net: ipv6 bind to device issue
[linux-2.6-block.git] / mm / vmalloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 8 * Numa awareness, Christoph Lameter, SGI, June 2005
1da177e4
LT
9 */
10
db64fe02 11#include <linux/vmalloc.h>
1da177e4
LT
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
d43c36dc 15#include <linux/sched.h>
1da177e4
LT
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
5f6a6a9c 19#include <linux/proc_fs.h>
a10aa579 20#include <linux/seq_file.h>
3ac7fe5a 21#include <linux/debugobjects.h>
23016969 22#include <linux/kallsyms.h>
db64fe02
NP
23#include <linux/list.h>
24#include <linux/rbtree.h>
25#include <linux/radix-tree.h>
26#include <linux/rcupdate.h>
f0aa6617 27#include <linux/pfn.h>
89219d37 28#include <linux/kmemleak.h>
db64fe02 29#include <asm/atomic.h>
1da177e4
LT
30#include <asm/uaccess.h>
31#include <asm/tlbflush.h>
2dca6999 32#include <asm/shmparam.h>
1da177e4
LT
33
34
db64fe02 35/*** Page table manipulation functions ***/
b221385b 36
1da177e4
LT
37static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
38{
39 pte_t *pte;
40
41 pte = pte_offset_kernel(pmd, addr);
42 do {
43 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
44 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
45 } while (pte++, addr += PAGE_SIZE, addr != end);
46}
47
db64fe02 48static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
1da177e4
LT
49{
50 pmd_t *pmd;
51 unsigned long next;
52
53 pmd = pmd_offset(pud, addr);
54 do {
55 next = pmd_addr_end(addr, end);
56 if (pmd_none_or_clear_bad(pmd))
57 continue;
58 vunmap_pte_range(pmd, addr, next);
59 } while (pmd++, addr = next, addr != end);
60}
61
db64fe02 62static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
1da177e4
LT
63{
64 pud_t *pud;
65 unsigned long next;
66
67 pud = pud_offset(pgd, addr);
68 do {
69 next = pud_addr_end(addr, end);
70 if (pud_none_or_clear_bad(pud))
71 continue;
72 vunmap_pmd_range(pud, addr, next);
73 } while (pud++, addr = next, addr != end);
74}
75
db64fe02 76static void vunmap_page_range(unsigned long addr, unsigned long end)
1da177e4
LT
77{
78 pgd_t *pgd;
79 unsigned long next;
1da177e4
LT
80
81 BUG_ON(addr >= end);
82 pgd = pgd_offset_k(addr);
1da177e4
LT
83 do {
84 next = pgd_addr_end(addr, end);
85 if (pgd_none_or_clear_bad(pgd))
86 continue;
87 vunmap_pud_range(pgd, addr, next);
88 } while (pgd++, addr = next, addr != end);
1da177e4
LT
89}
90
91static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
db64fe02 92 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
93{
94 pte_t *pte;
95
db64fe02
NP
96 /*
97 * nr is a running index into the array which helps higher level
98 * callers keep track of where we're up to.
99 */
100
872fec16 101 pte = pte_alloc_kernel(pmd, addr);
1da177e4
LT
102 if (!pte)
103 return -ENOMEM;
104 do {
db64fe02
NP
105 struct page *page = pages[*nr];
106
107 if (WARN_ON(!pte_none(*pte)))
108 return -EBUSY;
109 if (WARN_ON(!page))
1da177e4
LT
110 return -ENOMEM;
111 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 112 (*nr)++;
1da177e4
LT
113 } while (pte++, addr += PAGE_SIZE, addr != end);
114 return 0;
115}
116
db64fe02
NP
117static int vmap_pmd_range(pud_t *pud, unsigned long addr,
118 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
119{
120 pmd_t *pmd;
121 unsigned long next;
122
123 pmd = pmd_alloc(&init_mm, pud, addr);
124 if (!pmd)
125 return -ENOMEM;
126 do {
127 next = pmd_addr_end(addr, end);
db64fe02 128 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
1da177e4
LT
129 return -ENOMEM;
130 } while (pmd++, addr = next, addr != end);
131 return 0;
132}
133
db64fe02
NP
134static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
135 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
136{
137 pud_t *pud;
138 unsigned long next;
139
140 pud = pud_alloc(&init_mm, pgd, addr);
141 if (!pud)
142 return -ENOMEM;
143 do {
144 next = pud_addr_end(addr, end);
db64fe02 145 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
1da177e4
LT
146 return -ENOMEM;
147 } while (pud++, addr = next, addr != end);
148 return 0;
149}
150
db64fe02
NP
151/*
152 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
153 * will have pfns corresponding to the "pages" array.
154 *
155 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
156 */
8fc48985
TH
157static int vmap_page_range_noflush(unsigned long start, unsigned long end,
158 pgprot_t prot, struct page **pages)
1da177e4
LT
159{
160 pgd_t *pgd;
161 unsigned long next;
2e4e27c7 162 unsigned long addr = start;
db64fe02
NP
163 int err = 0;
164 int nr = 0;
1da177e4
LT
165
166 BUG_ON(addr >= end);
167 pgd = pgd_offset_k(addr);
1da177e4
LT
168 do {
169 next = pgd_addr_end(addr, end);
db64fe02 170 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
1da177e4 171 if (err)
bf88c8c8 172 return err;
1da177e4 173 } while (pgd++, addr = next, addr != end);
db64fe02 174
db64fe02 175 return nr;
1da177e4
LT
176}
177
8fc48985
TH
178static int vmap_page_range(unsigned long start, unsigned long end,
179 pgprot_t prot, struct page **pages)
180{
181 int ret;
182
183 ret = vmap_page_range_noflush(start, end, prot, pages);
184 flush_cache_vmap(start, end);
185 return ret;
186}
187
81ac3ad9 188int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
189{
190 /*
ab4f2ee1 191 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
192 * and fall back on vmalloc() if that fails. Others
193 * just put it in the vmalloc space.
194 */
195#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
196 unsigned long addr = (unsigned long)x;
197 if (addr >= MODULES_VADDR && addr < MODULES_END)
198 return 1;
199#endif
200 return is_vmalloc_addr(x);
201}
202
48667e7a 203/*
db64fe02 204 * Walk a vmap address to the struct page it maps.
48667e7a 205 */
b3bdda02 206struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
207{
208 unsigned long addr = (unsigned long) vmalloc_addr;
209 struct page *page = NULL;
210 pgd_t *pgd = pgd_offset_k(addr);
48667e7a 211
7aa413de
IM
212 /*
213 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
214 * architectures that do not vmalloc module space
215 */
73bdf0a6 216 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 217
48667e7a 218 if (!pgd_none(*pgd)) {
db64fe02 219 pud_t *pud = pud_offset(pgd, addr);
48667e7a 220 if (!pud_none(*pud)) {
db64fe02 221 pmd_t *pmd = pmd_offset(pud, addr);
48667e7a 222 if (!pmd_none(*pmd)) {
db64fe02
NP
223 pte_t *ptep, pte;
224
48667e7a
CL
225 ptep = pte_offset_map(pmd, addr);
226 pte = *ptep;
227 if (pte_present(pte))
228 page = pte_page(pte);
229 pte_unmap(ptep);
230 }
231 }
232 }
233 return page;
234}
235EXPORT_SYMBOL(vmalloc_to_page);
236
237/*
238 * Map a vmalloc()-space virtual address to the physical page frame number.
239 */
b3bdda02 240unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a
CL
241{
242 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
243}
244EXPORT_SYMBOL(vmalloc_to_pfn);
245
db64fe02
NP
246
247/*** Global kva allocator ***/
248
249#define VM_LAZY_FREE 0x01
250#define VM_LAZY_FREEING 0x02
251#define VM_VM_AREA 0x04
252
253struct vmap_area {
254 unsigned long va_start;
255 unsigned long va_end;
256 unsigned long flags;
257 struct rb_node rb_node; /* address sorted rbtree */
258 struct list_head list; /* address sorted list */
259 struct list_head purge_list; /* "lazy purge" list */
260 void *private;
261 struct rcu_head rcu_head;
262};
263
264static DEFINE_SPINLOCK(vmap_area_lock);
265static struct rb_root vmap_area_root = RB_ROOT;
266static LIST_HEAD(vmap_area_list);
ca23e405 267static unsigned long vmap_area_pcpu_hole;
db64fe02
NP
268
269static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 270{
db64fe02
NP
271 struct rb_node *n = vmap_area_root.rb_node;
272
273 while (n) {
274 struct vmap_area *va;
275
276 va = rb_entry(n, struct vmap_area, rb_node);
277 if (addr < va->va_start)
278 n = n->rb_left;
279 else if (addr > va->va_start)
280 n = n->rb_right;
281 else
282 return va;
283 }
284
285 return NULL;
286}
287
288static void __insert_vmap_area(struct vmap_area *va)
289{
290 struct rb_node **p = &vmap_area_root.rb_node;
291 struct rb_node *parent = NULL;
292 struct rb_node *tmp;
293
294 while (*p) {
295 struct vmap_area *tmp;
296
297 parent = *p;
298 tmp = rb_entry(parent, struct vmap_area, rb_node);
299 if (va->va_start < tmp->va_end)
300 p = &(*p)->rb_left;
301 else if (va->va_end > tmp->va_start)
302 p = &(*p)->rb_right;
303 else
304 BUG();
305 }
306
307 rb_link_node(&va->rb_node, parent, p);
308 rb_insert_color(&va->rb_node, &vmap_area_root);
309
310 /* address-sort this list so it is usable like the vmlist */
311 tmp = rb_prev(&va->rb_node);
312 if (tmp) {
313 struct vmap_area *prev;
314 prev = rb_entry(tmp, struct vmap_area, rb_node);
315 list_add_rcu(&va->list, &prev->list);
316 } else
317 list_add_rcu(&va->list, &vmap_area_list);
318}
319
320static void purge_vmap_area_lazy(void);
321
322/*
323 * Allocate a region of KVA of the specified size and alignment, within the
324 * vstart and vend.
325 */
326static struct vmap_area *alloc_vmap_area(unsigned long size,
327 unsigned long align,
328 unsigned long vstart, unsigned long vend,
329 int node, gfp_t gfp_mask)
330{
331 struct vmap_area *va;
332 struct rb_node *n;
1da177e4 333 unsigned long addr;
db64fe02
NP
334 int purged = 0;
335
7766970c 336 BUG_ON(!size);
db64fe02
NP
337 BUG_ON(size & ~PAGE_MASK);
338
db64fe02
NP
339 va = kmalloc_node(sizeof(struct vmap_area),
340 gfp_mask & GFP_RECLAIM_MASK, node);
341 if (unlikely(!va))
342 return ERR_PTR(-ENOMEM);
343
344retry:
0ae15132
GC
345 addr = ALIGN(vstart, align);
346
db64fe02 347 spin_lock(&vmap_area_lock);
7766970c
NP
348 if (addr + size - 1 < addr)
349 goto overflow;
350
db64fe02
NP
351 /* XXX: could have a last_hole cache */
352 n = vmap_area_root.rb_node;
353 if (n) {
354 struct vmap_area *first = NULL;
355
356 do {
357 struct vmap_area *tmp;
358 tmp = rb_entry(n, struct vmap_area, rb_node);
359 if (tmp->va_end >= addr) {
360 if (!first && tmp->va_start < addr + size)
361 first = tmp;
362 n = n->rb_left;
363 } else {
364 first = tmp;
365 n = n->rb_right;
366 }
367 } while (n);
368
369 if (!first)
370 goto found;
371
372 if (first->va_end < addr) {
373 n = rb_next(&first->rb_node);
374 if (n)
375 first = rb_entry(n, struct vmap_area, rb_node);
376 else
377 goto found;
378 }
379
f011c2da 380 while (addr + size > first->va_start && addr + size <= vend) {
db64fe02 381 addr = ALIGN(first->va_end + PAGE_SIZE, align);
7766970c
NP
382 if (addr + size - 1 < addr)
383 goto overflow;
db64fe02
NP
384
385 n = rb_next(&first->rb_node);
386 if (n)
387 first = rb_entry(n, struct vmap_area, rb_node);
388 else
389 goto found;
390 }
391 }
392found:
393 if (addr + size > vend) {
7766970c 394overflow:
db64fe02
NP
395 spin_unlock(&vmap_area_lock);
396 if (!purged) {
397 purge_vmap_area_lazy();
398 purged = 1;
399 goto retry;
400 }
401 if (printk_ratelimit())
c1279c4e
GC
402 printk(KERN_WARNING
403 "vmap allocation for size %lu failed: "
404 "use vmalloc=<size> to increase size.\n", size);
2498ce42 405 kfree(va);
db64fe02
NP
406 return ERR_PTR(-EBUSY);
407 }
408
409 BUG_ON(addr & (align-1));
410
411 va->va_start = addr;
412 va->va_end = addr + size;
413 va->flags = 0;
414 __insert_vmap_area(va);
415 spin_unlock(&vmap_area_lock);
416
417 return va;
418}
419
420static void rcu_free_va(struct rcu_head *head)
421{
422 struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
423
424 kfree(va);
425}
426
427static void __free_vmap_area(struct vmap_area *va)
428{
429 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
430 rb_erase(&va->rb_node, &vmap_area_root);
431 RB_CLEAR_NODE(&va->rb_node);
432 list_del_rcu(&va->list);
433
ca23e405
TH
434 /*
435 * Track the highest possible candidate for pcpu area
436 * allocation. Areas outside of vmalloc area can be returned
437 * here too, consider only end addresses which fall inside
438 * vmalloc area proper.
439 */
440 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
441 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
442
db64fe02
NP
443 call_rcu(&va->rcu_head, rcu_free_va);
444}
445
446/*
447 * Free a region of KVA allocated by alloc_vmap_area
448 */
449static void free_vmap_area(struct vmap_area *va)
450{
451 spin_lock(&vmap_area_lock);
452 __free_vmap_area(va);
453 spin_unlock(&vmap_area_lock);
454}
455
456/*
457 * Clear the pagetable entries of a given vmap_area
458 */
459static void unmap_vmap_area(struct vmap_area *va)
460{
461 vunmap_page_range(va->va_start, va->va_end);
462}
463
cd52858c
NP
464static void vmap_debug_free_range(unsigned long start, unsigned long end)
465{
466 /*
467 * Unmap page tables and force a TLB flush immediately if
468 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
469 * bugs similarly to those in linear kernel virtual address
470 * space after a page has been freed.
471 *
472 * All the lazy freeing logic is still retained, in order to
473 * minimise intrusiveness of this debugging feature.
474 *
475 * This is going to be *slow* (linear kernel virtual address
476 * debugging doesn't do a broadcast TLB flush so it is a lot
477 * faster).
478 */
479#ifdef CONFIG_DEBUG_PAGEALLOC
480 vunmap_page_range(start, end);
481 flush_tlb_kernel_range(start, end);
482#endif
483}
484
db64fe02
NP
485/*
486 * lazy_max_pages is the maximum amount of virtual address space we gather up
487 * before attempting to purge with a TLB flush.
488 *
489 * There is a tradeoff here: a larger number will cover more kernel page tables
490 * and take slightly longer to purge, but it will linearly reduce the number of
491 * global TLB flushes that must be performed. It would seem natural to scale
492 * this number up linearly with the number of CPUs (because vmapping activity
493 * could also scale linearly with the number of CPUs), however it is likely
494 * that in practice, workloads might be constrained in other ways that mean
495 * vmap activity will not scale linearly with CPUs. Also, I want to be
496 * conservative and not introduce a big latency on huge systems, so go with
497 * a less aggressive log scale. It will still be an improvement over the old
498 * code, and it will be simple to change the scale factor if we find that it
499 * becomes a problem on bigger systems.
500 */
501static unsigned long lazy_max_pages(void)
502{
503 unsigned int log;
504
505 log = fls(num_online_cpus());
506
507 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
508}
509
510static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
511
02b709df
NP
512/* for per-CPU blocks */
513static void purge_fragmented_blocks_allcpus(void);
514
db64fe02
NP
515/*
516 * Purges all lazily-freed vmap areas.
517 *
518 * If sync is 0 then don't purge if there is already a purge in progress.
519 * If force_flush is 1, then flush kernel TLBs between *start and *end even
520 * if we found no lazy vmap areas to unmap (callers can use this to optimise
521 * their own TLB flushing).
522 * Returns with *start = min(*start, lowest purged address)
523 * *end = max(*end, highest purged address)
524 */
525static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
526 int sync, int force_flush)
527{
46666d8a 528 static DEFINE_SPINLOCK(purge_lock);
db64fe02
NP
529 LIST_HEAD(valist);
530 struct vmap_area *va;
cbb76676 531 struct vmap_area *n_va;
db64fe02
NP
532 int nr = 0;
533
534 /*
535 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
536 * should not expect such behaviour. This just simplifies locking for
537 * the case that isn't actually used at the moment anyway.
538 */
539 if (!sync && !force_flush) {
46666d8a 540 if (!spin_trylock(&purge_lock))
db64fe02
NP
541 return;
542 } else
46666d8a 543 spin_lock(&purge_lock);
db64fe02 544
02b709df
NP
545 if (sync)
546 purge_fragmented_blocks_allcpus();
547
db64fe02
NP
548 rcu_read_lock();
549 list_for_each_entry_rcu(va, &vmap_area_list, list) {
550 if (va->flags & VM_LAZY_FREE) {
551 if (va->va_start < *start)
552 *start = va->va_start;
553 if (va->va_end > *end)
554 *end = va->va_end;
555 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
556 unmap_vmap_area(va);
557 list_add_tail(&va->purge_list, &valist);
558 va->flags |= VM_LAZY_FREEING;
559 va->flags &= ~VM_LAZY_FREE;
560 }
561 }
562 rcu_read_unlock();
563
88f50044 564 if (nr)
db64fe02 565 atomic_sub(nr, &vmap_lazy_nr);
db64fe02
NP
566
567 if (nr || force_flush)
568 flush_tlb_kernel_range(*start, *end);
569
570 if (nr) {
571 spin_lock(&vmap_area_lock);
cbb76676 572 list_for_each_entry_safe(va, n_va, &valist, purge_list)
db64fe02
NP
573 __free_vmap_area(va);
574 spin_unlock(&vmap_area_lock);
575 }
46666d8a 576 spin_unlock(&purge_lock);
db64fe02
NP
577}
578
496850e5
NP
579/*
580 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
581 * is already purging.
582 */
583static void try_purge_vmap_area_lazy(void)
584{
585 unsigned long start = ULONG_MAX, end = 0;
586
587 __purge_vmap_area_lazy(&start, &end, 0, 0);
588}
589
db64fe02
NP
590/*
591 * Kick off a purge of the outstanding lazy areas.
592 */
593static void purge_vmap_area_lazy(void)
594{
595 unsigned long start = ULONG_MAX, end = 0;
596
496850e5 597 __purge_vmap_area_lazy(&start, &end, 1, 0);
db64fe02
NP
598}
599
600/*
b29acbdc
NP
601 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
602 * called for the correct range previously.
db64fe02 603 */
b29acbdc 604static void free_unmap_vmap_area_noflush(struct vmap_area *va)
db64fe02
NP
605{
606 va->flags |= VM_LAZY_FREE;
607 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
608 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
496850e5 609 try_purge_vmap_area_lazy();
db64fe02
NP
610}
611
b29acbdc
NP
612/*
613 * Free and unmap a vmap area
614 */
615static void free_unmap_vmap_area(struct vmap_area *va)
616{
617 flush_cache_vunmap(va->va_start, va->va_end);
618 free_unmap_vmap_area_noflush(va);
619}
620
db64fe02
NP
621static struct vmap_area *find_vmap_area(unsigned long addr)
622{
623 struct vmap_area *va;
624
625 spin_lock(&vmap_area_lock);
626 va = __find_vmap_area(addr);
627 spin_unlock(&vmap_area_lock);
628
629 return va;
630}
631
632static void free_unmap_vmap_area_addr(unsigned long addr)
633{
634 struct vmap_area *va;
635
636 va = find_vmap_area(addr);
637 BUG_ON(!va);
638 free_unmap_vmap_area(va);
639}
640
641
642/*** Per cpu kva allocator ***/
643
644/*
645 * vmap space is limited especially on 32 bit architectures. Ensure there is
646 * room for at least 16 percpu vmap blocks per CPU.
647 */
648/*
649 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
650 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
651 * instead (we just need a rough idea)
652 */
653#if BITS_PER_LONG == 32
654#define VMALLOC_SPACE (128UL*1024*1024)
655#else
656#define VMALLOC_SPACE (128UL*1024*1024*1024)
657#endif
658
659#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
660#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
661#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
662#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
663#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
664#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
665#define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
666 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
667 VMALLOC_PAGES / NR_CPUS / 16))
668
669#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
670
9b463334
JF
671static bool vmap_initialized __read_mostly = false;
672
db64fe02
NP
673struct vmap_block_queue {
674 spinlock_t lock;
675 struct list_head free;
db64fe02
NP
676};
677
678struct vmap_block {
679 spinlock_t lock;
680 struct vmap_area *va;
681 struct vmap_block_queue *vbq;
682 unsigned long free, dirty;
683 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
684 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
de560423
NP
685 struct list_head free_list;
686 struct rcu_head rcu_head;
02b709df 687 struct list_head purge;
db64fe02
NP
688};
689
690/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
691static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
692
693/*
694 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
695 * in the free path. Could get rid of this if we change the API to return a
696 * "cookie" from alloc, to be passed to free. But no big deal yet.
697 */
698static DEFINE_SPINLOCK(vmap_block_tree_lock);
699static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
700
701/*
702 * We should probably have a fallback mechanism to allocate virtual memory
703 * out of partially filled vmap blocks. However vmap block sizing should be
704 * fairly reasonable according to the vmalloc size, so it shouldn't be a
705 * big problem.
706 */
707
708static unsigned long addr_to_vb_idx(unsigned long addr)
709{
710 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
711 addr /= VMAP_BLOCK_SIZE;
712 return addr;
713}
714
715static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
716{
717 struct vmap_block_queue *vbq;
718 struct vmap_block *vb;
719 struct vmap_area *va;
720 unsigned long vb_idx;
721 int node, err;
722
723 node = numa_node_id();
724
725 vb = kmalloc_node(sizeof(struct vmap_block),
726 gfp_mask & GFP_RECLAIM_MASK, node);
727 if (unlikely(!vb))
728 return ERR_PTR(-ENOMEM);
729
730 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
731 VMALLOC_START, VMALLOC_END,
732 node, gfp_mask);
733 if (unlikely(IS_ERR(va))) {
734 kfree(vb);
735 return ERR_PTR(PTR_ERR(va));
736 }
737
738 err = radix_tree_preload(gfp_mask);
739 if (unlikely(err)) {
740 kfree(vb);
741 free_vmap_area(va);
742 return ERR_PTR(err);
743 }
744
745 spin_lock_init(&vb->lock);
746 vb->va = va;
747 vb->free = VMAP_BBMAP_BITS;
748 vb->dirty = 0;
749 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
750 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
751 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
752
753 vb_idx = addr_to_vb_idx(va->va_start);
754 spin_lock(&vmap_block_tree_lock);
755 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
756 spin_unlock(&vmap_block_tree_lock);
757 BUG_ON(err);
758 radix_tree_preload_end();
759
760 vbq = &get_cpu_var(vmap_block_queue);
761 vb->vbq = vbq;
762 spin_lock(&vbq->lock);
de560423 763 list_add_rcu(&vb->free_list, &vbq->free);
db64fe02 764 spin_unlock(&vbq->lock);
3f04ba85 765 put_cpu_var(vmap_block_queue);
db64fe02
NP
766
767 return vb;
768}
769
770static void rcu_free_vb(struct rcu_head *head)
771{
772 struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
773
774 kfree(vb);
775}
776
777static void free_vmap_block(struct vmap_block *vb)
778{
779 struct vmap_block *tmp;
780 unsigned long vb_idx;
781
db64fe02
NP
782 vb_idx = addr_to_vb_idx(vb->va->va_start);
783 spin_lock(&vmap_block_tree_lock);
784 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
785 spin_unlock(&vmap_block_tree_lock);
786 BUG_ON(tmp != vb);
787
b29acbdc 788 free_unmap_vmap_area_noflush(vb->va);
db64fe02
NP
789 call_rcu(&vb->rcu_head, rcu_free_vb);
790}
791
02b709df
NP
792static void purge_fragmented_blocks(int cpu)
793{
794 LIST_HEAD(purge);
795 struct vmap_block *vb;
796 struct vmap_block *n_vb;
797 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
798
799 rcu_read_lock();
800 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
801
802 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
803 continue;
804
805 spin_lock(&vb->lock);
806 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
807 vb->free = 0; /* prevent further allocs after releasing lock */
808 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
809 bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
810 bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
811 spin_lock(&vbq->lock);
812 list_del_rcu(&vb->free_list);
813 spin_unlock(&vbq->lock);
814 spin_unlock(&vb->lock);
815 list_add_tail(&vb->purge, &purge);
816 } else
817 spin_unlock(&vb->lock);
818 }
819 rcu_read_unlock();
820
821 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
822 list_del(&vb->purge);
823 free_vmap_block(vb);
824 }
825}
826
827static void purge_fragmented_blocks_thiscpu(void)
828{
829 purge_fragmented_blocks(smp_processor_id());
830}
831
832static void purge_fragmented_blocks_allcpus(void)
833{
834 int cpu;
835
836 for_each_possible_cpu(cpu)
837 purge_fragmented_blocks(cpu);
838}
839
db64fe02
NP
840static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
841{
842 struct vmap_block_queue *vbq;
843 struct vmap_block *vb;
844 unsigned long addr = 0;
845 unsigned int order;
02b709df 846 int purge = 0;
db64fe02
NP
847
848 BUG_ON(size & ~PAGE_MASK);
849 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
850 order = get_order(size);
851
852again:
853 rcu_read_lock();
854 vbq = &get_cpu_var(vmap_block_queue);
855 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
856 int i;
857
858 spin_lock(&vb->lock);
02b709df
NP
859 if (vb->free < 1UL << order)
860 goto next;
861
db64fe02
NP
862 i = bitmap_find_free_region(vb->alloc_map,
863 VMAP_BBMAP_BITS, order);
864
02b709df
NP
865 if (i < 0) {
866 if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
867 /* fragmented and no outstanding allocations */
868 BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
869 purge = 1;
db64fe02 870 }
02b709df 871 goto next;
db64fe02 872 }
02b709df
NP
873 addr = vb->va->va_start + (i << PAGE_SHIFT);
874 BUG_ON(addr_to_vb_idx(addr) !=
875 addr_to_vb_idx(vb->va->va_start));
876 vb->free -= 1UL << order;
877 if (vb->free == 0) {
878 spin_lock(&vbq->lock);
879 list_del_rcu(&vb->free_list);
880 spin_unlock(&vbq->lock);
881 }
882 spin_unlock(&vb->lock);
883 break;
884next:
db64fe02
NP
885 spin_unlock(&vb->lock);
886 }
02b709df
NP
887
888 if (purge)
889 purge_fragmented_blocks_thiscpu();
890
3f04ba85 891 put_cpu_var(vmap_block_queue);
db64fe02
NP
892 rcu_read_unlock();
893
894 if (!addr) {
895 vb = new_vmap_block(gfp_mask);
896 if (IS_ERR(vb))
897 return vb;
898 goto again;
899 }
900
901 return (void *)addr;
902}
903
904static void vb_free(const void *addr, unsigned long size)
905{
906 unsigned long offset;
907 unsigned long vb_idx;
908 unsigned int order;
909 struct vmap_block *vb;
910
911 BUG_ON(size & ~PAGE_MASK);
912 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc
NP
913
914 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
915
db64fe02
NP
916 order = get_order(size);
917
918 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
919
920 vb_idx = addr_to_vb_idx((unsigned long)addr);
921 rcu_read_lock();
922 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
923 rcu_read_unlock();
924 BUG_ON(!vb);
925
926 spin_lock(&vb->lock);
de560423 927 BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
d086817d 928
db64fe02
NP
929 vb->dirty += 1UL << order;
930 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 931 BUG_ON(vb->free);
db64fe02
NP
932 spin_unlock(&vb->lock);
933 free_vmap_block(vb);
934 } else
935 spin_unlock(&vb->lock);
936}
937
938/**
939 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
940 *
941 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
942 * to amortize TLB flushing overheads. What this means is that any page you
943 * have now, may, in a former life, have been mapped into kernel virtual
944 * address by the vmap layer and so there might be some CPUs with TLB entries
945 * still referencing that page (additional to the regular 1:1 kernel mapping).
946 *
947 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
948 * be sure that none of the pages we have control over will have any aliases
949 * from the vmap layer.
950 */
951void vm_unmap_aliases(void)
952{
953 unsigned long start = ULONG_MAX, end = 0;
954 int cpu;
955 int flush = 0;
956
9b463334
JF
957 if (unlikely(!vmap_initialized))
958 return;
959
db64fe02
NP
960 for_each_possible_cpu(cpu) {
961 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
962 struct vmap_block *vb;
963
964 rcu_read_lock();
965 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
966 int i;
967
968 spin_lock(&vb->lock);
969 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
970 while (i < VMAP_BBMAP_BITS) {
971 unsigned long s, e;
972 int j;
973 j = find_next_zero_bit(vb->dirty_map,
974 VMAP_BBMAP_BITS, i);
975
976 s = vb->va->va_start + (i << PAGE_SHIFT);
977 e = vb->va->va_start + (j << PAGE_SHIFT);
978 vunmap_page_range(s, e);
979 flush = 1;
980
981 if (s < start)
982 start = s;
983 if (e > end)
984 end = e;
985
986 i = j;
987 i = find_next_bit(vb->dirty_map,
988 VMAP_BBMAP_BITS, i);
989 }
990 spin_unlock(&vb->lock);
991 }
992 rcu_read_unlock();
993 }
994
995 __purge_vmap_area_lazy(&start, &end, 1, flush);
996}
997EXPORT_SYMBOL_GPL(vm_unmap_aliases);
998
999/**
1000 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1001 * @mem: the pointer returned by vm_map_ram
1002 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1003 */
1004void vm_unmap_ram(const void *mem, unsigned int count)
1005{
1006 unsigned long size = count << PAGE_SHIFT;
1007 unsigned long addr = (unsigned long)mem;
1008
1009 BUG_ON(!addr);
1010 BUG_ON(addr < VMALLOC_START);
1011 BUG_ON(addr > VMALLOC_END);
1012 BUG_ON(addr & (PAGE_SIZE-1));
1013
1014 debug_check_no_locks_freed(mem, size);
cd52858c 1015 vmap_debug_free_range(addr, addr+size);
db64fe02
NP
1016
1017 if (likely(count <= VMAP_MAX_ALLOC))
1018 vb_free(mem, size);
1019 else
1020 free_unmap_vmap_area_addr(addr);
1021}
1022EXPORT_SYMBOL(vm_unmap_ram);
1023
1024/**
1025 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1026 * @pages: an array of pointers to the pages to be mapped
1027 * @count: number of pages
1028 * @node: prefer to allocate data structures on this node
1029 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
e99c97ad
RD
1030 *
1031 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02
NP
1032 */
1033void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1034{
1035 unsigned long size = count << PAGE_SHIFT;
1036 unsigned long addr;
1037 void *mem;
1038
1039 if (likely(count <= VMAP_MAX_ALLOC)) {
1040 mem = vb_alloc(size, GFP_KERNEL);
1041 if (IS_ERR(mem))
1042 return NULL;
1043 addr = (unsigned long)mem;
1044 } else {
1045 struct vmap_area *va;
1046 va = alloc_vmap_area(size, PAGE_SIZE,
1047 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1048 if (IS_ERR(va))
1049 return NULL;
1050
1051 addr = va->va_start;
1052 mem = (void *)addr;
1053 }
1054 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1055 vm_unmap_ram(mem, count);
1056 return NULL;
1057 }
1058 return mem;
1059}
1060EXPORT_SYMBOL(vm_map_ram);
1061
f0aa6617
TH
1062/**
1063 * vm_area_register_early - register vmap area early during boot
1064 * @vm: vm_struct to register
c0c0a293 1065 * @align: requested alignment
f0aa6617
TH
1066 *
1067 * This function is used to register kernel vm area before
1068 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1069 * proper values on entry and other fields should be zero. On return,
1070 * vm->addr contains the allocated address.
1071 *
1072 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1073 */
c0c0a293 1074void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617
TH
1075{
1076 static size_t vm_init_off __initdata;
c0c0a293
TH
1077 unsigned long addr;
1078
1079 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1080 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
f0aa6617 1081
c0c0a293 1082 vm->addr = (void *)addr;
f0aa6617
TH
1083
1084 vm->next = vmlist;
1085 vmlist = vm;
1086}
1087
db64fe02
NP
1088void __init vmalloc_init(void)
1089{
822c18f2
IK
1090 struct vmap_area *va;
1091 struct vm_struct *tmp;
db64fe02
NP
1092 int i;
1093
1094 for_each_possible_cpu(i) {
1095 struct vmap_block_queue *vbq;
1096
1097 vbq = &per_cpu(vmap_block_queue, i);
1098 spin_lock_init(&vbq->lock);
1099 INIT_LIST_HEAD(&vbq->free);
db64fe02 1100 }
9b463334 1101
822c18f2
IK
1102 /* Import existing vmlist entries. */
1103 for (tmp = vmlist; tmp; tmp = tmp->next) {
43ebdac4 1104 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
822c18f2
IK
1105 va->flags = tmp->flags | VM_VM_AREA;
1106 va->va_start = (unsigned long)tmp->addr;
1107 va->va_end = va->va_start + tmp->size;
1108 __insert_vmap_area(va);
1109 }
ca23e405
TH
1110
1111 vmap_area_pcpu_hole = VMALLOC_END;
1112
9b463334 1113 vmap_initialized = true;
db64fe02
NP
1114}
1115
8fc48985
TH
1116/**
1117 * map_kernel_range_noflush - map kernel VM area with the specified pages
1118 * @addr: start of the VM area to map
1119 * @size: size of the VM area to map
1120 * @prot: page protection flags to use
1121 * @pages: pages to map
1122 *
1123 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1124 * specify should have been allocated using get_vm_area() and its
1125 * friends.
1126 *
1127 * NOTE:
1128 * This function does NOT do any cache flushing. The caller is
1129 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1130 * before calling this function.
1131 *
1132 * RETURNS:
1133 * The number of pages mapped on success, -errno on failure.
1134 */
1135int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1136 pgprot_t prot, struct page **pages)
1137{
1138 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1139}
1140
1141/**
1142 * unmap_kernel_range_noflush - unmap kernel VM area
1143 * @addr: start of the VM area to unmap
1144 * @size: size of the VM area to unmap
1145 *
1146 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1147 * specify should have been allocated using get_vm_area() and its
1148 * friends.
1149 *
1150 * NOTE:
1151 * This function does NOT do any cache flushing. The caller is
1152 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1153 * before calling this function and flush_tlb_kernel_range() after.
1154 */
1155void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1156{
1157 vunmap_page_range(addr, addr + size);
1158}
1159
1160/**
1161 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1162 * @addr: start of the VM area to unmap
1163 * @size: size of the VM area to unmap
1164 *
1165 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1166 * the unmapping and tlb after.
1167 */
db64fe02
NP
1168void unmap_kernel_range(unsigned long addr, unsigned long size)
1169{
1170 unsigned long end = addr + size;
f6fcba70
TH
1171
1172 flush_cache_vunmap(addr, end);
db64fe02
NP
1173 vunmap_page_range(addr, end);
1174 flush_tlb_kernel_range(addr, end);
1175}
1176
1177int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1178{
1179 unsigned long addr = (unsigned long)area->addr;
1180 unsigned long end = addr + area->size - PAGE_SIZE;
1181 int err;
1182
1183 err = vmap_page_range(addr, end, prot, *pages);
1184 if (err > 0) {
1185 *pages += err;
1186 err = 0;
1187 }
1188
1189 return err;
1190}
1191EXPORT_SYMBOL_GPL(map_vm_area);
1192
1193/*** Old vmalloc interfaces ***/
1194DEFINE_RWLOCK(vmlist_lock);
1195struct vm_struct *vmlist;
1196
cf88c790
TH
1197static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1198 unsigned long flags, void *caller)
1199{
1200 struct vm_struct *tmp, **p;
1201
1202 vm->flags = flags;
1203 vm->addr = (void *)va->va_start;
1204 vm->size = va->va_end - va->va_start;
1205 vm->caller = caller;
1206 va->private = vm;
1207 va->flags |= VM_VM_AREA;
1208
1209 write_lock(&vmlist_lock);
1210 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1211 if (tmp->addr >= vm->addr)
1212 break;
1213 }
1214 vm->next = *p;
1215 *p = vm;
1216 write_unlock(&vmlist_lock);
1217}
1218
db64fe02 1219static struct vm_struct *__get_vm_area_node(unsigned long size,
2dca6999
DM
1220 unsigned long align, unsigned long flags, unsigned long start,
1221 unsigned long end, int node, gfp_t gfp_mask, void *caller)
db64fe02
NP
1222{
1223 static struct vmap_area *va;
1224 struct vm_struct *area;
1da177e4 1225
52fd24ca 1226 BUG_ON(in_interrupt());
1da177e4
LT
1227 if (flags & VM_IOREMAP) {
1228 int bit = fls(size);
1229
1230 if (bit > IOREMAP_MAX_ORDER)
1231 bit = IOREMAP_MAX_ORDER;
1232 else if (bit < PAGE_SHIFT)
1233 bit = PAGE_SHIFT;
1234
1235 align = 1ul << bit;
1236 }
db64fe02 1237
1da177e4 1238 size = PAGE_ALIGN(size);
31be8309
OH
1239 if (unlikely(!size))
1240 return NULL;
1da177e4 1241
cf88c790 1242 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
1243 if (unlikely(!area))
1244 return NULL;
1245
1da177e4
LT
1246 /*
1247 * We always allocate a guard page.
1248 */
1249 size += PAGE_SIZE;
1250
db64fe02
NP
1251 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1252 if (IS_ERR(va)) {
1253 kfree(area);
1254 return NULL;
1da177e4 1255 }
1da177e4 1256
cf88c790 1257 insert_vmalloc_vm(area, va, flags, caller);
1da177e4 1258 return area;
1da177e4
LT
1259}
1260
930fc45a
CL
1261struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1262 unsigned long start, unsigned long end)
1263{
2dca6999 1264 return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
23016969 1265 __builtin_return_address(0));
930fc45a 1266}
5992b6da 1267EXPORT_SYMBOL_GPL(__get_vm_area);
930fc45a 1268
c2968612
BH
1269struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1270 unsigned long start, unsigned long end,
1271 void *caller)
1272{
2dca6999 1273 return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
c2968612
BH
1274 caller);
1275}
1276
1da177e4 1277/**
183ff22b 1278 * get_vm_area - reserve a contiguous kernel virtual area
1da177e4
LT
1279 * @size: size of the area
1280 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1281 *
1282 * Search an area of @size in the kernel virtual mapping area,
1283 * and reserved it for out purposes. Returns the area descriptor
1284 * on success or %NULL on failure.
1285 */
1286struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1287{
2dca6999 1288 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
23016969
CL
1289 -1, GFP_KERNEL, __builtin_return_address(0));
1290}
1291
1292struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1293 void *caller)
1294{
2dca6999 1295 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
23016969 1296 -1, GFP_KERNEL, caller);
1da177e4
LT
1297}
1298
52fd24ca
GP
1299struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
1300 int node, gfp_t gfp_mask)
930fc45a 1301{
2dca6999
DM
1302 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1303 node, gfp_mask, __builtin_return_address(0));
930fc45a
CL
1304}
1305
db64fe02 1306static struct vm_struct *find_vm_area(const void *addr)
83342314 1307{
db64fe02 1308 struct vmap_area *va;
83342314 1309
db64fe02
NP
1310 va = find_vmap_area((unsigned long)addr);
1311 if (va && va->flags & VM_VM_AREA)
1312 return va->private;
1da177e4 1313
1da177e4 1314 return NULL;
1da177e4
LT
1315}
1316
7856dfeb 1317/**
183ff22b 1318 * remove_vm_area - find and remove a continuous kernel virtual area
7856dfeb
AK
1319 * @addr: base address
1320 *
1321 * Search for the kernel VM area starting at @addr, and remove it.
1322 * This function returns the found VM area, but using it is NOT safe
1323 * on SMP machines, except for its size or flags.
1324 */
b3bdda02 1325struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 1326{
db64fe02
NP
1327 struct vmap_area *va;
1328
1329 va = find_vmap_area((unsigned long)addr);
1330 if (va && va->flags & VM_VM_AREA) {
1331 struct vm_struct *vm = va->private;
1332 struct vm_struct *tmp, **p;
dd32c279
KH
1333 /*
1334 * remove from list and disallow access to this vm_struct
1335 * before unmap. (address range confliction is maintained by
1336 * vmap.)
1337 */
db64fe02
NP
1338 write_lock(&vmlist_lock);
1339 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1340 ;
1341 *p = tmp->next;
1342 write_unlock(&vmlist_lock);
1343
dd32c279
KH
1344 vmap_debug_free_range(va->va_start, va->va_end);
1345 free_unmap_vmap_area(va);
1346 vm->size -= PAGE_SIZE;
1347
db64fe02
NP
1348 return vm;
1349 }
1350 return NULL;
7856dfeb
AK
1351}
1352
b3bdda02 1353static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
1354{
1355 struct vm_struct *area;
1356
1357 if (!addr)
1358 return;
1359
1360 if ((PAGE_SIZE-1) & (unsigned long)addr) {
4c8573e2 1361 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1da177e4
LT
1362 return;
1363 }
1364
1365 area = remove_vm_area(addr);
1366 if (unlikely(!area)) {
4c8573e2 1367 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 1368 addr);
1da177e4
LT
1369 return;
1370 }
1371
9a11b49a 1372 debug_check_no_locks_freed(addr, area->size);
3ac7fe5a 1373 debug_check_no_obj_freed(addr, area->size);
9a11b49a 1374
1da177e4
LT
1375 if (deallocate_pages) {
1376 int i;
1377
1378 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1379 struct page *page = area->pages[i];
1380
1381 BUG_ON(!page);
1382 __free_page(page);
1da177e4
LT
1383 }
1384
8757d5fa 1385 if (area->flags & VM_VPAGES)
1da177e4
LT
1386 vfree(area->pages);
1387 else
1388 kfree(area->pages);
1389 }
1390
1391 kfree(area);
1392 return;
1393}
1394
1395/**
1396 * vfree - release memory allocated by vmalloc()
1da177e4
LT
1397 * @addr: memory base address
1398 *
183ff22b 1399 * Free the virtually continuous memory area starting at @addr, as
80e93eff
PE
1400 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1401 * NULL, no operation is performed.
1da177e4 1402 *
80e93eff 1403 * Must not be called in interrupt context.
1da177e4 1404 */
b3bdda02 1405void vfree(const void *addr)
1da177e4
LT
1406{
1407 BUG_ON(in_interrupt());
89219d37
CM
1408
1409 kmemleak_free(addr);
1410
1da177e4
LT
1411 __vunmap(addr, 1);
1412}
1da177e4
LT
1413EXPORT_SYMBOL(vfree);
1414
1415/**
1416 * vunmap - release virtual mapping obtained by vmap()
1da177e4
LT
1417 * @addr: memory base address
1418 *
1419 * Free the virtually contiguous memory area starting at @addr,
1420 * which was created from the page array passed to vmap().
1421 *
80e93eff 1422 * Must not be called in interrupt context.
1da177e4 1423 */
b3bdda02 1424void vunmap(const void *addr)
1da177e4
LT
1425{
1426 BUG_ON(in_interrupt());
34754b69 1427 might_sleep();
1da177e4
LT
1428 __vunmap(addr, 0);
1429}
1da177e4
LT
1430EXPORT_SYMBOL(vunmap);
1431
1432/**
1433 * vmap - map an array of pages into virtually contiguous space
1da177e4
LT
1434 * @pages: array of page pointers
1435 * @count: number of pages to map
1436 * @flags: vm_area->flags
1437 * @prot: page protection for the mapping
1438 *
1439 * Maps @count pages from @pages into contiguous kernel virtual
1440 * space.
1441 */
1442void *vmap(struct page **pages, unsigned int count,
1443 unsigned long flags, pgprot_t prot)
1444{
1445 struct vm_struct *area;
1446
34754b69
PZ
1447 might_sleep();
1448
4481374c 1449 if (count > totalram_pages)
1da177e4
LT
1450 return NULL;
1451
23016969
CL
1452 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1453 __builtin_return_address(0));
1da177e4
LT
1454 if (!area)
1455 return NULL;
23016969 1456
1da177e4
LT
1457 if (map_vm_area(area, prot, &pages)) {
1458 vunmap(area->addr);
1459 return NULL;
1460 }
1461
1462 return area->addr;
1463}
1da177e4
LT
1464EXPORT_SYMBOL(vmap);
1465
2dca6999
DM
1466static void *__vmalloc_node(unsigned long size, unsigned long align,
1467 gfp_t gfp_mask, pgprot_t prot,
db64fe02 1468 int node, void *caller);
e31d9eb5 1469static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
23016969 1470 pgprot_t prot, int node, void *caller)
1da177e4
LT
1471{
1472 struct page **pages;
1473 unsigned int nr_pages, array_size, i;
976d6dfb 1474 gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1da177e4
LT
1475
1476 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1477 array_size = (nr_pages * sizeof(struct page *));
1478
1479 area->nr_pages = nr_pages;
1480 /* Please note that the recursion is strictly bounded. */
8757d5fa 1481 if (array_size > PAGE_SIZE) {
976d6dfb 1482 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
23016969 1483 PAGE_KERNEL, node, caller);
8757d5fa 1484 area->flags |= VM_VPAGES;
286e1ea3 1485 } else {
976d6dfb 1486 pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 1487 }
1da177e4 1488 area->pages = pages;
23016969 1489 area->caller = caller;
1da177e4
LT
1490 if (!area->pages) {
1491 remove_vm_area(area->addr);
1492 kfree(area);
1493 return NULL;
1494 }
1da177e4
LT
1495
1496 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1497 struct page *page;
1498
930fc45a 1499 if (node < 0)
bf53d6f8 1500 page = alloc_page(gfp_mask);
930fc45a 1501 else
bf53d6f8
CL
1502 page = alloc_pages_node(node, gfp_mask, 0);
1503
1504 if (unlikely(!page)) {
1da177e4
LT
1505 /* Successfully allocated i pages, free them in __vunmap() */
1506 area->nr_pages = i;
1507 goto fail;
1508 }
bf53d6f8 1509 area->pages[i] = page;
1da177e4
LT
1510 }
1511
1512 if (map_vm_area(area, prot, &pages))
1513 goto fail;
1514 return area->addr;
1515
1516fail:
1517 vfree(area->addr);
1518 return NULL;
1519}
1520
930fc45a
CL
1521void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
1522{
89219d37
CM
1523 void *addr = __vmalloc_area_node(area, gfp_mask, prot, -1,
1524 __builtin_return_address(0));
1525
1526 /*
1527 * A ref_count = 3 is needed because the vm_struct and vmap_area
1528 * structures allocated in the __get_vm_area_node() function contain
1529 * references to the virtual address of the vmalloc'ed block.
1530 */
1531 kmemleak_alloc(addr, area->size - PAGE_SIZE, 3, gfp_mask);
1532
1533 return addr;
930fc45a
CL
1534}
1535
1da177e4 1536/**
930fc45a 1537 * __vmalloc_node - allocate virtually contiguous memory
1da177e4 1538 * @size: allocation size
2dca6999 1539 * @align: desired alignment
1da177e4
LT
1540 * @gfp_mask: flags for the page level allocator
1541 * @prot: protection mask for the allocated pages
d44e0780 1542 * @node: node to use for allocation or -1
c85d194b 1543 * @caller: caller's return address
1da177e4
LT
1544 *
1545 * Allocate enough pages to cover @size from the page level
1546 * allocator with @gfp_mask flags. Map them into contiguous
1547 * kernel virtual space, using a pagetable protection of @prot.
1548 */
2dca6999
DM
1549static void *__vmalloc_node(unsigned long size, unsigned long align,
1550 gfp_t gfp_mask, pgprot_t prot,
1551 int node, void *caller)
1da177e4
LT
1552{
1553 struct vm_struct *area;
89219d37
CM
1554 void *addr;
1555 unsigned long real_size = size;
1da177e4
LT
1556
1557 size = PAGE_ALIGN(size);
4481374c 1558 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1da177e4
LT
1559 return NULL;
1560
2dca6999
DM
1561 area = __get_vm_area_node(size, align, VM_ALLOC, VMALLOC_START,
1562 VMALLOC_END, node, gfp_mask, caller);
23016969 1563
1da177e4
LT
1564 if (!area)
1565 return NULL;
1566
89219d37
CM
1567 addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1568
1569 /*
1570 * A ref_count = 3 is needed because the vm_struct and vmap_area
1571 * structures allocated in the __get_vm_area_node() function contain
1572 * references to the virtual address of the vmalloc'ed block.
1573 */
1574 kmemleak_alloc(addr, real_size, 3, gfp_mask);
1575
1576 return addr;
1da177e4
LT
1577}
1578
930fc45a
CL
1579void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1580{
2dca6999 1581 return __vmalloc_node(size, 1, gfp_mask, prot, -1,
23016969 1582 __builtin_return_address(0));
930fc45a 1583}
1da177e4
LT
1584EXPORT_SYMBOL(__vmalloc);
1585
1586/**
1587 * vmalloc - allocate virtually contiguous memory
1da177e4 1588 * @size: allocation size
1da177e4
LT
1589 * Allocate enough pages to cover @size from the page level
1590 * allocator and map them into contiguous kernel virtual space.
1591 *
c1c8897f 1592 * For tight control over page level allocator and protection flags
1da177e4
LT
1593 * use __vmalloc() instead.
1594 */
1595void *vmalloc(unsigned long size)
1596{
2dca6999 1597 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
23016969 1598 -1, __builtin_return_address(0));
1da177e4 1599}
1da177e4
LT
1600EXPORT_SYMBOL(vmalloc);
1601
83342314 1602/**
ead04089
REB
1603 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1604 * @size: allocation size
83342314 1605 *
ead04089
REB
1606 * The resulting memory area is zeroed so it can be mapped to userspace
1607 * without leaking data.
83342314
NP
1608 */
1609void *vmalloc_user(unsigned long size)
1610{
1611 struct vm_struct *area;
1612 void *ret;
1613
2dca6999
DM
1614 ret = __vmalloc_node(size, SHMLBA,
1615 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
84877848 1616 PAGE_KERNEL, -1, __builtin_return_address(0));
2b4ac44e 1617 if (ret) {
db64fe02 1618 area = find_vm_area(ret);
2b4ac44e 1619 area->flags |= VM_USERMAP;
2b4ac44e 1620 }
83342314
NP
1621 return ret;
1622}
1623EXPORT_SYMBOL(vmalloc_user);
1624
930fc45a
CL
1625/**
1626 * vmalloc_node - allocate memory on a specific node
930fc45a 1627 * @size: allocation size
d44e0780 1628 * @node: numa node
930fc45a
CL
1629 *
1630 * Allocate enough pages to cover @size from the page level
1631 * allocator and map them into contiguous kernel virtual space.
1632 *
c1c8897f 1633 * For tight control over page level allocator and protection flags
930fc45a
CL
1634 * use __vmalloc() instead.
1635 */
1636void *vmalloc_node(unsigned long size, int node)
1637{
2dca6999 1638 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
23016969 1639 node, __builtin_return_address(0));
930fc45a
CL
1640}
1641EXPORT_SYMBOL(vmalloc_node);
1642
4dc3b16b
PP
1643#ifndef PAGE_KERNEL_EXEC
1644# define PAGE_KERNEL_EXEC PAGE_KERNEL
1645#endif
1646
1da177e4
LT
1647/**
1648 * vmalloc_exec - allocate virtually contiguous, executable memory
1da177e4
LT
1649 * @size: allocation size
1650 *
1651 * Kernel-internal function to allocate enough pages to cover @size
1652 * the page level allocator and map them into contiguous and
1653 * executable kernel virtual space.
1654 *
c1c8897f 1655 * For tight control over page level allocator and protection flags
1da177e4
LT
1656 * use __vmalloc() instead.
1657 */
1658
1da177e4
LT
1659void *vmalloc_exec(unsigned long size)
1660{
2dca6999 1661 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
84877848 1662 -1, __builtin_return_address(0));
1da177e4
LT
1663}
1664
0d08e0d3 1665#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
7ac674f5 1666#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3 1667#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
7ac674f5 1668#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
0d08e0d3
AK
1669#else
1670#define GFP_VMALLOC32 GFP_KERNEL
1671#endif
1672
1da177e4
LT
1673/**
1674 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1da177e4
LT
1675 * @size: allocation size
1676 *
1677 * Allocate enough 32bit PA addressable pages to cover @size from the
1678 * page level allocator and map them into contiguous kernel virtual space.
1679 */
1680void *vmalloc_32(unsigned long size)
1681{
2dca6999 1682 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
84877848 1683 -1, __builtin_return_address(0));
1da177e4 1684}
1da177e4
LT
1685EXPORT_SYMBOL(vmalloc_32);
1686
83342314 1687/**
ead04089 1688 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
83342314 1689 * @size: allocation size
ead04089
REB
1690 *
1691 * The resulting memory area is 32bit addressable and zeroed so it can be
1692 * mapped to userspace without leaking data.
83342314
NP
1693 */
1694void *vmalloc_32_user(unsigned long size)
1695{
1696 struct vm_struct *area;
1697 void *ret;
1698
2dca6999 1699 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
84877848 1700 -1, __builtin_return_address(0));
2b4ac44e 1701 if (ret) {
db64fe02 1702 area = find_vm_area(ret);
2b4ac44e 1703 area->flags |= VM_USERMAP;
2b4ac44e 1704 }
83342314
NP
1705 return ret;
1706}
1707EXPORT_SYMBOL(vmalloc_32_user);
1708
d0107eb0
KH
1709/*
1710 * small helper routine , copy contents to buf from addr.
1711 * If the page is not present, fill zero.
1712 */
1713
1714static int aligned_vread(char *buf, char *addr, unsigned long count)
1715{
1716 struct page *p;
1717 int copied = 0;
1718
1719 while (count) {
1720 unsigned long offset, length;
1721
1722 offset = (unsigned long)addr & ~PAGE_MASK;
1723 length = PAGE_SIZE - offset;
1724 if (length > count)
1725 length = count;
1726 p = vmalloc_to_page(addr);
1727 /*
1728 * To do safe access to this _mapped_ area, we need
1729 * lock. But adding lock here means that we need to add
1730 * overhead of vmalloc()/vfree() calles for this _debug_
1731 * interface, rarely used. Instead of that, we'll use
1732 * kmap() and get small overhead in this access function.
1733 */
1734 if (p) {
1735 /*
1736 * we can expect USER0 is not used (see vread/vwrite's
1737 * function description)
1738 */
1739 void *map = kmap_atomic(p, KM_USER0);
1740 memcpy(buf, map + offset, length);
1741 kunmap_atomic(map, KM_USER0);
1742 } else
1743 memset(buf, 0, length);
1744
1745 addr += length;
1746 buf += length;
1747 copied += length;
1748 count -= length;
1749 }
1750 return copied;
1751}
1752
1753static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1754{
1755 struct page *p;
1756 int copied = 0;
1757
1758 while (count) {
1759 unsigned long offset, length;
1760
1761 offset = (unsigned long)addr & ~PAGE_MASK;
1762 length = PAGE_SIZE - offset;
1763 if (length > count)
1764 length = count;
1765 p = vmalloc_to_page(addr);
1766 /*
1767 * To do safe access to this _mapped_ area, we need
1768 * lock. But adding lock here means that we need to add
1769 * overhead of vmalloc()/vfree() calles for this _debug_
1770 * interface, rarely used. Instead of that, we'll use
1771 * kmap() and get small overhead in this access function.
1772 */
1773 if (p) {
1774 /*
1775 * we can expect USER0 is not used (see vread/vwrite's
1776 * function description)
1777 */
1778 void *map = kmap_atomic(p, KM_USER0);
1779 memcpy(map + offset, buf, length);
1780 kunmap_atomic(map, KM_USER0);
1781 }
1782 addr += length;
1783 buf += length;
1784 copied += length;
1785 count -= length;
1786 }
1787 return copied;
1788}
1789
1790/**
1791 * vread() - read vmalloc area in a safe way.
1792 * @buf: buffer for reading data
1793 * @addr: vm address.
1794 * @count: number of bytes to be read.
1795 *
1796 * Returns # of bytes which addr and buf should be increased.
1797 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
1798 * includes any intersect with alive vmalloc area.
1799 *
1800 * This function checks that addr is a valid vmalloc'ed area, and
1801 * copy data from that area to a given buffer. If the given memory range
1802 * of [addr...addr+count) includes some valid address, data is copied to
1803 * proper area of @buf. If there are memory holes, they'll be zero-filled.
1804 * IOREMAP area is treated as memory hole and no copy is done.
1805 *
1806 * If [addr...addr+count) doesn't includes any intersects with alive
1807 * vm_struct area, returns 0.
1808 * @buf should be kernel's buffer. Because this function uses KM_USER0,
1809 * the caller should guarantee KM_USER0 is not used.
1810 *
1811 * Note: In usual ops, vread() is never necessary because the caller
1812 * should know vmalloc() area is valid and can use memcpy().
1813 * This is for routines which have to access vmalloc area without
1814 * any informaion, as /dev/kmem.
1815 *
1816 */
1817
1da177e4
LT
1818long vread(char *buf, char *addr, unsigned long count)
1819{
1820 struct vm_struct *tmp;
1821 char *vaddr, *buf_start = buf;
d0107eb0 1822 unsigned long buflen = count;
1da177e4
LT
1823 unsigned long n;
1824
1825 /* Don't allow overflow */
1826 if ((unsigned long) addr + count < count)
1827 count = -(unsigned long) addr;
1828
1829 read_lock(&vmlist_lock);
d0107eb0 1830 for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1da177e4
LT
1831 vaddr = (char *) tmp->addr;
1832 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1833 continue;
1834 while (addr < vaddr) {
1835 if (count == 0)
1836 goto finished;
1837 *buf = '\0';
1838 buf++;
1839 addr++;
1840 count--;
1841 }
1842 n = vaddr + tmp->size - PAGE_SIZE - addr;
d0107eb0
KH
1843 if (n > count)
1844 n = count;
1845 if (!(tmp->flags & VM_IOREMAP))
1846 aligned_vread(buf, addr, n);
1847 else /* IOREMAP area is treated as memory hole */
1848 memset(buf, 0, n);
1849 buf += n;
1850 addr += n;
1851 count -= n;
1da177e4
LT
1852 }
1853finished:
1854 read_unlock(&vmlist_lock);
d0107eb0
KH
1855
1856 if (buf == buf_start)
1857 return 0;
1858 /* zero-fill memory holes */
1859 if (buf != buf_start + buflen)
1860 memset(buf, 0, buflen - (buf - buf_start));
1861
1862 return buflen;
1da177e4
LT
1863}
1864
d0107eb0
KH
1865/**
1866 * vwrite() - write vmalloc area in a safe way.
1867 * @buf: buffer for source data
1868 * @addr: vm address.
1869 * @count: number of bytes to be read.
1870 *
1871 * Returns # of bytes which addr and buf should be incresed.
1872 * (same number to @count).
1873 * If [addr...addr+count) doesn't includes any intersect with valid
1874 * vmalloc area, returns 0.
1875 *
1876 * This function checks that addr is a valid vmalloc'ed area, and
1877 * copy data from a buffer to the given addr. If specified range of
1878 * [addr...addr+count) includes some valid address, data is copied from
1879 * proper area of @buf. If there are memory holes, no copy to hole.
1880 * IOREMAP area is treated as memory hole and no copy is done.
1881 *
1882 * If [addr...addr+count) doesn't includes any intersects with alive
1883 * vm_struct area, returns 0.
1884 * @buf should be kernel's buffer. Because this function uses KM_USER0,
1885 * the caller should guarantee KM_USER0 is not used.
1886 *
1887 * Note: In usual ops, vwrite() is never necessary because the caller
1888 * should know vmalloc() area is valid and can use memcpy().
1889 * This is for routines which have to access vmalloc area without
1890 * any informaion, as /dev/kmem.
1891 *
1892 * The caller should guarantee KM_USER1 is not used.
1893 */
1894
1da177e4
LT
1895long vwrite(char *buf, char *addr, unsigned long count)
1896{
1897 struct vm_struct *tmp;
d0107eb0
KH
1898 char *vaddr;
1899 unsigned long n, buflen;
1900 int copied = 0;
1da177e4
LT
1901
1902 /* Don't allow overflow */
1903 if ((unsigned long) addr + count < count)
1904 count = -(unsigned long) addr;
d0107eb0 1905 buflen = count;
1da177e4
LT
1906
1907 read_lock(&vmlist_lock);
d0107eb0 1908 for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1da177e4
LT
1909 vaddr = (char *) tmp->addr;
1910 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1911 continue;
1912 while (addr < vaddr) {
1913 if (count == 0)
1914 goto finished;
1915 buf++;
1916 addr++;
1917 count--;
1918 }
1919 n = vaddr + tmp->size - PAGE_SIZE - addr;
d0107eb0
KH
1920 if (n > count)
1921 n = count;
1922 if (!(tmp->flags & VM_IOREMAP)) {
1923 aligned_vwrite(buf, addr, n);
1924 copied++;
1925 }
1926 buf += n;
1927 addr += n;
1928 count -= n;
1da177e4
LT
1929 }
1930finished:
1931 read_unlock(&vmlist_lock);
d0107eb0
KH
1932 if (!copied)
1933 return 0;
1934 return buflen;
1da177e4 1935}
83342314
NP
1936
1937/**
1938 * remap_vmalloc_range - map vmalloc pages to userspace
83342314
NP
1939 * @vma: vma to cover (map full range of vma)
1940 * @addr: vmalloc memory
1941 * @pgoff: number of pages into addr before first page to map
7682486b
RD
1942 *
1943 * Returns: 0 for success, -Exxx on failure
83342314
NP
1944 *
1945 * This function checks that addr is a valid vmalloc'ed area, and
1946 * that it is big enough to cover the vma. Will return failure if
1947 * that criteria isn't met.
1948 *
72fd4a35 1949 * Similar to remap_pfn_range() (see mm/memory.c)
83342314
NP
1950 */
1951int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1952 unsigned long pgoff)
1953{
1954 struct vm_struct *area;
1955 unsigned long uaddr = vma->vm_start;
1956 unsigned long usize = vma->vm_end - vma->vm_start;
83342314
NP
1957
1958 if ((PAGE_SIZE-1) & (unsigned long)addr)
1959 return -EINVAL;
1960
db64fe02 1961 area = find_vm_area(addr);
83342314 1962 if (!area)
db64fe02 1963 return -EINVAL;
83342314
NP
1964
1965 if (!(area->flags & VM_USERMAP))
db64fe02 1966 return -EINVAL;
83342314
NP
1967
1968 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
db64fe02 1969 return -EINVAL;
83342314
NP
1970
1971 addr += pgoff << PAGE_SHIFT;
1972 do {
1973 struct page *page = vmalloc_to_page(addr);
db64fe02
NP
1974 int ret;
1975
83342314
NP
1976 ret = vm_insert_page(vma, uaddr, page);
1977 if (ret)
1978 return ret;
1979
1980 uaddr += PAGE_SIZE;
1981 addr += PAGE_SIZE;
1982 usize -= PAGE_SIZE;
1983 } while (usize > 0);
1984
1985 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
1986 vma->vm_flags |= VM_RESERVED;
1987
db64fe02 1988 return 0;
83342314
NP
1989}
1990EXPORT_SYMBOL(remap_vmalloc_range);
1991
1eeb66a1
CH
1992/*
1993 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1994 * have one.
1995 */
1996void __attribute__((weak)) vmalloc_sync_all(void)
1997{
1998}
5f4352fb
JF
1999
2000
2f569afd 2001static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
5f4352fb
JF
2002{
2003 /* apply_to_page_range() does all the hard work. */
2004 return 0;
2005}
2006
2007/**
2008 * alloc_vm_area - allocate a range of kernel address space
2009 * @size: size of the area
7682486b
RD
2010 *
2011 * Returns: NULL on failure, vm_struct on success
5f4352fb
JF
2012 *
2013 * This function reserves a range of kernel address space, and
2014 * allocates pagetables to map that range. No actual mappings
2015 * are created. If the kernel address space is not shared
2016 * between processes, it syncs the pagetable across all
2017 * processes.
2018 */
2019struct vm_struct *alloc_vm_area(size_t size)
2020{
2021 struct vm_struct *area;
2022
23016969
CL
2023 area = get_vm_area_caller(size, VM_IOREMAP,
2024 __builtin_return_address(0));
5f4352fb
JF
2025 if (area == NULL)
2026 return NULL;
2027
2028 /*
2029 * This ensures that page tables are constructed for this region
2030 * of kernel virtual address space and mapped into init_mm.
2031 */
2032 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2033 area->size, f, NULL)) {
2034 free_vm_area(area);
2035 return NULL;
2036 }
2037
2038 /* Make sure the pagetables are constructed in process kernel
2039 mappings */
2040 vmalloc_sync_all();
2041
2042 return area;
2043}
2044EXPORT_SYMBOL_GPL(alloc_vm_area);
2045
2046void free_vm_area(struct vm_struct *area)
2047{
2048 struct vm_struct *ret;
2049 ret = remove_vm_area(area->addr);
2050 BUG_ON(ret != area);
2051 kfree(area);
2052}
2053EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 2054
ca23e405
TH
2055static struct vmap_area *node_to_va(struct rb_node *n)
2056{
2057 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2058}
2059
2060/**
2061 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2062 * @end: target address
2063 * @pnext: out arg for the next vmap_area
2064 * @pprev: out arg for the previous vmap_area
2065 *
2066 * Returns: %true if either or both of next and prev are found,
2067 * %false if no vmap_area exists
2068 *
2069 * Find vmap_areas end addresses of which enclose @end. ie. if not
2070 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2071 */
2072static bool pvm_find_next_prev(unsigned long end,
2073 struct vmap_area **pnext,
2074 struct vmap_area **pprev)
2075{
2076 struct rb_node *n = vmap_area_root.rb_node;
2077 struct vmap_area *va = NULL;
2078
2079 while (n) {
2080 va = rb_entry(n, struct vmap_area, rb_node);
2081 if (end < va->va_end)
2082 n = n->rb_left;
2083 else if (end > va->va_end)
2084 n = n->rb_right;
2085 else
2086 break;
2087 }
2088
2089 if (!va)
2090 return false;
2091
2092 if (va->va_end > end) {
2093 *pnext = va;
2094 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2095 } else {
2096 *pprev = va;
2097 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2098 }
2099 return true;
2100}
2101
2102/**
2103 * pvm_determine_end - find the highest aligned address between two vmap_areas
2104 * @pnext: in/out arg for the next vmap_area
2105 * @pprev: in/out arg for the previous vmap_area
2106 * @align: alignment
2107 *
2108 * Returns: determined end address
2109 *
2110 * Find the highest aligned address between *@pnext and *@pprev below
2111 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2112 * down address is between the end addresses of the two vmap_areas.
2113 *
2114 * Please note that the address returned by this function may fall
2115 * inside *@pnext vmap_area. The caller is responsible for checking
2116 * that.
2117 */
2118static unsigned long pvm_determine_end(struct vmap_area **pnext,
2119 struct vmap_area **pprev,
2120 unsigned long align)
2121{
2122 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2123 unsigned long addr;
2124
2125 if (*pnext)
2126 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2127 else
2128 addr = vmalloc_end;
2129
2130 while (*pprev && (*pprev)->va_end > addr) {
2131 *pnext = *pprev;
2132 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2133 }
2134
2135 return addr;
2136}
2137
2138/**
2139 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2140 * @offsets: array containing offset of each area
2141 * @sizes: array containing size of each area
2142 * @nr_vms: the number of areas to allocate
2143 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2144 * @gfp_mask: allocation mask
2145 *
2146 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2147 * vm_structs on success, %NULL on failure
2148 *
2149 * Percpu allocator wants to use congruent vm areas so that it can
2150 * maintain the offsets among percpu areas. This function allocates
2151 * congruent vmalloc areas for it. These areas tend to be scattered
2152 * pretty far, distance between two areas easily going up to
2153 * gigabytes. To avoid interacting with regular vmallocs, these areas
2154 * are allocated from top.
2155 *
2156 * Despite its complicated look, this allocator is rather simple. It
2157 * does everything top-down and scans areas from the end looking for
2158 * matching slot. While scanning, if any of the areas overlaps with
2159 * existing vmap_area, the base address is pulled down to fit the
2160 * area. Scanning is repeated till all the areas fit and then all
2161 * necessary data structres are inserted and the result is returned.
2162 */
2163struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2164 const size_t *sizes, int nr_vms,
2165 size_t align, gfp_t gfp_mask)
2166{
2167 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2168 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2169 struct vmap_area **vas, *prev, *next;
2170 struct vm_struct **vms;
2171 int area, area2, last_area, term_area;
2172 unsigned long base, start, end, last_end;
2173 bool purged = false;
2174
2175 gfp_mask &= GFP_RECLAIM_MASK;
2176
2177 /* verify parameters and allocate data structures */
2178 BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2179 for (last_area = 0, area = 0; area < nr_vms; area++) {
2180 start = offsets[area];
2181 end = start + sizes[area];
2182
2183 /* is everything aligned properly? */
2184 BUG_ON(!IS_ALIGNED(offsets[area], align));
2185 BUG_ON(!IS_ALIGNED(sizes[area], align));
2186
2187 /* detect the area with the highest address */
2188 if (start > offsets[last_area])
2189 last_area = area;
2190
2191 for (area2 = 0; area2 < nr_vms; area2++) {
2192 unsigned long start2 = offsets[area2];
2193 unsigned long end2 = start2 + sizes[area2];
2194
2195 if (area2 == area)
2196 continue;
2197
2198 BUG_ON(start2 >= start && start2 < end);
2199 BUG_ON(end2 <= end && end2 > start);
2200 }
2201 }
2202 last_end = offsets[last_area] + sizes[last_area];
2203
2204 if (vmalloc_end - vmalloc_start < last_end) {
2205 WARN_ON(true);
2206 return NULL;
2207 }
2208
2209 vms = kzalloc(sizeof(vms[0]) * nr_vms, gfp_mask);
2210 vas = kzalloc(sizeof(vas[0]) * nr_vms, gfp_mask);
2211 if (!vas || !vms)
2212 goto err_free;
2213
2214 for (area = 0; area < nr_vms; area++) {
2215 vas[area] = kzalloc(sizeof(struct vmap_area), gfp_mask);
2216 vms[area] = kzalloc(sizeof(struct vm_struct), gfp_mask);
2217 if (!vas[area] || !vms[area])
2218 goto err_free;
2219 }
2220retry:
2221 spin_lock(&vmap_area_lock);
2222
2223 /* start scanning - we scan from the top, begin with the last area */
2224 area = term_area = last_area;
2225 start = offsets[area];
2226 end = start + sizes[area];
2227
2228 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2229 base = vmalloc_end - last_end;
2230 goto found;
2231 }
2232 base = pvm_determine_end(&next, &prev, align) - end;
2233
2234 while (true) {
2235 BUG_ON(next && next->va_end <= base + end);
2236 BUG_ON(prev && prev->va_end > base + end);
2237
2238 /*
2239 * base might have underflowed, add last_end before
2240 * comparing.
2241 */
2242 if (base + last_end < vmalloc_start + last_end) {
2243 spin_unlock(&vmap_area_lock);
2244 if (!purged) {
2245 purge_vmap_area_lazy();
2246 purged = true;
2247 goto retry;
2248 }
2249 goto err_free;
2250 }
2251
2252 /*
2253 * If next overlaps, move base downwards so that it's
2254 * right below next and then recheck.
2255 */
2256 if (next && next->va_start < base + end) {
2257 base = pvm_determine_end(&next, &prev, align) - end;
2258 term_area = area;
2259 continue;
2260 }
2261
2262 /*
2263 * If prev overlaps, shift down next and prev and move
2264 * base so that it's right below new next and then
2265 * recheck.
2266 */
2267 if (prev && prev->va_end > base + start) {
2268 next = prev;
2269 prev = node_to_va(rb_prev(&next->rb_node));
2270 base = pvm_determine_end(&next, &prev, align) - end;
2271 term_area = area;
2272 continue;
2273 }
2274
2275 /*
2276 * This area fits, move on to the previous one. If
2277 * the previous one is the terminal one, we're done.
2278 */
2279 area = (area + nr_vms - 1) % nr_vms;
2280 if (area == term_area)
2281 break;
2282 start = offsets[area];
2283 end = start + sizes[area];
2284 pvm_find_next_prev(base + end, &next, &prev);
2285 }
2286found:
2287 /* we've found a fitting base, insert all va's */
2288 for (area = 0; area < nr_vms; area++) {
2289 struct vmap_area *va = vas[area];
2290
2291 va->va_start = base + offsets[area];
2292 va->va_end = va->va_start + sizes[area];
2293 __insert_vmap_area(va);
2294 }
2295
2296 vmap_area_pcpu_hole = base + offsets[last_area];
2297
2298 spin_unlock(&vmap_area_lock);
2299
2300 /* insert all vm's */
2301 for (area = 0; area < nr_vms; area++)
2302 insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2303 pcpu_get_vm_areas);
2304
2305 kfree(vas);
2306 return vms;
2307
2308err_free:
2309 for (area = 0; area < nr_vms; area++) {
2310 if (vas)
2311 kfree(vas[area]);
2312 if (vms)
2313 kfree(vms[area]);
2314 }
2315 kfree(vas);
2316 kfree(vms);
2317 return NULL;
2318}
2319
2320/**
2321 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2322 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2323 * @nr_vms: the number of allocated areas
2324 *
2325 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2326 */
2327void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2328{
2329 int i;
2330
2331 for (i = 0; i < nr_vms; i++)
2332 free_vm_area(vms[i]);
2333 kfree(vms);
2334}
a10aa579
CL
2335
2336#ifdef CONFIG_PROC_FS
2337static void *s_start(struct seq_file *m, loff_t *pos)
2338{
2339 loff_t n = *pos;
2340 struct vm_struct *v;
2341
2342 read_lock(&vmlist_lock);
2343 v = vmlist;
2344 while (n > 0 && v) {
2345 n--;
2346 v = v->next;
2347 }
2348 if (!n)
2349 return v;
2350
2351 return NULL;
2352
2353}
2354
2355static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2356{
2357 struct vm_struct *v = p;
2358
2359 ++*pos;
2360 return v->next;
2361}
2362
2363static void s_stop(struct seq_file *m, void *p)
2364{
2365 read_unlock(&vmlist_lock);
2366}
2367
a47a126a
ED
2368static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2369{
2370 if (NUMA_BUILD) {
2371 unsigned int nr, *counters = m->private;
2372
2373 if (!counters)
2374 return;
2375
2376 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2377
2378 for (nr = 0; nr < v->nr_pages; nr++)
2379 counters[page_to_nid(v->pages[nr])]++;
2380
2381 for_each_node_state(nr, N_HIGH_MEMORY)
2382 if (counters[nr])
2383 seq_printf(m, " N%u=%u", nr, counters[nr]);
2384 }
2385}
2386
a10aa579
CL
2387static int s_show(struct seq_file *m, void *p)
2388{
2389 struct vm_struct *v = p;
2390
2391 seq_printf(m, "0x%p-0x%p %7ld",
2392 v->addr, v->addr + v->size, v->size);
2393
23016969 2394 if (v->caller) {
9c246247 2395 char buff[KSYM_SYMBOL_LEN];
23016969
CL
2396
2397 seq_putc(m, ' ');
2398 sprint_symbol(buff, (unsigned long)v->caller);
2399 seq_puts(m, buff);
2400 }
2401
a10aa579
CL
2402 if (v->nr_pages)
2403 seq_printf(m, " pages=%d", v->nr_pages);
2404
2405 if (v->phys_addr)
2406 seq_printf(m, " phys=%lx", v->phys_addr);
2407
2408 if (v->flags & VM_IOREMAP)
2409 seq_printf(m, " ioremap");
2410
2411 if (v->flags & VM_ALLOC)
2412 seq_printf(m, " vmalloc");
2413
2414 if (v->flags & VM_MAP)
2415 seq_printf(m, " vmap");
2416
2417 if (v->flags & VM_USERMAP)
2418 seq_printf(m, " user");
2419
2420 if (v->flags & VM_VPAGES)
2421 seq_printf(m, " vpages");
2422
a47a126a 2423 show_numa_info(m, v);
a10aa579
CL
2424 seq_putc(m, '\n');
2425 return 0;
2426}
2427
5f6a6a9c 2428static const struct seq_operations vmalloc_op = {
a10aa579
CL
2429 .start = s_start,
2430 .next = s_next,
2431 .stop = s_stop,
2432 .show = s_show,
2433};
5f6a6a9c
AD
2434
2435static int vmalloc_open(struct inode *inode, struct file *file)
2436{
2437 unsigned int *ptr = NULL;
2438 int ret;
2439
2440 if (NUMA_BUILD)
2441 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2442 ret = seq_open(file, &vmalloc_op);
2443 if (!ret) {
2444 struct seq_file *m = file->private_data;
2445 m->private = ptr;
2446 } else
2447 kfree(ptr);
2448 return ret;
2449}
2450
2451static const struct file_operations proc_vmalloc_operations = {
2452 .open = vmalloc_open,
2453 .read = seq_read,
2454 .llseek = seq_lseek,
2455 .release = seq_release_private,
2456};
2457
2458static int __init proc_vmalloc_init(void)
2459{
2460 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2461 return 0;
2462}
2463module_init(proc_vmalloc_init);
a10aa579
CL
2464#endif
2465