mm: truncate functions are in truncate.c
[linux-2.6-block.git] / mm / truncate.c
CommitLineData
1da177e4
LT
1/*
2 * mm/truncate.c - code for taking down pages from address_spaces
3 *
4 * Copyright (C) 2002, Linus Torvalds
5 *
e1f8e874 6 * 10Sep2002 Andrew Morton
1da177e4
LT
7 * Initial version.
8 */
9
10#include <linux/kernel.h>
4af3c9cc 11#include <linux/backing-dev.h>
5a0e3ad6 12#include <linux/gfp.h>
1da177e4 13#include <linux/mm.h>
0fd0e6b0 14#include <linux/swap.h>
1da177e4
LT
15#include <linux/module.h>
16#include <linux/pagemap.h>
01f2705d 17#include <linux/highmem.h>
1da177e4 18#include <linux/pagevec.h>
e08748ce 19#include <linux/task_io_accounting_ops.h>
1da177e4 20#include <linux/buffer_head.h> /* grr. try_to_release_page,
aaa4059b 21 do_invalidatepage */
c515e1fd 22#include <linux/cleancache.h>
ba470de4 23#include "internal.h"
1da177e4
LT
24
25
cf9a2ae8 26/**
28bc44d7 27 * do_invalidatepage - invalidate part or all of a page
cf9a2ae8
DH
28 * @page: the page which is affected
29 * @offset: the index of the truncation point
30 *
31 * do_invalidatepage() is called when all or part of the page has become
32 * invalidated by a truncate operation.
33 *
34 * do_invalidatepage() does not have to release all buffers, but it must
35 * ensure that no dirty buffer is left outside @offset and that no I/O
36 * is underway against any of the blocks which are outside the truncation
37 * point. Because the caller is about to free (and possibly reuse) those
38 * blocks on-disk.
39 */
40void do_invalidatepage(struct page *page, unsigned long offset)
41{
42 void (*invalidatepage)(struct page *, unsigned long);
43 invalidatepage = page->mapping->a_ops->invalidatepage;
9361401e 44#ifdef CONFIG_BLOCK
cf9a2ae8
DH
45 if (!invalidatepage)
46 invalidatepage = block_invalidatepage;
9361401e 47#endif
cf9a2ae8
DH
48 if (invalidatepage)
49 (*invalidatepage)(page, offset);
50}
51
1da177e4
LT
52static inline void truncate_partial_page(struct page *page, unsigned partial)
53{
eebd2aa3 54 zero_user_segment(page, partial, PAGE_CACHE_SIZE);
c515e1fd 55 cleancache_flush_page(page->mapping, page);
266cf658 56 if (page_has_private(page))
1da177e4
LT
57 do_invalidatepage(page, partial);
58}
59
ecdfc978
LT
60/*
61 * This cancels just the dirty bit on the kernel page itself, it
62 * does NOT actually remove dirty bits on any mmap's that may be
63 * around. It also leaves the page tagged dirty, so any sync
64 * activity will still find it on the dirty lists, and in particular,
65 * clear_page_dirty_for_io() will still look at the dirty bits in
66 * the VM.
67 *
68 * Doing this should *normally* only ever be done when a page
69 * is truncated, and is not actually mapped anywhere at all. However,
70 * fs/buffer.c does this when it notices that somebody has cleaned
71 * out all the buffers on a page without actually doing it through
72 * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
73 */
fba2591b
LT
74void cancel_dirty_page(struct page *page, unsigned int account_size)
75{
8368e328
LT
76 if (TestClearPageDirty(page)) {
77 struct address_space *mapping = page->mapping;
78 if (mapping && mapping_cap_account_dirty(mapping)) {
79 dec_zone_page_state(page, NR_FILE_DIRTY);
c9e51e41
PZ
80 dec_bdi_stat(mapping->backing_dev_info,
81 BDI_RECLAIMABLE);
8368e328
LT
82 if (account_size)
83 task_io_account_cancelled_write(account_size);
84 }
3e67c098 85 }
fba2591b 86}
8368e328 87EXPORT_SYMBOL(cancel_dirty_page);
fba2591b 88
1da177e4
LT
89/*
90 * If truncate cannot remove the fs-private metadata from the page, the page
62e1c553 91 * becomes orphaned. It will be left on the LRU and may even be mapped into
54cb8821 92 * user pagetables if we're racing with filemap_fault().
1da177e4
LT
93 *
94 * We need to bale out if page->mapping is no longer equal to the original
95 * mapping. This happens a) when the VM reclaimed the page while we waited on
fc0ecff6 96 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
1da177e4
LT
97 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
98 */
750b4987 99static int
1da177e4
LT
100truncate_complete_page(struct address_space *mapping, struct page *page)
101{
102 if (page->mapping != mapping)
750b4987 103 return -EIO;
1da177e4 104
266cf658 105 if (page_has_private(page))
1da177e4
LT
106 do_invalidatepage(page, 0);
107
a2b34564
BS
108 cancel_dirty_page(page, PAGE_CACHE_SIZE);
109
ba470de4 110 clear_page_mlock(page);
1da177e4 111 ClearPageMappedToDisk(page);
5adc7b51 112 delete_from_page_cache(page);
750b4987 113 return 0;
1da177e4
LT
114}
115
116/*
fc0ecff6 117 * This is for invalidate_mapping_pages(). That function can be called at
1da177e4 118 * any time, and is not supposed to throw away dirty pages. But pages can
0fd0e6b0
NP
119 * be marked dirty at any time too, so use remove_mapping which safely
120 * discards clean, unused pages.
1da177e4
LT
121 *
122 * Returns non-zero if the page was successfully invalidated.
123 */
124static int
125invalidate_complete_page(struct address_space *mapping, struct page *page)
126{
0fd0e6b0
NP
127 int ret;
128
1da177e4
LT
129 if (page->mapping != mapping)
130 return 0;
131
266cf658 132 if (page_has_private(page) && !try_to_release_page(page, 0))
1da177e4
LT
133 return 0;
134
ba470de4 135 clear_page_mlock(page);
0fd0e6b0 136 ret = remove_mapping(mapping, page);
0fd0e6b0
NP
137
138 return ret;
1da177e4
LT
139}
140
750b4987
NP
141int truncate_inode_page(struct address_space *mapping, struct page *page)
142{
143 if (page_mapped(page)) {
144 unmap_mapping_range(mapping,
145 (loff_t)page->index << PAGE_CACHE_SHIFT,
146 PAGE_CACHE_SIZE, 0);
147 }
148 return truncate_complete_page(mapping, page);
149}
150
25718736
AK
151/*
152 * Used to get rid of pages on hardware memory corruption.
153 */
154int generic_error_remove_page(struct address_space *mapping, struct page *page)
155{
156 if (!mapping)
157 return -EINVAL;
158 /*
159 * Only punch for normal data pages for now.
160 * Handling other types like directories would need more auditing.
161 */
162 if (!S_ISREG(mapping->host->i_mode))
163 return -EIO;
164 return truncate_inode_page(mapping, page);
165}
166EXPORT_SYMBOL(generic_error_remove_page);
167
83f78668
WF
168/*
169 * Safely invalidate one page from its pagecache mapping.
170 * It only drops clean, unused pages. The page must be locked.
171 *
172 * Returns 1 if the page is successfully invalidated, otherwise 0.
173 */
174int invalidate_inode_page(struct page *page)
175{
176 struct address_space *mapping = page_mapping(page);
177 if (!mapping)
178 return 0;
179 if (PageDirty(page) || PageWriteback(page))
180 return 0;
181 if (page_mapped(page))
182 return 0;
183 return invalidate_complete_page(mapping, page);
184}
185
1da177e4 186/**
0643245f 187 * truncate_inode_pages - truncate range of pages specified by start & end byte offsets
1da177e4
LT
188 * @mapping: mapping to truncate
189 * @lstart: offset from which to truncate
d7339071 190 * @lend: offset to which to truncate
1da177e4 191 *
d7339071
HR
192 * Truncate the page cache, removing the pages that are between
193 * specified offsets (and zeroing out partial page
194 * (if lstart is not page aligned)).
1da177e4
LT
195 *
196 * Truncate takes two passes - the first pass is nonblocking. It will not
197 * block on page locks and it will not block on writeback. The second pass
198 * will wait. This is to prevent as much IO as possible in the affected region.
199 * The first pass will remove most pages, so the search cost of the second pass
200 * is low.
201 *
202 * When looking at page->index outside the page lock we need to be careful to
203 * copy it into a local to avoid races (it could change at any time).
204 *
205 * We pass down the cache-hot hint to the page freeing code. Even if the
206 * mapping is large, it is probably the case that the final pages are the most
207 * recently touched, and freeing happens in ascending file offset order.
1da177e4 208 */
d7339071
HR
209void truncate_inode_pages_range(struct address_space *mapping,
210 loff_t lstart, loff_t lend)
1da177e4
LT
211{
212 const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
d7339071 213 pgoff_t end;
1da177e4
LT
214 const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
215 struct pagevec pvec;
216 pgoff_t next;
217 int i;
218
c515e1fd 219 cleancache_flush_inode(mapping);
1da177e4
LT
220 if (mapping->nrpages == 0)
221 return;
222
d7339071
HR
223 BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
224 end = (lend >> PAGE_CACHE_SHIFT);
225
1da177e4
LT
226 pagevec_init(&pvec, 0);
227 next = start;
d7339071
HR
228 while (next <= end &&
229 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
e5598f8b 230 mem_cgroup_uncharge_start();
1da177e4
LT
231 for (i = 0; i < pagevec_count(&pvec); i++) {
232 struct page *page = pvec.pages[i];
233 pgoff_t page_index = page->index;
234
d7339071
HR
235 if (page_index > end) {
236 next = page_index;
237 break;
238 }
239
1da177e4
LT
240 if (page_index > next)
241 next = page_index;
242 next++;
529ae9aa 243 if (!trylock_page(page))
1da177e4
LT
244 continue;
245 if (PageWriteback(page)) {
246 unlock_page(page);
247 continue;
248 }
750b4987 249 truncate_inode_page(mapping, page);
1da177e4
LT
250 unlock_page(page);
251 }
252 pagevec_release(&pvec);
e5598f8b 253 mem_cgroup_uncharge_end();
1da177e4
LT
254 cond_resched();
255 }
256
257 if (partial) {
258 struct page *page = find_lock_page(mapping, start - 1);
259 if (page) {
260 wait_on_page_writeback(page);
261 truncate_partial_page(page, partial);
262 unlock_page(page);
263 page_cache_release(page);
264 }
265 }
266
267 next = start;
268 for ( ; ; ) {
269 cond_resched();
270 if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
271 if (next == start)
272 break;
273 next = start;
274 continue;
275 }
d7339071
HR
276 if (pvec.pages[0]->index > end) {
277 pagevec_release(&pvec);
278 break;
279 }
569b846d 280 mem_cgroup_uncharge_start();
1da177e4
LT
281 for (i = 0; i < pagevec_count(&pvec); i++) {
282 struct page *page = pvec.pages[i];
283
d7339071
HR
284 if (page->index > end)
285 break;
1da177e4
LT
286 lock_page(page);
287 wait_on_page_writeback(page);
750b4987 288 truncate_inode_page(mapping, page);
1da177e4
LT
289 if (page->index > next)
290 next = page->index;
291 next++;
1da177e4
LT
292 unlock_page(page);
293 }
294 pagevec_release(&pvec);
569b846d 295 mem_cgroup_uncharge_end();
1da177e4 296 }
c515e1fd 297 cleancache_flush_inode(mapping);
1da177e4 298}
d7339071 299EXPORT_SYMBOL(truncate_inode_pages_range);
1da177e4 300
d7339071
HR
301/**
302 * truncate_inode_pages - truncate *all* the pages from an offset
303 * @mapping: mapping to truncate
304 * @lstart: offset from which to truncate
305 *
1b1dcc1b 306 * Called under (and serialised by) inode->i_mutex.
08142579
JK
307 *
308 * Note: When this function returns, there can be a page in the process of
309 * deletion (inside __delete_from_page_cache()) in the specified range. Thus
310 * mapping->nrpages can be non-zero when this function returns even after
311 * truncation of the whole mapping.
d7339071
HR
312 */
313void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
314{
315 truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
316}
1da177e4
LT
317EXPORT_SYMBOL(truncate_inode_pages);
318
28697355
MW
319/**
320 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
321 * @mapping: the address_space which holds the pages to invalidate
322 * @start: the offset 'from' which to invalidate
323 * @end: the offset 'to' which to invalidate (inclusive)
324 *
325 * This function only removes the unlocked pages, if you want to
326 * remove all the pages of one inode, you must call truncate_inode_pages.
327 *
328 * invalidate_mapping_pages() will not block on IO activity. It will not
329 * invalidate pages which are dirty, locked, under writeback or mapped into
330 * pagetables.
331 */
332unsigned long invalidate_mapping_pages(struct address_space *mapping,
31560180 333 pgoff_t start, pgoff_t end)
1da177e4
LT
334{
335 struct pagevec pvec;
336 pgoff_t next = start;
31560180
MK
337 unsigned long ret;
338 unsigned long count = 0;
1da177e4
LT
339 int i;
340
341 pagevec_init(&pvec, 0);
342 while (next <= end &&
343 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
569b846d 344 mem_cgroup_uncharge_start();
1da177e4
LT
345 for (i = 0; i < pagevec_count(&pvec); i++) {
346 struct page *page = pvec.pages[i];
e0f23603
N
347 pgoff_t index;
348 int lock_failed;
1da177e4 349
529ae9aa 350 lock_failed = !trylock_page(page);
e0f23603
N
351
352 /*
353 * We really shouldn't be looking at the ->index of an
354 * unlocked page. But we're not allowed to lock these
355 * pages. So we rely upon nobody altering the ->index
356 * of this (pinned-by-us) page.
357 */
358 index = page->index;
359 if (index > next)
360 next = index;
1da177e4 361 next++;
e0f23603
N
362 if (lock_failed)
363 continue;
364
31560180 365 ret = invalidate_inode_page(page);
1da177e4 366 unlock_page(page);
31560180
MK
367 /*
368 * Invalidation is a hint that the page is no longer
369 * of interest and try to speed up its reclaim.
370 */
371 if (!ret)
372 deactivate_page(page);
373 count += ret;
1da177e4
LT
374 if (next > end)
375 break;
376 }
377 pagevec_release(&pvec);
569b846d 378 mem_cgroup_uncharge_end();
28697355 379 cond_resched();
1da177e4 380 }
31560180 381 return count;
1da177e4 382}
54bc4855 383EXPORT_SYMBOL(invalidate_mapping_pages);
1da177e4 384
bd4c8ce4
AM
385/*
386 * This is like invalidate_complete_page(), except it ignores the page's
387 * refcount. We do this because invalidate_inode_pages2() needs stronger
388 * invalidation guarantees, and cannot afford to leave pages behind because
2706a1b8
AB
389 * shrink_page_list() has a temp ref on them, or because they're transiently
390 * sitting in the lru_cache_add() pagevecs.
bd4c8ce4
AM
391 */
392static int
393invalidate_complete_page2(struct address_space *mapping, struct page *page)
394{
395 if (page->mapping != mapping)
396 return 0;
397
266cf658 398 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
bd4c8ce4
AM
399 return 0;
400
19fd6231 401 spin_lock_irq(&mapping->tree_lock);
bd4c8ce4
AM
402 if (PageDirty(page))
403 goto failed;
404
ba470de4 405 clear_page_mlock(page);
266cf658 406 BUG_ON(page_has_private(page));
e64a782f 407 __delete_from_page_cache(page);
19fd6231 408 spin_unlock_irq(&mapping->tree_lock);
e767e056 409 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
410
411 if (mapping->a_ops->freepage)
412 mapping->a_ops->freepage(page);
413
bd4c8ce4
AM
414 page_cache_release(page); /* pagecache ref */
415 return 1;
416failed:
19fd6231 417 spin_unlock_irq(&mapping->tree_lock);
bd4c8ce4
AM
418 return 0;
419}
420
e3db7691
TM
421static int do_launder_page(struct address_space *mapping, struct page *page)
422{
423 if (!PageDirty(page))
424 return 0;
425 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
426 return 0;
427 return mapping->a_ops->launder_page(page);
428}
429
1da177e4
LT
430/**
431 * invalidate_inode_pages2_range - remove range of pages from an address_space
67be2dd1 432 * @mapping: the address_space
1da177e4
LT
433 * @start: the page offset 'from' which to invalidate
434 * @end: the page offset 'to' which to invalidate (inclusive)
435 *
436 * Any pages which are found to be mapped into pagetables are unmapped prior to
437 * invalidation.
438 *
6ccfa806 439 * Returns -EBUSY if any pages could not be invalidated.
1da177e4
LT
440 */
441int invalidate_inode_pages2_range(struct address_space *mapping,
442 pgoff_t start, pgoff_t end)
443{
444 struct pagevec pvec;
445 pgoff_t next;
446 int i;
447 int ret = 0;
0dd1334f 448 int ret2 = 0;
1da177e4
LT
449 int did_range_unmap = 0;
450 int wrapped = 0;
451
c515e1fd 452 cleancache_flush_inode(mapping);
1da177e4
LT
453 pagevec_init(&pvec, 0);
454 next = start;
7b965e08 455 while (next <= end && !wrapped &&
1da177e4
LT
456 pagevec_lookup(&pvec, mapping, next,
457 min(end - next, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
569b846d 458 mem_cgroup_uncharge_start();
7b965e08 459 for (i = 0; i < pagevec_count(&pvec); i++) {
1da177e4
LT
460 struct page *page = pvec.pages[i];
461 pgoff_t page_index;
1da177e4
LT
462
463 lock_page(page);
464 if (page->mapping != mapping) {
465 unlock_page(page);
466 continue;
467 }
468 page_index = page->index;
469 next = page_index + 1;
470 if (next == 0)
471 wrapped = 1;
472 if (page_index > end) {
473 unlock_page(page);
474 break;
475 }
476 wait_on_page_writeback(page);
d00806b1 477 if (page_mapped(page)) {
1da177e4
LT
478 if (!did_range_unmap) {
479 /*
480 * Zap the rest of the file in one hit.
481 */
482 unmap_mapping_range(mapping,
479ef592
OD
483 (loff_t)page_index<<PAGE_CACHE_SHIFT,
484 (loff_t)(end - page_index + 1)
1da177e4
LT
485 << PAGE_CACHE_SHIFT,
486 0);
487 did_range_unmap = 1;
488 } else {
489 /*
490 * Just zap this page
491 */
492 unmap_mapping_range(mapping,
479ef592 493 (loff_t)page_index<<PAGE_CACHE_SHIFT,
1da177e4
LT
494 PAGE_CACHE_SIZE, 0);
495 }
496 }
d00806b1 497 BUG_ON(page_mapped(page));
0dd1334f
HH
498 ret2 = do_launder_page(mapping, page);
499 if (ret2 == 0) {
500 if (!invalidate_complete_page2(mapping, page))
6ccfa806 501 ret2 = -EBUSY;
0dd1334f
HH
502 }
503 if (ret2 < 0)
504 ret = ret2;
1da177e4
LT
505 unlock_page(page);
506 }
507 pagevec_release(&pvec);
569b846d 508 mem_cgroup_uncharge_end();
1da177e4
LT
509 cond_resched();
510 }
c515e1fd 511 cleancache_flush_inode(mapping);
1da177e4
LT
512 return ret;
513}
514EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
515
516/**
517 * invalidate_inode_pages2 - remove all pages from an address_space
67be2dd1 518 * @mapping: the address_space
1da177e4
LT
519 *
520 * Any pages which are found to be mapped into pagetables are unmapped prior to
521 * invalidation.
522 *
e9de25dd 523 * Returns -EBUSY if any pages could not be invalidated.
1da177e4
LT
524 */
525int invalidate_inode_pages2(struct address_space *mapping)
526{
527 return invalidate_inode_pages2_range(mapping, 0, -1);
528}
529EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
25d9e2d1 530
531/**
532 * truncate_pagecache - unmap and remove pagecache that has been truncated
533 * @inode: inode
534 * @old: old file offset
535 * @new: new file offset
536 *
537 * inode's new i_size must already be written before truncate_pagecache
538 * is called.
539 *
540 * This function should typically be called before the filesystem
541 * releases resources associated with the freed range (eg. deallocates
542 * blocks). This way, pagecache will always stay logically coherent
543 * with on-disk format, and the filesystem would not have to deal with
544 * situations such as writepage being called for a page that has already
545 * had its underlying blocks deallocated.
546 */
547void truncate_pagecache(struct inode *inode, loff_t old, loff_t new)
548{
cedabed4
OH
549 struct address_space *mapping = inode->i_mapping;
550
551 /*
552 * unmap_mapping_range is called twice, first simply for
553 * efficiency so that truncate_inode_pages does fewer
554 * single-page unmaps. However after this first call, and
555 * before truncate_inode_pages finishes, it is possible for
556 * private pages to be COWed, which remain after
557 * truncate_inode_pages finishes, hence the second
558 * unmap_mapping_range call must be made for correctness.
559 */
560 unmap_mapping_range(mapping, new + PAGE_SIZE - 1, 0, 1);
561 truncate_inode_pages(mapping, new);
562 unmap_mapping_range(mapping, new + PAGE_SIZE - 1, 0, 1);
25d9e2d1 563}
564EXPORT_SYMBOL(truncate_pagecache);
565
2c27c65e
CH
566/**
567 * truncate_setsize - update inode and pagecache for a new file size
568 * @inode: inode
569 * @newsize: new file size
570 *
382e27da
JK
571 * truncate_setsize updates i_size and performs pagecache truncation (if
572 * necessary) to @newsize. It will be typically be called from the filesystem's
573 * setattr function when ATTR_SIZE is passed in.
2c27c65e 574 *
382e27da
JK
575 * Must be called with inode_mutex held and before all filesystem specific
576 * block truncation has been performed.
2c27c65e
CH
577 */
578void truncate_setsize(struct inode *inode, loff_t newsize)
579{
580 loff_t oldsize;
581
582 oldsize = inode->i_size;
583 i_size_write(inode, newsize);
584
585 truncate_pagecache(inode, oldsize, newsize);
586}
587EXPORT_SYMBOL(truncate_setsize);
588
25d9e2d1 589/**
590 * vmtruncate - unmap mappings "freed" by truncate() syscall
591 * @inode: inode of the file used
592 * @offset: file offset to start truncating
593 *
2c27c65e
CH
594 * This function is deprecated and truncate_setsize or truncate_pagecache
595 * should be used instead, together with filesystem specific block truncation.
25d9e2d1 596 */
597int vmtruncate(struct inode *inode, loff_t offset)
598{
25d9e2d1 599 int error;
600
2c27c65e 601 error = inode_newsize_ok(inode, offset);
25d9e2d1 602 if (error)
603 return error;
7bb46a67 604
2c27c65e 605 truncate_setsize(inode, offset);
25d9e2d1 606 if (inode->i_op->truncate)
607 inode->i_op->truncate(inode);
2c27c65e 608 return 0;
25d9e2d1 609}
610EXPORT_SYMBOL(vmtruncate);
5b8ba101
HD
611
612int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
613{
614 struct address_space *mapping = inode->i_mapping;
615
616 /*
617 * If the underlying filesystem is not going to provide
618 * a way to truncate a range of blocks (punch a hole) -
619 * we should return failure right now.
620 */
621 if (!inode->i_op->truncate_range)
622 return -ENOSYS;
623
624 mutex_lock(&inode->i_mutex);
bd5fe6c5 625 inode_dio_wait(inode);
5b8ba101 626 unmap_mapping_range(mapping, offset, (end - offset), 1);
5b8ba101 627 inode->i_op->truncate_range(inode, offset, end);
94c1e62d
HD
628 /* unmap again to remove racily COWed private pages */
629 unmap_mapping_range(mapping, offset, (end - offset), 1);
5b8ba101
HD
630 mutex_unlock(&inode->i_mutex);
631
632 return 0;
633}