mm: remove unused VM_<READfoo> macros and expand other in-place
[linux-2.6-block.git] / mm / vmalloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 8 * Numa awareness, Christoph Lameter, SGI, June 2005
1da177e4
LT
9 */
10
db64fe02 11#include <linux/vmalloc.h>
1da177e4
LT
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
d43c36dc 15#include <linux/sched.h>
1da177e4
LT
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
5f6a6a9c 19#include <linux/proc_fs.h>
a10aa579 20#include <linux/seq_file.h>
3ac7fe5a 21#include <linux/debugobjects.h>
23016969 22#include <linux/kallsyms.h>
db64fe02
NP
23#include <linux/list.h>
24#include <linux/rbtree.h>
25#include <linux/radix-tree.h>
26#include <linux/rcupdate.h>
f0aa6617 27#include <linux/pfn.h>
89219d37 28#include <linux/kmemleak.h>
60063497 29#include <linux/atomic.h>
32fcfd40 30#include <linux/llist.h>
1da177e4
LT
31#include <asm/uaccess.h>
32#include <asm/tlbflush.h>
2dca6999 33#include <asm/shmparam.h>
1da177e4 34
32fcfd40
AV
35struct vfree_deferred {
36 struct llist_head list;
37 struct work_struct wq;
38};
39static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
40
41static void __vunmap(const void *, int);
42
43static void free_work(struct work_struct *w)
44{
45 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
46 struct llist_node *llnode = llist_del_all(&p->list);
47 while (llnode) {
48 void *p = llnode;
49 llnode = llist_next(llnode);
50 __vunmap(p, 1);
51 }
52}
53
db64fe02 54/*** Page table manipulation functions ***/
b221385b 55
1da177e4
LT
56static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
57{
58 pte_t *pte;
59
60 pte = pte_offset_kernel(pmd, addr);
61 do {
62 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
63 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
64 } while (pte++, addr += PAGE_SIZE, addr != end);
65}
66
db64fe02 67static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
1da177e4
LT
68{
69 pmd_t *pmd;
70 unsigned long next;
71
72 pmd = pmd_offset(pud, addr);
73 do {
74 next = pmd_addr_end(addr, end);
75 if (pmd_none_or_clear_bad(pmd))
76 continue;
77 vunmap_pte_range(pmd, addr, next);
78 } while (pmd++, addr = next, addr != end);
79}
80
db64fe02 81static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
1da177e4
LT
82{
83 pud_t *pud;
84 unsigned long next;
85
86 pud = pud_offset(pgd, addr);
87 do {
88 next = pud_addr_end(addr, end);
89 if (pud_none_or_clear_bad(pud))
90 continue;
91 vunmap_pmd_range(pud, addr, next);
92 } while (pud++, addr = next, addr != end);
93}
94
db64fe02 95static void vunmap_page_range(unsigned long addr, unsigned long end)
1da177e4
LT
96{
97 pgd_t *pgd;
98 unsigned long next;
1da177e4
LT
99
100 BUG_ON(addr >= end);
101 pgd = pgd_offset_k(addr);
1da177e4
LT
102 do {
103 next = pgd_addr_end(addr, end);
104 if (pgd_none_or_clear_bad(pgd))
105 continue;
106 vunmap_pud_range(pgd, addr, next);
107 } while (pgd++, addr = next, addr != end);
1da177e4
LT
108}
109
110static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
db64fe02 111 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
112{
113 pte_t *pte;
114
db64fe02
NP
115 /*
116 * nr is a running index into the array which helps higher level
117 * callers keep track of where we're up to.
118 */
119
872fec16 120 pte = pte_alloc_kernel(pmd, addr);
1da177e4
LT
121 if (!pte)
122 return -ENOMEM;
123 do {
db64fe02
NP
124 struct page *page = pages[*nr];
125
126 if (WARN_ON(!pte_none(*pte)))
127 return -EBUSY;
128 if (WARN_ON(!page))
1da177e4
LT
129 return -ENOMEM;
130 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 131 (*nr)++;
1da177e4
LT
132 } while (pte++, addr += PAGE_SIZE, addr != end);
133 return 0;
134}
135
db64fe02
NP
136static int vmap_pmd_range(pud_t *pud, unsigned long addr,
137 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
138{
139 pmd_t *pmd;
140 unsigned long next;
141
142 pmd = pmd_alloc(&init_mm, pud, addr);
143 if (!pmd)
144 return -ENOMEM;
145 do {
146 next = pmd_addr_end(addr, end);
db64fe02 147 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
1da177e4
LT
148 return -ENOMEM;
149 } while (pmd++, addr = next, addr != end);
150 return 0;
151}
152
db64fe02
NP
153static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
154 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
155{
156 pud_t *pud;
157 unsigned long next;
158
159 pud = pud_alloc(&init_mm, pgd, addr);
160 if (!pud)
161 return -ENOMEM;
162 do {
163 next = pud_addr_end(addr, end);
db64fe02 164 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
1da177e4
LT
165 return -ENOMEM;
166 } while (pud++, addr = next, addr != end);
167 return 0;
168}
169
db64fe02
NP
170/*
171 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
172 * will have pfns corresponding to the "pages" array.
173 *
174 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
175 */
8fc48985
TH
176static int vmap_page_range_noflush(unsigned long start, unsigned long end,
177 pgprot_t prot, struct page **pages)
1da177e4
LT
178{
179 pgd_t *pgd;
180 unsigned long next;
2e4e27c7 181 unsigned long addr = start;
db64fe02
NP
182 int err = 0;
183 int nr = 0;
1da177e4
LT
184
185 BUG_ON(addr >= end);
186 pgd = pgd_offset_k(addr);
1da177e4
LT
187 do {
188 next = pgd_addr_end(addr, end);
db64fe02 189 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
1da177e4 190 if (err)
bf88c8c8 191 return err;
1da177e4 192 } while (pgd++, addr = next, addr != end);
db64fe02 193
db64fe02 194 return nr;
1da177e4
LT
195}
196
8fc48985
TH
197static int vmap_page_range(unsigned long start, unsigned long end,
198 pgprot_t prot, struct page **pages)
199{
200 int ret;
201
202 ret = vmap_page_range_noflush(start, end, prot, pages);
203 flush_cache_vmap(start, end);
204 return ret;
205}
206
81ac3ad9 207int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
208{
209 /*
ab4f2ee1 210 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
211 * and fall back on vmalloc() if that fails. Others
212 * just put it in the vmalloc space.
213 */
214#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
215 unsigned long addr = (unsigned long)x;
216 if (addr >= MODULES_VADDR && addr < MODULES_END)
217 return 1;
218#endif
219 return is_vmalloc_addr(x);
220}
221
48667e7a 222/*
db64fe02 223 * Walk a vmap address to the struct page it maps.
48667e7a 224 */
b3bdda02 225struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
226{
227 unsigned long addr = (unsigned long) vmalloc_addr;
228 struct page *page = NULL;
229 pgd_t *pgd = pgd_offset_k(addr);
48667e7a 230
7aa413de
IM
231 /*
232 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
233 * architectures that do not vmalloc module space
234 */
73bdf0a6 235 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 236
48667e7a 237 if (!pgd_none(*pgd)) {
db64fe02 238 pud_t *pud = pud_offset(pgd, addr);
48667e7a 239 if (!pud_none(*pud)) {
db64fe02 240 pmd_t *pmd = pmd_offset(pud, addr);
48667e7a 241 if (!pmd_none(*pmd)) {
db64fe02
NP
242 pte_t *ptep, pte;
243
48667e7a
CL
244 ptep = pte_offset_map(pmd, addr);
245 pte = *ptep;
246 if (pte_present(pte))
247 page = pte_page(pte);
248 pte_unmap(ptep);
249 }
250 }
251 }
252 return page;
253}
254EXPORT_SYMBOL(vmalloc_to_page);
255
256/*
257 * Map a vmalloc()-space virtual address to the physical page frame number.
258 */
b3bdda02 259unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a
CL
260{
261 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
262}
263EXPORT_SYMBOL(vmalloc_to_pfn);
264
db64fe02
NP
265
266/*** Global kva allocator ***/
267
268#define VM_LAZY_FREE 0x01
269#define VM_LAZY_FREEING 0x02
270#define VM_VM_AREA 0x04
271
db64fe02 272static DEFINE_SPINLOCK(vmap_area_lock);
f1c4069e
JK
273/* Export for kexec only */
274LIST_HEAD(vmap_area_list);
89699605
NP
275static struct rb_root vmap_area_root = RB_ROOT;
276
277/* The vmap cache globals are protected by vmap_area_lock */
278static struct rb_node *free_vmap_cache;
279static unsigned long cached_hole_size;
280static unsigned long cached_vstart;
281static unsigned long cached_align;
282
ca23e405 283static unsigned long vmap_area_pcpu_hole;
db64fe02
NP
284
285static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 286{
db64fe02
NP
287 struct rb_node *n = vmap_area_root.rb_node;
288
289 while (n) {
290 struct vmap_area *va;
291
292 va = rb_entry(n, struct vmap_area, rb_node);
293 if (addr < va->va_start)
294 n = n->rb_left;
cef2ac3f 295 else if (addr >= va->va_end)
db64fe02
NP
296 n = n->rb_right;
297 else
298 return va;
299 }
300
301 return NULL;
302}
303
304static void __insert_vmap_area(struct vmap_area *va)
305{
306 struct rb_node **p = &vmap_area_root.rb_node;
307 struct rb_node *parent = NULL;
308 struct rb_node *tmp;
309
310 while (*p) {
170168d0 311 struct vmap_area *tmp_va;
db64fe02
NP
312
313 parent = *p;
170168d0
NK
314 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
315 if (va->va_start < tmp_va->va_end)
db64fe02 316 p = &(*p)->rb_left;
170168d0 317 else if (va->va_end > tmp_va->va_start)
db64fe02
NP
318 p = &(*p)->rb_right;
319 else
320 BUG();
321 }
322
323 rb_link_node(&va->rb_node, parent, p);
324 rb_insert_color(&va->rb_node, &vmap_area_root);
325
4341fa45 326 /* address-sort this list */
db64fe02
NP
327 tmp = rb_prev(&va->rb_node);
328 if (tmp) {
329 struct vmap_area *prev;
330 prev = rb_entry(tmp, struct vmap_area, rb_node);
331 list_add_rcu(&va->list, &prev->list);
332 } else
333 list_add_rcu(&va->list, &vmap_area_list);
334}
335
336static void purge_vmap_area_lazy(void);
337
338/*
339 * Allocate a region of KVA of the specified size and alignment, within the
340 * vstart and vend.
341 */
342static struct vmap_area *alloc_vmap_area(unsigned long size,
343 unsigned long align,
344 unsigned long vstart, unsigned long vend,
345 int node, gfp_t gfp_mask)
346{
347 struct vmap_area *va;
348 struct rb_node *n;
1da177e4 349 unsigned long addr;
db64fe02 350 int purged = 0;
89699605 351 struct vmap_area *first;
db64fe02 352
7766970c 353 BUG_ON(!size);
db64fe02 354 BUG_ON(size & ~PAGE_MASK);
89699605 355 BUG_ON(!is_power_of_2(align));
db64fe02 356
db64fe02
NP
357 va = kmalloc_node(sizeof(struct vmap_area),
358 gfp_mask & GFP_RECLAIM_MASK, node);
359 if (unlikely(!va))
360 return ERR_PTR(-ENOMEM);
361
362retry:
363 spin_lock(&vmap_area_lock);
89699605
NP
364 /*
365 * Invalidate cache if we have more permissive parameters.
366 * cached_hole_size notes the largest hole noticed _below_
367 * the vmap_area cached in free_vmap_cache: if size fits
368 * into that hole, we want to scan from vstart to reuse
369 * the hole instead of allocating above free_vmap_cache.
370 * Note that __free_vmap_area may update free_vmap_cache
371 * without updating cached_hole_size or cached_align.
372 */
373 if (!free_vmap_cache ||
374 size < cached_hole_size ||
375 vstart < cached_vstart ||
376 align < cached_align) {
377nocache:
378 cached_hole_size = 0;
379 free_vmap_cache = NULL;
380 }
381 /* record if we encounter less permissive parameters */
382 cached_vstart = vstart;
383 cached_align = align;
384
385 /* find starting point for our search */
386 if (free_vmap_cache) {
387 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
248ac0e1 388 addr = ALIGN(first->va_end, align);
89699605
NP
389 if (addr < vstart)
390 goto nocache;
391 if (addr + size - 1 < addr)
392 goto overflow;
393
394 } else {
395 addr = ALIGN(vstart, align);
396 if (addr + size - 1 < addr)
397 goto overflow;
398
399 n = vmap_area_root.rb_node;
400 first = NULL;
401
402 while (n) {
db64fe02
NP
403 struct vmap_area *tmp;
404 tmp = rb_entry(n, struct vmap_area, rb_node);
405 if (tmp->va_end >= addr) {
db64fe02 406 first = tmp;
89699605
NP
407 if (tmp->va_start <= addr)
408 break;
409 n = n->rb_left;
410 } else
db64fe02 411 n = n->rb_right;
89699605 412 }
db64fe02
NP
413
414 if (!first)
415 goto found;
db64fe02 416 }
89699605
NP
417
418 /* from the starting point, walk areas until a suitable hole is found */
248ac0e1 419 while (addr + size > first->va_start && addr + size <= vend) {
89699605
NP
420 if (addr + cached_hole_size < first->va_start)
421 cached_hole_size = first->va_start - addr;
248ac0e1 422 addr = ALIGN(first->va_end, align);
89699605
NP
423 if (addr + size - 1 < addr)
424 goto overflow;
425
92ca922f 426 if (list_is_last(&first->list, &vmap_area_list))
89699605 427 goto found;
92ca922f
H
428
429 first = list_entry(first->list.next,
430 struct vmap_area, list);
db64fe02
NP
431 }
432
89699605
NP
433found:
434 if (addr + size > vend)
435 goto overflow;
db64fe02
NP
436
437 va->va_start = addr;
438 va->va_end = addr + size;
439 va->flags = 0;
440 __insert_vmap_area(va);
89699605 441 free_vmap_cache = &va->rb_node;
db64fe02
NP
442 spin_unlock(&vmap_area_lock);
443
89699605
NP
444 BUG_ON(va->va_start & (align-1));
445 BUG_ON(va->va_start < vstart);
446 BUG_ON(va->va_end > vend);
447
db64fe02 448 return va;
89699605
NP
449
450overflow:
451 spin_unlock(&vmap_area_lock);
452 if (!purged) {
453 purge_vmap_area_lazy();
454 purged = 1;
455 goto retry;
456 }
457 if (printk_ratelimit())
458 printk(KERN_WARNING
459 "vmap allocation for size %lu failed: "
460 "use vmalloc=<size> to increase size.\n", size);
461 kfree(va);
462 return ERR_PTR(-EBUSY);
db64fe02
NP
463}
464
db64fe02
NP
465static void __free_vmap_area(struct vmap_area *va)
466{
467 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
89699605
NP
468
469 if (free_vmap_cache) {
470 if (va->va_end < cached_vstart) {
471 free_vmap_cache = NULL;
472 } else {
473 struct vmap_area *cache;
474 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
475 if (va->va_start <= cache->va_start) {
476 free_vmap_cache = rb_prev(&va->rb_node);
477 /*
478 * We don't try to update cached_hole_size or
479 * cached_align, but it won't go very wrong.
480 */
481 }
482 }
483 }
db64fe02
NP
484 rb_erase(&va->rb_node, &vmap_area_root);
485 RB_CLEAR_NODE(&va->rb_node);
486 list_del_rcu(&va->list);
487
ca23e405
TH
488 /*
489 * Track the highest possible candidate for pcpu area
490 * allocation. Areas outside of vmalloc area can be returned
491 * here too, consider only end addresses which fall inside
492 * vmalloc area proper.
493 */
494 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
495 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
496
14769de9 497 kfree_rcu(va, rcu_head);
db64fe02
NP
498}
499
500/*
501 * Free a region of KVA allocated by alloc_vmap_area
502 */
503static void free_vmap_area(struct vmap_area *va)
504{
505 spin_lock(&vmap_area_lock);
506 __free_vmap_area(va);
507 spin_unlock(&vmap_area_lock);
508}
509
510/*
511 * Clear the pagetable entries of a given vmap_area
512 */
513static void unmap_vmap_area(struct vmap_area *va)
514{
515 vunmap_page_range(va->va_start, va->va_end);
516}
517
cd52858c
NP
518static void vmap_debug_free_range(unsigned long start, unsigned long end)
519{
520 /*
521 * Unmap page tables and force a TLB flush immediately if
522 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
523 * bugs similarly to those in linear kernel virtual address
524 * space after a page has been freed.
525 *
526 * All the lazy freeing logic is still retained, in order to
527 * minimise intrusiveness of this debugging feature.
528 *
529 * This is going to be *slow* (linear kernel virtual address
530 * debugging doesn't do a broadcast TLB flush so it is a lot
531 * faster).
532 */
533#ifdef CONFIG_DEBUG_PAGEALLOC
534 vunmap_page_range(start, end);
535 flush_tlb_kernel_range(start, end);
536#endif
537}
538
db64fe02
NP
539/*
540 * lazy_max_pages is the maximum amount of virtual address space we gather up
541 * before attempting to purge with a TLB flush.
542 *
543 * There is a tradeoff here: a larger number will cover more kernel page tables
544 * and take slightly longer to purge, but it will linearly reduce the number of
545 * global TLB flushes that must be performed. It would seem natural to scale
546 * this number up linearly with the number of CPUs (because vmapping activity
547 * could also scale linearly with the number of CPUs), however it is likely
548 * that in practice, workloads might be constrained in other ways that mean
549 * vmap activity will not scale linearly with CPUs. Also, I want to be
550 * conservative and not introduce a big latency on huge systems, so go with
551 * a less aggressive log scale. It will still be an improvement over the old
552 * code, and it will be simple to change the scale factor if we find that it
553 * becomes a problem on bigger systems.
554 */
555static unsigned long lazy_max_pages(void)
556{
557 unsigned int log;
558
559 log = fls(num_online_cpus());
560
561 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
562}
563
564static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
565
02b709df
NP
566/* for per-CPU blocks */
567static void purge_fragmented_blocks_allcpus(void);
568
3ee48b6a
CW
569/*
570 * called before a call to iounmap() if the caller wants vm_area_struct's
571 * immediately freed.
572 */
573void set_iounmap_nonlazy(void)
574{
575 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
576}
577
db64fe02
NP
578/*
579 * Purges all lazily-freed vmap areas.
580 *
581 * If sync is 0 then don't purge if there is already a purge in progress.
582 * If force_flush is 1, then flush kernel TLBs between *start and *end even
583 * if we found no lazy vmap areas to unmap (callers can use this to optimise
584 * their own TLB flushing).
585 * Returns with *start = min(*start, lowest purged address)
586 * *end = max(*end, highest purged address)
587 */
588static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
589 int sync, int force_flush)
590{
46666d8a 591 static DEFINE_SPINLOCK(purge_lock);
db64fe02
NP
592 LIST_HEAD(valist);
593 struct vmap_area *va;
cbb76676 594 struct vmap_area *n_va;
db64fe02
NP
595 int nr = 0;
596
597 /*
598 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
599 * should not expect such behaviour. This just simplifies locking for
600 * the case that isn't actually used at the moment anyway.
601 */
602 if (!sync && !force_flush) {
46666d8a 603 if (!spin_trylock(&purge_lock))
db64fe02
NP
604 return;
605 } else
46666d8a 606 spin_lock(&purge_lock);
db64fe02 607
02b709df
NP
608 if (sync)
609 purge_fragmented_blocks_allcpus();
610
db64fe02
NP
611 rcu_read_lock();
612 list_for_each_entry_rcu(va, &vmap_area_list, list) {
613 if (va->flags & VM_LAZY_FREE) {
614 if (va->va_start < *start)
615 *start = va->va_start;
616 if (va->va_end > *end)
617 *end = va->va_end;
618 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
db64fe02
NP
619 list_add_tail(&va->purge_list, &valist);
620 va->flags |= VM_LAZY_FREEING;
621 va->flags &= ~VM_LAZY_FREE;
622 }
623 }
624 rcu_read_unlock();
625
88f50044 626 if (nr)
db64fe02 627 atomic_sub(nr, &vmap_lazy_nr);
db64fe02
NP
628
629 if (nr || force_flush)
630 flush_tlb_kernel_range(*start, *end);
631
632 if (nr) {
633 spin_lock(&vmap_area_lock);
cbb76676 634 list_for_each_entry_safe(va, n_va, &valist, purge_list)
db64fe02
NP
635 __free_vmap_area(va);
636 spin_unlock(&vmap_area_lock);
637 }
46666d8a 638 spin_unlock(&purge_lock);
db64fe02
NP
639}
640
496850e5
NP
641/*
642 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
643 * is already purging.
644 */
645static void try_purge_vmap_area_lazy(void)
646{
647 unsigned long start = ULONG_MAX, end = 0;
648
649 __purge_vmap_area_lazy(&start, &end, 0, 0);
650}
651
db64fe02
NP
652/*
653 * Kick off a purge of the outstanding lazy areas.
654 */
655static void purge_vmap_area_lazy(void)
656{
657 unsigned long start = ULONG_MAX, end = 0;
658
496850e5 659 __purge_vmap_area_lazy(&start, &end, 1, 0);
db64fe02
NP
660}
661
662/*
64141da5
JF
663 * Free a vmap area, caller ensuring that the area has been unmapped
664 * and flush_cache_vunmap had been called for the correct range
665 * previously.
db64fe02 666 */
64141da5 667static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02
NP
668{
669 va->flags |= VM_LAZY_FREE;
670 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
671 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
496850e5 672 try_purge_vmap_area_lazy();
db64fe02
NP
673}
674
64141da5
JF
675/*
676 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
677 * called for the correct range previously.
678 */
679static void free_unmap_vmap_area_noflush(struct vmap_area *va)
680{
681 unmap_vmap_area(va);
682 free_vmap_area_noflush(va);
683}
684
b29acbdc
NP
685/*
686 * Free and unmap a vmap area
687 */
688static void free_unmap_vmap_area(struct vmap_area *va)
689{
690 flush_cache_vunmap(va->va_start, va->va_end);
691 free_unmap_vmap_area_noflush(va);
692}
693
db64fe02
NP
694static struct vmap_area *find_vmap_area(unsigned long addr)
695{
696 struct vmap_area *va;
697
698 spin_lock(&vmap_area_lock);
699 va = __find_vmap_area(addr);
700 spin_unlock(&vmap_area_lock);
701
702 return va;
703}
704
705static void free_unmap_vmap_area_addr(unsigned long addr)
706{
707 struct vmap_area *va;
708
709 va = find_vmap_area(addr);
710 BUG_ON(!va);
711 free_unmap_vmap_area(va);
712}
713
714
715/*** Per cpu kva allocator ***/
716
717/*
718 * vmap space is limited especially on 32 bit architectures. Ensure there is
719 * room for at least 16 percpu vmap blocks per CPU.
720 */
721/*
722 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
723 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
724 * instead (we just need a rough idea)
725 */
726#if BITS_PER_LONG == 32
727#define VMALLOC_SPACE (128UL*1024*1024)
728#else
729#define VMALLOC_SPACE (128UL*1024*1024*1024)
730#endif
731
732#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
733#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
734#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
735#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
736#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
737#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
738#define VMAP_BBMAP_BITS \
739 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
740 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
741 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
742
743#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
744
9b463334
JF
745static bool vmap_initialized __read_mostly = false;
746
db64fe02
NP
747struct vmap_block_queue {
748 spinlock_t lock;
749 struct list_head free;
db64fe02
NP
750};
751
752struct vmap_block {
753 spinlock_t lock;
754 struct vmap_area *va;
755 struct vmap_block_queue *vbq;
756 unsigned long free, dirty;
db64fe02 757 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
de560423
NP
758 struct list_head free_list;
759 struct rcu_head rcu_head;
02b709df 760 struct list_head purge;
db64fe02
NP
761};
762
763/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
764static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
765
766/*
767 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
768 * in the free path. Could get rid of this if we change the API to return a
769 * "cookie" from alloc, to be passed to free. But no big deal yet.
770 */
771static DEFINE_SPINLOCK(vmap_block_tree_lock);
772static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
773
774/*
775 * We should probably have a fallback mechanism to allocate virtual memory
776 * out of partially filled vmap blocks. However vmap block sizing should be
777 * fairly reasonable according to the vmalloc size, so it shouldn't be a
778 * big problem.
779 */
780
781static unsigned long addr_to_vb_idx(unsigned long addr)
782{
783 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
784 addr /= VMAP_BLOCK_SIZE;
785 return addr;
786}
787
788static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
789{
790 struct vmap_block_queue *vbq;
791 struct vmap_block *vb;
792 struct vmap_area *va;
793 unsigned long vb_idx;
794 int node, err;
795
796 node = numa_node_id();
797
798 vb = kmalloc_node(sizeof(struct vmap_block),
799 gfp_mask & GFP_RECLAIM_MASK, node);
800 if (unlikely(!vb))
801 return ERR_PTR(-ENOMEM);
802
803 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
804 VMALLOC_START, VMALLOC_END,
805 node, gfp_mask);
ddf9c6d4 806 if (IS_ERR(va)) {
db64fe02 807 kfree(vb);
e7d86340 808 return ERR_CAST(va);
db64fe02
NP
809 }
810
811 err = radix_tree_preload(gfp_mask);
812 if (unlikely(err)) {
813 kfree(vb);
814 free_vmap_area(va);
815 return ERR_PTR(err);
816 }
817
818 spin_lock_init(&vb->lock);
819 vb->va = va;
820 vb->free = VMAP_BBMAP_BITS;
821 vb->dirty = 0;
db64fe02
NP
822 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
823 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
824
825 vb_idx = addr_to_vb_idx(va->va_start);
826 spin_lock(&vmap_block_tree_lock);
827 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
828 spin_unlock(&vmap_block_tree_lock);
829 BUG_ON(err);
830 radix_tree_preload_end();
831
832 vbq = &get_cpu_var(vmap_block_queue);
833 vb->vbq = vbq;
834 spin_lock(&vbq->lock);
de560423 835 list_add_rcu(&vb->free_list, &vbq->free);
db64fe02 836 spin_unlock(&vbq->lock);
3f04ba85 837 put_cpu_var(vmap_block_queue);
db64fe02
NP
838
839 return vb;
840}
841
db64fe02
NP
842static void free_vmap_block(struct vmap_block *vb)
843{
844 struct vmap_block *tmp;
845 unsigned long vb_idx;
846
db64fe02
NP
847 vb_idx = addr_to_vb_idx(vb->va->va_start);
848 spin_lock(&vmap_block_tree_lock);
849 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
850 spin_unlock(&vmap_block_tree_lock);
851 BUG_ON(tmp != vb);
852
64141da5 853 free_vmap_area_noflush(vb->va);
22a3c7d1 854 kfree_rcu(vb, rcu_head);
db64fe02
NP
855}
856
02b709df
NP
857static void purge_fragmented_blocks(int cpu)
858{
859 LIST_HEAD(purge);
860 struct vmap_block *vb;
861 struct vmap_block *n_vb;
862 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
863
864 rcu_read_lock();
865 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
866
867 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
868 continue;
869
870 spin_lock(&vb->lock);
871 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
872 vb->free = 0; /* prevent further allocs after releasing lock */
873 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
02b709df
NP
874 bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
875 spin_lock(&vbq->lock);
876 list_del_rcu(&vb->free_list);
877 spin_unlock(&vbq->lock);
878 spin_unlock(&vb->lock);
879 list_add_tail(&vb->purge, &purge);
880 } else
881 spin_unlock(&vb->lock);
882 }
883 rcu_read_unlock();
884
885 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
886 list_del(&vb->purge);
887 free_vmap_block(vb);
888 }
889}
890
02b709df
NP
891static void purge_fragmented_blocks_allcpus(void)
892{
893 int cpu;
894
895 for_each_possible_cpu(cpu)
896 purge_fragmented_blocks(cpu);
897}
898
db64fe02
NP
899static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
900{
901 struct vmap_block_queue *vbq;
902 struct vmap_block *vb;
903 unsigned long addr = 0;
904 unsigned int order;
905
906 BUG_ON(size & ~PAGE_MASK);
907 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
908 if (WARN_ON(size == 0)) {
909 /*
910 * Allocating 0 bytes isn't what caller wants since
911 * get_order(0) returns funny result. Just warn and terminate
912 * early.
913 */
914 return NULL;
915 }
db64fe02
NP
916 order = get_order(size);
917
918again:
919 rcu_read_lock();
920 vbq = &get_cpu_var(vmap_block_queue);
921 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
922 int i;
923
924 spin_lock(&vb->lock);
02b709df
NP
925 if (vb->free < 1UL << order)
926 goto next;
927
3fcd76e8 928 i = VMAP_BBMAP_BITS - vb->free;
02b709df
NP
929 addr = vb->va->va_start + (i << PAGE_SHIFT);
930 BUG_ON(addr_to_vb_idx(addr) !=
931 addr_to_vb_idx(vb->va->va_start));
932 vb->free -= 1UL << order;
933 if (vb->free == 0) {
934 spin_lock(&vbq->lock);
935 list_del_rcu(&vb->free_list);
936 spin_unlock(&vbq->lock);
937 }
938 spin_unlock(&vb->lock);
939 break;
940next:
db64fe02
NP
941 spin_unlock(&vb->lock);
942 }
02b709df 943
3f04ba85 944 put_cpu_var(vmap_block_queue);
db64fe02
NP
945 rcu_read_unlock();
946
947 if (!addr) {
948 vb = new_vmap_block(gfp_mask);
949 if (IS_ERR(vb))
950 return vb;
951 goto again;
952 }
953
954 return (void *)addr;
955}
956
957static void vb_free(const void *addr, unsigned long size)
958{
959 unsigned long offset;
960 unsigned long vb_idx;
961 unsigned int order;
962 struct vmap_block *vb;
963
964 BUG_ON(size & ~PAGE_MASK);
965 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc
NP
966
967 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
968
db64fe02
NP
969 order = get_order(size);
970
971 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
972
973 vb_idx = addr_to_vb_idx((unsigned long)addr);
974 rcu_read_lock();
975 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
976 rcu_read_unlock();
977 BUG_ON(!vb);
978
64141da5
JF
979 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
980
db64fe02 981 spin_lock(&vb->lock);
de560423 982 BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
d086817d 983
db64fe02
NP
984 vb->dirty += 1UL << order;
985 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 986 BUG_ON(vb->free);
db64fe02
NP
987 spin_unlock(&vb->lock);
988 free_vmap_block(vb);
989 } else
990 spin_unlock(&vb->lock);
991}
992
993/**
994 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
995 *
996 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
997 * to amortize TLB flushing overheads. What this means is that any page you
998 * have now, may, in a former life, have been mapped into kernel virtual
999 * address by the vmap layer and so there might be some CPUs with TLB entries
1000 * still referencing that page (additional to the regular 1:1 kernel mapping).
1001 *
1002 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1003 * be sure that none of the pages we have control over will have any aliases
1004 * from the vmap layer.
1005 */
1006void vm_unmap_aliases(void)
1007{
1008 unsigned long start = ULONG_MAX, end = 0;
1009 int cpu;
1010 int flush = 0;
1011
9b463334
JF
1012 if (unlikely(!vmap_initialized))
1013 return;
1014
db64fe02
NP
1015 for_each_possible_cpu(cpu) {
1016 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1017 struct vmap_block *vb;
1018
1019 rcu_read_lock();
1020 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1021 int i;
1022
1023 spin_lock(&vb->lock);
1024 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
1025 while (i < VMAP_BBMAP_BITS) {
1026 unsigned long s, e;
1027 int j;
1028 j = find_next_zero_bit(vb->dirty_map,
1029 VMAP_BBMAP_BITS, i);
1030
1031 s = vb->va->va_start + (i << PAGE_SHIFT);
1032 e = vb->va->va_start + (j << PAGE_SHIFT);
db64fe02
NP
1033 flush = 1;
1034
1035 if (s < start)
1036 start = s;
1037 if (e > end)
1038 end = e;
1039
1040 i = j;
1041 i = find_next_bit(vb->dirty_map,
1042 VMAP_BBMAP_BITS, i);
1043 }
1044 spin_unlock(&vb->lock);
1045 }
1046 rcu_read_unlock();
1047 }
1048
1049 __purge_vmap_area_lazy(&start, &end, 1, flush);
1050}
1051EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1052
1053/**
1054 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1055 * @mem: the pointer returned by vm_map_ram
1056 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1057 */
1058void vm_unmap_ram(const void *mem, unsigned int count)
1059{
1060 unsigned long size = count << PAGE_SHIFT;
1061 unsigned long addr = (unsigned long)mem;
1062
1063 BUG_ON(!addr);
1064 BUG_ON(addr < VMALLOC_START);
1065 BUG_ON(addr > VMALLOC_END);
1066 BUG_ON(addr & (PAGE_SIZE-1));
1067
1068 debug_check_no_locks_freed(mem, size);
cd52858c 1069 vmap_debug_free_range(addr, addr+size);
db64fe02
NP
1070
1071 if (likely(count <= VMAP_MAX_ALLOC))
1072 vb_free(mem, size);
1073 else
1074 free_unmap_vmap_area_addr(addr);
1075}
1076EXPORT_SYMBOL(vm_unmap_ram);
1077
1078/**
1079 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1080 * @pages: an array of pointers to the pages to be mapped
1081 * @count: number of pages
1082 * @node: prefer to allocate data structures on this node
1083 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
e99c97ad
RD
1084 *
1085 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02
NP
1086 */
1087void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1088{
1089 unsigned long size = count << PAGE_SHIFT;
1090 unsigned long addr;
1091 void *mem;
1092
1093 if (likely(count <= VMAP_MAX_ALLOC)) {
1094 mem = vb_alloc(size, GFP_KERNEL);
1095 if (IS_ERR(mem))
1096 return NULL;
1097 addr = (unsigned long)mem;
1098 } else {
1099 struct vmap_area *va;
1100 va = alloc_vmap_area(size, PAGE_SIZE,
1101 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1102 if (IS_ERR(va))
1103 return NULL;
1104
1105 addr = va->va_start;
1106 mem = (void *)addr;
1107 }
1108 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1109 vm_unmap_ram(mem, count);
1110 return NULL;
1111 }
1112 return mem;
1113}
1114EXPORT_SYMBOL(vm_map_ram);
1115
4341fa45 1116static struct vm_struct *vmlist __initdata;
be9b7335
NP
1117/**
1118 * vm_area_add_early - add vmap area early during boot
1119 * @vm: vm_struct to add
1120 *
1121 * This function is used to add fixed kernel vm area to vmlist before
1122 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1123 * should contain proper values and the other fields should be zero.
1124 *
1125 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1126 */
1127void __init vm_area_add_early(struct vm_struct *vm)
1128{
1129 struct vm_struct *tmp, **p;
1130
1131 BUG_ON(vmap_initialized);
1132 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1133 if (tmp->addr >= vm->addr) {
1134 BUG_ON(tmp->addr < vm->addr + vm->size);
1135 break;
1136 } else
1137 BUG_ON(tmp->addr + tmp->size > vm->addr);
1138 }
1139 vm->next = *p;
1140 *p = vm;
1141}
1142
f0aa6617
TH
1143/**
1144 * vm_area_register_early - register vmap area early during boot
1145 * @vm: vm_struct to register
c0c0a293 1146 * @align: requested alignment
f0aa6617
TH
1147 *
1148 * This function is used to register kernel vm area before
1149 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1150 * proper values on entry and other fields should be zero. On return,
1151 * vm->addr contains the allocated address.
1152 *
1153 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1154 */
c0c0a293 1155void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617
TH
1156{
1157 static size_t vm_init_off __initdata;
c0c0a293
TH
1158 unsigned long addr;
1159
1160 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1161 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
f0aa6617 1162
c0c0a293 1163 vm->addr = (void *)addr;
f0aa6617 1164
be9b7335 1165 vm_area_add_early(vm);
f0aa6617
TH
1166}
1167
db64fe02
NP
1168void __init vmalloc_init(void)
1169{
822c18f2
IK
1170 struct vmap_area *va;
1171 struct vm_struct *tmp;
db64fe02
NP
1172 int i;
1173
1174 for_each_possible_cpu(i) {
1175 struct vmap_block_queue *vbq;
32fcfd40 1176 struct vfree_deferred *p;
db64fe02
NP
1177
1178 vbq = &per_cpu(vmap_block_queue, i);
1179 spin_lock_init(&vbq->lock);
1180 INIT_LIST_HEAD(&vbq->free);
32fcfd40
AV
1181 p = &per_cpu(vfree_deferred, i);
1182 init_llist_head(&p->list);
1183 INIT_WORK(&p->wq, free_work);
db64fe02 1184 }
9b463334 1185
822c18f2
IK
1186 /* Import existing vmlist entries. */
1187 for (tmp = vmlist; tmp; tmp = tmp->next) {
43ebdac4 1188 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
dbda591d 1189 va->flags = VM_VM_AREA;
822c18f2
IK
1190 va->va_start = (unsigned long)tmp->addr;
1191 va->va_end = va->va_start + tmp->size;
dbda591d 1192 va->vm = tmp;
822c18f2
IK
1193 __insert_vmap_area(va);
1194 }
ca23e405
TH
1195
1196 vmap_area_pcpu_hole = VMALLOC_END;
1197
9b463334 1198 vmap_initialized = true;
db64fe02
NP
1199}
1200
8fc48985
TH
1201/**
1202 * map_kernel_range_noflush - map kernel VM area with the specified pages
1203 * @addr: start of the VM area to map
1204 * @size: size of the VM area to map
1205 * @prot: page protection flags to use
1206 * @pages: pages to map
1207 *
1208 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1209 * specify should have been allocated using get_vm_area() and its
1210 * friends.
1211 *
1212 * NOTE:
1213 * This function does NOT do any cache flushing. The caller is
1214 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1215 * before calling this function.
1216 *
1217 * RETURNS:
1218 * The number of pages mapped on success, -errno on failure.
1219 */
1220int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1221 pgprot_t prot, struct page **pages)
1222{
1223 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1224}
1225
1226/**
1227 * unmap_kernel_range_noflush - unmap kernel VM area
1228 * @addr: start of the VM area to unmap
1229 * @size: size of the VM area to unmap
1230 *
1231 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1232 * specify should have been allocated using get_vm_area() and its
1233 * friends.
1234 *
1235 * NOTE:
1236 * This function does NOT do any cache flushing. The caller is
1237 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1238 * before calling this function and flush_tlb_kernel_range() after.
1239 */
1240void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1241{
1242 vunmap_page_range(addr, addr + size);
1243}
81e88fdc 1244EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
8fc48985
TH
1245
1246/**
1247 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1248 * @addr: start of the VM area to unmap
1249 * @size: size of the VM area to unmap
1250 *
1251 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1252 * the unmapping and tlb after.
1253 */
db64fe02
NP
1254void unmap_kernel_range(unsigned long addr, unsigned long size)
1255{
1256 unsigned long end = addr + size;
f6fcba70
TH
1257
1258 flush_cache_vunmap(addr, end);
db64fe02
NP
1259 vunmap_page_range(addr, end);
1260 flush_tlb_kernel_range(addr, end);
1261}
1262
1263int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1264{
1265 unsigned long addr = (unsigned long)area->addr;
1266 unsigned long end = addr + area->size - PAGE_SIZE;
1267 int err;
1268
1269 err = vmap_page_range(addr, end, prot, *pages);
1270 if (err > 0) {
1271 *pages += err;
1272 err = 0;
1273 }
1274
1275 return err;
1276}
1277EXPORT_SYMBOL_GPL(map_vm_area);
1278
f5252e00 1279static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
5e6cafc8 1280 unsigned long flags, const void *caller)
cf88c790 1281{
c69480ad 1282 spin_lock(&vmap_area_lock);
cf88c790
TH
1283 vm->flags = flags;
1284 vm->addr = (void *)va->va_start;
1285 vm->size = va->va_end - va->va_start;
1286 vm->caller = caller;
db1aecaf 1287 va->vm = vm;
cf88c790 1288 va->flags |= VM_VM_AREA;
c69480ad 1289 spin_unlock(&vmap_area_lock);
f5252e00 1290}
cf88c790 1291
20fc02b4 1292static void clear_vm_uninitialized_flag(struct vm_struct *vm)
f5252e00 1293{
d4033afd 1294 /*
20fc02b4 1295 * Before removing VM_UNINITIALIZED,
d4033afd
JK
1296 * we should make sure that vm has proper values.
1297 * Pair with smp_rmb() in show_numa_info().
1298 */
1299 smp_wmb();
20fc02b4 1300 vm->flags &= ~VM_UNINITIALIZED;
cf88c790
TH
1301}
1302
db64fe02 1303static struct vm_struct *__get_vm_area_node(unsigned long size,
2dca6999 1304 unsigned long align, unsigned long flags, unsigned long start,
5e6cafc8 1305 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
db64fe02 1306{
0006526d 1307 struct vmap_area *va;
db64fe02 1308 struct vm_struct *area;
1da177e4 1309
52fd24ca 1310 BUG_ON(in_interrupt());
0f2d4a8e
ZY
1311 if (flags & VM_IOREMAP)
1312 align = 1ul << clamp(fls(size), PAGE_SHIFT, IOREMAP_MAX_ORDER);
db64fe02 1313
1da177e4 1314 size = PAGE_ALIGN(size);
31be8309
OH
1315 if (unlikely(!size))
1316 return NULL;
1da177e4 1317
cf88c790 1318 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
1319 if (unlikely(!area))
1320 return NULL;
1321
1da177e4
LT
1322 /*
1323 * We always allocate a guard page.
1324 */
1325 size += PAGE_SIZE;
1326
db64fe02
NP
1327 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1328 if (IS_ERR(va)) {
1329 kfree(area);
1330 return NULL;
1da177e4 1331 }
1da177e4 1332
d82b1d85 1333 setup_vmalloc_vm(area, va, flags, caller);
f5252e00 1334
1da177e4 1335 return area;
1da177e4
LT
1336}
1337
930fc45a
CL
1338struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1339 unsigned long start, unsigned long end)
1340{
00ef2d2f
DR
1341 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1342 GFP_KERNEL, __builtin_return_address(0));
930fc45a 1343}
5992b6da 1344EXPORT_SYMBOL_GPL(__get_vm_area);
930fc45a 1345
c2968612
BH
1346struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1347 unsigned long start, unsigned long end,
5e6cafc8 1348 const void *caller)
c2968612 1349{
00ef2d2f
DR
1350 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1351 GFP_KERNEL, caller);
c2968612
BH
1352}
1353
1da177e4 1354/**
183ff22b 1355 * get_vm_area - reserve a contiguous kernel virtual area
1da177e4
LT
1356 * @size: size of the area
1357 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1358 *
1359 * Search an area of @size in the kernel virtual mapping area,
1360 * and reserved it for out purposes. Returns the area descriptor
1361 * on success or %NULL on failure.
1362 */
1363struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1364{
2dca6999 1365 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
1366 NUMA_NO_NODE, GFP_KERNEL,
1367 __builtin_return_address(0));
23016969
CL
1368}
1369
1370struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 1371 const void *caller)
23016969 1372{
2dca6999 1373 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f 1374 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
1375}
1376
e9da6e99
MS
1377/**
1378 * find_vm_area - find a continuous kernel virtual area
1379 * @addr: base address
1380 *
1381 * Search for the kernel VM area starting at @addr, and return it.
1382 * It is up to the caller to do all required locking to keep the returned
1383 * pointer valid.
1384 */
1385struct vm_struct *find_vm_area(const void *addr)
83342314 1386{
db64fe02 1387 struct vmap_area *va;
83342314 1388
db64fe02
NP
1389 va = find_vmap_area((unsigned long)addr);
1390 if (va && va->flags & VM_VM_AREA)
db1aecaf 1391 return va->vm;
1da177e4 1392
1da177e4 1393 return NULL;
1da177e4
LT
1394}
1395
7856dfeb 1396/**
183ff22b 1397 * remove_vm_area - find and remove a continuous kernel virtual area
7856dfeb
AK
1398 * @addr: base address
1399 *
1400 * Search for the kernel VM area starting at @addr, and remove it.
1401 * This function returns the found VM area, but using it is NOT safe
1402 * on SMP machines, except for its size or flags.
1403 */
b3bdda02 1404struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 1405{
db64fe02
NP
1406 struct vmap_area *va;
1407
1408 va = find_vmap_area((unsigned long)addr);
1409 if (va && va->flags & VM_VM_AREA) {
db1aecaf 1410 struct vm_struct *vm = va->vm;
f5252e00 1411
c69480ad
JK
1412 spin_lock(&vmap_area_lock);
1413 va->vm = NULL;
1414 va->flags &= ~VM_VM_AREA;
1415 spin_unlock(&vmap_area_lock);
1416
dd32c279
KH
1417 vmap_debug_free_range(va->va_start, va->va_end);
1418 free_unmap_vmap_area(va);
1419 vm->size -= PAGE_SIZE;
1420
db64fe02
NP
1421 return vm;
1422 }
1423 return NULL;
7856dfeb
AK
1424}
1425
b3bdda02 1426static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
1427{
1428 struct vm_struct *area;
1429
1430 if (!addr)
1431 return;
1432
e69e9d4a 1433 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
ab15d9b4 1434 addr))
1da177e4 1435 return;
1da177e4
LT
1436
1437 area = remove_vm_area(addr);
1438 if (unlikely(!area)) {
4c8573e2 1439 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 1440 addr);
1da177e4
LT
1441 return;
1442 }
1443
9a11b49a 1444 debug_check_no_locks_freed(addr, area->size);
3ac7fe5a 1445 debug_check_no_obj_freed(addr, area->size);
9a11b49a 1446
1da177e4
LT
1447 if (deallocate_pages) {
1448 int i;
1449
1450 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1451 struct page *page = area->pages[i];
1452
1453 BUG_ON(!page);
1454 __free_page(page);
1da177e4
LT
1455 }
1456
8757d5fa 1457 if (area->flags & VM_VPAGES)
1da177e4
LT
1458 vfree(area->pages);
1459 else
1460 kfree(area->pages);
1461 }
1462
1463 kfree(area);
1464 return;
1465}
32fcfd40 1466
1da177e4
LT
1467/**
1468 * vfree - release memory allocated by vmalloc()
1da177e4
LT
1469 * @addr: memory base address
1470 *
183ff22b 1471 * Free the virtually continuous memory area starting at @addr, as
80e93eff
PE
1472 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1473 * NULL, no operation is performed.
1da177e4 1474 *
32fcfd40
AV
1475 * Must not be called in NMI context (strictly speaking, only if we don't
1476 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1477 * conventions for vfree() arch-depenedent would be a really bad idea)
c9fcee51
AM
1478 *
1479 * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1da177e4 1480 */
b3bdda02 1481void vfree(const void *addr)
1da177e4 1482{
32fcfd40 1483 BUG_ON(in_nmi());
89219d37
CM
1484
1485 kmemleak_free(addr);
1486
32fcfd40
AV
1487 if (!addr)
1488 return;
1489 if (unlikely(in_interrupt())) {
1490 struct vfree_deferred *p = &__get_cpu_var(vfree_deferred);
59d3132f
ON
1491 if (llist_add((struct llist_node *)addr, &p->list))
1492 schedule_work(&p->wq);
32fcfd40
AV
1493 } else
1494 __vunmap(addr, 1);
1da177e4 1495}
1da177e4
LT
1496EXPORT_SYMBOL(vfree);
1497
1498/**
1499 * vunmap - release virtual mapping obtained by vmap()
1da177e4
LT
1500 * @addr: memory base address
1501 *
1502 * Free the virtually contiguous memory area starting at @addr,
1503 * which was created from the page array passed to vmap().
1504 *
80e93eff 1505 * Must not be called in interrupt context.
1da177e4 1506 */
b3bdda02 1507void vunmap(const void *addr)
1da177e4
LT
1508{
1509 BUG_ON(in_interrupt());
34754b69 1510 might_sleep();
32fcfd40
AV
1511 if (addr)
1512 __vunmap(addr, 0);
1da177e4 1513}
1da177e4
LT
1514EXPORT_SYMBOL(vunmap);
1515
1516/**
1517 * vmap - map an array of pages into virtually contiguous space
1da177e4
LT
1518 * @pages: array of page pointers
1519 * @count: number of pages to map
1520 * @flags: vm_area->flags
1521 * @prot: page protection for the mapping
1522 *
1523 * Maps @count pages from @pages into contiguous kernel virtual
1524 * space.
1525 */
1526void *vmap(struct page **pages, unsigned int count,
1527 unsigned long flags, pgprot_t prot)
1528{
1529 struct vm_struct *area;
1530
34754b69
PZ
1531 might_sleep();
1532
4481374c 1533 if (count > totalram_pages)
1da177e4
LT
1534 return NULL;
1535
23016969
CL
1536 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1537 __builtin_return_address(0));
1da177e4
LT
1538 if (!area)
1539 return NULL;
23016969 1540
1da177e4
LT
1541 if (map_vm_area(area, prot, &pages)) {
1542 vunmap(area->addr);
1543 return NULL;
1544 }
1545
1546 return area->addr;
1547}
1da177e4
LT
1548EXPORT_SYMBOL(vmap);
1549
2dca6999
DM
1550static void *__vmalloc_node(unsigned long size, unsigned long align,
1551 gfp_t gfp_mask, pgprot_t prot,
5e6cafc8 1552 int node, const void *caller);
e31d9eb5 1553static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
5e6cafc8 1554 pgprot_t prot, int node, const void *caller)
1da177e4 1555{
22943ab1 1556 const int order = 0;
1da177e4
LT
1557 struct page **pages;
1558 unsigned int nr_pages, array_size, i;
976d6dfb 1559 gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1da177e4
LT
1560
1561 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1562 array_size = (nr_pages * sizeof(struct page *));
1563
1564 area->nr_pages = nr_pages;
1565 /* Please note that the recursion is strictly bounded. */
8757d5fa 1566 if (array_size > PAGE_SIZE) {
976d6dfb 1567 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
23016969 1568 PAGE_KERNEL, node, caller);
8757d5fa 1569 area->flags |= VM_VPAGES;
286e1ea3 1570 } else {
976d6dfb 1571 pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 1572 }
1da177e4 1573 area->pages = pages;
23016969 1574 area->caller = caller;
1da177e4
LT
1575 if (!area->pages) {
1576 remove_vm_area(area->addr);
1577 kfree(area);
1578 return NULL;
1579 }
1da177e4
LT
1580
1581 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8 1582 struct page *page;
22943ab1 1583 gfp_t tmp_mask = gfp_mask | __GFP_NOWARN;
bf53d6f8 1584
930fc45a 1585 if (node < 0)
22943ab1 1586 page = alloc_page(tmp_mask);
930fc45a 1587 else
22943ab1 1588 page = alloc_pages_node(node, tmp_mask, order);
bf53d6f8
CL
1589
1590 if (unlikely(!page)) {
1da177e4
LT
1591 /* Successfully allocated i pages, free them in __vunmap() */
1592 area->nr_pages = i;
1593 goto fail;
1594 }
bf53d6f8 1595 area->pages[i] = page;
1da177e4
LT
1596 }
1597
1598 if (map_vm_area(area, prot, &pages))
1599 goto fail;
1600 return area->addr;
1601
1602fail:
3ee9a4f0
JP
1603 warn_alloc_failed(gfp_mask, order,
1604 "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
22943ab1 1605 (area->nr_pages*PAGE_SIZE), area->size);
1da177e4
LT
1606 vfree(area->addr);
1607 return NULL;
1608}
1609
1610/**
d0a21265 1611 * __vmalloc_node_range - allocate virtually contiguous memory
1da177e4 1612 * @size: allocation size
2dca6999 1613 * @align: desired alignment
d0a21265
DR
1614 * @start: vm area range start
1615 * @end: vm area range end
1da177e4
LT
1616 * @gfp_mask: flags for the page level allocator
1617 * @prot: protection mask for the allocated pages
00ef2d2f 1618 * @node: node to use for allocation or NUMA_NO_NODE
c85d194b 1619 * @caller: caller's return address
1da177e4
LT
1620 *
1621 * Allocate enough pages to cover @size from the page level
1622 * allocator with @gfp_mask flags. Map them into contiguous
1623 * kernel virtual space, using a pagetable protection of @prot.
1624 */
d0a21265
DR
1625void *__vmalloc_node_range(unsigned long size, unsigned long align,
1626 unsigned long start, unsigned long end, gfp_t gfp_mask,
5e6cafc8 1627 pgprot_t prot, int node, const void *caller)
1da177e4
LT
1628{
1629 struct vm_struct *area;
89219d37
CM
1630 void *addr;
1631 unsigned long real_size = size;
1da177e4
LT
1632
1633 size = PAGE_ALIGN(size);
4481374c 1634 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
de7d2b56 1635 goto fail;
1da177e4 1636
20fc02b4 1637 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED,
f5252e00 1638 start, end, node, gfp_mask, caller);
1da177e4 1639 if (!area)
de7d2b56 1640 goto fail;
1da177e4 1641
89219d37 1642 addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1368edf0 1643 if (!addr)
46c001a2 1644 goto fail;
89219d37 1645
f5252e00 1646 /*
20fc02b4
ZY
1647 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1648 * flag. It means that vm_struct is not fully initialized.
4341fa45 1649 * Now, it is fully initialized, so remove this flag here.
f5252e00 1650 */
20fc02b4 1651 clear_vm_uninitialized_flag(area);
f5252e00 1652
89219d37
CM
1653 /*
1654 * A ref_count = 3 is needed because the vm_struct and vmap_area
1655 * structures allocated in the __get_vm_area_node() function contain
1656 * references to the virtual address of the vmalloc'ed block.
1657 */
1658 kmemleak_alloc(addr, real_size, 3, gfp_mask);
1659
1660 return addr;
de7d2b56
JP
1661
1662fail:
1663 warn_alloc_failed(gfp_mask, 0,
1664 "vmalloc: allocation failure: %lu bytes\n",
1665 real_size);
1666 return NULL;
1da177e4
LT
1667}
1668
d0a21265
DR
1669/**
1670 * __vmalloc_node - allocate virtually contiguous memory
1671 * @size: allocation size
1672 * @align: desired alignment
1673 * @gfp_mask: flags for the page level allocator
1674 * @prot: protection mask for the allocated pages
00ef2d2f 1675 * @node: node to use for allocation or NUMA_NO_NODE
d0a21265
DR
1676 * @caller: caller's return address
1677 *
1678 * Allocate enough pages to cover @size from the page level
1679 * allocator with @gfp_mask flags. Map them into contiguous
1680 * kernel virtual space, using a pagetable protection of @prot.
1681 */
1682static void *__vmalloc_node(unsigned long size, unsigned long align,
1683 gfp_t gfp_mask, pgprot_t prot,
5e6cafc8 1684 int node, const void *caller)
d0a21265
DR
1685{
1686 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1687 gfp_mask, prot, node, caller);
1688}
1689
930fc45a
CL
1690void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1691{
00ef2d2f 1692 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
23016969 1693 __builtin_return_address(0));
930fc45a 1694}
1da177e4
LT
1695EXPORT_SYMBOL(__vmalloc);
1696
e1ca7788
DY
1697static inline void *__vmalloc_node_flags(unsigned long size,
1698 int node, gfp_t flags)
1699{
1700 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1701 node, __builtin_return_address(0));
1702}
1703
1da177e4
LT
1704/**
1705 * vmalloc - allocate virtually contiguous memory
1da177e4 1706 * @size: allocation size
1da177e4
LT
1707 * Allocate enough pages to cover @size from the page level
1708 * allocator and map them into contiguous kernel virtual space.
1709 *
c1c8897f 1710 * For tight control over page level allocator and protection flags
1da177e4
LT
1711 * use __vmalloc() instead.
1712 */
1713void *vmalloc(unsigned long size)
1714{
00ef2d2f
DR
1715 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1716 GFP_KERNEL | __GFP_HIGHMEM);
1da177e4 1717}
1da177e4
LT
1718EXPORT_SYMBOL(vmalloc);
1719
e1ca7788
DY
1720/**
1721 * vzalloc - allocate virtually contiguous memory with zero fill
1722 * @size: allocation size
1723 * Allocate enough pages to cover @size from the page level
1724 * allocator and map them into contiguous kernel virtual space.
1725 * The memory allocated is set to zero.
1726 *
1727 * For tight control over page level allocator and protection flags
1728 * use __vmalloc() instead.
1729 */
1730void *vzalloc(unsigned long size)
1731{
00ef2d2f 1732 return __vmalloc_node_flags(size, NUMA_NO_NODE,
e1ca7788
DY
1733 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1734}
1735EXPORT_SYMBOL(vzalloc);
1736
83342314 1737/**
ead04089
REB
1738 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1739 * @size: allocation size
83342314 1740 *
ead04089
REB
1741 * The resulting memory area is zeroed so it can be mapped to userspace
1742 * without leaking data.
83342314
NP
1743 */
1744void *vmalloc_user(unsigned long size)
1745{
1746 struct vm_struct *area;
1747 void *ret;
1748
2dca6999
DM
1749 ret = __vmalloc_node(size, SHMLBA,
1750 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
00ef2d2f
DR
1751 PAGE_KERNEL, NUMA_NO_NODE,
1752 __builtin_return_address(0));
2b4ac44e 1753 if (ret) {
db64fe02 1754 area = find_vm_area(ret);
2b4ac44e 1755 area->flags |= VM_USERMAP;
2b4ac44e 1756 }
83342314
NP
1757 return ret;
1758}
1759EXPORT_SYMBOL(vmalloc_user);
1760
930fc45a
CL
1761/**
1762 * vmalloc_node - allocate memory on a specific node
930fc45a 1763 * @size: allocation size
d44e0780 1764 * @node: numa node
930fc45a
CL
1765 *
1766 * Allocate enough pages to cover @size from the page level
1767 * allocator and map them into contiguous kernel virtual space.
1768 *
c1c8897f 1769 * For tight control over page level allocator and protection flags
930fc45a
CL
1770 * use __vmalloc() instead.
1771 */
1772void *vmalloc_node(unsigned long size, int node)
1773{
2dca6999 1774 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
23016969 1775 node, __builtin_return_address(0));
930fc45a
CL
1776}
1777EXPORT_SYMBOL(vmalloc_node);
1778
e1ca7788
DY
1779/**
1780 * vzalloc_node - allocate memory on a specific node with zero fill
1781 * @size: allocation size
1782 * @node: numa node
1783 *
1784 * Allocate enough pages to cover @size from the page level
1785 * allocator and map them into contiguous kernel virtual space.
1786 * The memory allocated is set to zero.
1787 *
1788 * For tight control over page level allocator and protection flags
1789 * use __vmalloc_node() instead.
1790 */
1791void *vzalloc_node(unsigned long size, int node)
1792{
1793 return __vmalloc_node_flags(size, node,
1794 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1795}
1796EXPORT_SYMBOL(vzalloc_node);
1797
4dc3b16b
PP
1798#ifndef PAGE_KERNEL_EXEC
1799# define PAGE_KERNEL_EXEC PAGE_KERNEL
1800#endif
1801
1da177e4
LT
1802/**
1803 * vmalloc_exec - allocate virtually contiguous, executable memory
1da177e4
LT
1804 * @size: allocation size
1805 *
1806 * Kernel-internal function to allocate enough pages to cover @size
1807 * the page level allocator and map them into contiguous and
1808 * executable kernel virtual space.
1809 *
c1c8897f 1810 * For tight control over page level allocator and protection flags
1da177e4
LT
1811 * use __vmalloc() instead.
1812 */
1813
1da177e4
LT
1814void *vmalloc_exec(unsigned long size)
1815{
2dca6999 1816 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
00ef2d2f 1817 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4
LT
1818}
1819
0d08e0d3 1820#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
7ac674f5 1821#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3 1822#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
7ac674f5 1823#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
0d08e0d3
AK
1824#else
1825#define GFP_VMALLOC32 GFP_KERNEL
1826#endif
1827
1da177e4
LT
1828/**
1829 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1da177e4
LT
1830 * @size: allocation size
1831 *
1832 * Allocate enough 32bit PA addressable pages to cover @size from the
1833 * page level allocator and map them into contiguous kernel virtual space.
1834 */
1835void *vmalloc_32(unsigned long size)
1836{
2dca6999 1837 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
00ef2d2f 1838 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4 1839}
1da177e4
LT
1840EXPORT_SYMBOL(vmalloc_32);
1841
83342314 1842/**
ead04089 1843 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
83342314 1844 * @size: allocation size
ead04089
REB
1845 *
1846 * The resulting memory area is 32bit addressable and zeroed so it can be
1847 * mapped to userspace without leaking data.
83342314
NP
1848 */
1849void *vmalloc_32_user(unsigned long size)
1850{
1851 struct vm_struct *area;
1852 void *ret;
1853
2dca6999 1854 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
00ef2d2f 1855 NUMA_NO_NODE, __builtin_return_address(0));
2b4ac44e 1856 if (ret) {
db64fe02 1857 area = find_vm_area(ret);
2b4ac44e 1858 area->flags |= VM_USERMAP;
2b4ac44e 1859 }
83342314
NP
1860 return ret;
1861}
1862EXPORT_SYMBOL(vmalloc_32_user);
1863
d0107eb0
KH
1864/*
1865 * small helper routine , copy contents to buf from addr.
1866 * If the page is not present, fill zero.
1867 */
1868
1869static int aligned_vread(char *buf, char *addr, unsigned long count)
1870{
1871 struct page *p;
1872 int copied = 0;
1873
1874 while (count) {
1875 unsigned long offset, length;
1876
1877 offset = (unsigned long)addr & ~PAGE_MASK;
1878 length = PAGE_SIZE - offset;
1879 if (length > count)
1880 length = count;
1881 p = vmalloc_to_page(addr);
1882 /*
1883 * To do safe access to this _mapped_ area, we need
1884 * lock. But adding lock here means that we need to add
1885 * overhead of vmalloc()/vfree() calles for this _debug_
1886 * interface, rarely used. Instead of that, we'll use
1887 * kmap() and get small overhead in this access function.
1888 */
1889 if (p) {
1890 /*
1891 * we can expect USER0 is not used (see vread/vwrite's
1892 * function description)
1893 */
9b04c5fe 1894 void *map = kmap_atomic(p);
d0107eb0 1895 memcpy(buf, map + offset, length);
9b04c5fe 1896 kunmap_atomic(map);
d0107eb0
KH
1897 } else
1898 memset(buf, 0, length);
1899
1900 addr += length;
1901 buf += length;
1902 copied += length;
1903 count -= length;
1904 }
1905 return copied;
1906}
1907
1908static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1909{
1910 struct page *p;
1911 int copied = 0;
1912
1913 while (count) {
1914 unsigned long offset, length;
1915
1916 offset = (unsigned long)addr & ~PAGE_MASK;
1917 length = PAGE_SIZE - offset;
1918 if (length > count)
1919 length = count;
1920 p = vmalloc_to_page(addr);
1921 /*
1922 * To do safe access to this _mapped_ area, we need
1923 * lock. But adding lock here means that we need to add
1924 * overhead of vmalloc()/vfree() calles for this _debug_
1925 * interface, rarely used. Instead of that, we'll use
1926 * kmap() and get small overhead in this access function.
1927 */
1928 if (p) {
1929 /*
1930 * we can expect USER0 is not used (see vread/vwrite's
1931 * function description)
1932 */
9b04c5fe 1933 void *map = kmap_atomic(p);
d0107eb0 1934 memcpy(map + offset, buf, length);
9b04c5fe 1935 kunmap_atomic(map);
d0107eb0
KH
1936 }
1937 addr += length;
1938 buf += length;
1939 copied += length;
1940 count -= length;
1941 }
1942 return copied;
1943}
1944
1945/**
1946 * vread() - read vmalloc area in a safe way.
1947 * @buf: buffer for reading data
1948 * @addr: vm address.
1949 * @count: number of bytes to be read.
1950 *
1951 * Returns # of bytes which addr and buf should be increased.
1952 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
1953 * includes any intersect with alive vmalloc area.
1954 *
1955 * This function checks that addr is a valid vmalloc'ed area, and
1956 * copy data from that area to a given buffer. If the given memory range
1957 * of [addr...addr+count) includes some valid address, data is copied to
1958 * proper area of @buf. If there are memory holes, they'll be zero-filled.
1959 * IOREMAP area is treated as memory hole and no copy is done.
1960 *
1961 * If [addr...addr+count) doesn't includes any intersects with alive
a8e5202d 1962 * vm_struct area, returns 0. @buf should be kernel's buffer.
d0107eb0
KH
1963 *
1964 * Note: In usual ops, vread() is never necessary because the caller
1965 * should know vmalloc() area is valid and can use memcpy().
1966 * This is for routines which have to access vmalloc area without
1967 * any informaion, as /dev/kmem.
1968 *
1969 */
1970
1da177e4
LT
1971long vread(char *buf, char *addr, unsigned long count)
1972{
e81ce85f
JK
1973 struct vmap_area *va;
1974 struct vm_struct *vm;
1da177e4 1975 char *vaddr, *buf_start = buf;
d0107eb0 1976 unsigned long buflen = count;
1da177e4
LT
1977 unsigned long n;
1978
1979 /* Don't allow overflow */
1980 if ((unsigned long) addr + count < count)
1981 count = -(unsigned long) addr;
1982
e81ce85f
JK
1983 spin_lock(&vmap_area_lock);
1984 list_for_each_entry(va, &vmap_area_list, list) {
1985 if (!count)
1986 break;
1987
1988 if (!(va->flags & VM_VM_AREA))
1989 continue;
1990
1991 vm = va->vm;
1992 vaddr = (char *) vm->addr;
1993 if (addr >= vaddr + vm->size - PAGE_SIZE)
1da177e4
LT
1994 continue;
1995 while (addr < vaddr) {
1996 if (count == 0)
1997 goto finished;
1998 *buf = '\0';
1999 buf++;
2000 addr++;
2001 count--;
2002 }
e81ce85f 2003 n = vaddr + vm->size - PAGE_SIZE - addr;
d0107eb0
KH
2004 if (n > count)
2005 n = count;
e81ce85f 2006 if (!(vm->flags & VM_IOREMAP))
d0107eb0
KH
2007 aligned_vread(buf, addr, n);
2008 else /* IOREMAP area is treated as memory hole */
2009 memset(buf, 0, n);
2010 buf += n;
2011 addr += n;
2012 count -= n;
1da177e4
LT
2013 }
2014finished:
e81ce85f 2015 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2016
2017 if (buf == buf_start)
2018 return 0;
2019 /* zero-fill memory holes */
2020 if (buf != buf_start + buflen)
2021 memset(buf, 0, buflen - (buf - buf_start));
2022
2023 return buflen;
1da177e4
LT
2024}
2025
d0107eb0
KH
2026/**
2027 * vwrite() - write vmalloc area in a safe way.
2028 * @buf: buffer for source data
2029 * @addr: vm address.
2030 * @count: number of bytes to be read.
2031 *
2032 * Returns # of bytes which addr and buf should be incresed.
2033 * (same number to @count).
2034 * If [addr...addr+count) doesn't includes any intersect with valid
2035 * vmalloc area, returns 0.
2036 *
2037 * This function checks that addr is a valid vmalloc'ed area, and
2038 * copy data from a buffer to the given addr. If specified range of
2039 * [addr...addr+count) includes some valid address, data is copied from
2040 * proper area of @buf. If there are memory holes, no copy to hole.
2041 * IOREMAP area is treated as memory hole and no copy is done.
2042 *
2043 * If [addr...addr+count) doesn't includes any intersects with alive
a8e5202d 2044 * vm_struct area, returns 0. @buf should be kernel's buffer.
d0107eb0
KH
2045 *
2046 * Note: In usual ops, vwrite() is never necessary because the caller
2047 * should know vmalloc() area is valid and can use memcpy().
2048 * This is for routines which have to access vmalloc area without
2049 * any informaion, as /dev/kmem.
d0107eb0
KH
2050 */
2051
1da177e4
LT
2052long vwrite(char *buf, char *addr, unsigned long count)
2053{
e81ce85f
JK
2054 struct vmap_area *va;
2055 struct vm_struct *vm;
d0107eb0
KH
2056 char *vaddr;
2057 unsigned long n, buflen;
2058 int copied = 0;
1da177e4
LT
2059
2060 /* Don't allow overflow */
2061 if ((unsigned long) addr + count < count)
2062 count = -(unsigned long) addr;
d0107eb0 2063 buflen = count;
1da177e4 2064
e81ce85f
JK
2065 spin_lock(&vmap_area_lock);
2066 list_for_each_entry(va, &vmap_area_list, list) {
2067 if (!count)
2068 break;
2069
2070 if (!(va->flags & VM_VM_AREA))
2071 continue;
2072
2073 vm = va->vm;
2074 vaddr = (char *) vm->addr;
2075 if (addr >= vaddr + vm->size - PAGE_SIZE)
1da177e4
LT
2076 continue;
2077 while (addr < vaddr) {
2078 if (count == 0)
2079 goto finished;
2080 buf++;
2081 addr++;
2082 count--;
2083 }
e81ce85f 2084 n = vaddr + vm->size - PAGE_SIZE - addr;
d0107eb0
KH
2085 if (n > count)
2086 n = count;
e81ce85f 2087 if (!(vm->flags & VM_IOREMAP)) {
d0107eb0
KH
2088 aligned_vwrite(buf, addr, n);
2089 copied++;
2090 }
2091 buf += n;
2092 addr += n;
2093 count -= n;
1da177e4
LT
2094 }
2095finished:
e81ce85f 2096 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2097 if (!copied)
2098 return 0;
2099 return buflen;
1da177e4 2100}
83342314
NP
2101
2102/**
e69e9d4a
HD
2103 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2104 * @vma: vma to cover
2105 * @uaddr: target user address to start at
2106 * @kaddr: virtual address of vmalloc kernel memory
2107 * @size: size of map area
7682486b
RD
2108 *
2109 * Returns: 0 for success, -Exxx on failure
83342314 2110 *
e69e9d4a
HD
2111 * This function checks that @kaddr is a valid vmalloc'ed area,
2112 * and that it is big enough to cover the range starting at
2113 * @uaddr in @vma. Will return failure if that criteria isn't
2114 * met.
83342314 2115 *
72fd4a35 2116 * Similar to remap_pfn_range() (see mm/memory.c)
83342314 2117 */
e69e9d4a
HD
2118int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2119 void *kaddr, unsigned long size)
83342314
NP
2120{
2121 struct vm_struct *area;
83342314 2122
e69e9d4a
HD
2123 size = PAGE_ALIGN(size);
2124
2125 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
83342314
NP
2126 return -EINVAL;
2127
e69e9d4a 2128 area = find_vm_area(kaddr);
83342314 2129 if (!area)
db64fe02 2130 return -EINVAL;
83342314
NP
2131
2132 if (!(area->flags & VM_USERMAP))
db64fe02 2133 return -EINVAL;
83342314 2134
e69e9d4a 2135 if (kaddr + size > area->addr + area->size)
db64fe02 2136 return -EINVAL;
83342314 2137
83342314 2138 do {
e69e9d4a 2139 struct page *page = vmalloc_to_page(kaddr);
db64fe02
NP
2140 int ret;
2141
83342314
NP
2142 ret = vm_insert_page(vma, uaddr, page);
2143 if (ret)
2144 return ret;
2145
2146 uaddr += PAGE_SIZE;
e69e9d4a
HD
2147 kaddr += PAGE_SIZE;
2148 size -= PAGE_SIZE;
2149 } while (size > 0);
83342314 2150
314e51b9 2151 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
83342314 2152
db64fe02 2153 return 0;
83342314 2154}
e69e9d4a
HD
2155EXPORT_SYMBOL(remap_vmalloc_range_partial);
2156
2157/**
2158 * remap_vmalloc_range - map vmalloc pages to userspace
2159 * @vma: vma to cover (map full range of vma)
2160 * @addr: vmalloc memory
2161 * @pgoff: number of pages into addr before first page to map
2162 *
2163 * Returns: 0 for success, -Exxx on failure
2164 *
2165 * This function checks that addr is a valid vmalloc'ed area, and
2166 * that it is big enough to cover the vma. Will return failure if
2167 * that criteria isn't met.
2168 *
2169 * Similar to remap_pfn_range() (see mm/memory.c)
2170 */
2171int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2172 unsigned long pgoff)
2173{
2174 return remap_vmalloc_range_partial(vma, vma->vm_start,
2175 addr + (pgoff << PAGE_SHIFT),
2176 vma->vm_end - vma->vm_start);
2177}
83342314
NP
2178EXPORT_SYMBOL(remap_vmalloc_range);
2179
1eeb66a1
CH
2180/*
2181 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2182 * have one.
2183 */
2184void __attribute__((weak)) vmalloc_sync_all(void)
2185{
2186}
5f4352fb
JF
2187
2188
2f569afd 2189static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
5f4352fb 2190{
cd12909c
DV
2191 pte_t ***p = data;
2192
2193 if (p) {
2194 *(*p) = pte;
2195 (*p)++;
2196 }
5f4352fb
JF
2197 return 0;
2198}
2199
2200/**
2201 * alloc_vm_area - allocate a range of kernel address space
2202 * @size: size of the area
cd12909c 2203 * @ptes: returns the PTEs for the address space
7682486b
RD
2204 *
2205 * Returns: NULL on failure, vm_struct on success
5f4352fb
JF
2206 *
2207 * This function reserves a range of kernel address space, and
2208 * allocates pagetables to map that range. No actual mappings
cd12909c
DV
2209 * are created.
2210 *
2211 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2212 * allocated for the VM area are returned.
5f4352fb 2213 */
cd12909c 2214struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
5f4352fb
JF
2215{
2216 struct vm_struct *area;
2217
23016969
CL
2218 area = get_vm_area_caller(size, VM_IOREMAP,
2219 __builtin_return_address(0));
5f4352fb
JF
2220 if (area == NULL)
2221 return NULL;
2222
2223 /*
2224 * This ensures that page tables are constructed for this region
2225 * of kernel virtual address space and mapped into init_mm.
2226 */
2227 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
cd12909c 2228 size, f, ptes ? &ptes : NULL)) {
5f4352fb
JF
2229 free_vm_area(area);
2230 return NULL;
2231 }
2232
5f4352fb
JF
2233 return area;
2234}
2235EXPORT_SYMBOL_GPL(alloc_vm_area);
2236
2237void free_vm_area(struct vm_struct *area)
2238{
2239 struct vm_struct *ret;
2240 ret = remove_vm_area(area->addr);
2241 BUG_ON(ret != area);
2242 kfree(area);
2243}
2244EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 2245
4f8b02b4 2246#ifdef CONFIG_SMP
ca23e405
TH
2247static struct vmap_area *node_to_va(struct rb_node *n)
2248{
2249 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2250}
2251
2252/**
2253 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2254 * @end: target address
2255 * @pnext: out arg for the next vmap_area
2256 * @pprev: out arg for the previous vmap_area
2257 *
2258 * Returns: %true if either or both of next and prev are found,
2259 * %false if no vmap_area exists
2260 *
2261 * Find vmap_areas end addresses of which enclose @end. ie. if not
2262 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2263 */
2264static bool pvm_find_next_prev(unsigned long end,
2265 struct vmap_area **pnext,
2266 struct vmap_area **pprev)
2267{
2268 struct rb_node *n = vmap_area_root.rb_node;
2269 struct vmap_area *va = NULL;
2270
2271 while (n) {
2272 va = rb_entry(n, struct vmap_area, rb_node);
2273 if (end < va->va_end)
2274 n = n->rb_left;
2275 else if (end > va->va_end)
2276 n = n->rb_right;
2277 else
2278 break;
2279 }
2280
2281 if (!va)
2282 return false;
2283
2284 if (va->va_end > end) {
2285 *pnext = va;
2286 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2287 } else {
2288 *pprev = va;
2289 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2290 }
2291 return true;
2292}
2293
2294/**
2295 * pvm_determine_end - find the highest aligned address between two vmap_areas
2296 * @pnext: in/out arg for the next vmap_area
2297 * @pprev: in/out arg for the previous vmap_area
2298 * @align: alignment
2299 *
2300 * Returns: determined end address
2301 *
2302 * Find the highest aligned address between *@pnext and *@pprev below
2303 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2304 * down address is between the end addresses of the two vmap_areas.
2305 *
2306 * Please note that the address returned by this function may fall
2307 * inside *@pnext vmap_area. The caller is responsible for checking
2308 * that.
2309 */
2310static unsigned long pvm_determine_end(struct vmap_area **pnext,
2311 struct vmap_area **pprev,
2312 unsigned long align)
2313{
2314 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2315 unsigned long addr;
2316
2317 if (*pnext)
2318 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2319 else
2320 addr = vmalloc_end;
2321
2322 while (*pprev && (*pprev)->va_end > addr) {
2323 *pnext = *pprev;
2324 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2325 }
2326
2327 return addr;
2328}
2329
2330/**
2331 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2332 * @offsets: array containing offset of each area
2333 * @sizes: array containing size of each area
2334 * @nr_vms: the number of areas to allocate
2335 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
2336 *
2337 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2338 * vm_structs on success, %NULL on failure
2339 *
2340 * Percpu allocator wants to use congruent vm areas so that it can
2341 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
2342 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2343 * be scattered pretty far, distance between two areas easily going up
2344 * to gigabytes. To avoid interacting with regular vmallocs, these
2345 * areas are allocated from top.
ca23e405
TH
2346 *
2347 * Despite its complicated look, this allocator is rather simple. It
2348 * does everything top-down and scans areas from the end looking for
2349 * matching slot. While scanning, if any of the areas overlaps with
2350 * existing vmap_area, the base address is pulled down to fit the
2351 * area. Scanning is repeated till all the areas fit and then all
2352 * necessary data structres are inserted and the result is returned.
2353 */
2354struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2355 const size_t *sizes, int nr_vms,
ec3f64fc 2356 size_t align)
ca23e405
TH
2357{
2358 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2359 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2360 struct vmap_area **vas, *prev, *next;
2361 struct vm_struct **vms;
2362 int area, area2, last_area, term_area;
2363 unsigned long base, start, end, last_end;
2364 bool purged = false;
2365
ca23e405
TH
2366 /* verify parameters and allocate data structures */
2367 BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2368 for (last_area = 0, area = 0; area < nr_vms; area++) {
2369 start = offsets[area];
2370 end = start + sizes[area];
2371
2372 /* is everything aligned properly? */
2373 BUG_ON(!IS_ALIGNED(offsets[area], align));
2374 BUG_ON(!IS_ALIGNED(sizes[area], align));
2375
2376 /* detect the area with the highest address */
2377 if (start > offsets[last_area])
2378 last_area = area;
2379
2380 for (area2 = 0; area2 < nr_vms; area2++) {
2381 unsigned long start2 = offsets[area2];
2382 unsigned long end2 = start2 + sizes[area2];
2383
2384 if (area2 == area)
2385 continue;
2386
2387 BUG_ON(start2 >= start && start2 < end);
2388 BUG_ON(end2 <= end && end2 > start);
2389 }
2390 }
2391 last_end = offsets[last_area] + sizes[last_area];
2392
2393 if (vmalloc_end - vmalloc_start < last_end) {
2394 WARN_ON(true);
2395 return NULL;
2396 }
2397
4d67d860
TM
2398 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2399 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 2400 if (!vas || !vms)
f1db7afd 2401 goto err_free2;
ca23e405
TH
2402
2403 for (area = 0; area < nr_vms; area++) {
ec3f64fc
DR
2404 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2405 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
2406 if (!vas[area] || !vms[area])
2407 goto err_free;
2408 }
2409retry:
2410 spin_lock(&vmap_area_lock);
2411
2412 /* start scanning - we scan from the top, begin with the last area */
2413 area = term_area = last_area;
2414 start = offsets[area];
2415 end = start + sizes[area];
2416
2417 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2418 base = vmalloc_end - last_end;
2419 goto found;
2420 }
2421 base = pvm_determine_end(&next, &prev, align) - end;
2422
2423 while (true) {
2424 BUG_ON(next && next->va_end <= base + end);
2425 BUG_ON(prev && prev->va_end > base + end);
2426
2427 /*
2428 * base might have underflowed, add last_end before
2429 * comparing.
2430 */
2431 if (base + last_end < vmalloc_start + last_end) {
2432 spin_unlock(&vmap_area_lock);
2433 if (!purged) {
2434 purge_vmap_area_lazy();
2435 purged = true;
2436 goto retry;
2437 }
2438 goto err_free;
2439 }
2440
2441 /*
2442 * If next overlaps, move base downwards so that it's
2443 * right below next and then recheck.
2444 */
2445 if (next && next->va_start < base + end) {
2446 base = pvm_determine_end(&next, &prev, align) - end;
2447 term_area = area;
2448 continue;
2449 }
2450
2451 /*
2452 * If prev overlaps, shift down next and prev and move
2453 * base so that it's right below new next and then
2454 * recheck.
2455 */
2456 if (prev && prev->va_end > base + start) {
2457 next = prev;
2458 prev = node_to_va(rb_prev(&next->rb_node));
2459 base = pvm_determine_end(&next, &prev, align) - end;
2460 term_area = area;
2461 continue;
2462 }
2463
2464 /*
2465 * This area fits, move on to the previous one. If
2466 * the previous one is the terminal one, we're done.
2467 */
2468 area = (area + nr_vms - 1) % nr_vms;
2469 if (area == term_area)
2470 break;
2471 start = offsets[area];
2472 end = start + sizes[area];
2473 pvm_find_next_prev(base + end, &next, &prev);
2474 }
2475found:
2476 /* we've found a fitting base, insert all va's */
2477 for (area = 0; area < nr_vms; area++) {
2478 struct vmap_area *va = vas[area];
2479
2480 va->va_start = base + offsets[area];
2481 va->va_end = va->va_start + sizes[area];
2482 __insert_vmap_area(va);
2483 }
2484
2485 vmap_area_pcpu_hole = base + offsets[last_area];
2486
2487 spin_unlock(&vmap_area_lock);
2488
2489 /* insert all vm's */
2490 for (area = 0; area < nr_vms; area++)
3645cb4a
ZY
2491 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2492 pcpu_get_vm_areas);
ca23e405
TH
2493
2494 kfree(vas);
2495 return vms;
2496
2497err_free:
2498 for (area = 0; area < nr_vms; area++) {
f1db7afd
KC
2499 kfree(vas[area]);
2500 kfree(vms[area]);
ca23e405 2501 }
f1db7afd 2502err_free2:
ca23e405
TH
2503 kfree(vas);
2504 kfree(vms);
2505 return NULL;
2506}
2507
2508/**
2509 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2510 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2511 * @nr_vms: the number of allocated areas
2512 *
2513 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2514 */
2515void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2516{
2517 int i;
2518
2519 for (i = 0; i < nr_vms; i++)
2520 free_vm_area(vms[i]);
2521 kfree(vms);
2522}
4f8b02b4 2523#endif /* CONFIG_SMP */
a10aa579
CL
2524
2525#ifdef CONFIG_PROC_FS
2526static void *s_start(struct seq_file *m, loff_t *pos)
d4033afd 2527 __acquires(&vmap_area_lock)
a10aa579
CL
2528{
2529 loff_t n = *pos;
d4033afd 2530 struct vmap_area *va;
a10aa579 2531
d4033afd
JK
2532 spin_lock(&vmap_area_lock);
2533 va = list_entry((&vmap_area_list)->next, typeof(*va), list);
2534 while (n > 0 && &va->list != &vmap_area_list) {
a10aa579 2535 n--;
d4033afd 2536 va = list_entry(va->list.next, typeof(*va), list);
a10aa579 2537 }
d4033afd
JK
2538 if (!n && &va->list != &vmap_area_list)
2539 return va;
a10aa579
CL
2540
2541 return NULL;
2542
2543}
2544
2545static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2546{
d4033afd 2547 struct vmap_area *va = p, *next;
a10aa579
CL
2548
2549 ++*pos;
d4033afd
JK
2550 next = list_entry(va->list.next, typeof(*va), list);
2551 if (&next->list != &vmap_area_list)
2552 return next;
2553
2554 return NULL;
a10aa579
CL
2555}
2556
2557static void s_stop(struct seq_file *m, void *p)
d4033afd 2558 __releases(&vmap_area_lock)
a10aa579 2559{
d4033afd 2560 spin_unlock(&vmap_area_lock);
a10aa579
CL
2561}
2562
a47a126a
ED
2563static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2564{
e5adfffc 2565 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a
ED
2566 unsigned int nr, *counters = m->private;
2567
2568 if (!counters)
2569 return;
2570
2571 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2572
2573 for (nr = 0; nr < v->nr_pages; nr++)
2574 counters[page_to_nid(v->pages[nr])]++;
2575
2576 for_each_node_state(nr, N_HIGH_MEMORY)
2577 if (counters[nr])
2578 seq_printf(m, " N%u=%u", nr, counters[nr]);
2579 }
2580}
2581
a10aa579
CL
2582static int s_show(struct seq_file *m, void *p)
2583{
d4033afd
JK
2584 struct vmap_area *va = p;
2585 struct vm_struct *v;
2586
2587 if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING))
2588 return 0;
2589
2590 if (!(va->flags & VM_VM_AREA)) {
2591 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
2592 (void *)va->va_start, (void *)va->va_end,
2593 va->va_end - va->va_start);
2594 return 0;
2595 }
2596
2597 v = va->vm;
a10aa579 2598
d157a558
ZY
2599 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2600 smp_rmb();
2601 if (v->flags & VM_UNINITIALIZED)
2602 return 0;
2603
45ec1690 2604 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
2605 v->addr, v->addr + v->size, v->size);
2606
62c70bce
JP
2607 if (v->caller)
2608 seq_printf(m, " %pS", v->caller);
23016969 2609
a10aa579
CL
2610 if (v->nr_pages)
2611 seq_printf(m, " pages=%d", v->nr_pages);
2612
2613 if (v->phys_addr)
ffa71f33 2614 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
a10aa579
CL
2615
2616 if (v->flags & VM_IOREMAP)
2617 seq_printf(m, " ioremap");
2618
2619 if (v->flags & VM_ALLOC)
2620 seq_printf(m, " vmalloc");
2621
2622 if (v->flags & VM_MAP)
2623 seq_printf(m, " vmap");
2624
2625 if (v->flags & VM_USERMAP)
2626 seq_printf(m, " user");
2627
2628 if (v->flags & VM_VPAGES)
2629 seq_printf(m, " vpages");
2630
a47a126a 2631 show_numa_info(m, v);
a10aa579
CL
2632 seq_putc(m, '\n');
2633 return 0;
2634}
2635
5f6a6a9c 2636static const struct seq_operations vmalloc_op = {
a10aa579
CL
2637 .start = s_start,
2638 .next = s_next,
2639 .stop = s_stop,
2640 .show = s_show,
2641};
5f6a6a9c
AD
2642
2643static int vmalloc_open(struct inode *inode, struct file *file)
2644{
2645 unsigned int *ptr = NULL;
2646 int ret;
2647
e5adfffc 2648 if (IS_ENABLED(CONFIG_NUMA)) {
5f6a6a9c 2649 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
51980ac9
KV
2650 if (ptr == NULL)
2651 return -ENOMEM;
2652 }
5f6a6a9c
AD
2653 ret = seq_open(file, &vmalloc_op);
2654 if (!ret) {
2655 struct seq_file *m = file->private_data;
2656 m->private = ptr;
2657 } else
2658 kfree(ptr);
2659 return ret;
2660}
2661
2662static const struct file_operations proc_vmalloc_operations = {
2663 .open = vmalloc_open,
2664 .read = seq_read,
2665 .llseek = seq_lseek,
2666 .release = seq_release_private,
2667};
2668
2669static int __init proc_vmalloc_init(void)
2670{
2671 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2672 return 0;
2673}
2674module_init(proc_vmalloc_init);
db3808c1
JK
2675
2676void get_vmalloc_info(struct vmalloc_info *vmi)
2677{
f98782dd 2678 struct vmap_area *va;
db3808c1
JK
2679 unsigned long free_area_size;
2680 unsigned long prev_end;
2681
2682 vmi->used = 0;
f98782dd 2683 vmi->largest_chunk = 0;
db3808c1 2684
f98782dd 2685 prev_end = VMALLOC_START;
db3808c1 2686
f98782dd 2687 spin_lock(&vmap_area_lock);
db3808c1 2688
f98782dd
JK
2689 if (list_empty(&vmap_area_list)) {
2690 vmi->largest_chunk = VMALLOC_TOTAL;
2691 goto out;
2692 }
db3808c1 2693
f98782dd
JK
2694 list_for_each_entry(va, &vmap_area_list, list) {
2695 unsigned long addr = va->va_start;
db3808c1 2696
f98782dd
JK
2697 /*
2698 * Some archs keep another range for modules in vmalloc space
2699 */
2700 if (addr < VMALLOC_START)
2701 continue;
2702 if (addr >= VMALLOC_END)
2703 break;
db3808c1 2704
f98782dd
JK
2705 if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING))
2706 continue;
db3808c1 2707
f98782dd 2708 vmi->used += (va->va_end - va->va_start);
db3808c1 2709
f98782dd
JK
2710 free_area_size = addr - prev_end;
2711 if (vmi->largest_chunk < free_area_size)
2712 vmi->largest_chunk = free_area_size;
db3808c1 2713
f98782dd 2714 prev_end = va->va_end;
db3808c1 2715 }
f98782dd
JK
2716
2717 if (VMALLOC_END - prev_end > vmi->largest_chunk)
2718 vmi->largest_chunk = VMALLOC_END - prev_end;
2719
2720out:
2721 spin_unlock(&vmap_area_lock);
db3808c1 2722}
a10aa579
CL
2723#endif
2724