scanned we did rotate back
1940 * onto the active list instead of evict.
1941 *
be7bd59d
WL
1942 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1943 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 1944 */
33377678 1945static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
6b4f7799
JW
1946 struct scan_control *sc, unsigned long *nr,
1947 unsigned long *lru_pages)
4f98a2fe 1948{
33377678 1949 int swappiness = mem_cgroup_swappiness(memcg);
9a265114
JW
1950 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1951 u64 fraction[2];
1952 u64 denominator = 0; /* gcc */
1953 struct zone *zone = lruvec_zone(lruvec);
4f98a2fe 1954 unsigned long anon_prio, file_prio;
9a265114 1955 enum scan_balance scan_balance;
0bf1457f 1956 unsigned long anon, file;
9a265114 1957 bool force_scan = false;
4f98a2fe 1958 unsigned long ap, fp;
4111304d 1959 enum lru_list lru;
6f04f48d
SS
1960 bool some_scanned;
1961 int pass;
246e87a9 1962
f11c0ca5
JW
1963 /*
1964 * If the zone or memcg is small, nr[l] can be 0. This
1965 * results in no scanning on this priority and a potential
1966 * priority drop. Global direct reclaim can go to the next
1967 * zone and tends to have no problems. Global kswapd is for
1968 * zone balancing and it needs to scan a minimum amount. When
1969 * reclaiming for a memcg, a priority drop can cause high
1970 * latencies, so it's better to scan a minimum amount there as
1971 * well.
1972 */
90cbc250
VD
1973 if (current_is_kswapd()) {
1974 if (!zone_reclaimable(zone))
1975 force_scan = true;
eb01aaab 1976 if (!mem_cgroup_online(memcg))
90cbc250
VD
1977 force_scan = true;
1978 }
89b5fae5 1979 if (!global_reclaim(sc))
a4d3e9e7 1980 force_scan = true;
76a33fc3
SL
1981
1982 /* If we have no swap space, do not bother scanning anon pages. */
d8b38438 1983 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
9a265114 1984 scan_balance = SCAN_FILE;
76a33fc3
SL
1985 goto out;
1986 }
4f98a2fe 1987
10316b31
JW
1988 /*
1989 * Global reclaim will swap to prevent OOM even with no
1990 * swappiness, but memcg users want to use this knob to
1991 * disable swapping for individual groups completely when
1992 * using the memory controller's swap limit feature would be
1993 * too expensive.
1994 */
02695175 1995 if (!global_reclaim(sc) && !swappiness) {
9a265114 1996 scan_balance = SCAN_FILE;
10316b31
JW
1997 goto out;
1998 }
1999
2000 /*
2001 * Do not apply any pressure balancing cleverness when the
2002 * system is close to OOM, scan both anon and file equally
2003 * (unless the swappiness setting disagrees with swapping).
2004 */
02695175 2005 if (!sc->priority && swappiness) {
9a265114 2006 scan_balance = SCAN_EQUAL;
10316b31
JW
2007 goto out;
2008 }
2009
62376251
JW
2010 /*
2011 * Prevent the reclaimer from falling into the cache trap: as
2012 * cache pages start out inactive, every cache fault will tip
2013 * the scan balance towards the file LRU. And as the file LRU
2014 * shrinks, so does the window for rotation from references.
2015 * This means we have a runaway feedback loop where a tiny
2016 * thrashing file LRU becomes infinitely more attractive than
2017 * anon pages. Try to detect this based on file LRU size.
2018 */
2019 if (global_reclaim(sc)) {
2ab051e1
JM
2020 unsigned long zonefile;
2021 unsigned long zonefree;
2022
2023 zonefree = zone_page_state(zone, NR_FREE_PAGES);
2024 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
2025 zone_page_state(zone, NR_INACTIVE_FILE);
62376251 2026
2ab051e1 2027 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
62376251
JW
2028 scan_balance = SCAN_ANON;
2029 goto out;
2030 }
2031 }
2032
7c5bd705 2033 /*
316bda0e
VD
2034 * If there is enough inactive page cache, i.e. if the size of the
2035 * inactive list is greater than that of the active list *and* the
2036 * inactive list actually has some pages to scan on this priority, we
2037 * do not reclaim anything from the anonymous working set right now.
2038 * Without the second condition we could end up never scanning an
2039 * lruvec even if it has plenty of old anonymous pages unless the
2040 * system is under heavy pressure.
7c5bd705 2041 */
59dc76b0 2042 if (!inactive_list_is_low(lruvec, true) &&
23047a96 2043 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) {
9a265114 2044 scan_balance = SCAN_FILE;
7c5bd705
JW
2045 goto out;
2046 }
2047
9a265114
JW
2048 scan_balance = SCAN_FRACT;
2049
58c37f6e
KM
2050 /*
2051 * With swappiness at 100, anonymous and file have the same priority.
2052 * This scanning priority is essentially the inverse of IO cost.
2053 */
02695175 2054 anon_prio = swappiness;
75b00af7 2055 file_prio = 200 - anon_prio;
58c37f6e 2056
4f98a2fe
RR
2057 /*
2058 * OK, so we have swap space and a fair amount of page cache
2059 * pages. We use the recently rotated / recently scanned
2060 * ratios to determine how valuable each cache is.
2061 *
2062 * Because workloads change over time (and to avoid overflow)
2063 * we keep these statistics as a floating average, which ends
2064 * up weighing recent references more than old ones.
2065 *
2066 * anon in [0], file in [1]
2067 */
2ab051e1 2068
23047a96
JW
2069 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON) +
2070 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON);
2071 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE) +
2072 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE);
2ab051e1 2073
90126375 2074 spin_lock_irq(&zone->lru_lock);
6e901571 2075 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
2076 reclaim_stat->recent_scanned[0] /= 2;
2077 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
2078 }
2079
6e901571 2080 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
2081 reclaim_stat->recent_scanned[1] /= 2;
2082 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
2083 }
2084
4f98a2fe 2085 /*
00d8089c
RR
2086 * The amount of pressure on anon vs file pages is inversely
2087 * proportional to the fraction of recently scanned pages on
2088 * each list that were recently referenced and in active use.
4f98a2fe 2089 */
fe35004f 2090 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2091 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2092
fe35004f 2093 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2094 fp /= reclaim_stat->recent_rotated[1] + 1;
90126375 2095 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 2096
76a33fc3
SL
2097 fraction[0] = ap;
2098 fraction[1] = fp;
2099 denominator = ap + fp + 1;
2100out:
6f04f48d
SS
2101 some_scanned = false;
2102 /* Only use force_scan on second pass. */
2103 for (pass = 0; !some_scanned && pass < 2; pass++) {
6b4f7799 2104 *lru_pages = 0;
6f04f48d
SS
2105 for_each_evictable_lru(lru) {
2106 int file = is_file_lru(lru);
2107 unsigned long size;
2108 unsigned long scan;
6e08a369 2109
23047a96 2110 size = lruvec_lru_size(lruvec, lru);
6f04f48d 2111 scan = size >> sc->priority;
9a265114 2112
6f04f48d
SS
2113 if (!scan && pass && force_scan)
2114 scan = min(size, SWAP_CLUSTER_MAX);
9a265114 2115
6f04f48d
SS
2116 switch (scan_balance) {
2117 case SCAN_EQUAL:
2118 /* Scan lists relative to size */
2119 break;
2120 case SCAN_FRACT:
2121 /*
2122 * Scan types proportional to swappiness and
2123 * their relative recent reclaim efficiency.
2124 */
2125 scan = div64_u64(scan * fraction[file],
2126 denominator);
2127 break;
2128 case SCAN_FILE:
2129 case SCAN_ANON:
2130 /* Scan one type exclusively */
6b4f7799
JW
2131 if ((scan_balance == SCAN_FILE) != file) {
2132 size = 0;
6f04f48d 2133 scan = 0;
6b4f7799 2134 }
6f04f48d
SS
2135 break;
2136 default:
2137 /* Look ma, no brain */
2138 BUG();
2139 }
6b4f7799
JW
2140
2141 *lru_pages += size;
6f04f48d 2142 nr[lru] = scan;
6b4f7799 2143
9a265114 2144 /*
6f04f48d
SS
2145 * Skip the second pass and don't force_scan,
2146 * if we found something to scan.
9a265114 2147 */
6f04f48d 2148 some_scanned |= !!scan;
9a265114 2149 }
76a33fc3 2150 }
6e08a369 2151}
4f98a2fe 2152
72b252ae
MG
2153#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
2154static void init_tlb_ubc(void)
2155{
2156 /*
2157 * This deliberately does not clear the cpumask as it's expensive
2158 * and unnecessary. If there happens to be data in there then the
2159 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and
2160 * then will be cleared.
2161 */
2162 current->tlb_ubc.flush_required = false;
2163}
2164#else
2165static inline void init_tlb_ubc(void)
2166{
2167}
2168#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
2169
9b4f98cd
JW
2170/*
2171 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2172 */
33377678
VD
2173static void shrink_zone_memcg(struct zone *zone, struct mem_cgroup *memcg,
2174 struct scan_control *sc, unsigned long *lru_pages)
9b4f98cd 2175{
33377678 2176 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
9b4f98cd 2177 unsigned long nr[NR_LRU_LISTS];
e82e0561 2178 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2179 unsigned long nr_to_scan;
2180 enum lru_list lru;
2181 unsigned long nr_reclaimed = 0;
2182 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2183 struct blk_plug plug;
1a501907 2184 bool scan_adjusted;
9b4f98cd 2185
33377678 2186 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
9b4f98cd 2187
e82e0561
MG
2188 /* Record the original scan target for proportional adjustments later */
2189 memcpy(targets, nr, sizeof(nr));
2190
1a501907
MG
2191 /*
2192 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2193 * event that can occur when there is little memory pressure e.g.
2194 * multiple streaming readers/writers. Hence, we do not abort scanning
2195 * when the requested number of pages are reclaimed when scanning at
2196 * DEF_PRIORITY on the assumption that the fact we are direct
2197 * reclaiming implies that kswapd is not keeping up and it is best to
2198 * do a batch of work at once. For memcg reclaim one check is made to
2199 * abort proportional reclaim if either the file or anon lru has already
2200 * dropped to zero at the first pass.
2201 */
2202 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2203 sc->priority == DEF_PRIORITY);
2204
72b252ae
MG
2205 init_tlb_ubc();
2206
9b4f98cd
JW
2207 blk_start_plug(&plug);
2208 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2209 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2210 unsigned long nr_anon, nr_file, percentage;
2211 unsigned long nr_scanned;
2212
9b4f98cd
JW
2213 for_each_evictable_lru(lru) {
2214 if (nr[lru]) {
2215 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2216 nr[lru] -= nr_to_scan;
2217
2218 nr_reclaimed += shrink_list(lru, nr_to_scan,
2219 lruvec, sc);
2220 }
2221 }
e82e0561
MG
2222
2223 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2224 continue;
2225
e82e0561
MG
2226 /*
2227 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2228 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2229 * proportionally what was requested by get_scan_count(). We
2230 * stop reclaiming one LRU and reduce the amount scanning
2231 * proportional to the original scan target.
2232 */
2233 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2234 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2235
1a501907
MG
2236 /*
2237 * It's just vindictive to attack the larger once the smaller
2238 * has gone to zero. And given the way we stop scanning the
2239 * smaller below, this makes sure that we only make one nudge
2240 * towards proportionality once we've got nr_to_reclaim.
2241 */
2242 if (!nr_file || !nr_anon)
2243 break;
2244
e82e0561
MG
2245 if (nr_file > nr_anon) {
2246 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2247 targets[LRU_ACTIVE_ANON] + 1;
2248 lru = LRU_BASE;
2249 percentage = nr_anon * 100 / scan_target;
2250 } else {
2251 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2252 targets[LRU_ACTIVE_FILE] + 1;
2253 lru = LRU_FILE;
2254 percentage = nr_file * 100 / scan_target;
2255 }
2256
2257 /* Stop scanning the smaller of the LRU */
2258 nr[lru] = 0;
2259 nr[lru + LRU_ACTIVE] = 0;
2260
2261 /*
2262 * Recalculate the other LRU scan count based on its original
2263 * scan target and the percentage scanning already complete
2264 */
2265 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2266 nr_scanned = targets[lru] - nr[lru];
2267 nr[lru] = targets[lru] * (100 - percentage) / 100;
2268 nr[lru] -= min(nr[lru], nr_scanned);
2269
2270 lru += LRU_ACTIVE;
2271 nr_scanned = targets[lru] - nr[lru];
2272 nr[lru] = targets[lru] * (100 - percentage) / 100;
2273 nr[lru] -= min(nr[lru], nr_scanned);
2274
2275 scan_adjusted = true;
9b4f98cd
JW
2276 }
2277 blk_finish_plug(&plug);
2278 sc->nr_reclaimed += nr_reclaimed;
2279
2280 /*
2281 * Even if we did not try to evict anon pages at all, we want to
2282 * rebalance the anon lru active/inactive ratio.
2283 */
59dc76b0 2284 if (inactive_list_is_low(lruvec, false))
9b4f98cd
JW
2285 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2286 sc, LRU_ACTIVE_ANON);
2287
2288 throttle_vm_writeout(sc->gfp_mask);
2289}
2290
23b9da55 2291/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2292static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2293{
d84da3f9 2294 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2295 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2296 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2297 return true;
2298
2299 return false;
2300}
2301
3e7d3449 2302/*
23b9da55
MG
2303 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2304 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2305 * true if more pages should be reclaimed such that when the page allocator
2306 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2307 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2308 */
9b4f98cd 2309static inline bool should_continue_reclaim(struct zone *zone,
3e7d3449
MG
2310 unsigned long nr_reclaimed,
2311 unsigned long nr_scanned,
2312 struct scan_control *sc)
2313{
2314 unsigned long pages_for_compaction;
2315 unsigned long inactive_lru_pages;
2316
2317 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2318 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2319 return false;
2320
2876592f
MG
2321 /* Consider stopping depending on scan and reclaim activity */
2322 if (sc->gfp_mask & __GFP_REPEAT) {
2323 /*
2324 * For __GFP_REPEAT allocations, stop reclaiming if the
2325 * full LRU list has been scanned and we are still failing
2326 * to reclaim pages. This full LRU scan is potentially
2327 * expensive but a __GFP_REPEAT caller really wants to succeed
2328 */
2329 if (!nr_reclaimed && !nr_scanned)
2330 return false;
2331 } else {
2332 /*
2333 * For non-__GFP_REPEAT allocations which can presumably
2334 * fail without consequence, stop if we failed to reclaim
2335 * any pages from the last SWAP_CLUSTER_MAX number of
2336 * pages that were scanned. This will return to the
2337 * caller faster at the risk reclaim/compaction and
2338 * the resulting allocation attempt fails
2339 */
2340 if (!nr_reclaimed)
2341 return false;
2342 }
3e7d3449
MG
2343
2344 /*
2345 * If we have not reclaimed enough pages for compaction and the
2346 * inactive lists are large enough, continue reclaiming
2347 */
2348 pages_for_compaction = (2UL << sc->order);
9b4f98cd 2349 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
ec8acf20 2350 if (get_nr_swap_pages() > 0)
9b4f98cd 2351 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
3e7d3449
MG
2352 if (sc->nr_reclaimed < pages_for_compaction &&
2353 inactive_lru_pages > pages_for_compaction)
2354 return true;
2355
2356 /* If compaction would go ahead or the allocation would succeed, stop */
ebff3980 2357 switch (compaction_suitable(zone, sc->order, 0, 0)) {
3e7d3449
MG
2358 case COMPACT_PARTIAL:
2359 case COMPACT_CONTINUE:
2360 return false;
2361 default:
2362 return true;
2363 }
2364}
2365
6b4f7799
JW
2366static bool shrink_zone(struct zone *zone, struct scan_control *sc,
2367 bool is_classzone)
1da177e4 2368{
cb731d6c 2369 struct reclaim_state *reclaim_state = current->reclaim_state;
f0fdc5e8 2370 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2371 bool reclaimable = false;
1da177e4 2372
9b4f98cd
JW
2373 do {
2374 struct mem_cgroup *root = sc->target_mem_cgroup;
2375 struct mem_cgroup_reclaim_cookie reclaim = {
2376 .zone = zone,
2377 .priority = sc->priority,
2378 };
6b4f7799 2379 unsigned long zone_lru_pages = 0;
694fbc0f 2380 struct mem_cgroup *memcg;
3e7d3449 2381
9b4f98cd
JW
2382 nr_reclaimed = sc->nr_reclaimed;
2383 nr_scanned = sc->nr_scanned;
1da177e4 2384
694fbc0f
AM
2385 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2386 do {
6b4f7799 2387 unsigned long lru_pages;
8e8ae645 2388 unsigned long reclaimed;
cb731d6c 2389 unsigned long scanned;
5660048c 2390
241994ed
JW
2391 if (mem_cgroup_low(root, memcg)) {
2392 if (!sc->may_thrash)
2393 continue;
2394 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2395 }
2396
8e8ae645 2397 reclaimed = sc->nr_reclaimed;
cb731d6c 2398 scanned = sc->nr_scanned;
f9be23d6 2399
33377678 2400 shrink_zone_memcg(zone, memcg, sc, &lru_pages);
6b4f7799 2401 zone_lru_pages += lru_pages;
f16015fb 2402
cb731d6c
VD
2403 if (memcg && is_classzone)
2404 shrink_slab(sc->gfp_mask, zone_to_nid(zone),
2405 memcg, sc->nr_scanned - scanned,
2406 lru_pages);
2407
8e8ae645
JW
2408 /* Record the group's reclaim efficiency */
2409 vmpressure(sc->gfp_mask, memcg, false,
2410 sc->nr_scanned - scanned,
2411 sc->nr_reclaimed - reclaimed);
2412
9b4f98cd 2413 /*
a394cb8e
MH
2414 * Direct reclaim and kswapd have to scan all memory
2415 * cgroups to fulfill the overall scan target for the
9b4f98cd 2416 * zone.
a394cb8e
MH
2417 *
2418 * Limit reclaim, on the other hand, only cares about
2419 * nr_to_reclaim pages to be reclaimed and it will
2420 * retry with decreasing priority if one round over the
2421 * whole hierarchy is not sufficient.
9b4f98cd 2422 */
a394cb8e
MH
2423 if (!global_reclaim(sc) &&
2424 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2425 mem_cgroup_iter_break(root, memcg);
2426 break;
2427 }
241994ed 2428 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
70ddf637 2429
6b4f7799
JW
2430 /*
2431 * Shrink the slab caches in the same proportion that
2432 * the eligible LRU pages were scanned.
2433 */
cb731d6c
VD
2434 if (global_reclaim(sc) && is_classzone)
2435 shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
2436 sc->nr_scanned - nr_scanned,
2437 zone_lru_pages);
2438
2439 if (reclaim_state) {
2440 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2441 reclaim_state->reclaimed_slab = 0;
6b4f7799
JW
2442 }
2443
8e8ae645
JW
2444 /* Record the subtree's reclaim efficiency */
2445 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
70ddf637
AV
2446 sc->nr_scanned - nr_scanned,
2447 sc->nr_reclaimed - nr_reclaimed);
2448
2344d7e4
JW
2449 if (sc->nr_reclaimed - nr_reclaimed)
2450 reclaimable = true;
2451
9b4f98cd
JW
2452 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2453 sc->nr_scanned - nr_scanned, sc));
2344d7e4
JW
2454
2455 return reclaimable;
f16015fb
JW
2456}
2457
53853e2d
VB
2458/*
2459 * Returns true if compaction should go ahead for a high-order request, or
2460 * the high-order allocation would succeed without compaction.
2461 */
b6459cc1 2462static inline bool compaction_ready(struct zone *zone, int order, int classzone_idx)
fe4b1b24
MG
2463{
2464 unsigned long balance_gap, watermark;
2465 bool watermark_ok;
2466
fe4b1b24
MG
2467 /*
2468 * Compaction takes time to run and there are potentially other
2469 * callers using the pages just freed. Continue reclaiming until
2470 * there is a buffer of free pages available to give compaction
2471 * a reasonable chance of completing and allocating the page
2472 */
4be89a34
JZ
2473 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2474 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
0b06496a 2475 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
b6459cc1 2476 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, classzone_idx);
fe4b1b24
MG
2477
2478 /*
2479 * If compaction is deferred, reclaim up to a point where
2480 * compaction will have a chance of success when re-enabled
2481 */
0b06496a 2482 if (compaction_deferred(zone, order))
fe4b1b24
MG
2483 return watermark_ok;
2484
53853e2d
VB
2485 /*
2486 * If compaction is not ready to start and allocation is not likely
2487 * to succeed without it, then keep reclaiming.
2488 */
b6459cc1 2489 if (compaction_suitable(zone, order, 0, classzone_idx) == COMPACT_SKIPPED)
fe4b1b24
MG
2490 return false;
2491
2492 return watermark_ok;
2493}
2494
1da177e4
LT
2495/*
2496 * This is the direct reclaim path, for page-allocating processes. We only
2497 * try to reclaim pages from zones which will satisfy the caller's allocation
2498 * request.
2499 *
41858966
MG
2500 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2501 * Because:
1da177e4
LT
2502 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2503 * allocation or
41858966
MG
2504 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2505 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2506 * zone defense algorithm.
1da177e4 2507 *
1da177e4
LT
2508 * If a zone is deemed to be full of pinned pages then just give it a light
2509 * scan then give up on it.
2510 */
0a0337e0 2511static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2512{
dd1a239f 2513 struct zoneref *z;
54a6eb5c 2514 struct zone *zone;
0608f43d
AM
2515 unsigned long nr_soft_reclaimed;
2516 unsigned long nr_soft_scanned;
619d0d76 2517 gfp_t orig_mask;
9bbc04ee 2518 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
1cfb419b 2519
cc715d99
MG
2520 /*
2521 * If the number of buffer_heads in the machine exceeds the maximum
2522 * allowed level, force direct reclaim to scan the highmem zone as
2523 * highmem pages could be pinning lowmem pages storing buffer_heads
2524 */
619d0d76 2525 orig_mask = sc->gfp_mask;
cc715d99
MG
2526 if (buffer_heads_over_limit)
2527 sc->gfp_mask |= __GFP_HIGHMEM;
2528
d4debc66 2529 for_each_zone_zonelist_nodemask(zone, z, zonelist,
7bf52fb8 2530 gfp_zone(sc->gfp_mask), sc->nodemask) {
6b4f7799
JW
2531 enum zone_type classzone_idx;
2532
f3fe6512 2533 if (!populated_zone(zone))
1da177e4 2534 continue;
6b4f7799
JW
2535
2536 classzone_idx = requested_highidx;
2537 while (!populated_zone(zone->zone_pgdat->node_zones +
2538 classzone_idx))
2539 classzone_idx--;
2540
1cfb419b
KH
2541 /*
2542 * Take care memory controller reclaiming has small influence
2543 * to global LRU.
2544 */
89b5fae5 2545 if (global_reclaim(sc)) {
344736f2
VD
2546 if (!cpuset_zone_allowed(zone,
2547 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2548 continue;
65ec02cb 2549
6e543d57
LD
2550 if (sc->priority != DEF_PRIORITY &&
2551 !zone_reclaimable(zone))
1cfb419b 2552 continue; /* Let kswapd poll it */
0b06496a
JW
2553
2554 /*
2555 * If we already have plenty of memory free for
2556 * compaction in this zone, don't free any more.
2557 * Even though compaction is invoked for any
2558 * non-zero order, only frequent costly order
2559 * reclamation is disruptive enough to become a
2560 * noticeable problem, like transparent huge
2561 * page allocations.
2562 */
2563 if (IS_ENABLED(CONFIG_COMPACTION) &&
2564 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2565 zonelist_zone_idx(z) <= requested_highidx &&
b6459cc1 2566 compaction_ready(zone, sc->order, requested_highidx)) {
0b06496a
JW
2567 sc->compaction_ready = true;
2568 continue;
e0887c19 2569 }
0b06496a 2570
0608f43d
AM
2571 /*
2572 * This steals pages from memory cgroups over softlimit
2573 * and returns the number of reclaimed pages and
2574 * scanned pages. This works for global memory pressure
2575 * and balancing, not for a memcg's limit.
2576 */
2577 nr_soft_scanned = 0;
2578 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2579 sc->order, sc->gfp_mask,
2580 &nr_soft_scanned);
2581 sc->nr_reclaimed += nr_soft_reclaimed;
2582 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 2583 /* need some check for avoid more shrink_zone() */
1cfb419b 2584 }
408d8544 2585
0a0337e0 2586 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
1da177e4 2587 }
e0c23279 2588
619d0d76
WY
2589 /*
2590 * Restore to original mask to avoid the impact on the caller if we
2591 * promoted it to __GFP_HIGHMEM.
2592 */
2593 sc->gfp_mask = orig_mask;
1da177e4 2594}
4f98a2fe 2595
1da177e4
LT
2596/*
2597 * This is the main entry point to direct page reclaim.
2598 *
2599 * If a full scan of the inactive list fails to free enough memory then we
2600 * are "out of memory" and something needs to be killed.
2601 *
2602 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2603 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2604 * caller can't do much about. We kick the writeback threads and take explicit
2605 * naps in the hope that some of these pages can be written. But if the
2606 * allocating task holds filesystem locks which prevent writeout this might not
2607 * work, and the allocation attempt will fail.
a41f24ea
NA
2608 *
2609 * returns: 0, if no pages reclaimed
2610 * else, the number of pages reclaimed
1da177e4 2611 */
dac1d27b 2612static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 2613 struct scan_control *sc)
1da177e4 2614{
241994ed 2615 int initial_priority = sc->priority;
69e05944 2616 unsigned long total_scanned = 0;
22fba335 2617 unsigned long writeback_threshold;
241994ed 2618retry:
873b4771
KK
2619 delayacct_freepages_start();
2620
89b5fae5 2621 if (global_reclaim(sc))
1cfb419b 2622 count_vm_event(ALLOCSTALL);
1da177e4 2623
9e3b2f8c 2624 do {
70ddf637
AV
2625 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2626 sc->priority);
66e1707b 2627 sc->nr_scanned = 0;
0a0337e0 2628 shrink_zones(zonelist, sc);
c6a8a8c5 2629
66e1707b 2630 total_scanned += sc->nr_scanned;
bb21c7ce 2631 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
2632 break;
2633
2634 if (sc->compaction_ready)
2635 break;
1da177e4 2636
0e50ce3b
MK
2637 /*
2638 * If we're getting trouble reclaiming, start doing
2639 * writepage even in laptop mode.
2640 */
2641 if (sc->priority < DEF_PRIORITY - 2)
2642 sc->may_writepage = 1;
2643
1da177e4
LT
2644 /*
2645 * Try to write back as many pages as we just scanned. This
2646 * tends to cause slow streaming writers to write data to the
2647 * disk smoothly, at the dirtying rate, which is nice. But
2648 * that's undesirable in laptop mode, where we *want* lumpy
2649 * writeout. So in laptop mode, write out the whole world.
2650 */
22fba335
KM
2651 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2652 if (total_scanned > writeback_threshold) {
0e175a18
CW
2653 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2654 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2655 sc->may_writepage = 1;
1da177e4 2656 }
0b06496a 2657 } while (--sc->priority >= 0);
bb21c7ce 2658
873b4771
KK
2659 delayacct_freepages_end();
2660
bb21c7ce
KM
2661 if (sc->nr_reclaimed)
2662 return sc->nr_reclaimed;
2663
0cee34fd 2664 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 2665 if (sc->compaction_ready)
7335084d
MG
2666 return 1;
2667
241994ed
JW
2668 /* Untapped cgroup reserves? Don't OOM, retry. */
2669 if (!sc->may_thrash) {
2670 sc->priority = initial_priority;
2671 sc->may_thrash = 1;
2672 goto retry;
2673 }
2674
bb21c7ce 2675 return 0;
1da177e4
LT
2676}
2677
5515061d
MG
2678static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2679{
2680 struct zone *zone;
2681 unsigned long pfmemalloc_reserve = 0;
2682 unsigned long free_pages = 0;
2683 int i;
2684 bool wmark_ok;
2685
2686 for (i = 0; i <= ZONE_NORMAL; i++) {
2687 zone = &pgdat->node_zones[i];
f012a84a
NA
2688 if (!populated_zone(zone) ||
2689 zone_reclaimable_pages(zone) == 0)
675becce
MG
2690 continue;
2691
5515061d
MG
2692 pfmemalloc_reserve += min_wmark_pages(zone);
2693 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2694 }
2695
675becce
MG
2696 /* If there are no reserves (unexpected config) then do not throttle */
2697 if (!pfmemalloc_reserve)
2698 return true;
2699
5515061d
MG
2700 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2701
2702 /* kswapd must be awake if processes are being throttled */
2703 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2704 pgdat->classzone_idx = min(pgdat->classzone_idx,
2705 (enum zone_type)ZONE_NORMAL);
2706 wake_up_interruptible(&pgdat->kswapd_wait);
2707 }
2708
2709 return wmark_ok;
2710}
2711
2712/*
2713 * Throttle direct reclaimers if backing storage is backed by the network
2714 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2715 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2716 * when the low watermark is reached.
2717 *
2718 * Returns true if a fatal signal was delivered during throttling. If this
2719 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2720 */
50694c28 2721static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2722 nodemask_t *nodemask)
2723{
675becce 2724 struct zoneref *z;
5515061d 2725 struct zone *zone;
675becce 2726 pg_data_t *pgdat = NULL;
5515061d
MG
2727
2728 /*
2729 * Kernel threads should not be throttled as they may be indirectly
2730 * responsible for cleaning pages necessary for reclaim to make forward
2731 * progress. kjournald for example may enter direct reclaim while
2732 * committing a transaction where throttling it could forcing other
2733 * processes to block on log_wait_commit().
2734 */
2735 if (current->flags & PF_KTHREAD)
50694c28
MG
2736 goto out;
2737
2738 /*
2739 * If a fatal signal is pending, this process should not throttle.
2740 * It should return quickly so it can exit and free its memory
2741 */
2742 if (fatal_signal_pending(current))
2743 goto out;
5515061d 2744
675becce
MG
2745 /*
2746 * Check if the pfmemalloc reserves are ok by finding the first node
2747 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2748 * GFP_KERNEL will be required for allocating network buffers when
2749 * swapping over the network so ZONE_HIGHMEM is unusable.
2750 *
2751 * Throttling is based on the first usable node and throttled processes
2752 * wait on a queue until kswapd makes progress and wakes them. There
2753 * is an affinity then between processes waking up and where reclaim
2754 * progress has been made assuming the process wakes on the same node.
2755 * More importantly, processes running on remote nodes will not compete
2756 * for remote pfmemalloc reserves and processes on different nodes
2757 * should make reasonable progress.
2758 */
2759 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 2760 gfp_zone(gfp_mask), nodemask) {
675becce
MG
2761 if (zone_idx(zone) > ZONE_NORMAL)
2762 continue;
2763
2764 /* Throttle based on the first usable node */
2765 pgdat = zone->zone_pgdat;
2766 if (pfmemalloc_watermark_ok(pgdat))
2767 goto out;
2768 break;
2769 }
2770
2771 /* If no zone was usable by the allocation flags then do not throttle */
2772 if (!pgdat)
50694c28 2773 goto out;
5515061d 2774
68243e76
MG
2775 /* Account for the throttling */
2776 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2777
5515061d
MG
2778 /*
2779 * If the caller cannot enter the filesystem, it's possible that it
2780 * is due to the caller holding an FS lock or performing a journal
2781 * transaction in the case of a filesystem like ext[3|4]. In this case,
2782 * it is not safe to block on pfmemalloc_wait as kswapd could be
2783 * blocked waiting on the same lock. Instead, throttle for up to a
2784 * second before continuing.
2785 */
2786 if (!(gfp_mask & __GFP_FS)) {
2787 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2788 pfmemalloc_watermark_ok(pgdat), HZ);
50694c28
MG
2789
2790 goto check_pending;
5515061d
MG
2791 }
2792
2793 /* Throttle until kswapd wakes the process */
2794 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2795 pfmemalloc_watermark_ok(pgdat));
50694c28
MG
2796
2797check_pending:
2798 if (fatal_signal_pending(current))
2799 return true;
2800
2801out:
2802 return false;
5515061d
MG
2803}
2804
dac1d27b 2805unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2806 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2807{
33906bc5 2808 unsigned long nr_reclaimed;
66e1707b 2809 struct scan_control sc = {
ee814fe2 2810 .nr_to_reclaim = SWAP_CLUSTER_MAX,
21caf2fc 2811 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
ee814fe2
JW
2812 .order = order,
2813 .nodemask = nodemask,
2814 .priority = DEF_PRIORITY,
66e1707b 2815 .may_writepage = !laptop_mode,
a6dc60f8 2816 .may_unmap = 1,
2e2e4259 2817 .may_swap = 1,
66e1707b
BS
2818 };
2819
5515061d 2820 /*
50694c28
MG
2821 * Do not enter reclaim if fatal signal was delivered while throttled.
2822 * 1 is returned so that the page allocator does not OOM kill at this
2823 * point.
5515061d 2824 */
50694c28 2825 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
2826 return 1;
2827
33906bc5
MG
2828 trace_mm_vmscan_direct_reclaim_begin(order,
2829 sc.may_writepage,
2830 gfp_mask);
2831
3115cd91 2832 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
2833
2834 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2835
2836 return nr_reclaimed;
66e1707b
BS
2837}
2838
c255a458 2839#ifdef CONFIG_MEMCG
66e1707b 2840
72835c86 2841unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2842 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2843 struct zone *zone,
2844 unsigned long *nr_scanned)
4e416953
BS
2845{
2846 struct scan_control sc = {
b8f5c566 2847 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 2848 .target_mem_cgroup = memcg,
4e416953
BS
2849 .may_writepage = !laptop_mode,
2850 .may_unmap = 1,
2851 .may_swap = !noswap,
4e416953 2852 };
6b4f7799 2853 unsigned long lru_pages;
0ae5e89c 2854
4e416953
BS
2855 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2856 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2857
9e3b2f8c 2858 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e
KM
2859 sc.may_writepage,
2860 sc.gfp_mask);
2861
4e416953
BS
2862 /*
2863 * NOTE: Although we can get the priority field, using it
2864 * here is not a good idea, since it limits the pages we can scan.
2865 * if we don't reclaim here, the shrink_zone from balance_pgdat
2866 * will pick up pages from other mem cgroup's as well. We hack
2867 * the priority and make it zero.
2868 */
33377678 2869 shrink_zone_memcg(zone, memcg, &sc, &lru_pages);
bdce6d9e
KM
2870
2871 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2872
0ae5e89c 2873 *nr_scanned = sc.nr_scanned;
4e416953
BS
2874 return sc.nr_reclaimed;
2875}
2876
72835c86 2877unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 2878 unsigned long nr_pages,
a7885eb8 2879 gfp_t gfp_mask,
b70a2a21 2880 bool may_swap)
66e1707b 2881{
4e416953 2882 struct zonelist *zonelist;
bdce6d9e 2883 unsigned long nr_reclaimed;
889976db 2884 int nid;
66e1707b 2885 struct scan_control sc = {
b70a2a21 2886 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
a09ed5e0
YH
2887 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2888 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
ee814fe2
JW
2889 .target_mem_cgroup = memcg,
2890 .priority = DEF_PRIORITY,
2891 .may_writepage = !laptop_mode,
2892 .may_unmap = 1,
b70a2a21 2893 .may_swap = may_swap,
a09ed5e0 2894 };
66e1707b 2895
889976db
YH
2896 /*
2897 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2898 * take care of from where we get pages. So the node where we start the
2899 * scan does not need to be the current node.
2900 */
72835c86 2901 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2902
2903 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2904
2905 trace_mm_vmscan_memcg_reclaim_begin(0,
2906 sc.may_writepage,
2907 sc.gfp_mask);
2908
3115cd91 2909 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
bdce6d9e
KM
2910
2911 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2912
2913 return nr_reclaimed;
66e1707b
BS
2914}
2915#endif
2916
9e3b2f8c 2917static void age_active_anon(struct zone *zone, struct scan_control *sc)
f16015fb 2918{
b95a2f2d 2919 struct mem_cgroup *memcg;
f16015fb 2920
b95a2f2d
JW
2921 if (!total_swap_pages)
2922 return;
2923
2924 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2925 do {
c56d5c7d 2926 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
b95a2f2d 2927
59dc76b0 2928 if (inactive_list_is_low(lruvec, false))
1a93be0e 2929 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 2930 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
2931
2932 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2933 } while (memcg);
f16015fb
JW
2934}
2935
accf6242
VB
2936static bool zone_balanced(struct zone *zone, int order, bool highorder,
2937 unsigned long balance_gap, int classzone_idx)
60cefed4 2938{
accf6242 2939 unsigned long mark = high_wmark_pages(zone) + balance_gap;
60cefed4 2940
accf6242
VB
2941 /*
2942 * When checking from pgdat_balanced(), kswapd should stop and sleep
2943 * when it reaches the high order-0 watermark and let kcompactd take
2944 * over. Other callers such as wakeup_kswapd() want to determine the
2945 * true high-order watermark.
2946 */
2947 if (IS_ENABLED(CONFIG_COMPACTION) && !highorder) {
2948 mark += (1UL << order);
2949 order = 0;
2950 }
60cefed4 2951
accf6242 2952 return zone_watermark_ok_safe(zone, order, mark, classzone_idx);
60cefed4
JW
2953}
2954
1741c877 2955/*
4ae0a48b
ZC
2956 * pgdat_balanced() is used when checking if a node is balanced.
2957 *
2958 * For order-0, all zones must be balanced!
2959 *
2960 * For high-order allocations only zones that meet watermarks and are in a
2961 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2962 * total of balanced pages must be at least 25% of the zones allowed by
2963 * classzone_idx for the node to be considered balanced. Forcing all zones to
2964 * be balanced for high orders can cause excessive reclaim when there are
2965 * imbalanced zones.
1741c877
MG
2966 * The choice of 25% is due to
2967 * o a 16M DMA zone that is balanced will not balance a zone on any
2968 * reasonable sized machine
2969 * o On all other machines, the top zone must be at least a reasonable
25985edc 2970 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2971 * would need to be at least 256M for it to be balance a whole node.
2972 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2973 * to balance a node on its own. These seemed like reasonable ratios.
2974 */
4ae0a48b 2975static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
1741c877 2976{
b40da049 2977 unsigned long managed_pages = 0;
4ae0a48b 2978 unsigned long balanced_pages = 0;
1741c877
MG
2979 int i;
2980
4ae0a48b
ZC
2981 /* Check the watermark levels */
2982 for (i = 0; i <= classzone_idx; i++) {
2983 struct zone *zone = pgdat->node_zones + i;
1741c877 2984
4ae0a48b
ZC
2985 if (!populated_zone(zone))
2986 continue;
2987
b40da049 2988 managed_pages += zone->managed_pages;
4ae0a48b
ZC
2989
2990 /*
2991 * A special case here:
2992 *
2993 * balance_pgdat() skips over all_unreclaimable after
2994 * DEF_PRIORITY. Effectively, it considers them balanced so
2995 * they must be considered balanced here as well!
2996 */
6e543d57 2997 if (!zone_reclaimable(zone)) {
b40da049 2998 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2999 continue;
3000 }
3001
accf6242 3002 if (zone_balanced(zone, order, false, 0, i))
b40da049 3003 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
3004 else if (!order)
3005 return false;
3006 }
3007
3008 if (order)
b40da049 3009 return balanced_pages >= (managed_pages >> 2);
4ae0a48b
ZC
3010 else
3011 return true;
1741c877
MG
3012}
3013
5515061d
MG
3014/*
3015 * Prepare kswapd for sleeping. This verifies that there are no processes
3016 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3017 *
3018 * Returns true if kswapd is ready to sleep
3019 */
3020static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
dc83edd9 3021 int classzone_idx)
f50de2d3 3022{
f50de2d3
MG
3023 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
3024 if (remaining)
5515061d
MG
3025 return false;
3026
3027 /*
9e5e3661
VB
3028 * The throttled processes are normally woken up in balance_pgdat() as
3029 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3030 * race between when kswapd checks the watermarks and a process gets
3031 * throttled. There is also a potential race if processes get
3032 * throttled, kswapd wakes, a large process exits thereby balancing the
3033 * zones, which causes kswapd to exit balance_pgdat() before reaching
3034 * the wake up checks. If kswapd is going to sleep, no process should
3035 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3036 * the wake up is premature, processes will wake kswapd and get
3037 * throttled again. The difference from wake ups in balance_pgdat() is
3038 * that here we are under prepare_to_wait().
5515061d 3039 */
9e5e3661
VB
3040 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3041 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3042
4ae0a48b 3043 return pgdat_balanced(pgdat, order, classzone_idx);
f50de2d3
MG
3044}
3045
75485363
MG
3046/*
3047 * kswapd shrinks the zone by the number of pages required to reach
3048 * the high watermark.
b8e83b94
MG
3049 *
3050 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3051 * reclaim or if the lack of progress was due to pages under writeback.
3052 * This is used to determine if the scanning priority needs to be raised.
75485363 3053 */
b8e83b94 3054static bool kswapd_shrink_zone(struct zone *zone,
7c954f6d 3055 int classzone_idx,
accf6242 3056 struct scan_control *sc)
75485363 3057{
7c954f6d 3058 unsigned long balance_gap;
7c954f6d 3059 bool lowmem_pressure;
75485363
MG
3060
3061 /* Reclaim above the high watermark. */
3062 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
7c954f6d 3063
7c954f6d
MG
3064 /*
3065 * We put equal pressure on every zone, unless one zone has way too
3066 * many pages free already. The "too many pages" is defined as the
3067 * high wmark plus a "gap" where the gap is either the low
3068 * watermark or 1% of the zone, whichever is smaller.
3069 */
4be89a34
JZ
3070 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
3071 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
7c954f6d
MG
3072
3073 /*
3074 * If there is no low memory pressure or the zone is balanced then no
3075 * reclaim is necessary
3076 */
3077 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
accf6242 3078 if (!lowmem_pressure && zone_balanced(zone, sc->order, false,
7c954f6d
MG
3079 balance_gap, classzone_idx))
3080 return true;
3081
6b4f7799 3082 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
75485363 3083
57054651 3084 clear_bit(ZONE_WRITEBACK, &zone->flags);
283aba9f 3085
7c954f6d
MG
3086 /*
3087 * If a zone reaches its high watermark, consider it to be no longer
3088 * congested. It's possible there are dirty pages backed by congested
3089 * BDIs but as pressure is relieved, speculatively avoid congestion
3090 * waits.
3091 */
6e543d57 3092 if (zone_reclaimable(zone) &&
accf6242 3093 zone_balanced(zone, sc->order, false, 0, classzone_idx)) {
57054651
JW
3094 clear_bit(ZONE_CONGESTED, &zone->flags);
3095 clear_bit(ZONE_DIRTY, &zone->flags);
7c954f6d
MG
3096 }
3097
b8e83b94 3098 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3099}
3100
1da177e4
LT
3101/*
3102 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 3103 * they are all at high_wmark_pages(zone).
1da177e4 3104 *
accf6242 3105 * Returns the highest zone idx kswapd was reclaiming at
1da177e4
LT
3106 *
3107 * There is special handling here for zones which are full of pinned pages.
3108 * This can happen if the pages are all mlocked, or if they are all used by
3109 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
3110 * What we do is to detect the case where all pages in the zone have been
3111 * scanned twice and there has been zero successful reclaim. Mark the zone as
3112 * dead and from now on, only perform a short scan. Basically we're polling
3113 * the zone for when the problem goes away.
3114 *
3115 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
3116 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3117 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3118 * lower zones regardless of the number of free pages in the lower zones. This
3119 * interoperates with the page allocator fallback scheme to ensure that aging
3120 * of pages is balanced across the zones.
1da177e4 3121 */
accf6242 3122static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
1da177e4 3123{
1da177e4 3124 int i;
99504748 3125 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
0608f43d
AM
3126 unsigned long nr_soft_reclaimed;
3127 unsigned long nr_soft_scanned;
179e9639
AM
3128 struct scan_control sc = {
3129 .gfp_mask = GFP_KERNEL,
ee814fe2 3130 .order = order,
b8e83b94 3131 .priority = DEF_PRIORITY,
ee814fe2 3132 .may_writepage = !laptop_mode,
a6dc60f8 3133 .may_unmap = 1,
2e2e4259 3134 .may_swap = 1,
179e9639 3135 };
f8891e5e 3136 count_vm_event(PAGEOUTRUN);
1da177e4 3137
9e3b2f8c 3138 do {
b8e83b94
MG
3139 bool raise_priority = true;
3140
3141 sc.nr_reclaimed = 0;
1da177e4 3142
d6277db4
RW
3143 /*
3144 * Scan in the highmem->dma direction for the highest
3145 * zone which needs scanning
3146 */
3147 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3148 struct zone *zone = pgdat->node_zones + i;
1da177e4 3149
d6277db4
RW
3150 if (!populated_zone(zone))
3151 continue;
1da177e4 3152
6e543d57
LD
3153 if (sc.priority != DEF_PRIORITY &&
3154 !zone_reclaimable(zone))
d6277db4 3155 continue;
1da177e4 3156
556adecb
RR
3157 /*
3158 * Do some background aging of the anon list, to give
3159 * pages a chance to be referenced before reclaiming.
3160 */
9e3b2f8c 3161 age_active_anon(zone, &sc);
556adecb 3162
cc715d99
MG
3163 /*
3164 * If the number of buffer_heads in the machine
3165 * exceeds the maximum allowed level and this node
3166 * has a highmem zone, force kswapd to reclaim from
3167 * it to relieve lowmem pressure.
3168 */
3169 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3170 end_zone = i;
3171 break;
3172 }
3173
accf6242 3174 if (!zone_balanced(zone, order, false, 0, 0)) {
d6277db4 3175 end_zone = i;
e1dbeda6 3176 break;
439423f6 3177 } else {
d43006d5
MG
3178 /*
3179 * If balanced, clear the dirty and congested
3180 * flags
3181 */
57054651
JW
3182 clear_bit(ZONE_CONGESTED, &zone->flags);
3183 clear_bit(ZONE_DIRTY, &zone->flags);
1da177e4 3184 }
1da177e4 3185 }
dafcb73e 3186
b8e83b94 3187 if (i < 0)
e1dbeda6
AM
3188 goto out;
3189
b7ea3c41
MG
3190 /*
3191 * If we're getting trouble reclaiming, start doing writepage
3192 * even in laptop mode.
3193 */
3194 if (sc.priority < DEF_PRIORITY - 2)
3195 sc.may_writepage = 1;
3196
1da177e4
LT
3197 /*
3198 * Now scan the zone in the dma->highmem direction, stopping
3199 * at the last zone which needs scanning.
3200 *
3201 * We do this because the page allocator works in the opposite
3202 * direction. This prevents the page allocator from allocating
3203 * pages behind kswapd's direction of progress, which would
3204 * cause too much scanning of the lower zones.
3205 */
3206 for (i = 0; i <= end_zone; i++) {
3207 struct zone *zone = pgdat->node_zones + i;
3208
f3fe6512 3209 if (!populated_zone(zone))
1da177e4
LT
3210 continue;
3211
6e543d57
LD
3212 if (sc.priority != DEF_PRIORITY &&
3213 !zone_reclaimable(zone))
1da177e4
LT
3214 continue;
3215
1da177e4 3216 sc.nr_scanned = 0;
4e416953 3217
0608f43d
AM
3218 nr_soft_scanned = 0;
3219 /*
3220 * Call soft limit reclaim before calling shrink_zone.
3221 */
3222 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3223 order, sc.gfp_mask,
3224 &nr_soft_scanned);
3225 sc.nr_reclaimed += nr_soft_reclaimed;
3226
32a4330d 3227 /*
7c954f6d
MG
3228 * There should be no need to raise the scanning
3229 * priority if enough pages are already being scanned
3230 * that that high watermark would be met at 100%
3231 * efficiency.
fe2c2a10 3232 */
accf6242 3233 if (kswapd_shrink_zone(zone, end_zone, &sc))
7c954f6d 3234 raise_priority = false;
1da177e4 3235 }
5515061d
MG
3236
3237 /*
3238 * If the low watermark is met there is no need for processes
3239 * to be throttled on pfmemalloc_wait as they should not be
3240 * able to safely make forward progress. Wake them
3241 */
3242 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3243 pfmemalloc_watermark_ok(pgdat))
cfc51155 3244 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3245
b8e83b94
MG
3246 /* Check if kswapd should be suspending */
3247 if (try_to_freeze() || kthread_should_stop())
3248 break;
8357376d 3249
73ce02e9 3250 /*
b8e83b94
MG
3251 * Raise priority if scanning rate is too low or there was no
3252 * progress in reclaiming pages
73ce02e9 3253 */
b8e83b94
MG
3254 if (raise_priority || !sc.nr_reclaimed)
3255 sc.priority--;
9aa41348 3256 } while (sc.priority >= 1 &&
accf6242 3257 !pgdat_balanced(pgdat, order, classzone_idx));
1da177e4 3258
b8e83b94 3259out:
0abdee2b 3260 /*
accf6242
VB
3261 * Return the highest zone idx we were reclaiming at so
3262 * prepare_kswapd_sleep() makes the same decisions as here.
0abdee2b 3263 */
accf6242 3264 return end_zone;
1da177e4
LT
3265}
3266
accf6242
VB
3267static void kswapd_try_to_sleep(pg_data_t *pgdat, int order,
3268 int classzone_idx, int balanced_classzone_idx)
f0bc0a60
KM
3269{
3270 long remaining = 0;
3271 DEFINE_WAIT(wait);
3272
3273 if (freezing(current) || kthread_should_stop())
3274 return;
3275
3276 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3277
3278 /* Try to sleep for a short interval */
accf6242
VB
3279 if (prepare_kswapd_sleep(pgdat, order, remaining,
3280 balanced_classzone_idx)) {
fd901c95
VB
3281 /*
3282 * Compaction records what page blocks it recently failed to
3283 * isolate pages from and skips them in the future scanning.
3284 * When kswapd is going to sleep, it is reasonable to assume
3285 * that pages and compaction may succeed so reset the cache.
3286 */
3287 reset_isolation_suitable(pgdat);
3288
3289 /*
3290 * We have freed the memory, now we should compact it to make
3291 * allocation of the requested order possible.
3292 */
3293 wakeup_kcompactd(pgdat, order, classzone_idx);
3294
f0bc0a60
KM
3295 remaining = schedule_timeout(HZ/10);
3296 finish_wait(&pgdat->kswapd_wait, &wait);
3297 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3298 }
3299
3300 /*
3301 * After a short sleep, check if it was a premature sleep. If not, then
3302 * go fully to sleep until explicitly woken up.
3303 */
accf6242
VB
3304 if (prepare_kswapd_sleep(pgdat, order, remaining,
3305 balanced_classzone_idx)) {
f0bc0a60
KM
3306 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3307
3308 /*
3309 * vmstat counters are not perfectly accurate and the estimated
3310 * value for counters such as NR_FREE_PAGES can deviate from the
3311 * true value by nr_online_cpus * threshold. To avoid the zone
3312 * watermarks being breached while under pressure, we reduce the
3313 * per-cpu vmstat threshold while kswapd is awake and restore
3314 * them before going back to sleep.
3315 */
3316 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
3317
3318 if (!kthread_should_stop())
3319 schedule();
3320
f0bc0a60
KM
3321 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3322 } else {
3323 if (remaining)
3324 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3325 else
3326 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3327 }
3328 finish_wait(&pgdat->kswapd_wait, &wait);
3329}
3330
1da177e4
LT
3331/*
3332 * The background pageout daemon, started as a kernel thread
4f98a2fe 3333 * from the init process.
1da177e4
LT
3334 *
3335 * This basically trickles out pages so that we have _some_
3336 * free memory available even if there is no other activity
3337 * that frees anything up. This is needed for things like routing
3338 * etc, where we otherwise might have all activity going on in
3339 * asynchronous contexts that cannot page things out.
3340 *
3341 * If there are applications that are active memory-allocators
3342 * (most normal use), this basically shouldn't matter.
3343 */
3344static int kswapd(void *p)
3345{
215ddd66
MG
3346 unsigned long order, new_order;
3347 int classzone_idx, new_classzone_idx;
d2ebd0f6 3348 int balanced_classzone_idx;
1da177e4
LT
3349 pg_data_t *pgdat = (pg_data_t*)p;
3350 struct task_struct *tsk = current;
f0bc0a60 3351
1da177e4
LT
3352 struct reclaim_state reclaim_state = {
3353 .reclaimed_slab = 0,
3354 };
a70f7302 3355 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3356
cf40bd16
NP
3357 lockdep_set_current_reclaim_state(GFP_KERNEL);
3358
174596a0 3359 if (!cpumask_empty(cpumask))
c5f59f08 3360 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3361 current->reclaim_state = &reclaim_state;
3362
3363 /*
3364 * Tell the memory management that we're a "memory allocator",
3365 * and that if we need more memory we should get access to it
3366 * regardless (see "__alloc_pages()"). "kswapd" should
3367 * never get caught in the normal page freeing logic.
3368 *
3369 * (Kswapd normally doesn't need memory anyway, but sometimes
3370 * you need a small amount of memory in order to be able to
3371 * page out something else, and this flag essentially protects
3372 * us from recursively trying to free more memory as we're
3373 * trying to free the first piece of memory in the first place).
3374 */
930d9152 3375 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3376 set_freezable();
1da177e4 3377
215ddd66
MG
3378 order = new_order = 0;
3379 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 3380 balanced_classzone_idx = classzone_idx;
1da177e4 3381 for ( ; ; ) {
6f6313d4 3382 bool ret;
3e1d1d28 3383
215ddd66 3384 /*
accf6242
VB
3385 * While we were reclaiming, there might have been another
3386 * wakeup, so check the values.
215ddd66 3387 */
accf6242
VB
3388 new_order = pgdat->kswapd_max_order;
3389 new_classzone_idx = pgdat->classzone_idx;
3390 pgdat->kswapd_max_order = 0;
3391 pgdat->classzone_idx = pgdat->nr_zones - 1;
215ddd66 3392
99504748 3393 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
3394 /*
3395 * Don't sleep if someone wants a larger 'order'
99504748 3396 * allocation or has tigher zone constraints
1da177e4
LT
3397 */
3398 order = new_order;
99504748 3399 classzone_idx = new_classzone_idx;
1da177e4 3400 } else {
accf6242 3401 kswapd_try_to_sleep(pgdat, order, classzone_idx,
d2ebd0f6 3402 balanced_classzone_idx);
1da177e4 3403 order = pgdat->kswapd_max_order;
99504748 3404 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
3405 new_order = order;
3406 new_classzone_idx = classzone_idx;
4d40502e 3407 pgdat->kswapd_max_order = 0;
215ddd66 3408 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 3409 }
1da177e4 3410
8fe23e05
DR
3411 ret = try_to_freeze();
3412 if (kthread_should_stop())
3413 break;
3414
3415 /*
3416 * We can speed up thawing tasks if we don't call balance_pgdat
3417 * after returning from the refrigerator
3418 */
33906bc5
MG
3419 if (!ret) {
3420 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
accf6242
VB
3421 balanced_classzone_idx = balance_pgdat(pgdat, order,
3422 classzone_idx);
33906bc5 3423 }
1da177e4 3424 }
b0a8cc58 3425
71abdc15 3426 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
b0a8cc58 3427 current->reclaim_state = NULL;
71abdc15
JW
3428 lockdep_clear_current_reclaim_state();
3429
1da177e4
LT
3430 return 0;
3431}
3432
3433/*
3434 * A zone is low on free memory, so wake its kswapd task to service it.
3435 */
99504748 3436void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3437{
3438 pg_data_t *pgdat;
3439
f3fe6512 3440 if (!populated_zone(zone))
1da177e4
LT
3441 return;
3442
344736f2 3443 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
1da177e4 3444 return;
88f5acf8 3445 pgdat = zone->zone_pgdat;
99504748 3446 if (pgdat->kswapd_max_order < order) {
1da177e4 3447 pgdat->kswapd_max_order = order;
99504748
MG
3448 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3449 }
8d0986e2 3450 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3451 return;
accf6242 3452 if (zone_balanced(zone, order, true, 0, 0))
88f5acf8
MG
3453 return;
3454
3455 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3456 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3457}
3458
c6f37f12 3459#ifdef CONFIG_HIBERNATION
1da177e4 3460/*
7b51755c 3461 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3462 * freed pages.
3463 *
3464 * Rather than trying to age LRUs the aim is to preserve the overall
3465 * LRU order by reclaiming preferentially
3466 * inactive > active > active referenced > active mapped
1da177e4 3467 */
7b51755c 3468unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3469{
d6277db4 3470 struct reclaim_state reclaim_state;
d6277db4 3471 struct scan_control sc = {
ee814fe2 3472 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3473 .gfp_mask = GFP_HIGHUSER_MOVABLE,
ee814fe2 3474 .priority = DEF_PRIORITY,
d6277db4 3475 .may_writepage = 1,
ee814fe2
JW
3476 .may_unmap = 1,
3477 .may_swap = 1,
7b51755c 3478 .hibernation_mode = 1,
1da177e4 3479 };
a09ed5e0 3480 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3481 struct task_struct *p = current;
3482 unsigned long nr_reclaimed;
1da177e4 3483
7b51755c
KM
3484 p->flags |= PF_MEMALLOC;
3485 lockdep_set_current_reclaim_state(sc.gfp_mask);
3486 reclaim_state.reclaimed_slab = 0;
3487 p->reclaim_state = &reclaim_state;
d6277db4 3488
3115cd91 3489 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3490
7b51755c
KM
3491 p->reclaim_state = NULL;
3492 lockdep_clear_current_reclaim_state();
3493 p->flags &= ~PF_MEMALLOC;
d6277db4 3494
7b51755c 3495 return nr_reclaimed;
1da177e4 3496}
c6f37f12 3497#endif /* CONFIG_HIBERNATION */
1da177e4 3498
1da177e4
LT
3499/* It's optimal to keep kswapds on the same CPUs as their memory, but
3500 not required for correctness. So if the last cpu in a node goes
3501 away, we get changed to run anywhere: as the first one comes back,
3502 restore their cpu bindings. */
fcb35a9b
GKH
3503static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3504 void *hcpu)
1da177e4 3505{
58c0a4a7 3506 int nid;
1da177e4 3507
8bb78442 3508 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
48fb2e24 3509 for_each_node_state(nid, N_MEMORY) {
c5f59f08 3510 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3511 const struct cpumask *mask;
3512
3513 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3514
3e597945 3515 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3516 /* One of our CPUs online: restore mask */
c5f59f08 3517 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3518 }
3519 }
3520 return NOTIFY_OK;
3521}
1da177e4 3522
3218ae14
YG
3523/*
3524 * This kswapd start function will be called by init and node-hot-add.
3525 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3526 */
3527int kswapd_run(int nid)
3528{
3529 pg_data_t *pgdat = NODE_DATA(nid);
3530 int ret = 0;
3531
3532 if (pgdat->kswapd)
3533 return 0;
3534
3535 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3536 if (IS_ERR(pgdat->kswapd)) {
3537 /* failure at boot is fatal */
3538 BUG_ON(system_state == SYSTEM_BOOTING);
d5dc0ad9
GS
3539 pr_err("Failed to start kswapd on node %d\n", nid);
3540 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3541 pgdat->kswapd = NULL;
3218ae14
YG
3542 }
3543 return ret;
3544}
3545
8fe23e05 3546/*
d8adde17 3547 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 3548 * hold mem_hotplug_begin/end().
8fe23e05
DR
3549 */
3550void kswapd_stop(int nid)
3551{
3552 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3553
d8adde17 3554 if (kswapd) {
8fe23e05 3555 kthread_stop(kswapd);
d8adde17
JL
3556 NODE_DATA(nid)->kswapd = NULL;
3557 }
8fe23e05
DR
3558}
3559
1da177e4
LT
3560static int __init kswapd_init(void)
3561{
3218ae14 3562 int nid;
69e05944 3563
1da177e4 3564 swap_setup();
48fb2e24 3565 for_each_node_state(nid, N_MEMORY)
3218ae14 3566 kswapd_run(nid);
1da177e4
LT
3567 hotcpu_notifier(cpu_callback, 0);
3568 return 0;
3569}
3570
3571module_init(kswapd_init)
9eeff239
CL
3572
3573#ifdef CONFIG_NUMA
3574/*
3575 * Zone reclaim mode
3576 *
3577 * If non-zero call zone_reclaim when the number of free pages falls below
3578 * the watermarks.
9eeff239
CL
3579 */
3580int zone_reclaim_mode __read_mostly;
3581
1b2ffb78 3582#define RECLAIM_OFF 0
7d03431c 3583#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78 3584#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
95bbc0c7 3585#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
1b2ffb78 3586
a92f7126
CL
3587/*
3588 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3589 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3590 * a zone.
3591 */
3592#define ZONE_RECLAIM_PRIORITY 4
3593
9614634f
CL
3594/*
3595 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3596 * occur.
3597 */
3598int sysctl_min_unmapped_ratio = 1;
3599
0ff38490
CL
3600/*
3601 * If the number of slab pages in a zone grows beyond this percentage then
3602 * slab reclaim needs to occur.
3603 */
3604int sysctl_min_slab_ratio = 5;
3605
90afa5de
MG
3606static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3607{
3608 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3609 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3610 zone_page_state(zone, NR_ACTIVE_FILE);
3611
3612 /*
3613 * It's possible for there to be more file mapped pages than
3614 * accounted for by the pages on the file LRU lists because
3615 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3616 */
3617 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3618}
3619
3620/* Work out how many page cache pages we can reclaim in this reclaim_mode */
d031a157 3621static unsigned long zone_pagecache_reclaimable(struct zone *zone)
90afa5de 3622{
d031a157
AM
3623 unsigned long nr_pagecache_reclaimable;
3624 unsigned long delta = 0;
90afa5de
MG
3625
3626 /*
95bbc0c7 3627 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de
MG
3628 * potentially reclaimable. Otherwise, we have to worry about
3629 * pages like swapcache and zone_unmapped_file_pages() provides
3630 * a better estimate
3631 */
95bbc0c7 3632 if (zone_reclaim_mode & RECLAIM_UNMAP)
90afa5de
MG
3633 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3634 else
3635 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3636
3637 /* If we can't clean pages, remove dirty pages from consideration */
3638 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3639 delta += zone_page_state(zone, NR_FILE_DIRTY);
3640
3641 /* Watch for any possible underflows due to delta */
3642 if (unlikely(delta > nr_pagecache_reclaimable))
3643 delta = nr_pagecache_reclaimable;
3644
3645 return nr_pagecache_reclaimable - delta;
3646}
3647
9eeff239
CL
3648/*
3649 * Try to free up some pages from this zone through reclaim.
3650 */
179e9639 3651static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3652{
7fb2d46d 3653 /* Minimum pages needed in order to stay on node */
69e05944 3654 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3655 struct task_struct *p = current;
3656 struct reclaim_state reclaim_state;
179e9639 3657 struct scan_control sc = {
62b726c1 3658 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
21caf2fc 3659 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
bd2f6199 3660 .order = order,
9e3b2f8c 3661 .priority = ZONE_RECLAIM_PRIORITY,
ee814fe2 3662 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
95bbc0c7 3663 .may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 3664 .may_swap = 1,
179e9639 3665 };
9eeff239 3666
9eeff239 3667 cond_resched();
d4f7796e 3668 /*
95bbc0c7 3669 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 3670 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 3671 * and RECLAIM_UNMAP.
d4f7796e
CL
3672 */
3673 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3674 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3675 reclaim_state.reclaimed_slab = 0;
3676 p->reclaim_state = &reclaim_state;
c84db23c 3677
90afa5de 3678 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3679 /*
3680 * Free memory by calling shrink zone with increasing
3681 * priorities until we have enough memory freed.
3682 */
0ff38490 3683 do {
6b4f7799 3684 shrink_zone(zone, &sc, true);
9e3b2f8c 3685 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3686 }
c84db23c 3687
9eeff239 3688 p->reclaim_state = NULL;
d4f7796e 3689 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3690 lockdep_clear_current_reclaim_state();
a79311c1 3691 return sc.nr_reclaimed >= nr_pages;
9eeff239 3692}
179e9639
AM
3693
3694int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3695{
179e9639 3696 int node_id;
d773ed6b 3697 int ret;
179e9639
AM
3698
3699 /*
0ff38490
CL
3700 * Zone reclaim reclaims unmapped file backed pages and
3701 * slab pages if we are over the defined limits.
34aa1330 3702 *
9614634f
CL
3703 * A small portion of unmapped file backed pages is needed for
3704 * file I/O otherwise pages read by file I/O will be immediately
3705 * thrown out if the zone is overallocated. So we do not reclaim
3706 * if less than a specified percentage of the zone is used by
3707 * unmapped file backed pages.
179e9639 3708 */
90afa5de
MG
3709 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3710 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3711 return ZONE_RECLAIM_FULL;
179e9639 3712
6e543d57 3713 if (!zone_reclaimable(zone))
fa5e084e 3714 return ZONE_RECLAIM_FULL;
d773ed6b 3715
179e9639 3716 /*
d773ed6b 3717 * Do not scan if the allocation should not be delayed.
179e9639 3718 */
d0164adc 3719 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
fa5e084e 3720 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3721
3722 /*
3723 * Only run zone reclaim on the local zone or on zones that do not
3724 * have associated processors. This will favor the local processor
3725 * over remote processors and spread off node memory allocations
3726 * as wide as possible.
3727 */
89fa3024 3728 node_id = zone_to_nid(zone);
37c0708d 3729 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3730 return ZONE_RECLAIM_NOSCAN;
d773ed6b 3731
57054651 3732 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
fa5e084e
MG
3733 return ZONE_RECLAIM_NOSCAN;
3734
d773ed6b 3735 ret = __zone_reclaim(zone, gfp_mask, order);
57054651 3736 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
d773ed6b 3737
24cf7251
MG
3738 if (!ret)
3739 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3740
d773ed6b 3741 return ret;
179e9639 3742}
9eeff239 3743#endif
894bc310 3744
894bc310
LS
3745/*
3746 * page_evictable - test whether a page is evictable
3747 * @page: the page to test
894bc310
LS
3748 *
3749 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3750 * lists vs unevictable list.
894bc310
LS
3751 *
3752 * Reasons page might not be evictable:
ba9ddf49 3753 * (1) page's mapping marked unevictable
b291f000 3754 * (2) page is part of an mlocked VMA
ba9ddf49 3755 *
894bc310 3756 */
39b5f29a 3757int page_evictable(struct page *page)
894bc310 3758{
39b5f29a 3759 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3760}
89e004ea 3761
85046579 3762#ifdef CONFIG_SHMEM
89e004ea 3763/**
24513264
HD
3764 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3765 * @pages: array of pages to check
3766 * @nr_pages: number of pages to check
89e004ea 3767 *
24513264 3768 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3769 *
3770 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3771 */
24513264 3772void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3773{
925b7673 3774 struct lruvec *lruvec;
24513264
HD
3775 struct zone *zone = NULL;
3776 int pgscanned = 0;
3777 int pgrescued = 0;
3778 int i;
89e004ea 3779
24513264
HD
3780 for (i = 0; i < nr_pages; i++) {
3781 struct page *page = pages[i];
3782 struct zone *pagezone;
89e004ea 3783
24513264
HD
3784 pgscanned++;
3785 pagezone = page_zone(page);
3786 if (pagezone != zone) {
3787 if (zone)
3788 spin_unlock_irq(&zone->lru_lock);
3789 zone = pagezone;
3790 spin_lock_irq(&zone->lru_lock);
3791 }
fa9add64 3792 lruvec = mem_cgroup_page_lruvec(page, zone);
89e004ea 3793
24513264
HD
3794 if (!PageLRU(page) || !PageUnevictable(page))
3795 continue;
89e004ea 3796
39b5f29a 3797 if (page_evictable(page)) {
24513264
HD
3798 enum lru_list lru = page_lru_base_type(page);
3799
309381fe 3800 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 3801 ClearPageUnevictable(page);
fa9add64
HD
3802 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3803 add_page_to_lru_list(page, lruvec, lru);
24513264 3804 pgrescued++;
89e004ea 3805 }
24513264 3806 }
89e004ea 3807
24513264
HD
3808 if (zone) {
3809 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3810 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3811 spin_unlock_irq(&zone->lru_lock);
89e004ea 3812 }
89e004ea 3813}
85046579 3814#endif /* CONFIG_SHMEM */