Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/vmalloc.c | |
3 | * | |
4 | * Copyright (C) 1993 Linus Torvalds | |
5 | * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | |
6 | * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 | |
7 | * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 | |
930fc45a | 8 | * Numa awareness, Christoph Lameter, SGI, June 2005 |
1da177e4 LT |
9 | */ |
10 | ||
db64fe02 | 11 | #include <linux/vmalloc.h> |
1da177e4 LT |
12 | #include <linux/mm.h> |
13 | #include <linux/module.h> | |
14 | #include <linux/highmem.h> | |
d43c36dc | 15 | #include <linux/sched.h> |
1da177e4 LT |
16 | #include <linux/slab.h> |
17 | #include <linux/spinlock.h> | |
18 | #include <linux/interrupt.h> | |
5f6a6a9c | 19 | #include <linux/proc_fs.h> |
a10aa579 | 20 | #include <linux/seq_file.h> |
3ac7fe5a | 21 | #include <linux/debugobjects.h> |
23016969 | 22 | #include <linux/kallsyms.h> |
db64fe02 NP |
23 | #include <linux/list.h> |
24 | #include <linux/rbtree.h> | |
25 | #include <linux/radix-tree.h> | |
26 | #include <linux/rcupdate.h> | |
f0aa6617 | 27 | #include <linux/pfn.h> |
89219d37 | 28 | #include <linux/kmemleak.h> |
db64fe02 | 29 | #include <asm/atomic.h> |
1da177e4 LT |
30 | #include <asm/uaccess.h> |
31 | #include <asm/tlbflush.h> | |
2dca6999 | 32 | #include <asm/shmparam.h> |
1da177e4 LT |
33 | |
34 | ||
db64fe02 | 35 | /*** Page table manipulation functions ***/ |
b221385b | 36 | |
1da177e4 LT |
37 | static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) |
38 | { | |
39 | pte_t *pte; | |
40 | ||
41 | pte = pte_offset_kernel(pmd, addr); | |
42 | do { | |
43 | pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); | |
44 | WARN_ON(!pte_none(ptent) && !pte_present(ptent)); | |
45 | } while (pte++, addr += PAGE_SIZE, addr != end); | |
46 | } | |
47 | ||
db64fe02 | 48 | static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) |
1da177e4 LT |
49 | { |
50 | pmd_t *pmd; | |
51 | unsigned long next; | |
52 | ||
53 | pmd = pmd_offset(pud, addr); | |
54 | do { | |
55 | next = pmd_addr_end(addr, end); | |
56 | if (pmd_none_or_clear_bad(pmd)) | |
57 | continue; | |
58 | vunmap_pte_range(pmd, addr, next); | |
59 | } while (pmd++, addr = next, addr != end); | |
60 | } | |
61 | ||
db64fe02 | 62 | static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end) |
1da177e4 LT |
63 | { |
64 | pud_t *pud; | |
65 | unsigned long next; | |
66 | ||
67 | pud = pud_offset(pgd, addr); | |
68 | do { | |
69 | next = pud_addr_end(addr, end); | |
70 | if (pud_none_or_clear_bad(pud)) | |
71 | continue; | |
72 | vunmap_pmd_range(pud, addr, next); | |
73 | } while (pud++, addr = next, addr != end); | |
74 | } | |
75 | ||
db64fe02 | 76 | static void vunmap_page_range(unsigned long addr, unsigned long end) |
1da177e4 LT |
77 | { |
78 | pgd_t *pgd; | |
79 | unsigned long next; | |
1da177e4 LT |
80 | |
81 | BUG_ON(addr >= end); | |
82 | pgd = pgd_offset_k(addr); | |
1da177e4 LT |
83 | do { |
84 | next = pgd_addr_end(addr, end); | |
85 | if (pgd_none_or_clear_bad(pgd)) | |
86 | continue; | |
87 | vunmap_pud_range(pgd, addr, next); | |
88 | } while (pgd++, addr = next, addr != end); | |
1da177e4 LT |
89 | } |
90 | ||
91 | static int vmap_pte_range(pmd_t *pmd, unsigned long addr, | |
db64fe02 | 92 | unsigned long end, pgprot_t prot, struct page **pages, int *nr) |
1da177e4 LT |
93 | { |
94 | pte_t *pte; | |
95 | ||
db64fe02 NP |
96 | /* |
97 | * nr is a running index into the array which helps higher level | |
98 | * callers keep track of where we're up to. | |
99 | */ | |
100 | ||
872fec16 | 101 | pte = pte_alloc_kernel(pmd, addr); |
1da177e4 LT |
102 | if (!pte) |
103 | return -ENOMEM; | |
104 | do { | |
db64fe02 NP |
105 | struct page *page = pages[*nr]; |
106 | ||
107 | if (WARN_ON(!pte_none(*pte))) | |
108 | return -EBUSY; | |
109 | if (WARN_ON(!page)) | |
1da177e4 LT |
110 | return -ENOMEM; |
111 | set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); | |
db64fe02 | 112 | (*nr)++; |
1da177e4 LT |
113 | } while (pte++, addr += PAGE_SIZE, addr != end); |
114 | return 0; | |
115 | } | |
116 | ||
db64fe02 NP |
117 | static int vmap_pmd_range(pud_t *pud, unsigned long addr, |
118 | unsigned long end, pgprot_t prot, struct page **pages, int *nr) | |
1da177e4 LT |
119 | { |
120 | pmd_t *pmd; | |
121 | unsigned long next; | |
122 | ||
123 | pmd = pmd_alloc(&init_mm, pud, addr); | |
124 | if (!pmd) | |
125 | return -ENOMEM; | |
126 | do { | |
127 | next = pmd_addr_end(addr, end); | |
db64fe02 | 128 | if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) |
1da177e4 LT |
129 | return -ENOMEM; |
130 | } while (pmd++, addr = next, addr != end); | |
131 | return 0; | |
132 | } | |
133 | ||
db64fe02 NP |
134 | static int vmap_pud_range(pgd_t *pgd, unsigned long addr, |
135 | unsigned long end, pgprot_t prot, struct page **pages, int *nr) | |
1da177e4 LT |
136 | { |
137 | pud_t *pud; | |
138 | unsigned long next; | |
139 | ||
140 | pud = pud_alloc(&init_mm, pgd, addr); | |
141 | if (!pud) | |
142 | return -ENOMEM; | |
143 | do { | |
144 | next = pud_addr_end(addr, end); | |
db64fe02 | 145 | if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) |
1da177e4 LT |
146 | return -ENOMEM; |
147 | } while (pud++, addr = next, addr != end); | |
148 | return 0; | |
149 | } | |
150 | ||
db64fe02 NP |
151 | /* |
152 | * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and | |
153 | * will have pfns corresponding to the "pages" array. | |
154 | * | |
155 | * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] | |
156 | */ | |
8fc48985 TH |
157 | static int vmap_page_range_noflush(unsigned long start, unsigned long end, |
158 | pgprot_t prot, struct page **pages) | |
1da177e4 LT |
159 | { |
160 | pgd_t *pgd; | |
161 | unsigned long next; | |
2e4e27c7 | 162 | unsigned long addr = start; |
db64fe02 NP |
163 | int err = 0; |
164 | int nr = 0; | |
1da177e4 LT |
165 | |
166 | BUG_ON(addr >= end); | |
167 | pgd = pgd_offset_k(addr); | |
1da177e4 LT |
168 | do { |
169 | next = pgd_addr_end(addr, end); | |
db64fe02 | 170 | err = vmap_pud_range(pgd, addr, next, prot, pages, &nr); |
1da177e4 | 171 | if (err) |
bf88c8c8 | 172 | return err; |
1da177e4 | 173 | } while (pgd++, addr = next, addr != end); |
db64fe02 | 174 | |
db64fe02 | 175 | return nr; |
1da177e4 LT |
176 | } |
177 | ||
8fc48985 TH |
178 | static int vmap_page_range(unsigned long start, unsigned long end, |
179 | pgprot_t prot, struct page **pages) | |
180 | { | |
181 | int ret; | |
182 | ||
183 | ret = vmap_page_range_noflush(start, end, prot, pages); | |
184 | flush_cache_vmap(start, end); | |
185 | return ret; | |
186 | } | |
187 | ||
81ac3ad9 | 188 | int is_vmalloc_or_module_addr(const void *x) |
73bdf0a6 LT |
189 | { |
190 | /* | |
ab4f2ee1 | 191 | * ARM, x86-64 and sparc64 put modules in a special place, |
73bdf0a6 LT |
192 | * and fall back on vmalloc() if that fails. Others |
193 | * just put it in the vmalloc space. | |
194 | */ | |
195 | #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) | |
196 | unsigned long addr = (unsigned long)x; | |
197 | if (addr >= MODULES_VADDR && addr < MODULES_END) | |
198 | return 1; | |
199 | #endif | |
200 | return is_vmalloc_addr(x); | |
201 | } | |
202 | ||
48667e7a | 203 | /* |
db64fe02 | 204 | * Walk a vmap address to the struct page it maps. |
48667e7a | 205 | */ |
b3bdda02 | 206 | struct page *vmalloc_to_page(const void *vmalloc_addr) |
48667e7a CL |
207 | { |
208 | unsigned long addr = (unsigned long) vmalloc_addr; | |
209 | struct page *page = NULL; | |
210 | pgd_t *pgd = pgd_offset_k(addr); | |
48667e7a | 211 | |
7aa413de IM |
212 | /* |
213 | * XXX we might need to change this if we add VIRTUAL_BUG_ON for | |
214 | * architectures that do not vmalloc module space | |
215 | */ | |
73bdf0a6 | 216 | VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); |
59ea7463 | 217 | |
48667e7a | 218 | if (!pgd_none(*pgd)) { |
db64fe02 | 219 | pud_t *pud = pud_offset(pgd, addr); |
48667e7a | 220 | if (!pud_none(*pud)) { |
db64fe02 | 221 | pmd_t *pmd = pmd_offset(pud, addr); |
48667e7a | 222 | if (!pmd_none(*pmd)) { |
db64fe02 NP |
223 | pte_t *ptep, pte; |
224 | ||
48667e7a CL |
225 | ptep = pte_offset_map(pmd, addr); |
226 | pte = *ptep; | |
227 | if (pte_present(pte)) | |
228 | page = pte_page(pte); | |
229 | pte_unmap(ptep); | |
230 | } | |
231 | } | |
232 | } | |
233 | return page; | |
234 | } | |
235 | EXPORT_SYMBOL(vmalloc_to_page); | |
236 | ||
237 | /* | |
238 | * Map a vmalloc()-space virtual address to the physical page frame number. | |
239 | */ | |
b3bdda02 | 240 | unsigned long vmalloc_to_pfn(const void *vmalloc_addr) |
48667e7a CL |
241 | { |
242 | return page_to_pfn(vmalloc_to_page(vmalloc_addr)); | |
243 | } | |
244 | EXPORT_SYMBOL(vmalloc_to_pfn); | |
245 | ||
db64fe02 NP |
246 | |
247 | /*** Global kva allocator ***/ | |
248 | ||
249 | #define VM_LAZY_FREE 0x01 | |
250 | #define VM_LAZY_FREEING 0x02 | |
251 | #define VM_VM_AREA 0x04 | |
252 | ||
253 | struct vmap_area { | |
254 | unsigned long va_start; | |
255 | unsigned long va_end; | |
256 | unsigned long flags; | |
257 | struct rb_node rb_node; /* address sorted rbtree */ | |
258 | struct list_head list; /* address sorted list */ | |
259 | struct list_head purge_list; /* "lazy purge" list */ | |
260 | void *private; | |
261 | struct rcu_head rcu_head; | |
262 | }; | |
263 | ||
264 | static DEFINE_SPINLOCK(vmap_area_lock); | |
265 | static struct rb_root vmap_area_root = RB_ROOT; | |
266 | static LIST_HEAD(vmap_area_list); | |
ca23e405 | 267 | static unsigned long vmap_area_pcpu_hole; |
db64fe02 NP |
268 | |
269 | static struct vmap_area *__find_vmap_area(unsigned long addr) | |
1da177e4 | 270 | { |
db64fe02 NP |
271 | struct rb_node *n = vmap_area_root.rb_node; |
272 | ||
273 | while (n) { | |
274 | struct vmap_area *va; | |
275 | ||
276 | va = rb_entry(n, struct vmap_area, rb_node); | |
277 | if (addr < va->va_start) | |
278 | n = n->rb_left; | |
279 | else if (addr > va->va_start) | |
280 | n = n->rb_right; | |
281 | else | |
282 | return va; | |
283 | } | |
284 | ||
285 | return NULL; | |
286 | } | |
287 | ||
288 | static void __insert_vmap_area(struct vmap_area *va) | |
289 | { | |
290 | struct rb_node **p = &vmap_area_root.rb_node; | |
291 | struct rb_node *parent = NULL; | |
292 | struct rb_node *tmp; | |
293 | ||
294 | while (*p) { | |
295 | struct vmap_area *tmp; | |
296 | ||
297 | parent = *p; | |
298 | tmp = rb_entry(parent, struct vmap_area, rb_node); | |
299 | if (va->va_start < tmp->va_end) | |
300 | p = &(*p)->rb_left; | |
301 | else if (va->va_end > tmp->va_start) | |
302 | p = &(*p)->rb_right; | |
303 | else | |
304 | BUG(); | |
305 | } | |
306 | ||
307 | rb_link_node(&va->rb_node, parent, p); | |
308 | rb_insert_color(&va->rb_node, &vmap_area_root); | |
309 | ||
310 | /* address-sort this list so it is usable like the vmlist */ | |
311 | tmp = rb_prev(&va->rb_node); | |
312 | if (tmp) { | |
313 | struct vmap_area *prev; | |
314 | prev = rb_entry(tmp, struct vmap_area, rb_node); | |
315 | list_add_rcu(&va->list, &prev->list); | |
316 | } else | |
317 | list_add_rcu(&va->list, &vmap_area_list); | |
318 | } | |
319 | ||
320 | static void purge_vmap_area_lazy(void); | |
321 | ||
322 | /* | |
323 | * Allocate a region of KVA of the specified size and alignment, within the | |
324 | * vstart and vend. | |
325 | */ | |
326 | static struct vmap_area *alloc_vmap_area(unsigned long size, | |
327 | unsigned long align, | |
328 | unsigned long vstart, unsigned long vend, | |
329 | int node, gfp_t gfp_mask) | |
330 | { | |
331 | struct vmap_area *va; | |
332 | struct rb_node *n; | |
1da177e4 | 333 | unsigned long addr; |
db64fe02 NP |
334 | int purged = 0; |
335 | ||
7766970c | 336 | BUG_ON(!size); |
db64fe02 NP |
337 | BUG_ON(size & ~PAGE_MASK); |
338 | ||
db64fe02 NP |
339 | va = kmalloc_node(sizeof(struct vmap_area), |
340 | gfp_mask & GFP_RECLAIM_MASK, node); | |
341 | if (unlikely(!va)) | |
342 | return ERR_PTR(-ENOMEM); | |
343 | ||
344 | retry: | |
0ae15132 GC |
345 | addr = ALIGN(vstart, align); |
346 | ||
db64fe02 | 347 | spin_lock(&vmap_area_lock); |
7766970c NP |
348 | if (addr + size - 1 < addr) |
349 | goto overflow; | |
350 | ||
db64fe02 NP |
351 | /* XXX: could have a last_hole cache */ |
352 | n = vmap_area_root.rb_node; | |
353 | if (n) { | |
354 | struct vmap_area *first = NULL; | |
355 | ||
356 | do { | |
357 | struct vmap_area *tmp; | |
358 | tmp = rb_entry(n, struct vmap_area, rb_node); | |
359 | if (tmp->va_end >= addr) { | |
360 | if (!first && tmp->va_start < addr + size) | |
361 | first = tmp; | |
362 | n = n->rb_left; | |
363 | } else { | |
364 | first = tmp; | |
365 | n = n->rb_right; | |
366 | } | |
367 | } while (n); | |
368 | ||
369 | if (!first) | |
370 | goto found; | |
371 | ||
372 | if (first->va_end < addr) { | |
373 | n = rb_next(&first->rb_node); | |
374 | if (n) | |
375 | first = rb_entry(n, struct vmap_area, rb_node); | |
376 | else | |
377 | goto found; | |
378 | } | |
379 | ||
f011c2da | 380 | while (addr + size > first->va_start && addr + size <= vend) { |
db64fe02 | 381 | addr = ALIGN(first->va_end + PAGE_SIZE, align); |
7766970c NP |
382 | if (addr + size - 1 < addr) |
383 | goto overflow; | |
db64fe02 NP |
384 | |
385 | n = rb_next(&first->rb_node); | |
386 | if (n) | |
387 | first = rb_entry(n, struct vmap_area, rb_node); | |
388 | else | |
389 | goto found; | |
390 | } | |
391 | } | |
392 | found: | |
393 | if (addr + size > vend) { | |
7766970c | 394 | overflow: |
db64fe02 NP |
395 | spin_unlock(&vmap_area_lock); |
396 | if (!purged) { | |
397 | purge_vmap_area_lazy(); | |
398 | purged = 1; | |
399 | goto retry; | |
400 | } | |
401 | if (printk_ratelimit()) | |
c1279c4e GC |
402 | printk(KERN_WARNING |
403 | "vmap allocation for size %lu failed: " | |
404 | "use vmalloc=<size> to increase size.\n", size); | |
2498ce42 | 405 | kfree(va); |
db64fe02 NP |
406 | return ERR_PTR(-EBUSY); |
407 | } | |
408 | ||
409 | BUG_ON(addr & (align-1)); | |
410 | ||
411 | va->va_start = addr; | |
412 | va->va_end = addr + size; | |
413 | va->flags = 0; | |
414 | __insert_vmap_area(va); | |
415 | spin_unlock(&vmap_area_lock); | |
416 | ||
417 | return va; | |
418 | } | |
419 | ||
420 | static void rcu_free_va(struct rcu_head *head) | |
421 | { | |
422 | struct vmap_area *va = container_of(head, struct vmap_area, rcu_head); | |
423 | ||
424 | kfree(va); | |
425 | } | |
426 | ||
427 | static void __free_vmap_area(struct vmap_area *va) | |
428 | { | |
429 | BUG_ON(RB_EMPTY_NODE(&va->rb_node)); | |
430 | rb_erase(&va->rb_node, &vmap_area_root); | |
431 | RB_CLEAR_NODE(&va->rb_node); | |
432 | list_del_rcu(&va->list); | |
433 | ||
ca23e405 TH |
434 | /* |
435 | * Track the highest possible candidate for pcpu area | |
436 | * allocation. Areas outside of vmalloc area can be returned | |
437 | * here too, consider only end addresses which fall inside | |
438 | * vmalloc area proper. | |
439 | */ | |
440 | if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END) | |
441 | vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end); | |
442 | ||
db64fe02 NP |
443 | call_rcu(&va->rcu_head, rcu_free_va); |
444 | } | |
445 | ||
446 | /* | |
447 | * Free a region of KVA allocated by alloc_vmap_area | |
448 | */ | |
449 | static void free_vmap_area(struct vmap_area *va) | |
450 | { | |
451 | spin_lock(&vmap_area_lock); | |
452 | __free_vmap_area(va); | |
453 | spin_unlock(&vmap_area_lock); | |
454 | } | |
455 | ||
456 | /* | |
457 | * Clear the pagetable entries of a given vmap_area | |
458 | */ | |
459 | static void unmap_vmap_area(struct vmap_area *va) | |
460 | { | |
461 | vunmap_page_range(va->va_start, va->va_end); | |
462 | } | |
463 | ||
cd52858c NP |
464 | static void vmap_debug_free_range(unsigned long start, unsigned long end) |
465 | { | |
466 | /* | |
467 | * Unmap page tables and force a TLB flush immediately if | |
468 | * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free | |
469 | * bugs similarly to those in linear kernel virtual address | |
470 | * space after a page has been freed. | |
471 | * | |
472 | * All the lazy freeing logic is still retained, in order to | |
473 | * minimise intrusiveness of this debugging feature. | |
474 | * | |
475 | * This is going to be *slow* (linear kernel virtual address | |
476 | * debugging doesn't do a broadcast TLB flush so it is a lot | |
477 | * faster). | |
478 | */ | |
479 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
480 | vunmap_page_range(start, end); | |
481 | flush_tlb_kernel_range(start, end); | |
482 | #endif | |
483 | } | |
484 | ||
db64fe02 NP |
485 | /* |
486 | * lazy_max_pages is the maximum amount of virtual address space we gather up | |
487 | * before attempting to purge with a TLB flush. | |
488 | * | |
489 | * There is a tradeoff here: a larger number will cover more kernel page tables | |
490 | * and take slightly longer to purge, but it will linearly reduce the number of | |
491 | * global TLB flushes that must be performed. It would seem natural to scale | |
492 | * this number up linearly with the number of CPUs (because vmapping activity | |
493 | * could also scale linearly with the number of CPUs), however it is likely | |
494 | * that in practice, workloads might be constrained in other ways that mean | |
495 | * vmap activity will not scale linearly with CPUs. Also, I want to be | |
496 | * conservative and not introduce a big latency on huge systems, so go with | |
497 | * a less aggressive log scale. It will still be an improvement over the old | |
498 | * code, and it will be simple to change the scale factor if we find that it | |
499 | * becomes a problem on bigger systems. | |
500 | */ | |
501 | static unsigned long lazy_max_pages(void) | |
502 | { | |
503 | unsigned int log; | |
504 | ||
505 | log = fls(num_online_cpus()); | |
506 | ||
507 | return log * (32UL * 1024 * 1024 / PAGE_SIZE); | |
508 | } | |
509 | ||
510 | static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); | |
511 | ||
02b709df NP |
512 | /* for per-CPU blocks */ |
513 | static void purge_fragmented_blocks_allcpus(void); | |
514 | ||
db64fe02 NP |
515 | /* |
516 | * Purges all lazily-freed vmap areas. | |
517 | * | |
518 | * If sync is 0 then don't purge if there is already a purge in progress. | |
519 | * If force_flush is 1, then flush kernel TLBs between *start and *end even | |
520 | * if we found no lazy vmap areas to unmap (callers can use this to optimise | |
521 | * their own TLB flushing). | |
522 | * Returns with *start = min(*start, lowest purged address) | |
523 | * *end = max(*end, highest purged address) | |
524 | */ | |
525 | static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end, | |
526 | int sync, int force_flush) | |
527 | { | |
46666d8a | 528 | static DEFINE_SPINLOCK(purge_lock); |
db64fe02 NP |
529 | LIST_HEAD(valist); |
530 | struct vmap_area *va; | |
cbb76676 | 531 | struct vmap_area *n_va; |
db64fe02 NP |
532 | int nr = 0; |
533 | ||
534 | /* | |
535 | * If sync is 0 but force_flush is 1, we'll go sync anyway but callers | |
536 | * should not expect such behaviour. This just simplifies locking for | |
537 | * the case that isn't actually used at the moment anyway. | |
538 | */ | |
539 | if (!sync && !force_flush) { | |
46666d8a | 540 | if (!spin_trylock(&purge_lock)) |
db64fe02 NP |
541 | return; |
542 | } else | |
46666d8a | 543 | spin_lock(&purge_lock); |
db64fe02 | 544 | |
02b709df NP |
545 | if (sync) |
546 | purge_fragmented_blocks_allcpus(); | |
547 | ||
db64fe02 NP |
548 | rcu_read_lock(); |
549 | list_for_each_entry_rcu(va, &vmap_area_list, list) { | |
550 | if (va->flags & VM_LAZY_FREE) { | |
551 | if (va->va_start < *start) | |
552 | *start = va->va_start; | |
553 | if (va->va_end > *end) | |
554 | *end = va->va_end; | |
555 | nr += (va->va_end - va->va_start) >> PAGE_SHIFT; | |
556 | unmap_vmap_area(va); | |
557 | list_add_tail(&va->purge_list, &valist); | |
558 | va->flags |= VM_LAZY_FREEING; | |
559 | va->flags &= ~VM_LAZY_FREE; | |
560 | } | |
561 | } | |
562 | rcu_read_unlock(); | |
563 | ||
88f50044 | 564 | if (nr) |
db64fe02 | 565 | atomic_sub(nr, &vmap_lazy_nr); |
db64fe02 NP |
566 | |
567 | if (nr || force_flush) | |
568 | flush_tlb_kernel_range(*start, *end); | |
569 | ||
570 | if (nr) { | |
571 | spin_lock(&vmap_area_lock); | |
cbb76676 | 572 | list_for_each_entry_safe(va, n_va, &valist, purge_list) |
db64fe02 NP |
573 | __free_vmap_area(va); |
574 | spin_unlock(&vmap_area_lock); | |
575 | } | |
46666d8a | 576 | spin_unlock(&purge_lock); |
db64fe02 NP |
577 | } |
578 | ||
496850e5 NP |
579 | /* |
580 | * Kick off a purge of the outstanding lazy areas. Don't bother if somebody | |
581 | * is already purging. | |
582 | */ | |
583 | static void try_purge_vmap_area_lazy(void) | |
584 | { | |
585 | unsigned long start = ULONG_MAX, end = 0; | |
586 | ||
587 | __purge_vmap_area_lazy(&start, &end, 0, 0); | |
588 | } | |
589 | ||
db64fe02 NP |
590 | /* |
591 | * Kick off a purge of the outstanding lazy areas. | |
592 | */ | |
593 | static void purge_vmap_area_lazy(void) | |
594 | { | |
595 | unsigned long start = ULONG_MAX, end = 0; | |
596 | ||
496850e5 | 597 | __purge_vmap_area_lazy(&start, &end, 1, 0); |
db64fe02 NP |
598 | } |
599 | ||
600 | /* | |
b29acbdc NP |
601 | * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been |
602 | * called for the correct range previously. | |
db64fe02 | 603 | */ |
b29acbdc | 604 | static void free_unmap_vmap_area_noflush(struct vmap_area *va) |
db64fe02 NP |
605 | { |
606 | va->flags |= VM_LAZY_FREE; | |
607 | atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr); | |
608 | if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages())) | |
496850e5 | 609 | try_purge_vmap_area_lazy(); |
db64fe02 NP |
610 | } |
611 | ||
b29acbdc NP |
612 | /* |
613 | * Free and unmap a vmap area | |
614 | */ | |
615 | static void free_unmap_vmap_area(struct vmap_area *va) | |
616 | { | |
617 | flush_cache_vunmap(va->va_start, va->va_end); | |
618 | free_unmap_vmap_area_noflush(va); | |
619 | } | |
620 | ||
db64fe02 NP |
621 | static struct vmap_area *find_vmap_area(unsigned long addr) |
622 | { | |
623 | struct vmap_area *va; | |
624 | ||
625 | spin_lock(&vmap_area_lock); | |
626 | va = __find_vmap_area(addr); | |
627 | spin_unlock(&vmap_area_lock); | |
628 | ||
629 | return va; | |
630 | } | |
631 | ||
632 | static void free_unmap_vmap_area_addr(unsigned long addr) | |
633 | { | |
634 | struct vmap_area *va; | |
635 | ||
636 | va = find_vmap_area(addr); | |
637 | BUG_ON(!va); | |
638 | free_unmap_vmap_area(va); | |
639 | } | |
640 | ||
641 | ||
642 | /*** Per cpu kva allocator ***/ | |
643 | ||
644 | /* | |
645 | * vmap space is limited especially on 32 bit architectures. Ensure there is | |
646 | * room for at least 16 percpu vmap blocks per CPU. | |
647 | */ | |
648 | /* | |
649 | * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able | |
650 | * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess | |
651 | * instead (we just need a rough idea) | |
652 | */ | |
653 | #if BITS_PER_LONG == 32 | |
654 | #define VMALLOC_SPACE (128UL*1024*1024) | |
655 | #else | |
656 | #define VMALLOC_SPACE (128UL*1024*1024*1024) | |
657 | #endif | |
658 | ||
659 | #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) | |
660 | #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ | |
661 | #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ | |
662 | #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) | |
663 | #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ | |
664 | #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ | |
665 | #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ | |
666 | VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ | |
667 | VMALLOC_PAGES / NR_CPUS / 16)) | |
668 | ||
669 | #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) | |
670 | ||
9b463334 JF |
671 | static bool vmap_initialized __read_mostly = false; |
672 | ||
db64fe02 NP |
673 | struct vmap_block_queue { |
674 | spinlock_t lock; | |
675 | struct list_head free; | |
db64fe02 NP |
676 | }; |
677 | ||
678 | struct vmap_block { | |
679 | spinlock_t lock; | |
680 | struct vmap_area *va; | |
681 | struct vmap_block_queue *vbq; | |
682 | unsigned long free, dirty; | |
683 | DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS); | |
684 | DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS); | |
de560423 NP |
685 | struct list_head free_list; |
686 | struct rcu_head rcu_head; | |
02b709df | 687 | struct list_head purge; |
db64fe02 NP |
688 | }; |
689 | ||
690 | /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ | |
691 | static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); | |
692 | ||
693 | /* | |
694 | * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block | |
695 | * in the free path. Could get rid of this if we change the API to return a | |
696 | * "cookie" from alloc, to be passed to free. But no big deal yet. | |
697 | */ | |
698 | static DEFINE_SPINLOCK(vmap_block_tree_lock); | |
699 | static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); | |
700 | ||
701 | /* | |
702 | * We should probably have a fallback mechanism to allocate virtual memory | |
703 | * out of partially filled vmap blocks. However vmap block sizing should be | |
704 | * fairly reasonable according to the vmalloc size, so it shouldn't be a | |
705 | * big problem. | |
706 | */ | |
707 | ||
708 | static unsigned long addr_to_vb_idx(unsigned long addr) | |
709 | { | |
710 | addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); | |
711 | addr /= VMAP_BLOCK_SIZE; | |
712 | return addr; | |
713 | } | |
714 | ||
715 | static struct vmap_block *new_vmap_block(gfp_t gfp_mask) | |
716 | { | |
717 | struct vmap_block_queue *vbq; | |
718 | struct vmap_block *vb; | |
719 | struct vmap_area *va; | |
720 | unsigned long vb_idx; | |
721 | int node, err; | |
722 | ||
723 | node = numa_node_id(); | |
724 | ||
725 | vb = kmalloc_node(sizeof(struct vmap_block), | |
726 | gfp_mask & GFP_RECLAIM_MASK, node); | |
727 | if (unlikely(!vb)) | |
728 | return ERR_PTR(-ENOMEM); | |
729 | ||
730 | va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, | |
731 | VMALLOC_START, VMALLOC_END, | |
732 | node, gfp_mask); | |
733 | if (unlikely(IS_ERR(va))) { | |
734 | kfree(vb); | |
735 | return ERR_PTR(PTR_ERR(va)); | |
736 | } | |
737 | ||
738 | err = radix_tree_preload(gfp_mask); | |
739 | if (unlikely(err)) { | |
740 | kfree(vb); | |
741 | free_vmap_area(va); | |
742 | return ERR_PTR(err); | |
743 | } | |
744 | ||
745 | spin_lock_init(&vb->lock); | |
746 | vb->va = va; | |
747 | vb->free = VMAP_BBMAP_BITS; | |
748 | vb->dirty = 0; | |
749 | bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS); | |
750 | bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS); | |
751 | INIT_LIST_HEAD(&vb->free_list); | |
db64fe02 NP |
752 | |
753 | vb_idx = addr_to_vb_idx(va->va_start); | |
754 | spin_lock(&vmap_block_tree_lock); | |
755 | err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); | |
756 | spin_unlock(&vmap_block_tree_lock); | |
757 | BUG_ON(err); | |
758 | radix_tree_preload_end(); | |
759 | ||
760 | vbq = &get_cpu_var(vmap_block_queue); | |
761 | vb->vbq = vbq; | |
762 | spin_lock(&vbq->lock); | |
de560423 | 763 | list_add_rcu(&vb->free_list, &vbq->free); |
db64fe02 | 764 | spin_unlock(&vbq->lock); |
3f04ba85 | 765 | put_cpu_var(vmap_block_queue); |
db64fe02 NP |
766 | |
767 | return vb; | |
768 | } | |
769 | ||
770 | static void rcu_free_vb(struct rcu_head *head) | |
771 | { | |
772 | struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head); | |
773 | ||
774 | kfree(vb); | |
775 | } | |
776 | ||
777 | static void free_vmap_block(struct vmap_block *vb) | |
778 | { | |
779 | struct vmap_block *tmp; | |
780 | unsigned long vb_idx; | |
781 | ||
db64fe02 NP |
782 | vb_idx = addr_to_vb_idx(vb->va->va_start); |
783 | spin_lock(&vmap_block_tree_lock); | |
784 | tmp = radix_tree_delete(&vmap_block_tree, vb_idx); | |
785 | spin_unlock(&vmap_block_tree_lock); | |
786 | BUG_ON(tmp != vb); | |
787 | ||
b29acbdc | 788 | free_unmap_vmap_area_noflush(vb->va); |
db64fe02 NP |
789 | call_rcu(&vb->rcu_head, rcu_free_vb); |
790 | } | |
791 | ||
02b709df NP |
792 | static void purge_fragmented_blocks(int cpu) |
793 | { | |
794 | LIST_HEAD(purge); | |
795 | struct vmap_block *vb; | |
796 | struct vmap_block *n_vb; | |
797 | struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); | |
798 | ||
799 | rcu_read_lock(); | |
800 | list_for_each_entry_rcu(vb, &vbq->free, free_list) { | |
801 | ||
802 | if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) | |
803 | continue; | |
804 | ||
805 | spin_lock(&vb->lock); | |
806 | if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { | |
807 | vb->free = 0; /* prevent further allocs after releasing lock */ | |
808 | vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ | |
809 | bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS); | |
810 | bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS); | |
811 | spin_lock(&vbq->lock); | |
812 | list_del_rcu(&vb->free_list); | |
813 | spin_unlock(&vbq->lock); | |
814 | spin_unlock(&vb->lock); | |
815 | list_add_tail(&vb->purge, &purge); | |
816 | } else | |
817 | spin_unlock(&vb->lock); | |
818 | } | |
819 | rcu_read_unlock(); | |
820 | ||
821 | list_for_each_entry_safe(vb, n_vb, &purge, purge) { | |
822 | list_del(&vb->purge); | |
823 | free_vmap_block(vb); | |
824 | } | |
825 | } | |
826 | ||
827 | static void purge_fragmented_blocks_thiscpu(void) | |
828 | { | |
829 | purge_fragmented_blocks(smp_processor_id()); | |
830 | } | |
831 | ||
832 | static void purge_fragmented_blocks_allcpus(void) | |
833 | { | |
834 | int cpu; | |
835 | ||
836 | for_each_possible_cpu(cpu) | |
837 | purge_fragmented_blocks(cpu); | |
838 | } | |
839 | ||
db64fe02 NP |
840 | static void *vb_alloc(unsigned long size, gfp_t gfp_mask) |
841 | { | |
842 | struct vmap_block_queue *vbq; | |
843 | struct vmap_block *vb; | |
844 | unsigned long addr = 0; | |
845 | unsigned int order; | |
02b709df | 846 | int purge = 0; |
db64fe02 NP |
847 | |
848 | BUG_ON(size & ~PAGE_MASK); | |
849 | BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); | |
850 | order = get_order(size); | |
851 | ||
852 | again: | |
853 | rcu_read_lock(); | |
854 | vbq = &get_cpu_var(vmap_block_queue); | |
855 | list_for_each_entry_rcu(vb, &vbq->free, free_list) { | |
856 | int i; | |
857 | ||
858 | spin_lock(&vb->lock); | |
02b709df NP |
859 | if (vb->free < 1UL << order) |
860 | goto next; | |
861 | ||
db64fe02 NP |
862 | i = bitmap_find_free_region(vb->alloc_map, |
863 | VMAP_BBMAP_BITS, order); | |
864 | ||
02b709df NP |
865 | if (i < 0) { |
866 | if (vb->free + vb->dirty == VMAP_BBMAP_BITS) { | |
867 | /* fragmented and no outstanding allocations */ | |
868 | BUG_ON(vb->dirty != VMAP_BBMAP_BITS); | |
869 | purge = 1; | |
db64fe02 | 870 | } |
02b709df | 871 | goto next; |
db64fe02 | 872 | } |
02b709df NP |
873 | addr = vb->va->va_start + (i << PAGE_SHIFT); |
874 | BUG_ON(addr_to_vb_idx(addr) != | |
875 | addr_to_vb_idx(vb->va->va_start)); | |
876 | vb->free -= 1UL << order; | |
877 | if (vb->free == 0) { | |
878 | spin_lock(&vbq->lock); | |
879 | list_del_rcu(&vb->free_list); | |
880 | spin_unlock(&vbq->lock); | |
881 | } | |
882 | spin_unlock(&vb->lock); | |
883 | break; | |
884 | next: | |
db64fe02 NP |
885 | spin_unlock(&vb->lock); |
886 | } | |
02b709df NP |
887 | |
888 | if (purge) | |
889 | purge_fragmented_blocks_thiscpu(); | |
890 | ||
3f04ba85 | 891 | put_cpu_var(vmap_block_queue); |
db64fe02 NP |
892 | rcu_read_unlock(); |
893 | ||
894 | if (!addr) { | |
895 | vb = new_vmap_block(gfp_mask); | |
896 | if (IS_ERR(vb)) | |
897 | return vb; | |
898 | goto again; | |
899 | } | |
900 | ||
901 | return (void *)addr; | |
902 | } | |
903 | ||
904 | static void vb_free(const void *addr, unsigned long size) | |
905 | { | |
906 | unsigned long offset; | |
907 | unsigned long vb_idx; | |
908 | unsigned int order; | |
909 | struct vmap_block *vb; | |
910 | ||
911 | BUG_ON(size & ~PAGE_MASK); | |
912 | BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); | |
b29acbdc NP |
913 | |
914 | flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); | |
915 | ||
db64fe02 NP |
916 | order = get_order(size); |
917 | ||
918 | offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); | |
919 | ||
920 | vb_idx = addr_to_vb_idx((unsigned long)addr); | |
921 | rcu_read_lock(); | |
922 | vb = radix_tree_lookup(&vmap_block_tree, vb_idx); | |
923 | rcu_read_unlock(); | |
924 | BUG_ON(!vb); | |
925 | ||
926 | spin_lock(&vb->lock); | |
de560423 | 927 | BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order)); |
d086817d | 928 | |
db64fe02 NP |
929 | vb->dirty += 1UL << order; |
930 | if (vb->dirty == VMAP_BBMAP_BITS) { | |
de560423 | 931 | BUG_ON(vb->free); |
db64fe02 NP |
932 | spin_unlock(&vb->lock); |
933 | free_vmap_block(vb); | |
934 | } else | |
935 | spin_unlock(&vb->lock); | |
936 | } | |
937 | ||
938 | /** | |
939 | * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer | |
940 | * | |
941 | * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily | |
942 | * to amortize TLB flushing overheads. What this means is that any page you | |
943 | * have now, may, in a former life, have been mapped into kernel virtual | |
944 | * address by the vmap layer and so there might be some CPUs with TLB entries | |
945 | * still referencing that page (additional to the regular 1:1 kernel mapping). | |
946 | * | |
947 | * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can | |
948 | * be sure that none of the pages we have control over will have any aliases | |
949 | * from the vmap layer. | |
950 | */ | |
951 | void vm_unmap_aliases(void) | |
952 | { | |
953 | unsigned long start = ULONG_MAX, end = 0; | |
954 | int cpu; | |
955 | int flush = 0; | |
956 | ||
9b463334 JF |
957 | if (unlikely(!vmap_initialized)) |
958 | return; | |
959 | ||
db64fe02 NP |
960 | for_each_possible_cpu(cpu) { |
961 | struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); | |
962 | struct vmap_block *vb; | |
963 | ||
964 | rcu_read_lock(); | |
965 | list_for_each_entry_rcu(vb, &vbq->free, free_list) { | |
966 | int i; | |
967 | ||
968 | spin_lock(&vb->lock); | |
969 | i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS); | |
970 | while (i < VMAP_BBMAP_BITS) { | |
971 | unsigned long s, e; | |
972 | int j; | |
973 | j = find_next_zero_bit(vb->dirty_map, | |
974 | VMAP_BBMAP_BITS, i); | |
975 | ||
976 | s = vb->va->va_start + (i << PAGE_SHIFT); | |
977 | e = vb->va->va_start + (j << PAGE_SHIFT); | |
978 | vunmap_page_range(s, e); | |
979 | flush = 1; | |
980 | ||
981 | if (s < start) | |
982 | start = s; | |
983 | if (e > end) | |
984 | end = e; | |
985 | ||
986 | i = j; | |
987 | i = find_next_bit(vb->dirty_map, | |
988 | VMAP_BBMAP_BITS, i); | |
989 | } | |
990 | spin_unlock(&vb->lock); | |
991 | } | |
992 | rcu_read_unlock(); | |
993 | } | |
994 | ||
995 | __purge_vmap_area_lazy(&start, &end, 1, flush); | |
996 | } | |
997 | EXPORT_SYMBOL_GPL(vm_unmap_aliases); | |
998 | ||
999 | /** | |
1000 | * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram | |
1001 | * @mem: the pointer returned by vm_map_ram | |
1002 | * @count: the count passed to that vm_map_ram call (cannot unmap partial) | |
1003 | */ | |
1004 | void vm_unmap_ram(const void *mem, unsigned int count) | |
1005 | { | |
1006 | unsigned long size = count << PAGE_SHIFT; | |
1007 | unsigned long addr = (unsigned long)mem; | |
1008 | ||
1009 | BUG_ON(!addr); | |
1010 | BUG_ON(addr < VMALLOC_START); | |
1011 | BUG_ON(addr > VMALLOC_END); | |
1012 | BUG_ON(addr & (PAGE_SIZE-1)); | |
1013 | ||
1014 | debug_check_no_locks_freed(mem, size); | |
cd52858c | 1015 | vmap_debug_free_range(addr, addr+size); |
db64fe02 NP |
1016 | |
1017 | if (likely(count <= VMAP_MAX_ALLOC)) | |
1018 | vb_free(mem, size); | |
1019 | else | |
1020 | free_unmap_vmap_area_addr(addr); | |
1021 | } | |
1022 | EXPORT_SYMBOL(vm_unmap_ram); | |
1023 | ||
1024 | /** | |
1025 | * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) | |
1026 | * @pages: an array of pointers to the pages to be mapped | |
1027 | * @count: number of pages | |
1028 | * @node: prefer to allocate data structures on this node | |
1029 | * @prot: memory protection to use. PAGE_KERNEL for regular RAM | |
e99c97ad RD |
1030 | * |
1031 | * Returns: a pointer to the address that has been mapped, or %NULL on failure | |
db64fe02 NP |
1032 | */ |
1033 | void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) | |
1034 | { | |
1035 | unsigned long size = count << PAGE_SHIFT; | |
1036 | unsigned long addr; | |
1037 | void *mem; | |
1038 | ||
1039 | if (likely(count <= VMAP_MAX_ALLOC)) { | |
1040 | mem = vb_alloc(size, GFP_KERNEL); | |
1041 | if (IS_ERR(mem)) | |
1042 | return NULL; | |
1043 | addr = (unsigned long)mem; | |
1044 | } else { | |
1045 | struct vmap_area *va; | |
1046 | va = alloc_vmap_area(size, PAGE_SIZE, | |
1047 | VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); | |
1048 | if (IS_ERR(va)) | |
1049 | return NULL; | |
1050 | ||
1051 | addr = va->va_start; | |
1052 | mem = (void *)addr; | |
1053 | } | |
1054 | if (vmap_page_range(addr, addr + size, prot, pages) < 0) { | |
1055 | vm_unmap_ram(mem, count); | |
1056 | return NULL; | |
1057 | } | |
1058 | return mem; | |
1059 | } | |
1060 | EXPORT_SYMBOL(vm_map_ram); | |
1061 | ||
f0aa6617 TH |
1062 | /** |
1063 | * vm_area_register_early - register vmap area early during boot | |
1064 | * @vm: vm_struct to register | |
c0c0a293 | 1065 | * @align: requested alignment |
f0aa6617 TH |
1066 | * |
1067 | * This function is used to register kernel vm area before | |
1068 | * vmalloc_init() is called. @vm->size and @vm->flags should contain | |
1069 | * proper values on entry and other fields should be zero. On return, | |
1070 | * vm->addr contains the allocated address. | |
1071 | * | |
1072 | * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. | |
1073 | */ | |
c0c0a293 | 1074 | void __init vm_area_register_early(struct vm_struct *vm, size_t align) |
f0aa6617 TH |
1075 | { |
1076 | static size_t vm_init_off __initdata; | |
c0c0a293 TH |
1077 | unsigned long addr; |
1078 | ||
1079 | addr = ALIGN(VMALLOC_START + vm_init_off, align); | |
1080 | vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; | |
f0aa6617 | 1081 | |
c0c0a293 | 1082 | vm->addr = (void *)addr; |
f0aa6617 TH |
1083 | |
1084 | vm->next = vmlist; | |
1085 | vmlist = vm; | |
1086 | } | |
1087 | ||
db64fe02 NP |
1088 | void __init vmalloc_init(void) |
1089 | { | |
822c18f2 IK |
1090 | struct vmap_area *va; |
1091 | struct vm_struct *tmp; | |
db64fe02 NP |
1092 | int i; |
1093 | ||
1094 | for_each_possible_cpu(i) { | |
1095 | struct vmap_block_queue *vbq; | |
1096 | ||
1097 | vbq = &per_cpu(vmap_block_queue, i); | |
1098 | spin_lock_init(&vbq->lock); | |
1099 | INIT_LIST_HEAD(&vbq->free); | |
db64fe02 | 1100 | } |
9b463334 | 1101 | |
822c18f2 IK |
1102 | /* Import existing vmlist entries. */ |
1103 | for (tmp = vmlist; tmp; tmp = tmp->next) { | |
43ebdac4 | 1104 | va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT); |
822c18f2 IK |
1105 | va->flags = tmp->flags | VM_VM_AREA; |
1106 | va->va_start = (unsigned long)tmp->addr; | |
1107 | va->va_end = va->va_start + tmp->size; | |
1108 | __insert_vmap_area(va); | |
1109 | } | |
ca23e405 TH |
1110 | |
1111 | vmap_area_pcpu_hole = VMALLOC_END; | |
1112 | ||
9b463334 | 1113 | vmap_initialized = true; |
db64fe02 NP |
1114 | } |
1115 | ||
8fc48985 TH |
1116 | /** |
1117 | * map_kernel_range_noflush - map kernel VM area with the specified pages | |
1118 | * @addr: start of the VM area to map | |
1119 | * @size: size of the VM area to map | |
1120 | * @prot: page protection flags to use | |
1121 | * @pages: pages to map | |
1122 | * | |
1123 | * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size | |
1124 | * specify should have been allocated using get_vm_area() and its | |
1125 | * friends. | |
1126 | * | |
1127 | * NOTE: | |
1128 | * This function does NOT do any cache flushing. The caller is | |
1129 | * responsible for calling flush_cache_vmap() on to-be-mapped areas | |
1130 | * before calling this function. | |
1131 | * | |
1132 | * RETURNS: | |
1133 | * The number of pages mapped on success, -errno on failure. | |
1134 | */ | |
1135 | int map_kernel_range_noflush(unsigned long addr, unsigned long size, | |
1136 | pgprot_t prot, struct page **pages) | |
1137 | { | |
1138 | return vmap_page_range_noflush(addr, addr + size, prot, pages); | |
1139 | } | |
1140 | ||
1141 | /** | |
1142 | * unmap_kernel_range_noflush - unmap kernel VM area | |
1143 | * @addr: start of the VM area to unmap | |
1144 | * @size: size of the VM area to unmap | |
1145 | * | |
1146 | * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size | |
1147 | * specify should have been allocated using get_vm_area() and its | |
1148 | * friends. | |
1149 | * | |
1150 | * NOTE: | |
1151 | * This function does NOT do any cache flushing. The caller is | |
1152 | * responsible for calling flush_cache_vunmap() on to-be-mapped areas | |
1153 | * before calling this function and flush_tlb_kernel_range() after. | |
1154 | */ | |
1155 | void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) | |
1156 | { | |
1157 | vunmap_page_range(addr, addr + size); | |
1158 | } | |
1159 | ||
1160 | /** | |
1161 | * unmap_kernel_range - unmap kernel VM area and flush cache and TLB | |
1162 | * @addr: start of the VM area to unmap | |
1163 | * @size: size of the VM area to unmap | |
1164 | * | |
1165 | * Similar to unmap_kernel_range_noflush() but flushes vcache before | |
1166 | * the unmapping and tlb after. | |
1167 | */ | |
db64fe02 NP |
1168 | void unmap_kernel_range(unsigned long addr, unsigned long size) |
1169 | { | |
1170 | unsigned long end = addr + size; | |
f6fcba70 TH |
1171 | |
1172 | flush_cache_vunmap(addr, end); | |
db64fe02 NP |
1173 | vunmap_page_range(addr, end); |
1174 | flush_tlb_kernel_range(addr, end); | |
1175 | } | |
1176 | ||
1177 | int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) | |
1178 | { | |
1179 | unsigned long addr = (unsigned long)area->addr; | |
1180 | unsigned long end = addr + area->size - PAGE_SIZE; | |
1181 | int err; | |
1182 | ||
1183 | err = vmap_page_range(addr, end, prot, *pages); | |
1184 | if (err > 0) { | |
1185 | *pages += err; | |
1186 | err = 0; | |
1187 | } | |
1188 | ||
1189 | return err; | |
1190 | } | |
1191 | EXPORT_SYMBOL_GPL(map_vm_area); | |
1192 | ||
1193 | /*** Old vmalloc interfaces ***/ | |
1194 | DEFINE_RWLOCK(vmlist_lock); | |
1195 | struct vm_struct *vmlist; | |
1196 | ||
cf88c790 TH |
1197 | static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, |
1198 | unsigned long flags, void *caller) | |
1199 | { | |
1200 | struct vm_struct *tmp, **p; | |
1201 | ||
1202 | vm->flags = flags; | |
1203 | vm->addr = (void *)va->va_start; | |
1204 | vm->size = va->va_end - va->va_start; | |
1205 | vm->caller = caller; | |
1206 | va->private = vm; | |
1207 | va->flags |= VM_VM_AREA; | |
1208 | ||
1209 | write_lock(&vmlist_lock); | |
1210 | for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { | |
1211 | if (tmp->addr >= vm->addr) | |
1212 | break; | |
1213 | } | |
1214 | vm->next = *p; | |
1215 | *p = vm; | |
1216 | write_unlock(&vmlist_lock); | |
1217 | } | |
1218 | ||
db64fe02 | 1219 | static struct vm_struct *__get_vm_area_node(unsigned long size, |
2dca6999 DM |
1220 | unsigned long align, unsigned long flags, unsigned long start, |
1221 | unsigned long end, int node, gfp_t gfp_mask, void *caller) | |
db64fe02 NP |
1222 | { |
1223 | static struct vmap_area *va; | |
1224 | struct vm_struct *area; | |
1da177e4 | 1225 | |
52fd24ca | 1226 | BUG_ON(in_interrupt()); |
1da177e4 LT |
1227 | if (flags & VM_IOREMAP) { |
1228 | int bit = fls(size); | |
1229 | ||
1230 | if (bit > IOREMAP_MAX_ORDER) | |
1231 | bit = IOREMAP_MAX_ORDER; | |
1232 | else if (bit < PAGE_SHIFT) | |
1233 | bit = PAGE_SHIFT; | |
1234 | ||
1235 | align = 1ul << bit; | |
1236 | } | |
db64fe02 | 1237 | |
1da177e4 | 1238 | size = PAGE_ALIGN(size); |
31be8309 OH |
1239 | if (unlikely(!size)) |
1240 | return NULL; | |
1da177e4 | 1241 | |
cf88c790 | 1242 | area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); |
1da177e4 LT |
1243 | if (unlikely(!area)) |
1244 | return NULL; | |
1245 | ||
1da177e4 LT |
1246 | /* |
1247 | * We always allocate a guard page. | |
1248 | */ | |
1249 | size += PAGE_SIZE; | |
1250 | ||
db64fe02 NP |
1251 | va = alloc_vmap_area(size, align, start, end, node, gfp_mask); |
1252 | if (IS_ERR(va)) { | |
1253 | kfree(area); | |
1254 | return NULL; | |
1da177e4 | 1255 | } |
1da177e4 | 1256 | |
cf88c790 | 1257 | insert_vmalloc_vm(area, va, flags, caller); |
1da177e4 | 1258 | return area; |
1da177e4 LT |
1259 | } |
1260 | ||
930fc45a CL |
1261 | struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, |
1262 | unsigned long start, unsigned long end) | |
1263 | { | |
2dca6999 | 1264 | return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL, |
23016969 | 1265 | __builtin_return_address(0)); |
930fc45a | 1266 | } |
5992b6da | 1267 | EXPORT_SYMBOL_GPL(__get_vm_area); |
930fc45a | 1268 | |
c2968612 BH |
1269 | struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, |
1270 | unsigned long start, unsigned long end, | |
1271 | void *caller) | |
1272 | { | |
2dca6999 | 1273 | return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL, |
c2968612 BH |
1274 | caller); |
1275 | } | |
1276 | ||
1da177e4 | 1277 | /** |
183ff22b | 1278 | * get_vm_area - reserve a contiguous kernel virtual area |
1da177e4 LT |
1279 | * @size: size of the area |
1280 | * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC | |
1281 | * | |
1282 | * Search an area of @size in the kernel virtual mapping area, | |
1283 | * and reserved it for out purposes. Returns the area descriptor | |
1284 | * on success or %NULL on failure. | |
1285 | */ | |
1286 | struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) | |
1287 | { | |
2dca6999 | 1288 | return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, |
23016969 CL |
1289 | -1, GFP_KERNEL, __builtin_return_address(0)); |
1290 | } | |
1291 | ||
1292 | struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, | |
1293 | void *caller) | |
1294 | { | |
2dca6999 | 1295 | return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, |
23016969 | 1296 | -1, GFP_KERNEL, caller); |
1da177e4 LT |
1297 | } |
1298 | ||
52fd24ca GP |
1299 | struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags, |
1300 | int node, gfp_t gfp_mask) | |
930fc45a | 1301 | { |
2dca6999 DM |
1302 | return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, |
1303 | node, gfp_mask, __builtin_return_address(0)); | |
930fc45a CL |
1304 | } |
1305 | ||
db64fe02 | 1306 | static struct vm_struct *find_vm_area(const void *addr) |
83342314 | 1307 | { |
db64fe02 | 1308 | struct vmap_area *va; |
83342314 | 1309 | |
db64fe02 NP |
1310 | va = find_vmap_area((unsigned long)addr); |
1311 | if (va && va->flags & VM_VM_AREA) | |
1312 | return va->private; | |
1da177e4 | 1313 | |
1da177e4 | 1314 | return NULL; |
1da177e4 LT |
1315 | } |
1316 | ||
7856dfeb | 1317 | /** |
183ff22b | 1318 | * remove_vm_area - find and remove a continuous kernel virtual area |
7856dfeb AK |
1319 | * @addr: base address |
1320 | * | |
1321 | * Search for the kernel VM area starting at @addr, and remove it. | |
1322 | * This function returns the found VM area, but using it is NOT safe | |
1323 | * on SMP machines, except for its size or flags. | |
1324 | */ | |
b3bdda02 | 1325 | struct vm_struct *remove_vm_area(const void *addr) |
7856dfeb | 1326 | { |
db64fe02 NP |
1327 | struct vmap_area *va; |
1328 | ||
1329 | va = find_vmap_area((unsigned long)addr); | |
1330 | if (va && va->flags & VM_VM_AREA) { | |
1331 | struct vm_struct *vm = va->private; | |
1332 | struct vm_struct *tmp, **p; | |
dd32c279 KH |
1333 | /* |
1334 | * remove from list and disallow access to this vm_struct | |
1335 | * before unmap. (address range confliction is maintained by | |
1336 | * vmap.) | |
1337 | */ | |
db64fe02 NP |
1338 | write_lock(&vmlist_lock); |
1339 | for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next) | |
1340 | ; | |
1341 | *p = tmp->next; | |
1342 | write_unlock(&vmlist_lock); | |
1343 | ||
dd32c279 KH |
1344 | vmap_debug_free_range(va->va_start, va->va_end); |
1345 | free_unmap_vmap_area(va); | |
1346 | vm->size -= PAGE_SIZE; | |
1347 | ||
db64fe02 NP |
1348 | return vm; |
1349 | } | |
1350 | return NULL; | |
7856dfeb AK |
1351 | } |
1352 | ||
b3bdda02 | 1353 | static void __vunmap(const void *addr, int deallocate_pages) |
1da177e4 LT |
1354 | { |
1355 | struct vm_struct *area; | |
1356 | ||
1357 | if (!addr) | |
1358 | return; | |
1359 | ||
1360 | if ((PAGE_SIZE-1) & (unsigned long)addr) { | |
4c8573e2 | 1361 | WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr); |
1da177e4 LT |
1362 | return; |
1363 | } | |
1364 | ||
1365 | area = remove_vm_area(addr); | |
1366 | if (unlikely(!area)) { | |
4c8573e2 | 1367 | WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", |
1da177e4 | 1368 | addr); |
1da177e4 LT |
1369 | return; |
1370 | } | |
1371 | ||
9a11b49a | 1372 | debug_check_no_locks_freed(addr, area->size); |
3ac7fe5a | 1373 | debug_check_no_obj_freed(addr, area->size); |
9a11b49a | 1374 | |
1da177e4 LT |
1375 | if (deallocate_pages) { |
1376 | int i; | |
1377 | ||
1378 | for (i = 0; i < area->nr_pages; i++) { | |
bf53d6f8 CL |
1379 | struct page *page = area->pages[i]; |
1380 | ||
1381 | BUG_ON(!page); | |
1382 | __free_page(page); | |
1da177e4 LT |
1383 | } |
1384 | ||
8757d5fa | 1385 | if (area->flags & VM_VPAGES) |
1da177e4 LT |
1386 | vfree(area->pages); |
1387 | else | |
1388 | kfree(area->pages); | |
1389 | } | |
1390 | ||
1391 | kfree(area); | |
1392 | return; | |
1393 | } | |
1394 | ||
1395 | /** | |
1396 | * vfree - release memory allocated by vmalloc() | |
1da177e4 LT |
1397 | * @addr: memory base address |
1398 | * | |
183ff22b | 1399 | * Free the virtually continuous memory area starting at @addr, as |
80e93eff PE |
1400 | * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is |
1401 | * NULL, no operation is performed. | |
1da177e4 | 1402 | * |
80e93eff | 1403 | * Must not be called in interrupt context. |
1da177e4 | 1404 | */ |
b3bdda02 | 1405 | void vfree(const void *addr) |
1da177e4 LT |
1406 | { |
1407 | BUG_ON(in_interrupt()); | |
89219d37 CM |
1408 | |
1409 | kmemleak_free(addr); | |
1410 | ||
1da177e4 LT |
1411 | __vunmap(addr, 1); |
1412 | } | |
1da177e4 LT |
1413 | EXPORT_SYMBOL(vfree); |
1414 | ||
1415 | /** | |
1416 | * vunmap - release virtual mapping obtained by vmap() | |
1da177e4 LT |
1417 | * @addr: memory base address |
1418 | * | |
1419 | * Free the virtually contiguous memory area starting at @addr, | |
1420 | * which was created from the page array passed to vmap(). | |
1421 | * | |
80e93eff | 1422 | * Must not be called in interrupt context. |
1da177e4 | 1423 | */ |
b3bdda02 | 1424 | void vunmap(const void *addr) |
1da177e4 LT |
1425 | { |
1426 | BUG_ON(in_interrupt()); | |
34754b69 | 1427 | might_sleep(); |
1da177e4 LT |
1428 | __vunmap(addr, 0); |
1429 | } | |
1da177e4 LT |
1430 | EXPORT_SYMBOL(vunmap); |
1431 | ||
1432 | /** | |
1433 | * vmap - map an array of pages into virtually contiguous space | |
1da177e4 LT |
1434 | * @pages: array of page pointers |
1435 | * @count: number of pages to map | |
1436 | * @flags: vm_area->flags | |
1437 | * @prot: page protection for the mapping | |
1438 | * | |
1439 | * Maps @count pages from @pages into contiguous kernel virtual | |
1440 | * space. | |
1441 | */ | |
1442 | void *vmap(struct page **pages, unsigned int count, | |
1443 | unsigned long flags, pgprot_t prot) | |
1444 | { | |
1445 | struct vm_struct *area; | |
1446 | ||
34754b69 PZ |
1447 | might_sleep(); |
1448 | ||
4481374c | 1449 | if (count > totalram_pages) |
1da177e4 LT |
1450 | return NULL; |
1451 | ||
23016969 CL |
1452 | area = get_vm_area_caller((count << PAGE_SHIFT), flags, |
1453 | __builtin_return_address(0)); | |
1da177e4 LT |
1454 | if (!area) |
1455 | return NULL; | |
23016969 | 1456 | |
1da177e4 LT |
1457 | if (map_vm_area(area, prot, &pages)) { |
1458 | vunmap(area->addr); | |
1459 | return NULL; | |
1460 | } | |
1461 | ||
1462 | return area->addr; | |
1463 | } | |
1da177e4 LT |
1464 | EXPORT_SYMBOL(vmap); |
1465 | ||
2dca6999 DM |
1466 | static void *__vmalloc_node(unsigned long size, unsigned long align, |
1467 | gfp_t gfp_mask, pgprot_t prot, | |
db64fe02 | 1468 | int node, void *caller); |
e31d9eb5 | 1469 | static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, |
23016969 | 1470 | pgprot_t prot, int node, void *caller) |
1da177e4 LT |
1471 | { |
1472 | struct page **pages; | |
1473 | unsigned int nr_pages, array_size, i; | |
976d6dfb | 1474 | gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; |
1da177e4 LT |
1475 | |
1476 | nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT; | |
1477 | array_size = (nr_pages * sizeof(struct page *)); | |
1478 | ||
1479 | area->nr_pages = nr_pages; | |
1480 | /* Please note that the recursion is strictly bounded. */ | |
8757d5fa | 1481 | if (array_size > PAGE_SIZE) { |
976d6dfb | 1482 | pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM, |
23016969 | 1483 | PAGE_KERNEL, node, caller); |
8757d5fa | 1484 | area->flags |= VM_VPAGES; |
286e1ea3 | 1485 | } else { |
976d6dfb | 1486 | pages = kmalloc_node(array_size, nested_gfp, node); |
286e1ea3 | 1487 | } |
1da177e4 | 1488 | area->pages = pages; |
23016969 | 1489 | area->caller = caller; |
1da177e4 LT |
1490 | if (!area->pages) { |
1491 | remove_vm_area(area->addr); | |
1492 | kfree(area); | |
1493 | return NULL; | |
1494 | } | |
1da177e4 LT |
1495 | |
1496 | for (i = 0; i < area->nr_pages; i++) { | |
bf53d6f8 CL |
1497 | struct page *page; |
1498 | ||
930fc45a | 1499 | if (node < 0) |
bf53d6f8 | 1500 | page = alloc_page(gfp_mask); |
930fc45a | 1501 | else |
bf53d6f8 CL |
1502 | page = alloc_pages_node(node, gfp_mask, 0); |
1503 | ||
1504 | if (unlikely(!page)) { | |
1da177e4 LT |
1505 | /* Successfully allocated i pages, free them in __vunmap() */ |
1506 | area->nr_pages = i; | |
1507 | goto fail; | |
1508 | } | |
bf53d6f8 | 1509 | area->pages[i] = page; |
1da177e4 LT |
1510 | } |
1511 | ||
1512 | if (map_vm_area(area, prot, &pages)) | |
1513 | goto fail; | |
1514 | return area->addr; | |
1515 | ||
1516 | fail: | |
1517 | vfree(area->addr); | |
1518 | return NULL; | |
1519 | } | |
1520 | ||
930fc45a CL |
1521 | void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot) |
1522 | { | |
89219d37 CM |
1523 | void *addr = __vmalloc_area_node(area, gfp_mask, prot, -1, |
1524 | __builtin_return_address(0)); | |
1525 | ||
1526 | /* | |
1527 | * A ref_count = 3 is needed because the vm_struct and vmap_area | |
1528 | * structures allocated in the __get_vm_area_node() function contain | |
1529 | * references to the virtual address of the vmalloc'ed block. | |
1530 | */ | |
1531 | kmemleak_alloc(addr, area->size - PAGE_SIZE, 3, gfp_mask); | |
1532 | ||
1533 | return addr; | |
930fc45a CL |
1534 | } |
1535 | ||
1da177e4 | 1536 | /** |
930fc45a | 1537 | * __vmalloc_node - allocate virtually contiguous memory |
1da177e4 | 1538 | * @size: allocation size |
2dca6999 | 1539 | * @align: desired alignment |
1da177e4 LT |
1540 | * @gfp_mask: flags for the page level allocator |
1541 | * @prot: protection mask for the allocated pages | |
d44e0780 | 1542 | * @node: node to use for allocation or -1 |
c85d194b | 1543 | * @caller: caller's return address |
1da177e4 LT |
1544 | * |
1545 | * Allocate enough pages to cover @size from the page level | |
1546 | * allocator with @gfp_mask flags. Map them into contiguous | |
1547 | * kernel virtual space, using a pagetable protection of @prot. | |
1548 | */ | |
2dca6999 DM |
1549 | static void *__vmalloc_node(unsigned long size, unsigned long align, |
1550 | gfp_t gfp_mask, pgprot_t prot, | |
1551 | int node, void *caller) | |
1da177e4 LT |
1552 | { |
1553 | struct vm_struct *area; | |
89219d37 CM |
1554 | void *addr; |
1555 | unsigned long real_size = size; | |
1da177e4 LT |
1556 | |
1557 | size = PAGE_ALIGN(size); | |
4481374c | 1558 | if (!size || (size >> PAGE_SHIFT) > totalram_pages) |
1da177e4 LT |
1559 | return NULL; |
1560 | ||
2dca6999 DM |
1561 | area = __get_vm_area_node(size, align, VM_ALLOC, VMALLOC_START, |
1562 | VMALLOC_END, node, gfp_mask, caller); | |
23016969 | 1563 | |
1da177e4 LT |
1564 | if (!area) |
1565 | return NULL; | |
1566 | ||
89219d37 CM |
1567 | addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller); |
1568 | ||
1569 | /* | |
1570 | * A ref_count = 3 is needed because the vm_struct and vmap_area | |
1571 | * structures allocated in the __get_vm_area_node() function contain | |
1572 | * references to the virtual address of the vmalloc'ed block. | |
1573 | */ | |
1574 | kmemleak_alloc(addr, real_size, 3, gfp_mask); | |
1575 | ||
1576 | return addr; | |
1da177e4 LT |
1577 | } |
1578 | ||
930fc45a CL |
1579 | void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) |
1580 | { | |
2dca6999 | 1581 | return __vmalloc_node(size, 1, gfp_mask, prot, -1, |
23016969 | 1582 | __builtin_return_address(0)); |
930fc45a | 1583 | } |
1da177e4 LT |
1584 | EXPORT_SYMBOL(__vmalloc); |
1585 | ||
1586 | /** | |
1587 | * vmalloc - allocate virtually contiguous memory | |
1da177e4 | 1588 | * @size: allocation size |
1da177e4 LT |
1589 | * Allocate enough pages to cover @size from the page level |
1590 | * allocator and map them into contiguous kernel virtual space. | |
1591 | * | |
c1c8897f | 1592 | * For tight control over page level allocator and protection flags |
1da177e4 LT |
1593 | * use __vmalloc() instead. |
1594 | */ | |
1595 | void *vmalloc(unsigned long size) | |
1596 | { | |
2dca6999 | 1597 | return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, |
23016969 | 1598 | -1, __builtin_return_address(0)); |
1da177e4 | 1599 | } |
1da177e4 LT |
1600 | EXPORT_SYMBOL(vmalloc); |
1601 | ||
83342314 | 1602 | /** |
ead04089 REB |
1603 | * vmalloc_user - allocate zeroed virtually contiguous memory for userspace |
1604 | * @size: allocation size | |
83342314 | 1605 | * |
ead04089 REB |
1606 | * The resulting memory area is zeroed so it can be mapped to userspace |
1607 | * without leaking data. | |
83342314 NP |
1608 | */ |
1609 | void *vmalloc_user(unsigned long size) | |
1610 | { | |
1611 | struct vm_struct *area; | |
1612 | void *ret; | |
1613 | ||
2dca6999 DM |
1614 | ret = __vmalloc_node(size, SHMLBA, |
1615 | GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, | |
84877848 | 1616 | PAGE_KERNEL, -1, __builtin_return_address(0)); |
2b4ac44e | 1617 | if (ret) { |
db64fe02 | 1618 | area = find_vm_area(ret); |
2b4ac44e | 1619 | area->flags |= VM_USERMAP; |
2b4ac44e | 1620 | } |
83342314 NP |
1621 | return ret; |
1622 | } | |
1623 | EXPORT_SYMBOL(vmalloc_user); | |
1624 | ||
930fc45a CL |
1625 | /** |
1626 | * vmalloc_node - allocate memory on a specific node | |
930fc45a | 1627 | * @size: allocation size |
d44e0780 | 1628 | * @node: numa node |
930fc45a CL |
1629 | * |
1630 | * Allocate enough pages to cover @size from the page level | |
1631 | * allocator and map them into contiguous kernel virtual space. | |
1632 | * | |
c1c8897f | 1633 | * For tight control over page level allocator and protection flags |
930fc45a CL |
1634 | * use __vmalloc() instead. |
1635 | */ | |
1636 | void *vmalloc_node(unsigned long size, int node) | |
1637 | { | |
2dca6999 | 1638 | return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, |
23016969 | 1639 | node, __builtin_return_address(0)); |
930fc45a CL |
1640 | } |
1641 | EXPORT_SYMBOL(vmalloc_node); | |
1642 | ||
4dc3b16b PP |
1643 | #ifndef PAGE_KERNEL_EXEC |
1644 | # define PAGE_KERNEL_EXEC PAGE_KERNEL | |
1645 | #endif | |
1646 | ||
1da177e4 LT |
1647 | /** |
1648 | * vmalloc_exec - allocate virtually contiguous, executable memory | |
1da177e4 LT |
1649 | * @size: allocation size |
1650 | * | |
1651 | * Kernel-internal function to allocate enough pages to cover @size | |
1652 | * the page level allocator and map them into contiguous and | |
1653 | * executable kernel virtual space. | |
1654 | * | |
c1c8897f | 1655 | * For tight control over page level allocator and protection flags |
1da177e4 LT |
1656 | * use __vmalloc() instead. |
1657 | */ | |
1658 | ||
1da177e4 LT |
1659 | void *vmalloc_exec(unsigned long size) |
1660 | { | |
2dca6999 | 1661 | return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC, |
84877848 | 1662 | -1, __builtin_return_address(0)); |
1da177e4 LT |
1663 | } |
1664 | ||
0d08e0d3 | 1665 | #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) |
7ac674f5 | 1666 | #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL |
0d08e0d3 | 1667 | #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) |
7ac674f5 | 1668 | #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL |
0d08e0d3 AK |
1669 | #else |
1670 | #define GFP_VMALLOC32 GFP_KERNEL | |
1671 | #endif | |
1672 | ||
1da177e4 LT |
1673 | /** |
1674 | * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) | |
1da177e4 LT |
1675 | * @size: allocation size |
1676 | * | |
1677 | * Allocate enough 32bit PA addressable pages to cover @size from the | |
1678 | * page level allocator and map them into contiguous kernel virtual space. | |
1679 | */ | |
1680 | void *vmalloc_32(unsigned long size) | |
1681 | { | |
2dca6999 | 1682 | return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, |
84877848 | 1683 | -1, __builtin_return_address(0)); |
1da177e4 | 1684 | } |
1da177e4 LT |
1685 | EXPORT_SYMBOL(vmalloc_32); |
1686 | ||
83342314 | 1687 | /** |
ead04089 | 1688 | * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory |
83342314 | 1689 | * @size: allocation size |
ead04089 REB |
1690 | * |
1691 | * The resulting memory area is 32bit addressable and zeroed so it can be | |
1692 | * mapped to userspace without leaking data. | |
83342314 NP |
1693 | */ |
1694 | void *vmalloc_32_user(unsigned long size) | |
1695 | { | |
1696 | struct vm_struct *area; | |
1697 | void *ret; | |
1698 | ||
2dca6999 | 1699 | ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, |
84877848 | 1700 | -1, __builtin_return_address(0)); |
2b4ac44e | 1701 | if (ret) { |
db64fe02 | 1702 | area = find_vm_area(ret); |
2b4ac44e | 1703 | area->flags |= VM_USERMAP; |
2b4ac44e | 1704 | } |
83342314 NP |
1705 | return ret; |
1706 | } | |
1707 | EXPORT_SYMBOL(vmalloc_32_user); | |
1708 | ||
d0107eb0 KH |
1709 | /* |
1710 | * small helper routine , copy contents to buf from addr. | |
1711 | * If the page is not present, fill zero. | |
1712 | */ | |
1713 | ||
1714 | static int aligned_vread(char *buf, char *addr, unsigned long count) | |
1715 | { | |
1716 | struct page *p; | |
1717 | int copied = 0; | |
1718 | ||
1719 | while (count) { | |
1720 | unsigned long offset, length; | |
1721 | ||
1722 | offset = (unsigned long)addr & ~PAGE_MASK; | |
1723 | length = PAGE_SIZE - offset; | |
1724 | if (length > count) | |
1725 | length = count; | |
1726 | p = vmalloc_to_page(addr); | |
1727 | /* | |
1728 | * To do safe access to this _mapped_ area, we need | |
1729 | * lock. But adding lock here means that we need to add | |
1730 | * overhead of vmalloc()/vfree() calles for this _debug_ | |
1731 | * interface, rarely used. Instead of that, we'll use | |
1732 | * kmap() and get small overhead in this access function. | |
1733 | */ | |
1734 | if (p) { | |
1735 | /* | |
1736 | * we can expect USER0 is not used (see vread/vwrite's | |
1737 | * function description) | |
1738 | */ | |
1739 | void *map = kmap_atomic(p, KM_USER0); | |
1740 | memcpy(buf, map + offset, length); | |
1741 | kunmap_atomic(map, KM_USER0); | |
1742 | } else | |
1743 | memset(buf, 0, length); | |
1744 | ||
1745 | addr += length; | |
1746 | buf += length; | |
1747 | copied += length; | |
1748 | count -= length; | |
1749 | } | |
1750 | return copied; | |
1751 | } | |
1752 | ||
1753 | static int aligned_vwrite(char *buf, char *addr, unsigned long count) | |
1754 | { | |
1755 | struct page *p; | |
1756 | int copied = 0; | |
1757 | ||
1758 | while (count) { | |
1759 | unsigned long offset, length; | |
1760 | ||
1761 | offset = (unsigned long)addr & ~PAGE_MASK; | |
1762 | length = PAGE_SIZE - offset; | |
1763 | if (length > count) | |
1764 | length = count; | |
1765 | p = vmalloc_to_page(addr); | |
1766 | /* | |
1767 | * To do safe access to this _mapped_ area, we need | |
1768 | * lock. But adding lock here means that we need to add | |
1769 | * overhead of vmalloc()/vfree() calles for this _debug_ | |
1770 | * interface, rarely used. Instead of that, we'll use | |
1771 | * kmap() and get small overhead in this access function. | |
1772 | */ | |
1773 | if (p) { | |
1774 | /* | |
1775 | * we can expect USER0 is not used (see vread/vwrite's | |
1776 | * function description) | |
1777 | */ | |
1778 | void *map = kmap_atomic(p, KM_USER0); | |
1779 | memcpy(map + offset, buf, length); | |
1780 | kunmap_atomic(map, KM_USER0); | |
1781 | } | |
1782 | addr += length; | |
1783 | buf += length; | |
1784 | copied += length; | |
1785 | count -= length; | |
1786 | } | |
1787 | return copied; | |
1788 | } | |
1789 | ||
1790 | /** | |
1791 | * vread() - read vmalloc area in a safe way. | |
1792 | * @buf: buffer for reading data | |
1793 | * @addr: vm address. | |
1794 | * @count: number of bytes to be read. | |
1795 | * | |
1796 | * Returns # of bytes which addr and buf should be increased. | |
1797 | * (same number to @count). Returns 0 if [addr...addr+count) doesn't | |
1798 | * includes any intersect with alive vmalloc area. | |
1799 | * | |
1800 | * This function checks that addr is a valid vmalloc'ed area, and | |
1801 | * copy data from that area to a given buffer. If the given memory range | |
1802 | * of [addr...addr+count) includes some valid address, data is copied to | |
1803 | * proper area of @buf. If there are memory holes, they'll be zero-filled. | |
1804 | * IOREMAP area is treated as memory hole and no copy is done. | |
1805 | * | |
1806 | * If [addr...addr+count) doesn't includes any intersects with alive | |
1807 | * vm_struct area, returns 0. | |
1808 | * @buf should be kernel's buffer. Because this function uses KM_USER0, | |
1809 | * the caller should guarantee KM_USER0 is not used. | |
1810 | * | |
1811 | * Note: In usual ops, vread() is never necessary because the caller | |
1812 | * should know vmalloc() area is valid and can use memcpy(). | |
1813 | * This is for routines which have to access vmalloc area without | |
1814 | * any informaion, as /dev/kmem. | |
1815 | * | |
1816 | */ | |
1817 | ||
1da177e4 LT |
1818 | long vread(char *buf, char *addr, unsigned long count) |
1819 | { | |
1820 | struct vm_struct *tmp; | |
1821 | char *vaddr, *buf_start = buf; | |
d0107eb0 | 1822 | unsigned long buflen = count; |
1da177e4 LT |
1823 | unsigned long n; |
1824 | ||
1825 | /* Don't allow overflow */ | |
1826 | if ((unsigned long) addr + count < count) | |
1827 | count = -(unsigned long) addr; | |
1828 | ||
1829 | read_lock(&vmlist_lock); | |
d0107eb0 | 1830 | for (tmp = vmlist; count && tmp; tmp = tmp->next) { |
1da177e4 LT |
1831 | vaddr = (char *) tmp->addr; |
1832 | if (addr >= vaddr + tmp->size - PAGE_SIZE) | |
1833 | continue; | |
1834 | while (addr < vaddr) { | |
1835 | if (count == 0) | |
1836 | goto finished; | |
1837 | *buf = '\0'; | |
1838 | buf++; | |
1839 | addr++; | |
1840 | count--; | |
1841 | } | |
1842 | n = vaddr + tmp->size - PAGE_SIZE - addr; | |
d0107eb0 KH |
1843 | if (n > count) |
1844 | n = count; | |
1845 | if (!(tmp->flags & VM_IOREMAP)) | |
1846 | aligned_vread(buf, addr, n); | |
1847 | else /* IOREMAP area is treated as memory hole */ | |
1848 | memset(buf, 0, n); | |
1849 | buf += n; | |
1850 | addr += n; | |
1851 | count -= n; | |
1da177e4 LT |
1852 | } |
1853 | finished: | |
1854 | read_unlock(&vmlist_lock); | |
d0107eb0 KH |
1855 | |
1856 | if (buf == buf_start) | |
1857 | return 0; | |
1858 | /* zero-fill memory holes */ | |
1859 | if (buf != buf_start + buflen) | |
1860 | memset(buf, 0, buflen - (buf - buf_start)); | |
1861 | ||
1862 | return buflen; | |
1da177e4 LT |
1863 | } |
1864 | ||
d0107eb0 KH |
1865 | /** |
1866 | * vwrite() - write vmalloc area in a safe way. | |
1867 | * @buf: buffer for source data | |
1868 | * @addr: vm address. | |
1869 | * @count: number of bytes to be read. | |
1870 | * | |
1871 | * Returns # of bytes which addr and buf should be incresed. | |
1872 | * (same number to @count). | |
1873 | * If [addr...addr+count) doesn't includes any intersect with valid | |
1874 | * vmalloc area, returns 0. | |
1875 | * | |
1876 | * This function checks that addr is a valid vmalloc'ed area, and | |
1877 | * copy data from a buffer to the given addr. If specified range of | |
1878 | * [addr...addr+count) includes some valid address, data is copied from | |
1879 | * proper area of @buf. If there are memory holes, no copy to hole. | |
1880 | * IOREMAP area is treated as memory hole and no copy is done. | |
1881 | * | |
1882 | * If [addr...addr+count) doesn't includes any intersects with alive | |
1883 | * vm_struct area, returns 0. | |
1884 | * @buf should be kernel's buffer. Because this function uses KM_USER0, | |
1885 | * the caller should guarantee KM_USER0 is not used. | |
1886 | * | |
1887 | * Note: In usual ops, vwrite() is never necessary because the caller | |
1888 | * should know vmalloc() area is valid and can use memcpy(). | |
1889 | * This is for routines which have to access vmalloc area without | |
1890 | * any informaion, as /dev/kmem. | |
1891 | * | |
1892 | * The caller should guarantee KM_USER1 is not used. | |
1893 | */ | |
1894 | ||
1da177e4 LT |
1895 | long vwrite(char *buf, char *addr, unsigned long count) |
1896 | { | |
1897 | struct vm_struct *tmp; | |
d0107eb0 KH |
1898 | char *vaddr; |
1899 | unsigned long n, buflen; | |
1900 | int copied = 0; | |
1da177e4 LT |
1901 | |
1902 | /* Don't allow overflow */ | |
1903 | if ((unsigned long) addr + count < count) | |
1904 | count = -(unsigned long) addr; | |
d0107eb0 | 1905 | buflen = count; |
1da177e4 LT |
1906 | |
1907 | read_lock(&vmlist_lock); | |
d0107eb0 | 1908 | for (tmp = vmlist; count && tmp; tmp = tmp->next) { |
1da177e4 LT |
1909 | vaddr = (char *) tmp->addr; |
1910 | if (addr >= vaddr + tmp->size - PAGE_SIZE) | |
1911 | continue; | |
1912 | while (addr < vaddr) { | |
1913 | if (count == 0) | |
1914 | goto finished; | |
1915 | buf++; | |
1916 | addr++; | |
1917 | count--; | |
1918 | } | |
1919 | n = vaddr + tmp->size - PAGE_SIZE - addr; | |
d0107eb0 KH |
1920 | if (n > count) |
1921 | n = count; | |
1922 | if (!(tmp->flags & VM_IOREMAP)) { | |
1923 | aligned_vwrite(buf, addr, n); | |
1924 | copied++; | |
1925 | } | |
1926 | buf += n; | |
1927 | addr += n; | |
1928 | count -= n; | |
1da177e4 LT |
1929 | } |
1930 | finished: | |
1931 | read_unlock(&vmlist_lock); | |
d0107eb0 KH |
1932 | if (!copied) |
1933 | return 0; | |
1934 | return buflen; | |
1da177e4 | 1935 | } |
83342314 NP |
1936 | |
1937 | /** | |
1938 | * remap_vmalloc_range - map vmalloc pages to userspace | |
83342314 NP |
1939 | * @vma: vma to cover (map full range of vma) |
1940 | * @addr: vmalloc memory | |
1941 | * @pgoff: number of pages into addr before first page to map | |
7682486b RD |
1942 | * |
1943 | * Returns: 0 for success, -Exxx on failure | |
83342314 NP |
1944 | * |
1945 | * This function checks that addr is a valid vmalloc'ed area, and | |
1946 | * that it is big enough to cover the vma. Will return failure if | |
1947 | * that criteria isn't met. | |
1948 | * | |
72fd4a35 | 1949 | * Similar to remap_pfn_range() (see mm/memory.c) |
83342314 NP |
1950 | */ |
1951 | int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, | |
1952 | unsigned long pgoff) | |
1953 | { | |
1954 | struct vm_struct *area; | |
1955 | unsigned long uaddr = vma->vm_start; | |
1956 | unsigned long usize = vma->vm_end - vma->vm_start; | |
83342314 NP |
1957 | |
1958 | if ((PAGE_SIZE-1) & (unsigned long)addr) | |
1959 | return -EINVAL; | |
1960 | ||
db64fe02 | 1961 | area = find_vm_area(addr); |
83342314 | 1962 | if (!area) |
db64fe02 | 1963 | return -EINVAL; |
83342314 NP |
1964 | |
1965 | if (!(area->flags & VM_USERMAP)) | |
db64fe02 | 1966 | return -EINVAL; |
83342314 NP |
1967 | |
1968 | if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE) | |
db64fe02 | 1969 | return -EINVAL; |
83342314 NP |
1970 | |
1971 | addr += pgoff << PAGE_SHIFT; | |
1972 | do { | |
1973 | struct page *page = vmalloc_to_page(addr); | |
db64fe02 NP |
1974 | int ret; |
1975 | ||
83342314 NP |
1976 | ret = vm_insert_page(vma, uaddr, page); |
1977 | if (ret) | |
1978 | return ret; | |
1979 | ||
1980 | uaddr += PAGE_SIZE; | |
1981 | addr += PAGE_SIZE; | |
1982 | usize -= PAGE_SIZE; | |
1983 | } while (usize > 0); | |
1984 | ||
1985 | /* Prevent "things" like memory migration? VM_flags need a cleanup... */ | |
1986 | vma->vm_flags |= VM_RESERVED; | |
1987 | ||
db64fe02 | 1988 | return 0; |
83342314 NP |
1989 | } |
1990 | EXPORT_SYMBOL(remap_vmalloc_range); | |
1991 | ||
1eeb66a1 CH |
1992 | /* |
1993 | * Implement a stub for vmalloc_sync_all() if the architecture chose not to | |
1994 | * have one. | |
1995 | */ | |
1996 | void __attribute__((weak)) vmalloc_sync_all(void) | |
1997 | { | |
1998 | } | |
5f4352fb JF |
1999 | |
2000 | ||
2f569afd | 2001 | static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) |
5f4352fb JF |
2002 | { |
2003 | /* apply_to_page_range() does all the hard work. */ | |
2004 | return 0; | |
2005 | } | |
2006 | ||
2007 | /** | |
2008 | * alloc_vm_area - allocate a range of kernel address space | |
2009 | * @size: size of the area | |
7682486b RD |
2010 | * |
2011 | * Returns: NULL on failure, vm_struct on success | |
5f4352fb JF |
2012 | * |
2013 | * This function reserves a range of kernel address space, and | |
2014 | * allocates pagetables to map that range. No actual mappings | |
2015 | * are created. If the kernel address space is not shared | |
2016 | * between processes, it syncs the pagetable across all | |
2017 | * processes. | |
2018 | */ | |
2019 | struct vm_struct *alloc_vm_area(size_t size) | |
2020 | { | |
2021 | struct vm_struct *area; | |
2022 | ||
23016969 CL |
2023 | area = get_vm_area_caller(size, VM_IOREMAP, |
2024 | __builtin_return_address(0)); | |
5f4352fb JF |
2025 | if (area == NULL) |
2026 | return NULL; | |
2027 | ||
2028 | /* | |
2029 | * This ensures that page tables are constructed for this region | |
2030 | * of kernel virtual address space and mapped into init_mm. | |
2031 | */ | |
2032 | if (apply_to_page_range(&init_mm, (unsigned long)area->addr, | |
2033 | area->size, f, NULL)) { | |
2034 | free_vm_area(area); | |
2035 | return NULL; | |
2036 | } | |
2037 | ||
2038 | /* Make sure the pagetables are constructed in process kernel | |
2039 | mappings */ | |
2040 | vmalloc_sync_all(); | |
2041 | ||
2042 | return area; | |
2043 | } | |
2044 | EXPORT_SYMBOL_GPL(alloc_vm_area); | |
2045 | ||
2046 | void free_vm_area(struct vm_struct *area) | |
2047 | { | |
2048 | struct vm_struct *ret; | |
2049 | ret = remove_vm_area(area->addr); | |
2050 | BUG_ON(ret != area); | |
2051 | kfree(area); | |
2052 | } | |
2053 | EXPORT_SYMBOL_GPL(free_vm_area); | |
a10aa579 | 2054 | |
ca23e405 TH |
2055 | static struct vmap_area *node_to_va(struct rb_node *n) |
2056 | { | |
2057 | return n ? rb_entry(n, struct vmap_area, rb_node) : NULL; | |
2058 | } | |
2059 | ||
2060 | /** | |
2061 | * pvm_find_next_prev - find the next and prev vmap_area surrounding @end | |
2062 | * @end: target address | |
2063 | * @pnext: out arg for the next vmap_area | |
2064 | * @pprev: out arg for the previous vmap_area | |
2065 | * | |
2066 | * Returns: %true if either or both of next and prev are found, | |
2067 | * %false if no vmap_area exists | |
2068 | * | |
2069 | * Find vmap_areas end addresses of which enclose @end. ie. if not | |
2070 | * NULL, *pnext->va_end > @end and *pprev->va_end <= @end. | |
2071 | */ | |
2072 | static bool pvm_find_next_prev(unsigned long end, | |
2073 | struct vmap_area **pnext, | |
2074 | struct vmap_area **pprev) | |
2075 | { | |
2076 | struct rb_node *n = vmap_area_root.rb_node; | |
2077 | struct vmap_area *va = NULL; | |
2078 | ||
2079 | while (n) { | |
2080 | va = rb_entry(n, struct vmap_area, rb_node); | |
2081 | if (end < va->va_end) | |
2082 | n = n->rb_left; | |
2083 | else if (end > va->va_end) | |
2084 | n = n->rb_right; | |
2085 | else | |
2086 | break; | |
2087 | } | |
2088 | ||
2089 | if (!va) | |
2090 | return false; | |
2091 | ||
2092 | if (va->va_end > end) { | |
2093 | *pnext = va; | |
2094 | *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); | |
2095 | } else { | |
2096 | *pprev = va; | |
2097 | *pnext = node_to_va(rb_next(&(*pprev)->rb_node)); | |
2098 | } | |
2099 | return true; | |
2100 | } | |
2101 | ||
2102 | /** | |
2103 | * pvm_determine_end - find the highest aligned address between two vmap_areas | |
2104 | * @pnext: in/out arg for the next vmap_area | |
2105 | * @pprev: in/out arg for the previous vmap_area | |
2106 | * @align: alignment | |
2107 | * | |
2108 | * Returns: determined end address | |
2109 | * | |
2110 | * Find the highest aligned address between *@pnext and *@pprev below | |
2111 | * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned | |
2112 | * down address is between the end addresses of the two vmap_areas. | |
2113 | * | |
2114 | * Please note that the address returned by this function may fall | |
2115 | * inside *@pnext vmap_area. The caller is responsible for checking | |
2116 | * that. | |
2117 | */ | |
2118 | static unsigned long pvm_determine_end(struct vmap_area **pnext, | |
2119 | struct vmap_area **pprev, | |
2120 | unsigned long align) | |
2121 | { | |
2122 | const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); | |
2123 | unsigned long addr; | |
2124 | ||
2125 | if (*pnext) | |
2126 | addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end); | |
2127 | else | |
2128 | addr = vmalloc_end; | |
2129 | ||
2130 | while (*pprev && (*pprev)->va_end > addr) { | |
2131 | *pnext = *pprev; | |
2132 | *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); | |
2133 | } | |
2134 | ||
2135 | return addr; | |
2136 | } | |
2137 | ||
2138 | /** | |
2139 | * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator | |
2140 | * @offsets: array containing offset of each area | |
2141 | * @sizes: array containing size of each area | |
2142 | * @nr_vms: the number of areas to allocate | |
2143 | * @align: alignment, all entries in @offsets and @sizes must be aligned to this | |
2144 | * @gfp_mask: allocation mask | |
2145 | * | |
2146 | * Returns: kmalloc'd vm_struct pointer array pointing to allocated | |
2147 | * vm_structs on success, %NULL on failure | |
2148 | * | |
2149 | * Percpu allocator wants to use congruent vm areas so that it can | |
2150 | * maintain the offsets among percpu areas. This function allocates | |
2151 | * congruent vmalloc areas for it. These areas tend to be scattered | |
2152 | * pretty far, distance between two areas easily going up to | |
2153 | * gigabytes. To avoid interacting with regular vmallocs, these areas | |
2154 | * are allocated from top. | |
2155 | * | |
2156 | * Despite its complicated look, this allocator is rather simple. It | |
2157 | * does everything top-down and scans areas from the end looking for | |
2158 | * matching slot. While scanning, if any of the areas overlaps with | |
2159 | * existing vmap_area, the base address is pulled down to fit the | |
2160 | * area. Scanning is repeated till all the areas fit and then all | |
2161 | * necessary data structres are inserted and the result is returned. | |
2162 | */ | |
2163 | struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, | |
2164 | const size_t *sizes, int nr_vms, | |
2165 | size_t align, gfp_t gfp_mask) | |
2166 | { | |
2167 | const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); | |
2168 | const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); | |
2169 | struct vmap_area **vas, *prev, *next; | |
2170 | struct vm_struct **vms; | |
2171 | int area, area2, last_area, term_area; | |
2172 | unsigned long base, start, end, last_end; | |
2173 | bool purged = false; | |
2174 | ||
2175 | gfp_mask &= GFP_RECLAIM_MASK; | |
2176 | ||
2177 | /* verify parameters and allocate data structures */ | |
2178 | BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align)); | |
2179 | for (last_area = 0, area = 0; area < nr_vms; area++) { | |
2180 | start = offsets[area]; | |
2181 | end = start + sizes[area]; | |
2182 | ||
2183 | /* is everything aligned properly? */ | |
2184 | BUG_ON(!IS_ALIGNED(offsets[area], align)); | |
2185 | BUG_ON(!IS_ALIGNED(sizes[area], align)); | |
2186 | ||
2187 | /* detect the area with the highest address */ | |
2188 | if (start > offsets[last_area]) | |
2189 | last_area = area; | |
2190 | ||
2191 | for (area2 = 0; area2 < nr_vms; area2++) { | |
2192 | unsigned long start2 = offsets[area2]; | |
2193 | unsigned long end2 = start2 + sizes[area2]; | |
2194 | ||
2195 | if (area2 == area) | |
2196 | continue; | |
2197 | ||
2198 | BUG_ON(start2 >= start && start2 < end); | |
2199 | BUG_ON(end2 <= end && end2 > start); | |
2200 | } | |
2201 | } | |
2202 | last_end = offsets[last_area] + sizes[last_area]; | |
2203 | ||
2204 | if (vmalloc_end - vmalloc_start < last_end) { | |
2205 | WARN_ON(true); | |
2206 | return NULL; | |
2207 | } | |
2208 | ||
2209 | vms = kzalloc(sizeof(vms[0]) * nr_vms, gfp_mask); | |
2210 | vas = kzalloc(sizeof(vas[0]) * nr_vms, gfp_mask); | |
2211 | if (!vas || !vms) | |
2212 | goto err_free; | |
2213 | ||
2214 | for (area = 0; area < nr_vms; area++) { | |
2215 | vas[area] = kzalloc(sizeof(struct vmap_area), gfp_mask); | |
2216 | vms[area] = kzalloc(sizeof(struct vm_struct), gfp_mask); | |
2217 | if (!vas[area] || !vms[area]) | |
2218 | goto err_free; | |
2219 | } | |
2220 | retry: | |
2221 | spin_lock(&vmap_area_lock); | |
2222 | ||
2223 | /* start scanning - we scan from the top, begin with the last area */ | |
2224 | area = term_area = last_area; | |
2225 | start = offsets[area]; | |
2226 | end = start + sizes[area]; | |
2227 | ||
2228 | if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) { | |
2229 | base = vmalloc_end - last_end; | |
2230 | goto found; | |
2231 | } | |
2232 | base = pvm_determine_end(&next, &prev, align) - end; | |
2233 | ||
2234 | while (true) { | |
2235 | BUG_ON(next && next->va_end <= base + end); | |
2236 | BUG_ON(prev && prev->va_end > base + end); | |
2237 | ||
2238 | /* | |
2239 | * base might have underflowed, add last_end before | |
2240 | * comparing. | |
2241 | */ | |
2242 | if (base + last_end < vmalloc_start + last_end) { | |
2243 | spin_unlock(&vmap_area_lock); | |
2244 | if (!purged) { | |
2245 | purge_vmap_area_lazy(); | |
2246 | purged = true; | |
2247 | goto retry; | |
2248 | } | |
2249 | goto err_free; | |
2250 | } | |
2251 | ||
2252 | /* | |
2253 | * If next overlaps, move base downwards so that it's | |
2254 | * right below next and then recheck. | |
2255 | */ | |
2256 | if (next && next->va_start < base + end) { | |
2257 | base = pvm_determine_end(&next, &prev, align) - end; | |
2258 | term_area = area; | |
2259 | continue; | |
2260 | } | |
2261 | ||
2262 | /* | |
2263 | * If prev overlaps, shift down next and prev and move | |
2264 | * base so that it's right below new next and then | |
2265 | * recheck. | |
2266 | */ | |
2267 | if (prev && prev->va_end > base + start) { | |
2268 | next = prev; | |
2269 | prev = node_to_va(rb_prev(&next->rb_node)); | |
2270 | base = pvm_determine_end(&next, &prev, align) - end; | |
2271 | term_area = area; | |
2272 | continue; | |
2273 | } | |
2274 | ||
2275 | /* | |
2276 | * This area fits, move on to the previous one. If | |
2277 | * the previous one is the terminal one, we're done. | |
2278 | */ | |
2279 | area = (area + nr_vms - 1) % nr_vms; | |
2280 | if (area == term_area) | |
2281 | break; | |
2282 | start = offsets[area]; | |
2283 | end = start + sizes[area]; | |
2284 | pvm_find_next_prev(base + end, &next, &prev); | |
2285 | } | |
2286 | found: | |
2287 | /* we've found a fitting base, insert all va's */ | |
2288 | for (area = 0; area < nr_vms; area++) { | |
2289 | struct vmap_area *va = vas[area]; | |
2290 | ||
2291 | va->va_start = base + offsets[area]; | |
2292 | va->va_end = va->va_start + sizes[area]; | |
2293 | __insert_vmap_area(va); | |
2294 | } | |
2295 | ||
2296 | vmap_area_pcpu_hole = base + offsets[last_area]; | |
2297 | ||
2298 | spin_unlock(&vmap_area_lock); | |
2299 | ||
2300 | /* insert all vm's */ | |
2301 | for (area = 0; area < nr_vms; area++) | |
2302 | insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC, | |
2303 | pcpu_get_vm_areas); | |
2304 | ||
2305 | kfree(vas); | |
2306 | return vms; | |
2307 | ||
2308 | err_free: | |
2309 | for (area = 0; area < nr_vms; area++) { | |
2310 | if (vas) | |
2311 | kfree(vas[area]); | |
2312 | if (vms) | |
2313 | kfree(vms[area]); | |
2314 | } | |
2315 | kfree(vas); | |
2316 | kfree(vms); | |
2317 | return NULL; | |
2318 | } | |
2319 | ||
2320 | /** | |
2321 | * pcpu_free_vm_areas - free vmalloc areas for percpu allocator | |
2322 | * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() | |
2323 | * @nr_vms: the number of allocated areas | |
2324 | * | |
2325 | * Free vm_structs and the array allocated by pcpu_get_vm_areas(). | |
2326 | */ | |
2327 | void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) | |
2328 | { | |
2329 | int i; | |
2330 | ||
2331 | for (i = 0; i < nr_vms; i++) | |
2332 | free_vm_area(vms[i]); | |
2333 | kfree(vms); | |
2334 | } | |
a10aa579 CL |
2335 | |
2336 | #ifdef CONFIG_PROC_FS | |
2337 | static void *s_start(struct seq_file *m, loff_t *pos) | |
2338 | { | |
2339 | loff_t n = *pos; | |
2340 | struct vm_struct *v; | |
2341 | ||
2342 | read_lock(&vmlist_lock); | |
2343 | v = vmlist; | |
2344 | while (n > 0 && v) { | |
2345 | n--; | |
2346 | v = v->next; | |
2347 | } | |
2348 | if (!n) | |
2349 | return v; | |
2350 | ||
2351 | return NULL; | |
2352 | ||
2353 | } | |
2354 | ||
2355 | static void *s_next(struct seq_file *m, void *p, loff_t *pos) | |
2356 | { | |
2357 | struct vm_struct *v = p; | |
2358 | ||
2359 | ++*pos; | |
2360 | return v->next; | |
2361 | } | |
2362 | ||
2363 | static void s_stop(struct seq_file *m, void *p) | |
2364 | { | |
2365 | read_unlock(&vmlist_lock); | |
2366 | } | |
2367 | ||
a47a126a ED |
2368 | static void show_numa_info(struct seq_file *m, struct vm_struct *v) |
2369 | { | |
2370 | if (NUMA_BUILD) { | |
2371 | unsigned int nr, *counters = m->private; | |
2372 | ||
2373 | if (!counters) | |
2374 | return; | |
2375 | ||
2376 | memset(counters, 0, nr_node_ids * sizeof(unsigned int)); | |
2377 | ||
2378 | for (nr = 0; nr < v->nr_pages; nr++) | |
2379 | counters[page_to_nid(v->pages[nr])]++; | |
2380 | ||
2381 | for_each_node_state(nr, N_HIGH_MEMORY) | |
2382 | if (counters[nr]) | |
2383 | seq_printf(m, " N%u=%u", nr, counters[nr]); | |
2384 | } | |
2385 | } | |
2386 | ||
a10aa579 CL |
2387 | static int s_show(struct seq_file *m, void *p) |
2388 | { | |
2389 | struct vm_struct *v = p; | |
2390 | ||
2391 | seq_printf(m, "0x%p-0x%p %7ld", | |
2392 | v->addr, v->addr + v->size, v->size); | |
2393 | ||
23016969 | 2394 | if (v->caller) { |
9c246247 | 2395 | char buff[KSYM_SYMBOL_LEN]; |
23016969 CL |
2396 | |
2397 | seq_putc(m, ' '); | |
2398 | sprint_symbol(buff, (unsigned long)v->caller); | |
2399 | seq_puts(m, buff); | |
2400 | } | |
2401 | ||
a10aa579 CL |
2402 | if (v->nr_pages) |
2403 | seq_printf(m, " pages=%d", v->nr_pages); | |
2404 | ||
2405 | if (v->phys_addr) | |
2406 | seq_printf(m, " phys=%lx", v->phys_addr); | |
2407 | ||
2408 | if (v->flags & VM_IOREMAP) | |
2409 | seq_printf(m, " ioremap"); | |
2410 | ||
2411 | if (v->flags & VM_ALLOC) | |
2412 | seq_printf(m, " vmalloc"); | |
2413 | ||
2414 | if (v->flags & VM_MAP) | |
2415 | seq_printf(m, " vmap"); | |
2416 | ||
2417 | if (v->flags & VM_USERMAP) | |
2418 | seq_printf(m, " user"); | |
2419 | ||
2420 | if (v->flags & VM_VPAGES) | |
2421 | seq_printf(m, " vpages"); | |
2422 | ||
a47a126a | 2423 | show_numa_info(m, v); |
a10aa579 CL |
2424 | seq_putc(m, '\n'); |
2425 | return 0; | |
2426 | } | |
2427 | ||
5f6a6a9c | 2428 | static const struct seq_operations vmalloc_op = { |
a10aa579 CL |
2429 | .start = s_start, |
2430 | .next = s_next, | |
2431 | .stop = s_stop, | |
2432 | .show = s_show, | |
2433 | }; | |
5f6a6a9c AD |
2434 | |
2435 | static int vmalloc_open(struct inode *inode, struct file *file) | |
2436 | { | |
2437 | unsigned int *ptr = NULL; | |
2438 | int ret; | |
2439 | ||
2440 | if (NUMA_BUILD) | |
2441 | ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); | |
2442 | ret = seq_open(file, &vmalloc_op); | |
2443 | if (!ret) { | |
2444 | struct seq_file *m = file->private_data; | |
2445 | m->private = ptr; | |
2446 | } else | |
2447 | kfree(ptr); | |
2448 | return ret; | |
2449 | } | |
2450 | ||
2451 | static const struct file_operations proc_vmalloc_operations = { | |
2452 | .open = vmalloc_open, | |
2453 | .read = seq_read, | |
2454 | .llseek = seq_lseek, | |
2455 | .release = seq_release_private, | |
2456 | }; | |
2457 | ||
2458 | static int __init proc_vmalloc_init(void) | |
2459 | { | |
2460 | proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations); | |
2461 | return 0; | |
2462 | } | |
2463 | module_init(proc_vmalloc_init); | |
a10aa579 CL |
2464 | #endif |
2465 |