mm/madvise.c: fix coding-style errors
[linux-2.6-block.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
072441e2 17#include <linux/shmem_fs.h>
1da177e4 18#include <linux/blkdev.h>
20137a49 19#include <linux/random.h>
1da177e4
LT
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
5ad64688 24#include <linux/ksm.h>
1da177e4
LT
25#include <linux/rmap.h>
26#include <linux/security.h>
27#include <linux/backing-dev.h>
fc0abb14 28#include <linux/mutex.h>
c59ede7b 29#include <linux/capability.h>
1da177e4 30#include <linux/syscalls.h>
8a9f3ccd 31#include <linux/memcontrol.h>
66d7dd51 32#include <linux/poll.h>
72788c38 33#include <linux/oom.h>
38b5faf4
DM
34#include <linux/frontswap.h>
35#include <linux/swapfile.h>
f981c595 36#include <linux/export.h>
1da177e4
LT
37
38#include <asm/pgtable.h>
39#include <asm/tlbflush.h>
40#include <linux/swapops.h>
27a7faa0 41#include <linux/page_cgroup.h>
1da177e4 42
570a335b
HD
43static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 unsigned char);
45static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 46static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 47
38b5faf4 48DEFINE_SPINLOCK(swap_lock);
7c363b8c 49static unsigned int nr_swapfiles;
ec8acf20
SL
50atomic_long_t nr_swap_pages;
51/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 52long total_swap_pages;
78ecba08 53static int least_priority;
ec8acf20 54static atomic_t highest_priority_index = ATOMIC_INIT(-1);
1da177e4 55
1da177e4
LT
56static const char Bad_file[] = "Bad swap file entry ";
57static const char Unused_file[] = "Unused swap file entry ";
58static const char Bad_offset[] = "Bad swap offset entry ";
59static const char Unused_offset[] = "Unused swap offset entry ";
60
38b5faf4 61struct swap_list_t swap_list = {-1, -1};
1da177e4 62
38b5faf4 63struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 64
fc0abb14 65static DEFINE_MUTEX(swapon_mutex);
1da177e4 66
66d7dd51
KS
67static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
68/* Activity counter to indicate that a swapon or swapoff has occurred */
69static atomic_t proc_poll_event = ATOMIC_INIT(0);
70
8d69aaee 71static inline unsigned char swap_count(unsigned char ent)
355cfa73 72{
570a335b 73 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
355cfa73
KH
74}
75
efa90a98 76/* returns 1 if swap entry is freed */
c9e44410
KH
77static int
78__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
79{
efa90a98 80 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
81 struct page *page;
82 int ret = 0;
83
33806f06 84 page = find_get_page(swap_address_space(entry), entry.val);
c9e44410
KH
85 if (!page)
86 return 0;
87 /*
88 * This function is called from scan_swap_map() and it's called
89 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
90 * We have to use trylock for avoiding deadlock. This is a special
91 * case and you should use try_to_free_swap() with explicit lock_page()
92 * in usual operations.
93 */
94 if (trylock_page(page)) {
95 ret = try_to_free_swap(page);
96 unlock_page(page);
97 }
98 page_cache_release(page);
99 return ret;
100}
355cfa73 101
6a6ba831
HD
102/*
103 * swapon tell device that all the old swap contents can be discarded,
104 * to allow the swap device to optimize its wear-levelling.
105 */
106static int discard_swap(struct swap_info_struct *si)
107{
108 struct swap_extent *se;
9625a5f2
HD
109 sector_t start_block;
110 sector_t nr_blocks;
6a6ba831
HD
111 int err = 0;
112
9625a5f2
HD
113 /* Do not discard the swap header page! */
114 se = &si->first_swap_extent;
115 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
116 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
117 if (nr_blocks) {
118 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 119 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
120 if (err)
121 return err;
122 cond_resched();
123 }
6a6ba831 124
9625a5f2
HD
125 list_for_each_entry(se, &si->first_swap_extent.list, list) {
126 start_block = se->start_block << (PAGE_SHIFT - 9);
127 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
128
129 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 130 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
131 if (err)
132 break;
133
134 cond_resched();
135 }
136 return err; /* That will often be -EOPNOTSUPP */
137}
138
7992fde7
HD
139/*
140 * swap allocation tell device that a cluster of swap can now be discarded,
141 * to allow the swap device to optimize its wear-levelling.
142 */
143static void discard_swap_cluster(struct swap_info_struct *si,
144 pgoff_t start_page, pgoff_t nr_pages)
145{
146 struct swap_extent *se = si->curr_swap_extent;
147 int found_extent = 0;
148
149 while (nr_pages) {
150 struct list_head *lh;
151
152 if (se->start_page <= start_page &&
153 start_page < se->start_page + se->nr_pages) {
154 pgoff_t offset = start_page - se->start_page;
155 sector_t start_block = se->start_block + offset;
858a2990 156 sector_t nr_blocks = se->nr_pages - offset;
7992fde7
HD
157
158 if (nr_blocks > nr_pages)
159 nr_blocks = nr_pages;
160 start_page += nr_blocks;
161 nr_pages -= nr_blocks;
162
163 if (!found_extent++)
164 si->curr_swap_extent = se;
165
166 start_block <<= PAGE_SHIFT - 9;
167 nr_blocks <<= PAGE_SHIFT - 9;
168 if (blkdev_issue_discard(si->bdev, start_block,
dd3932ed 169 nr_blocks, GFP_NOIO, 0))
7992fde7
HD
170 break;
171 }
172
173 lh = se->list.next;
7992fde7
HD
174 se = list_entry(lh, struct swap_extent, list);
175 }
176}
177
178static int wait_for_discard(void *word)
179{
180 schedule();
181 return 0;
182}
183
048c27fd
HD
184#define SWAPFILE_CLUSTER 256
185#define LATENCY_LIMIT 256
186
24b8ff7c
CEB
187static unsigned long scan_swap_map(struct swap_info_struct *si,
188 unsigned char usage)
1da177e4 189{
ebebbbe9 190 unsigned long offset;
c60aa176 191 unsigned long scan_base;
7992fde7 192 unsigned long last_in_cluster = 0;
048c27fd 193 int latency_ration = LATENCY_LIMIT;
7992fde7 194 int found_free_cluster = 0;
7dfad418 195
886bb7e9 196 /*
7dfad418
HD
197 * We try to cluster swap pages by allocating them sequentially
198 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
199 * way, however, we resort to first-free allocation, starting
200 * a new cluster. This prevents us from scattering swap pages
201 * all over the entire swap partition, so that we reduce
202 * overall disk seek times between swap pages. -- sct
203 * But we do now try to find an empty cluster. -Andrea
c60aa176 204 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
205 */
206
52b7efdb 207 si->flags += SWP_SCANNING;
c60aa176 208 scan_base = offset = si->cluster_next;
ebebbbe9
HD
209
210 if (unlikely(!si->cluster_nr--)) {
211 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
212 si->cluster_nr = SWAPFILE_CLUSTER - 1;
213 goto checks;
214 }
dcf6b7dd 215 if (si->flags & SWP_PAGE_DISCARD) {
7992fde7
HD
216 /*
217 * Start range check on racing allocations, in case
218 * they overlap the cluster we eventually decide on
219 * (we scan without swap_lock to allow preemption).
220 * It's hardly conceivable that cluster_nr could be
221 * wrapped during our scan, but don't depend on it.
222 */
223 if (si->lowest_alloc)
224 goto checks;
225 si->lowest_alloc = si->max;
226 si->highest_alloc = 0;
227 }
ec8acf20 228 spin_unlock(&si->lock);
7dfad418 229
c60aa176
HD
230 /*
231 * If seek is expensive, start searching for new cluster from
232 * start of partition, to minimize the span of allocated swap.
233 * But if seek is cheap, search from our current position, so
234 * that swap is allocated from all over the partition: if the
235 * Flash Translation Layer only remaps within limited zones,
236 * we don't want to wear out the first zone too quickly.
237 */
238 if (!(si->flags & SWP_SOLIDSTATE))
239 scan_base = offset = si->lowest_bit;
7dfad418
HD
240 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
241
242 /* Locate the first empty (unaligned) cluster */
243 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 244 if (si->swap_map[offset])
7dfad418
HD
245 last_in_cluster = offset + SWAPFILE_CLUSTER;
246 else if (offset == last_in_cluster) {
ec8acf20 247 spin_lock(&si->lock);
ebebbbe9
HD
248 offset -= SWAPFILE_CLUSTER - 1;
249 si->cluster_next = offset;
250 si->cluster_nr = SWAPFILE_CLUSTER - 1;
7992fde7 251 found_free_cluster = 1;
ebebbbe9 252 goto checks;
1da177e4 253 }
048c27fd
HD
254 if (unlikely(--latency_ration < 0)) {
255 cond_resched();
256 latency_ration = LATENCY_LIMIT;
257 }
7dfad418 258 }
ebebbbe9
HD
259
260 offset = si->lowest_bit;
c60aa176
HD
261 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
262
263 /* Locate the first empty (unaligned) cluster */
264 for (; last_in_cluster < scan_base; offset++) {
265 if (si->swap_map[offset])
266 last_in_cluster = offset + SWAPFILE_CLUSTER;
267 else if (offset == last_in_cluster) {
ec8acf20 268 spin_lock(&si->lock);
c60aa176
HD
269 offset -= SWAPFILE_CLUSTER - 1;
270 si->cluster_next = offset;
271 si->cluster_nr = SWAPFILE_CLUSTER - 1;
272 found_free_cluster = 1;
273 goto checks;
274 }
275 if (unlikely(--latency_ration < 0)) {
276 cond_resched();
277 latency_ration = LATENCY_LIMIT;
278 }
279 }
280
281 offset = scan_base;
ec8acf20 282 spin_lock(&si->lock);
ebebbbe9 283 si->cluster_nr = SWAPFILE_CLUSTER - 1;
7992fde7 284 si->lowest_alloc = 0;
1da177e4 285 }
7dfad418 286
ebebbbe9
HD
287checks:
288 if (!(si->flags & SWP_WRITEOK))
52b7efdb 289 goto no_page;
7dfad418
HD
290 if (!si->highest_bit)
291 goto no_page;
ebebbbe9 292 if (offset > si->highest_bit)
c60aa176 293 scan_base = offset = si->lowest_bit;
c9e44410 294
b73d7fce
HD
295 /* reuse swap entry of cache-only swap if not busy. */
296 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 297 int swap_was_freed;
ec8acf20 298 spin_unlock(&si->lock);
c9e44410 299 swap_was_freed = __try_to_reclaim_swap(si, offset);
ec8acf20 300 spin_lock(&si->lock);
c9e44410
KH
301 /* entry was freed successfully, try to use this again */
302 if (swap_was_freed)
303 goto checks;
304 goto scan; /* check next one */
305 }
306
ebebbbe9
HD
307 if (si->swap_map[offset])
308 goto scan;
309
310 if (offset == si->lowest_bit)
311 si->lowest_bit++;
312 if (offset == si->highest_bit)
313 si->highest_bit--;
314 si->inuse_pages++;
315 if (si->inuse_pages == si->pages) {
316 si->lowest_bit = si->max;
317 si->highest_bit = 0;
1da177e4 318 }
253d553b 319 si->swap_map[offset] = usage;
ebebbbe9
HD
320 si->cluster_next = offset + 1;
321 si->flags -= SWP_SCANNING;
7992fde7
HD
322
323 if (si->lowest_alloc) {
324 /*
dcf6b7dd 325 * Only set when SWP_PAGE_DISCARD, and there's a scan
7992fde7
HD
326 * for a free cluster in progress or just completed.
327 */
328 if (found_free_cluster) {
329 /*
330 * To optimize wear-levelling, discard the
331 * old data of the cluster, taking care not to
332 * discard any of its pages that have already
333 * been allocated by racing tasks (offset has
334 * already stepped over any at the beginning).
335 */
336 if (offset < si->highest_alloc &&
337 si->lowest_alloc <= last_in_cluster)
338 last_in_cluster = si->lowest_alloc - 1;
339 si->flags |= SWP_DISCARDING;
ec8acf20 340 spin_unlock(&si->lock);
7992fde7
HD
341
342 if (offset < last_in_cluster)
343 discard_swap_cluster(si, offset,
344 last_in_cluster - offset + 1);
345
ec8acf20 346 spin_lock(&si->lock);
7992fde7
HD
347 si->lowest_alloc = 0;
348 si->flags &= ~SWP_DISCARDING;
349
350 smp_mb(); /* wake_up_bit advises this */
351 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
352
353 } else if (si->flags & SWP_DISCARDING) {
354 /*
355 * Delay using pages allocated by racing tasks
356 * until the whole discard has been issued. We
357 * could defer that delay until swap_writepage,
358 * but it's easier to keep this self-contained.
359 */
ec8acf20 360 spin_unlock(&si->lock);
7992fde7
HD
361 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
362 wait_for_discard, TASK_UNINTERRUPTIBLE);
ec8acf20 363 spin_lock(&si->lock);
7992fde7
HD
364 } else {
365 /*
366 * Note pages allocated by racing tasks while
367 * scan for a free cluster is in progress, so
368 * that its final discard can exclude them.
369 */
370 if (offset < si->lowest_alloc)
371 si->lowest_alloc = offset;
372 if (offset > si->highest_alloc)
373 si->highest_alloc = offset;
374 }
375 }
ebebbbe9 376 return offset;
7dfad418 377
ebebbbe9 378scan:
ec8acf20 379 spin_unlock(&si->lock);
7dfad418 380 while (++offset <= si->highest_bit) {
52b7efdb 381 if (!si->swap_map[offset]) {
ec8acf20 382 spin_lock(&si->lock);
52b7efdb
HD
383 goto checks;
384 }
c9e44410 385 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 386 spin_lock(&si->lock);
c9e44410
KH
387 goto checks;
388 }
048c27fd
HD
389 if (unlikely(--latency_ration < 0)) {
390 cond_resched();
391 latency_ration = LATENCY_LIMIT;
392 }
7dfad418 393 }
c60aa176
HD
394 offset = si->lowest_bit;
395 while (++offset < scan_base) {
396 if (!si->swap_map[offset]) {
ec8acf20 397 spin_lock(&si->lock);
c60aa176
HD
398 goto checks;
399 }
c9e44410 400 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 401 spin_lock(&si->lock);
c9e44410
KH
402 goto checks;
403 }
c60aa176
HD
404 if (unlikely(--latency_ration < 0)) {
405 cond_resched();
406 latency_ration = LATENCY_LIMIT;
407 }
408 }
ec8acf20 409 spin_lock(&si->lock);
7dfad418
HD
410
411no_page:
52b7efdb 412 si->flags -= SWP_SCANNING;
1da177e4
LT
413 return 0;
414}
415
416swp_entry_t get_swap_page(void)
417{
fb4f88dc
HD
418 struct swap_info_struct *si;
419 pgoff_t offset;
420 int type, next;
421 int wrapped = 0;
ec8acf20 422 int hp_index;
1da177e4 423
5d337b91 424 spin_lock(&swap_lock);
ec8acf20 425 if (atomic_long_read(&nr_swap_pages) <= 0)
fb4f88dc 426 goto noswap;
ec8acf20 427 atomic_long_dec(&nr_swap_pages);
fb4f88dc
HD
428
429 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
ec8acf20
SL
430 hp_index = atomic_xchg(&highest_priority_index, -1);
431 /*
432 * highest_priority_index records current highest priority swap
433 * type which just frees swap entries. If its priority is
434 * higher than that of swap_list.next swap type, we use it. It
435 * isn't protected by swap_lock, so it can be an invalid value
436 * if the corresponding swap type is swapoff. We double check
437 * the flags here. It's even possible the swap type is swapoff
438 * and swapon again and its priority is changed. In such rare
439 * case, low prority swap type might be used, but eventually
440 * high priority swap will be used after several rounds of
441 * swap.
442 */
443 if (hp_index != -1 && hp_index != type &&
444 swap_info[type]->prio < swap_info[hp_index]->prio &&
445 (swap_info[hp_index]->flags & SWP_WRITEOK)) {
446 type = hp_index;
447 swap_list.next = type;
448 }
449
efa90a98 450 si = swap_info[type];
fb4f88dc
HD
451 next = si->next;
452 if (next < 0 ||
efa90a98 453 (!wrapped && si->prio != swap_info[next]->prio)) {
fb4f88dc
HD
454 next = swap_list.head;
455 wrapped++;
1da177e4 456 }
fb4f88dc 457
ec8acf20
SL
458 spin_lock(&si->lock);
459 if (!si->highest_bit) {
460 spin_unlock(&si->lock);
fb4f88dc 461 continue;
ec8acf20
SL
462 }
463 if (!(si->flags & SWP_WRITEOK)) {
464 spin_unlock(&si->lock);
fb4f88dc 465 continue;
ec8acf20 466 }
fb4f88dc
HD
467
468 swap_list.next = next;
ec8acf20
SL
469
470 spin_unlock(&swap_lock);
355cfa73 471 /* This is called for allocating swap entry for cache */
253d553b 472 offset = scan_swap_map(si, SWAP_HAS_CACHE);
ec8acf20
SL
473 spin_unlock(&si->lock);
474 if (offset)
fb4f88dc 475 return swp_entry(type, offset);
ec8acf20 476 spin_lock(&swap_lock);
fb4f88dc 477 next = swap_list.next;
1da177e4 478 }
fb4f88dc 479
ec8acf20 480 atomic_long_inc(&nr_swap_pages);
fb4f88dc 481noswap:
5d337b91 482 spin_unlock(&swap_lock);
fb4f88dc 483 return (swp_entry_t) {0};
1da177e4
LT
484}
485
910321ea
HD
486/* The only caller of this function is now susupend routine */
487swp_entry_t get_swap_page_of_type(int type)
488{
489 struct swap_info_struct *si;
490 pgoff_t offset;
491
910321ea 492 si = swap_info[type];
ec8acf20 493 spin_lock(&si->lock);
910321ea 494 if (si && (si->flags & SWP_WRITEOK)) {
ec8acf20 495 atomic_long_dec(&nr_swap_pages);
910321ea
HD
496 /* This is called for allocating swap entry, not cache */
497 offset = scan_swap_map(si, 1);
498 if (offset) {
ec8acf20 499 spin_unlock(&si->lock);
910321ea
HD
500 return swp_entry(type, offset);
501 }
ec8acf20 502 atomic_long_inc(&nr_swap_pages);
910321ea 503 }
ec8acf20 504 spin_unlock(&si->lock);
910321ea
HD
505 return (swp_entry_t) {0};
506}
507
73c34b6a 508static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1da177e4 509{
73c34b6a 510 struct swap_info_struct *p;
1da177e4
LT
511 unsigned long offset, type;
512
513 if (!entry.val)
514 goto out;
515 type = swp_type(entry);
516 if (type >= nr_swapfiles)
517 goto bad_nofile;
efa90a98 518 p = swap_info[type];
1da177e4
LT
519 if (!(p->flags & SWP_USED))
520 goto bad_device;
521 offset = swp_offset(entry);
522 if (offset >= p->max)
523 goto bad_offset;
524 if (!p->swap_map[offset])
525 goto bad_free;
ec8acf20 526 spin_lock(&p->lock);
1da177e4
LT
527 return p;
528
529bad_free:
530 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
531 goto out;
532bad_offset:
533 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
534 goto out;
535bad_device:
536 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
537 goto out;
538bad_nofile:
539 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
540out:
541 return NULL;
886bb7e9 542}
1da177e4 543
ec8acf20
SL
544/*
545 * This swap type frees swap entry, check if it is the highest priority swap
546 * type which just frees swap entry. get_swap_page() uses
547 * highest_priority_index to search highest priority swap type. The
548 * swap_info_struct.lock can't protect us if there are multiple swap types
549 * active, so we use atomic_cmpxchg.
550 */
551static void set_highest_priority_index(int type)
552{
553 int old_hp_index, new_hp_index;
554
555 do {
556 old_hp_index = atomic_read(&highest_priority_index);
557 if (old_hp_index != -1 &&
558 swap_info[old_hp_index]->prio >= swap_info[type]->prio)
559 break;
560 new_hp_index = type;
561 } while (atomic_cmpxchg(&highest_priority_index,
562 old_hp_index, new_hp_index) != old_hp_index);
563}
564
8d69aaee
HD
565static unsigned char swap_entry_free(struct swap_info_struct *p,
566 swp_entry_t entry, unsigned char usage)
1da177e4 567{
253d553b 568 unsigned long offset = swp_offset(entry);
8d69aaee
HD
569 unsigned char count;
570 unsigned char has_cache;
355cfa73 571
253d553b
HD
572 count = p->swap_map[offset];
573 has_cache = count & SWAP_HAS_CACHE;
574 count &= ~SWAP_HAS_CACHE;
355cfa73 575
253d553b 576 if (usage == SWAP_HAS_CACHE) {
355cfa73 577 VM_BUG_ON(!has_cache);
253d553b 578 has_cache = 0;
aaa46865
HD
579 } else if (count == SWAP_MAP_SHMEM) {
580 /*
581 * Or we could insist on shmem.c using a special
582 * swap_shmem_free() and free_shmem_swap_and_cache()...
583 */
584 count = 0;
570a335b
HD
585 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
586 if (count == COUNT_CONTINUED) {
587 if (swap_count_continued(p, offset, count))
588 count = SWAP_MAP_MAX | COUNT_CONTINUED;
589 else
590 count = SWAP_MAP_MAX;
591 } else
592 count--;
593 }
253d553b
HD
594
595 if (!count)
596 mem_cgroup_uncharge_swap(entry);
597
598 usage = count | has_cache;
599 p->swap_map[offset] = usage;
355cfa73 600
355cfa73 601 /* free if no reference */
253d553b 602 if (!usage) {
355cfa73
KH
603 if (offset < p->lowest_bit)
604 p->lowest_bit = offset;
605 if (offset > p->highest_bit)
606 p->highest_bit = offset;
ec8acf20
SL
607 set_highest_priority_index(p->type);
608 atomic_long_inc(&nr_swap_pages);
355cfa73 609 p->inuse_pages--;
38b5faf4 610 frontswap_invalidate_page(p->type, offset);
73744923
MG
611 if (p->flags & SWP_BLKDEV) {
612 struct gendisk *disk = p->bdev->bd_disk;
613 if (disk->fops->swap_slot_free_notify)
614 disk->fops->swap_slot_free_notify(p->bdev,
615 offset);
616 }
1da177e4 617 }
253d553b
HD
618
619 return usage;
1da177e4
LT
620}
621
622/*
623 * Caller has made sure that the swapdevice corresponding to entry
624 * is still around or has not been recycled.
625 */
626void swap_free(swp_entry_t entry)
627{
73c34b6a 628 struct swap_info_struct *p;
1da177e4
LT
629
630 p = swap_info_get(entry);
631 if (p) {
253d553b 632 swap_entry_free(p, entry, 1);
ec8acf20 633 spin_unlock(&p->lock);
1da177e4
LT
634 }
635}
636
cb4b86ba
KH
637/*
638 * Called after dropping swapcache to decrease refcnt to swap entries.
639 */
640void swapcache_free(swp_entry_t entry, struct page *page)
641{
355cfa73 642 struct swap_info_struct *p;
8d69aaee 643 unsigned char count;
355cfa73 644
355cfa73
KH
645 p = swap_info_get(entry);
646 if (p) {
253d553b
HD
647 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
648 if (page)
649 mem_cgroup_uncharge_swapcache(page, entry, count != 0);
ec8acf20 650 spin_unlock(&p->lock);
355cfa73 651 }
cb4b86ba
KH
652}
653
1da177e4 654/*
c475a8ab 655 * How many references to page are currently swapped out?
570a335b
HD
656 * This does not give an exact answer when swap count is continued,
657 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 658 */
bde05d1c 659int page_swapcount(struct page *page)
1da177e4 660{
c475a8ab
HD
661 int count = 0;
662 struct swap_info_struct *p;
1da177e4
LT
663 swp_entry_t entry;
664
4c21e2f2 665 entry.val = page_private(page);
1da177e4
LT
666 p = swap_info_get(entry);
667 if (p) {
355cfa73 668 count = swap_count(p->swap_map[swp_offset(entry)]);
ec8acf20 669 spin_unlock(&p->lock);
1da177e4 670 }
c475a8ab 671 return count;
1da177e4
LT
672}
673
674/*
7b1fe597
HD
675 * We can write to an anon page without COW if there are no other references
676 * to it. And as a side-effect, free up its swap: because the old content
677 * on disk will never be read, and seeking back there to write new content
678 * later would only waste time away from clustering.
1da177e4 679 */
7b1fe597 680int reuse_swap_page(struct page *page)
1da177e4 681{
c475a8ab
HD
682 int count;
683
51726b12 684 VM_BUG_ON(!PageLocked(page));
5ad64688
HD
685 if (unlikely(PageKsm(page)))
686 return 0;
c475a8ab 687 count = page_mapcount(page);
7b1fe597 688 if (count <= 1 && PageSwapCache(page)) {
c475a8ab 689 count += page_swapcount(page);
7b1fe597
HD
690 if (count == 1 && !PageWriteback(page)) {
691 delete_from_swap_cache(page);
692 SetPageDirty(page);
693 }
694 }
5ad64688 695 return count <= 1;
1da177e4
LT
696}
697
698/*
a2c43eed
HD
699 * If swap is getting full, or if there are no more mappings of this page,
700 * then try_to_free_swap is called to free its swap space.
1da177e4 701 */
a2c43eed 702int try_to_free_swap(struct page *page)
1da177e4 703{
51726b12 704 VM_BUG_ON(!PageLocked(page));
1da177e4
LT
705
706 if (!PageSwapCache(page))
707 return 0;
708 if (PageWriteback(page))
709 return 0;
a2c43eed 710 if (page_swapcount(page))
1da177e4
LT
711 return 0;
712
b73d7fce
HD
713 /*
714 * Once hibernation has begun to create its image of memory,
715 * there's a danger that one of the calls to try_to_free_swap()
716 * - most probably a call from __try_to_reclaim_swap() while
717 * hibernation is allocating its own swap pages for the image,
718 * but conceivably even a call from memory reclaim - will free
719 * the swap from a page which has already been recorded in the
720 * image as a clean swapcache page, and then reuse its swap for
721 * another page of the image. On waking from hibernation, the
722 * original page might be freed under memory pressure, then
723 * later read back in from swap, now with the wrong data.
724 *
f90ac398
MG
725 * Hibration suspends storage while it is writing the image
726 * to disk so check that here.
b73d7fce 727 */
f90ac398 728 if (pm_suspended_storage())
b73d7fce
HD
729 return 0;
730
a2c43eed
HD
731 delete_from_swap_cache(page);
732 SetPageDirty(page);
733 return 1;
68a22394
RR
734}
735
1da177e4
LT
736/*
737 * Free the swap entry like above, but also try to
738 * free the page cache entry if it is the last user.
739 */
2509ef26 740int free_swap_and_cache(swp_entry_t entry)
1da177e4 741{
2509ef26 742 struct swap_info_struct *p;
1da177e4
LT
743 struct page *page = NULL;
744
a7420aa5 745 if (non_swap_entry(entry))
2509ef26 746 return 1;
0697212a 747
1da177e4
LT
748 p = swap_info_get(entry);
749 if (p) {
253d553b 750 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
33806f06
SL
751 page = find_get_page(swap_address_space(entry),
752 entry.val);
8413ac9d 753 if (page && !trylock_page(page)) {
93fac704
NP
754 page_cache_release(page);
755 page = NULL;
756 }
757 }
ec8acf20 758 spin_unlock(&p->lock);
1da177e4
LT
759 }
760 if (page) {
a2c43eed
HD
761 /*
762 * Not mapped elsewhere, or swap space full? Free it!
763 * Also recheck PageSwapCache now page is locked (above).
764 */
93fac704 765 if (PageSwapCache(page) && !PageWriteback(page) &&
a2c43eed 766 (!page_mapped(page) || vm_swap_full())) {
1da177e4
LT
767 delete_from_swap_cache(page);
768 SetPageDirty(page);
769 }
770 unlock_page(page);
771 page_cache_release(page);
772 }
2509ef26 773 return p != NULL;
1da177e4
LT
774}
775
b0cb1a19 776#ifdef CONFIG_HIBERNATION
f577eb30 777/*
915bae9e 778 * Find the swap type that corresponds to given device (if any).
f577eb30 779 *
915bae9e
RW
780 * @offset - number of the PAGE_SIZE-sized block of the device, starting
781 * from 0, in which the swap header is expected to be located.
782 *
783 * This is needed for the suspend to disk (aka swsusp).
f577eb30 784 */
7bf23687 785int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 786{
915bae9e 787 struct block_device *bdev = NULL;
efa90a98 788 int type;
f577eb30 789
915bae9e
RW
790 if (device)
791 bdev = bdget(device);
792
f577eb30 793 spin_lock(&swap_lock);
efa90a98
HD
794 for (type = 0; type < nr_swapfiles; type++) {
795 struct swap_info_struct *sis = swap_info[type];
f577eb30 796
915bae9e 797 if (!(sis->flags & SWP_WRITEOK))
f577eb30 798 continue;
b6b5bce3 799
915bae9e 800 if (!bdev) {
7bf23687 801 if (bdev_p)
dddac6a7 802 *bdev_p = bdgrab(sis->bdev);
7bf23687 803
6e1819d6 804 spin_unlock(&swap_lock);
efa90a98 805 return type;
6e1819d6 806 }
915bae9e 807 if (bdev == sis->bdev) {
9625a5f2 808 struct swap_extent *se = &sis->first_swap_extent;
915bae9e 809
915bae9e 810 if (se->start_block == offset) {
7bf23687 811 if (bdev_p)
dddac6a7 812 *bdev_p = bdgrab(sis->bdev);
7bf23687 813
915bae9e
RW
814 spin_unlock(&swap_lock);
815 bdput(bdev);
efa90a98 816 return type;
915bae9e 817 }
f577eb30
RW
818 }
819 }
820 spin_unlock(&swap_lock);
915bae9e
RW
821 if (bdev)
822 bdput(bdev);
823
f577eb30
RW
824 return -ENODEV;
825}
826
73c34b6a
HD
827/*
828 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
829 * corresponding to given index in swap_info (swap type).
830 */
831sector_t swapdev_block(int type, pgoff_t offset)
832{
833 struct block_device *bdev;
834
835 if ((unsigned int)type >= nr_swapfiles)
836 return 0;
837 if (!(swap_info[type]->flags & SWP_WRITEOK))
838 return 0;
d4906e1a 839 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
840}
841
f577eb30
RW
842/*
843 * Return either the total number of swap pages of given type, or the number
844 * of free pages of that type (depending on @free)
845 *
846 * This is needed for software suspend
847 */
848unsigned int count_swap_pages(int type, int free)
849{
850 unsigned int n = 0;
851
efa90a98
HD
852 spin_lock(&swap_lock);
853 if ((unsigned int)type < nr_swapfiles) {
854 struct swap_info_struct *sis = swap_info[type];
855
ec8acf20 856 spin_lock(&sis->lock);
efa90a98
HD
857 if (sis->flags & SWP_WRITEOK) {
858 n = sis->pages;
f577eb30 859 if (free)
efa90a98 860 n -= sis->inuse_pages;
f577eb30 861 }
ec8acf20 862 spin_unlock(&sis->lock);
f577eb30 863 }
efa90a98 864 spin_unlock(&swap_lock);
f577eb30
RW
865 return n;
866}
73c34b6a 867#endif /* CONFIG_HIBERNATION */
f577eb30 868
179ef71c
CG
869static inline int maybe_same_pte(pte_t pte, pte_t swp_pte)
870{
871#ifdef CONFIG_MEM_SOFT_DIRTY
872 /*
873 * When pte keeps soft dirty bit the pte generated
874 * from swap entry does not has it, still it's same
875 * pte from logical point of view.
876 */
877 pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte);
878 return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty);
879#else
880 return pte_same(pte, swp_pte);
881#endif
882}
883
1da177e4 884/*
72866f6f
HD
885 * No need to decide whether this PTE shares the swap entry with others,
886 * just let do_wp_page work it out if a write is requested later - to
887 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 888 */
044d66c1 889static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
890 unsigned long addr, swp_entry_t entry, struct page *page)
891{
9e16b7fb 892 struct page *swapcache;
72835c86 893 struct mem_cgroup *memcg;
044d66c1
HD
894 spinlock_t *ptl;
895 pte_t *pte;
896 int ret = 1;
897
9e16b7fb
HD
898 swapcache = page;
899 page = ksm_might_need_to_copy(page, vma, addr);
900 if (unlikely(!page))
901 return -ENOMEM;
902
72835c86
JW
903 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
904 GFP_KERNEL, &memcg)) {
044d66c1 905 ret = -ENOMEM;
85d9fc89
KH
906 goto out_nolock;
907 }
044d66c1
HD
908
909 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
179ef71c 910 if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) {
5d84c776 911 mem_cgroup_cancel_charge_swapin(memcg);
044d66c1
HD
912 ret = 0;
913 goto out;
914 }
8a9f3ccd 915
b084d435 916 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 917 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
918 get_page(page);
919 set_pte_at(vma->vm_mm, addr, pte,
920 pte_mkold(mk_pte(page, vma->vm_page_prot)));
9e16b7fb
HD
921 if (page == swapcache)
922 page_add_anon_rmap(page, vma, addr);
923 else /* ksm created a completely new copy */
924 page_add_new_anon_rmap(page, vma, addr);
72835c86 925 mem_cgroup_commit_charge_swapin(page, memcg);
1da177e4
LT
926 swap_free(entry);
927 /*
928 * Move the page to the active list so it is not
929 * immediately swapped out again after swapon.
930 */
931 activate_page(page);
044d66c1
HD
932out:
933 pte_unmap_unlock(pte, ptl);
85d9fc89 934out_nolock:
9e16b7fb
HD
935 if (page != swapcache) {
936 unlock_page(page);
937 put_page(page);
938 }
044d66c1 939 return ret;
1da177e4
LT
940}
941
942static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
943 unsigned long addr, unsigned long end,
944 swp_entry_t entry, struct page *page)
945{
1da177e4 946 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 947 pte_t *pte;
8a9f3ccd 948 int ret = 0;
1da177e4 949
044d66c1
HD
950 /*
951 * We don't actually need pte lock while scanning for swp_pte: since
952 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
953 * page table while we're scanning; though it could get zapped, and on
954 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
955 * of unmatched parts which look like swp_pte, so unuse_pte must
956 * recheck under pte lock. Scanning without pte lock lets it be
957 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
958 */
959 pte = pte_offset_map(pmd, addr);
1da177e4
LT
960 do {
961 /*
962 * swapoff spends a _lot_ of time in this loop!
963 * Test inline before going to call unuse_pte.
964 */
179ef71c 965 if (unlikely(maybe_same_pte(*pte, swp_pte))) {
044d66c1
HD
966 pte_unmap(pte);
967 ret = unuse_pte(vma, pmd, addr, entry, page);
968 if (ret)
969 goto out;
970 pte = pte_offset_map(pmd, addr);
1da177e4
LT
971 }
972 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
973 pte_unmap(pte - 1);
974out:
8a9f3ccd 975 return ret;
1da177e4
LT
976}
977
978static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
979 unsigned long addr, unsigned long end,
980 swp_entry_t entry, struct page *page)
981{
982 pmd_t *pmd;
983 unsigned long next;
8a9f3ccd 984 int ret;
1da177e4
LT
985
986 pmd = pmd_offset(pud, addr);
987 do {
988 next = pmd_addr_end(addr, end);
1a5a9906 989 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 990 continue;
8a9f3ccd
BS
991 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
992 if (ret)
993 return ret;
1da177e4
LT
994 } while (pmd++, addr = next, addr != end);
995 return 0;
996}
997
998static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
999 unsigned long addr, unsigned long end,
1000 swp_entry_t entry, struct page *page)
1001{
1002 pud_t *pud;
1003 unsigned long next;
8a9f3ccd 1004 int ret;
1da177e4
LT
1005
1006 pud = pud_offset(pgd, addr);
1007 do {
1008 next = pud_addr_end(addr, end);
1009 if (pud_none_or_clear_bad(pud))
1010 continue;
8a9f3ccd
BS
1011 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1012 if (ret)
1013 return ret;
1da177e4
LT
1014 } while (pud++, addr = next, addr != end);
1015 return 0;
1016}
1017
1018static int unuse_vma(struct vm_area_struct *vma,
1019 swp_entry_t entry, struct page *page)
1020{
1021 pgd_t *pgd;
1022 unsigned long addr, end, next;
8a9f3ccd 1023 int ret;
1da177e4 1024
3ca7b3c5 1025 if (page_anon_vma(page)) {
1da177e4
LT
1026 addr = page_address_in_vma(page, vma);
1027 if (addr == -EFAULT)
1028 return 0;
1029 else
1030 end = addr + PAGE_SIZE;
1031 } else {
1032 addr = vma->vm_start;
1033 end = vma->vm_end;
1034 }
1035
1036 pgd = pgd_offset(vma->vm_mm, addr);
1037 do {
1038 next = pgd_addr_end(addr, end);
1039 if (pgd_none_or_clear_bad(pgd))
1040 continue;
8a9f3ccd
BS
1041 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1042 if (ret)
1043 return ret;
1da177e4
LT
1044 } while (pgd++, addr = next, addr != end);
1045 return 0;
1046}
1047
1048static int unuse_mm(struct mm_struct *mm,
1049 swp_entry_t entry, struct page *page)
1050{
1051 struct vm_area_struct *vma;
8a9f3ccd 1052 int ret = 0;
1da177e4
LT
1053
1054 if (!down_read_trylock(&mm->mmap_sem)) {
1055 /*
7d03431c
FLVC
1056 * Activate page so shrink_inactive_list is unlikely to unmap
1057 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 1058 */
c475a8ab 1059 activate_page(page);
1da177e4
LT
1060 unlock_page(page);
1061 down_read(&mm->mmap_sem);
1062 lock_page(page);
1063 }
1da177e4 1064 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 1065 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4
LT
1066 break;
1067 }
1da177e4 1068 up_read(&mm->mmap_sem);
8a9f3ccd 1069 return (ret < 0)? ret: 0;
1da177e4
LT
1070}
1071
1072/*
38b5faf4
DM
1073 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1074 * from current position to next entry still in use.
1da177e4
LT
1075 * Recycle to start on reaching the end, returning 0 when empty.
1076 */
6eb396dc 1077static unsigned int find_next_to_unuse(struct swap_info_struct *si,
38b5faf4 1078 unsigned int prev, bool frontswap)
1da177e4 1079{
6eb396dc
HD
1080 unsigned int max = si->max;
1081 unsigned int i = prev;
8d69aaee 1082 unsigned char count;
1da177e4
LT
1083
1084 /*
5d337b91 1085 * No need for swap_lock here: we're just looking
1da177e4
LT
1086 * for whether an entry is in use, not modifying it; false
1087 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 1088 * allocations from this area (while holding swap_lock).
1da177e4
LT
1089 */
1090 for (;;) {
1091 if (++i >= max) {
1092 if (!prev) {
1093 i = 0;
1094 break;
1095 }
1096 /*
1097 * No entries in use at top of swap_map,
1098 * loop back to start and recheck there.
1099 */
1100 max = prev + 1;
1101 prev = 0;
1102 i = 1;
1103 }
38b5faf4
DM
1104 if (frontswap) {
1105 if (frontswap_test(si, i))
1106 break;
1107 else
1108 continue;
1109 }
1da177e4 1110 count = si->swap_map[i];
355cfa73 1111 if (count && swap_count(count) != SWAP_MAP_BAD)
1da177e4
LT
1112 break;
1113 }
1114 return i;
1115}
1116
1117/*
1118 * We completely avoid races by reading each swap page in advance,
1119 * and then search for the process using it. All the necessary
1120 * page table adjustments can then be made atomically.
38b5faf4
DM
1121 *
1122 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1123 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1da177e4 1124 */
38b5faf4
DM
1125int try_to_unuse(unsigned int type, bool frontswap,
1126 unsigned long pages_to_unuse)
1da177e4 1127{
efa90a98 1128 struct swap_info_struct *si = swap_info[type];
1da177e4 1129 struct mm_struct *start_mm;
8d69aaee
HD
1130 unsigned char *swap_map;
1131 unsigned char swcount;
1da177e4
LT
1132 struct page *page;
1133 swp_entry_t entry;
6eb396dc 1134 unsigned int i = 0;
1da177e4 1135 int retval = 0;
1da177e4
LT
1136
1137 /*
1138 * When searching mms for an entry, a good strategy is to
1139 * start at the first mm we freed the previous entry from
1140 * (though actually we don't notice whether we or coincidence
1141 * freed the entry). Initialize this start_mm with a hold.
1142 *
1143 * A simpler strategy would be to start at the last mm we
1144 * freed the previous entry from; but that would take less
1145 * advantage of mmlist ordering, which clusters forked mms
1146 * together, child after parent. If we race with dup_mmap(), we
1147 * prefer to resolve parent before child, lest we miss entries
1148 * duplicated after we scanned child: using last mm would invert
570a335b 1149 * that.
1da177e4
LT
1150 */
1151 start_mm = &init_mm;
1152 atomic_inc(&init_mm.mm_users);
1153
1154 /*
1155 * Keep on scanning until all entries have gone. Usually,
1156 * one pass through swap_map is enough, but not necessarily:
1157 * there are races when an instance of an entry might be missed.
1158 */
38b5faf4 1159 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1da177e4
LT
1160 if (signal_pending(current)) {
1161 retval = -EINTR;
1162 break;
1163 }
1164
886bb7e9 1165 /*
1da177e4
LT
1166 * Get a page for the entry, using the existing swap
1167 * cache page if there is one. Otherwise, get a clean
886bb7e9 1168 * page and read the swap into it.
1da177e4
LT
1169 */
1170 swap_map = &si->swap_map[i];
1171 entry = swp_entry(type, i);
02098fea
HD
1172 page = read_swap_cache_async(entry,
1173 GFP_HIGHUSER_MOVABLE, NULL, 0);
1da177e4
LT
1174 if (!page) {
1175 /*
1176 * Either swap_duplicate() failed because entry
1177 * has been freed independently, and will not be
1178 * reused since sys_swapoff() already disabled
1179 * allocation from here, or alloc_page() failed.
1180 */
1181 if (!*swap_map)
1182 continue;
1183 retval = -ENOMEM;
1184 break;
1185 }
1186
1187 /*
1188 * Don't hold on to start_mm if it looks like exiting.
1189 */
1190 if (atomic_read(&start_mm->mm_users) == 1) {
1191 mmput(start_mm);
1192 start_mm = &init_mm;
1193 atomic_inc(&init_mm.mm_users);
1194 }
1195
1196 /*
1197 * Wait for and lock page. When do_swap_page races with
1198 * try_to_unuse, do_swap_page can handle the fault much
1199 * faster than try_to_unuse can locate the entry. This
1200 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1201 * defer to do_swap_page in such a case - in some tests,
1202 * do_swap_page and try_to_unuse repeatedly compete.
1203 */
1204 wait_on_page_locked(page);
1205 wait_on_page_writeback(page);
1206 lock_page(page);
1207 wait_on_page_writeback(page);
1208
1209 /*
1210 * Remove all references to entry.
1da177e4 1211 */
1da177e4 1212 swcount = *swap_map;
aaa46865
HD
1213 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1214 retval = shmem_unuse(entry, page);
1215 /* page has already been unlocked and released */
1216 if (retval < 0)
1217 break;
1218 continue;
1da177e4 1219 }
aaa46865
HD
1220 if (swap_count(swcount) && start_mm != &init_mm)
1221 retval = unuse_mm(start_mm, entry, page);
1222
355cfa73 1223 if (swap_count(*swap_map)) {
1da177e4
LT
1224 int set_start_mm = (*swap_map >= swcount);
1225 struct list_head *p = &start_mm->mmlist;
1226 struct mm_struct *new_start_mm = start_mm;
1227 struct mm_struct *prev_mm = start_mm;
1228 struct mm_struct *mm;
1229
1230 atomic_inc(&new_start_mm->mm_users);
1231 atomic_inc(&prev_mm->mm_users);
1232 spin_lock(&mmlist_lock);
aaa46865 1233 while (swap_count(*swap_map) && !retval &&
1da177e4
LT
1234 (p = p->next) != &start_mm->mmlist) {
1235 mm = list_entry(p, struct mm_struct, mmlist);
70af7c5c 1236 if (!atomic_inc_not_zero(&mm->mm_users))
1da177e4 1237 continue;
1da177e4
LT
1238 spin_unlock(&mmlist_lock);
1239 mmput(prev_mm);
1240 prev_mm = mm;
1241
1242 cond_resched();
1243
1244 swcount = *swap_map;
355cfa73 1245 if (!swap_count(swcount)) /* any usage ? */
1da177e4 1246 ;
aaa46865 1247 else if (mm == &init_mm)
1da177e4 1248 set_start_mm = 1;
aaa46865 1249 else
1da177e4 1250 retval = unuse_mm(mm, entry, page);
355cfa73 1251
32c5fc10 1252 if (set_start_mm && *swap_map < swcount) {
1da177e4
LT
1253 mmput(new_start_mm);
1254 atomic_inc(&mm->mm_users);
1255 new_start_mm = mm;
1256 set_start_mm = 0;
1257 }
1258 spin_lock(&mmlist_lock);
1259 }
1260 spin_unlock(&mmlist_lock);
1261 mmput(prev_mm);
1262 mmput(start_mm);
1263 start_mm = new_start_mm;
1264 }
1265 if (retval) {
1266 unlock_page(page);
1267 page_cache_release(page);
1268 break;
1269 }
1270
1da177e4
LT
1271 /*
1272 * If a reference remains (rare), we would like to leave
1273 * the page in the swap cache; but try_to_unmap could
1274 * then re-duplicate the entry once we drop page lock,
1275 * so we might loop indefinitely; also, that page could
1276 * not be swapped out to other storage meanwhile. So:
1277 * delete from cache even if there's another reference,
1278 * after ensuring that the data has been saved to disk -
1279 * since if the reference remains (rarer), it will be
1280 * read from disk into another page. Splitting into two
1281 * pages would be incorrect if swap supported "shared
1282 * private" pages, but they are handled by tmpfs files.
5ad64688
HD
1283 *
1284 * Given how unuse_vma() targets one particular offset
1285 * in an anon_vma, once the anon_vma has been determined,
1286 * this splitting happens to be just what is needed to
1287 * handle where KSM pages have been swapped out: re-reading
1288 * is unnecessarily slow, but we can fix that later on.
1da177e4 1289 */
355cfa73
KH
1290 if (swap_count(*swap_map) &&
1291 PageDirty(page) && PageSwapCache(page)) {
1da177e4
LT
1292 struct writeback_control wbc = {
1293 .sync_mode = WB_SYNC_NONE,
1294 };
1295
1296 swap_writepage(page, &wbc);
1297 lock_page(page);
1298 wait_on_page_writeback(page);
1299 }
68bdc8d6
HD
1300
1301 /*
1302 * It is conceivable that a racing task removed this page from
1303 * swap cache just before we acquired the page lock at the top,
1304 * or while we dropped it in unuse_mm(). The page might even
1305 * be back in swap cache on another swap area: that we must not
1306 * delete, since it may not have been written out to swap yet.
1307 */
1308 if (PageSwapCache(page) &&
1309 likely(page_private(page) == entry.val))
2e0e26c7 1310 delete_from_swap_cache(page);
1da177e4
LT
1311
1312 /*
1313 * So we could skip searching mms once swap count went
1314 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 1315 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
1316 */
1317 SetPageDirty(page);
1318 unlock_page(page);
1319 page_cache_release(page);
1320
1321 /*
1322 * Make sure that we aren't completely killing
1323 * interactive performance.
1324 */
1325 cond_resched();
38b5faf4
DM
1326 if (frontswap && pages_to_unuse > 0) {
1327 if (!--pages_to_unuse)
1328 break;
1329 }
1da177e4
LT
1330 }
1331
1332 mmput(start_mm);
1da177e4
LT
1333 return retval;
1334}
1335
1336/*
5d337b91
HD
1337 * After a successful try_to_unuse, if no swap is now in use, we know
1338 * we can empty the mmlist. swap_lock must be held on entry and exit.
1339 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
1340 * added to the mmlist just after page_duplicate - before would be racy.
1341 */
1342static void drain_mmlist(void)
1343{
1344 struct list_head *p, *next;
efa90a98 1345 unsigned int type;
1da177e4 1346
efa90a98
HD
1347 for (type = 0; type < nr_swapfiles; type++)
1348 if (swap_info[type]->inuse_pages)
1da177e4
LT
1349 return;
1350 spin_lock(&mmlist_lock);
1351 list_for_each_safe(p, next, &init_mm.mmlist)
1352 list_del_init(p);
1353 spin_unlock(&mmlist_lock);
1354}
1355
1356/*
1357 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
1358 * corresponds to page offset for the specified swap entry.
1359 * Note that the type of this function is sector_t, but it returns page offset
1360 * into the bdev, not sector offset.
1da177e4 1361 */
d4906e1a 1362static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 1363{
f29ad6a9
HD
1364 struct swap_info_struct *sis;
1365 struct swap_extent *start_se;
1366 struct swap_extent *se;
1367 pgoff_t offset;
1368
efa90a98 1369 sis = swap_info[swp_type(entry)];
f29ad6a9
HD
1370 *bdev = sis->bdev;
1371
1372 offset = swp_offset(entry);
1373 start_se = sis->curr_swap_extent;
1374 se = start_se;
1da177e4
LT
1375
1376 for ( ; ; ) {
1377 struct list_head *lh;
1378
1379 if (se->start_page <= offset &&
1380 offset < (se->start_page + se->nr_pages)) {
1381 return se->start_block + (offset - se->start_page);
1382 }
11d31886 1383 lh = se->list.next;
1da177e4
LT
1384 se = list_entry(lh, struct swap_extent, list);
1385 sis->curr_swap_extent = se;
1386 BUG_ON(se == start_se); /* It *must* be present */
1387 }
1388}
1389
d4906e1a
LS
1390/*
1391 * Returns the page offset into bdev for the specified page's swap entry.
1392 */
1393sector_t map_swap_page(struct page *page, struct block_device **bdev)
1394{
1395 swp_entry_t entry;
1396 entry.val = page_private(page);
1397 return map_swap_entry(entry, bdev);
1398}
1399
1da177e4
LT
1400/*
1401 * Free all of a swapdev's extent information
1402 */
1403static void destroy_swap_extents(struct swap_info_struct *sis)
1404{
9625a5f2 1405 while (!list_empty(&sis->first_swap_extent.list)) {
1da177e4
LT
1406 struct swap_extent *se;
1407
9625a5f2 1408 se = list_entry(sis->first_swap_extent.list.next,
1da177e4
LT
1409 struct swap_extent, list);
1410 list_del(&se->list);
1411 kfree(se);
1412 }
62c230bc
MG
1413
1414 if (sis->flags & SWP_FILE) {
1415 struct file *swap_file = sis->swap_file;
1416 struct address_space *mapping = swap_file->f_mapping;
1417
1418 sis->flags &= ~SWP_FILE;
1419 mapping->a_ops->swap_deactivate(swap_file);
1420 }
1da177e4
LT
1421}
1422
1423/*
1424 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 1425 * extent list. The extent list is kept sorted in page order.
1da177e4 1426 *
11d31886 1427 * This function rather assumes that it is called in ascending page order.
1da177e4 1428 */
a509bc1a 1429int
1da177e4
LT
1430add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1431 unsigned long nr_pages, sector_t start_block)
1432{
1433 struct swap_extent *se;
1434 struct swap_extent *new_se;
1435 struct list_head *lh;
1436
9625a5f2
HD
1437 if (start_page == 0) {
1438 se = &sis->first_swap_extent;
1439 sis->curr_swap_extent = se;
1440 se->start_page = 0;
1441 se->nr_pages = nr_pages;
1442 se->start_block = start_block;
1443 return 1;
1444 } else {
1445 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1da177e4 1446 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
1447 BUG_ON(se->start_page + se->nr_pages != start_page);
1448 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
1449 /* Merge it */
1450 se->nr_pages += nr_pages;
1451 return 0;
1452 }
1da177e4
LT
1453 }
1454
1455 /*
1456 * No merge. Insert a new extent, preserving ordering.
1457 */
1458 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1459 if (new_se == NULL)
1460 return -ENOMEM;
1461 new_se->start_page = start_page;
1462 new_se->nr_pages = nr_pages;
1463 new_se->start_block = start_block;
1464
9625a5f2 1465 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
53092a74 1466 return 1;
1da177e4
LT
1467}
1468
1469/*
1470 * A `swap extent' is a simple thing which maps a contiguous range of pages
1471 * onto a contiguous range of disk blocks. An ordered list of swap extents
1472 * is built at swapon time and is then used at swap_writepage/swap_readpage
1473 * time for locating where on disk a page belongs.
1474 *
1475 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1476 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1477 * swap files identically.
1478 *
1479 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1480 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1481 * swapfiles are handled *identically* after swapon time.
1482 *
1483 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1484 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1485 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1486 * requirements, they are simply tossed out - we will never use those blocks
1487 * for swapping.
1488 *
b0d9bcd4 1489 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
1490 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1491 * which will scribble on the fs.
1492 *
1493 * The amount of disk space which a single swap extent represents varies.
1494 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1495 * extents in the list. To avoid much list walking, we cache the previous
1496 * search location in `curr_swap_extent', and start new searches from there.
1497 * This is extremely effective. The average number of iterations in
1498 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1499 */
53092a74 1500static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 1501{
62c230bc
MG
1502 struct file *swap_file = sis->swap_file;
1503 struct address_space *mapping = swap_file->f_mapping;
1504 struct inode *inode = mapping->host;
1da177e4
LT
1505 int ret;
1506
1da177e4
LT
1507 if (S_ISBLK(inode->i_mode)) {
1508 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 1509 *span = sis->pages;
a509bc1a 1510 return ret;
1da177e4
LT
1511 }
1512
62c230bc 1513 if (mapping->a_ops->swap_activate) {
a509bc1a 1514 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
62c230bc
MG
1515 if (!ret) {
1516 sis->flags |= SWP_FILE;
1517 ret = add_swap_extent(sis, 0, sis->max, 0);
1518 *span = sis->pages;
1519 }
a509bc1a 1520 return ret;
62c230bc
MG
1521 }
1522
a509bc1a 1523 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
1524}
1525
cf0cac0a 1526static void _enable_swap_info(struct swap_info_struct *p, int prio,
4f89849d 1527 unsigned char *swap_map)
40531542
CEB
1528{
1529 int i, prev;
1530
40531542
CEB
1531 if (prio >= 0)
1532 p->prio = prio;
1533 else
1534 p->prio = --least_priority;
1535 p->swap_map = swap_map;
1536 p->flags |= SWP_WRITEOK;
ec8acf20 1537 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
1538 total_swap_pages += p->pages;
1539
1540 /* insert swap space into swap_list: */
1541 prev = -1;
1542 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1543 if (p->prio >= swap_info[i]->prio)
1544 break;
1545 prev = i;
1546 }
1547 p->next = i;
1548 if (prev < 0)
1549 swap_list.head = swap_list.next = p->type;
1550 else
1551 swap_info[prev]->next = p->type;
cf0cac0a
CEB
1552}
1553
1554static void enable_swap_info(struct swap_info_struct *p, int prio,
1555 unsigned char *swap_map,
1556 unsigned long *frontswap_map)
1557{
4f89849d 1558 frontswap_init(p->type, frontswap_map);
cf0cac0a 1559 spin_lock(&swap_lock);
ec8acf20 1560 spin_lock(&p->lock);
4f89849d 1561 _enable_swap_info(p, prio, swap_map);
ec8acf20 1562 spin_unlock(&p->lock);
cf0cac0a
CEB
1563 spin_unlock(&swap_lock);
1564}
1565
1566static void reinsert_swap_info(struct swap_info_struct *p)
1567{
1568 spin_lock(&swap_lock);
ec8acf20 1569 spin_lock(&p->lock);
4f89849d 1570 _enable_swap_info(p, p->prio, p->swap_map);
ec8acf20 1571 spin_unlock(&p->lock);
40531542
CEB
1572 spin_unlock(&swap_lock);
1573}
1574
c4ea37c2 1575SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 1576{
73c34b6a 1577 struct swap_info_struct *p = NULL;
8d69aaee 1578 unsigned char *swap_map;
4f89849d 1579 unsigned long *frontswap_map;
1da177e4
LT
1580 struct file *swap_file, *victim;
1581 struct address_space *mapping;
1582 struct inode *inode;
91a27b2a 1583 struct filename *pathname;
1da177e4
LT
1584 int i, type, prev;
1585 int err;
886bb7e9 1586
1da177e4
LT
1587 if (!capable(CAP_SYS_ADMIN))
1588 return -EPERM;
1589
191c5424
AV
1590 BUG_ON(!current->mm);
1591
1da177e4 1592 pathname = getname(specialfile);
1da177e4 1593 if (IS_ERR(pathname))
f58b59c1 1594 return PTR_ERR(pathname);
1da177e4 1595
669abf4e 1596 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
1597 err = PTR_ERR(victim);
1598 if (IS_ERR(victim))
1599 goto out;
1600
1601 mapping = victim->f_mapping;
1602 prev = -1;
5d337b91 1603 spin_lock(&swap_lock);
efa90a98
HD
1604 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1605 p = swap_info[type];
22c6f8fd 1606 if (p->flags & SWP_WRITEOK) {
1da177e4
LT
1607 if (p->swap_file->f_mapping == mapping)
1608 break;
1609 }
1610 prev = type;
1611 }
1612 if (type < 0) {
1613 err = -EINVAL;
5d337b91 1614 spin_unlock(&swap_lock);
1da177e4
LT
1615 goto out_dput;
1616 }
191c5424 1617 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
1618 vm_unacct_memory(p->pages);
1619 else {
1620 err = -ENOMEM;
5d337b91 1621 spin_unlock(&swap_lock);
1da177e4
LT
1622 goto out_dput;
1623 }
efa90a98 1624 if (prev < 0)
1da177e4 1625 swap_list.head = p->next;
efa90a98
HD
1626 else
1627 swap_info[prev]->next = p->next;
1da177e4
LT
1628 if (type == swap_list.next) {
1629 /* just pick something that's safe... */
1630 swap_list.next = swap_list.head;
1631 }
ec8acf20 1632 spin_lock(&p->lock);
78ecba08 1633 if (p->prio < 0) {
efa90a98
HD
1634 for (i = p->next; i >= 0; i = swap_info[i]->next)
1635 swap_info[i]->prio = p->prio--;
78ecba08
HD
1636 least_priority++;
1637 }
ec8acf20 1638 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
1639 total_swap_pages -= p->pages;
1640 p->flags &= ~SWP_WRITEOK;
ec8acf20 1641 spin_unlock(&p->lock);
5d337b91 1642 spin_unlock(&swap_lock);
fb4f88dc 1643
e1e12d2f 1644 set_current_oom_origin();
38b5faf4 1645 err = try_to_unuse(type, false, 0); /* force all pages to be unused */
e1e12d2f 1646 clear_current_oom_origin();
1da177e4 1647
1da177e4
LT
1648 if (err) {
1649 /* re-insert swap space back into swap_list */
cf0cac0a 1650 reinsert_swap_info(p);
1da177e4
LT
1651 goto out_dput;
1652 }
52b7efdb 1653
5d337b91 1654 destroy_swap_extents(p);
570a335b
HD
1655 if (p->flags & SWP_CONTINUED)
1656 free_swap_count_continuations(p);
1657
fc0abb14 1658 mutex_lock(&swapon_mutex);
5d337b91 1659 spin_lock(&swap_lock);
ec8acf20 1660 spin_lock(&p->lock);
5d337b91
HD
1661 drain_mmlist();
1662
52b7efdb 1663 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
1664 p->highest_bit = 0; /* cuts scans short */
1665 while (p->flags >= SWP_SCANNING) {
ec8acf20 1666 spin_unlock(&p->lock);
5d337b91 1667 spin_unlock(&swap_lock);
13e4b57f 1668 schedule_timeout_uninterruptible(1);
5d337b91 1669 spin_lock(&swap_lock);
ec8acf20 1670 spin_lock(&p->lock);
52b7efdb 1671 }
52b7efdb 1672
1da177e4
LT
1673 swap_file = p->swap_file;
1674 p->swap_file = NULL;
1675 p->max = 0;
1676 swap_map = p->swap_map;
1677 p->swap_map = NULL;
1678 p->flags = 0;
4f89849d
MK
1679 frontswap_map = frontswap_map_get(p);
1680 frontswap_map_set(p, NULL);
ec8acf20 1681 spin_unlock(&p->lock);
5d337b91 1682 spin_unlock(&swap_lock);
4f89849d 1683 frontswap_invalidate_area(type);
fc0abb14 1684 mutex_unlock(&swapon_mutex);
1da177e4 1685 vfree(swap_map);
4f89849d 1686 vfree(frontswap_map);
27a7faa0
KH
1687 /* Destroy swap account informatin */
1688 swap_cgroup_swapoff(type);
1689
1da177e4
LT
1690 inode = mapping->host;
1691 if (S_ISBLK(inode->i_mode)) {
1692 struct block_device *bdev = I_BDEV(inode);
1693 set_blocksize(bdev, p->old_block_size);
e525fd89 1694 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 1695 } else {
1b1dcc1b 1696 mutex_lock(&inode->i_mutex);
1da177e4 1697 inode->i_flags &= ~S_SWAPFILE;
1b1dcc1b 1698 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1699 }
1700 filp_close(swap_file, NULL);
1701 err = 0;
66d7dd51
KS
1702 atomic_inc(&proc_poll_event);
1703 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
1704
1705out_dput:
1706 filp_close(victim, NULL);
1707out:
f58b59c1 1708 putname(pathname);
1da177e4
LT
1709 return err;
1710}
1711
1712#ifdef CONFIG_PROC_FS
66d7dd51
KS
1713static unsigned swaps_poll(struct file *file, poll_table *wait)
1714{
f1514638 1715 struct seq_file *seq = file->private_data;
66d7dd51
KS
1716
1717 poll_wait(file, &proc_poll_wait, wait);
1718
f1514638
KS
1719 if (seq->poll_event != atomic_read(&proc_poll_event)) {
1720 seq->poll_event = atomic_read(&proc_poll_event);
66d7dd51
KS
1721 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1722 }
1723
1724 return POLLIN | POLLRDNORM;
1725}
1726
1da177e4
LT
1727/* iterator */
1728static void *swap_start(struct seq_file *swap, loff_t *pos)
1729{
efa90a98
HD
1730 struct swap_info_struct *si;
1731 int type;
1da177e4
LT
1732 loff_t l = *pos;
1733
fc0abb14 1734 mutex_lock(&swapon_mutex);
1da177e4 1735
881e4aab
SS
1736 if (!l)
1737 return SEQ_START_TOKEN;
1738
efa90a98
HD
1739 for (type = 0; type < nr_swapfiles; type++) {
1740 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1741 si = swap_info[type];
1742 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 1743 continue;
881e4aab 1744 if (!--l)
efa90a98 1745 return si;
1da177e4
LT
1746 }
1747
1748 return NULL;
1749}
1750
1751static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1752{
efa90a98
HD
1753 struct swap_info_struct *si = v;
1754 int type;
1da177e4 1755
881e4aab 1756 if (v == SEQ_START_TOKEN)
efa90a98
HD
1757 type = 0;
1758 else
1759 type = si->type + 1;
881e4aab 1760
efa90a98
HD
1761 for (; type < nr_swapfiles; type++) {
1762 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1763 si = swap_info[type];
1764 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4
LT
1765 continue;
1766 ++*pos;
efa90a98 1767 return si;
1da177e4
LT
1768 }
1769
1770 return NULL;
1771}
1772
1773static void swap_stop(struct seq_file *swap, void *v)
1774{
fc0abb14 1775 mutex_unlock(&swapon_mutex);
1da177e4
LT
1776}
1777
1778static int swap_show(struct seq_file *swap, void *v)
1779{
efa90a98 1780 struct swap_info_struct *si = v;
1da177e4
LT
1781 struct file *file;
1782 int len;
1783
efa90a98 1784 if (si == SEQ_START_TOKEN) {
881e4aab
SS
1785 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1786 return 0;
1787 }
1da177e4 1788
efa90a98 1789 file = si->swap_file;
c32c2f63 1790 len = seq_path(swap, &file->f_path, " \t\n\\");
6eb396dc 1791 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9 1792 len < 40 ? 40 - len : 1, " ",
496ad9aa 1793 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 1794 "partition" : "file\t",
efa90a98
HD
1795 si->pages << (PAGE_SHIFT - 10),
1796 si->inuse_pages << (PAGE_SHIFT - 10),
1797 si->prio);
1da177e4
LT
1798 return 0;
1799}
1800
15ad7cdc 1801static const struct seq_operations swaps_op = {
1da177e4
LT
1802 .start = swap_start,
1803 .next = swap_next,
1804 .stop = swap_stop,
1805 .show = swap_show
1806};
1807
1808static int swaps_open(struct inode *inode, struct file *file)
1809{
f1514638 1810 struct seq_file *seq;
66d7dd51
KS
1811 int ret;
1812
66d7dd51 1813 ret = seq_open(file, &swaps_op);
f1514638 1814 if (ret)
66d7dd51 1815 return ret;
66d7dd51 1816
f1514638
KS
1817 seq = file->private_data;
1818 seq->poll_event = atomic_read(&proc_poll_event);
1819 return 0;
1da177e4
LT
1820}
1821
15ad7cdc 1822static const struct file_operations proc_swaps_operations = {
1da177e4
LT
1823 .open = swaps_open,
1824 .read = seq_read,
1825 .llseek = seq_lseek,
1826 .release = seq_release,
66d7dd51 1827 .poll = swaps_poll,
1da177e4
LT
1828};
1829
1830static int __init procswaps_init(void)
1831{
3d71f86f 1832 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
1833 return 0;
1834}
1835__initcall(procswaps_init);
1836#endif /* CONFIG_PROC_FS */
1837
1796316a
JB
1838#ifdef MAX_SWAPFILES_CHECK
1839static int __init max_swapfiles_check(void)
1840{
1841 MAX_SWAPFILES_CHECK();
1842 return 0;
1843}
1844late_initcall(max_swapfiles_check);
1845#endif
1846
53cbb243 1847static struct swap_info_struct *alloc_swap_info(void)
1da177e4 1848{
73c34b6a 1849 struct swap_info_struct *p;
1da177e4 1850 unsigned int type;
efa90a98
HD
1851
1852 p = kzalloc(sizeof(*p), GFP_KERNEL);
1853 if (!p)
53cbb243 1854 return ERR_PTR(-ENOMEM);
efa90a98 1855
5d337b91 1856 spin_lock(&swap_lock);
efa90a98
HD
1857 for (type = 0; type < nr_swapfiles; type++) {
1858 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 1859 break;
efa90a98 1860 }
0697212a 1861 if (type >= MAX_SWAPFILES) {
5d337b91 1862 spin_unlock(&swap_lock);
efa90a98 1863 kfree(p);
730c0581 1864 return ERR_PTR(-EPERM);
1da177e4 1865 }
efa90a98
HD
1866 if (type >= nr_swapfiles) {
1867 p->type = type;
1868 swap_info[type] = p;
1869 /*
1870 * Write swap_info[type] before nr_swapfiles, in case a
1871 * racing procfs swap_start() or swap_next() is reading them.
1872 * (We never shrink nr_swapfiles, we never free this entry.)
1873 */
1874 smp_wmb();
1875 nr_swapfiles++;
1876 } else {
1877 kfree(p);
1878 p = swap_info[type];
1879 /*
1880 * Do not memset this entry: a racing procfs swap_next()
1881 * would be relying on p->type to remain valid.
1882 */
1883 }
9625a5f2 1884 INIT_LIST_HEAD(&p->first_swap_extent.list);
1da177e4 1885 p->flags = SWP_USED;
1da177e4 1886 p->next = -1;
5d337b91 1887 spin_unlock(&swap_lock);
ec8acf20 1888 spin_lock_init(&p->lock);
efa90a98 1889
53cbb243 1890 return p;
53cbb243
CEB
1891}
1892
4d0e1e10
CEB
1893static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
1894{
1895 int error;
1896
1897 if (S_ISBLK(inode->i_mode)) {
1898 p->bdev = bdgrab(I_BDEV(inode));
1899 error = blkdev_get(p->bdev,
1900 FMODE_READ | FMODE_WRITE | FMODE_EXCL,
1901 sys_swapon);
1902 if (error < 0) {
1903 p->bdev = NULL;
87ade72a 1904 return -EINVAL;
4d0e1e10
CEB
1905 }
1906 p->old_block_size = block_size(p->bdev);
1907 error = set_blocksize(p->bdev, PAGE_SIZE);
1908 if (error < 0)
87ade72a 1909 return error;
4d0e1e10
CEB
1910 p->flags |= SWP_BLKDEV;
1911 } else if (S_ISREG(inode->i_mode)) {
1912 p->bdev = inode->i_sb->s_bdev;
1913 mutex_lock(&inode->i_mutex);
87ade72a
CEB
1914 if (IS_SWAPFILE(inode))
1915 return -EBUSY;
1916 } else
1917 return -EINVAL;
4d0e1e10
CEB
1918
1919 return 0;
4d0e1e10
CEB
1920}
1921
ca8bd38b
CEB
1922static unsigned long read_swap_header(struct swap_info_struct *p,
1923 union swap_header *swap_header,
1924 struct inode *inode)
1925{
1926 int i;
1927 unsigned long maxpages;
1928 unsigned long swapfilepages;
1929
1930 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1931 printk(KERN_ERR "Unable to find swap-space signature\n");
38719025 1932 return 0;
ca8bd38b
CEB
1933 }
1934
1935 /* swap partition endianess hack... */
1936 if (swab32(swap_header->info.version) == 1) {
1937 swab32s(&swap_header->info.version);
1938 swab32s(&swap_header->info.last_page);
1939 swab32s(&swap_header->info.nr_badpages);
1940 for (i = 0; i < swap_header->info.nr_badpages; i++)
1941 swab32s(&swap_header->info.badpages[i]);
1942 }
1943 /* Check the swap header's sub-version */
1944 if (swap_header->info.version != 1) {
1945 printk(KERN_WARNING
1946 "Unable to handle swap header version %d\n",
1947 swap_header->info.version);
38719025 1948 return 0;
ca8bd38b
CEB
1949 }
1950
1951 p->lowest_bit = 1;
1952 p->cluster_next = 1;
1953 p->cluster_nr = 0;
1954
1955 /*
1956 * Find out how many pages are allowed for a single swap
9b15b817 1957 * device. There are two limiting factors: 1) the number
a2c16d6c
HD
1958 * of bits for the swap offset in the swp_entry_t type, and
1959 * 2) the number of bits in the swap pte as defined by the
9b15b817 1960 * different architectures. In order to find the
a2c16d6c 1961 * largest possible bit mask, a swap entry with swap type 0
ca8bd38b 1962 * and swap offset ~0UL is created, encoded to a swap pte,
a2c16d6c 1963 * decoded to a swp_entry_t again, and finally the swap
ca8bd38b
CEB
1964 * offset is extracted. This will mask all the bits from
1965 * the initial ~0UL mask that can't be encoded in either
1966 * the swp_entry_t or the architecture definition of a
9b15b817 1967 * swap pte.
ca8bd38b
CEB
1968 */
1969 maxpages = swp_offset(pte_to_swp_entry(
9b15b817 1970 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
ca8bd38b
CEB
1971 if (maxpages > swap_header->info.last_page) {
1972 maxpages = swap_header->info.last_page + 1;
1973 /* p->max is an unsigned int: don't overflow it */
1974 if ((unsigned int)maxpages == 0)
1975 maxpages = UINT_MAX;
1976 }
1977 p->highest_bit = maxpages - 1;
1978
1979 if (!maxpages)
38719025 1980 return 0;
ca8bd38b
CEB
1981 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1982 if (swapfilepages && maxpages > swapfilepages) {
1983 printk(KERN_WARNING
1984 "Swap area shorter than signature indicates\n");
38719025 1985 return 0;
ca8bd38b
CEB
1986 }
1987 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 1988 return 0;
ca8bd38b 1989 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 1990 return 0;
ca8bd38b
CEB
1991
1992 return maxpages;
ca8bd38b
CEB
1993}
1994
915d4d7b
CEB
1995static int setup_swap_map_and_extents(struct swap_info_struct *p,
1996 union swap_header *swap_header,
1997 unsigned char *swap_map,
1998 unsigned long maxpages,
1999 sector_t *span)
2000{
2001 int i;
915d4d7b
CEB
2002 unsigned int nr_good_pages;
2003 int nr_extents;
2004
2005 nr_good_pages = maxpages - 1; /* omit header page */
2006
2007 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2008 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
2009 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2010 return -EINVAL;
915d4d7b
CEB
2011 if (page_nr < maxpages) {
2012 swap_map[page_nr] = SWAP_MAP_BAD;
2013 nr_good_pages--;
2014 }
2015 }
2016
2017 if (nr_good_pages) {
2018 swap_map[0] = SWAP_MAP_BAD;
2019 p->max = maxpages;
2020 p->pages = nr_good_pages;
2021 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
2022 if (nr_extents < 0)
2023 return nr_extents;
915d4d7b
CEB
2024 nr_good_pages = p->pages;
2025 }
2026 if (!nr_good_pages) {
2027 printk(KERN_WARNING "Empty swap-file\n");
bdb8e3f6 2028 return -EINVAL;
915d4d7b
CEB
2029 }
2030
2031 return nr_extents;
915d4d7b
CEB
2032}
2033
dcf6b7dd
RA
2034/*
2035 * Helper to sys_swapon determining if a given swap
2036 * backing device queue supports DISCARD operations.
2037 */
2038static bool swap_discardable(struct swap_info_struct *si)
2039{
2040 struct request_queue *q = bdev_get_queue(si->bdev);
2041
2042 if (!q || !blk_queue_discard(q))
2043 return false;
2044
2045 return true;
2046}
2047
53cbb243
CEB
2048SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2049{
2050 struct swap_info_struct *p;
91a27b2a 2051 struct filename *name;
53cbb243
CEB
2052 struct file *swap_file = NULL;
2053 struct address_space *mapping;
40531542
CEB
2054 int i;
2055 int prio;
53cbb243
CEB
2056 int error;
2057 union swap_header *swap_header;
915d4d7b 2058 int nr_extents;
53cbb243
CEB
2059 sector_t span;
2060 unsigned long maxpages;
53cbb243 2061 unsigned char *swap_map = NULL;
38b5faf4 2062 unsigned long *frontswap_map = NULL;
53cbb243
CEB
2063 struct page *page = NULL;
2064 struct inode *inode = NULL;
53cbb243 2065
d15cab97
HD
2066 if (swap_flags & ~SWAP_FLAGS_VALID)
2067 return -EINVAL;
2068
53cbb243
CEB
2069 if (!capable(CAP_SYS_ADMIN))
2070 return -EPERM;
2071
2072 p = alloc_swap_info();
2542e513
CEB
2073 if (IS_ERR(p))
2074 return PTR_ERR(p);
53cbb243 2075
1da177e4 2076 name = getname(specialfile);
1da177e4 2077 if (IS_ERR(name)) {
7de7fb6b 2078 error = PTR_ERR(name);
1da177e4 2079 name = NULL;
bd69010b 2080 goto bad_swap;
1da177e4 2081 }
669abf4e 2082 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 2083 if (IS_ERR(swap_file)) {
7de7fb6b 2084 error = PTR_ERR(swap_file);
1da177e4 2085 swap_file = NULL;
bd69010b 2086 goto bad_swap;
1da177e4
LT
2087 }
2088
2089 p->swap_file = swap_file;
2090 mapping = swap_file->f_mapping;
1da177e4 2091
1da177e4 2092 for (i = 0; i < nr_swapfiles; i++) {
efa90a98 2093 struct swap_info_struct *q = swap_info[i];
1da177e4 2094
e8e6c2ec 2095 if (q == p || !q->swap_file)
1da177e4 2096 continue;
7de7fb6b
CEB
2097 if (mapping == q->swap_file->f_mapping) {
2098 error = -EBUSY;
1da177e4 2099 goto bad_swap;
7de7fb6b 2100 }
1da177e4
LT
2101 }
2102
2130781e
CEB
2103 inode = mapping->host;
2104 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
4d0e1e10
CEB
2105 error = claim_swapfile(p, inode);
2106 if (unlikely(error))
1da177e4 2107 goto bad_swap;
1da177e4 2108
1da177e4
LT
2109 /*
2110 * Read the swap header.
2111 */
2112 if (!mapping->a_ops->readpage) {
2113 error = -EINVAL;
2114 goto bad_swap;
2115 }
090d2b18 2116 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
2117 if (IS_ERR(page)) {
2118 error = PTR_ERR(page);
2119 goto bad_swap;
2120 }
81e33971 2121 swap_header = kmap(page);
1da177e4 2122
ca8bd38b
CEB
2123 maxpages = read_swap_header(p, swap_header, inode);
2124 if (unlikely(!maxpages)) {
1da177e4
LT
2125 error = -EINVAL;
2126 goto bad_swap;
2127 }
886bb7e9 2128
81e33971 2129 /* OK, set up the swap map and apply the bad block list */
803d0c83 2130 swap_map = vzalloc(maxpages);
81e33971
HD
2131 if (!swap_map) {
2132 error = -ENOMEM;
2133 goto bad_swap;
2134 }
1da177e4 2135
1421ef3c
CEB
2136 error = swap_cgroup_swapon(p->type, maxpages);
2137 if (error)
2138 goto bad_swap;
2139
915d4d7b
CEB
2140 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2141 maxpages, &span);
2142 if (unlikely(nr_extents < 0)) {
2143 error = nr_extents;
1da177e4
LT
2144 goto bad_swap;
2145 }
38b5faf4
DM
2146 /* frontswap enabled? set up bit-per-page map for frontswap */
2147 if (frontswap_enabled)
7b57976d 2148 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
1da177e4 2149
3bd0f0c7
SJ
2150 if (p->bdev) {
2151 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2152 p->flags |= SWP_SOLIDSTATE;
d3d30417 2153 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3bd0f0c7 2154 }
dcf6b7dd
RA
2155
2156 if ((swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2157 /*
2158 * When discard is enabled for swap with no particular
2159 * policy flagged, we set all swap discard flags here in
2160 * order to sustain backward compatibility with older
2161 * swapon(8) releases.
2162 */
2163 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2164 SWP_PAGE_DISCARD);
2165
2166 /*
2167 * By flagging sys_swapon, a sysadmin can tell us to
2168 * either do single-time area discards only, or to just
2169 * perform discards for released swap page-clusters.
2170 * Now it's time to adjust the p->flags accordingly.
2171 */
2172 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2173 p->flags &= ~SWP_PAGE_DISCARD;
2174 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2175 p->flags &= ~SWP_AREA_DISCARD;
2176
2177 /* issue a swapon-time discard if it's still required */
2178 if (p->flags & SWP_AREA_DISCARD) {
2179 int err = discard_swap(p);
2180 if (unlikely(err))
2181 printk(KERN_ERR
2182 "swapon: discard_swap(%p): %d\n",
2183 p, err);
2184 }
2185 }
20137a49 2186 }
6a6ba831 2187
fc0abb14 2188 mutex_lock(&swapon_mutex);
40531542 2189 prio = -1;
78ecba08 2190 if (swap_flags & SWAP_FLAG_PREFER)
40531542 2191 prio =
78ecba08 2192 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
38b5faf4 2193 enable_swap_info(p, prio, swap_map, frontswap_map);
c69dbfb8
CEB
2194
2195 printk(KERN_INFO "Adding %uk swap on %s. "
dcf6b7dd 2196 "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 2197 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
2198 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2199 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 2200 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
2201 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2202 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 2203 (frontswap_map) ? "FS" : "");
c69dbfb8 2204
fc0abb14 2205 mutex_unlock(&swapon_mutex);
66d7dd51
KS
2206 atomic_inc(&proc_poll_event);
2207 wake_up_interruptible(&proc_poll_wait);
2208
9b01c350
CEB
2209 if (S_ISREG(inode->i_mode))
2210 inode->i_flags |= S_SWAPFILE;
1da177e4
LT
2211 error = 0;
2212 goto out;
2213bad_swap:
bd69010b 2214 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
2215 set_blocksize(p->bdev, p->old_block_size);
2216 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2217 }
4cd3bb10 2218 destroy_swap_extents(p);
e8e6c2ec 2219 swap_cgroup_swapoff(p->type);
5d337b91 2220 spin_lock(&swap_lock);
1da177e4 2221 p->swap_file = NULL;
1da177e4 2222 p->flags = 0;
5d337b91 2223 spin_unlock(&swap_lock);
1da177e4 2224 vfree(swap_map);
52c50567 2225 if (swap_file) {
2130781e 2226 if (inode && S_ISREG(inode->i_mode)) {
52c50567 2227 mutex_unlock(&inode->i_mutex);
2130781e
CEB
2228 inode = NULL;
2229 }
1da177e4 2230 filp_close(swap_file, NULL);
52c50567 2231 }
1da177e4
LT
2232out:
2233 if (page && !IS_ERR(page)) {
2234 kunmap(page);
2235 page_cache_release(page);
2236 }
2237 if (name)
2238 putname(name);
9b01c350 2239 if (inode && S_ISREG(inode->i_mode))
1b1dcc1b 2240 mutex_unlock(&inode->i_mutex);
1da177e4
LT
2241 return error;
2242}
2243
2244void si_swapinfo(struct sysinfo *val)
2245{
efa90a98 2246 unsigned int type;
1da177e4
LT
2247 unsigned long nr_to_be_unused = 0;
2248
5d337b91 2249 spin_lock(&swap_lock);
efa90a98
HD
2250 for (type = 0; type < nr_swapfiles; type++) {
2251 struct swap_info_struct *si = swap_info[type];
2252
2253 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2254 nr_to_be_unused += si->inuse_pages;
1da177e4 2255 }
ec8acf20 2256 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 2257 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 2258 spin_unlock(&swap_lock);
1da177e4
LT
2259}
2260
2261/*
2262 * Verify that a swap entry is valid and increment its swap map count.
2263 *
355cfa73
KH
2264 * Returns error code in following case.
2265 * - success -> 0
2266 * - swp_entry is invalid -> EINVAL
2267 * - swp_entry is migration entry -> EINVAL
2268 * - swap-cache reference is requested but there is already one. -> EEXIST
2269 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 2270 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 2271 */
8d69aaee 2272static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 2273{
73c34b6a 2274 struct swap_info_struct *p;
1da177e4 2275 unsigned long offset, type;
8d69aaee
HD
2276 unsigned char count;
2277 unsigned char has_cache;
253d553b 2278 int err = -EINVAL;
1da177e4 2279
a7420aa5 2280 if (non_swap_entry(entry))
253d553b 2281 goto out;
0697212a 2282
1da177e4
LT
2283 type = swp_type(entry);
2284 if (type >= nr_swapfiles)
2285 goto bad_file;
efa90a98 2286 p = swap_info[type];
1da177e4
LT
2287 offset = swp_offset(entry);
2288
ec8acf20 2289 spin_lock(&p->lock);
355cfa73
KH
2290 if (unlikely(offset >= p->max))
2291 goto unlock_out;
2292
253d553b
HD
2293 count = p->swap_map[offset];
2294 has_cache = count & SWAP_HAS_CACHE;
2295 count &= ~SWAP_HAS_CACHE;
2296 err = 0;
355cfa73 2297
253d553b 2298 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
2299
2300 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
2301 if (!has_cache && count)
2302 has_cache = SWAP_HAS_CACHE;
2303 else if (has_cache) /* someone else added cache */
2304 err = -EEXIST;
2305 else /* no users remaining */
2306 err = -ENOENT;
355cfa73
KH
2307
2308 } else if (count || has_cache) {
253d553b 2309
570a335b
HD
2310 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2311 count += usage;
2312 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 2313 err = -EINVAL;
570a335b
HD
2314 else if (swap_count_continued(p, offset, count))
2315 count = COUNT_CONTINUED;
2316 else
2317 err = -ENOMEM;
355cfa73 2318 } else
253d553b
HD
2319 err = -ENOENT; /* unused swap entry */
2320
2321 p->swap_map[offset] = count | has_cache;
2322
355cfa73 2323unlock_out:
ec8acf20 2324 spin_unlock(&p->lock);
1da177e4 2325out:
253d553b 2326 return err;
1da177e4
LT
2327
2328bad_file:
2329 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2330 goto out;
2331}
253d553b 2332
aaa46865
HD
2333/*
2334 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2335 * (in which case its reference count is never incremented).
2336 */
2337void swap_shmem_alloc(swp_entry_t entry)
2338{
2339 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2340}
2341
355cfa73 2342/*
08259d58
HD
2343 * Increase reference count of swap entry by 1.
2344 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2345 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2346 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2347 * might occur if a page table entry has got corrupted.
355cfa73 2348 */
570a335b 2349int swap_duplicate(swp_entry_t entry)
355cfa73 2350{
570a335b
HD
2351 int err = 0;
2352
2353 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2354 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2355 return err;
355cfa73 2356}
1da177e4 2357
cb4b86ba 2358/*
355cfa73
KH
2359 * @entry: swap entry for which we allocate swap cache.
2360 *
73c34b6a 2361 * Called when allocating swap cache for existing swap entry,
355cfa73
KH
2362 * This can return error codes. Returns 0 at success.
2363 * -EBUSY means there is a swap cache.
2364 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
2365 */
2366int swapcache_prepare(swp_entry_t entry)
2367{
253d553b 2368 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
2369}
2370
f981c595
MG
2371struct swap_info_struct *page_swap_info(struct page *page)
2372{
2373 swp_entry_t swap = { .val = page_private(page) };
2374 BUG_ON(!PageSwapCache(page));
2375 return swap_info[swp_type(swap)];
2376}
2377
2378/*
2379 * out-of-line __page_file_ methods to avoid include hell.
2380 */
2381struct address_space *__page_file_mapping(struct page *page)
2382{
2383 VM_BUG_ON(!PageSwapCache(page));
2384 return page_swap_info(page)->swap_file->f_mapping;
2385}
2386EXPORT_SYMBOL_GPL(__page_file_mapping);
2387
2388pgoff_t __page_file_index(struct page *page)
2389{
2390 swp_entry_t swap = { .val = page_private(page) };
2391 VM_BUG_ON(!PageSwapCache(page));
2392 return swp_offset(swap);
2393}
2394EXPORT_SYMBOL_GPL(__page_file_index);
2395
570a335b
HD
2396/*
2397 * add_swap_count_continuation - called when a swap count is duplicated
2398 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2399 * page of the original vmalloc'ed swap_map, to hold the continuation count
2400 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2401 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2402 *
2403 * These continuation pages are seldom referenced: the common paths all work
2404 * on the original swap_map, only referring to a continuation page when the
2405 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2406 *
2407 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2408 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2409 * can be called after dropping locks.
2410 */
2411int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2412{
2413 struct swap_info_struct *si;
2414 struct page *head;
2415 struct page *page;
2416 struct page *list_page;
2417 pgoff_t offset;
2418 unsigned char count;
2419
2420 /*
2421 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2422 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2423 */
2424 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2425
2426 si = swap_info_get(entry);
2427 if (!si) {
2428 /*
2429 * An acceptable race has occurred since the failing
2430 * __swap_duplicate(): the swap entry has been freed,
2431 * perhaps even the whole swap_map cleared for swapoff.
2432 */
2433 goto outer;
2434 }
2435
2436 offset = swp_offset(entry);
2437 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2438
2439 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2440 /*
2441 * The higher the swap count, the more likely it is that tasks
2442 * will race to add swap count continuation: we need to avoid
2443 * over-provisioning.
2444 */
2445 goto out;
2446 }
2447
2448 if (!page) {
ec8acf20 2449 spin_unlock(&si->lock);
570a335b
HD
2450 return -ENOMEM;
2451 }
2452
2453 /*
2454 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2455 * no architecture is using highmem pages for kernel pagetables: so it
2456 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2457 */
2458 head = vmalloc_to_page(si->swap_map + offset);
2459 offset &= ~PAGE_MASK;
2460
2461 /*
2462 * Page allocation does not initialize the page's lru field,
2463 * but it does always reset its private field.
2464 */
2465 if (!page_private(head)) {
2466 BUG_ON(count & COUNT_CONTINUED);
2467 INIT_LIST_HEAD(&head->lru);
2468 set_page_private(head, SWP_CONTINUED);
2469 si->flags |= SWP_CONTINUED;
2470 }
2471
2472 list_for_each_entry(list_page, &head->lru, lru) {
2473 unsigned char *map;
2474
2475 /*
2476 * If the previous map said no continuation, but we've found
2477 * a continuation page, free our allocation and use this one.
2478 */
2479 if (!(count & COUNT_CONTINUED))
2480 goto out;
2481
9b04c5fe 2482 map = kmap_atomic(list_page) + offset;
570a335b 2483 count = *map;
9b04c5fe 2484 kunmap_atomic(map);
570a335b
HD
2485
2486 /*
2487 * If this continuation count now has some space in it,
2488 * free our allocation and use this one.
2489 */
2490 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2491 goto out;
2492 }
2493
2494 list_add_tail(&page->lru, &head->lru);
2495 page = NULL; /* now it's attached, don't free it */
2496out:
ec8acf20 2497 spin_unlock(&si->lock);
570a335b
HD
2498outer:
2499 if (page)
2500 __free_page(page);
2501 return 0;
2502}
2503
2504/*
2505 * swap_count_continued - when the original swap_map count is incremented
2506 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2507 * into, carry if so, or else fail until a new continuation page is allocated;
2508 * when the original swap_map count is decremented from 0 with continuation,
2509 * borrow from the continuation and report whether it still holds more.
2510 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2511 */
2512static bool swap_count_continued(struct swap_info_struct *si,
2513 pgoff_t offset, unsigned char count)
2514{
2515 struct page *head;
2516 struct page *page;
2517 unsigned char *map;
2518
2519 head = vmalloc_to_page(si->swap_map + offset);
2520 if (page_private(head) != SWP_CONTINUED) {
2521 BUG_ON(count & COUNT_CONTINUED);
2522 return false; /* need to add count continuation */
2523 }
2524
2525 offset &= ~PAGE_MASK;
2526 page = list_entry(head->lru.next, struct page, lru);
9b04c5fe 2527 map = kmap_atomic(page) + offset;
570a335b
HD
2528
2529 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2530 goto init_map; /* jump over SWAP_CONT_MAX checks */
2531
2532 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2533 /*
2534 * Think of how you add 1 to 999
2535 */
2536 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 2537 kunmap_atomic(map);
570a335b
HD
2538 page = list_entry(page->lru.next, struct page, lru);
2539 BUG_ON(page == head);
9b04c5fe 2540 map = kmap_atomic(page) + offset;
570a335b
HD
2541 }
2542 if (*map == SWAP_CONT_MAX) {
9b04c5fe 2543 kunmap_atomic(map);
570a335b
HD
2544 page = list_entry(page->lru.next, struct page, lru);
2545 if (page == head)
2546 return false; /* add count continuation */
9b04c5fe 2547 map = kmap_atomic(page) + offset;
570a335b
HD
2548init_map: *map = 0; /* we didn't zero the page */
2549 }
2550 *map += 1;
9b04c5fe 2551 kunmap_atomic(map);
570a335b
HD
2552 page = list_entry(page->lru.prev, struct page, lru);
2553 while (page != head) {
9b04c5fe 2554 map = kmap_atomic(page) + offset;
570a335b 2555 *map = COUNT_CONTINUED;
9b04c5fe 2556 kunmap_atomic(map);
570a335b
HD
2557 page = list_entry(page->lru.prev, struct page, lru);
2558 }
2559 return true; /* incremented */
2560
2561 } else { /* decrementing */
2562 /*
2563 * Think of how you subtract 1 from 1000
2564 */
2565 BUG_ON(count != COUNT_CONTINUED);
2566 while (*map == COUNT_CONTINUED) {
9b04c5fe 2567 kunmap_atomic(map);
570a335b
HD
2568 page = list_entry(page->lru.next, struct page, lru);
2569 BUG_ON(page == head);
9b04c5fe 2570 map = kmap_atomic(page) + offset;
570a335b
HD
2571 }
2572 BUG_ON(*map == 0);
2573 *map -= 1;
2574 if (*map == 0)
2575 count = 0;
9b04c5fe 2576 kunmap_atomic(map);
570a335b
HD
2577 page = list_entry(page->lru.prev, struct page, lru);
2578 while (page != head) {
9b04c5fe 2579 map = kmap_atomic(page) + offset;
570a335b
HD
2580 *map = SWAP_CONT_MAX | count;
2581 count = COUNT_CONTINUED;
9b04c5fe 2582 kunmap_atomic(map);
570a335b
HD
2583 page = list_entry(page->lru.prev, struct page, lru);
2584 }
2585 return count == COUNT_CONTINUED;
2586 }
2587}
2588
2589/*
2590 * free_swap_count_continuations - swapoff free all the continuation pages
2591 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2592 */
2593static void free_swap_count_continuations(struct swap_info_struct *si)
2594{
2595 pgoff_t offset;
2596
2597 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2598 struct page *head;
2599 head = vmalloc_to_page(si->swap_map + offset);
2600 if (page_private(head)) {
2601 struct list_head *this, *next;
2602 list_for_each_safe(this, next, &head->lru) {
2603 struct page *page;
2604 page = list_entry(this, struct page, lru);
2605 list_del(this);
2606 __free_page(page);
2607 }
2608 }
2609 }
2610}