Merge tag 'tpmdd-next-20151110' of https://github.com/jsakkine/linux-tpmdd into for...
[linux-2.6-block.git] / mm / vmalloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 8 * Numa awareness, Christoph Lameter, SGI, June 2005
1da177e4
LT
9 */
10
db64fe02 11#include <linux/vmalloc.h>
1da177e4
LT
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
d43c36dc 15#include <linux/sched.h>
1da177e4
LT
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
5f6a6a9c 19#include <linux/proc_fs.h>
a10aa579 20#include <linux/seq_file.h>
3ac7fe5a 21#include <linux/debugobjects.h>
23016969 22#include <linux/kallsyms.h>
db64fe02
NP
23#include <linux/list.h>
24#include <linux/rbtree.h>
25#include <linux/radix-tree.h>
26#include <linux/rcupdate.h>
f0aa6617 27#include <linux/pfn.h>
89219d37 28#include <linux/kmemleak.h>
60063497 29#include <linux/atomic.h>
3b32123d 30#include <linux/compiler.h>
32fcfd40 31#include <linux/llist.h>
0f616be1 32#include <linux/bitops.h>
3b32123d 33
1da177e4
LT
34#include <asm/uaccess.h>
35#include <asm/tlbflush.h>
2dca6999 36#include <asm/shmparam.h>
1da177e4 37
dd56b046
MG
38#include "internal.h"
39
32fcfd40
AV
40struct vfree_deferred {
41 struct llist_head list;
42 struct work_struct wq;
43};
44static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
45
46static void __vunmap(const void *, int);
47
48static void free_work(struct work_struct *w)
49{
50 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
51 struct llist_node *llnode = llist_del_all(&p->list);
52 while (llnode) {
53 void *p = llnode;
54 llnode = llist_next(llnode);
55 __vunmap(p, 1);
56 }
57}
58
db64fe02 59/*** Page table manipulation functions ***/
b221385b 60
1da177e4
LT
61static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
62{
63 pte_t *pte;
64
65 pte = pte_offset_kernel(pmd, addr);
66 do {
67 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
68 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
69 } while (pte++, addr += PAGE_SIZE, addr != end);
70}
71
db64fe02 72static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
1da177e4
LT
73{
74 pmd_t *pmd;
75 unsigned long next;
76
77 pmd = pmd_offset(pud, addr);
78 do {
79 next = pmd_addr_end(addr, end);
b9820d8f
TK
80 if (pmd_clear_huge(pmd))
81 continue;
1da177e4
LT
82 if (pmd_none_or_clear_bad(pmd))
83 continue;
84 vunmap_pte_range(pmd, addr, next);
85 } while (pmd++, addr = next, addr != end);
86}
87
db64fe02 88static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
1da177e4
LT
89{
90 pud_t *pud;
91 unsigned long next;
92
93 pud = pud_offset(pgd, addr);
94 do {
95 next = pud_addr_end(addr, end);
b9820d8f
TK
96 if (pud_clear_huge(pud))
97 continue;
1da177e4
LT
98 if (pud_none_or_clear_bad(pud))
99 continue;
100 vunmap_pmd_range(pud, addr, next);
101 } while (pud++, addr = next, addr != end);
102}
103
db64fe02 104static void vunmap_page_range(unsigned long addr, unsigned long end)
1da177e4
LT
105{
106 pgd_t *pgd;
107 unsigned long next;
1da177e4
LT
108
109 BUG_ON(addr >= end);
110 pgd = pgd_offset_k(addr);
1da177e4
LT
111 do {
112 next = pgd_addr_end(addr, end);
113 if (pgd_none_or_clear_bad(pgd))
114 continue;
115 vunmap_pud_range(pgd, addr, next);
116 } while (pgd++, addr = next, addr != end);
1da177e4
LT
117}
118
119static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
db64fe02 120 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
121{
122 pte_t *pte;
123
db64fe02
NP
124 /*
125 * nr is a running index into the array which helps higher level
126 * callers keep track of where we're up to.
127 */
128
872fec16 129 pte = pte_alloc_kernel(pmd, addr);
1da177e4
LT
130 if (!pte)
131 return -ENOMEM;
132 do {
db64fe02
NP
133 struct page *page = pages[*nr];
134
135 if (WARN_ON(!pte_none(*pte)))
136 return -EBUSY;
137 if (WARN_ON(!page))
1da177e4
LT
138 return -ENOMEM;
139 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 140 (*nr)++;
1da177e4
LT
141 } while (pte++, addr += PAGE_SIZE, addr != end);
142 return 0;
143}
144
db64fe02
NP
145static int vmap_pmd_range(pud_t *pud, unsigned long addr,
146 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
147{
148 pmd_t *pmd;
149 unsigned long next;
150
151 pmd = pmd_alloc(&init_mm, pud, addr);
152 if (!pmd)
153 return -ENOMEM;
154 do {
155 next = pmd_addr_end(addr, end);
db64fe02 156 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
1da177e4
LT
157 return -ENOMEM;
158 } while (pmd++, addr = next, addr != end);
159 return 0;
160}
161
db64fe02
NP
162static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
163 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
164{
165 pud_t *pud;
166 unsigned long next;
167
168 pud = pud_alloc(&init_mm, pgd, addr);
169 if (!pud)
170 return -ENOMEM;
171 do {
172 next = pud_addr_end(addr, end);
db64fe02 173 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
1da177e4
LT
174 return -ENOMEM;
175 } while (pud++, addr = next, addr != end);
176 return 0;
177}
178
db64fe02
NP
179/*
180 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
181 * will have pfns corresponding to the "pages" array.
182 *
183 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
184 */
8fc48985
TH
185static int vmap_page_range_noflush(unsigned long start, unsigned long end,
186 pgprot_t prot, struct page **pages)
1da177e4
LT
187{
188 pgd_t *pgd;
189 unsigned long next;
2e4e27c7 190 unsigned long addr = start;
db64fe02
NP
191 int err = 0;
192 int nr = 0;
1da177e4
LT
193
194 BUG_ON(addr >= end);
195 pgd = pgd_offset_k(addr);
1da177e4
LT
196 do {
197 next = pgd_addr_end(addr, end);
db64fe02 198 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
1da177e4 199 if (err)
bf88c8c8 200 return err;
1da177e4 201 } while (pgd++, addr = next, addr != end);
db64fe02 202
db64fe02 203 return nr;
1da177e4
LT
204}
205
8fc48985
TH
206static int vmap_page_range(unsigned long start, unsigned long end,
207 pgprot_t prot, struct page **pages)
208{
209 int ret;
210
211 ret = vmap_page_range_noflush(start, end, prot, pages);
212 flush_cache_vmap(start, end);
213 return ret;
214}
215
81ac3ad9 216int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
217{
218 /*
ab4f2ee1 219 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
220 * and fall back on vmalloc() if that fails. Others
221 * just put it in the vmalloc space.
222 */
223#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
224 unsigned long addr = (unsigned long)x;
225 if (addr >= MODULES_VADDR && addr < MODULES_END)
226 return 1;
227#endif
228 return is_vmalloc_addr(x);
229}
230
48667e7a 231/*
add688fb 232 * Walk a vmap address to the struct page it maps.
48667e7a 233 */
add688fb 234struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
235{
236 unsigned long addr = (unsigned long) vmalloc_addr;
add688fb 237 struct page *page = NULL;
48667e7a 238 pgd_t *pgd = pgd_offset_k(addr);
48667e7a 239
7aa413de
IM
240 /*
241 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
242 * architectures that do not vmalloc module space
243 */
73bdf0a6 244 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 245
48667e7a 246 if (!pgd_none(*pgd)) {
db64fe02 247 pud_t *pud = pud_offset(pgd, addr);
48667e7a 248 if (!pud_none(*pud)) {
db64fe02 249 pmd_t *pmd = pmd_offset(pud, addr);
48667e7a 250 if (!pmd_none(*pmd)) {
db64fe02
NP
251 pte_t *ptep, pte;
252
48667e7a
CL
253 ptep = pte_offset_map(pmd, addr);
254 pte = *ptep;
255 if (pte_present(pte))
add688fb 256 page = pte_page(pte);
48667e7a
CL
257 pte_unmap(ptep);
258 }
259 }
260 }
add688fb 261 return page;
48667e7a 262}
add688fb 263EXPORT_SYMBOL(vmalloc_to_page);
48667e7a
CL
264
265/*
add688fb 266 * Map a vmalloc()-space virtual address to the physical page frame number.
48667e7a 267 */
add688fb 268unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a 269{
add688fb 270 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
48667e7a 271}
add688fb 272EXPORT_SYMBOL(vmalloc_to_pfn);
48667e7a 273
db64fe02
NP
274
275/*** Global kva allocator ***/
276
277#define VM_LAZY_FREE 0x01
278#define VM_LAZY_FREEING 0x02
279#define VM_VM_AREA 0x04
280
db64fe02 281static DEFINE_SPINLOCK(vmap_area_lock);
f1c4069e
JK
282/* Export for kexec only */
283LIST_HEAD(vmap_area_list);
89699605
NP
284static struct rb_root vmap_area_root = RB_ROOT;
285
286/* The vmap cache globals are protected by vmap_area_lock */
287static struct rb_node *free_vmap_cache;
288static unsigned long cached_hole_size;
289static unsigned long cached_vstart;
290static unsigned long cached_align;
291
ca23e405 292static unsigned long vmap_area_pcpu_hole;
db64fe02
NP
293
294static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 295{
db64fe02
NP
296 struct rb_node *n = vmap_area_root.rb_node;
297
298 while (n) {
299 struct vmap_area *va;
300
301 va = rb_entry(n, struct vmap_area, rb_node);
302 if (addr < va->va_start)
303 n = n->rb_left;
cef2ac3f 304 else if (addr >= va->va_end)
db64fe02
NP
305 n = n->rb_right;
306 else
307 return va;
308 }
309
310 return NULL;
311}
312
313static void __insert_vmap_area(struct vmap_area *va)
314{
315 struct rb_node **p = &vmap_area_root.rb_node;
316 struct rb_node *parent = NULL;
317 struct rb_node *tmp;
318
319 while (*p) {
170168d0 320 struct vmap_area *tmp_va;
db64fe02
NP
321
322 parent = *p;
170168d0
NK
323 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
324 if (va->va_start < tmp_va->va_end)
db64fe02 325 p = &(*p)->rb_left;
170168d0 326 else if (va->va_end > tmp_va->va_start)
db64fe02
NP
327 p = &(*p)->rb_right;
328 else
329 BUG();
330 }
331
332 rb_link_node(&va->rb_node, parent, p);
333 rb_insert_color(&va->rb_node, &vmap_area_root);
334
4341fa45 335 /* address-sort this list */
db64fe02
NP
336 tmp = rb_prev(&va->rb_node);
337 if (tmp) {
338 struct vmap_area *prev;
339 prev = rb_entry(tmp, struct vmap_area, rb_node);
340 list_add_rcu(&va->list, &prev->list);
341 } else
342 list_add_rcu(&va->list, &vmap_area_list);
343}
344
345static void purge_vmap_area_lazy(void);
346
347/*
348 * Allocate a region of KVA of the specified size and alignment, within the
349 * vstart and vend.
350 */
351static struct vmap_area *alloc_vmap_area(unsigned long size,
352 unsigned long align,
353 unsigned long vstart, unsigned long vend,
354 int node, gfp_t gfp_mask)
355{
356 struct vmap_area *va;
357 struct rb_node *n;
1da177e4 358 unsigned long addr;
db64fe02 359 int purged = 0;
89699605 360 struct vmap_area *first;
db64fe02 361
7766970c 362 BUG_ON(!size);
891c49ab 363 BUG_ON(offset_in_page(size));
89699605 364 BUG_ON(!is_power_of_2(align));
db64fe02 365
db64fe02
NP
366 va = kmalloc_node(sizeof(struct vmap_area),
367 gfp_mask & GFP_RECLAIM_MASK, node);
368 if (unlikely(!va))
369 return ERR_PTR(-ENOMEM);
370
7f88f88f
CM
371 /*
372 * Only scan the relevant parts containing pointers to other objects
373 * to avoid false negatives.
374 */
375 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
376
db64fe02
NP
377retry:
378 spin_lock(&vmap_area_lock);
89699605
NP
379 /*
380 * Invalidate cache if we have more permissive parameters.
381 * cached_hole_size notes the largest hole noticed _below_
382 * the vmap_area cached in free_vmap_cache: if size fits
383 * into that hole, we want to scan from vstart to reuse
384 * the hole instead of allocating above free_vmap_cache.
385 * Note that __free_vmap_area may update free_vmap_cache
386 * without updating cached_hole_size or cached_align.
387 */
388 if (!free_vmap_cache ||
389 size < cached_hole_size ||
390 vstart < cached_vstart ||
391 align < cached_align) {
392nocache:
393 cached_hole_size = 0;
394 free_vmap_cache = NULL;
395 }
396 /* record if we encounter less permissive parameters */
397 cached_vstart = vstart;
398 cached_align = align;
399
400 /* find starting point for our search */
401 if (free_vmap_cache) {
402 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
248ac0e1 403 addr = ALIGN(first->va_end, align);
89699605
NP
404 if (addr < vstart)
405 goto nocache;
bcb615a8 406 if (addr + size < addr)
89699605
NP
407 goto overflow;
408
409 } else {
410 addr = ALIGN(vstart, align);
bcb615a8 411 if (addr + size < addr)
89699605
NP
412 goto overflow;
413
414 n = vmap_area_root.rb_node;
415 first = NULL;
416
417 while (n) {
db64fe02
NP
418 struct vmap_area *tmp;
419 tmp = rb_entry(n, struct vmap_area, rb_node);
420 if (tmp->va_end >= addr) {
db64fe02 421 first = tmp;
89699605
NP
422 if (tmp->va_start <= addr)
423 break;
424 n = n->rb_left;
425 } else
db64fe02 426 n = n->rb_right;
89699605 427 }
db64fe02
NP
428
429 if (!first)
430 goto found;
db64fe02 431 }
89699605
NP
432
433 /* from the starting point, walk areas until a suitable hole is found */
248ac0e1 434 while (addr + size > first->va_start && addr + size <= vend) {
89699605
NP
435 if (addr + cached_hole_size < first->va_start)
436 cached_hole_size = first->va_start - addr;
248ac0e1 437 addr = ALIGN(first->va_end, align);
bcb615a8 438 if (addr + size < addr)
89699605
NP
439 goto overflow;
440
92ca922f 441 if (list_is_last(&first->list, &vmap_area_list))
89699605 442 goto found;
92ca922f
H
443
444 first = list_entry(first->list.next,
445 struct vmap_area, list);
db64fe02
NP
446 }
447
89699605
NP
448found:
449 if (addr + size > vend)
450 goto overflow;
db64fe02
NP
451
452 va->va_start = addr;
453 va->va_end = addr + size;
454 va->flags = 0;
455 __insert_vmap_area(va);
89699605 456 free_vmap_cache = &va->rb_node;
db64fe02
NP
457 spin_unlock(&vmap_area_lock);
458
89699605
NP
459 BUG_ON(va->va_start & (align-1));
460 BUG_ON(va->va_start < vstart);
461 BUG_ON(va->va_end > vend);
462
db64fe02 463 return va;
89699605
NP
464
465overflow:
466 spin_unlock(&vmap_area_lock);
467 if (!purged) {
468 purge_vmap_area_lazy();
469 purged = 1;
470 goto retry;
471 }
472 if (printk_ratelimit())
0cbc8533 473 pr_warn("vmap allocation for size %lu failed: "
89699605
NP
474 "use vmalloc=<size> to increase size.\n", size);
475 kfree(va);
476 return ERR_PTR(-EBUSY);
db64fe02
NP
477}
478
db64fe02
NP
479static void __free_vmap_area(struct vmap_area *va)
480{
481 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
89699605
NP
482
483 if (free_vmap_cache) {
484 if (va->va_end < cached_vstart) {
485 free_vmap_cache = NULL;
486 } else {
487 struct vmap_area *cache;
488 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
489 if (va->va_start <= cache->va_start) {
490 free_vmap_cache = rb_prev(&va->rb_node);
491 /*
492 * We don't try to update cached_hole_size or
493 * cached_align, but it won't go very wrong.
494 */
495 }
496 }
497 }
db64fe02
NP
498 rb_erase(&va->rb_node, &vmap_area_root);
499 RB_CLEAR_NODE(&va->rb_node);
500 list_del_rcu(&va->list);
501
ca23e405
TH
502 /*
503 * Track the highest possible candidate for pcpu area
504 * allocation. Areas outside of vmalloc area can be returned
505 * here too, consider only end addresses which fall inside
506 * vmalloc area proper.
507 */
508 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
509 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
510
14769de9 511 kfree_rcu(va, rcu_head);
db64fe02
NP
512}
513
514/*
515 * Free a region of KVA allocated by alloc_vmap_area
516 */
517static void free_vmap_area(struct vmap_area *va)
518{
519 spin_lock(&vmap_area_lock);
520 __free_vmap_area(va);
521 spin_unlock(&vmap_area_lock);
522}
523
524/*
525 * Clear the pagetable entries of a given vmap_area
526 */
527static void unmap_vmap_area(struct vmap_area *va)
528{
529 vunmap_page_range(va->va_start, va->va_end);
530}
531
cd52858c
NP
532static void vmap_debug_free_range(unsigned long start, unsigned long end)
533{
534 /*
535 * Unmap page tables and force a TLB flush immediately if
536 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
537 * bugs similarly to those in linear kernel virtual address
538 * space after a page has been freed.
539 *
540 * All the lazy freeing logic is still retained, in order to
541 * minimise intrusiveness of this debugging feature.
542 *
543 * This is going to be *slow* (linear kernel virtual address
544 * debugging doesn't do a broadcast TLB flush so it is a lot
545 * faster).
546 */
547#ifdef CONFIG_DEBUG_PAGEALLOC
548 vunmap_page_range(start, end);
549 flush_tlb_kernel_range(start, end);
550#endif
551}
552
db64fe02
NP
553/*
554 * lazy_max_pages is the maximum amount of virtual address space we gather up
555 * before attempting to purge with a TLB flush.
556 *
557 * There is a tradeoff here: a larger number will cover more kernel page tables
558 * and take slightly longer to purge, but it will linearly reduce the number of
559 * global TLB flushes that must be performed. It would seem natural to scale
560 * this number up linearly with the number of CPUs (because vmapping activity
561 * could also scale linearly with the number of CPUs), however it is likely
562 * that in practice, workloads might be constrained in other ways that mean
563 * vmap activity will not scale linearly with CPUs. Also, I want to be
564 * conservative and not introduce a big latency on huge systems, so go with
565 * a less aggressive log scale. It will still be an improvement over the old
566 * code, and it will be simple to change the scale factor if we find that it
567 * becomes a problem on bigger systems.
568 */
569static unsigned long lazy_max_pages(void)
570{
571 unsigned int log;
572
573 log = fls(num_online_cpus());
574
575 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
576}
577
578static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
579
02b709df
NP
580/* for per-CPU blocks */
581static void purge_fragmented_blocks_allcpus(void);
582
3ee48b6a
CW
583/*
584 * called before a call to iounmap() if the caller wants vm_area_struct's
585 * immediately freed.
586 */
587void set_iounmap_nonlazy(void)
588{
589 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
590}
591
db64fe02
NP
592/*
593 * Purges all lazily-freed vmap areas.
594 *
595 * If sync is 0 then don't purge if there is already a purge in progress.
596 * If force_flush is 1, then flush kernel TLBs between *start and *end even
597 * if we found no lazy vmap areas to unmap (callers can use this to optimise
598 * their own TLB flushing).
599 * Returns with *start = min(*start, lowest purged address)
600 * *end = max(*end, highest purged address)
601 */
602static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
603 int sync, int force_flush)
604{
46666d8a 605 static DEFINE_SPINLOCK(purge_lock);
db64fe02
NP
606 LIST_HEAD(valist);
607 struct vmap_area *va;
cbb76676 608 struct vmap_area *n_va;
db64fe02
NP
609 int nr = 0;
610
611 /*
612 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
613 * should not expect such behaviour. This just simplifies locking for
614 * the case that isn't actually used at the moment anyway.
615 */
616 if (!sync && !force_flush) {
46666d8a 617 if (!spin_trylock(&purge_lock))
db64fe02
NP
618 return;
619 } else
46666d8a 620 spin_lock(&purge_lock);
db64fe02 621
02b709df
NP
622 if (sync)
623 purge_fragmented_blocks_allcpus();
624
db64fe02
NP
625 rcu_read_lock();
626 list_for_each_entry_rcu(va, &vmap_area_list, list) {
627 if (va->flags & VM_LAZY_FREE) {
628 if (va->va_start < *start)
629 *start = va->va_start;
630 if (va->va_end > *end)
631 *end = va->va_end;
632 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
db64fe02
NP
633 list_add_tail(&va->purge_list, &valist);
634 va->flags |= VM_LAZY_FREEING;
635 va->flags &= ~VM_LAZY_FREE;
636 }
637 }
638 rcu_read_unlock();
639
88f50044 640 if (nr)
db64fe02 641 atomic_sub(nr, &vmap_lazy_nr);
db64fe02
NP
642
643 if (nr || force_flush)
644 flush_tlb_kernel_range(*start, *end);
645
646 if (nr) {
647 spin_lock(&vmap_area_lock);
cbb76676 648 list_for_each_entry_safe(va, n_va, &valist, purge_list)
db64fe02
NP
649 __free_vmap_area(va);
650 spin_unlock(&vmap_area_lock);
651 }
46666d8a 652 spin_unlock(&purge_lock);
db64fe02
NP
653}
654
496850e5
NP
655/*
656 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
657 * is already purging.
658 */
659static void try_purge_vmap_area_lazy(void)
660{
661 unsigned long start = ULONG_MAX, end = 0;
662
663 __purge_vmap_area_lazy(&start, &end, 0, 0);
664}
665
db64fe02
NP
666/*
667 * Kick off a purge of the outstanding lazy areas.
668 */
669static void purge_vmap_area_lazy(void)
670{
671 unsigned long start = ULONG_MAX, end = 0;
672
496850e5 673 __purge_vmap_area_lazy(&start, &end, 1, 0);
db64fe02
NP
674}
675
676/*
64141da5
JF
677 * Free a vmap area, caller ensuring that the area has been unmapped
678 * and flush_cache_vunmap had been called for the correct range
679 * previously.
db64fe02 680 */
64141da5 681static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02
NP
682{
683 va->flags |= VM_LAZY_FREE;
684 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
685 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
496850e5 686 try_purge_vmap_area_lazy();
db64fe02
NP
687}
688
64141da5
JF
689/*
690 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
691 * called for the correct range previously.
692 */
693static void free_unmap_vmap_area_noflush(struct vmap_area *va)
694{
695 unmap_vmap_area(va);
696 free_vmap_area_noflush(va);
697}
698
b29acbdc
NP
699/*
700 * Free and unmap a vmap area
701 */
702static void free_unmap_vmap_area(struct vmap_area *va)
703{
704 flush_cache_vunmap(va->va_start, va->va_end);
705 free_unmap_vmap_area_noflush(va);
706}
707
db64fe02
NP
708static struct vmap_area *find_vmap_area(unsigned long addr)
709{
710 struct vmap_area *va;
711
712 spin_lock(&vmap_area_lock);
713 va = __find_vmap_area(addr);
714 spin_unlock(&vmap_area_lock);
715
716 return va;
717}
718
719static void free_unmap_vmap_area_addr(unsigned long addr)
720{
721 struct vmap_area *va;
722
723 va = find_vmap_area(addr);
724 BUG_ON(!va);
725 free_unmap_vmap_area(va);
726}
727
728
729/*** Per cpu kva allocator ***/
730
731/*
732 * vmap space is limited especially on 32 bit architectures. Ensure there is
733 * room for at least 16 percpu vmap blocks per CPU.
734 */
735/*
736 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
737 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
738 * instead (we just need a rough idea)
739 */
740#if BITS_PER_LONG == 32
741#define VMALLOC_SPACE (128UL*1024*1024)
742#else
743#define VMALLOC_SPACE (128UL*1024*1024*1024)
744#endif
745
746#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
747#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
748#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
749#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
750#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
751#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
752#define VMAP_BBMAP_BITS \
753 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
754 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
755 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
756
757#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
758
9b463334
JF
759static bool vmap_initialized __read_mostly = false;
760
db64fe02
NP
761struct vmap_block_queue {
762 spinlock_t lock;
763 struct list_head free;
db64fe02
NP
764};
765
766struct vmap_block {
767 spinlock_t lock;
768 struct vmap_area *va;
db64fe02 769 unsigned long free, dirty;
7d61bfe8 770 unsigned long dirty_min, dirty_max; /*< dirty range */
de560423
NP
771 struct list_head free_list;
772 struct rcu_head rcu_head;
02b709df 773 struct list_head purge;
db64fe02
NP
774};
775
776/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
777static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
778
779/*
780 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
781 * in the free path. Could get rid of this if we change the API to return a
782 * "cookie" from alloc, to be passed to free. But no big deal yet.
783 */
784static DEFINE_SPINLOCK(vmap_block_tree_lock);
785static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
786
787/*
788 * We should probably have a fallback mechanism to allocate virtual memory
789 * out of partially filled vmap blocks. However vmap block sizing should be
790 * fairly reasonable according to the vmalloc size, so it shouldn't be a
791 * big problem.
792 */
793
794static unsigned long addr_to_vb_idx(unsigned long addr)
795{
796 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
797 addr /= VMAP_BLOCK_SIZE;
798 return addr;
799}
800
cf725ce2
RP
801static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
802{
803 unsigned long addr;
804
805 addr = va_start + (pages_off << PAGE_SHIFT);
806 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
807 return (void *)addr;
808}
809
810/**
811 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
812 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
813 * @order: how many 2^order pages should be occupied in newly allocated block
814 * @gfp_mask: flags for the page level allocator
815 *
816 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
817 */
818static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
db64fe02
NP
819{
820 struct vmap_block_queue *vbq;
821 struct vmap_block *vb;
822 struct vmap_area *va;
823 unsigned long vb_idx;
824 int node, err;
cf725ce2 825 void *vaddr;
db64fe02
NP
826
827 node = numa_node_id();
828
829 vb = kmalloc_node(sizeof(struct vmap_block),
830 gfp_mask & GFP_RECLAIM_MASK, node);
831 if (unlikely(!vb))
832 return ERR_PTR(-ENOMEM);
833
834 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
835 VMALLOC_START, VMALLOC_END,
836 node, gfp_mask);
ddf9c6d4 837 if (IS_ERR(va)) {
db64fe02 838 kfree(vb);
e7d86340 839 return ERR_CAST(va);
db64fe02
NP
840 }
841
842 err = radix_tree_preload(gfp_mask);
843 if (unlikely(err)) {
844 kfree(vb);
845 free_vmap_area(va);
846 return ERR_PTR(err);
847 }
848
cf725ce2 849 vaddr = vmap_block_vaddr(va->va_start, 0);
db64fe02
NP
850 spin_lock_init(&vb->lock);
851 vb->va = va;
cf725ce2
RP
852 /* At least something should be left free */
853 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
854 vb->free = VMAP_BBMAP_BITS - (1UL << order);
db64fe02 855 vb->dirty = 0;
7d61bfe8
RP
856 vb->dirty_min = VMAP_BBMAP_BITS;
857 vb->dirty_max = 0;
db64fe02 858 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
859
860 vb_idx = addr_to_vb_idx(va->va_start);
861 spin_lock(&vmap_block_tree_lock);
862 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
863 spin_unlock(&vmap_block_tree_lock);
864 BUG_ON(err);
865 radix_tree_preload_end();
866
867 vbq = &get_cpu_var(vmap_block_queue);
db64fe02 868 spin_lock(&vbq->lock);
68ac546f 869 list_add_tail_rcu(&vb->free_list, &vbq->free);
db64fe02 870 spin_unlock(&vbq->lock);
3f04ba85 871 put_cpu_var(vmap_block_queue);
db64fe02 872
cf725ce2 873 return vaddr;
db64fe02
NP
874}
875
db64fe02
NP
876static void free_vmap_block(struct vmap_block *vb)
877{
878 struct vmap_block *tmp;
879 unsigned long vb_idx;
880
db64fe02
NP
881 vb_idx = addr_to_vb_idx(vb->va->va_start);
882 spin_lock(&vmap_block_tree_lock);
883 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
884 spin_unlock(&vmap_block_tree_lock);
885 BUG_ON(tmp != vb);
886
64141da5 887 free_vmap_area_noflush(vb->va);
22a3c7d1 888 kfree_rcu(vb, rcu_head);
db64fe02
NP
889}
890
02b709df
NP
891static void purge_fragmented_blocks(int cpu)
892{
893 LIST_HEAD(purge);
894 struct vmap_block *vb;
895 struct vmap_block *n_vb;
896 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
897
898 rcu_read_lock();
899 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
900
901 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
902 continue;
903
904 spin_lock(&vb->lock);
905 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
906 vb->free = 0; /* prevent further allocs after releasing lock */
907 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
7d61bfe8
RP
908 vb->dirty_min = 0;
909 vb->dirty_max = VMAP_BBMAP_BITS;
02b709df
NP
910 spin_lock(&vbq->lock);
911 list_del_rcu(&vb->free_list);
912 spin_unlock(&vbq->lock);
913 spin_unlock(&vb->lock);
914 list_add_tail(&vb->purge, &purge);
915 } else
916 spin_unlock(&vb->lock);
917 }
918 rcu_read_unlock();
919
920 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
921 list_del(&vb->purge);
922 free_vmap_block(vb);
923 }
924}
925
02b709df
NP
926static void purge_fragmented_blocks_allcpus(void)
927{
928 int cpu;
929
930 for_each_possible_cpu(cpu)
931 purge_fragmented_blocks(cpu);
932}
933
db64fe02
NP
934static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
935{
936 struct vmap_block_queue *vbq;
937 struct vmap_block *vb;
cf725ce2 938 void *vaddr = NULL;
db64fe02
NP
939 unsigned int order;
940
891c49ab 941 BUG_ON(offset_in_page(size));
db64fe02 942 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
943 if (WARN_ON(size == 0)) {
944 /*
945 * Allocating 0 bytes isn't what caller wants since
946 * get_order(0) returns funny result. Just warn and terminate
947 * early.
948 */
949 return NULL;
950 }
db64fe02
NP
951 order = get_order(size);
952
db64fe02
NP
953 rcu_read_lock();
954 vbq = &get_cpu_var(vmap_block_queue);
955 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
cf725ce2 956 unsigned long pages_off;
db64fe02
NP
957
958 spin_lock(&vb->lock);
cf725ce2
RP
959 if (vb->free < (1UL << order)) {
960 spin_unlock(&vb->lock);
961 continue;
962 }
02b709df 963
cf725ce2
RP
964 pages_off = VMAP_BBMAP_BITS - vb->free;
965 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
02b709df
NP
966 vb->free -= 1UL << order;
967 if (vb->free == 0) {
968 spin_lock(&vbq->lock);
969 list_del_rcu(&vb->free_list);
970 spin_unlock(&vbq->lock);
971 }
cf725ce2 972
02b709df
NP
973 spin_unlock(&vb->lock);
974 break;
db64fe02 975 }
02b709df 976
3f04ba85 977 put_cpu_var(vmap_block_queue);
db64fe02
NP
978 rcu_read_unlock();
979
cf725ce2
RP
980 /* Allocate new block if nothing was found */
981 if (!vaddr)
982 vaddr = new_vmap_block(order, gfp_mask);
db64fe02 983
cf725ce2 984 return vaddr;
db64fe02
NP
985}
986
987static void vb_free(const void *addr, unsigned long size)
988{
989 unsigned long offset;
990 unsigned long vb_idx;
991 unsigned int order;
992 struct vmap_block *vb;
993
891c49ab 994 BUG_ON(offset_in_page(size));
db64fe02 995 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc
NP
996
997 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
998
db64fe02
NP
999 order = get_order(size);
1000
1001 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
7d61bfe8 1002 offset >>= PAGE_SHIFT;
db64fe02
NP
1003
1004 vb_idx = addr_to_vb_idx((unsigned long)addr);
1005 rcu_read_lock();
1006 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1007 rcu_read_unlock();
1008 BUG_ON(!vb);
1009
64141da5
JF
1010 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1011
db64fe02 1012 spin_lock(&vb->lock);
7d61bfe8
RP
1013
1014 /* Expand dirty range */
1015 vb->dirty_min = min(vb->dirty_min, offset);
1016 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
d086817d 1017
db64fe02
NP
1018 vb->dirty += 1UL << order;
1019 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 1020 BUG_ON(vb->free);
db64fe02
NP
1021 spin_unlock(&vb->lock);
1022 free_vmap_block(vb);
1023 } else
1024 spin_unlock(&vb->lock);
1025}
1026
1027/**
1028 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1029 *
1030 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1031 * to amortize TLB flushing overheads. What this means is that any page you
1032 * have now, may, in a former life, have been mapped into kernel virtual
1033 * address by the vmap layer and so there might be some CPUs with TLB entries
1034 * still referencing that page (additional to the regular 1:1 kernel mapping).
1035 *
1036 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1037 * be sure that none of the pages we have control over will have any aliases
1038 * from the vmap layer.
1039 */
1040void vm_unmap_aliases(void)
1041{
1042 unsigned long start = ULONG_MAX, end = 0;
1043 int cpu;
1044 int flush = 0;
1045
9b463334
JF
1046 if (unlikely(!vmap_initialized))
1047 return;
1048
db64fe02
NP
1049 for_each_possible_cpu(cpu) {
1050 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1051 struct vmap_block *vb;
1052
1053 rcu_read_lock();
1054 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
db64fe02 1055 spin_lock(&vb->lock);
7d61bfe8
RP
1056 if (vb->dirty) {
1057 unsigned long va_start = vb->va->va_start;
db64fe02 1058 unsigned long s, e;
b136be5e 1059
7d61bfe8
RP
1060 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1061 e = va_start + (vb->dirty_max << PAGE_SHIFT);
db64fe02 1062
7d61bfe8
RP
1063 start = min(s, start);
1064 end = max(e, end);
db64fe02 1065
7d61bfe8 1066 flush = 1;
db64fe02
NP
1067 }
1068 spin_unlock(&vb->lock);
1069 }
1070 rcu_read_unlock();
1071 }
1072
1073 __purge_vmap_area_lazy(&start, &end, 1, flush);
1074}
1075EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1076
1077/**
1078 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1079 * @mem: the pointer returned by vm_map_ram
1080 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1081 */
1082void vm_unmap_ram(const void *mem, unsigned int count)
1083{
1084 unsigned long size = count << PAGE_SHIFT;
1085 unsigned long addr = (unsigned long)mem;
1086
1087 BUG_ON(!addr);
1088 BUG_ON(addr < VMALLOC_START);
1089 BUG_ON(addr > VMALLOC_END);
1090 BUG_ON(addr & (PAGE_SIZE-1));
1091
1092 debug_check_no_locks_freed(mem, size);
cd52858c 1093 vmap_debug_free_range(addr, addr+size);
db64fe02
NP
1094
1095 if (likely(count <= VMAP_MAX_ALLOC))
1096 vb_free(mem, size);
1097 else
1098 free_unmap_vmap_area_addr(addr);
1099}
1100EXPORT_SYMBOL(vm_unmap_ram);
1101
1102/**
1103 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1104 * @pages: an array of pointers to the pages to be mapped
1105 * @count: number of pages
1106 * @node: prefer to allocate data structures on this node
1107 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
e99c97ad 1108 *
36437638
GK
1109 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1110 * faster than vmap so it's good. But if you mix long-life and short-life
1111 * objects with vm_map_ram(), it could consume lots of address space through
1112 * fragmentation (especially on a 32bit machine). You could see failures in
1113 * the end. Please use this function for short-lived objects.
1114 *
e99c97ad 1115 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02
NP
1116 */
1117void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1118{
1119 unsigned long size = count << PAGE_SHIFT;
1120 unsigned long addr;
1121 void *mem;
1122
1123 if (likely(count <= VMAP_MAX_ALLOC)) {
1124 mem = vb_alloc(size, GFP_KERNEL);
1125 if (IS_ERR(mem))
1126 return NULL;
1127 addr = (unsigned long)mem;
1128 } else {
1129 struct vmap_area *va;
1130 va = alloc_vmap_area(size, PAGE_SIZE,
1131 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1132 if (IS_ERR(va))
1133 return NULL;
1134
1135 addr = va->va_start;
1136 mem = (void *)addr;
1137 }
1138 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1139 vm_unmap_ram(mem, count);
1140 return NULL;
1141 }
1142 return mem;
1143}
1144EXPORT_SYMBOL(vm_map_ram);
1145
4341fa45 1146static struct vm_struct *vmlist __initdata;
be9b7335
NP
1147/**
1148 * vm_area_add_early - add vmap area early during boot
1149 * @vm: vm_struct to add
1150 *
1151 * This function is used to add fixed kernel vm area to vmlist before
1152 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1153 * should contain proper values and the other fields should be zero.
1154 *
1155 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1156 */
1157void __init vm_area_add_early(struct vm_struct *vm)
1158{
1159 struct vm_struct *tmp, **p;
1160
1161 BUG_ON(vmap_initialized);
1162 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1163 if (tmp->addr >= vm->addr) {
1164 BUG_ON(tmp->addr < vm->addr + vm->size);
1165 break;
1166 } else
1167 BUG_ON(tmp->addr + tmp->size > vm->addr);
1168 }
1169 vm->next = *p;
1170 *p = vm;
1171}
1172
f0aa6617
TH
1173/**
1174 * vm_area_register_early - register vmap area early during boot
1175 * @vm: vm_struct to register
c0c0a293 1176 * @align: requested alignment
f0aa6617
TH
1177 *
1178 * This function is used to register kernel vm area before
1179 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1180 * proper values on entry and other fields should be zero. On return,
1181 * vm->addr contains the allocated address.
1182 *
1183 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1184 */
c0c0a293 1185void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617
TH
1186{
1187 static size_t vm_init_off __initdata;
c0c0a293
TH
1188 unsigned long addr;
1189
1190 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1191 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
f0aa6617 1192
c0c0a293 1193 vm->addr = (void *)addr;
f0aa6617 1194
be9b7335 1195 vm_area_add_early(vm);
f0aa6617
TH
1196}
1197
db64fe02
NP
1198void __init vmalloc_init(void)
1199{
822c18f2
IK
1200 struct vmap_area *va;
1201 struct vm_struct *tmp;
db64fe02
NP
1202 int i;
1203
1204 for_each_possible_cpu(i) {
1205 struct vmap_block_queue *vbq;
32fcfd40 1206 struct vfree_deferred *p;
db64fe02
NP
1207
1208 vbq = &per_cpu(vmap_block_queue, i);
1209 spin_lock_init(&vbq->lock);
1210 INIT_LIST_HEAD(&vbq->free);
32fcfd40
AV
1211 p = &per_cpu(vfree_deferred, i);
1212 init_llist_head(&p->list);
1213 INIT_WORK(&p->wq, free_work);
db64fe02 1214 }
9b463334 1215
822c18f2
IK
1216 /* Import existing vmlist entries. */
1217 for (tmp = vmlist; tmp; tmp = tmp->next) {
43ebdac4 1218 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
dbda591d 1219 va->flags = VM_VM_AREA;
822c18f2
IK
1220 va->va_start = (unsigned long)tmp->addr;
1221 va->va_end = va->va_start + tmp->size;
dbda591d 1222 va->vm = tmp;
822c18f2
IK
1223 __insert_vmap_area(va);
1224 }
ca23e405
TH
1225
1226 vmap_area_pcpu_hole = VMALLOC_END;
1227
9b463334 1228 vmap_initialized = true;
db64fe02
NP
1229}
1230
8fc48985
TH
1231/**
1232 * map_kernel_range_noflush - map kernel VM area with the specified pages
1233 * @addr: start of the VM area to map
1234 * @size: size of the VM area to map
1235 * @prot: page protection flags to use
1236 * @pages: pages to map
1237 *
1238 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1239 * specify should have been allocated using get_vm_area() and its
1240 * friends.
1241 *
1242 * NOTE:
1243 * This function does NOT do any cache flushing. The caller is
1244 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1245 * before calling this function.
1246 *
1247 * RETURNS:
1248 * The number of pages mapped on success, -errno on failure.
1249 */
1250int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1251 pgprot_t prot, struct page **pages)
1252{
1253 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1254}
1255
1256/**
1257 * unmap_kernel_range_noflush - unmap kernel VM area
1258 * @addr: start of the VM area to unmap
1259 * @size: size of the VM area to unmap
1260 *
1261 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1262 * specify should have been allocated using get_vm_area() and its
1263 * friends.
1264 *
1265 * NOTE:
1266 * This function does NOT do any cache flushing. The caller is
1267 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1268 * before calling this function and flush_tlb_kernel_range() after.
1269 */
1270void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1271{
1272 vunmap_page_range(addr, addr + size);
1273}
81e88fdc 1274EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
8fc48985
TH
1275
1276/**
1277 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1278 * @addr: start of the VM area to unmap
1279 * @size: size of the VM area to unmap
1280 *
1281 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1282 * the unmapping and tlb after.
1283 */
db64fe02
NP
1284void unmap_kernel_range(unsigned long addr, unsigned long size)
1285{
1286 unsigned long end = addr + size;
f6fcba70
TH
1287
1288 flush_cache_vunmap(addr, end);
db64fe02
NP
1289 vunmap_page_range(addr, end);
1290 flush_tlb_kernel_range(addr, end);
1291}
93ef6d6c 1292EXPORT_SYMBOL_GPL(unmap_kernel_range);
db64fe02 1293
f6f8ed47 1294int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
db64fe02
NP
1295{
1296 unsigned long addr = (unsigned long)area->addr;
762216ab 1297 unsigned long end = addr + get_vm_area_size(area);
db64fe02
NP
1298 int err;
1299
f6f8ed47 1300 err = vmap_page_range(addr, end, prot, pages);
db64fe02 1301
f6f8ed47 1302 return err > 0 ? 0 : err;
db64fe02
NP
1303}
1304EXPORT_SYMBOL_GPL(map_vm_area);
1305
f5252e00 1306static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
5e6cafc8 1307 unsigned long flags, const void *caller)
cf88c790 1308{
c69480ad 1309 spin_lock(&vmap_area_lock);
cf88c790
TH
1310 vm->flags = flags;
1311 vm->addr = (void *)va->va_start;
1312 vm->size = va->va_end - va->va_start;
1313 vm->caller = caller;
db1aecaf 1314 va->vm = vm;
cf88c790 1315 va->flags |= VM_VM_AREA;
c69480ad 1316 spin_unlock(&vmap_area_lock);
f5252e00 1317}
cf88c790 1318
20fc02b4 1319static void clear_vm_uninitialized_flag(struct vm_struct *vm)
f5252e00 1320{
d4033afd 1321 /*
20fc02b4 1322 * Before removing VM_UNINITIALIZED,
d4033afd
JK
1323 * we should make sure that vm has proper values.
1324 * Pair with smp_rmb() in show_numa_info().
1325 */
1326 smp_wmb();
20fc02b4 1327 vm->flags &= ~VM_UNINITIALIZED;
cf88c790
TH
1328}
1329
db64fe02 1330static struct vm_struct *__get_vm_area_node(unsigned long size,
2dca6999 1331 unsigned long align, unsigned long flags, unsigned long start,
5e6cafc8 1332 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
db64fe02 1333{
0006526d 1334 struct vmap_area *va;
db64fe02 1335 struct vm_struct *area;
1da177e4 1336
52fd24ca 1337 BUG_ON(in_interrupt());
0f2d4a8e 1338 if (flags & VM_IOREMAP)
0f616be1
TK
1339 align = 1ul << clamp_t(int, fls_long(size),
1340 PAGE_SHIFT, IOREMAP_MAX_ORDER);
db64fe02 1341
1da177e4 1342 size = PAGE_ALIGN(size);
31be8309
OH
1343 if (unlikely(!size))
1344 return NULL;
1da177e4 1345
cf88c790 1346 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
1347 if (unlikely(!area))
1348 return NULL;
1349
71394fe5
AR
1350 if (!(flags & VM_NO_GUARD))
1351 size += PAGE_SIZE;
1da177e4 1352
db64fe02
NP
1353 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1354 if (IS_ERR(va)) {
1355 kfree(area);
1356 return NULL;
1da177e4 1357 }
1da177e4 1358
d82b1d85 1359 setup_vmalloc_vm(area, va, flags, caller);
f5252e00 1360
1da177e4 1361 return area;
1da177e4
LT
1362}
1363
930fc45a
CL
1364struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1365 unsigned long start, unsigned long end)
1366{
00ef2d2f
DR
1367 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1368 GFP_KERNEL, __builtin_return_address(0));
930fc45a 1369}
5992b6da 1370EXPORT_SYMBOL_GPL(__get_vm_area);
930fc45a 1371
c2968612
BH
1372struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1373 unsigned long start, unsigned long end,
5e6cafc8 1374 const void *caller)
c2968612 1375{
00ef2d2f
DR
1376 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1377 GFP_KERNEL, caller);
c2968612
BH
1378}
1379
1da177e4 1380/**
183ff22b 1381 * get_vm_area - reserve a contiguous kernel virtual area
1da177e4
LT
1382 * @size: size of the area
1383 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1384 *
1385 * Search an area of @size in the kernel virtual mapping area,
1386 * and reserved it for out purposes. Returns the area descriptor
1387 * on success or %NULL on failure.
1388 */
1389struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1390{
2dca6999 1391 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
1392 NUMA_NO_NODE, GFP_KERNEL,
1393 __builtin_return_address(0));
23016969
CL
1394}
1395
1396struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 1397 const void *caller)
23016969 1398{
2dca6999 1399 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f 1400 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
1401}
1402
e9da6e99
MS
1403/**
1404 * find_vm_area - find a continuous kernel virtual area
1405 * @addr: base address
1406 *
1407 * Search for the kernel VM area starting at @addr, and return it.
1408 * It is up to the caller to do all required locking to keep the returned
1409 * pointer valid.
1410 */
1411struct vm_struct *find_vm_area(const void *addr)
83342314 1412{
db64fe02 1413 struct vmap_area *va;
83342314 1414
db64fe02
NP
1415 va = find_vmap_area((unsigned long)addr);
1416 if (va && va->flags & VM_VM_AREA)
db1aecaf 1417 return va->vm;
1da177e4 1418
1da177e4 1419 return NULL;
1da177e4
LT
1420}
1421
7856dfeb 1422/**
183ff22b 1423 * remove_vm_area - find and remove a continuous kernel virtual area
7856dfeb
AK
1424 * @addr: base address
1425 *
1426 * Search for the kernel VM area starting at @addr, and remove it.
1427 * This function returns the found VM area, but using it is NOT safe
1428 * on SMP machines, except for its size or flags.
1429 */
b3bdda02 1430struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 1431{
db64fe02
NP
1432 struct vmap_area *va;
1433
1434 va = find_vmap_area((unsigned long)addr);
1435 if (va && va->flags & VM_VM_AREA) {
db1aecaf 1436 struct vm_struct *vm = va->vm;
f5252e00 1437
c69480ad
JK
1438 spin_lock(&vmap_area_lock);
1439 va->vm = NULL;
1440 va->flags &= ~VM_VM_AREA;
1441 spin_unlock(&vmap_area_lock);
1442
dd32c279 1443 vmap_debug_free_range(va->va_start, va->va_end);
a5af5aa8 1444 kasan_free_shadow(vm);
dd32c279
KH
1445 free_unmap_vmap_area(va);
1446 vm->size -= PAGE_SIZE;
1447
db64fe02
NP
1448 return vm;
1449 }
1450 return NULL;
7856dfeb
AK
1451}
1452
b3bdda02 1453static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
1454{
1455 struct vm_struct *area;
1456
1457 if (!addr)
1458 return;
1459
e69e9d4a 1460 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
ab15d9b4 1461 addr))
1da177e4 1462 return;
1da177e4
LT
1463
1464 area = remove_vm_area(addr);
1465 if (unlikely(!area)) {
4c8573e2 1466 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 1467 addr);
1da177e4
LT
1468 return;
1469 }
1470
9a11b49a 1471 debug_check_no_locks_freed(addr, area->size);
3ac7fe5a 1472 debug_check_no_obj_freed(addr, area->size);
9a11b49a 1473
1da177e4
LT
1474 if (deallocate_pages) {
1475 int i;
1476
1477 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1478 struct page *page = area->pages[i];
1479
1480 BUG_ON(!page);
1481 __free_page(page);
1da177e4
LT
1482 }
1483
8757d5fa 1484 if (area->flags & VM_VPAGES)
1da177e4
LT
1485 vfree(area->pages);
1486 else
1487 kfree(area->pages);
1488 }
1489
1490 kfree(area);
1491 return;
1492}
32fcfd40 1493
1da177e4
LT
1494/**
1495 * vfree - release memory allocated by vmalloc()
1da177e4
LT
1496 * @addr: memory base address
1497 *
183ff22b 1498 * Free the virtually continuous memory area starting at @addr, as
80e93eff
PE
1499 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1500 * NULL, no operation is performed.
1da177e4 1501 *
32fcfd40
AV
1502 * Must not be called in NMI context (strictly speaking, only if we don't
1503 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1504 * conventions for vfree() arch-depenedent would be a really bad idea)
c9fcee51
AM
1505 *
1506 * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1da177e4 1507 */
b3bdda02 1508void vfree(const void *addr)
1da177e4 1509{
32fcfd40 1510 BUG_ON(in_nmi());
89219d37
CM
1511
1512 kmemleak_free(addr);
1513
32fcfd40
AV
1514 if (!addr)
1515 return;
1516 if (unlikely(in_interrupt())) {
7c8e0181 1517 struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred);
59d3132f
ON
1518 if (llist_add((struct llist_node *)addr, &p->list))
1519 schedule_work(&p->wq);
32fcfd40
AV
1520 } else
1521 __vunmap(addr, 1);
1da177e4 1522}
1da177e4
LT
1523EXPORT_SYMBOL(vfree);
1524
1525/**
1526 * vunmap - release virtual mapping obtained by vmap()
1da177e4
LT
1527 * @addr: memory base address
1528 *
1529 * Free the virtually contiguous memory area starting at @addr,
1530 * which was created from the page array passed to vmap().
1531 *
80e93eff 1532 * Must not be called in interrupt context.
1da177e4 1533 */
b3bdda02 1534void vunmap(const void *addr)
1da177e4
LT
1535{
1536 BUG_ON(in_interrupt());
34754b69 1537 might_sleep();
32fcfd40
AV
1538 if (addr)
1539 __vunmap(addr, 0);
1da177e4 1540}
1da177e4
LT
1541EXPORT_SYMBOL(vunmap);
1542
1543/**
1544 * vmap - map an array of pages into virtually contiguous space
1da177e4
LT
1545 * @pages: array of page pointers
1546 * @count: number of pages to map
1547 * @flags: vm_area->flags
1548 * @prot: page protection for the mapping
1549 *
1550 * Maps @count pages from @pages into contiguous kernel virtual
1551 * space.
1552 */
1553void *vmap(struct page **pages, unsigned int count,
1554 unsigned long flags, pgprot_t prot)
1555{
1556 struct vm_struct *area;
1557
34754b69
PZ
1558 might_sleep();
1559
4481374c 1560 if (count > totalram_pages)
1da177e4
LT
1561 return NULL;
1562
23016969
CL
1563 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1564 __builtin_return_address(0));
1da177e4
LT
1565 if (!area)
1566 return NULL;
23016969 1567
f6f8ed47 1568 if (map_vm_area(area, prot, pages)) {
1da177e4
LT
1569 vunmap(area->addr);
1570 return NULL;
1571 }
1572
1573 return area->addr;
1574}
1da177e4
LT
1575EXPORT_SYMBOL(vmap);
1576
2dca6999
DM
1577static void *__vmalloc_node(unsigned long size, unsigned long align,
1578 gfp_t gfp_mask, pgprot_t prot,
5e6cafc8 1579 int node, const void *caller);
e31d9eb5 1580static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3722e13c 1581 pgprot_t prot, int node)
1da177e4 1582{
22943ab1 1583 const int order = 0;
1da177e4
LT
1584 struct page **pages;
1585 unsigned int nr_pages, array_size, i;
930f036b
DR
1586 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1587 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1da177e4 1588
762216ab 1589 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1da177e4
LT
1590 array_size = (nr_pages * sizeof(struct page *));
1591
1592 area->nr_pages = nr_pages;
1593 /* Please note that the recursion is strictly bounded. */
8757d5fa 1594 if (array_size > PAGE_SIZE) {
976d6dfb 1595 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
3722e13c 1596 PAGE_KERNEL, node, area->caller);
8757d5fa 1597 area->flags |= VM_VPAGES;
286e1ea3 1598 } else {
976d6dfb 1599 pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 1600 }
1da177e4
LT
1601 area->pages = pages;
1602 if (!area->pages) {
1603 remove_vm_area(area->addr);
1604 kfree(area);
1605 return NULL;
1606 }
1da177e4
LT
1607
1608 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1609 struct page *page;
1610
4b90951c 1611 if (node == NUMA_NO_NODE)
930f036b 1612 page = alloc_page(alloc_mask);
930fc45a 1613 else
930f036b 1614 page = alloc_pages_node(node, alloc_mask, order);
bf53d6f8
CL
1615
1616 if (unlikely(!page)) {
1da177e4
LT
1617 /* Successfully allocated i pages, free them in __vunmap() */
1618 area->nr_pages = i;
1619 goto fail;
1620 }
bf53d6f8 1621 area->pages[i] = page;
d0164adc 1622 if (gfpflags_allow_blocking(gfp_mask))
660654f9 1623 cond_resched();
1da177e4
LT
1624 }
1625
f6f8ed47 1626 if (map_vm_area(area, prot, pages))
1da177e4
LT
1627 goto fail;
1628 return area->addr;
1629
1630fail:
3ee9a4f0
JP
1631 warn_alloc_failed(gfp_mask, order,
1632 "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
22943ab1 1633 (area->nr_pages*PAGE_SIZE), area->size);
1da177e4
LT
1634 vfree(area->addr);
1635 return NULL;
1636}
1637
1638/**
d0a21265 1639 * __vmalloc_node_range - allocate virtually contiguous memory
1da177e4 1640 * @size: allocation size
2dca6999 1641 * @align: desired alignment
d0a21265
DR
1642 * @start: vm area range start
1643 * @end: vm area range end
1da177e4
LT
1644 * @gfp_mask: flags for the page level allocator
1645 * @prot: protection mask for the allocated pages
cb9e3c29 1646 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
00ef2d2f 1647 * @node: node to use for allocation or NUMA_NO_NODE
c85d194b 1648 * @caller: caller's return address
1da177e4
LT
1649 *
1650 * Allocate enough pages to cover @size from the page level
1651 * allocator with @gfp_mask flags. Map them into contiguous
1652 * kernel virtual space, using a pagetable protection of @prot.
1653 */
d0a21265
DR
1654void *__vmalloc_node_range(unsigned long size, unsigned long align,
1655 unsigned long start, unsigned long end, gfp_t gfp_mask,
cb9e3c29
AR
1656 pgprot_t prot, unsigned long vm_flags, int node,
1657 const void *caller)
1da177e4
LT
1658{
1659 struct vm_struct *area;
89219d37
CM
1660 void *addr;
1661 unsigned long real_size = size;
1da177e4
LT
1662
1663 size = PAGE_ALIGN(size);
4481374c 1664 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
de7d2b56 1665 goto fail;
1da177e4 1666
cb9e3c29
AR
1667 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1668 vm_flags, start, end, node, gfp_mask, caller);
1da177e4 1669 if (!area)
de7d2b56 1670 goto fail;
1da177e4 1671
3722e13c 1672 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1368edf0 1673 if (!addr)
b82225f3 1674 return NULL;
89219d37 1675
f5252e00 1676 /*
20fc02b4
ZY
1677 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1678 * flag. It means that vm_struct is not fully initialized.
4341fa45 1679 * Now, it is fully initialized, so remove this flag here.
f5252e00 1680 */
20fc02b4 1681 clear_vm_uninitialized_flag(area);
f5252e00 1682
89219d37 1683 /*
7f88f88f
CM
1684 * A ref_count = 2 is needed because vm_struct allocated in
1685 * __get_vm_area_node() contains a reference to the virtual address of
1686 * the vmalloc'ed block.
89219d37 1687 */
7f88f88f 1688 kmemleak_alloc(addr, real_size, 2, gfp_mask);
89219d37
CM
1689
1690 return addr;
de7d2b56
JP
1691
1692fail:
1693 warn_alloc_failed(gfp_mask, 0,
1694 "vmalloc: allocation failure: %lu bytes\n",
1695 real_size);
1696 return NULL;
1da177e4
LT
1697}
1698
d0a21265
DR
1699/**
1700 * __vmalloc_node - allocate virtually contiguous memory
1701 * @size: allocation size
1702 * @align: desired alignment
1703 * @gfp_mask: flags for the page level allocator
1704 * @prot: protection mask for the allocated pages
00ef2d2f 1705 * @node: node to use for allocation or NUMA_NO_NODE
d0a21265
DR
1706 * @caller: caller's return address
1707 *
1708 * Allocate enough pages to cover @size from the page level
1709 * allocator with @gfp_mask flags. Map them into contiguous
1710 * kernel virtual space, using a pagetable protection of @prot.
1711 */
1712static void *__vmalloc_node(unsigned long size, unsigned long align,
1713 gfp_t gfp_mask, pgprot_t prot,
5e6cafc8 1714 int node, const void *caller)
d0a21265
DR
1715{
1716 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
cb9e3c29 1717 gfp_mask, prot, 0, node, caller);
d0a21265
DR
1718}
1719
930fc45a
CL
1720void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1721{
00ef2d2f 1722 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
23016969 1723 __builtin_return_address(0));
930fc45a 1724}
1da177e4
LT
1725EXPORT_SYMBOL(__vmalloc);
1726
e1ca7788
DY
1727static inline void *__vmalloc_node_flags(unsigned long size,
1728 int node, gfp_t flags)
1729{
1730 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1731 node, __builtin_return_address(0));
1732}
1733
1da177e4
LT
1734/**
1735 * vmalloc - allocate virtually contiguous memory
1da177e4 1736 * @size: allocation size
1da177e4
LT
1737 * Allocate enough pages to cover @size from the page level
1738 * allocator and map them into contiguous kernel virtual space.
1739 *
c1c8897f 1740 * For tight control over page level allocator and protection flags
1da177e4
LT
1741 * use __vmalloc() instead.
1742 */
1743void *vmalloc(unsigned long size)
1744{
00ef2d2f
DR
1745 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1746 GFP_KERNEL | __GFP_HIGHMEM);
1da177e4 1747}
1da177e4
LT
1748EXPORT_SYMBOL(vmalloc);
1749
e1ca7788
DY
1750/**
1751 * vzalloc - allocate virtually contiguous memory with zero fill
1752 * @size: allocation size
1753 * Allocate enough pages to cover @size from the page level
1754 * allocator and map them into contiguous kernel virtual space.
1755 * The memory allocated is set to zero.
1756 *
1757 * For tight control over page level allocator and protection flags
1758 * use __vmalloc() instead.
1759 */
1760void *vzalloc(unsigned long size)
1761{
00ef2d2f 1762 return __vmalloc_node_flags(size, NUMA_NO_NODE,
e1ca7788
DY
1763 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1764}
1765EXPORT_SYMBOL(vzalloc);
1766
83342314 1767/**
ead04089
REB
1768 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1769 * @size: allocation size
83342314 1770 *
ead04089
REB
1771 * The resulting memory area is zeroed so it can be mapped to userspace
1772 * without leaking data.
83342314
NP
1773 */
1774void *vmalloc_user(unsigned long size)
1775{
1776 struct vm_struct *area;
1777 void *ret;
1778
2dca6999
DM
1779 ret = __vmalloc_node(size, SHMLBA,
1780 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
00ef2d2f
DR
1781 PAGE_KERNEL, NUMA_NO_NODE,
1782 __builtin_return_address(0));
2b4ac44e 1783 if (ret) {
db64fe02 1784 area = find_vm_area(ret);
2b4ac44e 1785 area->flags |= VM_USERMAP;
2b4ac44e 1786 }
83342314
NP
1787 return ret;
1788}
1789EXPORT_SYMBOL(vmalloc_user);
1790
930fc45a
CL
1791/**
1792 * vmalloc_node - allocate memory on a specific node
930fc45a 1793 * @size: allocation size
d44e0780 1794 * @node: numa node
930fc45a
CL
1795 *
1796 * Allocate enough pages to cover @size from the page level
1797 * allocator and map them into contiguous kernel virtual space.
1798 *
c1c8897f 1799 * For tight control over page level allocator and protection flags
930fc45a
CL
1800 * use __vmalloc() instead.
1801 */
1802void *vmalloc_node(unsigned long size, int node)
1803{
2dca6999 1804 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
23016969 1805 node, __builtin_return_address(0));
930fc45a
CL
1806}
1807EXPORT_SYMBOL(vmalloc_node);
1808
e1ca7788
DY
1809/**
1810 * vzalloc_node - allocate memory on a specific node with zero fill
1811 * @size: allocation size
1812 * @node: numa node
1813 *
1814 * Allocate enough pages to cover @size from the page level
1815 * allocator and map them into contiguous kernel virtual space.
1816 * The memory allocated is set to zero.
1817 *
1818 * For tight control over page level allocator and protection flags
1819 * use __vmalloc_node() instead.
1820 */
1821void *vzalloc_node(unsigned long size, int node)
1822{
1823 return __vmalloc_node_flags(size, node,
1824 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1825}
1826EXPORT_SYMBOL(vzalloc_node);
1827
4dc3b16b
PP
1828#ifndef PAGE_KERNEL_EXEC
1829# define PAGE_KERNEL_EXEC PAGE_KERNEL
1830#endif
1831
1da177e4
LT
1832/**
1833 * vmalloc_exec - allocate virtually contiguous, executable memory
1da177e4
LT
1834 * @size: allocation size
1835 *
1836 * Kernel-internal function to allocate enough pages to cover @size
1837 * the page level allocator and map them into contiguous and
1838 * executable kernel virtual space.
1839 *
c1c8897f 1840 * For tight control over page level allocator and protection flags
1da177e4
LT
1841 * use __vmalloc() instead.
1842 */
1843
1da177e4
LT
1844void *vmalloc_exec(unsigned long size)
1845{
2dca6999 1846 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
00ef2d2f 1847 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4
LT
1848}
1849
0d08e0d3 1850#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
7ac674f5 1851#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3 1852#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
7ac674f5 1853#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
0d08e0d3
AK
1854#else
1855#define GFP_VMALLOC32 GFP_KERNEL
1856#endif
1857
1da177e4
LT
1858/**
1859 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1da177e4
LT
1860 * @size: allocation size
1861 *
1862 * Allocate enough 32bit PA addressable pages to cover @size from the
1863 * page level allocator and map them into contiguous kernel virtual space.
1864 */
1865void *vmalloc_32(unsigned long size)
1866{
2dca6999 1867 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
00ef2d2f 1868 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4 1869}
1da177e4
LT
1870EXPORT_SYMBOL(vmalloc_32);
1871
83342314 1872/**
ead04089 1873 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
83342314 1874 * @size: allocation size
ead04089
REB
1875 *
1876 * The resulting memory area is 32bit addressable and zeroed so it can be
1877 * mapped to userspace without leaking data.
83342314
NP
1878 */
1879void *vmalloc_32_user(unsigned long size)
1880{
1881 struct vm_struct *area;
1882 void *ret;
1883
2dca6999 1884 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
00ef2d2f 1885 NUMA_NO_NODE, __builtin_return_address(0));
2b4ac44e 1886 if (ret) {
db64fe02 1887 area = find_vm_area(ret);
2b4ac44e 1888 area->flags |= VM_USERMAP;
2b4ac44e 1889 }
83342314
NP
1890 return ret;
1891}
1892EXPORT_SYMBOL(vmalloc_32_user);
1893
d0107eb0
KH
1894/*
1895 * small helper routine , copy contents to buf from addr.
1896 * If the page is not present, fill zero.
1897 */
1898
1899static int aligned_vread(char *buf, char *addr, unsigned long count)
1900{
1901 struct page *p;
1902 int copied = 0;
1903
1904 while (count) {
1905 unsigned long offset, length;
1906
891c49ab 1907 offset = offset_in_page(addr);
d0107eb0
KH
1908 length = PAGE_SIZE - offset;
1909 if (length > count)
1910 length = count;
1911 p = vmalloc_to_page(addr);
1912 /*
1913 * To do safe access to this _mapped_ area, we need
1914 * lock. But adding lock here means that we need to add
1915 * overhead of vmalloc()/vfree() calles for this _debug_
1916 * interface, rarely used. Instead of that, we'll use
1917 * kmap() and get small overhead in this access function.
1918 */
1919 if (p) {
1920 /*
1921 * we can expect USER0 is not used (see vread/vwrite's
1922 * function description)
1923 */
9b04c5fe 1924 void *map = kmap_atomic(p);
d0107eb0 1925 memcpy(buf, map + offset, length);
9b04c5fe 1926 kunmap_atomic(map);
d0107eb0
KH
1927 } else
1928 memset(buf, 0, length);
1929
1930 addr += length;
1931 buf += length;
1932 copied += length;
1933 count -= length;
1934 }
1935 return copied;
1936}
1937
1938static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1939{
1940 struct page *p;
1941 int copied = 0;
1942
1943 while (count) {
1944 unsigned long offset, length;
1945
891c49ab 1946 offset = offset_in_page(addr);
d0107eb0
KH
1947 length = PAGE_SIZE - offset;
1948 if (length > count)
1949 length = count;
1950 p = vmalloc_to_page(addr);
1951 /*
1952 * To do safe access to this _mapped_ area, we need
1953 * lock. But adding lock here means that we need to add
1954 * overhead of vmalloc()/vfree() calles for this _debug_
1955 * interface, rarely used. Instead of that, we'll use
1956 * kmap() and get small overhead in this access function.
1957 */
1958 if (p) {
1959 /*
1960 * we can expect USER0 is not used (see vread/vwrite's
1961 * function description)
1962 */
9b04c5fe 1963 void *map = kmap_atomic(p);
d0107eb0 1964 memcpy(map + offset, buf, length);
9b04c5fe 1965 kunmap_atomic(map);
d0107eb0
KH
1966 }
1967 addr += length;
1968 buf += length;
1969 copied += length;
1970 count -= length;
1971 }
1972 return copied;
1973}
1974
1975/**
1976 * vread() - read vmalloc area in a safe way.
1977 * @buf: buffer for reading data
1978 * @addr: vm address.
1979 * @count: number of bytes to be read.
1980 *
1981 * Returns # of bytes which addr and buf should be increased.
1982 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
1983 * includes any intersect with alive vmalloc area.
1984 *
1985 * This function checks that addr is a valid vmalloc'ed area, and
1986 * copy data from that area to a given buffer. If the given memory range
1987 * of [addr...addr+count) includes some valid address, data is copied to
1988 * proper area of @buf. If there are memory holes, they'll be zero-filled.
1989 * IOREMAP area is treated as memory hole and no copy is done.
1990 *
1991 * If [addr...addr+count) doesn't includes any intersects with alive
a8e5202d 1992 * vm_struct area, returns 0. @buf should be kernel's buffer.
d0107eb0
KH
1993 *
1994 * Note: In usual ops, vread() is never necessary because the caller
1995 * should know vmalloc() area is valid and can use memcpy().
1996 * This is for routines which have to access vmalloc area without
1997 * any informaion, as /dev/kmem.
1998 *
1999 */
2000
1da177e4
LT
2001long vread(char *buf, char *addr, unsigned long count)
2002{
e81ce85f
JK
2003 struct vmap_area *va;
2004 struct vm_struct *vm;
1da177e4 2005 char *vaddr, *buf_start = buf;
d0107eb0 2006 unsigned long buflen = count;
1da177e4
LT
2007 unsigned long n;
2008
2009 /* Don't allow overflow */
2010 if ((unsigned long) addr + count < count)
2011 count = -(unsigned long) addr;
2012
e81ce85f
JK
2013 spin_lock(&vmap_area_lock);
2014 list_for_each_entry(va, &vmap_area_list, list) {
2015 if (!count)
2016 break;
2017
2018 if (!(va->flags & VM_VM_AREA))
2019 continue;
2020
2021 vm = va->vm;
2022 vaddr = (char *) vm->addr;
762216ab 2023 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2024 continue;
2025 while (addr < vaddr) {
2026 if (count == 0)
2027 goto finished;
2028 *buf = '\0';
2029 buf++;
2030 addr++;
2031 count--;
2032 }
762216ab 2033 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2034 if (n > count)
2035 n = count;
e81ce85f 2036 if (!(vm->flags & VM_IOREMAP))
d0107eb0
KH
2037 aligned_vread(buf, addr, n);
2038 else /* IOREMAP area is treated as memory hole */
2039 memset(buf, 0, n);
2040 buf += n;
2041 addr += n;
2042 count -= n;
1da177e4
LT
2043 }
2044finished:
e81ce85f 2045 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2046
2047 if (buf == buf_start)
2048 return 0;
2049 /* zero-fill memory holes */
2050 if (buf != buf_start + buflen)
2051 memset(buf, 0, buflen - (buf - buf_start));
2052
2053 return buflen;
1da177e4
LT
2054}
2055
d0107eb0
KH
2056/**
2057 * vwrite() - write vmalloc area in a safe way.
2058 * @buf: buffer for source data
2059 * @addr: vm address.
2060 * @count: number of bytes to be read.
2061 *
2062 * Returns # of bytes which addr and buf should be incresed.
2063 * (same number to @count).
2064 * If [addr...addr+count) doesn't includes any intersect with valid
2065 * vmalloc area, returns 0.
2066 *
2067 * This function checks that addr is a valid vmalloc'ed area, and
2068 * copy data from a buffer to the given addr. If specified range of
2069 * [addr...addr+count) includes some valid address, data is copied from
2070 * proper area of @buf. If there are memory holes, no copy to hole.
2071 * IOREMAP area is treated as memory hole and no copy is done.
2072 *
2073 * If [addr...addr+count) doesn't includes any intersects with alive
a8e5202d 2074 * vm_struct area, returns 0. @buf should be kernel's buffer.
d0107eb0
KH
2075 *
2076 * Note: In usual ops, vwrite() is never necessary because the caller
2077 * should know vmalloc() area is valid and can use memcpy().
2078 * This is for routines which have to access vmalloc area without
2079 * any informaion, as /dev/kmem.
d0107eb0
KH
2080 */
2081
1da177e4
LT
2082long vwrite(char *buf, char *addr, unsigned long count)
2083{
e81ce85f
JK
2084 struct vmap_area *va;
2085 struct vm_struct *vm;
d0107eb0
KH
2086 char *vaddr;
2087 unsigned long n, buflen;
2088 int copied = 0;
1da177e4
LT
2089
2090 /* Don't allow overflow */
2091 if ((unsigned long) addr + count < count)
2092 count = -(unsigned long) addr;
d0107eb0 2093 buflen = count;
1da177e4 2094
e81ce85f
JK
2095 spin_lock(&vmap_area_lock);
2096 list_for_each_entry(va, &vmap_area_list, list) {
2097 if (!count)
2098 break;
2099
2100 if (!(va->flags & VM_VM_AREA))
2101 continue;
2102
2103 vm = va->vm;
2104 vaddr = (char *) vm->addr;
762216ab 2105 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2106 continue;
2107 while (addr < vaddr) {
2108 if (count == 0)
2109 goto finished;
2110 buf++;
2111 addr++;
2112 count--;
2113 }
762216ab 2114 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2115 if (n > count)
2116 n = count;
e81ce85f 2117 if (!(vm->flags & VM_IOREMAP)) {
d0107eb0
KH
2118 aligned_vwrite(buf, addr, n);
2119 copied++;
2120 }
2121 buf += n;
2122 addr += n;
2123 count -= n;
1da177e4
LT
2124 }
2125finished:
e81ce85f 2126 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2127 if (!copied)
2128 return 0;
2129 return buflen;
1da177e4 2130}
83342314
NP
2131
2132/**
e69e9d4a
HD
2133 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2134 * @vma: vma to cover
2135 * @uaddr: target user address to start at
2136 * @kaddr: virtual address of vmalloc kernel memory
2137 * @size: size of map area
7682486b
RD
2138 *
2139 * Returns: 0 for success, -Exxx on failure
83342314 2140 *
e69e9d4a
HD
2141 * This function checks that @kaddr is a valid vmalloc'ed area,
2142 * and that it is big enough to cover the range starting at
2143 * @uaddr in @vma. Will return failure if that criteria isn't
2144 * met.
83342314 2145 *
72fd4a35 2146 * Similar to remap_pfn_range() (see mm/memory.c)
83342314 2147 */
e69e9d4a
HD
2148int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2149 void *kaddr, unsigned long size)
83342314
NP
2150{
2151 struct vm_struct *area;
83342314 2152
e69e9d4a
HD
2153 size = PAGE_ALIGN(size);
2154
2155 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
83342314
NP
2156 return -EINVAL;
2157
e69e9d4a 2158 area = find_vm_area(kaddr);
83342314 2159 if (!area)
db64fe02 2160 return -EINVAL;
83342314
NP
2161
2162 if (!(area->flags & VM_USERMAP))
db64fe02 2163 return -EINVAL;
83342314 2164
e69e9d4a 2165 if (kaddr + size > area->addr + area->size)
db64fe02 2166 return -EINVAL;
83342314 2167
83342314 2168 do {
e69e9d4a 2169 struct page *page = vmalloc_to_page(kaddr);
db64fe02
NP
2170 int ret;
2171
83342314
NP
2172 ret = vm_insert_page(vma, uaddr, page);
2173 if (ret)
2174 return ret;
2175
2176 uaddr += PAGE_SIZE;
e69e9d4a
HD
2177 kaddr += PAGE_SIZE;
2178 size -= PAGE_SIZE;
2179 } while (size > 0);
83342314 2180
314e51b9 2181 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
83342314 2182
db64fe02 2183 return 0;
83342314 2184}
e69e9d4a
HD
2185EXPORT_SYMBOL(remap_vmalloc_range_partial);
2186
2187/**
2188 * remap_vmalloc_range - map vmalloc pages to userspace
2189 * @vma: vma to cover (map full range of vma)
2190 * @addr: vmalloc memory
2191 * @pgoff: number of pages into addr before first page to map
2192 *
2193 * Returns: 0 for success, -Exxx on failure
2194 *
2195 * This function checks that addr is a valid vmalloc'ed area, and
2196 * that it is big enough to cover the vma. Will return failure if
2197 * that criteria isn't met.
2198 *
2199 * Similar to remap_pfn_range() (see mm/memory.c)
2200 */
2201int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2202 unsigned long pgoff)
2203{
2204 return remap_vmalloc_range_partial(vma, vma->vm_start,
2205 addr + (pgoff << PAGE_SHIFT),
2206 vma->vm_end - vma->vm_start);
2207}
83342314
NP
2208EXPORT_SYMBOL(remap_vmalloc_range);
2209
1eeb66a1
CH
2210/*
2211 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2212 * have one.
2213 */
3b32123d 2214void __weak vmalloc_sync_all(void)
1eeb66a1
CH
2215{
2216}
5f4352fb
JF
2217
2218
2f569afd 2219static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
5f4352fb 2220{
cd12909c
DV
2221 pte_t ***p = data;
2222
2223 if (p) {
2224 *(*p) = pte;
2225 (*p)++;
2226 }
5f4352fb
JF
2227 return 0;
2228}
2229
2230/**
2231 * alloc_vm_area - allocate a range of kernel address space
2232 * @size: size of the area
cd12909c 2233 * @ptes: returns the PTEs for the address space
7682486b
RD
2234 *
2235 * Returns: NULL on failure, vm_struct on success
5f4352fb
JF
2236 *
2237 * This function reserves a range of kernel address space, and
2238 * allocates pagetables to map that range. No actual mappings
cd12909c
DV
2239 * are created.
2240 *
2241 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2242 * allocated for the VM area are returned.
5f4352fb 2243 */
cd12909c 2244struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
5f4352fb
JF
2245{
2246 struct vm_struct *area;
2247
23016969
CL
2248 area = get_vm_area_caller(size, VM_IOREMAP,
2249 __builtin_return_address(0));
5f4352fb
JF
2250 if (area == NULL)
2251 return NULL;
2252
2253 /*
2254 * This ensures that page tables are constructed for this region
2255 * of kernel virtual address space and mapped into init_mm.
2256 */
2257 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
cd12909c 2258 size, f, ptes ? &ptes : NULL)) {
5f4352fb
JF
2259 free_vm_area(area);
2260 return NULL;
2261 }
2262
5f4352fb
JF
2263 return area;
2264}
2265EXPORT_SYMBOL_GPL(alloc_vm_area);
2266
2267void free_vm_area(struct vm_struct *area)
2268{
2269 struct vm_struct *ret;
2270 ret = remove_vm_area(area->addr);
2271 BUG_ON(ret != area);
2272 kfree(area);
2273}
2274EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 2275
4f8b02b4 2276#ifdef CONFIG_SMP
ca23e405
TH
2277static struct vmap_area *node_to_va(struct rb_node *n)
2278{
2279 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2280}
2281
2282/**
2283 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2284 * @end: target address
2285 * @pnext: out arg for the next vmap_area
2286 * @pprev: out arg for the previous vmap_area
2287 *
2288 * Returns: %true if either or both of next and prev are found,
2289 * %false if no vmap_area exists
2290 *
2291 * Find vmap_areas end addresses of which enclose @end. ie. if not
2292 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2293 */
2294static bool pvm_find_next_prev(unsigned long end,
2295 struct vmap_area **pnext,
2296 struct vmap_area **pprev)
2297{
2298 struct rb_node *n = vmap_area_root.rb_node;
2299 struct vmap_area *va = NULL;
2300
2301 while (n) {
2302 va = rb_entry(n, struct vmap_area, rb_node);
2303 if (end < va->va_end)
2304 n = n->rb_left;
2305 else if (end > va->va_end)
2306 n = n->rb_right;
2307 else
2308 break;
2309 }
2310
2311 if (!va)
2312 return false;
2313
2314 if (va->va_end > end) {
2315 *pnext = va;
2316 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2317 } else {
2318 *pprev = va;
2319 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2320 }
2321 return true;
2322}
2323
2324/**
2325 * pvm_determine_end - find the highest aligned address between two vmap_areas
2326 * @pnext: in/out arg for the next vmap_area
2327 * @pprev: in/out arg for the previous vmap_area
2328 * @align: alignment
2329 *
2330 * Returns: determined end address
2331 *
2332 * Find the highest aligned address between *@pnext and *@pprev below
2333 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2334 * down address is between the end addresses of the two vmap_areas.
2335 *
2336 * Please note that the address returned by this function may fall
2337 * inside *@pnext vmap_area. The caller is responsible for checking
2338 * that.
2339 */
2340static unsigned long pvm_determine_end(struct vmap_area **pnext,
2341 struct vmap_area **pprev,
2342 unsigned long align)
2343{
2344 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2345 unsigned long addr;
2346
2347 if (*pnext)
2348 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2349 else
2350 addr = vmalloc_end;
2351
2352 while (*pprev && (*pprev)->va_end > addr) {
2353 *pnext = *pprev;
2354 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2355 }
2356
2357 return addr;
2358}
2359
2360/**
2361 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2362 * @offsets: array containing offset of each area
2363 * @sizes: array containing size of each area
2364 * @nr_vms: the number of areas to allocate
2365 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
2366 *
2367 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2368 * vm_structs on success, %NULL on failure
2369 *
2370 * Percpu allocator wants to use congruent vm areas so that it can
2371 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
2372 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2373 * be scattered pretty far, distance between two areas easily going up
2374 * to gigabytes. To avoid interacting with regular vmallocs, these
2375 * areas are allocated from top.
ca23e405
TH
2376 *
2377 * Despite its complicated look, this allocator is rather simple. It
2378 * does everything top-down and scans areas from the end looking for
2379 * matching slot. While scanning, if any of the areas overlaps with
2380 * existing vmap_area, the base address is pulled down to fit the
2381 * area. Scanning is repeated till all the areas fit and then all
2382 * necessary data structres are inserted and the result is returned.
2383 */
2384struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2385 const size_t *sizes, int nr_vms,
ec3f64fc 2386 size_t align)
ca23e405
TH
2387{
2388 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2389 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2390 struct vmap_area **vas, *prev, *next;
2391 struct vm_struct **vms;
2392 int area, area2, last_area, term_area;
2393 unsigned long base, start, end, last_end;
2394 bool purged = false;
2395
ca23e405 2396 /* verify parameters and allocate data structures */
891c49ab 2397 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
ca23e405
TH
2398 for (last_area = 0, area = 0; area < nr_vms; area++) {
2399 start = offsets[area];
2400 end = start + sizes[area];
2401
2402 /* is everything aligned properly? */
2403 BUG_ON(!IS_ALIGNED(offsets[area], align));
2404 BUG_ON(!IS_ALIGNED(sizes[area], align));
2405
2406 /* detect the area with the highest address */
2407 if (start > offsets[last_area])
2408 last_area = area;
2409
2410 for (area2 = 0; area2 < nr_vms; area2++) {
2411 unsigned long start2 = offsets[area2];
2412 unsigned long end2 = start2 + sizes[area2];
2413
2414 if (area2 == area)
2415 continue;
2416
2417 BUG_ON(start2 >= start && start2 < end);
2418 BUG_ON(end2 <= end && end2 > start);
2419 }
2420 }
2421 last_end = offsets[last_area] + sizes[last_area];
2422
2423 if (vmalloc_end - vmalloc_start < last_end) {
2424 WARN_ON(true);
2425 return NULL;
2426 }
2427
4d67d860
TM
2428 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2429 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 2430 if (!vas || !vms)
f1db7afd 2431 goto err_free2;
ca23e405
TH
2432
2433 for (area = 0; area < nr_vms; area++) {
ec3f64fc
DR
2434 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2435 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
2436 if (!vas[area] || !vms[area])
2437 goto err_free;
2438 }
2439retry:
2440 spin_lock(&vmap_area_lock);
2441
2442 /* start scanning - we scan from the top, begin with the last area */
2443 area = term_area = last_area;
2444 start = offsets[area];
2445 end = start + sizes[area];
2446
2447 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2448 base = vmalloc_end - last_end;
2449 goto found;
2450 }
2451 base = pvm_determine_end(&next, &prev, align) - end;
2452
2453 while (true) {
2454 BUG_ON(next && next->va_end <= base + end);
2455 BUG_ON(prev && prev->va_end > base + end);
2456
2457 /*
2458 * base might have underflowed, add last_end before
2459 * comparing.
2460 */
2461 if (base + last_end < vmalloc_start + last_end) {
2462 spin_unlock(&vmap_area_lock);
2463 if (!purged) {
2464 purge_vmap_area_lazy();
2465 purged = true;
2466 goto retry;
2467 }
2468 goto err_free;
2469 }
2470
2471 /*
2472 * If next overlaps, move base downwards so that it's
2473 * right below next and then recheck.
2474 */
2475 if (next && next->va_start < base + end) {
2476 base = pvm_determine_end(&next, &prev, align) - end;
2477 term_area = area;
2478 continue;
2479 }
2480
2481 /*
2482 * If prev overlaps, shift down next and prev and move
2483 * base so that it's right below new next and then
2484 * recheck.
2485 */
2486 if (prev && prev->va_end > base + start) {
2487 next = prev;
2488 prev = node_to_va(rb_prev(&next->rb_node));
2489 base = pvm_determine_end(&next, &prev, align) - end;
2490 term_area = area;
2491 continue;
2492 }
2493
2494 /*
2495 * This area fits, move on to the previous one. If
2496 * the previous one is the terminal one, we're done.
2497 */
2498 area = (area + nr_vms - 1) % nr_vms;
2499 if (area == term_area)
2500 break;
2501 start = offsets[area];
2502 end = start + sizes[area];
2503 pvm_find_next_prev(base + end, &next, &prev);
2504 }
2505found:
2506 /* we've found a fitting base, insert all va's */
2507 for (area = 0; area < nr_vms; area++) {
2508 struct vmap_area *va = vas[area];
2509
2510 va->va_start = base + offsets[area];
2511 va->va_end = va->va_start + sizes[area];
2512 __insert_vmap_area(va);
2513 }
2514
2515 vmap_area_pcpu_hole = base + offsets[last_area];
2516
2517 spin_unlock(&vmap_area_lock);
2518
2519 /* insert all vm's */
2520 for (area = 0; area < nr_vms; area++)
3645cb4a
ZY
2521 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2522 pcpu_get_vm_areas);
ca23e405
TH
2523
2524 kfree(vas);
2525 return vms;
2526
2527err_free:
2528 for (area = 0; area < nr_vms; area++) {
f1db7afd
KC
2529 kfree(vas[area]);
2530 kfree(vms[area]);
ca23e405 2531 }
f1db7afd 2532err_free2:
ca23e405
TH
2533 kfree(vas);
2534 kfree(vms);
2535 return NULL;
2536}
2537
2538/**
2539 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2540 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2541 * @nr_vms: the number of allocated areas
2542 *
2543 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2544 */
2545void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2546{
2547 int i;
2548
2549 for (i = 0; i < nr_vms; i++)
2550 free_vm_area(vms[i]);
2551 kfree(vms);
2552}
4f8b02b4 2553#endif /* CONFIG_SMP */
a10aa579
CL
2554
2555#ifdef CONFIG_PROC_FS
2556static void *s_start(struct seq_file *m, loff_t *pos)
d4033afd 2557 __acquires(&vmap_area_lock)
a10aa579
CL
2558{
2559 loff_t n = *pos;
d4033afd 2560 struct vmap_area *va;
a10aa579 2561
d4033afd
JK
2562 spin_lock(&vmap_area_lock);
2563 va = list_entry((&vmap_area_list)->next, typeof(*va), list);
2564 while (n > 0 && &va->list != &vmap_area_list) {
a10aa579 2565 n--;
d4033afd 2566 va = list_entry(va->list.next, typeof(*va), list);
a10aa579 2567 }
d4033afd
JK
2568 if (!n && &va->list != &vmap_area_list)
2569 return va;
a10aa579
CL
2570
2571 return NULL;
2572
2573}
2574
2575static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2576{
d4033afd 2577 struct vmap_area *va = p, *next;
a10aa579
CL
2578
2579 ++*pos;
d4033afd
JK
2580 next = list_entry(va->list.next, typeof(*va), list);
2581 if (&next->list != &vmap_area_list)
2582 return next;
2583
2584 return NULL;
a10aa579
CL
2585}
2586
2587static void s_stop(struct seq_file *m, void *p)
d4033afd 2588 __releases(&vmap_area_lock)
a10aa579 2589{
d4033afd 2590 spin_unlock(&vmap_area_lock);
a10aa579
CL
2591}
2592
a47a126a
ED
2593static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2594{
e5adfffc 2595 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a
ED
2596 unsigned int nr, *counters = m->private;
2597
2598 if (!counters)
2599 return;
2600
af12346c
WL
2601 if (v->flags & VM_UNINITIALIZED)
2602 return;
7e5b528b
DV
2603 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2604 smp_rmb();
af12346c 2605
a47a126a
ED
2606 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2607
2608 for (nr = 0; nr < v->nr_pages; nr++)
2609 counters[page_to_nid(v->pages[nr])]++;
2610
2611 for_each_node_state(nr, N_HIGH_MEMORY)
2612 if (counters[nr])
2613 seq_printf(m, " N%u=%u", nr, counters[nr]);
2614 }
2615}
2616
a10aa579
CL
2617static int s_show(struct seq_file *m, void *p)
2618{
d4033afd
JK
2619 struct vmap_area *va = p;
2620 struct vm_struct *v;
2621
c2ce8c14
WL
2622 /*
2623 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2624 * behalf of vmap area is being tear down or vm_map_ram allocation.
2625 */
2626 if (!(va->flags & VM_VM_AREA))
d4033afd 2627 return 0;
d4033afd
JK
2628
2629 v = va->vm;
a10aa579 2630
45ec1690 2631 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
2632 v->addr, v->addr + v->size, v->size);
2633
62c70bce
JP
2634 if (v->caller)
2635 seq_printf(m, " %pS", v->caller);
23016969 2636
a10aa579
CL
2637 if (v->nr_pages)
2638 seq_printf(m, " pages=%d", v->nr_pages);
2639
2640 if (v->phys_addr)
ffa71f33 2641 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
a10aa579
CL
2642
2643 if (v->flags & VM_IOREMAP)
f4527c90 2644 seq_puts(m, " ioremap");
a10aa579
CL
2645
2646 if (v->flags & VM_ALLOC)
f4527c90 2647 seq_puts(m, " vmalloc");
a10aa579
CL
2648
2649 if (v->flags & VM_MAP)
f4527c90 2650 seq_puts(m, " vmap");
a10aa579
CL
2651
2652 if (v->flags & VM_USERMAP)
f4527c90 2653 seq_puts(m, " user");
a10aa579
CL
2654
2655 if (v->flags & VM_VPAGES)
f4527c90 2656 seq_puts(m, " vpages");
a10aa579 2657
a47a126a 2658 show_numa_info(m, v);
a10aa579
CL
2659 seq_putc(m, '\n');
2660 return 0;
2661}
2662
5f6a6a9c 2663static const struct seq_operations vmalloc_op = {
a10aa579
CL
2664 .start = s_start,
2665 .next = s_next,
2666 .stop = s_stop,
2667 .show = s_show,
2668};
5f6a6a9c
AD
2669
2670static int vmalloc_open(struct inode *inode, struct file *file)
2671{
703394c1
RJ
2672 if (IS_ENABLED(CONFIG_NUMA))
2673 return seq_open_private(file, &vmalloc_op,
2674 nr_node_ids * sizeof(unsigned int));
2675 else
2676 return seq_open(file, &vmalloc_op);
5f6a6a9c
AD
2677}
2678
2679static const struct file_operations proc_vmalloc_operations = {
2680 .open = vmalloc_open,
2681 .read = seq_read,
2682 .llseek = seq_lseek,
2683 .release = seq_release_private,
2684};
2685
2686static int __init proc_vmalloc_init(void)
2687{
2688 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2689 return 0;
2690}
2691module_init(proc_vmalloc_init);
db3808c1 2692
a10aa579
CL
2693#endif
2694