mm: shmem: change remove_from_page_cache
[linux-2.6-block.git] / mm / truncate.c
CommitLineData
1da177e4
LT
1/*
2 * mm/truncate.c - code for taking down pages from address_spaces
3 *
4 * Copyright (C) 2002, Linus Torvalds
5 *
e1f8e874 6 * 10Sep2002 Andrew Morton
1da177e4
LT
7 * Initial version.
8 */
9
10#include <linux/kernel.h>
4af3c9cc 11#include <linux/backing-dev.h>
5a0e3ad6 12#include <linux/gfp.h>
1da177e4 13#include <linux/mm.h>
0fd0e6b0 14#include <linux/swap.h>
1da177e4
LT
15#include <linux/module.h>
16#include <linux/pagemap.h>
01f2705d 17#include <linux/highmem.h>
1da177e4 18#include <linux/pagevec.h>
e08748ce 19#include <linux/task_io_accounting_ops.h>
1da177e4 20#include <linux/buffer_head.h> /* grr. try_to_release_page,
aaa4059b 21 do_invalidatepage */
ba470de4 22#include "internal.h"
1da177e4
LT
23
24
cf9a2ae8 25/**
28bc44d7 26 * do_invalidatepage - invalidate part or all of a page
cf9a2ae8
DH
27 * @page: the page which is affected
28 * @offset: the index of the truncation point
29 *
30 * do_invalidatepage() is called when all or part of the page has become
31 * invalidated by a truncate operation.
32 *
33 * do_invalidatepage() does not have to release all buffers, but it must
34 * ensure that no dirty buffer is left outside @offset and that no I/O
35 * is underway against any of the blocks which are outside the truncation
36 * point. Because the caller is about to free (and possibly reuse) those
37 * blocks on-disk.
38 */
39void do_invalidatepage(struct page *page, unsigned long offset)
40{
41 void (*invalidatepage)(struct page *, unsigned long);
42 invalidatepage = page->mapping->a_ops->invalidatepage;
9361401e 43#ifdef CONFIG_BLOCK
cf9a2ae8
DH
44 if (!invalidatepage)
45 invalidatepage = block_invalidatepage;
9361401e 46#endif
cf9a2ae8
DH
47 if (invalidatepage)
48 (*invalidatepage)(page, offset);
49}
50
1da177e4
LT
51static inline void truncate_partial_page(struct page *page, unsigned partial)
52{
eebd2aa3 53 zero_user_segment(page, partial, PAGE_CACHE_SIZE);
266cf658 54 if (page_has_private(page))
1da177e4
LT
55 do_invalidatepage(page, partial);
56}
57
ecdfc978
LT
58/*
59 * This cancels just the dirty bit on the kernel page itself, it
60 * does NOT actually remove dirty bits on any mmap's that may be
61 * around. It also leaves the page tagged dirty, so any sync
62 * activity will still find it on the dirty lists, and in particular,
63 * clear_page_dirty_for_io() will still look at the dirty bits in
64 * the VM.
65 *
66 * Doing this should *normally* only ever be done when a page
67 * is truncated, and is not actually mapped anywhere at all. However,
68 * fs/buffer.c does this when it notices that somebody has cleaned
69 * out all the buffers on a page without actually doing it through
70 * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
71 */
fba2591b
LT
72void cancel_dirty_page(struct page *page, unsigned int account_size)
73{
8368e328
LT
74 if (TestClearPageDirty(page)) {
75 struct address_space *mapping = page->mapping;
76 if (mapping && mapping_cap_account_dirty(mapping)) {
77 dec_zone_page_state(page, NR_FILE_DIRTY);
c9e51e41
PZ
78 dec_bdi_stat(mapping->backing_dev_info,
79 BDI_RECLAIMABLE);
8368e328
LT
80 if (account_size)
81 task_io_account_cancelled_write(account_size);
82 }
3e67c098 83 }
fba2591b 84}
8368e328 85EXPORT_SYMBOL(cancel_dirty_page);
fba2591b 86
1da177e4
LT
87/*
88 * If truncate cannot remove the fs-private metadata from the page, the page
62e1c553 89 * becomes orphaned. It will be left on the LRU and may even be mapped into
54cb8821 90 * user pagetables if we're racing with filemap_fault().
1da177e4
LT
91 *
92 * We need to bale out if page->mapping is no longer equal to the original
93 * mapping. This happens a) when the VM reclaimed the page while we waited on
fc0ecff6 94 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
1da177e4
LT
95 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
96 */
750b4987 97static int
1da177e4
LT
98truncate_complete_page(struct address_space *mapping, struct page *page)
99{
100 if (page->mapping != mapping)
750b4987 101 return -EIO;
1da177e4 102
266cf658 103 if (page_has_private(page))
1da177e4
LT
104 do_invalidatepage(page, 0);
105
a2b34564
BS
106 cancel_dirty_page(page, PAGE_CACHE_SIZE);
107
ba470de4 108 clear_page_mlock(page);
787d2214 109 remove_from_page_cache(page);
1da177e4 110 ClearPageMappedToDisk(page);
1da177e4 111 page_cache_release(page); /* pagecache ref */
750b4987 112 return 0;
1da177e4
LT
113}
114
115/*
fc0ecff6 116 * This is for invalidate_mapping_pages(). That function can be called at
1da177e4 117 * any time, and is not supposed to throw away dirty pages. But pages can
0fd0e6b0
NP
118 * be marked dirty at any time too, so use remove_mapping which safely
119 * discards clean, unused pages.
1da177e4
LT
120 *
121 * Returns non-zero if the page was successfully invalidated.
122 */
123static int
124invalidate_complete_page(struct address_space *mapping, struct page *page)
125{
0fd0e6b0
NP
126 int ret;
127
1da177e4
LT
128 if (page->mapping != mapping)
129 return 0;
130
266cf658 131 if (page_has_private(page) && !try_to_release_page(page, 0))
1da177e4
LT
132 return 0;
133
ba470de4 134 clear_page_mlock(page);
0fd0e6b0 135 ret = remove_mapping(mapping, page);
0fd0e6b0
NP
136
137 return ret;
1da177e4
LT
138}
139
750b4987
NP
140int truncate_inode_page(struct address_space *mapping, struct page *page)
141{
142 if (page_mapped(page)) {
143 unmap_mapping_range(mapping,
144 (loff_t)page->index << PAGE_CACHE_SHIFT,
145 PAGE_CACHE_SIZE, 0);
146 }
147 return truncate_complete_page(mapping, page);
148}
149
25718736
AK
150/*
151 * Used to get rid of pages on hardware memory corruption.
152 */
153int generic_error_remove_page(struct address_space *mapping, struct page *page)
154{
155 if (!mapping)
156 return -EINVAL;
157 /*
158 * Only punch for normal data pages for now.
159 * Handling other types like directories would need more auditing.
160 */
161 if (!S_ISREG(mapping->host->i_mode))
162 return -EIO;
163 return truncate_inode_page(mapping, page);
164}
165EXPORT_SYMBOL(generic_error_remove_page);
166
83f78668
WF
167/*
168 * Safely invalidate one page from its pagecache mapping.
169 * It only drops clean, unused pages. The page must be locked.
170 *
171 * Returns 1 if the page is successfully invalidated, otherwise 0.
172 */
173int invalidate_inode_page(struct page *page)
174{
175 struct address_space *mapping = page_mapping(page);
176 if (!mapping)
177 return 0;
178 if (PageDirty(page) || PageWriteback(page))
179 return 0;
180 if (page_mapped(page))
181 return 0;
182 return invalidate_complete_page(mapping, page);
183}
184
1da177e4 185/**
0643245f 186 * truncate_inode_pages - truncate range of pages specified by start & end byte offsets
1da177e4
LT
187 * @mapping: mapping to truncate
188 * @lstart: offset from which to truncate
d7339071 189 * @lend: offset to which to truncate
1da177e4 190 *
d7339071
HR
191 * Truncate the page cache, removing the pages that are between
192 * specified offsets (and zeroing out partial page
193 * (if lstart is not page aligned)).
1da177e4
LT
194 *
195 * Truncate takes two passes - the first pass is nonblocking. It will not
196 * block on page locks and it will not block on writeback. The second pass
197 * will wait. This is to prevent as much IO as possible in the affected region.
198 * The first pass will remove most pages, so the search cost of the second pass
199 * is low.
200 *
201 * When looking at page->index outside the page lock we need to be careful to
202 * copy it into a local to avoid races (it could change at any time).
203 *
204 * We pass down the cache-hot hint to the page freeing code. Even if the
205 * mapping is large, it is probably the case that the final pages are the most
206 * recently touched, and freeing happens in ascending file offset order.
1da177e4 207 */
d7339071
HR
208void truncate_inode_pages_range(struct address_space *mapping,
209 loff_t lstart, loff_t lend)
1da177e4
LT
210{
211 const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
d7339071 212 pgoff_t end;
1da177e4
LT
213 const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
214 struct pagevec pvec;
215 pgoff_t next;
216 int i;
217
218 if (mapping->nrpages == 0)
219 return;
220
d7339071
HR
221 BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
222 end = (lend >> PAGE_CACHE_SHIFT);
223
1da177e4
LT
224 pagevec_init(&pvec, 0);
225 next = start;
d7339071
HR
226 while (next <= end &&
227 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
e5598f8b 228 mem_cgroup_uncharge_start();
1da177e4
LT
229 for (i = 0; i < pagevec_count(&pvec); i++) {
230 struct page *page = pvec.pages[i];
231 pgoff_t page_index = page->index;
232
d7339071
HR
233 if (page_index > end) {
234 next = page_index;
235 break;
236 }
237
1da177e4
LT
238 if (page_index > next)
239 next = page_index;
240 next++;
529ae9aa 241 if (!trylock_page(page))
1da177e4
LT
242 continue;
243 if (PageWriteback(page)) {
244 unlock_page(page);
245 continue;
246 }
750b4987 247 truncate_inode_page(mapping, page);
1da177e4
LT
248 unlock_page(page);
249 }
250 pagevec_release(&pvec);
e5598f8b 251 mem_cgroup_uncharge_end();
1da177e4
LT
252 cond_resched();
253 }
254
255 if (partial) {
256 struct page *page = find_lock_page(mapping, start - 1);
257 if (page) {
258 wait_on_page_writeback(page);
259 truncate_partial_page(page, partial);
260 unlock_page(page);
261 page_cache_release(page);
262 }
263 }
264
265 next = start;
266 for ( ; ; ) {
267 cond_resched();
268 if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
269 if (next == start)
270 break;
271 next = start;
272 continue;
273 }
d7339071
HR
274 if (pvec.pages[0]->index > end) {
275 pagevec_release(&pvec);
276 break;
277 }
569b846d 278 mem_cgroup_uncharge_start();
1da177e4
LT
279 for (i = 0; i < pagevec_count(&pvec); i++) {
280 struct page *page = pvec.pages[i];
281
d7339071
HR
282 if (page->index > end)
283 break;
1da177e4
LT
284 lock_page(page);
285 wait_on_page_writeback(page);
750b4987 286 truncate_inode_page(mapping, page);
1da177e4
LT
287 if (page->index > next)
288 next = page->index;
289 next++;
1da177e4
LT
290 unlock_page(page);
291 }
292 pagevec_release(&pvec);
569b846d 293 mem_cgroup_uncharge_end();
1da177e4
LT
294 }
295}
d7339071 296EXPORT_SYMBOL(truncate_inode_pages_range);
1da177e4 297
d7339071
HR
298/**
299 * truncate_inode_pages - truncate *all* the pages from an offset
300 * @mapping: mapping to truncate
301 * @lstart: offset from which to truncate
302 *
1b1dcc1b 303 * Called under (and serialised by) inode->i_mutex.
d7339071
HR
304 */
305void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
306{
307 truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
308}
1da177e4
LT
309EXPORT_SYMBOL(truncate_inode_pages);
310
28697355
MW
311/**
312 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
313 * @mapping: the address_space which holds the pages to invalidate
314 * @start: the offset 'from' which to invalidate
315 * @end: the offset 'to' which to invalidate (inclusive)
316 *
317 * This function only removes the unlocked pages, if you want to
318 * remove all the pages of one inode, you must call truncate_inode_pages.
319 *
320 * invalidate_mapping_pages() will not block on IO activity. It will not
321 * invalidate pages which are dirty, locked, under writeback or mapped into
322 * pagetables.
323 */
324unsigned long invalidate_mapping_pages(struct address_space *mapping,
325 pgoff_t start, pgoff_t end)
1da177e4
LT
326{
327 struct pagevec pvec;
328 pgoff_t next = start;
329 unsigned long ret = 0;
330 int i;
331
332 pagevec_init(&pvec, 0);
333 while (next <= end &&
334 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
569b846d 335 mem_cgroup_uncharge_start();
1da177e4
LT
336 for (i = 0; i < pagevec_count(&pvec); i++) {
337 struct page *page = pvec.pages[i];
e0f23603
N
338 pgoff_t index;
339 int lock_failed;
1da177e4 340
529ae9aa 341 lock_failed = !trylock_page(page);
e0f23603
N
342
343 /*
344 * We really shouldn't be looking at the ->index of an
345 * unlocked page. But we're not allowed to lock these
346 * pages. So we rely upon nobody altering the ->index
347 * of this (pinned-by-us) page.
348 */
349 index = page->index;
350 if (index > next)
351 next = index;
1da177e4 352 next++;
e0f23603
N
353 if (lock_failed)
354 continue;
355
83f78668
WF
356 ret += invalidate_inode_page(page);
357
1da177e4
LT
358 unlock_page(page);
359 if (next > end)
360 break;
361 }
362 pagevec_release(&pvec);
569b846d 363 mem_cgroup_uncharge_end();
28697355 364 cond_resched();
1da177e4
LT
365 }
366 return ret;
367}
54bc4855 368EXPORT_SYMBOL(invalidate_mapping_pages);
1da177e4 369
bd4c8ce4
AM
370/*
371 * This is like invalidate_complete_page(), except it ignores the page's
372 * refcount. We do this because invalidate_inode_pages2() needs stronger
373 * invalidation guarantees, and cannot afford to leave pages behind because
2706a1b8
AB
374 * shrink_page_list() has a temp ref on them, or because they're transiently
375 * sitting in the lru_cache_add() pagevecs.
bd4c8ce4
AM
376 */
377static int
378invalidate_complete_page2(struct address_space *mapping, struct page *page)
379{
380 if (page->mapping != mapping)
381 return 0;
382
266cf658 383 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
bd4c8ce4
AM
384 return 0;
385
19fd6231 386 spin_lock_irq(&mapping->tree_lock);
bd4c8ce4
AM
387 if (PageDirty(page))
388 goto failed;
389
ba470de4 390 clear_page_mlock(page);
266cf658 391 BUG_ON(page_has_private(page));
bd4c8ce4 392 __remove_from_page_cache(page);
19fd6231 393 spin_unlock_irq(&mapping->tree_lock);
e767e056 394 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
395
396 if (mapping->a_ops->freepage)
397 mapping->a_ops->freepage(page);
398
bd4c8ce4
AM
399 page_cache_release(page); /* pagecache ref */
400 return 1;
401failed:
19fd6231 402 spin_unlock_irq(&mapping->tree_lock);
bd4c8ce4
AM
403 return 0;
404}
405
e3db7691
TM
406static int do_launder_page(struct address_space *mapping, struct page *page)
407{
408 if (!PageDirty(page))
409 return 0;
410 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
411 return 0;
412 return mapping->a_ops->launder_page(page);
413}
414
1da177e4
LT
415/**
416 * invalidate_inode_pages2_range - remove range of pages from an address_space
67be2dd1 417 * @mapping: the address_space
1da177e4
LT
418 * @start: the page offset 'from' which to invalidate
419 * @end: the page offset 'to' which to invalidate (inclusive)
420 *
421 * Any pages which are found to be mapped into pagetables are unmapped prior to
422 * invalidation.
423 *
6ccfa806 424 * Returns -EBUSY if any pages could not be invalidated.
1da177e4
LT
425 */
426int invalidate_inode_pages2_range(struct address_space *mapping,
427 pgoff_t start, pgoff_t end)
428{
429 struct pagevec pvec;
430 pgoff_t next;
431 int i;
432 int ret = 0;
0dd1334f 433 int ret2 = 0;
1da177e4
LT
434 int did_range_unmap = 0;
435 int wrapped = 0;
436
437 pagevec_init(&pvec, 0);
438 next = start;
7b965e08 439 while (next <= end && !wrapped &&
1da177e4
LT
440 pagevec_lookup(&pvec, mapping, next,
441 min(end - next, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
569b846d 442 mem_cgroup_uncharge_start();
7b965e08 443 for (i = 0; i < pagevec_count(&pvec); i++) {
1da177e4
LT
444 struct page *page = pvec.pages[i];
445 pgoff_t page_index;
1da177e4
LT
446
447 lock_page(page);
448 if (page->mapping != mapping) {
449 unlock_page(page);
450 continue;
451 }
452 page_index = page->index;
453 next = page_index + 1;
454 if (next == 0)
455 wrapped = 1;
456 if (page_index > end) {
457 unlock_page(page);
458 break;
459 }
460 wait_on_page_writeback(page);
d00806b1 461 if (page_mapped(page)) {
1da177e4
LT
462 if (!did_range_unmap) {
463 /*
464 * Zap the rest of the file in one hit.
465 */
466 unmap_mapping_range(mapping,
479ef592
OD
467 (loff_t)page_index<<PAGE_CACHE_SHIFT,
468 (loff_t)(end - page_index + 1)
1da177e4
LT
469 << PAGE_CACHE_SHIFT,
470 0);
471 did_range_unmap = 1;
472 } else {
473 /*
474 * Just zap this page
475 */
476 unmap_mapping_range(mapping,
479ef592 477 (loff_t)page_index<<PAGE_CACHE_SHIFT,
1da177e4
LT
478 PAGE_CACHE_SIZE, 0);
479 }
480 }
d00806b1 481 BUG_ON(page_mapped(page));
0dd1334f
HH
482 ret2 = do_launder_page(mapping, page);
483 if (ret2 == 0) {
484 if (!invalidate_complete_page2(mapping, page))
6ccfa806 485 ret2 = -EBUSY;
0dd1334f
HH
486 }
487 if (ret2 < 0)
488 ret = ret2;
1da177e4
LT
489 unlock_page(page);
490 }
491 pagevec_release(&pvec);
569b846d 492 mem_cgroup_uncharge_end();
1da177e4
LT
493 cond_resched();
494 }
495 return ret;
496}
497EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
498
499/**
500 * invalidate_inode_pages2 - remove all pages from an address_space
67be2dd1 501 * @mapping: the address_space
1da177e4
LT
502 *
503 * Any pages which are found to be mapped into pagetables are unmapped prior to
504 * invalidation.
505 *
e9de25dd 506 * Returns -EBUSY if any pages could not be invalidated.
1da177e4
LT
507 */
508int invalidate_inode_pages2(struct address_space *mapping)
509{
510 return invalidate_inode_pages2_range(mapping, 0, -1);
511}
512EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
25d9e2d1 513
514/**
515 * truncate_pagecache - unmap and remove pagecache that has been truncated
516 * @inode: inode
517 * @old: old file offset
518 * @new: new file offset
519 *
520 * inode's new i_size must already be written before truncate_pagecache
521 * is called.
522 *
523 * This function should typically be called before the filesystem
524 * releases resources associated with the freed range (eg. deallocates
525 * blocks). This way, pagecache will always stay logically coherent
526 * with on-disk format, and the filesystem would not have to deal with
527 * situations such as writepage being called for a page that has already
528 * had its underlying blocks deallocated.
529 */
530void truncate_pagecache(struct inode *inode, loff_t old, loff_t new)
531{
cedabed4
OH
532 struct address_space *mapping = inode->i_mapping;
533
534 /*
535 * unmap_mapping_range is called twice, first simply for
536 * efficiency so that truncate_inode_pages does fewer
537 * single-page unmaps. However after this first call, and
538 * before truncate_inode_pages finishes, it is possible for
539 * private pages to be COWed, which remain after
540 * truncate_inode_pages finishes, hence the second
541 * unmap_mapping_range call must be made for correctness.
542 */
543 unmap_mapping_range(mapping, new + PAGE_SIZE - 1, 0, 1);
544 truncate_inode_pages(mapping, new);
545 unmap_mapping_range(mapping, new + PAGE_SIZE - 1, 0, 1);
25d9e2d1 546}
547EXPORT_SYMBOL(truncate_pagecache);
548
2c27c65e
CH
549/**
550 * truncate_setsize - update inode and pagecache for a new file size
551 * @inode: inode
552 * @newsize: new file size
553 *
382e27da
JK
554 * truncate_setsize updates i_size and performs pagecache truncation (if
555 * necessary) to @newsize. It will be typically be called from the filesystem's
556 * setattr function when ATTR_SIZE is passed in.
2c27c65e 557 *
382e27da
JK
558 * Must be called with inode_mutex held and before all filesystem specific
559 * block truncation has been performed.
2c27c65e
CH
560 */
561void truncate_setsize(struct inode *inode, loff_t newsize)
562{
563 loff_t oldsize;
564
565 oldsize = inode->i_size;
566 i_size_write(inode, newsize);
567
568 truncate_pagecache(inode, oldsize, newsize);
569}
570EXPORT_SYMBOL(truncate_setsize);
571
25d9e2d1 572/**
573 * vmtruncate - unmap mappings "freed" by truncate() syscall
574 * @inode: inode of the file used
575 * @offset: file offset to start truncating
576 *
2c27c65e
CH
577 * This function is deprecated and truncate_setsize or truncate_pagecache
578 * should be used instead, together with filesystem specific block truncation.
25d9e2d1 579 */
580int vmtruncate(struct inode *inode, loff_t offset)
581{
25d9e2d1 582 int error;
583
2c27c65e 584 error = inode_newsize_ok(inode, offset);
25d9e2d1 585 if (error)
586 return error;
7bb46a67 587
2c27c65e 588 truncate_setsize(inode, offset);
25d9e2d1 589 if (inode->i_op->truncate)
590 inode->i_op->truncate(inode);
2c27c65e 591 return 0;
25d9e2d1 592}
593EXPORT_SYMBOL(vmtruncate);