Merge tag 'asoc-v5.4-2' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[linux-2.6-block.git] / mm / vmscan.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/vmscan.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
13 */
14
b1de0d13
MH
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
1da177e4 17#include <linux/mm.h>
5b3cc15a 18#include <linux/sched/mm.h>
1da177e4 19#include <linux/module.h>
5a0e3ad6 20#include <linux/gfp.h>
1da177e4
LT
21#include <linux/kernel_stat.h>
22#include <linux/swap.h>
23#include <linux/pagemap.h>
24#include <linux/init.h>
25#include <linux/highmem.h>
70ddf637 26#include <linux/vmpressure.h>
e129b5c2 27#include <linux/vmstat.h>
1da177e4
LT
28#include <linux/file.h>
29#include <linux/writeback.h>
30#include <linux/blkdev.h>
31#include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33#include <linux/mm_inline.h>
1da177e4
LT
34#include <linux/backing-dev.h>
35#include <linux/rmap.h>
36#include <linux/topology.h>
37#include <linux/cpu.h>
38#include <linux/cpuset.h>
3e7d3449 39#include <linux/compaction.h>
1da177e4
LT
40#include <linux/notifier.h>
41#include <linux/rwsem.h>
248a0301 42#include <linux/delay.h>
3218ae14 43#include <linux/kthread.h>
7dfb7103 44#include <linux/freezer.h>
66e1707b 45#include <linux/memcontrol.h>
873b4771 46#include <linux/delayacct.h>
af936a16 47#include <linux/sysctl.h>
929bea7c 48#include <linux/oom.h>
64e3d12f 49#include <linux/pagevec.h>
268bb0ce 50#include <linux/prefetch.h>
b1de0d13 51#include <linux/printk.h>
f9fe48be 52#include <linux/dax.h>
eb414681 53#include <linux/psi.h>
1da177e4
LT
54
55#include <asm/tlbflush.h>
56#include <asm/div64.h>
57
58#include <linux/swapops.h>
117aad1e 59#include <linux/balloon_compaction.h>
1da177e4 60
0f8053a5
NP
61#include "internal.h"
62
33906bc5
MG
63#define CREATE_TRACE_POINTS
64#include <trace/events/vmscan.h>
65
1da177e4 66struct scan_control {
22fba335
KM
67 /* How many pages shrink_list() should reclaim */
68 unsigned long nr_to_reclaim;
69
ee814fe2
JW
70 /*
71 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 * are scanned.
73 */
74 nodemask_t *nodemask;
9e3b2f8c 75
f16015fb
JW
76 /*
77 * The memory cgroup that hit its limit and as a result is the
78 * primary target of this reclaim invocation.
79 */
80 struct mem_cgroup *target_mem_cgroup;
66e1707b 81
1276ad68 82 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
83 unsigned int may_writepage:1;
84
85 /* Can mapped pages be reclaimed? */
86 unsigned int may_unmap:1;
87
88 /* Can pages be swapped as part of reclaim? */
89 unsigned int may_swap:1;
90
d6622f63
YX
91 /*
92 * Cgroups are not reclaimed below their configured memory.low,
93 * unless we threaten to OOM. If any cgroups are skipped due to
94 * memory.low and nothing was reclaimed, go back for memory.low.
95 */
96 unsigned int memcg_low_reclaim:1;
97 unsigned int memcg_low_skipped:1;
241994ed 98
ee814fe2
JW
99 unsigned int hibernation_mode:1;
100
101 /* One of the zones is ready for compaction */
102 unsigned int compaction_ready:1;
103
bb451fdf
GT
104 /* Allocation order */
105 s8 order;
106
107 /* Scan (total_size >> priority) pages at once */
108 s8 priority;
109
110 /* The highest zone to isolate pages for reclaim from */
111 s8 reclaim_idx;
112
113 /* This context's GFP mask */
114 gfp_t gfp_mask;
115
ee814fe2
JW
116 /* Incremented by the number of inactive pages that were scanned */
117 unsigned long nr_scanned;
118
119 /* Number of pages freed so far during a call to shrink_zones() */
120 unsigned long nr_reclaimed;
d108c772
AR
121
122 struct {
123 unsigned int dirty;
124 unsigned int unqueued_dirty;
125 unsigned int congested;
126 unsigned int writeback;
127 unsigned int immediate;
128 unsigned int file_taken;
129 unsigned int taken;
130 } nr;
e5ca8071
YS
131
132 /* for recording the reclaimed slab by now */
133 struct reclaim_state reclaim_state;
1da177e4
LT
134};
135
1da177e4
LT
136#ifdef ARCH_HAS_PREFETCH
137#define prefetch_prev_lru_page(_page, _base, _field) \
138 do { \
139 if ((_page)->lru.prev != _base) { \
140 struct page *prev; \
141 \
142 prev = lru_to_page(&(_page->lru)); \
143 prefetch(&prev->_field); \
144 } \
145 } while (0)
146#else
147#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
148#endif
149
150#ifdef ARCH_HAS_PREFETCHW
151#define prefetchw_prev_lru_page(_page, _base, _field) \
152 do { \
153 if ((_page)->lru.prev != _base) { \
154 struct page *prev; \
155 \
156 prev = lru_to_page(&(_page->lru)); \
157 prefetchw(&prev->_field); \
158 } \
159 } while (0)
160#else
161#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
162#endif
163
164/*
165 * From 0 .. 100. Higher means more swappy.
166 */
167int vm_swappiness = 60;
d0480be4
WSH
168/*
169 * The total number of pages which are beyond the high watermark within all
170 * zones.
171 */
172unsigned long vm_total_pages;
1da177e4
LT
173
174static LIST_HEAD(shrinker_list);
175static DECLARE_RWSEM(shrinker_rwsem);
176
b4c2b231 177#ifdef CONFIG_MEMCG_KMEM
7e010df5
KT
178
179/*
180 * We allow subsystems to populate their shrinker-related
181 * LRU lists before register_shrinker_prepared() is called
182 * for the shrinker, since we don't want to impose
183 * restrictions on their internal registration order.
184 * In this case shrink_slab_memcg() may find corresponding
185 * bit is set in the shrinkers map.
186 *
187 * This value is used by the function to detect registering
188 * shrinkers and to skip do_shrink_slab() calls for them.
189 */
190#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
191
b4c2b231
KT
192static DEFINE_IDR(shrinker_idr);
193static int shrinker_nr_max;
194
195static int prealloc_memcg_shrinker(struct shrinker *shrinker)
196{
197 int id, ret = -ENOMEM;
198
199 down_write(&shrinker_rwsem);
200 /* This may call shrinker, so it must use down_read_trylock() */
7e010df5 201 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
b4c2b231
KT
202 if (id < 0)
203 goto unlock;
204
0a4465d3
KT
205 if (id >= shrinker_nr_max) {
206 if (memcg_expand_shrinker_maps(id)) {
207 idr_remove(&shrinker_idr, id);
208 goto unlock;
209 }
210
b4c2b231 211 shrinker_nr_max = id + 1;
0a4465d3 212 }
b4c2b231
KT
213 shrinker->id = id;
214 ret = 0;
215unlock:
216 up_write(&shrinker_rwsem);
217 return ret;
218}
219
220static void unregister_memcg_shrinker(struct shrinker *shrinker)
221{
222 int id = shrinker->id;
223
224 BUG_ON(id < 0);
225
226 down_write(&shrinker_rwsem);
227 idr_remove(&shrinker_idr, id);
228 up_write(&shrinker_rwsem);
229}
230#else /* CONFIG_MEMCG_KMEM */
231static int prealloc_memcg_shrinker(struct shrinker *shrinker)
232{
233 return 0;
234}
235
236static void unregister_memcg_shrinker(struct shrinker *shrinker)
237{
238}
239#endif /* CONFIG_MEMCG_KMEM */
240
1732d2b0
AM
241static void set_task_reclaim_state(struct task_struct *task,
242 struct reclaim_state *rs)
243{
244 /* Check for an overwrite */
245 WARN_ON_ONCE(rs && task->reclaim_state);
246
247 /* Check for the nulling of an already-nulled member */
248 WARN_ON_ONCE(!rs && !task->reclaim_state);
249
250 task->reclaim_state = rs;
251}
252
c255a458 253#ifdef CONFIG_MEMCG
89b5fae5
JW
254static bool global_reclaim(struct scan_control *sc)
255{
f16015fb 256 return !sc->target_mem_cgroup;
89b5fae5 257}
97c9341f
TH
258
259/**
260 * sane_reclaim - is the usual dirty throttling mechanism operational?
261 * @sc: scan_control in question
262 *
263 * The normal page dirty throttling mechanism in balance_dirty_pages() is
264 * completely broken with the legacy memcg and direct stalling in
265 * shrink_page_list() is used for throttling instead, which lacks all the
266 * niceties such as fairness, adaptive pausing, bandwidth proportional
267 * allocation and configurability.
268 *
269 * This function tests whether the vmscan currently in progress can assume
270 * that the normal dirty throttling mechanism is operational.
271 */
272static bool sane_reclaim(struct scan_control *sc)
273{
274 struct mem_cgroup *memcg = sc->target_mem_cgroup;
275
276 if (!memcg)
277 return true;
278#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 279 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
280 return true;
281#endif
282 return false;
283}
e3c1ac58
AR
284
285static void set_memcg_congestion(pg_data_t *pgdat,
286 struct mem_cgroup *memcg,
287 bool congested)
288{
289 struct mem_cgroup_per_node *mn;
290
291 if (!memcg)
292 return;
293
294 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
295 WRITE_ONCE(mn->congested, congested);
296}
297
298static bool memcg_congested(pg_data_t *pgdat,
299 struct mem_cgroup *memcg)
300{
301 struct mem_cgroup_per_node *mn;
302
303 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
304 return READ_ONCE(mn->congested);
305
306}
91a45470 307#else
89b5fae5
JW
308static bool global_reclaim(struct scan_control *sc)
309{
310 return true;
311}
97c9341f
TH
312
313static bool sane_reclaim(struct scan_control *sc)
314{
315 return true;
316}
e3c1ac58
AR
317
318static inline void set_memcg_congestion(struct pglist_data *pgdat,
319 struct mem_cgroup *memcg, bool congested)
320{
321}
322
323static inline bool memcg_congested(struct pglist_data *pgdat,
324 struct mem_cgroup *memcg)
325{
326 return false;
327
328}
91a45470
KH
329#endif
330
5a1c84b4
MG
331/*
332 * This misses isolated pages which are not accounted for to save counters.
333 * As the data only determines if reclaim or compaction continues, it is
334 * not expected that isolated pages will be a dominating factor.
335 */
336unsigned long zone_reclaimable_pages(struct zone *zone)
337{
338 unsigned long nr;
339
340 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
341 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
342 if (get_nr_swap_pages() > 0)
343 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
344 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
345
346 return nr;
347}
348
fd538803
MH
349/**
350 * lruvec_lru_size - Returns the number of pages on the given LRU list.
351 * @lruvec: lru vector
352 * @lru: lru to use
353 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
354 */
355unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
c9f299d9 356{
fd538803
MH
357 unsigned long lru_size;
358 int zid;
359
c3c787e8 360 if (!mem_cgroup_disabled())
205b20cc 361 lru_size = lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
fd538803
MH
362 else
363 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
a3d8e054 364
fd538803
MH
365 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
366 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
367 unsigned long size;
c9f299d9 368
fd538803
MH
369 if (!managed_zone(zone))
370 continue;
371
372 if (!mem_cgroup_disabled())
373 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
374 else
375 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
376 NR_ZONE_LRU_BASE + lru);
377 lru_size -= min(size, lru_size);
378 }
379
380 return lru_size;
b4536f0c 381
b4536f0c
MH
382}
383
1da177e4 384/*
1d3d4437 385 * Add a shrinker callback to be called from the vm.
1da177e4 386 */
8e04944f 387int prealloc_shrinker(struct shrinker *shrinker)
1da177e4 388{
b9726c26 389 unsigned int size = sizeof(*shrinker->nr_deferred);
1d3d4437 390
1d3d4437
GC
391 if (shrinker->flags & SHRINKER_NUMA_AWARE)
392 size *= nr_node_ids;
393
394 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
395 if (!shrinker->nr_deferred)
396 return -ENOMEM;
b4c2b231
KT
397
398 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
399 if (prealloc_memcg_shrinker(shrinker))
400 goto free_deferred;
401 }
402
8e04944f 403 return 0;
b4c2b231
KT
404
405free_deferred:
406 kfree(shrinker->nr_deferred);
407 shrinker->nr_deferred = NULL;
408 return -ENOMEM;
8e04944f
TH
409}
410
411void free_prealloced_shrinker(struct shrinker *shrinker)
412{
b4c2b231
KT
413 if (!shrinker->nr_deferred)
414 return;
415
416 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
417 unregister_memcg_shrinker(shrinker);
418
8e04944f
TH
419 kfree(shrinker->nr_deferred);
420 shrinker->nr_deferred = NULL;
421}
1d3d4437 422
8e04944f
TH
423void register_shrinker_prepared(struct shrinker *shrinker)
424{
8e1f936b
RR
425 down_write(&shrinker_rwsem);
426 list_add_tail(&shrinker->list, &shrinker_list);
7e010df5 427#ifdef CONFIG_MEMCG_KMEM
8df4a44c
KT
428 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
429 idr_replace(&shrinker_idr, shrinker, shrinker->id);
7e010df5 430#endif
8e1f936b 431 up_write(&shrinker_rwsem);
8e04944f
TH
432}
433
434int register_shrinker(struct shrinker *shrinker)
435{
436 int err = prealloc_shrinker(shrinker);
437
438 if (err)
439 return err;
440 register_shrinker_prepared(shrinker);
1d3d4437 441 return 0;
1da177e4 442}
8e1f936b 443EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
444
445/*
446 * Remove one
447 */
8e1f936b 448void unregister_shrinker(struct shrinker *shrinker)
1da177e4 449{
bb422a73
TH
450 if (!shrinker->nr_deferred)
451 return;
b4c2b231
KT
452 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
453 unregister_memcg_shrinker(shrinker);
1da177e4
LT
454 down_write(&shrinker_rwsem);
455 list_del(&shrinker->list);
456 up_write(&shrinker_rwsem);
ae393321 457 kfree(shrinker->nr_deferred);
bb422a73 458 shrinker->nr_deferred = NULL;
1da177e4 459}
8e1f936b 460EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
461
462#define SHRINK_BATCH 128
1d3d4437 463
cb731d6c 464static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
9092c71b 465 struct shrinker *shrinker, int priority)
1d3d4437
GC
466{
467 unsigned long freed = 0;
468 unsigned long long delta;
469 long total_scan;
d5bc5fd3 470 long freeable;
1d3d4437
GC
471 long nr;
472 long new_nr;
473 int nid = shrinkctl->nid;
474 long batch_size = shrinker->batch ? shrinker->batch
475 : SHRINK_BATCH;
5f33a080 476 long scanned = 0, next_deferred;
1d3d4437 477
ac7fb3ad
KT
478 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
479 nid = 0;
480
d5bc5fd3 481 freeable = shrinker->count_objects(shrinker, shrinkctl);
9b996468
KT
482 if (freeable == 0 || freeable == SHRINK_EMPTY)
483 return freeable;
1d3d4437
GC
484
485 /*
486 * copy the current shrinker scan count into a local variable
487 * and zero it so that other concurrent shrinker invocations
488 * don't also do this scanning work.
489 */
490 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
491
492 total_scan = nr;
4b85afbd
JW
493 if (shrinker->seeks) {
494 delta = freeable >> priority;
495 delta *= 4;
496 do_div(delta, shrinker->seeks);
497 } else {
498 /*
499 * These objects don't require any IO to create. Trim
500 * them aggressively under memory pressure to keep
501 * them from causing refetches in the IO caches.
502 */
503 delta = freeable / 2;
504 }
172b06c3 505
1d3d4437
GC
506 total_scan += delta;
507 if (total_scan < 0) {
d75f773c 508 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
a0b02131 509 shrinker->scan_objects, total_scan);
d5bc5fd3 510 total_scan = freeable;
5f33a080
SL
511 next_deferred = nr;
512 } else
513 next_deferred = total_scan;
1d3d4437
GC
514
515 /*
516 * We need to avoid excessive windup on filesystem shrinkers
517 * due to large numbers of GFP_NOFS allocations causing the
518 * shrinkers to return -1 all the time. This results in a large
519 * nr being built up so when a shrink that can do some work
520 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 521 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
522 * memory.
523 *
524 * Hence only allow the shrinker to scan the entire cache when
525 * a large delta change is calculated directly.
526 */
d5bc5fd3
VD
527 if (delta < freeable / 4)
528 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
529
530 /*
531 * Avoid risking looping forever due to too large nr value:
532 * never try to free more than twice the estimate number of
533 * freeable entries.
534 */
d5bc5fd3
VD
535 if (total_scan > freeable * 2)
536 total_scan = freeable * 2;
1d3d4437
GC
537
538 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
9092c71b 539 freeable, delta, total_scan, priority);
1d3d4437 540
0b1fb40a
VD
541 /*
542 * Normally, we should not scan less than batch_size objects in one
543 * pass to avoid too frequent shrinker calls, but if the slab has less
544 * than batch_size objects in total and we are really tight on memory,
545 * we will try to reclaim all available objects, otherwise we can end
546 * up failing allocations although there are plenty of reclaimable
547 * objects spread over several slabs with usage less than the
548 * batch_size.
549 *
550 * We detect the "tight on memory" situations by looking at the total
551 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 552 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
553 * scanning at high prio and therefore should try to reclaim as much as
554 * possible.
555 */
556 while (total_scan >= batch_size ||
d5bc5fd3 557 total_scan >= freeable) {
a0b02131 558 unsigned long ret;
0b1fb40a 559 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 560
0b1fb40a 561 shrinkctl->nr_to_scan = nr_to_scan;
d460acb5 562 shrinkctl->nr_scanned = nr_to_scan;
a0b02131
DC
563 ret = shrinker->scan_objects(shrinker, shrinkctl);
564 if (ret == SHRINK_STOP)
565 break;
566 freed += ret;
1d3d4437 567
d460acb5
CW
568 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
569 total_scan -= shrinkctl->nr_scanned;
570 scanned += shrinkctl->nr_scanned;
1d3d4437
GC
571
572 cond_resched();
573 }
574
5f33a080
SL
575 if (next_deferred >= scanned)
576 next_deferred -= scanned;
577 else
578 next_deferred = 0;
1d3d4437
GC
579 /*
580 * move the unused scan count back into the shrinker in a
581 * manner that handles concurrent updates. If we exhausted the
582 * scan, there is no need to do an update.
583 */
5f33a080
SL
584 if (next_deferred > 0)
585 new_nr = atomic_long_add_return(next_deferred,
1d3d4437
GC
586 &shrinker->nr_deferred[nid]);
587 else
588 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
589
df9024a8 590 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 591 return freed;
1495f230
YH
592}
593
b0dedc49
KT
594#ifdef CONFIG_MEMCG_KMEM
595static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
596 struct mem_cgroup *memcg, int priority)
597{
598 struct memcg_shrinker_map *map;
b8e57efa
KT
599 unsigned long ret, freed = 0;
600 int i;
b0dedc49
KT
601
602 if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
603 return 0;
604
605 if (!down_read_trylock(&shrinker_rwsem))
606 return 0;
607
608 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
609 true);
610 if (unlikely(!map))
611 goto unlock;
612
613 for_each_set_bit(i, map->map, shrinker_nr_max) {
614 struct shrink_control sc = {
615 .gfp_mask = gfp_mask,
616 .nid = nid,
617 .memcg = memcg,
618 };
619 struct shrinker *shrinker;
620
621 shrinker = idr_find(&shrinker_idr, i);
7e010df5
KT
622 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
623 if (!shrinker)
624 clear_bit(i, map->map);
b0dedc49
KT
625 continue;
626 }
627
b0dedc49 628 ret = do_shrink_slab(&sc, shrinker, priority);
f90280d6
KT
629 if (ret == SHRINK_EMPTY) {
630 clear_bit(i, map->map);
631 /*
632 * After the shrinker reported that it had no objects to
633 * free, but before we cleared the corresponding bit in
634 * the memcg shrinker map, a new object might have been
635 * added. To make sure, we have the bit set in this
636 * case, we invoke the shrinker one more time and reset
637 * the bit if it reports that it is not empty anymore.
638 * The memory barrier here pairs with the barrier in
639 * memcg_set_shrinker_bit():
640 *
641 * list_lru_add() shrink_slab_memcg()
642 * list_add_tail() clear_bit()
643 * <MB> <MB>
644 * set_bit() do_shrink_slab()
645 */
646 smp_mb__after_atomic();
647 ret = do_shrink_slab(&sc, shrinker, priority);
648 if (ret == SHRINK_EMPTY)
649 ret = 0;
650 else
651 memcg_set_shrinker_bit(memcg, nid, i);
652 }
b0dedc49
KT
653 freed += ret;
654
655 if (rwsem_is_contended(&shrinker_rwsem)) {
656 freed = freed ? : 1;
657 break;
658 }
659 }
660unlock:
661 up_read(&shrinker_rwsem);
662 return freed;
663}
664#else /* CONFIG_MEMCG_KMEM */
665static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
666 struct mem_cgroup *memcg, int priority)
667{
668 return 0;
669}
670#endif /* CONFIG_MEMCG_KMEM */
671
6b4f7799 672/**
cb731d6c 673 * shrink_slab - shrink slab caches
6b4f7799
JW
674 * @gfp_mask: allocation context
675 * @nid: node whose slab caches to target
cb731d6c 676 * @memcg: memory cgroup whose slab caches to target
9092c71b 677 * @priority: the reclaim priority
1da177e4 678 *
6b4f7799 679 * Call the shrink functions to age shrinkable caches.
1da177e4 680 *
6b4f7799
JW
681 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
682 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 683 *
aeed1d32
VD
684 * @memcg specifies the memory cgroup to target. Unaware shrinkers
685 * are called only if it is the root cgroup.
cb731d6c 686 *
9092c71b
JB
687 * @priority is sc->priority, we take the number of objects and >> by priority
688 * in order to get the scan target.
b15e0905 689 *
6b4f7799 690 * Returns the number of reclaimed slab objects.
1da177e4 691 */
cb731d6c
VD
692static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
693 struct mem_cgroup *memcg,
9092c71b 694 int priority)
1da177e4 695{
b8e57efa 696 unsigned long ret, freed = 0;
1da177e4
LT
697 struct shrinker *shrinker;
698
fa1e512f
YS
699 /*
700 * The root memcg might be allocated even though memcg is disabled
701 * via "cgroup_disable=memory" boot parameter. This could make
702 * mem_cgroup_is_root() return false, then just run memcg slab
703 * shrink, but skip global shrink. This may result in premature
704 * oom.
705 */
706 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
b0dedc49 707 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
cb731d6c 708
e830c63a 709 if (!down_read_trylock(&shrinker_rwsem))
f06590bd 710 goto out;
1da177e4
LT
711
712 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
713 struct shrink_control sc = {
714 .gfp_mask = gfp_mask,
715 .nid = nid,
cb731d6c 716 .memcg = memcg,
6b4f7799 717 };
ec97097b 718
9b996468
KT
719 ret = do_shrink_slab(&sc, shrinker, priority);
720 if (ret == SHRINK_EMPTY)
721 ret = 0;
722 freed += ret;
e496612c
MK
723 /*
724 * Bail out if someone want to register a new shrinker to
725 * prevent the regsitration from being stalled for long periods
726 * by parallel ongoing shrinking.
727 */
728 if (rwsem_is_contended(&shrinker_rwsem)) {
729 freed = freed ? : 1;
730 break;
731 }
1da177e4 732 }
6b4f7799 733
1da177e4 734 up_read(&shrinker_rwsem);
f06590bd
MK
735out:
736 cond_resched();
24f7c6b9 737 return freed;
1da177e4
LT
738}
739
cb731d6c
VD
740void drop_slab_node(int nid)
741{
742 unsigned long freed;
743
744 do {
745 struct mem_cgroup *memcg = NULL;
746
747 freed = 0;
aeed1d32 748 memcg = mem_cgroup_iter(NULL, NULL, NULL);
cb731d6c 749 do {
9092c71b 750 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
cb731d6c
VD
751 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
752 } while (freed > 10);
753}
754
755void drop_slab(void)
756{
757 int nid;
758
759 for_each_online_node(nid)
760 drop_slab_node(nid);
761}
762
1da177e4
LT
763static inline int is_page_cache_freeable(struct page *page)
764{
ceddc3a5
JW
765 /*
766 * A freeable page cache page is referenced only by the caller
67891fff
MW
767 * that isolated the page, the page cache and optional buffer
768 * heads at page->private.
ceddc3a5 769 */
67891fff 770 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
bd4c82c2 771 HPAGE_PMD_NR : 1;
67891fff 772 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
1da177e4
LT
773}
774
703c2708 775static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
1da177e4 776{
930d9152 777 if (current->flags & PF_SWAPWRITE)
1da177e4 778 return 1;
703c2708 779 if (!inode_write_congested(inode))
1da177e4 780 return 1;
703c2708 781 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
782 return 1;
783 return 0;
784}
785
786/*
787 * We detected a synchronous write error writing a page out. Probably
788 * -ENOSPC. We need to propagate that into the address_space for a subsequent
789 * fsync(), msync() or close().
790 *
791 * The tricky part is that after writepage we cannot touch the mapping: nothing
792 * prevents it from being freed up. But we have a ref on the page and once
793 * that page is locked, the mapping is pinned.
794 *
795 * We're allowed to run sleeping lock_page() here because we know the caller has
796 * __GFP_FS.
797 */
798static void handle_write_error(struct address_space *mapping,
799 struct page *page, int error)
800{
7eaceacc 801 lock_page(page);
3e9f45bd
GC
802 if (page_mapping(page) == mapping)
803 mapping_set_error(mapping, error);
1da177e4
LT
804 unlock_page(page);
805}
806
04e62a29
CL
807/* possible outcome of pageout() */
808typedef enum {
809 /* failed to write page out, page is locked */
810 PAGE_KEEP,
811 /* move page to the active list, page is locked */
812 PAGE_ACTIVATE,
813 /* page has been sent to the disk successfully, page is unlocked */
814 PAGE_SUCCESS,
815 /* page is clean and locked */
816 PAGE_CLEAN,
817} pageout_t;
818
1da177e4 819/*
1742f19f
AM
820 * pageout is called by shrink_page_list() for each dirty page.
821 * Calls ->writepage().
1da177e4 822 */
c661b078 823static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 824 struct scan_control *sc)
1da177e4
LT
825{
826 /*
827 * If the page is dirty, only perform writeback if that write
828 * will be non-blocking. To prevent this allocation from being
829 * stalled by pagecache activity. But note that there may be
830 * stalls if we need to run get_block(). We could test
831 * PagePrivate for that.
832 *
8174202b 833 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
834 * this page's queue, we can perform writeback even if that
835 * will block.
836 *
837 * If the page is swapcache, write it back even if that would
838 * block, for some throttling. This happens by accident, because
839 * swap_backing_dev_info is bust: it doesn't reflect the
840 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
841 */
842 if (!is_page_cache_freeable(page))
843 return PAGE_KEEP;
844 if (!mapping) {
845 /*
846 * Some data journaling orphaned pages can have
847 * page->mapping == NULL while being dirty with clean buffers.
848 */
266cf658 849 if (page_has_private(page)) {
1da177e4
LT
850 if (try_to_free_buffers(page)) {
851 ClearPageDirty(page);
b1de0d13 852 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
853 return PAGE_CLEAN;
854 }
855 }
856 return PAGE_KEEP;
857 }
858 if (mapping->a_ops->writepage == NULL)
859 return PAGE_ACTIVATE;
703c2708 860 if (!may_write_to_inode(mapping->host, sc))
1da177e4
LT
861 return PAGE_KEEP;
862
863 if (clear_page_dirty_for_io(page)) {
864 int res;
865 struct writeback_control wbc = {
866 .sync_mode = WB_SYNC_NONE,
867 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
868 .range_start = 0,
869 .range_end = LLONG_MAX,
1da177e4
LT
870 .for_reclaim = 1,
871 };
872
873 SetPageReclaim(page);
874 res = mapping->a_ops->writepage(page, &wbc);
875 if (res < 0)
876 handle_write_error(mapping, page, res);
994fc28c 877 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
878 ClearPageReclaim(page);
879 return PAGE_ACTIVATE;
880 }
c661b078 881
1da177e4
LT
882 if (!PageWriteback(page)) {
883 /* synchronous write or broken a_ops? */
884 ClearPageReclaim(page);
885 }
3aa23851 886 trace_mm_vmscan_writepage(page);
c4a25635 887 inc_node_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
888 return PAGE_SUCCESS;
889 }
890
891 return PAGE_CLEAN;
892}
893
a649fd92 894/*
e286781d
NP
895 * Same as remove_mapping, but if the page is removed from the mapping, it
896 * gets returned with a refcount of 0.
a649fd92 897 */
a528910e
JW
898static int __remove_mapping(struct address_space *mapping, struct page *page,
899 bool reclaimed)
49d2e9cc 900{
c4843a75 901 unsigned long flags;
bd4c82c2 902 int refcount;
c4843a75 903
28e4d965
NP
904 BUG_ON(!PageLocked(page));
905 BUG_ON(mapping != page_mapping(page));
49d2e9cc 906
b93b0163 907 xa_lock_irqsave(&mapping->i_pages, flags);
49d2e9cc 908 /*
0fd0e6b0
NP
909 * The non racy check for a busy page.
910 *
911 * Must be careful with the order of the tests. When someone has
912 * a ref to the page, it may be possible that they dirty it then
913 * drop the reference. So if PageDirty is tested before page_count
914 * here, then the following race may occur:
915 *
916 * get_user_pages(&page);
917 * [user mapping goes away]
918 * write_to(page);
919 * !PageDirty(page) [good]
920 * SetPageDirty(page);
921 * put_page(page);
922 * !page_count(page) [good, discard it]
923 *
924 * [oops, our write_to data is lost]
925 *
926 * Reversing the order of the tests ensures such a situation cannot
927 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 928 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
929 *
930 * Note that if SetPageDirty is always performed via set_page_dirty,
b93b0163 931 * and thus under the i_pages lock, then this ordering is not required.
49d2e9cc 932 */
bd4c82c2
HY
933 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
934 refcount = 1 + HPAGE_PMD_NR;
935 else
936 refcount = 2;
937 if (!page_ref_freeze(page, refcount))
49d2e9cc 938 goto cannot_free;
1c4c3b99 939 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
e286781d 940 if (unlikely(PageDirty(page))) {
bd4c82c2 941 page_ref_unfreeze(page, refcount);
49d2e9cc 942 goto cannot_free;
e286781d 943 }
49d2e9cc
CL
944
945 if (PageSwapCache(page)) {
946 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 947 mem_cgroup_swapout(page, swap);
4e17ec25 948 __delete_from_swap_cache(page, swap);
b93b0163 949 xa_unlock_irqrestore(&mapping->i_pages, flags);
75f6d6d2 950 put_swap_page(page, swap);
e286781d 951 } else {
6072d13c 952 void (*freepage)(struct page *);
a528910e 953 void *shadow = NULL;
6072d13c
LT
954
955 freepage = mapping->a_ops->freepage;
a528910e
JW
956 /*
957 * Remember a shadow entry for reclaimed file cache in
958 * order to detect refaults, thus thrashing, later on.
959 *
960 * But don't store shadows in an address space that is
961 * already exiting. This is not just an optizimation,
962 * inode reclaim needs to empty out the radix tree or
963 * the nodes are lost. Don't plant shadows behind its
964 * back.
f9fe48be
RZ
965 *
966 * We also don't store shadows for DAX mappings because the
967 * only page cache pages found in these are zero pages
968 * covering holes, and because we don't want to mix DAX
969 * exceptional entries and shadow exceptional entries in the
b93b0163 970 * same address_space.
a528910e
JW
971 */
972 if (reclaimed && page_is_file_cache(page) &&
f9fe48be 973 !mapping_exiting(mapping) && !dax_mapping(mapping))
a7ca12f9 974 shadow = workingset_eviction(page);
62cccb8c 975 __delete_from_page_cache(page, shadow);
b93b0163 976 xa_unlock_irqrestore(&mapping->i_pages, flags);
6072d13c
LT
977
978 if (freepage != NULL)
979 freepage(page);
49d2e9cc
CL
980 }
981
49d2e9cc
CL
982 return 1;
983
984cannot_free:
b93b0163 985 xa_unlock_irqrestore(&mapping->i_pages, flags);
49d2e9cc
CL
986 return 0;
987}
988
e286781d
NP
989/*
990 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
991 * someone else has a ref on the page, abort and return 0. If it was
992 * successfully detached, return 1. Assumes the caller has a single ref on
993 * this page.
994 */
995int remove_mapping(struct address_space *mapping, struct page *page)
996{
a528910e 997 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
998 /*
999 * Unfreezing the refcount with 1 rather than 2 effectively
1000 * drops the pagecache ref for us without requiring another
1001 * atomic operation.
1002 */
fe896d18 1003 page_ref_unfreeze(page, 1);
e286781d
NP
1004 return 1;
1005 }
1006 return 0;
1007}
1008
894bc310
LS
1009/**
1010 * putback_lru_page - put previously isolated page onto appropriate LRU list
1011 * @page: page to be put back to appropriate lru list
1012 *
1013 * Add previously isolated @page to appropriate LRU list.
1014 * Page may still be unevictable for other reasons.
1015 *
1016 * lru_lock must not be held, interrupts must be enabled.
1017 */
894bc310
LS
1018void putback_lru_page(struct page *page)
1019{
9c4e6b1a 1020 lru_cache_add(page);
894bc310
LS
1021 put_page(page); /* drop ref from isolate */
1022}
1023
dfc8d636
JW
1024enum page_references {
1025 PAGEREF_RECLAIM,
1026 PAGEREF_RECLAIM_CLEAN,
64574746 1027 PAGEREF_KEEP,
dfc8d636
JW
1028 PAGEREF_ACTIVATE,
1029};
1030
1031static enum page_references page_check_references(struct page *page,
1032 struct scan_control *sc)
1033{
64574746 1034 int referenced_ptes, referenced_page;
dfc8d636 1035 unsigned long vm_flags;
dfc8d636 1036
c3ac9a8a
JW
1037 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1038 &vm_flags);
64574746 1039 referenced_page = TestClearPageReferenced(page);
dfc8d636 1040
dfc8d636
JW
1041 /*
1042 * Mlock lost the isolation race with us. Let try_to_unmap()
1043 * move the page to the unevictable list.
1044 */
1045 if (vm_flags & VM_LOCKED)
1046 return PAGEREF_RECLAIM;
1047
64574746 1048 if (referenced_ptes) {
e4898273 1049 if (PageSwapBacked(page))
64574746
JW
1050 return PAGEREF_ACTIVATE;
1051 /*
1052 * All mapped pages start out with page table
1053 * references from the instantiating fault, so we need
1054 * to look twice if a mapped file page is used more
1055 * than once.
1056 *
1057 * Mark it and spare it for another trip around the
1058 * inactive list. Another page table reference will
1059 * lead to its activation.
1060 *
1061 * Note: the mark is set for activated pages as well
1062 * so that recently deactivated but used pages are
1063 * quickly recovered.
1064 */
1065 SetPageReferenced(page);
1066
34dbc67a 1067 if (referenced_page || referenced_ptes > 1)
64574746
JW
1068 return PAGEREF_ACTIVATE;
1069
c909e993
KK
1070 /*
1071 * Activate file-backed executable pages after first usage.
1072 */
1073 if (vm_flags & VM_EXEC)
1074 return PAGEREF_ACTIVATE;
1075
64574746
JW
1076 return PAGEREF_KEEP;
1077 }
dfc8d636
JW
1078
1079 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 1080 if (referenced_page && !PageSwapBacked(page))
64574746
JW
1081 return PAGEREF_RECLAIM_CLEAN;
1082
1083 return PAGEREF_RECLAIM;
dfc8d636
JW
1084}
1085
e2be15f6
MG
1086/* Check if a page is dirty or under writeback */
1087static void page_check_dirty_writeback(struct page *page,
1088 bool *dirty, bool *writeback)
1089{
b4597226
MG
1090 struct address_space *mapping;
1091
e2be15f6
MG
1092 /*
1093 * Anonymous pages are not handled by flushers and must be written
1094 * from reclaim context. Do not stall reclaim based on them
1095 */
802a3a92
SL
1096 if (!page_is_file_cache(page) ||
1097 (PageAnon(page) && !PageSwapBacked(page))) {
e2be15f6
MG
1098 *dirty = false;
1099 *writeback = false;
1100 return;
1101 }
1102
1103 /* By default assume that the page flags are accurate */
1104 *dirty = PageDirty(page);
1105 *writeback = PageWriteback(page);
b4597226
MG
1106
1107 /* Verify dirty/writeback state if the filesystem supports it */
1108 if (!page_has_private(page))
1109 return;
1110
1111 mapping = page_mapping(page);
1112 if (mapping && mapping->a_ops->is_dirty_writeback)
1113 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
1114}
1115
1da177e4 1116/*
1742f19f 1117 * shrink_page_list() returns the number of reclaimed pages
1da177e4 1118 */
1742f19f 1119static unsigned long shrink_page_list(struct list_head *page_list,
599d0c95 1120 struct pglist_data *pgdat,
f84f6e2b 1121 struct scan_control *sc,
02c6de8d 1122 enum ttu_flags ttu_flags,
3c710c1a 1123 struct reclaim_stat *stat,
02c6de8d 1124 bool force_reclaim)
1da177e4
LT
1125{
1126 LIST_HEAD(ret_pages);
abe4c3b5 1127 LIST_HEAD(free_pages);
3c710c1a 1128 unsigned nr_reclaimed = 0;
886cf190 1129 unsigned pgactivate = 0;
1da177e4 1130
060f005f 1131 memset(stat, 0, sizeof(*stat));
1da177e4
LT
1132 cond_resched();
1133
1da177e4
LT
1134 while (!list_empty(page_list)) {
1135 struct address_space *mapping;
1136 struct page *page;
1137 int may_enter_fs;
02c6de8d 1138 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 1139 bool dirty, writeback;
98879b3b 1140 unsigned int nr_pages;
1da177e4
LT
1141
1142 cond_resched();
1143
1144 page = lru_to_page(page_list);
1145 list_del(&page->lru);
1146
529ae9aa 1147 if (!trylock_page(page))
1da177e4
LT
1148 goto keep;
1149
309381fe 1150 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4 1151
98879b3b
YS
1152 nr_pages = 1 << compound_order(page);
1153
1154 /* Account the number of base pages even though THP */
1155 sc->nr_scanned += nr_pages;
80e43426 1156
39b5f29a 1157 if (unlikely(!page_evictable(page)))
ad6b6704 1158 goto activate_locked;
894bc310 1159
a6dc60f8 1160 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
1161 goto keep_locked;
1162
c661b078
AW
1163 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1164 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1165
e2be15f6 1166 /*
894befec 1167 * The number of dirty pages determines if a node is marked
e2be15f6
MG
1168 * reclaim_congested which affects wait_iff_congested. kswapd
1169 * will stall and start writing pages if the tail of the LRU
1170 * is all dirty unqueued pages.
1171 */
1172 page_check_dirty_writeback(page, &dirty, &writeback);
1173 if (dirty || writeback)
060f005f 1174 stat->nr_dirty++;
e2be15f6
MG
1175
1176 if (dirty && !writeback)
060f005f 1177 stat->nr_unqueued_dirty++;
e2be15f6 1178
d04e8acd
MG
1179 /*
1180 * Treat this page as congested if the underlying BDI is or if
1181 * pages are cycling through the LRU so quickly that the
1182 * pages marked for immediate reclaim are making it to the
1183 * end of the LRU a second time.
1184 */
e2be15f6 1185 mapping = page_mapping(page);
1da58ee2 1186 if (((dirty || writeback) && mapping &&
703c2708 1187 inode_write_congested(mapping->host)) ||
d04e8acd 1188 (writeback && PageReclaim(page)))
060f005f 1189 stat->nr_congested++;
e2be15f6 1190
283aba9f
MG
1191 /*
1192 * If a page at the tail of the LRU is under writeback, there
1193 * are three cases to consider.
1194 *
1195 * 1) If reclaim is encountering an excessive number of pages
1196 * under writeback and this page is both under writeback and
1197 * PageReclaim then it indicates that pages are being queued
1198 * for IO but are being recycled through the LRU before the
1199 * IO can complete. Waiting on the page itself risks an
1200 * indefinite stall if it is impossible to writeback the
1201 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
1202 * note that the LRU is being scanned too quickly and the
1203 * caller can stall after page list has been processed.
283aba9f 1204 *
97c9341f 1205 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
1206 * not marked for immediate reclaim, or the caller does not
1207 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1208 * not to fs). In this case mark the page for immediate
97c9341f 1209 * reclaim and continue scanning.
283aba9f 1210 *
ecf5fc6e
MH
1211 * Require may_enter_fs because we would wait on fs, which
1212 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
1213 * enter reclaim, and deadlock if it waits on a page for
1214 * which it is needed to do the write (loop masks off
1215 * __GFP_IO|__GFP_FS for this reason); but more thought
1216 * would probably show more reasons.
1217 *
7fadc820 1218 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
1219 * PageReclaim. memcg does not have any dirty pages
1220 * throttling so we could easily OOM just because too many
1221 * pages are in writeback and there is nothing else to
1222 * reclaim. Wait for the writeback to complete.
c55e8d03
JW
1223 *
1224 * In cases 1) and 2) we activate the pages to get them out of
1225 * the way while we continue scanning for clean pages on the
1226 * inactive list and refilling from the active list. The
1227 * observation here is that waiting for disk writes is more
1228 * expensive than potentially causing reloads down the line.
1229 * Since they're marked for immediate reclaim, they won't put
1230 * memory pressure on the cache working set any longer than it
1231 * takes to write them to disk.
283aba9f 1232 */
c661b078 1233 if (PageWriteback(page)) {
283aba9f
MG
1234 /* Case 1 above */
1235 if (current_is_kswapd() &&
1236 PageReclaim(page) &&
599d0c95 1237 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
060f005f 1238 stat->nr_immediate++;
c55e8d03 1239 goto activate_locked;
283aba9f
MG
1240
1241 /* Case 2 above */
97c9341f 1242 } else if (sane_reclaim(sc) ||
ecf5fc6e 1243 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1244 /*
1245 * This is slightly racy - end_page_writeback()
1246 * might have just cleared PageReclaim, then
1247 * setting PageReclaim here end up interpreted
1248 * as PageReadahead - but that does not matter
1249 * enough to care. What we do want is for this
1250 * page to have PageReclaim set next time memcg
1251 * reclaim reaches the tests above, so it will
1252 * then wait_on_page_writeback() to avoid OOM;
1253 * and it's also appropriate in global reclaim.
1254 */
1255 SetPageReclaim(page);
060f005f 1256 stat->nr_writeback++;
c55e8d03 1257 goto activate_locked;
283aba9f
MG
1258
1259 /* Case 3 above */
1260 } else {
7fadc820 1261 unlock_page(page);
283aba9f 1262 wait_on_page_writeback(page);
7fadc820
HD
1263 /* then go back and try same page again */
1264 list_add_tail(&page->lru, page_list);
1265 continue;
e62e384e 1266 }
c661b078 1267 }
1da177e4 1268
02c6de8d
MK
1269 if (!force_reclaim)
1270 references = page_check_references(page, sc);
1271
dfc8d636
JW
1272 switch (references) {
1273 case PAGEREF_ACTIVATE:
1da177e4 1274 goto activate_locked;
64574746 1275 case PAGEREF_KEEP:
98879b3b 1276 stat->nr_ref_keep += nr_pages;
64574746 1277 goto keep_locked;
dfc8d636
JW
1278 case PAGEREF_RECLAIM:
1279 case PAGEREF_RECLAIM_CLEAN:
1280 ; /* try to reclaim the page below */
1281 }
1da177e4 1282
1da177e4
LT
1283 /*
1284 * Anonymous process memory has backing store?
1285 * Try to allocate it some swap space here.
802a3a92 1286 * Lazyfree page could be freed directly
1da177e4 1287 */
bd4c82c2
HY
1288 if (PageAnon(page) && PageSwapBacked(page)) {
1289 if (!PageSwapCache(page)) {
1290 if (!(sc->gfp_mask & __GFP_IO))
1291 goto keep_locked;
1292 if (PageTransHuge(page)) {
1293 /* cannot split THP, skip it */
1294 if (!can_split_huge_page(page, NULL))
1295 goto activate_locked;
1296 /*
1297 * Split pages without a PMD map right
1298 * away. Chances are some or all of the
1299 * tail pages can be freed without IO.
1300 */
1301 if (!compound_mapcount(page) &&
1302 split_huge_page_to_list(page,
1303 page_list))
1304 goto activate_locked;
1305 }
1306 if (!add_to_swap(page)) {
1307 if (!PageTransHuge(page))
98879b3b 1308 goto activate_locked_split;
bd4c82c2
HY
1309 /* Fallback to swap normal pages */
1310 if (split_huge_page_to_list(page,
1311 page_list))
1312 goto activate_locked;
fe490cc0
HY
1313#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1314 count_vm_event(THP_SWPOUT_FALLBACK);
1315#endif
bd4c82c2 1316 if (!add_to_swap(page))
98879b3b 1317 goto activate_locked_split;
bd4c82c2 1318 }
0f074658 1319
bd4c82c2 1320 may_enter_fs = 1;
1da177e4 1321
bd4c82c2
HY
1322 /* Adding to swap updated mapping */
1323 mapping = page_mapping(page);
1324 }
7751b2da
KS
1325 } else if (unlikely(PageTransHuge(page))) {
1326 /* Split file THP */
1327 if (split_huge_page_to_list(page, page_list))
1328 goto keep_locked;
e2be15f6 1329 }
1da177e4 1330
98879b3b
YS
1331 /*
1332 * THP may get split above, need minus tail pages and update
1333 * nr_pages to avoid accounting tail pages twice.
1334 *
1335 * The tail pages that are added into swap cache successfully
1336 * reach here.
1337 */
1338 if ((nr_pages > 1) && !PageTransHuge(page)) {
1339 sc->nr_scanned -= (nr_pages - 1);
1340 nr_pages = 1;
1341 }
1342
1da177e4
LT
1343 /*
1344 * The page is mapped into the page tables of one or more
1345 * processes. Try to unmap it here.
1346 */
802a3a92 1347 if (page_mapped(page)) {
bd4c82c2
HY
1348 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1349
1350 if (unlikely(PageTransHuge(page)))
1351 flags |= TTU_SPLIT_HUGE_PMD;
1352 if (!try_to_unmap(page, flags)) {
98879b3b 1353 stat->nr_unmap_fail += nr_pages;
1da177e4 1354 goto activate_locked;
1da177e4
LT
1355 }
1356 }
1357
1358 if (PageDirty(page)) {
ee72886d 1359 /*
4eda4823
JW
1360 * Only kswapd can writeback filesystem pages
1361 * to avoid risk of stack overflow. But avoid
1362 * injecting inefficient single-page IO into
1363 * flusher writeback as much as possible: only
1364 * write pages when we've encountered many
1365 * dirty pages, and when we've already scanned
1366 * the rest of the LRU for clean pages and see
1367 * the same dirty pages again (PageReclaim).
ee72886d 1368 */
f84f6e2b 1369 if (page_is_file_cache(page) &&
4eda4823
JW
1370 (!current_is_kswapd() || !PageReclaim(page) ||
1371 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1372 /*
1373 * Immediately reclaim when written back.
1374 * Similar in principal to deactivate_page()
1375 * except we already have the page isolated
1376 * and know it's dirty
1377 */
c4a25635 1378 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
49ea7eb6
MG
1379 SetPageReclaim(page);
1380
c55e8d03 1381 goto activate_locked;
ee72886d
MG
1382 }
1383
dfc8d636 1384 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1385 goto keep_locked;
4dd4b920 1386 if (!may_enter_fs)
1da177e4 1387 goto keep_locked;
52a8363e 1388 if (!sc->may_writepage)
1da177e4
LT
1389 goto keep_locked;
1390
d950c947
MG
1391 /*
1392 * Page is dirty. Flush the TLB if a writable entry
1393 * potentially exists to avoid CPU writes after IO
1394 * starts and then write it out here.
1395 */
1396 try_to_unmap_flush_dirty();
7d3579e8 1397 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1398 case PAGE_KEEP:
1399 goto keep_locked;
1400 case PAGE_ACTIVATE:
1401 goto activate_locked;
1402 case PAGE_SUCCESS:
7d3579e8 1403 if (PageWriteback(page))
41ac1999 1404 goto keep;
7d3579e8 1405 if (PageDirty(page))
1da177e4 1406 goto keep;
7d3579e8 1407
1da177e4
LT
1408 /*
1409 * A synchronous write - probably a ramdisk. Go
1410 * ahead and try to reclaim the page.
1411 */
529ae9aa 1412 if (!trylock_page(page))
1da177e4
LT
1413 goto keep;
1414 if (PageDirty(page) || PageWriteback(page))
1415 goto keep_locked;
1416 mapping = page_mapping(page);
1417 case PAGE_CLEAN:
1418 ; /* try to free the page below */
1419 }
1420 }
1421
1422 /*
1423 * If the page has buffers, try to free the buffer mappings
1424 * associated with this page. If we succeed we try to free
1425 * the page as well.
1426 *
1427 * We do this even if the page is PageDirty().
1428 * try_to_release_page() does not perform I/O, but it is
1429 * possible for a page to have PageDirty set, but it is actually
1430 * clean (all its buffers are clean). This happens if the
1431 * buffers were written out directly, with submit_bh(). ext3
894bc310 1432 * will do this, as well as the blockdev mapping.
1da177e4
LT
1433 * try_to_release_page() will discover that cleanness and will
1434 * drop the buffers and mark the page clean - it can be freed.
1435 *
1436 * Rarely, pages can have buffers and no ->mapping. These are
1437 * the pages which were not successfully invalidated in
1438 * truncate_complete_page(). We try to drop those buffers here
1439 * and if that worked, and the page is no longer mapped into
1440 * process address space (page_count == 1) it can be freed.
1441 * Otherwise, leave the page on the LRU so it is swappable.
1442 */
266cf658 1443 if (page_has_private(page)) {
1da177e4
LT
1444 if (!try_to_release_page(page, sc->gfp_mask))
1445 goto activate_locked;
e286781d
NP
1446 if (!mapping && page_count(page) == 1) {
1447 unlock_page(page);
1448 if (put_page_testzero(page))
1449 goto free_it;
1450 else {
1451 /*
1452 * rare race with speculative reference.
1453 * the speculative reference will free
1454 * this page shortly, so we may
1455 * increment nr_reclaimed here (and
1456 * leave it off the LRU).
1457 */
1458 nr_reclaimed++;
1459 continue;
1460 }
1461 }
1da177e4
LT
1462 }
1463
802a3a92
SL
1464 if (PageAnon(page) && !PageSwapBacked(page)) {
1465 /* follow __remove_mapping for reference */
1466 if (!page_ref_freeze(page, 1))
1467 goto keep_locked;
1468 if (PageDirty(page)) {
1469 page_ref_unfreeze(page, 1);
1470 goto keep_locked;
1471 }
1da177e4 1472
802a3a92 1473 count_vm_event(PGLAZYFREED);
2262185c 1474 count_memcg_page_event(page, PGLAZYFREED);
802a3a92
SL
1475 } else if (!mapping || !__remove_mapping(mapping, page, true))
1476 goto keep_locked;
9a1ea439
HD
1477
1478 unlock_page(page);
e286781d 1479free_it:
98879b3b
YS
1480 /*
1481 * THP may get swapped out in a whole, need account
1482 * all base pages.
1483 */
1484 nr_reclaimed += nr_pages;
abe4c3b5
MG
1485
1486 /*
1487 * Is there need to periodically free_page_list? It would
1488 * appear not as the counts should be low
1489 */
bd4c82c2
HY
1490 if (unlikely(PageTransHuge(page))) {
1491 mem_cgroup_uncharge(page);
1492 (*get_compound_page_dtor(page))(page);
1493 } else
1494 list_add(&page->lru, &free_pages);
1da177e4
LT
1495 continue;
1496
98879b3b
YS
1497activate_locked_split:
1498 /*
1499 * The tail pages that are failed to add into swap cache
1500 * reach here. Fixup nr_scanned and nr_pages.
1501 */
1502 if (nr_pages > 1) {
1503 sc->nr_scanned -= (nr_pages - 1);
1504 nr_pages = 1;
1505 }
1da177e4 1506activate_locked:
68a22394 1507 /* Not a candidate for swapping, so reclaim swap space. */
ad6b6704
MK
1508 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1509 PageMlocked(page)))
a2c43eed 1510 try_to_free_swap(page);
309381fe 1511 VM_BUG_ON_PAGE(PageActive(page), page);
ad6b6704 1512 if (!PageMlocked(page)) {
886cf190 1513 int type = page_is_file_cache(page);
ad6b6704 1514 SetPageActive(page);
98879b3b 1515 stat->nr_activate[type] += nr_pages;
2262185c 1516 count_memcg_page_event(page, PGACTIVATE);
ad6b6704 1517 }
1da177e4
LT
1518keep_locked:
1519 unlock_page(page);
1520keep:
1521 list_add(&page->lru, &ret_pages);
309381fe 1522 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1523 }
abe4c3b5 1524
98879b3b
YS
1525 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1526
747db954 1527 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1528 try_to_unmap_flush();
2d4894b5 1529 free_unref_page_list(&free_pages);
abe4c3b5 1530
1da177e4 1531 list_splice(&ret_pages, page_list);
886cf190 1532 count_vm_events(PGACTIVATE, pgactivate);
060f005f 1533
05ff5137 1534 return nr_reclaimed;
1da177e4
LT
1535}
1536
02c6de8d
MK
1537unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1538 struct list_head *page_list)
1539{
1540 struct scan_control sc = {
1541 .gfp_mask = GFP_KERNEL,
1542 .priority = DEF_PRIORITY,
1543 .may_unmap = 1,
1544 };
060f005f 1545 struct reclaim_stat dummy_stat;
3c710c1a 1546 unsigned long ret;
02c6de8d
MK
1547 struct page *page, *next;
1548 LIST_HEAD(clean_pages);
1549
1550 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e 1551 if (page_is_file_cache(page) && !PageDirty(page) &&
a58f2cef 1552 !__PageMovable(page) && !PageUnevictable(page)) {
02c6de8d
MK
1553 ClearPageActive(page);
1554 list_move(&page->lru, &clean_pages);
1555 }
1556 }
1557
599d0c95 1558 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
060f005f 1559 TTU_IGNORE_ACCESS, &dummy_stat, true);
02c6de8d 1560 list_splice(&clean_pages, page_list);
599d0c95 1561 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1562 return ret;
1563}
1564
5ad333eb
AW
1565/*
1566 * Attempt to remove the specified page from its LRU. Only take this page
1567 * if it is of the appropriate PageActive status. Pages which are being
1568 * freed elsewhere are also ignored.
1569 *
1570 * page: page to consider
1571 * mode: one of the LRU isolation modes defined above
1572 *
1573 * returns 0 on success, -ve errno on failure.
1574 */
f3fd4a61 1575int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1576{
1577 int ret = -EINVAL;
1578
1579 /* Only take pages on the LRU. */
1580 if (!PageLRU(page))
1581 return ret;
1582
e46a2879
MK
1583 /* Compaction should not handle unevictable pages but CMA can do so */
1584 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1585 return ret;
1586
5ad333eb 1587 ret = -EBUSY;
08e552c6 1588
c8244935
MG
1589 /*
1590 * To minimise LRU disruption, the caller can indicate that it only
1591 * wants to isolate pages it will be able to operate on without
1592 * blocking - clean pages for the most part.
1593 *
c8244935
MG
1594 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1595 * that it is possible to migrate without blocking
1596 */
1276ad68 1597 if (mode & ISOLATE_ASYNC_MIGRATE) {
c8244935
MG
1598 /* All the caller can do on PageWriteback is block */
1599 if (PageWriteback(page))
1600 return ret;
1601
1602 if (PageDirty(page)) {
1603 struct address_space *mapping;
69d763fc 1604 bool migrate_dirty;
c8244935 1605
c8244935
MG
1606 /*
1607 * Only pages without mappings or that have a
1608 * ->migratepage callback are possible to migrate
69d763fc
MG
1609 * without blocking. However, we can be racing with
1610 * truncation so it's necessary to lock the page
1611 * to stabilise the mapping as truncation holds
1612 * the page lock until after the page is removed
1613 * from the page cache.
c8244935 1614 */
69d763fc
MG
1615 if (!trylock_page(page))
1616 return ret;
1617
c8244935 1618 mapping = page_mapping(page);
145e1a71 1619 migrate_dirty = !mapping || mapping->a_ops->migratepage;
69d763fc
MG
1620 unlock_page(page);
1621 if (!migrate_dirty)
c8244935
MG
1622 return ret;
1623 }
1624 }
39deaf85 1625
f80c0673
MK
1626 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1627 return ret;
1628
5ad333eb
AW
1629 if (likely(get_page_unless_zero(page))) {
1630 /*
1631 * Be careful not to clear PageLRU until after we're
1632 * sure the page is not being freed elsewhere -- the
1633 * page release code relies on it.
1634 */
1635 ClearPageLRU(page);
1636 ret = 0;
1637 }
1638
1639 return ret;
1640}
1641
7ee36a14
MG
1642
1643/*
1644 * Update LRU sizes after isolating pages. The LRU size updates must
1645 * be complete before mem_cgroup_update_lru_size due to a santity check.
1646 */
1647static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 1648 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 1649{
7ee36a14
MG
1650 int zid;
1651
7ee36a14
MG
1652 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1653 if (!nr_zone_taken[zid])
1654 continue;
1655
1656 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1657#ifdef CONFIG_MEMCG
b4536f0c 1658 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1659#endif
b4536f0c
MH
1660 }
1661
7ee36a14
MG
1662}
1663
f4b7e272
AR
1664/**
1665 * pgdat->lru_lock is heavily contended. Some of the functions that
1da177e4
LT
1666 * shrink the lists perform better by taking out a batch of pages
1667 * and working on them outside the LRU lock.
1668 *
1669 * For pagecache intensive workloads, this function is the hottest
1670 * spot in the kernel (apart from copy_*_user functions).
1671 *
1672 * Appropriate locks must be held before calling this function.
1673 *
791b48b6 1674 * @nr_to_scan: The number of eligible pages to look through on the list.
5dc35979 1675 * @lruvec: The LRU vector to pull pages from.
1da177e4 1676 * @dst: The temp list to put pages on to.
f626012d 1677 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1678 * @sc: The scan_control struct for this reclaim session
5ad333eb 1679 * @mode: One of the LRU isolation modes
3cb99451 1680 * @lru: LRU list id for isolating
1da177e4
LT
1681 *
1682 * returns how many pages were moved onto *@dst.
1683 */
69e05944 1684static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1685 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1686 unsigned long *nr_scanned, struct scan_control *sc,
a9e7c39f 1687 enum lru_list lru)
1da177e4 1688{
75b00af7 1689 struct list_head *src = &lruvec->lists[lru];
69e05944 1690 unsigned long nr_taken = 0;
599d0c95 1691 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 1692 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
3db65812 1693 unsigned long skipped = 0;
791b48b6 1694 unsigned long scan, total_scan, nr_pages;
b2e18757 1695 LIST_HEAD(pages_skipped);
a9e7c39f 1696 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1da177e4 1697
98879b3b 1698 total_scan = 0;
791b48b6 1699 scan = 0;
98879b3b 1700 while (scan < nr_to_scan && !list_empty(src)) {
5ad333eb 1701 struct page *page;
5ad333eb 1702
1da177e4
LT
1703 page = lru_to_page(src);
1704 prefetchw_prev_lru_page(page, src, flags);
1705
309381fe 1706 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1707
98879b3b
YS
1708 nr_pages = 1 << compound_order(page);
1709 total_scan += nr_pages;
1710
b2e18757
MG
1711 if (page_zonenum(page) > sc->reclaim_idx) {
1712 list_move(&page->lru, &pages_skipped);
98879b3b 1713 nr_skipped[page_zonenum(page)] += nr_pages;
b2e18757
MG
1714 continue;
1715 }
1716
791b48b6
MK
1717 /*
1718 * Do not count skipped pages because that makes the function
1719 * return with no isolated pages if the LRU mostly contains
1720 * ineligible pages. This causes the VM to not reclaim any
1721 * pages, triggering a premature OOM.
98879b3b
YS
1722 *
1723 * Account all tail pages of THP. This would not cause
1724 * premature OOM since __isolate_lru_page() returns -EBUSY
1725 * only when the page is being freed somewhere else.
791b48b6 1726 */
98879b3b 1727 scan += nr_pages;
f3fd4a61 1728 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1729 case 0:
599d0c95
MG
1730 nr_taken += nr_pages;
1731 nr_zone_taken[page_zonenum(page)] += nr_pages;
5ad333eb 1732 list_move(&page->lru, dst);
5ad333eb
AW
1733 break;
1734
1735 case -EBUSY:
1736 /* else it is being freed elsewhere */
1737 list_move(&page->lru, src);
1738 continue;
46453a6e 1739
5ad333eb
AW
1740 default:
1741 BUG();
1742 }
1da177e4
LT
1743 }
1744
b2e18757
MG
1745 /*
1746 * Splice any skipped pages to the start of the LRU list. Note that
1747 * this disrupts the LRU order when reclaiming for lower zones but
1748 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1749 * scanning would soon rescan the same pages to skip and put the
1750 * system at risk of premature OOM.
1751 */
7cc30fcf
MG
1752 if (!list_empty(&pages_skipped)) {
1753 int zid;
1754
3db65812 1755 list_splice(&pages_skipped, src);
7cc30fcf
MG
1756 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1757 if (!nr_skipped[zid])
1758 continue;
1759
1760 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 1761 skipped += nr_skipped[zid];
7cc30fcf
MG
1762 }
1763 }
791b48b6 1764 *nr_scanned = total_scan;
1265e3a6 1765 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
791b48b6 1766 total_scan, skipped, nr_taken, mode, lru);
b4536f0c 1767 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
1768 return nr_taken;
1769}
1770
62695a84
NP
1771/**
1772 * isolate_lru_page - tries to isolate a page from its LRU list
1773 * @page: page to isolate from its LRU list
1774 *
1775 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1776 * vmstat statistic corresponding to whatever LRU list the page was on.
1777 *
1778 * Returns 0 if the page was removed from an LRU list.
1779 * Returns -EBUSY if the page was not on an LRU list.
1780 *
1781 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1782 * the active list, it will have PageActive set. If it was found on
1783 * the unevictable list, it will have the PageUnevictable bit set. That flag
1784 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1785 *
1786 * The vmstat statistic corresponding to the list on which the page was
1787 * found will be decremented.
1788 *
1789 * Restrictions:
a5d09bed 1790 *
62695a84
NP
1791 * (1) Must be called with an elevated refcount on the page. This is a
1792 * fundamentnal difference from isolate_lru_pages (which is called
1793 * without a stable reference).
1794 * (2) the lru_lock must not be held.
1795 * (3) interrupts must be enabled.
1796 */
1797int isolate_lru_page(struct page *page)
1798{
1799 int ret = -EBUSY;
1800
309381fe 1801 VM_BUG_ON_PAGE(!page_count(page), page);
cf2a82ee 1802 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
0c917313 1803
62695a84 1804 if (PageLRU(page)) {
f4b7e272 1805 pg_data_t *pgdat = page_pgdat(page);
fa9add64 1806 struct lruvec *lruvec;
62695a84 1807
f4b7e272
AR
1808 spin_lock_irq(&pgdat->lru_lock);
1809 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0c917313 1810 if (PageLRU(page)) {
894bc310 1811 int lru = page_lru(page);
0c917313 1812 get_page(page);
62695a84 1813 ClearPageLRU(page);
fa9add64
HD
1814 del_page_from_lru_list(page, lruvec, lru);
1815 ret = 0;
62695a84 1816 }
f4b7e272 1817 spin_unlock_irq(&pgdat->lru_lock);
62695a84
NP
1818 }
1819 return ret;
1820}
1821
35cd7815 1822/*
d37dd5dc
FW
1823 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1824 * then get resheduled. When there are massive number of tasks doing page
1825 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1826 * the LRU list will go small and be scanned faster than necessary, leading to
1827 * unnecessary swapping, thrashing and OOM.
35cd7815 1828 */
599d0c95 1829static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
1830 struct scan_control *sc)
1831{
1832 unsigned long inactive, isolated;
1833
1834 if (current_is_kswapd())
1835 return 0;
1836
97c9341f 1837 if (!sane_reclaim(sc))
35cd7815
RR
1838 return 0;
1839
1840 if (file) {
599d0c95
MG
1841 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1842 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 1843 } else {
599d0c95
MG
1844 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1845 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
1846 }
1847
3cf23841
FW
1848 /*
1849 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1850 * won't get blocked by normal direct-reclaimers, forming a circular
1851 * deadlock.
1852 */
d0164adc 1853 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
1854 inactive >>= 3;
1855
35cd7815
RR
1856 return isolated > inactive;
1857}
1858
a222f341
KT
1859/*
1860 * This moves pages from @list to corresponding LRU list.
1861 *
1862 * We move them the other way if the page is referenced by one or more
1863 * processes, from rmap.
1864 *
1865 * If the pages are mostly unmapped, the processing is fast and it is
1866 * appropriate to hold zone_lru_lock across the whole operation. But if
1867 * the pages are mapped, the processing is slow (page_referenced()) so we
1868 * should drop zone_lru_lock around each page. It's impossible to balance
1869 * this, so instead we remove the pages from the LRU while processing them.
1870 * It is safe to rely on PG_active against the non-LRU pages in here because
1871 * nobody will play with that bit on a non-LRU page.
1872 *
1873 * The downside is that we have to touch page->_refcount against each page.
1874 * But we had to alter page->flags anyway.
1875 *
1876 * Returns the number of pages moved to the given lruvec.
1877 */
1878
1879static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1880 struct list_head *list)
66635629 1881{
599d0c95 1882 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
a222f341 1883 int nr_pages, nr_moved = 0;
3f79768f 1884 LIST_HEAD(pages_to_free);
a222f341
KT
1885 struct page *page;
1886 enum lru_list lru;
66635629 1887
a222f341
KT
1888 while (!list_empty(list)) {
1889 page = lru_to_page(list);
309381fe 1890 VM_BUG_ON_PAGE(PageLRU(page), page);
39b5f29a 1891 if (unlikely(!page_evictable(page))) {
a222f341 1892 list_del(&page->lru);
599d0c95 1893 spin_unlock_irq(&pgdat->lru_lock);
66635629 1894 putback_lru_page(page);
599d0c95 1895 spin_lock_irq(&pgdat->lru_lock);
66635629
MG
1896 continue;
1897 }
599d0c95 1898 lruvec = mem_cgroup_page_lruvec(page, pgdat);
fa9add64 1899
7a608572 1900 SetPageLRU(page);
66635629 1901 lru = page_lru(page);
a222f341
KT
1902
1903 nr_pages = hpage_nr_pages(page);
1904 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1905 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1906
2bcf8879
HD
1907 if (put_page_testzero(page)) {
1908 __ClearPageLRU(page);
1909 __ClearPageActive(page);
fa9add64 1910 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1911
1912 if (unlikely(PageCompound(page))) {
599d0c95 1913 spin_unlock_irq(&pgdat->lru_lock);
747db954 1914 mem_cgroup_uncharge(page);
2bcf8879 1915 (*get_compound_page_dtor(page))(page);
599d0c95 1916 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1917 } else
1918 list_add(&page->lru, &pages_to_free);
a222f341
KT
1919 } else {
1920 nr_moved += nr_pages;
66635629
MG
1921 }
1922 }
66635629 1923
3f79768f
HD
1924 /*
1925 * To save our caller's stack, now use input list for pages to free.
1926 */
a222f341
KT
1927 list_splice(&pages_to_free, list);
1928
1929 return nr_moved;
66635629
MG
1930}
1931
399ba0b9
N
1932/*
1933 * If a kernel thread (such as nfsd for loop-back mounts) services
1934 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1935 * In that case we should only throttle if the backing device it is
1936 * writing to is congested. In other cases it is safe to throttle.
1937 */
1938static int current_may_throttle(void)
1939{
1940 return !(current->flags & PF_LESS_THROTTLE) ||
1941 current->backing_dev_info == NULL ||
1942 bdi_write_congested(current->backing_dev_info);
1943}
1944
1da177e4 1945/*
b2e18757 1946 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 1947 * of reclaimed pages
1da177e4 1948 */
66635629 1949static noinline_for_stack unsigned long
1a93be0e 1950shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1951 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1952{
1953 LIST_HEAD(page_list);
e247dbce 1954 unsigned long nr_scanned;
05ff5137 1955 unsigned long nr_reclaimed = 0;
e247dbce 1956 unsigned long nr_taken;
060f005f 1957 struct reclaim_stat stat;
3cb99451 1958 int file = is_file_lru(lru);
f46b7912 1959 enum vm_event_item item;
599d0c95 1960 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1a93be0e 1961 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
db73ee0d 1962 bool stalled = false;
78dc583d 1963
599d0c95 1964 while (unlikely(too_many_isolated(pgdat, file, sc))) {
db73ee0d
MH
1965 if (stalled)
1966 return 0;
1967
1968 /* wait a bit for the reclaimer. */
1969 msleep(100);
1970 stalled = true;
35cd7815
RR
1971
1972 /* We are about to die and free our memory. Return now. */
1973 if (fatal_signal_pending(current))
1974 return SWAP_CLUSTER_MAX;
1975 }
1976
1da177e4 1977 lru_add_drain();
f80c0673 1978
599d0c95 1979 spin_lock_irq(&pgdat->lru_lock);
b35ea17b 1980
5dc35979 1981 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
a9e7c39f 1982 &nr_scanned, sc, lru);
95d918fc 1983
599d0c95 1984 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
9d5e6a9f 1985 reclaim_stat->recent_scanned[file] += nr_taken;
95d918fc 1986
f46b7912
KT
1987 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1988 if (global_reclaim(sc))
1989 __count_vm_events(item, nr_scanned);
1990 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
599d0c95 1991 spin_unlock_irq(&pgdat->lru_lock);
b35ea17b 1992
d563c050 1993 if (nr_taken == 0)
66635629 1994 return 0;
5ad333eb 1995
a128ca71 1996 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
3c710c1a 1997 &stat, false);
c661b078 1998
599d0c95 1999 spin_lock_irq(&pgdat->lru_lock);
3f79768f 2000
f46b7912
KT
2001 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2002 if (global_reclaim(sc))
2003 __count_vm_events(item, nr_reclaimed);
2004 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
b17f18af
KT
2005 reclaim_stat->recent_rotated[0] += stat.nr_activate[0];
2006 reclaim_stat->recent_rotated[1] += stat.nr_activate[1];
a74609fa 2007
a222f341 2008 move_pages_to_lru(lruvec, &page_list);
3f79768f 2009
599d0c95 2010 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f 2011
599d0c95 2012 spin_unlock_irq(&pgdat->lru_lock);
3f79768f 2013
747db954 2014 mem_cgroup_uncharge_list(&page_list);
2d4894b5 2015 free_unref_page_list(&page_list);
e11da5b4 2016
1c610d5f
AR
2017 /*
2018 * If dirty pages are scanned that are not queued for IO, it
2019 * implies that flushers are not doing their job. This can
2020 * happen when memory pressure pushes dirty pages to the end of
2021 * the LRU before the dirty limits are breached and the dirty
2022 * data has expired. It can also happen when the proportion of
2023 * dirty pages grows not through writes but through memory
2024 * pressure reclaiming all the clean cache. And in some cases,
2025 * the flushers simply cannot keep up with the allocation
2026 * rate. Nudge the flusher threads in case they are asleep.
2027 */
2028 if (stat.nr_unqueued_dirty == nr_taken)
2029 wakeup_flusher_threads(WB_REASON_VMSCAN);
2030
d108c772
AR
2031 sc->nr.dirty += stat.nr_dirty;
2032 sc->nr.congested += stat.nr_congested;
2033 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2034 sc->nr.writeback += stat.nr_writeback;
2035 sc->nr.immediate += stat.nr_immediate;
2036 sc->nr.taken += nr_taken;
2037 if (file)
2038 sc->nr.file_taken += nr_taken;
8e950282 2039
599d0c95 2040 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
d51d1e64 2041 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
05ff5137 2042 return nr_reclaimed;
1da177e4
LT
2043}
2044
f626012d 2045static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 2046 struct lruvec *lruvec,
f16015fb 2047 struct scan_control *sc,
9e3b2f8c 2048 enum lru_list lru)
1da177e4 2049{
44c241f1 2050 unsigned long nr_taken;
f626012d 2051 unsigned long nr_scanned;
6fe6b7e3 2052 unsigned long vm_flags;
1da177e4 2053 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 2054 LIST_HEAD(l_active);
b69408e8 2055 LIST_HEAD(l_inactive);
1da177e4 2056 struct page *page;
1a93be0e 2057 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
9d998b4f
MH
2058 unsigned nr_deactivate, nr_activate;
2059 unsigned nr_rotated = 0;
3cb99451 2060 int file = is_file_lru(lru);
599d0c95 2061 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
2062
2063 lru_add_drain();
f80c0673 2064
599d0c95 2065 spin_lock_irq(&pgdat->lru_lock);
925b7673 2066
5dc35979 2067 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
a9e7c39f 2068 &nr_scanned, sc, lru);
89b5fae5 2069
599d0c95 2070 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
b7c46d15 2071 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 2072
599d0c95 2073 __count_vm_events(PGREFILL, nr_scanned);
2fa2690c 2074 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
9d5e6a9f 2075
599d0c95 2076 spin_unlock_irq(&pgdat->lru_lock);
1da177e4 2077
1da177e4
LT
2078 while (!list_empty(&l_hold)) {
2079 cond_resched();
2080 page = lru_to_page(&l_hold);
2081 list_del(&page->lru);
7e9cd484 2082
39b5f29a 2083 if (unlikely(!page_evictable(page))) {
894bc310
LS
2084 putback_lru_page(page);
2085 continue;
2086 }
2087
cc715d99
MG
2088 if (unlikely(buffer_heads_over_limit)) {
2089 if (page_has_private(page) && trylock_page(page)) {
2090 if (page_has_private(page))
2091 try_to_release_page(page, 0);
2092 unlock_page(page);
2093 }
2094 }
2095
c3ac9a8a
JW
2096 if (page_referenced(page, 0, sc->target_mem_cgroup,
2097 &vm_flags)) {
9992af10 2098 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
2099 /*
2100 * Identify referenced, file-backed active pages and
2101 * give them one more trip around the active list. So
2102 * that executable code get better chances to stay in
2103 * memory under moderate memory pressure. Anon pages
2104 * are not likely to be evicted by use-once streaming
2105 * IO, plus JVM can create lots of anon VM_EXEC pages,
2106 * so we ignore them here.
2107 */
41e20983 2108 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
2109 list_add(&page->lru, &l_active);
2110 continue;
2111 }
2112 }
7e9cd484 2113
5205e56e 2114 ClearPageActive(page); /* we are de-activating */
1899ad18 2115 SetPageWorkingset(page);
1da177e4
LT
2116 list_add(&page->lru, &l_inactive);
2117 }
2118
b555749a 2119 /*
8cab4754 2120 * Move pages back to the lru list.
b555749a 2121 */
599d0c95 2122 spin_lock_irq(&pgdat->lru_lock);
556adecb 2123 /*
8cab4754
WF
2124 * Count referenced pages from currently used mappings as rotated,
2125 * even though only some of them are actually re-activated. This
2126 * helps balance scan pressure between file and anonymous pages in
7c0db9e9 2127 * get_scan_count.
7e9cd484 2128 */
b7c46d15 2129 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 2130
a222f341
KT
2131 nr_activate = move_pages_to_lru(lruvec, &l_active);
2132 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
f372d89e
KT
2133 /* Keep all free pages in l_active list */
2134 list_splice(&l_inactive, &l_active);
9851ac13
KT
2135
2136 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2137 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2138
599d0c95
MG
2139 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2140 spin_unlock_irq(&pgdat->lru_lock);
2bcf8879 2141
f372d89e
KT
2142 mem_cgroup_uncharge_list(&l_active);
2143 free_unref_page_list(&l_active);
9d998b4f
MH
2144 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2145 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
2146}
2147
59dc76b0
RR
2148/*
2149 * The inactive anon list should be small enough that the VM never has
2150 * to do too much work.
14797e23 2151 *
59dc76b0
RR
2152 * The inactive file list should be small enough to leave most memory
2153 * to the established workingset on the scan-resistant active list,
2154 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2155 *
59dc76b0
RR
2156 * Both inactive lists should also be large enough that each inactive
2157 * page has a chance to be referenced again before it is reclaimed.
56e49d21 2158 *
2a2e4885
JW
2159 * If that fails and refaulting is observed, the inactive list grows.
2160 *
59dc76b0 2161 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
3a50d14d 2162 * on this LRU, maintained by the pageout code. An inactive_ratio
59dc76b0 2163 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 2164 *
59dc76b0
RR
2165 * total target max
2166 * memory ratio inactive
2167 * -------------------------------------
2168 * 10MB 1 5MB
2169 * 100MB 1 50MB
2170 * 1GB 3 250MB
2171 * 10GB 10 0.9GB
2172 * 100GB 31 3GB
2173 * 1TB 101 10GB
2174 * 10TB 320 32GB
56e49d21 2175 */
f8d1a311 2176static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2c012a4a 2177 struct scan_control *sc, bool trace)
56e49d21 2178{
fd538803 2179 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2a2e4885
JW
2180 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2181 enum lru_list inactive_lru = file * LRU_FILE;
2182 unsigned long inactive, active;
2183 unsigned long inactive_ratio;
2184 unsigned long refaults;
59dc76b0 2185 unsigned long gb;
e3790144 2186
59dc76b0
RR
2187 /*
2188 * If we don't have swap space, anonymous page deactivation
2189 * is pointless.
2190 */
2191 if (!file && !total_swap_pages)
2192 return false;
56e49d21 2193
fd538803
MH
2194 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2195 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
f8d1a311 2196
2a2e4885
JW
2197 /*
2198 * When refaults are being observed, it means a new workingset
2199 * is being established. Disable active list protection to get
2200 * rid of the stale workingset quickly.
2201 */
205b20cc 2202 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2c012a4a 2203 if (file && lruvec->refaults != refaults) {
2a2e4885
JW
2204 inactive_ratio = 0;
2205 } else {
2206 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2207 if (gb)
2208 inactive_ratio = int_sqrt(10 * gb);
2209 else
2210 inactive_ratio = 1;
2211 }
59dc76b0 2212
2c012a4a 2213 if (trace)
2a2e4885
JW
2214 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2215 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2216 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2217 inactive_ratio, file);
fd538803 2218
59dc76b0 2219 return inactive * inactive_ratio < active;
b39415b2
RR
2220}
2221
4f98a2fe 2222static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
3b991208 2223 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 2224{
b39415b2 2225 if (is_active_lru(lru)) {
3b991208 2226 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
1a93be0e 2227 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
2228 return 0;
2229 }
2230
1a93be0e 2231 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
2232}
2233
9a265114
JW
2234enum scan_balance {
2235 SCAN_EQUAL,
2236 SCAN_FRACT,
2237 SCAN_ANON,
2238 SCAN_FILE,
2239};
2240
4f98a2fe
RR
2241/*
2242 * Determine how aggressively the anon and file LRU lists should be
2243 * scanned. The relative value of each set of LRU lists is determined
2244 * by looking at the fraction of the pages scanned we did rotate back
2245 * onto the active list instead of evict.
2246 *
be7bd59d
WL
2247 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2248 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2249 */
33377678 2250static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
6b4f7799
JW
2251 struct scan_control *sc, unsigned long *nr,
2252 unsigned long *lru_pages)
4f98a2fe 2253{
33377678 2254 int swappiness = mem_cgroup_swappiness(memcg);
9a265114
JW
2255 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2256 u64 fraction[2];
2257 u64 denominator = 0; /* gcc */
599d0c95 2258 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4f98a2fe 2259 unsigned long anon_prio, file_prio;
9a265114 2260 enum scan_balance scan_balance;
0bf1457f 2261 unsigned long anon, file;
4f98a2fe 2262 unsigned long ap, fp;
4111304d 2263 enum lru_list lru;
76a33fc3
SL
2264
2265 /* If we have no swap space, do not bother scanning anon pages. */
d8b38438 2266 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
9a265114 2267 scan_balance = SCAN_FILE;
76a33fc3
SL
2268 goto out;
2269 }
4f98a2fe 2270
10316b31
JW
2271 /*
2272 * Global reclaim will swap to prevent OOM even with no
2273 * swappiness, but memcg users want to use this knob to
2274 * disable swapping for individual groups completely when
2275 * using the memory controller's swap limit feature would be
2276 * too expensive.
2277 */
02695175 2278 if (!global_reclaim(sc) && !swappiness) {
9a265114 2279 scan_balance = SCAN_FILE;
10316b31
JW
2280 goto out;
2281 }
2282
2283 /*
2284 * Do not apply any pressure balancing cleverness when the
2285 * system is close to OOM, scan both anon and file equally
2286 * (unless the swappiness setting disagrees with swapping).
2287 */
02695175 2288 if (!sc->priority && swappiness) {
9a265114 2289 scan_balance = SCAN_EQUAL;
10316b31
JW
2290 goto out;
2291 }
2292
62376251
JW
2293 /*
2294 * Prevent the reclaimer from falling into the cache trap: as
2295 * cache pages start out inactive, every cache fault will tip
2296 * the scan balance towards the file LRU. And as the file LRU
2297 * shrinks, so does the window for rotation from references.
2298 * This means we have a runaway feedback loop where a tiny
2299 * thrashing file LRU becomes infinitely more attractive than
2300 * anon pages. Try to detect this based on file LRU size.
2301 */
2302 if (global_reclaim(sc)) {
599d0c95
MG
2303 unsigned long pgdatfile;
2304 unsigned long pgdatfree;
2305 int z;
2306 unsigned long total_high_wmark = 0;
2ab051e1 2307
599d0c95
MG
2308 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2309 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2310 node_page_state(pgdat, NR_INACTIVE_FILE);
2311
2312 for (z = 0; z < MAX_NR_ZONES; z++) {
2313 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2314 if (!managed_zone(zone))
599d0c95
MG
2315 continue;
2316
2317 total_high_wmark += high_wmark_pages(zone);
2318 }
62376251 2319
599d0c95 2320 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
06226226
DR
2321 /*
2322 * Force SCAN_ANON if there are enough inactive
2323 * anonymous pages on the LRU in eligible zones.
2324 * Otherwise, the small LRU gets thrashed.
2325 */
3b991208 2326 if (!inactive_list_is_low(lruvec, false, sc, false) &&
06226226
DR
2327 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2328 >> sc->priority) {
2329 scan_balance = SCAN_ANON;
2330 goto out;
2331 }
62376251
JW
2332 }
2333 }
2334
7c5bd705 2335 /*
316bda0e
VD
2336 * If there is enough inactive page cache, i.e. if the size of the
2337 * inactive list is greater than that of the active list *and* the
2338 * inactive list actually has some pages to scan on this priority, we
2339 * do not reclaim anything from the anonymous working set right now.
2340 * Without the second condition we could end up never scanning an
2341 * lruvec even if it has plenty of old anonymous pages unless the
2342 * system is under heavy pressure.
7c5bd705 2343 */
3b991208 2344 if (!inactive_list_is_low(lruvec, true, sc, false) &&
71ab6cfe 2345 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
9a265114 2346 scan_balance = SCAN_FILE;
7c5bd705
JW
2347 goto out;
2348 }
2349
9a265114
JW
2350 scan_balance = SCAN_FRACT;
2351
58c37f6e
KM
2352 /*
2353 * With swappiness at 100, anonymous and file have the same priority.
2354 * This scanning priority is essentially the inverse of IO cost.
2355 */
02695175 2356 anon_prio = swappiness;
75b00af7 2357 file_prio = 200 - anon_prio;
58c37f6e 2358
4f98a2fe
RR
2359 /*
2360 * OK, so we have swap space and a fair amount of page cache
2361 * pages. We use the recently rotated / recently scanned
2362 * ratios to determine how valuable each cache is.
2363 *
2364 * Because workloads change over time (and to avoid overflow)
2365 * we keep these statistics as a floating average, which ends
2366 * up weighing recent references more than old ones.
2367 *
2368 * anon in [0], file in [1]
2369 */
2ab051e1 2370
fd538803
MH
2371 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2372 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2373 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2374 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2ab051e1 2375
599d0c95 2376 spin_lock_irq(&pgdat->lru_lock);
6e901571 2377 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
2378 reclaim_stat->recent_scanned[0] /= 2;
2379 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
2380 }
2381
6e901571 2382 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
2383 reclaim_stat->recent_scanned[1] /= 2;
2384 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
2385 }
2386
4f98a2fe 2387 /*
00d8089c
RR
2388 * The amount of pressure on anon vs file pages is inversely
2389 * proportional to the fraction of recently scanned pages on
2390 * each list that were recently referenced and in active use.
4f98a2fe 2391 */
fe35004f 2392 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2393 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2394
fe35004f 2395 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2396 fp /= reclaim_stat->recent_rotated[1] + 1;
599d0c95 2397 spin_unlock_irq(&pgdat->lru_lock);
4f98a2fe 2398
76a33fc3
SL
2399 fraction[0] = ap;
2400 fraction[1] = fp;
2401 denominator = ap + fp + 1;
2402out:
688035f7
JW
2403 *lru_pages = 0;
2404 for_each_evictable_lru(lru) {
2405 int file = is_file_lru(lru);
2406 unsigned long size;
2407 unsigned long scan;
6b4f7799 2408
688035f7
JW
2409 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2410 scan = size >> sc->priority;
2411 /*
2412 * If the cgroup's already been deleted, make sure to
2413 * scrape out the remaining cache.
2414 */
2415 if (!scan && !mem_cgroup_online(memcg))
2416 scan = min(size, SWAP_CLUSTER_MAX);
6b4f7799 2417
688035f7
JW
2418 switch (scan_balance) {
2419 case SCAN_EQUAL:
2420 /* Scan lists relative to size */
2421 break;
2422 case SCAN_FRACT:
9a265114 2423 /*
688035f7
JW
2424 * Scan types proportional to swappiness and
2425 * their relative recent reclaim efficiency.
68600f62
RG
2426 * Make sure we don't miss the last page
2427 * because of a round-off error.
9a265114 2428 */
68600f62
RG
2429 scan = DIV64_U64_ROUND_UP(scan * fraction[file],
2430 denominator);
688035f7
JW
2431 break;
2432 case SCAN_FILE:
2433 case SCAN_ANON:
2434 /* Scan one type exclusively */
2435 if ((scan_balance == SCAN_FILE) != file) {
2436 size = 0;
2437 scan = 0;
2438 }
2439 break;
2440 default:
2441 /* Look ma, no brain */
2442 BUG();
9a265114 2443 }
688035f7
JW
2444
2445 *lru_pages += size;
2446 nr[lru] = scan;
76a33fc3 2447 }
6e08a369 2448}
4f98a2fe 2449
9b4f98cd 2450/*
a9dd0a83 2451 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
9b4f98cd 2452 */
a9dd0a83 2453static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
33377678 2454 struct scan_control *sc, unsigned long *lru_pages)
9b4f98cd 2455{
ef8f2327 2456 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
9b4f98cd 2457 unsigned long nr[NR_LRU_LISTS];
e82e0561 2458 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2459 unsigned long nr_to_scan;
2460 enum lru_list lru;
2461 unsigned long nr_reclaimed = 0;
2462 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2463 struct blk_plug plug;
1a501907 2464 bool scan_adjusted;
9b4f98cd 2465
33377678 2466 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
9b4f98cd 2467
e82e0561
MG
2468 /* Record the original scan target for proportional adjustments later */
2469 memcpy(targets, nr, sizeof(nr));
2470
1a501907
MG
2471 /*
2472 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2473 * event that can occur when there is little memory pressure e.g.
2474 * multiple streaming readers/writers. Hence, we do not abort scanning
2475 * when the requested number of pages are reclaimed when scanning at
2476 * DEF_PRIORITY on the assumption that the fact we are direct
2477 * reclaiming implies that kswapd is not keeping up and it is best to
2478 * do a batch of work at once. For memcg reclaim one check is made to
2479 * abort proportional reclaim if either the file or anon lru has already
2480 * dropped to zero at the first pass.
2481 */
2482 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2483 sc->priority == DEF_PRIORITY);
2484
9b4f98cd
JW
2485 blk_start_plug(&plug);
2486 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2487 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2488 unsigned long nr_anon, nr_file, percentage;
2489 unsigned long nr_scanned;
2490
9b4f98cd
JW
2491 for_each_evictable_lru(lru) {
2492 if (nr[lru]) {
2493 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2494 nr[lru] -= nr_to_scan;
2495
2496 nr_reclaimed += shrink_list(lru, nr_to_scan,
3b991208 2497 lruvec, sc);
9b4f98cd
JW
2498 }
2499 }
e82e0561 2500
bd041733
MH
2501 cond_resched();
2502
e82e0561
MG
2503 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2504 continue;
2505
e82e0561
MG
2506 /*
2507 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2508 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2509 * proportionally what was requested by get_scan_count(). We
2510 * stop reclaiming one LRU and reduce the amount scanning
2511 * proportional to the original scan target.
2512 */
2513 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2514 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2515
1a501907
MG
2516 /*
2517 * It's just vindictive to attack the larger once the smaller
2518 * has gone to zero. And given the way we stop scanning the
2519 * smaller below, this makes sure that we only make one nudge
2520 * towards proportionality once we've got nr_to_reclaim.
2521 */
2522 if (!nr_file || !nr_anon)
2523 break;
2524
e82e0561
MG
2525 if (nr_file > nr_anon) {
2526 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2527 targets[LRU_ACTIVE_ANON] + 1;
2528 lru = LRU_BASE;
2529 percentage = nr_anon * 100 / scan_target;
2530 } else {
2531 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2532 targets[LRU_ACTIVE_FILE] + 1;
2533 lru = LRU_FILE;
2534 percentage = nr_file * 100 / scan_target;
2535 }
2536
2537 /* Stop scanning the smaller of the LRU */
2538 nr[lru] = 0;
2539 nr[lru + LRU_ACTIVE] = 0;
2540
2541 /*
2542 * Recalculate the other LRU scan count based on its original
2543 * scan target and the percentage scanning already complete
2544 */
2545 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2546 nr_scanned = targets[lru] - nr[lru];
2547 nr[lru] = targets[lru] * (100 - percentage) / 100;
2548 nr[lru] -= min(nr[lru], nr_scanned);
2549
2550 lru += LRU_ACTIVE;
2551 nr_scanned = targets[lru] - nr[lru];
2552 nr[lru] = targets[lru] * (100 - percentage) / 100;
2553 nr[lru] -= min(nr[lru], nr_scanned);
2554
2555 scan_adjusted = true;
9b4f98cd
JW
2556 }
2557 blk_finish_plug(&plug);
2558 sc->nr_reclaimed += nr_reclaimed;
2559
2560 /*
2561 * Even if we did not try to evict anon pages at all, we want to
2562 * rebalance the anon lru active/inactive ratio.
2563 */
3b991208 2564 if (inactive_list_is_low(lruvec, false, sc, true))
9b4f98cd
JW
2565 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2566 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
2567}
2568
23b9da55 2569/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2570static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2571{
d84da3f9 2572 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2573 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2574 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2575 return true;
2576
2577 return false;
2578}
2579
3e7d3449 2580/*
23b9da55
MG
2581 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2582 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2583 * true if more pages should be reclaimed such that when the page allocator
2584 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2585 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2586 */
a9dd0a83 2587static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449
MG
2588 unsigned long nr_reclaimed,
2589 unsigned long nr_scanned,
2590 struct scan_control *sc)
2591{
2592 unsigned long pages_for_compaction;
2593 unsigned long inactive_lru_pages;
a9dd0a83 2594 int z;
3e7d3449
MG
2595
2596 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2597 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2598 return false;
2599
2876592f 2600 /* Consider stopping depending on scan and reclaim activity */
dcda9b04 2601 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2876592f 2602 /*
dcda9b04 2603 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2876592f
MG
2604 * full LRU list has been scanned and we are still failing
2605 * to reclaim pages. This full LRU scan is potentially
dcda9b04 2606 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2876592f
MG
2607 */
2608 if (!nr_reclaimed && !nr_scanned)
2609 return false;
2610 } else {
2611 /*
dcda9b04 2612 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2876592f
MG
2613 * fail without consequence, stop if we failed to reclaim
2614 * any pages from the last SWAP_CLUSTER_MAX number of
2615 * pages that were scanned. This will return to the
2616 * caller faster at the risk reclaim/compaction and
2617 * the resulting allocation attempt fails
2618 */
2619 if (!nr_reclaimed)
2620 return false;
2621 }
3e7d3449
MG
2622
2623 /*
2624 * If we have not reclaimed enough pages for compaction and the
2625 * inactive lists are large enough, continue reclaiming
2626 */
9861a62c 2627 pages_for_compaction = compact_gap(sc->order);
a9dd0a83 2628 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
ec8acf20 2629 if (get_nr_swap_pages() > 0)
a9dd0a83 2630 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3e7d3449
MG
2631 if (sc->nr_reclaimed < pages_for_compaction &&
2632 inactive_lru_pages > pages_for_compaction)
2633 return true;
2634
2635 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
2636 for (z = 0; z <= sc->reclaim_idx; z++) {
2637 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2638 if (!managed_zone(zone))
a9dd0a83
MG
2639 continue;
2640
2641 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 2642 case COMPACT_SUCCESS:
a9dd0a83
MG
2643 case COMPACT_CONTINUE:
2644 return false;
2645 default:
2646 /* check next zone */
2647 ;
2648 }
3e7d3449 2649 }
a9dd0a83 2650 return true;
3e7d3449
MG
2651}
2652
e3c1ac58
AR
2653static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2654{
2655 return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2656 (memcg && memcg_congested(pgdat, memcg));
2657}
2658
970a39a3 2659static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 2660{
cb731d6c 2661 struct reclaim_state *reclaim_state = current->reclaim_state;
f0fdc5e8 2662 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2663 bool reclaimable = false;
1da177e4 2664
9b4f98cd
JW
2665 do {
2666 struct mem_cgroup *root = sc->target_mem_cgroup;
2667 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 2668 .pgdat = pgdat,
9b4f98cd
JW
2669 .priority = sc->priority,
2670 };
a9dd0a83 2671 unsigned long node_lru_pages = 0;
694fbc0f 2672 struct mem_cgroup *memcg;
3e7d3449 2673
d108c772
AR
2674 memset(&sc->nr, 0, sizeof(sc->nr));
2675
9b4f98cd
JW
2676 nr_reclaimed = sc->nr_reclaimed;
2677 nr_scanned = sc->nr_scanned;
1da177e4 2678
694fbc0f
AM
2679 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2680 do {
6b4f7799 2681 unsigned long lru_pages;
8e8ae645 2682 unsigned long reclaimed;
cb731d6c 2683 unsigned long scanned;
5660048c 2684
bf8d5d52
RG
2685 switch (mem_cgroup_protected(root, memcg)) {
2686 case MEMCG_PROT_MIN:
2687 /*
2688 * Hard protection.
2689 * If there is no reclaimable memory, OOM.
2690 */
2691 continue;
2692 case MEMCG_PROT_LOW:
2693 /*
2694 * Soft protection.
2695 * Respect the protection only as long as
2696 * there is an unprotected supply
2697 * of reclaimable memory from other cgroups.
2698 */
d6622f63
YX
2699 if (!sc->memcg_low_reclaim) {
2700 sc->memcg_low_skipped = 1;
241994ed 2701 continue;
d6622f63 2702 }
e27be240 2703 memcg_memory_event(memcg, MEMCG_LOW);
bf8d5d52
RG
2704 break;
2705 case MEMCG_PROT_NONE:
2706 break;
241994ed
JW
2707 }
2708
8e8ae645 2709 reclaimed = sc->nr_reclaimed;
cb731d6c 2710 scanned = sc->nr_scanned;
a9dd0a83
MG
2711 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2712 node_lru_pages += lru_pages;
f16015fb 2713
28360f39
MG
2714 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2715 sc->priority);
cb731d6c 2716
8e8ae645
JW
2717 /* Record the group's reclaim efficiency */
2718 vmpressure(sc->gfp_mask, memcg, false,
2719 sc->nr_scanned - scanned,
2720 sc->nr_reclaimed - reclaimed);
2721
9b4f98cd 2722 /*
2bb0f34f
YS
2723 * Kswapd have to scan all memory cgroups to fulfill
2724 * the overall scan target for the node.
a394cb8e
MH
2725 *
2726 * Limit reclaim, on the other hand, only cares about
2727 * nr_to_reclaim pages to be reclaimed and it will
2728 * retry with decreasing priority if one round over the
2729 * whole hierarchy is not sufficient.
9b4f98cd 2730 */
2bb0f34f 2731 if (!current_is_kswapd() &&
a394cb8e 2732 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2733 mem_cgroup_iter_break(root, memcg);
2734 break;
2735 }
241994ed 2736 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
70ddf637 2737
cb731d6c
VD
2738 if (reclaim_state) {
2739 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2740 reclaim_state->reclaimed_slab = 0;
6b4f7799
JW
2741 }
2742
8e8ae645
JW
2743 /* Record the subtree's reclaim efficiency */
2744 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
70ddf637
AV
2745 sc->nr_scanned - nr_scanned,
2746 sc->nr_reclaimed - nr_reclaimed);
2747
2344d7e4
JW
2748 if (sc->nr_reclaimed - nr_reclaimed)
2749 reclaimable = true;
2750
e3c1ac58
AR
2751 if (current_is_kswapd()) {
2752 /*
2753 * If reclaim is isolating dirty pages under writeback,
2754 * it implies that the long-lived page allocation rate
2755 * is exceeding the page laundering rate. Either the
2756 * global limits are not being effective at throttling
2757 * processes due to the page distribution throughout
2758 * zones or there is heavy usage of a slow backing
2759 * device. The only option is to throttle from reclaim
2760 * context which is not ideal as there is no guarantee
2761 * the dirtying process is throttled in the same way
2762 * balance_dirty_pages() manages.
2763 *
2764 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2765 * count the number of pages under pages flagged for
2766 * immediate reclaim and stall if any are encountered
2767 * in the nr_immediate check below.
2768 */
2769 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2770 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
d108c772 2771
d108c772
AR
2772 /*
2773 * Tag a node as congested if all the dirty pages
2774 * scanned were backed by a congested BDI and
2775 * wait_iff_congested will stall.
2776 */
2777 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2778 set_bit(PGDAT_CONGESTED, &pgdat->flags);
2779
2780 /* Allow kswapd to start writing pages during reclaim.*/
2781 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2782 set_bit(PGDAT_DIRTY, &pgdat->flags);
2783
2784 /*
2785 * If kswapd scans pages marked marked for immediate
2786 * reclaim and under writeback (nr_immediate), it
2787 * implies that pages are cycling through the LRU
2788 * faster than they are written so also forcibly stall.
2789 */
2790 if (sc->nr.immediate)
2791 congestion_wait(BLK_RW_ASYNC, HZ/10);
2792 }
2793
e3c1ac58
AR
2794 /*
2795 * Legacy memcg will stall in page writeback so avoid forcibly
2796 * stalling in wait_iff_congested().
2797 */
2798 if (!global_reclaim(sc) && sane_reclaim(sc) &&
2799 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2800 set_memcg_congestion(pgdat, root, true);
2801
d108c772
AR
2802 /*
2803 * Stall direct reclaim for IO completions if underlying BDIs
2804 * and node is congested. Allow kswapd to continue until it
2805 * starts encountering unqueued dirty pages or cycling through
2806 * the LRU too quickly.
2807 */
2808 if (!sc->hibernation_mode && !current_is_kswapd() &&
e3c1ac58
AR
2809 current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2810 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
d108c772 2811
a9dd0a83 2812 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
9b4f98cd 2813 sc->nr_scanned - nr_scanned, sc));
2344d7e4 2814
c73322d0
JW
2815 /*
2816 * Kswapd gives up on balancing particular nodes after too
2817 * many failures to reclaim anything from them and goes to
2818 * sleep. On reclaim progress, reset the failure counter. A
2819 * successful direct reclaim run will revive a dormant kswapd.
2820 */
2821 if (reclaimable)
2822 pgdat->kswapd_failures = 0;
2823
2344d7e4 2824 return reclaimable;
f16015fb
JW
2825}
2826
53853e2d 2827/*
fdd4c614
VB
2828 * Returns true if compaction should go ahead for a costly-order request, or
2829 * the allocation would already succeed without compaction. Return false if we
2830 * should reclaim first.
53853e2d 2831 */
4f588331 2832static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 2833{
31483b6a 2834 unsigned long watermark;
fdd4c614 2835 enum compact_result suitable;
fe4b1b24 2836
fdd4c614
VB
2837 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2838 if (suitable == COMPACT_SUCCESS)
2839 /* Allocation should succeed already. Don't reclaim. */
2840 return true;
2841 if (suitable == COMPACT_SKIPPED)
2842 /* Compaction cannot yet proceed. Do reclaim. */
2843 return false;
fe4b1b24 2844
53853e2d 2845 /*
fdd4c614
VB
2846 * Compaction is already possible, but it takes time to run and there
2847 * are potentially other callers using the pages just freed. So proceed
2848 * with reclaim to make a buffer of free pages available to give
2849 * compaction a reasonable chance of completing and allocating the page.
2850 * Note that we won't actually reclaim the whole buffer in one attempt
2851 * as the target watermark in should_continue_reclaim() is lower. But if
2852 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 2853 */
fdd4c614 2854 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 2855
fdd4c614 2856 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
2857}
2858
1da177e4
LT
2859/*
2860 * This is the direct reclaim path, for page-allocating processes. We only
2861 * try to reclaim pages from zones which will satisfy the caller's allocation
2862 * request.
2863 *
1da177e4
LT
2864 * If a zone is deemed to be full of pinned pages then just give it a light
2865 * scan then give up on it.
2866 */
0a0337e0 2867static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2868{
dd1a239f 2869 struct zoneref *z;
54a6eb5c 2870 struct zone *zone;
0608f43d
AM
2871 unsigned long nr_soft_reclaimed;
2872 unsigned long nr_soft_scanned;
619d0d76 2873 gfp_t orig_mask;
79dafcdc 2874 pg_data_t *last_pgdat = NULL;
1cfb419b 2875
cc715d99
MG
2876 /*
2877 * If the number of buffer_heads in the machine exceeds the maximum
2878 * allowed level, force direct reclaim to scan the highmem zone as
2879 * highmem pages could be pinning lowmem pages storing buffer_heads
2880 */
619d0d76 2881 orig_mask = sc->gfp_mask;
b2e18757 2882 if (buffer_heads_over_limit) {
cc715d99 2883 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 2884 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 2885 }
cc715d99 2886
d4debc66 2887 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 2888 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
2889 /*
2890 * Take care memory controller reclaiming has small influence
2891 * to global LRU.
2892 */
89b5fae5 2893 if (global_reclaim(sc)) {
344736f2
VD
2894 if (!cpuset_zone_allowed(zone,
2895 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2896 continue;
65ec02cb 2897
0b06496a
JW
2898 /*
2899 * If we already have plenty of memory free for
2900 * compaction in this zone, don't free any more.
2901 * Even though compaction is invoked for any
2902 * non-zero order, only frequent costly order
2903 * reclamation is disruptive enough to become a
2904 * noticeable problem, like transparent huge
2905 * page allocations.
2906 */
2907 if (IS_ENABLED(CONFIG_COMPACTION) &&
2908 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 2909 compaction_ready(zone, sc)) {
0b06496a
JW
2910 sc->compaction_ready = true;
2911 continue;
e0887c19 2912 }
0b06496a 2913
79dafcdc
MG
2914 /*
2915 * Shrink each node in the zonelist once. If the
2916 * zonelist is ordered by zone (not the default) then a
2917 * node may be shrunk multiple times but in that case
2918 * the user prefers lower zones being preserved.
2919 */
2920 if (zone->zone_pgdat == last_pgdat)
2921 continue;
2922
0608f43d
AM
2923 /*
2924 * This steals pages from memory cgroups over softlimit
2925 * and returns the number of reclaimed pages and
2926 * scanned pages. This works for global memory pressure
2927 * and balancing, not for a memcg's limit.
2928 */
2929 nr_soft_scanned = 0;
ef8f2327 2930 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
2931 sc->order, sc->gfp_mask,
2932 &nr_soft_scanned);
2933 sc->nr_reclaimed += nr_soft_reclaimed;
2934 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 2935 /* need some check for avoid more shrink_zone() */
1cfb419b 2936 }
408d8544 2937
79dafcdc
MG
2938 /* See comment about same check for global reclaim above */
2939 if (zone->zone_pgdat == last_pgdat)
2940 continue;
2941 last_pgdat = zone->zone_pgdat;
970a39a3 2942 shrink_node(zone->zone_pgdat, sc);
1da177e4 2943 }
e0c23279 2944
619d0d76
WY
2945 /*
2946 * Restore to original mask to avoid the impact on the caller if we
2947 * promoted it to __GFP_HIGHMEM.
2948 */
2949 sc->gfp_mask = orig_mask;
1da177e4 2950}
4f98a2fe 2951
2a2e4885
JW
2952static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2953{
2954 struct mem_cgroup *memcg;
2955
2956 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2957 do {
2958 unsigned long refaults;
2959 struct lruvec *lruvec;
2960
2a2e4885 2961 lruvec = mem_cgroup_lruvec(pgdat, memcg);
205b20cc 2962 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2a2e4885
JW
2963 lruvec->refaults = refaults;
2964 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2965}
2966
1da177e4
LT
2967/*
2968 * This is the main entry point to direct page reclaim.
2969 *
2970 * If a full scan of the inactive list fails to free enough memory then we
2971 * are "out of memory" and something needs to be killed.
2972 *
2973 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2974 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2975 * caller can't do much about. We kick the writeback threads and take explicit
2976 * naps in the hope that some of these pages can be written. But if the
2977 * allocating task holds filesystem locks which prevent writeout this might not
2978 * work, and the allocation attempt will fail.
a41f24ea
NA
2979 *
2980 * returns: 0, if no pages reclaimed
2981 * else, the number of pages reclaimed
1da177e4 2982 */
dac1d27b 2983static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 2984 struct scan_control *sc)
1da177e4 2985{
241994ed 2986 int initial_priority = sc->priority;
2a2e4885
JW
2987 pg_data_t *last_pgdat;
2988 struct zoneref *z;
2989 struct zone *zone;
241994ed 2990retry:
873b4771
KK
2991 delayacct_freepages_start();
2992
89b5fae5 2993 if (global_reclaim(sc))
7cc30fcf 2994 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 2995
9e3b2f8c 2996 do {
70ddf637
AV
2997 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2998 sc->priority);
66e1707b 2999 sc->nr_scanned = 0;
0a0337e0 3000 shrink_zones(zonelist, sc);
c6a8a8c5 3001
bb21c7ce 3002 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
3003 break;
3004
3005 if (sc->compaction_ready)
3006 break;
1da177e4 3007
0e50ce3b
MK
3008 /*
3009 * If we're getting trouble reclaiming, start doing
3010 * writepage even in laptop mode.
3011 */
3012 if (sc->priority < DEF_PRIORITY - 2)
3013 sc->may_writepage = 1;
0b06496a 3014 } while (--sc->priority >= 0);
bb21c7ce 3015
2a2e4885
JW
3016 last_pgdat = NULL;
3017 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3018 sc->nodemask) {
3019 if (zone->zone_pgdat == last_pgdat)
3020 continue;
3021 last_pgdat = zone->zone_pgdat;
3022 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
e3c1ac58 3023 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
2a2e4885
JW
3024 }
3025
873b4771
KK
3026 delayacct_freepages_end();
3027
bb21c7ce
KM
3028 if (sc->nr_reclaimed)
3029 return sc->nr_reclaimed;
3030
0cee34fd 3031 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 3032 if (sc->compaction_ready)
7335084d
MG
3033 return 1;
3034
241994ed 3035 /* Untapped cgroup reserves? Don't OOM, retry. */
d6622f63 3036 if (sc->memcg_low_skipped) {
241994ed 3037 sc->priority = initial_priority;
d6622f63
YX
3038 sc->memcg_low_reclaim = 1;
3039 sc->memcg_low_skipped = 0;
241994ed
JW
3040 goto retry;
3041 }
3042
bb21c7ce 3043 return 0;
1da177e4
LT
3044}
3045
c73322d0 3046static bool allow_direct_reclaim(pg_data_t *pgdat)
5515061d
MG
3047{
3048 struct zone *zone;
3049 unsigned long pfmemalloc_reserve = 0;
3050 unsigned long free_pages = 0;
3051 int i;
3052 bool wmark_ok;
3053
c73322d0
JW
3054 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3055 return true;
3056
5515061d
MG
3057 for (i = 0; i <= ZONE_NORMAL; i++) {
3058 zone = &pgdat->node_zones[i];
d450abd8
JW
3059 if (!managed_zone(zone))
3060 continue;
3061
3062 if (!zone_reclaimable_pages(zone))
675becce
MG
3063 continue;
3064
5515061d
MG
3065 pfmemalloc_reserve += min_wmark_pages(zone);
3066 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3067 }
3068
675becce
MG
3069 /* If there are no reserves (unexpected config) then do not throttle */
3070 if (!pfmemalloc_reserve)
3071 return true;
3072
5515061d
MG
3073 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3074
3075 /* kswapd must be awake if processes are being throttled */
3076 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
38087d9b 3077 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
5515061d
MG
3078 (enum zone_type)ZONE_NORMAL);
3079 wake_up_interruptible(&pgdat->kswapd_wait);
3080 }
3081
3082 return wmark_ok;
3083}
3084
3085/*
3086 * Throttle direct reclaimers if backing storage is backed by the network
3087 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3088 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
3089 * when the low watermark is reached.
3090 *
3091 * Returns true if a fatal signal was delivered during throttling. If this
3092 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 3093 */
50694c28 3094static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
3095 nodemask_t *nodemask)
3096{
675becce 3097 struct zoneref *z;
5515061d 3098 struct zone *zone;
675becce 3099 pg_data_t *pgdat = NULL;
5515061d
MG
3100
3101 /*
3102 * Kernel threads should not be throttled as they may be indirectly
3103 * responsible for cleaning pages necessary for reclaim to make forward
3104 * progress. kjournald for example may enter direct reclaim while
3105 * committing a transaction where throttling it could forcing other
3106 * processes to block on log_wait_commit().
3107 */
3108 if (current->flags & PF_KTHREAD)
50694c28
MG
3109 goto out;
3110
3111 /*
3112 * If a fatal signal is pending, this process should not throttle.
3113 * It should return quickly so it can exit and free its memory
3114 */
3115 if (fatal_signal_pending(current))
3116 goto out;
5515061d 3117
675becce
MG
3118 /*
3119 * Check if the pfmemalloc reserves are ok by finding the first node
3120 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3121 * GFP_KERNEL will be required for allocating network buffers when
3122 * swapping over the network so ZONE_HIGHMEM is unusable.
3123 *
3124 * Throttling is based on the first usable node and throttled processes
3125 * wait on a queue until kswapd makes progress and wakes them. There
3126 * is an affinity then between processes waking up and where reclaim
3127 * progress has been made assuming the process wakes on the same node.
3128 * More importantly, processes running on remote nodes will not compete
3129 * for remote pfmemalloc reserves and processes on different nodes
3130 * should make reasonable progress.
3131 */
3132 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 3133 gfp_zone(gfp_mask), nodemask) {
675becce
MG
3134 if (zone_idx(zone) > ZONE_NORMAL)
3135 continue;
3136
3137 /* Throttle based on the first usable node */
3138 pgdat = zone->zone_pgdat;
c73322d0 3139 if (allow_direct_reclaim(pgdat))
675becce
MG
3140 goto out;
3141 break;
3142 }
3143
3144 /* If no zone was usable by the allocation flags then do not throttle */
3145 if (!pgdat)
50694c28 3146 goto out;
5515061d 3147
68243e76
MG
3148 /* Account for the throttling */
3149 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3150
5515061d
MG
3151 /*
3152 * If the caller cannot enter the filesystem, it's possible that it
3153 * is due to the caller holding an FS lock or performing a journal
3154 * transaction in the case of a filesystem like ext[3|4]. In this case,
3155 * it is not safe to block on pfmemalloc_wait as kswapd could be
3156 * blocked waiting on the same lock. Instead, throttle for up to a
3157 * second before continuing.
3158 */
3159 if (!(gfp_mask & __GFP_FS)) {
3160 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
c73322d0 3161 allow_direct_reclaim(pgdat), HZ);
50694c28
MG
3162
3163 goto check_pending;
5515061d
MG
3164 }
3165
3166 /* Throttle until kswapd wakes the process */
3167 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
c73322d0 3168 allow_direct_reclaim(pgdat));
50694c28
MG
3169
3170check_pending:
3171 if (fatal_signal_pending(current))
3172 return true;
3173
3174out:
3175 return false;
5515061d
MG
3176}
3177
dac1d27b 3178unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 3179 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 3180{
33906bc5 3181 unsigned long nr_reclaimed;
66e1707b 3182 struct scan_control sc = {
ee814fe2 3183 .nr_to_reclaim = SWAP_CLUSTER_MAX,
f2f43e56 3184 .gfp_mask = current_gfp_context(gfp_mask),
b2e18757 3185 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
3186 .order = order,
3187 .nodemask = nodemask,
3188 .priority = DEF_PRIORITY,
66e1707b 3189 .may_writepage = !laptop_mode,
a6dc60f8 3190 .may_unmap = 1,
2e2e4259 3191 .may_swap = 1,
66e1707b
BS
3192 };
3193
bb451fdf
GT
3194 /*
3195 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3196 * Confirm they are large enough for max values.
3197 */
3198 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3199 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3200 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3201
5515061d 3202 /*
50694c28
MG
3203 * Do not enter reclaim if fatal signal was delivered while throttled.
3204 * 1 is returned so that the page allocator does not OOM kill at this
3205 * point.
5515061d 3206 */
f2f43e56 3207 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
5515061d
MG
3208 return 1;
3209
1732d2b0 3210 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 3211 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
33906bc5 3212
3115cd91 3213 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
3214
3215 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
1732d2b0 3216 set_task_reclaim_state(current, NULL);
33906bc5
MG
3217
3218 return nr_reclaimed;
66e1707b
BS
3219}
3220
c255a458 3221#ifdef CONFIG_MEMCG
66e1707b 3222
d2e5fb92 3223/* Only used by soft limit reclaim. Do not reuse for anything else. */
a9dd0a83 3224unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 3225 gfp_t gfp_mask, bool noswap,
ef8f2327 3226 pg_data_t *pgdat,
0ae5e89c 3227 unsigned long *nr_scanned)
4e416953
BS
3228{
3229 struct scan_control sc = {
b8f5c566 3230 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 3231 .target_mem_cgroup = memcg,
4e416953
BS
3232 .may_writepage = !laptop_mode,
3233 .may_unmap = 1,
b2e18757 3234 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 3235 .may_swap = !noswap,
4e416953 3236 };
6b4f7799 3237 unsigned long lru_pages;
0ae5e89c 3238
d2e5fb92
MH
3239 WARN_ON_ONCE(!current->reclaim_state);
3240
4e416953
BS
3241 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3242 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 3243
9e3b2f8c 3244 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3481c37f 3245 sc.gfp_mask);
bdce6d9e 3246
4e416953
BS
3247 /*
3248 * NOTE: Although we can get the priority field, using it
3249 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 3250 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
3251 * will pick up pages from other mem cgroup's as well. We hack
3252 * the priority and make it zero.
3253 */
ef8f2327 3254 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
bdce6d9e
KM
3255
3256 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3257
0ae5e89c 3258 *nr_scanned = sc.nr_scanned;
0308f7cf 3259
4e416953
BS
3260 return sc.nr_reclaimed;
3261}
3262
72835c86 3263unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 3264 unsigned long nr_pages,
a7885eb8 3265 gfp_t gfp_mask,
b70a2a21 3266 bool may_swap)
66e1707b 3267{
4e416953 3268 struct zonelist *zonelist;
bdce6d9e 3269 unsigned long nr_reclaimed;
eb414681 3270 unsigned long pflags;
889976db 3271 int nid;
499118e9 3272 unsigned int noreclaim_flag;
66e1707b 3273 struct scan_control sc = {
b70a2a21 3274 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7dea19f9 3275 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
a09ed5e0 3276 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 3277 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
3278 .target_mem_cgroup = memcg,
3279 .priority = DEF_PRIORITY,
3280 .may_writepage = !laptop_mode,
3281 .may_unmap = 1,
b70a2a21 3282 .may_swap = may_swap,
a09ed5e0 3283 };
66e1707b 3284
1732d2b0 3285 set_task_reclaim_state(current, &sc.reclaim_state);
889976db
YH
3286 /*
3287 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3288 * take care of from where we get pages. So the node where we start the
3289 * scan does not need to be the current node.
3290 */
72835c86 3291 nid = mem_cgroup_select_victim_node(memcg);
889976db 3292
c9634cf0 3293 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
bdce6d9e 3294
3481c37f 3295 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
bdce6d9e 3296
eb414681 3297 psi_memstall_enter(&pflags);
499118e9 3298 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3299
3115cd91 3300 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
eb414681 3301
499118e9 3302 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 3303 psi_memstall_leave(&pflags);
bdce6d9e
KM
3304
3305 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
1732d2b0 3306 set_task_reclaim_state(current, NULL);
bdce6d9e
KM
3307
3308 return nr_reclaimed;
66e1707b
BS
3309}
3310#endif
3311
1d82de61 3312static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 3313 struct scan_control *sc)
f16015fb 3314{
b95a2f2d 3315 struct mem_cgroup *memcg;
f16015fb 3316
b95a2f2d
JW
3317 if (!total_swap_pages)
3318 return;
3319
3320 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3321 do {
ef8f2327 3322 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
b95a2f2d 3323
3b991208 3324 if (inactive_list_is_low(lruvec, false, sc, true))
1a93be0e 3325 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 3326 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3327
3328 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3329 } while (memcg);
f16015fb
JW
3330}
3331
1c30844d
MG
3332static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
3333{
3334 int i;
3335 struct zone *zone;
3336
3337 /*
3338 * Check for watermark boosts top-down as the higher zones
3339 * are more likely to be boosted. Both watermarks and boosts
3340 * should not be checked at the time time as reclaim would
3341 * start prematurely when there is no boosting and a lower
3342 * zone is balanced.
3343 */
3344 for (i = classzone_idx; i >= 0; i--) {
3345 zone = pgdat->node_zones + i;
3346 if (!managed_zone(zone))
3347 continue;
3348
3349 if (zone->watermark_boost)
3350 return true;
3351 }
3352
3353 return false;
3354}
3355
e716f2eb
MG
3356/*
3357 * Returns true if there is an eligible zone balanced for the request order
3358 * and classzone_idx
3359 */
3360static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
60cefed4 3361{
e716f2eb
MG
3362 int i;
3363 unsigned long mark = -1;
3364 struct zone *zone;
60cefed4 3365
1c30844d
MG
3366 /*
3367 * Check watermarks bottom-up as lower zones are more likely to
3368 * meet watermarks.
3369 */
e716f2eb
MG
3370 for (i = 0; i <= classzone_idx; i++) {
3371 zone = pgdat->node_zones + i;
6256c6b4 3372
e716f2eb
MG
3373 if (!managed_zone(zone))
3374 continue;
3375
3376 mark = high_wmark_pages(zone);
3377 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3378 return true;
3379 }
3380
3381 /*
3382 * If a node has no populated zone within classzone_idx, it does not
3383 * need balancing by definition. This can happen if a zone-restricted
3384 * allocation tries to wake a remote kswapd.
3385 */
3386 if (mark == -1)
3387 return true;
3388
3389 return false;
60cefed4
JW
3390}
3391
631b6e08
MG
3392/* Clear pgdat state for congested, dirty or under writeback. */
3393static void clear_pgdat_congested(pg_data_t *pgdat)
3394{
3395 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3396 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3397 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3398}
3399
5515061d
MG
3400/*
3401 * Prepare kswapd for sleeping. This verifies that there are no processes
3402 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3403 *
3404 * Returns true if kswapd is ready to sleep
3405 */
d9f21d42 3406static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f50de2d3 3407{
5515061d 3408 /*
9e5e3661 3409 * The throttled processes are normally woken up in balance_pgdat() as
c73322d0 3410 * soon as allow_direct_reclaim() is true. But there is a potential
9e5e3661
VB
3411 * race between when kswapd checks the watermarks and a process gets
3412 * throttled. There is also a potential race if processes get
3413 * throttled, kswapd wakes, a large process exits thereby balancing the
3414 * zones, which causes kswapd to exit balance_pgdat() before reaching
3415 * the wake up checks. If kswapd is going to sleep, no process should
3416 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3417 * the wake up is premature, processes will wake kswapd and get
3418 * throttled again. The difference from wake ups in balance_pgdat() is
3419 * that here we are under prepare_to_wait().
5515061d 3420 */
9e5e3661
VB
3421 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3422 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3423
c73322d0
JW
3424 /* Hopeless node, leave it to direct reclaim */
3425 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3426 return true;
3427
e716f2eb
MG
3428 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3429 clear_pgdat_congested(pgdat);
3430 return true;
1d82de61
MG
3431 }
3432
333b0a45 3433 return false;
f50de2d3
MG
3434}
3435
75485363 3436/*
1d82de61
MG
3437 * kswapd shrinks a node of pages that are at or below the highest usable
3438 * zone that is currently unbalanced.
b8e83b94
MG
3439 *
3440 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3441 * reclaim or if the lack of progress was due to pages under writeback.
3442 * This is used to determine if the scanning priority needs to be raised.
75485363 3443 */
1d82de61 3444static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 3445 struct scan_control *sc)
75485363 3446{
1d82de61
MG
3447 struct zone *zone;
3448 int z;
75485363 3449
1d82de61
MG
3450 /* Reclaim a number of pages proportional to the number of zones */
3451 sc->nr_to_reclaim = 0;
970a39a3 3452 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 3453 zone = pgdat->node_zones + z;
6aa303de 3454 if (!managed_zone(zone))
1d82de61 3455 continue;
7c954f6d 3456
1d82de61
MG
3457 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3458 }
7c954f6d
MG
3459
3460 /*
1d82de61
MG
3461 * Historically care was taken to put equal pressure on all zones but
3462 * now pressure is applied based on node LRU order.
7c954f6d 3463 */
970a39a3 3464 shrink_node(pgdat, sc);
283aba9f 3465
7c954f6d 3466 /*
1d82de61
MG
3467 * Fragmentation may mean that the system cannot be rebalanced for
3468 * high-order allocations. If twice the allocation size has been
3469 * reclaimed then recheck watermarks only at order-0 to prevent
3470 * excessive reclaim. Assume that a process requested a high-order
3471 * can direct reclaim/compact.
7c954f6d 3472 */
9861a62c 3473 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 3474 sc->order = 0;
7c954f6d 3475
b8e83b94 3476 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3477}
3478
1da177e4 3479/*
1d82de61
MG
3480 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3481 * that are eligible for use by the caller until at least one zone is
3482 * balanced.
1da177e4 3483 *
1d82de61 3484 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
3485 *
3486 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 3487 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
8bb4e7a2 3488 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
1d82de61
MG
3489 * or lower is eligible for reclaim until at least one usable zone is
3490 * balanced.
1da177e4 3491 */
accf6242 3492static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
1da177e4 3493{
1da177e4 3494 int i;
0608f43d
AM
3495 unsigned long nr_soft_reclaimed;
3496 unsigned long nr_soft_scanned;
eb414681 3497 unsigned long pflags;
1c30844d
MG
3498 unsigned long nr_boost_reclaim;
3499 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3500 bool boosted;
1d82de61 3501 struct zone *zone;
179e9639
AM
3502 struct scan_control sc = {
3503 .gfp_mask = GFP_KERNEL,
ee814fe2 3504 .order = order,
a6dc60f8 3505 .may_unmap = 1,
179e9639 3506 };
93781325 3507
1732d2b0 3508 set_task_reclaim_state(current, &sc.reclaim_state);
eb414681 3509 psi_memstall_enter(&pflags);
93781325
OS
3510 __fs_reclaim_acquire();
3511
f8891e5e 3512 count_vm_event(PAGEOUTRUN);
1da177e4 3513
1c30844d
MG
3514 /*
3515 * Account for the reclaim boost. Note that the zone boost is left in
3516 * place so that parallel allocations that are near the watermark will
3517 * stall or direct reclaim until kswapd is finished.
3518 */
3519 nr_boost_reclaim = 0;
3520 for (i = 0; i <= classzone_idx; i++) {
3521 zone = pgdat->node_zones + i;
3522 if (!managed_zone(zone))
3523 continue;
3524
3525 nr_boost_reclaim += zone->watermark_boost;
3526 zone_boosts[i] = zone->watermark_boost;
3527 }
3528 boosted = nr_boost_reclaim;
3529
3530restart:
3531 sc.priority = DEF_PRIORITY;
9e3b2f8c 3532 do {
c73322d0 3533 unsigned long nr_reclaimed = sc.nr_reclaimed;
b8e83b94 3534 bool raise_priority = true;
1c30844d 3535 bool balanced;
93781325 3536 bool ret;
b8e83b94 3537
84c7a777 3538 sc.reclaim_idx = classzone_idx;
1da177e4 3539
86c79f6b 3540 /*
84c7a777
MG
3541 * If the number of buffer_heads exceeds the maximum allowed
3542 * then consider reclaiming from all zones. This has a dual
3543 * purpose -- on 64-bit systems it is expected that
3544 * buffer_heads are stripped during active rotation. On 32-bit
3545 * systems, highmem pages can pin lowmem memory and shrinking
3546 * buffers can relieve lowmem pressure. Reclaim may still not
3547 * go ahead if all eligible zones for the original allocation
3548 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
3549 */
3550 if (buffer_heads_over_limit) {
3551 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3552 zone = pgdat->node_zones + i;
6aa303de 3553 if (!managed_zone(zone))
86c79f6b 3554 continue;
cc715d99 3555
970a39a3 3556 sc.reclaim_idx = i;
e1dbeda6 3557 break;
1da177e4 3558 }
1da177e4 3559 }
dafcb73e 3560
86c79f6b 3561 /*
1c30844d
MG
3562 * If the pgdat is imbalanced then ignore boosting and preserve
3563 * the watermarks for a later time and restart. Note that the
3564 * zone watermarks will be still reset at the end of balancing
3565 * on the grounds that the normal reclaim should be enough to
3566 * re-evaluate if boosting is required when kswapd next wakes.
3567 */
3568 balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
3569 if (!balanced && nr_boost_reclaim) {
3570 nr_boost_reclaim = 0;
3571 goto restart;
3572 }
3573
3574 /*
3575 * If boosting is not active then only reclaim if there are no
3576 * eligible zones. Note that sc.reclaim_idx is not used as
3577 * buffer_heads_over_limit may have adjusted it.
86c79f6b 3578 */
1c30844d 3579 if (!nr_boost_reclaim && balanced)
e716f2eb 3580 goto out;
e1dbeda6 3581
1c30844d
MG
3582 /* Limit the priority of boosting to avoid reclaim writeback */
3583 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3584 raise_priority = false;
3585
3586 /*
3587 * Do not writeback or swap pages for boosted reclaim. The
3588 * intent is to relieve pressure not issue sub-optimal IO
3589 * from reclaim context. If no pages are reclaimed, the
3590 * reclaim will be aborted.
3591 */
3592 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3593 sc.may_swap = !nr_boost_reclaim;
1c30844d 3594
1d82de61
MG
3595 /*
3596 * Do some background aging of the anon list, to give
3597 * pages a chance to be referenced before reclaiming. All
3598 * pages are rotated regardless of classzone as this is
3599 * about consistent aging.
3600 */
ef8f2327 3601 age_active_anon(pgdat, &sc);
1d82de61 3602
b7ea3c41
MG
3603 /*
3604 * If we're getting trouble reclaiming, start doing writepage
3605 * even in laptop mode.
3606 */
047d72c3 3607 if (sc.priority < DEF_PRIORITY - 2)
b7ea3c41
MG
3608 sc.may_writepage = 1;
3609
1d82de61
MG
3610 /* Call soft limit reclaim before calling shrink_node. */
3611 sc.nr_scanned = 0;
3612 nr_soft_scanned = 0;
ef8f2327 3613 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
3614 sc.gfp_mask, &nr_soft_scanned);
3615 sc.nr_reclaimed += nr_soft_reclaimed;
3616
1da177e4 3617 /*
1d82de61
MG
3618 * There should be no need to raise the scanning priority if
3619 * enough pages are already being scanned that that high
3620 * watermark would be met at 100% efficiency.
1da177e4 3621 */
970a39a3 3622 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 3623 raise_priority = false;
5515061d
MG
3624
3625 /*
3626 * If the low watermark is met there is no need for processes
3627 * to be throttled on pfmemalloc_wait as they should not be
3628 * able to safely make forward progress. Wake them
3629 */
3630 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
c73322d0 3631 allow_direct_reclaim(pgdat))
cfc51155 3632 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3633
b8e83b94 3634 /* Check if kswapd should be suspending */
93781325
OS
3635 __fs_reclaim_release();
3636 ret = try_to_freeze();
3637 __fs_reclaim_acquire();
3638 if (ret || kthread_should_stop())
b8e83b94 3639 break;
8357376d 3640
73ce02e9 3641 /*
b8e83b94
MG
3642 * Raise priority if scanning rate is too low or there was no
3643 * progress in reclaiming pages
73ce02e9 3644 */
c73322d0 3645 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
1c30844d
MG
3646 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3647
3648 /*
3649 * If reclaim made no progress for a boost, stop reclaim as
3650 * IO cannot be queued and it could be an infinite loop in
3651 * extreme circumstances.
3652 */
3653 if (nr_boost_reclaim && !nr_reclaimed)
3654 break;
3655
c73322d0 3656 if (raise_priority || !nr_reclaimed)
b8e83b94 3657 sc.priority--;
1d82de61 3658 } while (sc.priority >= 1);
1da177e4 3659
c73322d0
JW
3660 if (!sc.nr_reclaimed)
3661 pgdat->kswapd_failures++;
3662
b8e83b94 3663out:
1c30844d
MG
3664 /* If reclaim was boosted, account for the reclaim done in this pass */
3665 if (boosted) {
3666 unsigned long flags;
3667
3668 for (i = 0; i <= classzone_idx; i++) {
3669 if (!zone_boosts[i])
3670 continue;
3671
3672 /* Increments are under the zone lock */
3673 zone = pgdat->node_zones + i;
3674 spin_lock_irqsave(&zone->lock, flags);
3675 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3676 spin_unlock_irqrestore(&zone->lock, flags);
3677 }
3678
3679 /*
3680 * As there is now likely space, wakeup kcompact to defragment
3681 * pageblocks.
3682 */
3683 wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
3684 }
3685
2a2e4885 3686 snapshot_refaults(NULL, pgdat);
93781325 3687 __fs_reclaim_release();
eb414681 3688 psi_memstall_leave(&pflags);
1732d2b0 3689 set_task_reclaim_state(current, NULL);
e5ca8071 3690
0abdee2b 3691 /*
1d82de61
MG
3692 * Return the order kswapd stopped reclaiming at as
3693 * prepare_kswapd_sleep() takes it into account. If another caller
3694 * entered the allocator slow path while kswapd was awake, order will
3695 * remain at the higher level.
0abdee2b 3696 */
1d82de61 3697 return sc.order;
1da177e4
LT
3698}
3699
e716f2eb 3700/*
dffcac2c
SB
3701 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
3702 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
3703 * a valid index then either kswapd runs for first time or kswapd couldn't sleep
3704 * after previous reclaim attempt (node is still unbalanced). In that case
3705 * return the zone index of the previous kswapd reclaim cycle.
e716f2eb
MG
3706 */
3707static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
dffcac2c 3708 enum zone_type prev_classzone_idx)
e716f2eb
MG
3709{
3710 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
dffcac2c
SB
3711 return prev_classzone_idx;
3712 return pgdat->kswapd_classzone_idx;
e716f2eb
MG
3713}
3714
38087d9b
MG
3715static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3716 unsigned int classzone_idx)
f0bc0a60
KM
3717{
3718 long remaining = 0;
3719 DEFINE_WAIT(wait);
3720
3721 if (freezing(current) || kthread_should_stop())
3722 return;
3723
3724 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3725
333b0a45
SG
3726 /*
3727 * Try to sleep for a short interval. Note that kcompactd will only be
3728 * woken if it is possible to sleep for a short interval. This is
3729 * deliberate on the assumption that if reclaim cannot keep an
3730 * eligible zone balanced that it's also unlikely that compaction will
3731 * succeed.
3732 */
d9f21d42 3733 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
fd901c95
VB
3734 /*
3735 * Compaction records what page blocks it recently failed to
3736 * isolate pages from and skips them in the future scanning.
3737 * When kswapd is going to sleep, it is reasonable to assume
3738 * that pages and compaction may succeed so reset the cache.
3739 */
3740 reset_isolation_suitable(pgdat);
3741
3742 /*
3743 * We have freed the memory, now we should compact it to make
3744 * allocation of the requested order possible.
3745 */
38087d9b 3746 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
fd901c95 3747
f0bc0a60 3748 remaining = schedule_timeout(HZ/10);
38087d9b
MG
3749
3750 /*
3751 * If woken prematurely then reset kswapd_classzone_idx and
3752 * order. The values will either be from a wakeup request or
3753 * the previous request that slept prematurely.
3754 */
3755 if (remaining) {
e716f2eb 3756 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
38087d9b
MG
3757 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3758 }
3759
f0bc0a60
KM
3760 finish_wait(&pgdat->kswapd_wait, &wait);
3761 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3762 }
3763
3764 /*
3765 * After a short sleep, check if it was a premature sleep. If not, then
3766 * go fully to sleep until explicitly woken up.
3767 */
d9f21d42
MG
3768 if (!remaining &&
3769 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
f0bc0a60
KM
3770 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3771
3772 /*
3773 * vmstat counters are not perfectly accurate and the estimated
3774 * value for counters such as NR_FREE_PAGES can deviate from the
3775 * true value by nr_online_cpus * threshold. To avoid the zone
3776 * watermarks being breached while under pressure, we reduce the
3777 * per-cpu vmstat threshold while kswapd is awake and restore
3778 * them before going back to sleep.
3779 */
3780 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
3781
3782 if (!kthread_should_stop())
3783 schedule();
3784
f0bc0a60
KM
3785 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3786 } else {
3787 if (remaining)
3788 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3789 else
3790 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3791 }
3792 finish_wait(&pgdat->kswapd_wait, &wait);
3793}
3794
1da177e4
LT
3795/*
3796 * The background pageout daemon, started as a kernel thread
4f98a2fe 3797 * from the init process.
1da177e4
LT
3798 *
3799 * This basically trickles out pages so that we have _some_
3800 * free memory available even if there is no other activity
3801 * that frees anything up. This is needed for things like routing
3802 * etc, where we otherwise might have all activity going on in
3803 * asynchronous contexts that cannot page things out.
3804 *
3805 * If there are applications that are active memory-allocators
3806 * (most normal use), this basically shouldn't matter.
3807 */
3808static int kswapd(void *p)
3809{
e716f2eb
MG
3810 unsigned int alloc_order, reclaim_order;
3811 unsigned int classzone_idx = MAX_NR_ZONES - 1;
1da177e4
LT
3812 pg_data_t *pgdat = (pg_data_t*)p;
3813 struct task_struct *tsk = current;
a70f7302 3814 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3815
174596a0 3816 if (!cpumask_empty(cpumask))
c5f59f08 3817 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3818
3819 /*
3820 * Tell the memory management that we're a "memory allocator",
3821 * and that if we need more memory we should get access to it
3822 * regardless (see "__alloc_pages()"). "kswapd" should
3823 * never get caught in the normal page freeing logic.
3824 *
3825 * (Kswapd normally doesn't need memory anyway, but sometimes
3826 * you need a small amount of memory in order to be able to
3827 * page out something else, and this flag essentially protects
3828 * us from recursively trying to free more memory as we're
3829 * trying to free the first piece of memory in the first place).
3830 */
930d9152 3831 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3832 set_freezable();
1da177e4 3833
e716f2eb
MG
3834 pgdat->kswapd_order = 0;
3835 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
1da177e4 3836 for ( ; ; ) {
6f6313d4 3837 bool ret;
3e1d1d28 3838
e716f2eb
MG
3839 alloc_order = reclaim_order = pgdat->kswapd_order;
3840 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3841
38087d9b
MG
3842kswapd_try_sleep:
3843 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3844 classzone_idx);
215ddd66 3845
38087d9b
MG
3846 /* Read the new order and classzone_idx */
3847 alloc_order = reclaim_order = pgdat->kswapd_order;
dffcac2c 3848 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
38087d9b 3849 pgdat->kswapd_order = 0;
e716f2eb 3850 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
1da177e4 3851
8fe23e05
DR
3852 ret = try_to_freeze();
3853 if (kthread_should_stop())
3854 break;
3855
3856 /*
3857 * We can speed up thawing tasks if we don't call balance_pgdat
3858 * after returning from the refrigerator
3859 */
38087d9b
MG
3860 if (ret)
3861 continue;
3862
3863 /*
3864 * Reclaim begins at the requested order but if a high-order
3865 * reclaim fails then kswapd falls back to reclaiming for
3866 * order-0. If that happens, kswapd will consider sleeping
3867 * for the order it finished reclaiming at (reclaim_order)
3868 * but kcompactd is woken to compact for the original
3869 * request (alloc_order).
3870 */
e5146b12
MG
3871 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3872 alloc_order);
38087d9b
MG
3873 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3874 if (reclaim_order < alloc_order)
3875 goto kswapd_try_sleep;
1da177e4 3876 }
b0a8cc58 3877
71abdc15 3878 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
71abdc15 3879
1da177e4
LT
3880 return 0;
3881}
3882
3883/*
5ecd9d40
DR
3884 * A zone is low on free memory or too fragmented for high-order memory. If
3885 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3886 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3887 * has failed or is not needed, still wake up kcompactd if only compaction is
3888 * needed.
1da177e4 3889 */
5ecd9d40
DR
3890void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3891 enum zone_type classzone_idx)
1da177e4
LT
3892{
3893 pg_data_t *pgdat;
3894
6aa303de 3895 if (!managed_zone(zone))
1da177e4
LT
3896 return;
3897
5ecd9d40 3898 if (!cpuset_zone_allowed(zone, gfp_flags))
1da177e4 3899 return;
88f5acf8 3900 pgdat = zone->zone_pgdat;
dffcac2c
SB
3901
3902 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3903 pgdat->kswapd_classzone_idx = classzone_idx;
3904 else
3905 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx,
3906 classzone_idx);
38087d9b 3907 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
8d0986e2 3908 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3909 return;
e1a55637 3910
5ecd9d40
DR
3911 /* Hopeless node, leave it to direct reclaim if possible */
3912 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
1c30844d
MG
3913 (pgdat_balanced(pgdat, order, classzone_idx) &&
3914 !pgdat_watermark_boosted(pgdat, classzone_idx))) {
5ecd9d40
DR
3915 /*
3916 * There may be plenty of free memory available, but it's too
3917 * fragmented for high-order allocations. Wake up kcompactd
3918 * and rely on compaction_suitable() to determine if it's
3919 * needed. If it fails, it will defer subsequent attempts to
3920 * ratelimit its work.
3921 */
3922 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3923 wakeup_kcompactd(pgdat, order, classzone_idx);
e716f2eb 3924 return;
5ecd9d40 3925 }
88f5acf8 3926
5ecd9d40
DR
3927 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3928 gfp_flags);
8d0986e2 3929 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3930}
3931
c6f37f12 3932#ifdef CONFIG_HIBERNATION
1da177e4 3933/*
7b51755c 3934 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3935 * freed pages.
3936 *
3937 * Rather than trying to age LRUs the aim is to preserve the overall
3938 * LRU order by reclaiming preferentially
3939 * inactive > active > active referenced > active mapped
1da177e4 3940 */
7b51755c 3941unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3942{
d6277db4 3943 struct scan_control sc = {
ee814fe2 3944 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3945 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 3946 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 3947 .priority = DEF_PRIORITY,
d6277db4 3948 .may_writepage = 1,
ee814fe2
JW
3949 .may_unmap = 1,
3950 .may_swap = 1,
7b51755c 3951 .hibernation_mode = 1,
1da177e4 3952 };
a09ed5e0 3953 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c 3954 unsigned long nr_reclaimed;
499118e9 3955 unsigned int noreclaim_flag;
1da177e4 3956
d92a8cfc 3957 fs_reclaim_acquire(sc.gfp_mask);
93781325 3958 noreclaim_flag = memalloc_noreclaim_save();
1732d2b0 3959 set_task_reclaim_state(current, &sc.reclaim_state);
d6277db4 3960
3115cd91 3961 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3962
1732d2b0 3963 set_task_reclaim_state(current, NULL);
499118e9 3964 memalloc_noreclaim_restore(noreclaim_flag);
93781325 3965 fs_reclaim_release(sc.gfp_mask);
d6277db4 3966
7b51755c 3967 return nr_reclaimed;
1da177e4 3968}
c6f37f12 3969#endif /* CONFIG_HIBERNATION */
1da177e4 3970
1da177e4
LT
3971/* It's optimal to keep kswapds on the same CPUs as their memory, but
3972 not required for correctness. So if the last cpu in a node goes
3973 away, we get changed to run anywhere: as the first one comes back,
3974 restore their cpu bindings. */
517bbed9 3975static int kswapd_cpu_online(unsigned int cpu)
1da177e4 3976{
58c0a4a7 3977 int nid;
1da177e4 3978
517bbed9
SAS
3979 for_each_node_state(nid, N_MEMORY) {
3980 pg_data_t *pgdat = NODE_DATA(nid);
3981 const struct cpumask *mask;
a70f7302 3982
517bbed9 3983 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3984
517bbed9
SAS
3985 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3986 /* One of our CPUs online: restore mask */
3987 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4 3988 }
517bbed9 3989 return 0;
1da177e4 3990}
1da177e4 3991
3218ae14
YG
3992/*
3993 * This kswapd start function will be called by init and node-hot-add.
3994 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3995 */
3996int kswapd_run(int nid)
3997{
3998 pg_data_t *pgdat = NODE_DATA(nid);
3999 int ret = 0;
4000
4001 if (pgdat->kswapd)
4002 return 0;
4003
4004 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4005 if (IS_ERR(pgdat->kswapd)) {
4006 /* failure at boot is fatal */
c6202adf 4007 BUG_ON(system_state < SYSTEM_RUNNING);
d5dc0ad9
GS
4008 pr_err("Failed to start kswapd on node %d\n", nid);
4009 ret = PTR_ERR(pgdat->kswapd);
d72515b8 4010 pgdat->kswapd = NULL;
3218ae14
YG
4011 }
4012 return ret;
4013}
4014
8fe23e05 4015/*
d8adde17 4016 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 4017 * hold mem_hotplug_begin/end().
8fe23e05
DR
4018 */
4019void kswapd_stop(int nid)
4020{
4021 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4022
d8adde17 4023 if (kswapd) {
8fe23e05 4024 kthread_stop(kswapd);
d8adde17
JL
4025 NODE_DATA(nid)->kswapd = NULL;
4026 }
8fe23e05
DR
4027}
4028
1da177e4
LT
4029static int __init kswapd_init(void)
4030{
517bbed9 4031 int nid, ret;
69e05944 4032
1da177e4 4033 swap_setup();
48fb2e24 4034 for_each_node_state(nid, N_MEMORY)
3218ae14 4035 kswapd_run(nid);
517bbed9
SAS
4036 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
4037 "mm/vmscan:online", kswapd_cpu_online,
4038 NULL);
4039 WARN_ON(ret < 0);
1da177e4
LT
4040 return 0;
4041}
4042
4043module_init(kswapd_init)
9eeff239
CL
4044
4045#ifdef CONFIG_NUMA
4046/*
a5f5f91d 4047 * Node reclaim mode
9eeff239 4048 *
a5f5f91d 4049 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 4050 * the watermarks.
9eeff239 4051 */
a5f5f91d 4052int node_reclaim_mode __read_mostly;
9eeff239 4053
1b2ffb78 4054#define RECLAIM_OFF 0
7d03431c 4055#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78 4056#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
95bbc0c7 4057#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
1b2ffb78 4058
a92f7126 4059/*
a5f5f91d 4060 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
4061 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4062 * a zone.
4063 */
a5f5f91d 4064#define NODE_RECLAIM_PRIORITY 4
a92f7126 4065
9614634f 4066/*
a5f5f91d 4067 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
4068 * occur.
4069 */
4070int sysctl_min_unmapped_ratio = 1;
4071
0ff38490
CL
4072/*
4073 * If the number of slab pages in a zone grows beyond this percentage then
4074 * slab reclaim needs to occur.
4075 */
4076int sysctl_min_slab_ratio = 5;
4077
11fb9989 4078static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 4079{
11fb9989
MG
4080 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4081 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4082 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
4083
4084 /*
4085 * It's possible for there to be more file mapped pages than
4086 * accounted for by the pages on the file LRU lists because
4087 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4088 */
4089 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4090}
4091
4092/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 4093static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 4094{
d031a157
AM
4095 unsigned long nr_pagecache_reclaimable;
4096 unsigned long delta = 0;
90afa5de
MG
4097
4098 /*
95bbc0c7 4099 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 4100 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 4101 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
4102 * a better estimate
4103 */
a5f5f91d
MG
4104 if (node_reclaim_mode & RECLAIM_UNMAP)
4105 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 4106 else
a5f5f91d 4107 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
4108
4109 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
4110 if (!(node_reclaim_mode & RECLAIM_WRITE))
4111 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
4112
4113 /* Watch for any possible underflows due to delta */
4114 if (unlikely(delta > nr_pagecache_reclaimable))
4115 delta = nr_pagecache_reclaimable;
4116
4117 return nr_pagecache_reclaimable - delta;
4118}
4119
9eeff239 4120/*
a5f5f91d 4121 * Try to free up some pages from this node through reclaim.
9eeff239 4122 */
a5f5f91d 4123static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 4124{
7fb2d46d 4125 /* Minimum pages needed in order to stay on node */
69e05944 4126 const unsigned long nr_pages = 1 << order;
9eeff239 4127 struct task_struct *p = current;
499118e9 4128 unsigned int noreclaim_flag;
179e9639 4129 struct scan_control sc = {
62b726c1 4130 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
f2f43e56 4131 .gfp_mask = current_gfp_context(gfp_mask),
bd2f6199 4132 .order = order,
a5f5f91d
MG
4133 .priority = NODE_RECLAIM_PRIORITY,
4134 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4135 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 4136 .may_swap = 1,
f2f43e56 4137 .reclaim_idx = gfp_zone(gfp_mask),
179e9639 4138 };
9eeff239 4139
132bb8cf
YS
4140 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4141 sc.gfp_mask);
4142
9eeff239 4143 cond_resched();
93781325 4144 fs_reclaim_acquire(sc.gfp_mask);
d4f7796e 4145 /*
95bbc0c7 4146 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 4147 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 4148 * and RECLAIM_UNMAP.
d4f7796e 4149 */
499118e9
VB
4150 noreclaim_flag = memalloc_noreclaim_save();
4151 p->flags |= PF_SWAPWRITE;
1732d2b0 4152 set_task_reclaim_state(p, &sc.reclaim_state);
c84db23c 4153
a5f5f91d 4154 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
0ff38490 4155 /*
894befec 4156 * Free memory by calling shrink node with increasing
0ff38490
CL
4157 * priorities until we have enough memory freed.
4158 */
0ff38490 4159 do {
970a39a3 4160 shrink_node(pgdat, &sc);
9e3b2f8c 4161 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 4162 }
c84db23c 4163
1732d2b0 4164 set_task_reclaim_state(p, NULL);
499118e9
VB
4165 current->flags &= ~PF_SWAPWRITE;
4166 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4167 fs_reclaim_release(sc.gfp_mask);
132bb8cf
YS
4168
4169 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4170
a79311c1 4171 return sc.nr_reclaimed >= nr_pages;
9eeff239 4172}
179e9639 4173
a5f5f91d 4174int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 4175{
d773ed6b 4176 int ret;
179e9639
AM
4177
4178 /*
a5f5f91d 4179 * Node reclaim reclaims unmapped file backed pages and
0ff38490 4180 * slab pages if we are over the defined limits.
34aa1330 4181 *
9614634f
CL
4182 * A small portion of unmapped file backed pages is needed for
4183 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
4184 * thrown out if the node is overallocated. So we do not reclaim
4185 * if less than a specified percentage of the node is used by
9614634f 4186 * unmapped file backed pages.
179e9639 4187 */
a5f5f91d 4188 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
385386cf 4189 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
a5f5f91d 4190 return NODE_RECLAIM_FULL;
179e9639
AM
4191
4192 /*
d773ed6b 4193 * Do not scan if the allocation should not be delayed.
179e9639 4194 */
d0164adc 4195 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 4196 return NODE_RECLAIM_NOSCAN;
179e9639
AM
4197
4198 /*
a5f5f91d 4199 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
4200 * have associated processors. This will favor the local processor
4201 * over remote processors and spread off node memory allocations
4202 * as wide as possible.
4203 */
a5f5f91d
MG
4204 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4205 return NODE_RECLAIM_NOSCAN;
d773ed6b 4206
a5f5f91d
MG
4207 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4208 return NODE_RECLAIM_NOSCAN;
fa5e084e 4209
a5f5f91d
MG
4210 ret = __node_reclaim(pgdat, gfp_mask, order);
4211 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 4212
24cf7251
MG
4213 if (!ret)
4214 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4215
d773ed6b 4216 return ret;
179e9639 4217}
9eeff239 4218#endif
894bc310 4219
894bc310
LS
4220/*
4221 * page_evictable - test whether a page is evictable
4222 * @page: the page to test
894bc310
LS
4223 *
4224 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 4225 * lists vs unevictable list.
894bc310
LS
4226 *
4227 * Reasons page might not be evictable:
ba9ddf49 4228 * (1) page's mapping marked unevictable
b291f000 4229 * (2) page is part of an mlocked VMA
ba9ddf49 4230 *
894bc310 4231 */
39b5f29a 4232int page_evictable(struct page *page)
894bc310 4233{
e92bb4dd
HY
4234 int ret;
4235
4236 /* Prevent address_space of inode and swap cache from being freed */
4237 rcu_read_lock();
4238 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4239 rcu_read_unlock();
4240 return ret;
894bc310 4241}
89e004ea
LS
4242
4243/**
64e3d12f
KHY
4244 * check_move_unevictable_pages - check pages for evictability and move to
4245 * appropriate zone lru list
4246 * @pvec: pagevec with lru pages to check
89e004ea 4247 *
64e3d12f
KHY
4248 * Checks pages for evictability, if an evictable page is in the unevictable
4249 * lru list, moves it to the appropriate evictable lru list. This function
4250 * should be only used for lru pages.
89e004ea 4251 */
64e3d12f 4252void check_move_unevictable_pages(struct pagevec *pvec)
89e004ea 4253{
925b7673 4254 struct lruvec *lruvec;
785b99fe 4255 struct pglist_data *pgdat = NULL;
24513264
HD
4256 int pgscanned = 0;
4257 int pgrescued = 0;
4258 int i;
89e004ea 4259
64e3d12f
KHY
4260 for (i = 0; i < pvec->nr; i++) {
4261 struct page *page = pvec->pages[i];
785b99fe 4262 struct pglist_data *pagepgdat = page_pgdat(page);
89e004ea 4263
24513264 4264 pgscanned++;
785b99fe
MG
4265 if (pagepgdat != pgdat) {
4266 if (pgdat)
4267 spin_unlock_irq(&pgdat->lru_lock);
4268 pgdat = pagepgdat;
4269 spin_lock_irq(&pgdat->lru_lock);
24513264 4270 }
785b99fe 4271 lruvec = mem_cgroup_page_lruvec(page, pgdat);
89e004ea 4272
24513264
HD
4273 if (!PageLRU(page) || !PageUnevictable(page))
4274 continue;
89e004ea 4275
39b5f29a 4276 if (page_evictable(page)) {
24513264
HD
4277 enum lru_list lru = page_lru_base_type(page);
4278
309381fe 4279 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 4280 ClearPageUnevictable(page);
fa9add64
HD
4281 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4282 add_page_to_lru_list(page, lruvec, lru);
24513264 4283 pgrescued++;
89e004ea 4284 }
24513264 4285 }
89e004ea 4286
785b99fe 4287 if (pgdat) {
24513264
HD
4288 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4289 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
785b99fe 4290 spin_unlock_irq(&pgdat->lru_lock);
89e004ea 4291 }
89e004ea 4292}
64e3d12f 4293EXPORT_SYMBOL_GPL(check_move_unevictable_pages);