mm: filemap: move radix tree hole searching here
[linux-2.6-block.git] / mm / truncate.c
CommitLineData
1da177e4
LT
1/*
2 * mm/truncate.c - code for taking down pages from address_spaces
3 *
4 * Copyright (C) 2002, Linus Torvalds
5 *
e1f8e874 6 * 10Sep2002 Andrew Morton
1da177e4
LT
7 * Initial version.
8 */
9
10#include <linux/kernel.h>
4af3c9cc 11#include <linux/backing-dev.h>
5a0e3ad6 12#include <linux/gfp.h>
1da177e4 13#include <linux/mm.h>
0fd0e6b0 14#include <linux/swap.h>
b95f1b31 15#include <linux/export.h>
1da177e4 16#include <linux/pagemap.h>
01f2705d 17#include <linux/highmem.h>
1da177e4 18#include <linux/pagevec.h>
e08748ce 19#include <linux/task_io_accounting_ops.h>
1da177e4 20#include <linux/buffer_head.h> /* grr. try_to_release_page,
aaa4059b 21 do_invalidatepage */
c515e1fd 22#include <linux/cleancache.h>
ba470de4 23#include "internal.h"
1da177e4
LT
24
25
cf9a2ae8 26/**
28bc44d7 27 * do_invalidatepage - invalidate part or all of a page
cf9a2ae8 28 * @page: the page which is affected
d47992f8
LC
29 * @offset: start of the range to invalidate
30 * @length: length of the range to invalidate
cf9a2ae8
DH
31 *
32 * do_invalidatepage() is called when all or part of the page has become
33 * invalidated by a truncate operation.
34 *
35 * do_invalidatepage() does not have to release all buffers, but it must
36 * ensure that no dirty buffer is left outside @offset and that no I/O
37 * is underway against any of the blocks which are outside the truncation
38 * point. Because the caller is about to free (and possibly reuse) those
39 * blocks on-disk.
40 */
d47992f8
LC
41void do_invalidatepage(struct page *page, unsigned int offset,
42 unsigned int length)
cf9a2ae8 43{
d47992f8
LC
44 void (*invalidatepage)(struct page *, unsigned int, unsigned int);
45
cf9a2ae8 46 invalidatepage = page->mapping->a_ops->invalidatepage;
9361401e 47#ifdef CONFIG_BLOCK
cf9a2ae8
DH
48 if (!invalidatepage)
49 invalidatepage = block_invalidatepage;
9361401e 50#endif
cf9a2ae8 51 if (invalidatepage)
d47992f8 52 (*invalidatepage)(page, offset, length);
cf9a2ae8
DH
53}
54
ecdfc978
LT
55/*
56 * This cancels just the dirty bit on the kernel page itself, it
57 * does NOT actually remove dirty bits on any mmap's that may be
58 * around. It also leaves the page tagged dirty, so any sync
59 * activity will still find it on the dirty lists, and in particular,
60 * clear_page_dirty_for_io() will still look at the dirty bits in
61 * the VM.
62 *
63 * Doing this should *normally* only ever be done when a page
64 * is truncated, and is not actually mapped anywhere at all. However,
65 * fs/buffer.c does this when it notices that somebody has cleaned
66 * out all the buffers on a page without actually doing it through
67 * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
68 */
fba2591b
LT
69void cancel_dirty_page(struct page *page, unsigned int account_size)
70{
8368e328
LT
71 if (TestClearPageDirty(page)) {
72 struct address_space *mapping = page->mapping;
73 if (mapping && mapping_cap_account_dirty(mapping)) {
74 dec_zone_page_state(page, NR_FILE_DIRTY);
c9e51e41
PZ
75 dec_bdi_stat(mapping->backing_dev_info,
76 BDI_RECLAIMABLE);
8368e328
LT
77 if (account_size)
78 task_io_account_cancelled_write(account_size);
79 }
3e67c098 80 }
fba2591b 81}
8368e328 82EXPORT_SYMBOL(cancel_dirty_page);
fba2591b 83
1da177e4
LT
84/*
85 * If truncate cannot remove the fs-private metadata from the page, the page
62e1c553 86 * becomes orphaned. It will be left on the LRU and may even be mapped into
54cb8821 87 * user pagetables if we're racing with filemap_fault().
1da177e4
LT
88 *
89 * We need to bale out if page->mapping is no longer equal to the original
90 * mapping. This happens a) when the VM reclaimed the page while we waited on
fc0ecff6 91 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
1da177e4
LT
92 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
93 */
750b4987 94static int
1da177e4
LT
95truncate_complete_page(struct address_space *mapping, struct page *page)
96{
97 if (page->mapping != mapping)
750b4987 98 return -EIO;
1da177e4 99
266cf658 100 if (page_has_private(page))
d47992f8 101 do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1da177e4 102
a2b34564
BS
103 cancel_dirty_page(page, PAGE_CACHE_SIZE);
104
1da177e4 105 ClearPageMappedToDisk(page);
5adc7b51 106 delete_from_page_cache(page);
750b4987 107 return 0;
1da177e4
LT
108}
109
110/*
fc0ecff6 111 * This is for invalidate_mapping_pages(). That function can be called at
1da177e4 112 * any time, and is not supposed to throw away dirty pages. But pages can
0fd0e6b0
NP
113 * be marked dirty at any time too, so use remove_mapping which safely
114 * discards clean, unused pages.
1da177e4
LT
115 *
116 * Returns non-zero if the page was successfully invalidated.
117 */
118static int
119invalidate_complete_page(struct address_space *mapping, struct page *page)
120{
0fd0e6b0
NP
121 int ret;
122
1da177e4
LT
123 if (page->mapping != mapping)
124 return 0;
125
266cf658 126 if (page_has_private(page) && !try_to_release_page(page, 0))
1da177e4
LT
127 return 0;
128
0fd0e6b0 129 ret = remove_mapping(mapping, page);
0fd0e6b0
NP
130
131 return ret;
1da177e4
LT
132}
133
750b4987
NP
134int truncate_inode_page(struct address_space *mapping, struct page *page)
135{
136 if (page_mapped(page)) {
137 unmap_mapping_range(mapping,
138 (loff_t)page->index << PAGE_CACHE_SHIFT,
139 PAGE_CACHE_SIZE, 0);
140 }
141 return truncate_complete_page(mapping, page);
142}
143
25718736
AK
144/*
145 * Used to get rid of pages on hardware memory corruption.
146 */
147int generic_error_remove_page(struct address_space *mapping, struct page *page)
148{
149 if (!mapping)
150 return -EINVAL;
151 /*
152 * Only punch for normal data pages for now.
153 * Handling other types like directories would need more auditing.
154 */
155 if (!S_ISREG(mapping->host->i_mode))
156 return -EIO;
157 return truncate_inode_page(mapping, page);
158}
159EXPORT_SYMBOL(generic_error_remove_page);
160
83f78668
WF
161/*
162 * Safely invalidate one page from its pagecache mapping.
163 * It only drops clean, unused pages. The page must be locked.
164 *
165 * Returns 1 if the page is successfully invalidated, otherwise 0.
166 */
167int invalidate_inode_page(struct page *page)
168{
169 struct address_space *mapping = page_mapping(page);
170 if (!mapping)
171 return 0;
172 if (PageDirty(page) || PageWriteback(page))
173 return 0;
174 if (page_mapped(page))
175 return 0;
176 return invalidate_complete_page(mapping, page);
177}
178
1da177e4 179/**
73c1e204 180 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
1da177e4
LT
181 * @mapping: mapping to truncate
182 * @lstart: offset from which to truncate
5a720394 183 * @lend: offset to which to truncate (inclusive)
1da177e4 184 *
d7339071 185 * Truncate the page cache, removing the pages that are between
5a720394
LC
186 * specified offsets (and zeroing out partial pages
187 * if lstart or lend + 1 is not page aligned).
1da177e4
LT
188 *
189 * Truncate takes two passes - the first pass is nonblocking. It will not
190 * block on page locks and it will not block on writeback. The second pass
191 * will wait. This is to prevent as much IO as possible in the affected region.
192 * The first pass will remove most pages, so the search cost of the second pass
193 * is low.
194 *
1da177e4
LT
195 * We pass down the cache-hot hint to the page freeing code. Even if the
196 * mapping is large, it is probably the case that the final pages are the most
197 * recently touched, and freeing happens in ascending file offset order.
5a720394
LC
198 *
199 * Note that since ->invalidatepage() accepts range to invalidate
200 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
201 * page aligned properly.
1da177e4 202 */
d7339071
HR
203void truncate_inode_pages_range(struct address_space *mapping,
204 loff_t lstart, loff_t lend)
1da177e4 205{
5a720394
LC
206 pgoff_t start; /* inclusive */
207 pgoff_t end; /* exclusive */
208 unsigned int partial_start; /* inclusive */
209 unsigned int partial_end; /* exclusive */
210 struct pagevec pvec;
211 pgoff_t index;
212 int i;
1da177e4 213
3167760f 214 cleancache_invalidate_inode(mapping);
1da177e4
LT
215 if (mapping->nrpages == 0)
216 return;
217
5a720394
LC
218 /* Offsets within partial pages */
219 partial_start = lstart & (PAGE_CACHE_SIZE - 1);
220 partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
221
222 /*
223 * 'start' and 'end' always covers the range of pages to be fully
224 * truncated. Partial pages are covered with 'partial_start' at the
225 * start of the range and 'partial_end' at the end of the range.
226 * Note that 'end' is exclusive while 'lend' is inclusive.
227 */
228 start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
229 if (lend == -1)
230 /*
231 * lend == -1 indicates end-of-file so we have to set 'end'
232 * to the highest possible pgoff_t and since the type is
233 * unsigned we're using -1.
234 */
235 end = -1;
236 else
237 end = (lend + 1) >> PAGE_CACHE_SHIFT;
d7339071 238
1da177e4 239 pagevec_init(&pvec, 0);
b85e0eff 240 index = start;
5a720394
LC
241 while (index < end && pagevec_lookup(&pvec, mapping, index,
242 min(end - index, (pgoff_t)PAGEVEC_SIZE))) {
e5598f8b 243 mem_cgroup_uncharge_start();
1da177e4
LT
244 for (i = 0; i < pagevec_count(&pvec); i++) {
245 struct page *page = pvec.pages[i];
1da177e4 246
b85e0eff
HD
247 /* We rely upon deletion not changing page->index */
248 index = page->index;
5a720394 249 if (index >= end)
d7339071 250 break;
d7339071 251
529ae9aa 252 if (!trylock_page(page))
1da177e4 253 continue;
b85e0eff 254 WARN_ON(page->index != index);
1da177e4
LT
255 if (PageWriteback(page)) {
256 unlock_page(page);
257 continue;
258 }
750b4987 259 truncate_inode_page(mapping, page);
1da177e4
LT
260 unlock_page(page);
261 }
262 pagevec_release(&pvec);
e5598f8b 263 mem_cgroup_uncharge_end();
1da177e4 264 cond_resched();
b85e0eff 265 index++;
1da177e4
LT
266 }
267
5a720394 268 if (partial_start) {
1da177e4
LT
269 struct page *page = find_lock_page(mapping, start - 1);
270 if (page) {
5a720394
LC
271 unsigned int top = PAGE_CACHE_SIZE;
272 if (start > end) {
273 /* Truncation within a single page */
274 top = partial_end;
275 partial_end = 0;
276 }
1da177e4 277 wait_on_page_writeback(page);
5a720394
LC
278 zero_user_segment(page, partial_start, top);
279 cleancache_invalidate_page(mapping, page);
280 if (page_has_private(page))
281 do_invalidatepage(page, partial_start,
282 top - partial_start);
1da177e4
LT
283 unlock_page(page);
284 page_cache_release(page);
285 }
286 }
5a720394
LC
287 if (partial_end) {
288 struct page *page = find_lock_page(mapping, end);
289 if (page) {
290 wait_on_page_writeback(page);
291 zero_user_segment(page, 0, partial_end);
292 cleancache_invalidate_page(mapping, page);
293 if (page_has_private(page))
294 do_invalidatepage(page, 0,
295 partial_end);
296 unlock_page(page);
297 page_cache_release(page);
298 }
299 }
300 /*
301 * If the truncation happened within a single page no pages
302 * will be released, just zeroed, so we can bail out now.
303 */
304 if (start >= end)
305 return;
1da177e4 306
b85e0eff 307 index = start;
1da177e4
LT
308 for ( ; ; ) {
309 cond_resched();
b85e0eff 310 if (!pagevec_lookup(&pvec, mapping, index,
5a720394 311 min(end - index, (pgoff_t)PAGEVEC_SIZE))) {
b85e0eff 312 if (index == start)
1da177e4 313 break;
b85e0eff 314 index = start;
1da177e4
LT
315 continue;
316 }
5a720394 317 if (index == start && pvec.pages[0]->index >= end) {
d7339071
HR
318 pagevec_release(&pvec);
319 break;
320 }
569b846d 321 mem_cgroup_uncharge_start();
1da177e4
LT
322 for (i = 0; i < pagevec_count(&pvec); i++) {
323 struct page *page = pvec.pages[i];
324
b85e0eff
HD
325 /* We rely upon deletion not changing page->index */
326 index = page->index;
5a720394 327 if (index >= end)
d7339071 328 break;
b85e0eff 329
1da177e4 330 lock_page(page);
b85e0eff 331 WARN_ON(page->index != index);
1da177e4 332 wait_on_page_writeback(page);
750b4987 333 truncate_inode_page(mapping, page);
1da177e4
LT
334 unlock_page(page);
335 }
336 pagevec_release(&pvec);
569b846d 337 mem_cgroup_uncharge_end();
b85e0eff 338 index++;
1da177e4 339 }
3167760f 340 cleancache_invalidate_inode(mapping);
1da177e4 341}
d7339071 342EXPORT_SYMBOL(truncate_inode_pages_range);
1da177e4 343
d7339071
HR
344/**
345 * truncate_inode_pages - truncate *all* the pages from an offset
346 * @mapping: mapping to truncate
347 * @lstart: offset from which to truncate
348 *
1b1dcc1b 349 * Called under (and serialised by) inode->i_mutex.
08142579
JK
350 *
351 * Note: When this function returns, there can be a page in the process of
352 * deletion (inside __delete_from_page_cache()) in the specified range. Thus
353 * mapping->nrpages can be non-zero when this function returns even after
354 * truncation of the whole mapping.
d7339071
HR
355 */
356void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
357{
358 truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
359}
1da177e4
LT
360EXPORT_SYMBOL(truncate_inode_pages);
361
28697355
MW
362/**
363 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
364 * @mapping: the address_space which holds the pages to invalidate
365 * @start: the offset 'from' which to invalidate
366 * @end: the offset 'to' which to invalidate (inclusive)
367 *
368 * This function only removes the unlocked pages, if you want to
369 * remove all the pages of one inode, you must call truncate_inode_pages.
370 *
371 * invalidate_mapping_pages() will not block on IO activity. It will not
372 * invalidate pages which are dirty, locked, under writeback or mapped into
373 * pagetables.
374 */
375unsigned long invalidate_mapping_pages(struct address_space *mapping,
31560180 376 pgoff_t start, pgoff_t end)
1da177e4
LT
377{
378 struct pagevec pvec;
b85e0eff 379 pgoff_t index = start;
31560180
MK
380 unsigned long ret;
381 unsigned long count = 0;
1da177e4
LT
382 int i;
383
31475dd6
HD
384 /*
385 * Note: this function may get called on a shmem/tmpfs mapping:
386 * pagevec_lookup() might then return 0 prematurely (because it
387 * got a gangful of swap entries); but it's hardly worth worrying
388 * about - it can rarely have anything to free from such a mapping
389 * (most pages are dirty), and already skips over any difficulties.
390 */
391
1da177e4 392 pagevec_init(&pvec, 0);
b85e0eff
HD
393 while (index <= end && pagevec_lookup(&pvec, mapping, index,
394 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
569b846d 395 mem_cgroup_uncharge_start();
1da177e4
LT
396 for (i = 0; i < pagevec_count(&pvec); i++) {
397 struct page *page = pvec.pages[i];
e0f23603 398
b85e0eff 399 /* We rely upon deletion not changing page->index */
e0f23603 400 index = page->index;
b85e0eff
HD
401 if (index > end)
402 break;
e0f23603 403
b85e0eff
HD
404 if (!trylock_page(page))
405 continue;
406 WARN_ON(page->index != index);
31560180 407 ret = invalidate_inode_page(page);
1da177e4 408 unlock_page(page);
31560180
MK
409 /*
410 * Invalidation is a hint that the page is no longer
411 * of interest and try to speed up its reclaim.
412 */
413 if (!ret)
414 deactivate_page(page);
415 count += ret;
1da177e4
LT
416 }
417 pagevec_release(&pvec);
569b846d 418 mem_cgroup_uncharge_end();
28697355 419 cond_resched();
b85e0eff 420 index++;
1da177e4 421 }
31560180 422 return count;
1da177e4 423}
54bc4855 424EXPORT_SYMBOL(invalidate_mapping_pages);
1da177e4 425
bd4c8ce4
AM
426/*
427 * This is like invalidate_complete_page(), except it ignores the page's
428 * refcount. We do this because invalidate_inode_pages2() needs stronger
429 * invalidation guarantees, and cannot afford to leave pages behind because
2706a1b8
AB
430 * shrink_page_list() has a temp ref on them, or because they're transiently
431 * sitting in the lru_cache_add() pagevecs.
bd4c8ce4
AM
432 */
433static int
434invalidate_complete_page2(struct address_space *mapping, struct page *page)
435{
436 if (page->mapping != mapping)
437 return 0;
438
266cf658 439 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
bd4c8ce4
AM
440 return 0;
441
19fd6231 442 spin_lock_irq(&mapping->tree_lock);
bd4c8ce4
AM
443 if (PageDirty(page))
444 goto failed;
445
266cf658 446 BUG_ON(page_has_private(page));
e64a782f 447 __delete_from_page_cache(page);
19fd6231 448 spin_unlock_irq(&mapping->tree_lock);
e767e056 449 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
450
451 if (mapping->a_ops->freepage)
452 mapping->a_ops->freepage(page);
453
bd4c8ce4
AM
454 page_cache_release(page); /* pagecache ref */
455 return 1;
456failed:
19fd6231 457 spin_unlock_irq(&mapping->tree_lock);
bd4c8ce4
AM
458 return 0;
459}
460
e3db7691
TM
461static int do_launder_page(struct address_space *mapping, struct page *page)
462{
463 if (!PageDirty(page))
464 return 0;
465 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
466 return 0;
467 return mapping->a_ops->launder_page(page);
468}
469
1da177e4
LT
470/**
471 * invalidate_inode_pages2_range - remove range of pages from an address_space
67be2dd1 472 * @mapping: the address_space
1da177e4
LT
473 * @start: the page offset 'from' which to invalidate
474 * @end: the page offset 'to' which to invalidate (inclusive)
475 *
476 * Any pages which are found to be mapped into pagetables are unmapped prior to
477 * invalidation.
478 *
6ccfa806 479 * Returns -EBUSY if any pages could not be invalidated.
1da177e4
LT
480 */
481int invalidate_inode_pages2_range(struct address_space *mapping,
482 pgoff_t start, pgoff_t end)
483{
484 struct pagevec pvec;
b85e0eff 485 pgoff_t index;
1da177e4
LT
486 int i;
487 int ret = 0;
0dd1334f 488 int ret2 = 0;
1da177e4 489 int did_range_unmap = 0;
1da177e4 490
3167760f 491 cleancache_invalidate_inode(mapping);
1da177e4 492 pagevec_init(&pvec, 0);
b85e0eff
HD
493 index = start;
494 while (index <= end && pagevec_lookup(&pvec, mapping, index,
495 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
569b846d 496 mem_cgroup_uncharge_start();
7b965e08 497 for (i = 0; i < pagevec_count(&pvec); i++) {
1da177e4 498 struct page *page = pvec.pages[i];
b85e0eff
HD
499
500 /* We rely upon deletion not changing page->index */
501 index = page->index;
502 if (index > end)
503 break;
1da177e4
LT
504
505 lock_page(page);
b85e0eff 506 WARN_ON(page->index != index);
1da177e4
LT
507 if (page->mapping != mapping) {
508 unlock_page(page);
509 continue;
510 }
1da177e4 511 wait_on_page_writeback(page);
d00806b1 512 if (page_mapped(page)) {
1da177e4
LT
513 if (!did_range_unmap) {
514 /*
515 * Zap the rest of the file in one hit.
516 */
517 unmap_mapping_range(mapping,
b85e0eff
HD
518 (loff_t)index << PAGE_CACHE_SHIFT,
519 (loff_t)(1 + end - index)
520 << PAGE_CACHE_SHIFT,
1da177e4
LT
521 0);
522 did_range_unmap = 1;
523 } else {
524 /*
525 * Just zap this page
526 */
527 unmap_mapping_range(mapping,
b85e0eff
HD
528 (loff_t)index << PAGE_CACHE_SHIFT,
529 PAGE_CACHE_SIZE, 0);
1da177e4
LT
530 }
531 }
d00806b1 532 BUG_ON(page_mapped(page));
0dd1334f
HH
533 ret2 = do_launder_page(mapping, page);
534 if (ret2 == 0) {
535 if (!invalidate_complete_page2(mapping, page))
6ccfa806 536 ret2 = -EBUSY;
0dd1334f
HH
537 }
538 if (ret2 < 0)
539 ret = ret2;
1da177e4
LT
540 unlock_page(page);
541 }
542 pagevec_release(&pvec);
569b846d 543 mem_cgroup_uncharge_end();
1da177e4 544 cond_resched();
b85e0eff 545 index++;
1da177e4 546 }
3167760f 547 cleancache_invalidate_inode(mapping);
1da177e4
LT
548 return ret;
549}
550EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
551
552/**
553 * invalidate_inode_pages2 - remove all pages from an address_space
67be2dd1 554 * @mapping: the address_space
1da177e4
LT
555 *
556 * Any pages which are found to be mapped into pagetables are unmapped prior to
557 * invalidation.
558 *
e9de25dd 559 * Returns -EBUSY if any pages could not be invalidated.
1da177e4
LT
560 */
561int invalidate_inode_pages2(struct address_space *mapping)
562{
563 return invalidate_inode_pages2_range(mapping, 0, -1);
564}
565EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
25d9e2d1 566
567/**
568 * truncate_pagecache - unmap and remove pagecache that has been truncated
569 * @inode: inode
8a549bea 570 * @newsize: new file size
25d9e2d1 571 *
572 * inode's new i_size must already be written before truncate_pagecache
573 * is called.
574 *
575 * This function should typically be called before the filesystem
576 * releases resources associated with the freed range (eg. deallocates
577 * blocks). This way, pagecache will always stay logically coherent
578 * with on-disk format, and the filesystem would not have to deal with
579 * situations such as writepage being called for a page that has already
580 * had its underlying blocks deallocated.
581 */
7caef267 582void truncate_pagecache(struct inode *inode, loff_t newsize)
25d9e2d1 583{
cedabed4 584 struct address_space *mapping = inode->i_mapping;
8a549bea 585 loff_t holebegin = round_up(newsize, PAGE_SIZE);
cedabed4
OH
586
587 /*
588 * unmap_mapping_range is called twice, first simply for
589 * efficiency so that truncate_inode_pages does fewer
590 * single-page unmaps. However after this first call, and
591 * before truncate_inode_pages finishes, it is possible for
592 * private pages to be COWed, which remain after
593 * truncate_inode_pages finishes, hence the second
594 * unmap_mapping_range call must be made for correctness.
595 */
8a549bea
HD
596 unmap_mapping_range(mapping, holebegin, 0, 1);
597 truncate_inode_pages(mapping, newsize);
598 unmap_mapping_range(mapping, holebegin, 0, 1);
25d9e2d1 599}
600EXPORT_SYMBOL(truncate_pagecache);
601
2c27c65e
CH
602/**
603 * truncate_setsize - update inode and pagecache for a new file size
604 * @inode: inode
605 * @newsize: new file size
606 *
382e27da
JK
607 * truncate_setsize updates i_size and performs pagecache truncation (if
608 * necessary) to @newsize. It will be typically be called from the filesystem's
609 * setattr function when ATTR_SIZE is passed in.
2c27c65e 610 *
382e27da
JK
611 * Must be called with inode_mutex held and before all filesystem specific
612 * block truncation has been performed.
2c27c65e
CH
613 */
614void truncate_setsize(struct inode *inode, loff_t newsize)
615{
2c27c65e 616 i_size_write(inode, newsize);
7caef267 617 truncate_pagecache(inode, newsize);
2c27c65e
CH
618}
619EXPORT_SYMBOL(truncate_setsize);
620
623e3db9
HD
621/**
622 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
623 * @inode: inode
624 * @lstart: offset of beginning of hole
625 * @lend: offset of last byte of hole
626 *
627 * This function should typically be called before the filesystem
628 * releases resources associated with the freed range (eg. deallocates
629 * blocks). This way, pagecache will always stay logically coherent
630 * with on-disk format, and the filesystem would not have to deal with
631 * situations such as writepage being called for a page that has already
632 * had its underlying blocks deallocated.
633 */
634void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
635{
636 struct address_space *mapping = inode->i_mapping;
637 loff_t unmap_start = round_up(lstart, PAGE_SIZE);
638 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
639 /*
640 * This rounding is currently just for example: unmap_mapping_range
641 * expands its hole outwards, whereas we want it to contract the hole
642 * inwards. However, existing callers of truncate_pagecache_range are
5a720394
LC
643 * doing their own page rounding first. Note that unmap_mapping_range
644 * allows holelen 0 for all, and we allow lend -1 for end of file.
623e3db9
HD
645 */
646
647 /*
648 * Unlike in truncate_pagecache, unmap_mapping_range is called only
649 * once (before truncating pagecache), and without "even_cows" flag:
650 * hole-punching should not remove private COWed pages from the hole.
651 */
652 if ((u64)unmap_end > (u64)unmap_start)
653 unmap_mapping_range(mapping, unmap_start,
654 1 + unmap_end - unmap_start, 0);
655 truncate_inode_pages_range(mapping, lstart, lend);
656}
657EXPORT_SYMBOL(truncate_pagecache_range);