mm: try_to_free_swap replaces remove_exclusive_swap_page
[linux-2.6-block.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
17#include <linux/shm.h>
18#include <linux/blkdev.h>
19#include <linux/writeback.h>
20#include <linux/proc_fs.h>
21#include <linux/seq_file.h>
22#include <linux/init.h>
23#include <linux/module.h>
24#include <linux/rmap.h>
25#include <linux/security.h>
26#include <linux/backing-dev.h>
fc0abb14 27#include <linux/mutex.h>
c59ede7b 28#include <linux/capability.h>
1da177e4 29#include <linux/syscalls.h>
8a9f3ccd 30#include <linux/memcontrol.h>
1da177e4
LT
31
32#include <asm/pgtable.h>
33#include <asm/tlbflush.h>
34#include <linux/swapops.h>
35
7c363b8c
AB
36static DEFINE_SPINLOCK(swap_lock);
37static unsigned int nr_swapfiles;
1da177e4
LT
38long total_swap_pages;
39static int swap_overflow;
78ecba08 40static int least_priority;
1da177e4 41
1da177e4
LT
42static const char Bad_file[] = "Bad swap file entry ";
43static const char Unused_file[] = "Unused swap file entry ";
44static const char Bad_offset[] = "Bad swap offset entry ";
45static const char Unused_offset[] = "Unused swap offset entry ";
46
7c363b8c 47static struct swap_list_t swap_list = {-1, -1};
1da177e4 48
f577eb30 49static struct swap_info_struct swap_info[MAX_SWAPFILES];
1da177e4 50
fc0abb14 51static DEFINE_MUTEX(swapon_mutex);
1da177e4
LT
52
53/*
54 * We need this because the bdev->unplug_fn can sleep and we cannot
5d337b91 55 * hold swap_lock while calling the unplug_fn. And swap_lock
fc0abb14 56 * cannot be turned into a mutex.
1da177e4
LT
57 */
58static DECLARE_RWSEM(swap_unplug_sem);
59
1da177e4
LT
60void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
61{
62 swp_entry_t entry;
63
64 down_read(&swap_unplug_sem);
4c21e2f2 65 entry.val = page_private(page);
1da177e4
LT
66 if (PageSwapCache(page)) {
67 struct block_device *bdev = swap_info[swp_type(entry)].bdev;
68 struct backing_dev_info *bdi;
69
70 /*
71 * If the page is removed from swapcache from under us (with a
72 * racy try_to_unuse/swapoff) we need an additional reference
4c21e2f2
HD
73 * count to avoid reading garbage from page_private(page) above.
74 * If the WARN_ON triggers during a swapoff it maybe the race
1da177e4
LT
75 * condition and it's harmless. However if it triggers without
76 * swapoff it signals a problem.
77 */
78 WARN_ON(page_count(page) <= 1);
79
80 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
ba32311e 81 blk_run_backing_dev(bdi, page);
1da177e4
LT
82 }
83 up_read(&swap_unplug_sem);
84}
85
048c27fd
HD
86#define SWAPFILE_CLUSTER 256
87#define LATENCY_LIMIT 256
88
6eb396dc 89static inline unsigned long scan_swap_map(struct swap_info_struct *si)
1da177e4 90{
7dfad418 91 unsigned long offset, last_in_cluster;
048c27fd 92 int latency_ration = LATENCY_LIMIT;
7dfad418 93
1da177e4 94 /*
7dfad418
HD
95 * We try to cluster swap pages by allocating them sequentially
96 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
97 * way, however, we resort to first-free allocation, starting
98 * a new cluster. This prevents us from scattering swap pages
99 * all over the entire swap partition, so that we reduce
100 * overall disk seek times between swap pages. -- sct
101 * But we do now try to find an empty cluster. -Andrea
102 */
103
52b7efdb 104 si->flags += SWP_SCANNING;
7dfad418
HD
105 if (unlikely(!si->cluster_nr)) {
106 si->cluster_nr = SWAPFILE_CLUSTER - 1;
107 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
108 goto lowest;
5d337b91 109 spin_unlock(&swap_lock);
7dfad418
HD
110
111 offset = si->lowest_bit;
112 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
113
114 /* Locate the first empty (unaligned) cluster */
115 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 116 if (si->swap_map[offset])
7dfad418
HD
117 last_in_cluster = offset + SWAPFILE_CLUSTER;
118 else if (offset == last_in_cluster) {
5d337b91 119 spin_lock(&swap_lock);
9b65ef59 120 si->cluster_next = offset-SWAPFILE_CLUSTER+1;
7dfad418 121 goto cluster;
1da177e4 122 }
048c27fd
HD
123 if (unlikely(--latency_ration < 0)) {
124 cond_resched();
125 latency_ration = LATENCY_LIMIT;
126 }
7dfad418 127 }
5d337b91 128 spin_lock(&swap_lock);
7dfad418 129 goto lowest;
1da177e4 130 }
7dfad418
HD
131
132 si->cluster_nr--;
133cluster:
134 offset = si->cluster_next;
135 if (offset > si->highest_bit)
136lowest: offset = si->lowest_bit;
52b7efdb
HD
137checks: if (!(si->flags & SWP_WRITEOK))
138 goto no_page;
7dfad418
HD
139 if (!si->highest_bit)
140 goto no_page;
141 if (!si->swap_map[offset]) {
52b7efdb 142 if (offset == si->lowest_bit)
1da177e4
LT
143 si->lowest_bit++;
144 if (offset == si->highest_bit)
145 si->highest_bit--;
7dfad418
HD
146 si->inuse_pages++;
147 if (si->inuse_pages == si->pages) {
1da177e4
LT
148 si->lowest_bit = si->max;
149 si->highest_bit = 0;
150 }
151 si->swap_map[offset] = 1;
7dfad418 152 si->cluster_next = offset + 1;
52b7efdb 153 si->flags -= SWP_SCANNING;
1da177e4
LT
154 return offset;
155 }
7dfad418 156
5d337b91 157 spin_unlock(&swap_lock);
7dfad418 158 while (++offset <= si->highest_bit) {
52b7efdb 159 if (!si->swap_map[offset]) {
5d337b91 160 spin_lock(&swap_lock);
52b7efdb
HD
161 goto checks;
162 }
048c27fd
HD
163 if (unlikely(--latency_ration < 0)) {
164 cond_resched();
165 latency_ration = LATENCY_LIMIT;
166 }
7dfad418 167 }
5d337b91 168 spin_lock(&swap_lock);
7dfad418
HD
169 goto lowest;
170
171no_page:
52b7efdb 172 si->flags -= SWP_SCANNING;
1da177e4
LT
173 return 0;
174}
175
176swp_entry_t get_swap_page(void)
177{
fb4f88dc
HD
178 struct swap_info_struct *si;
179 pgoff_t offset;
180 int type, next;
181 int wrapped = 0;
1da177e4 182
5d337b91 183 spin_lock(&swap_lock);
1da177e4 184 if (nr_swap_pages <= 0)
fb4f88dc
HD
185 goto noswap;
186 nr_swap_pages--;
187
188 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
189 si = swap_info + type;
190 next = si->next;
191 if (next < 0 ||
192 (!wrapped && si->prio != swap_info[next].prio)) {
193 next = swap_list.head;
194 wrapped++;
1da177e4 195 }
fb4f88dc
HD
196
197 if (!si->highest_bit)
198 continue;
199 if (!(si->flags & SWP_WRITEOK))
200 continue;
201
202 swap_list.next = next;
fb4f88dc 203 offset = scan_swap_map(si);
5d337b91
HD
204 if (offset) {
205 spin_unlock(&swap_lock);
fb4f88dc 206 return swp_entry(type, offset);
5d337b91 207 }
fb4f88dc 208 next = swap_list.next;
1da177e4 209 }
fb4f88dc
HD
210
211 nr_swap_pages++;
212noswap:
5d337b91 213 spin_unlock(&swap_lock);
fb4f88dc 214 return (swp_entry_t) {0};
1da177e4
LT
215}
216
3a291a20
RW
217swp_entry_t get_swap_page_of_type(int type)
218{
219 struct swap_info_struct *si;
220 pgoff_t offset;
221
222 spin_lock(&swap_lock);
223 si = swap_info + type;
224 if (si->flags & SWP_WRITEOK) {
225 nr_swap_pages--;
226 offset = scan_swap_map(si);
227 if (offset) {
228 spin_unlock(&swap_lock);
229 return swp_entry(type, offset);
230 }
231 nr_swap_pages++;
232 }
233 spin_unlock(&swap_lock);
234 return (swp_entry_t) {0};
235}
236
1da177e4
LT
237static struct swap_info_struct * swap_info_get(swp_entry_t entry)
238{
239 struct swap_info_struct * p;
240 unsigned long offset, type;
241
242 if (!entry.val)
243 goto out;
244 type = swp_type(entry);
245 if (type >= nr_swapfiles)
246 goto bad_nofile;
247 p = & swap_info[type];
248 if (!(p->flags & SWP_USED))
249 goto bad_device;
250 offset = swp_offset(entry);
251 if (offset >= p->max)
252 goto bad_offset;
253 if (!p->swap_map[offset])
254 goto bad_free;
5d337b91 255 spin_lock(&swap_lock);
1da177e4
LT
256 return p;
257
258bad_free:
259 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
260 goto out;
261bad_offset:
262 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
263 goto out;
264bad_device:
265 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
266 goto out;
267bad_nofile:
268 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
269out:
270 return NULL;
271}
272
1da177e4
LT
273static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
274{
275 int count = p->swap_map[offset];
276
277 if (count < SWAP_MAP_MAX) {
278 count--;
279 p->swap_map[offset] = count;
280 if (!count) {
281 if (offset < p->lowest_bit)
282 p->lowest_bit = offset;
283 if (offset > p->highest_bit)
284 p->highest_bit = offset;
89d09a2c
HD
285 if (p->prio > swap_info[swap_list.next].prio)
286 swap_list.next = p - swap_info;
1da177e4
LT
287 nr_swap_pages++;
288 p->inuse_pages--;
289 }
290 }
291 return count;
292}
293
294/*
295 * Caller has made sure that the swapdevice corresponding to entry
296 * is still around or has not been recycled.
297 */
298void swap_free(swp_entry_t entry)
299{
300 struct swap_info_struct * p;
301
302 p = swap_info_get(entry);
303 if (p) {
304 swap_entry_free(p, swp_offset(entry));
5d337b91 305 spin_unlock(&swap_lock);
1da177e4
LT
306 }
307}
308
309/*
c475a8ab 310 * How many references to page are currently swapped out?
1da177e4 311 */
c475a8ab 312static inline int page_swapcount(struct page *page)
1da177e4 313{
c475a8ab
HD
314 int count = 0;
315 struct swap_info_struct *p;
1da177e4
LT
316 swp_entry_t entry;
317
4c21e2f2 318 entry.val = page_private(page);
1da177e4
LT
319 p = swap_info_get(entry);
320 if (p) {
c475a8ab
HD
321 /* Subtract the 1 for the swap cache itself */
322 count = p->swap_map[swp_offset(entry)] - 1;
5d337b91 323 spin_unlock(&swap_lock);
1da177e4 324 }
c475a8ab 325 return count;
1da177e4
LT
326}
327
328/*
7b1fe597
HD
329 * We can write to an anon page without COW if there are no other references
330 * to it. And as a side-effect, free up its swap: because the old content
331 * on disk will never be read, and seeking back there to write new content
332 * later would only waste time away from clustering.
1da177e4 333 */
7b1fe597 334int reuse_swap_page(struct page *page)
1da177e4 335{
c475a8ab
HD
336 int count;
337
51726b12 338 VM_BUG_ON(!PageLocked(page));
c475a8ab 339 count = page_mapcount(page);
7b1fe597 340 if (count <= 1 && PageSwapCache(page)) {
c475a8ab 341 count += page_swapcount(page);
7b1fe597
HD
342 if (count == 1 && !PageWriteback(page)) {
343 delete_from_swap_cache(page);
344 SetPageDirty(page);
345 }
346 }
c475a8ab 347 return count == 1;
1da177e4
LT
348}
349
350/*
a2c43eed
HD
351 * If swap is getting full, or if there are no more mappings of this page,
352 * then try_to_free_swap is called to free its swap space.
1da177e4 353 */
a2c43eed 354int try_to_free_swap(struct page *page)
1da177e4 355{
51726b12 356 VM_BUG_ON(!PageLocked(page));
1da177e4
LT
357
358 if (!PageSwapCache(page))
359 return 0;
360 if (PageWriteback(page))
361 return 0;
a2c43eed 362 if (page_swapcount(page))
1da177e4
LT
363 return 0;
364
a2c43eed
HD
365 delete_from_swap_cache(page);
366 SetPageDirty(page);
367 return 1;
68a22394
RR
368}
369
1da177e4
LT
370/*
371 * Free the swap entry like above, but also try to
372 * free the page cache entry if it is the last user.
373 */
374void free_swap_and_cache(swp_entry_t entry)
375{
376 struct swap_info_struct * p;
377 struct page *page = NULL;
378
0697212a
CL
379 if (is_migration_entry(entry))
380 return;
381
1da177e4
LT
382 p = swap_info_get(entry);
383 if (p) {
93fac704
NP
384 if (swap_entry_free(p, swp_offset(entry)) == 1) {
385 page = find_get_page(&swapper_space, entry.val);
8413ac9d 386 if (page && !trylock_page(page)) {
93fac704
NP
387 page_cache_release(page);
388 page = NULL;
389 }
390 }
5d337b91 391 spin_unlock(&swap_lock);
1da177e4
LT
392 }
393 if (page) {
a2c43eed
HD
394 /*
395 * Not mapped elsewhere, or swap space full? Free it!
396 * Also recheck PageSwapCache now page is locked (above).
397 */
93fac704 398 if (PageSwapCache(page) && !PageWriteback(page) &&
a2c43eed 399 (!page_mapped(page) || vm_swap_full())) {
1da177e4
LT
400 delete_from_swap_cache(page);
401 SetPageDirty(page);
402 }
403 unlock_page(page);
404 page_cache_release(page);
405 }
406}
407
b0cb1a19 408#ifdef CONFIG_HIBERNATION
f577eb30 409/*
915bae9e 410 * Find the swap type that corresponds to given device (if any).
f577eb30 411 *
915bae9e
RW
412 * @offset - number of the PAGE_SIZE-sized block of the device, starting
413 * from 0, in which the swap header is expected to be located.
414 *
415 * This is needed for the suspend to disk (aka swsusp).
f577eb30 416 */
7bf23687 417int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 418{
915bae9e 419 struct block_device *bdev = NULL;
f577eb30
RW
420 int i;
421
915bae9e
RW
422 if (device)
423 bdev = bdget(device);
424
f577eb30
RW
425 spin_lock(&swap_lock);
426 for (i = 0; i < nr_swapfiles; i++) {
915bae9e 427 struct swap_info_struct *sis = swap_info + i;
f577eb30 428
915bae9e 429 if (!(sis->flags & SWP_WRITEOK))
f577eb30 430 continue;
b6b5bce3 431
915bae9e 432 if (!bdev) {
7bf23687
RW
433 if (bdev_p)
434 *bdev_p = sis->bdev;
435
6e1819d6
RW
436 spin_unlock(&swap_lock);
437 return i;
438 }
915bae9e
RW
439 if (bdev == sis->bdev) {
440 struct swap_extent *se;
441
442 se = list_entry(sis->extent_list.next,
443 struct swap_extent, list);
444 if (se->start_block == offset) {
7bf23687
RW
445 if (bdev_p)
446 *bdev_p = sis->bdev;
447
915bae9e
RW
448 spin_unlock(&swap_lock);
449 bdput(bdev);
450 return i;
451 }
f577eb30
RW
452 }
453 }
454 spin_unlock(&swap_lock);
915bae9e
RW
455 if (bdev)
456 bdput(bdev);
457
f577eb30
RW
458 return -ENODEV;
459}
460
461/*
462 * Return either the total number of swap pages of given type, or the number
463 * of free pages of that type (depending on @free)
464 *
465 * This is needed for software suspend
466 */
467unsigned int count_swap_pages(int type, int free)
468{
469 unsigned int n = 0;
470
471 if (type < nr_swapfiles) {
472 spin_lock(&swap_lock);
473 if (swap_info[type].flags & SWP_WRITEOK) {
474 n = swap_info[type].pages;
475 if (free)
476 n -= swap_info[type].inuse_pages;
477 }
478 spin_unlock(&swap_lock);
479 }
480 return n;
481}
482#endif
483
1da177e4 484/*
72866f6f
HD
485 * No need to decide whether this PTE shares the swap entry with others,
486 * just let do_wp_page work it out if a write is requested later - to
487 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 488 */
044d66c1 489static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
490 unsigned long addr, swp_entry_t entry, struct page *page)
491{
044d66c1
HD
492 spinlock_t *ptl;
493 pte_t *pte;
494 int ret = 1;
495
e1a1cd59 496 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
044d66c1
HD
497 ret = -ENOMEM;
498
499 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
500 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
501 if (ret > 0)
502 mem_cgroup_uncharge_page(page);
503 ret = 0;
504 goto out;
505 }
8a9f3ccd 506
4294621f 507 inc_mm_counter(vma->vm_mm, anon_rss);
1da177e4
LT
508 get_page(page);
509 set_pte_at(vma->vm_mm, addr, pte,
510 pte_mkold(mk_pte(page, vma->vm_page_prot)));
511 page_add_anon_rmap(page, vma, addr);
512 swap_free(entry);
513 /*
514 * Move the page to the active list so it is not
515 * immediately swapped out again after swapon.
516 */
517 activate_page(page);
044d66c1
HD
518out:
519 pte_unmap_unlock(pte, ptl);
520 return ret;
1da177e4
LT
521}
522
523static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
524 unsigned long addr, unsigned long end,
525 swp_entry_t entry, struct page *page)
526{
1da177e4 527 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 528 pte_t *pte;
8a9f3ccd 529 int ret = 0;
1da177e4 530
044d66c1
HD
531 /*
532 * We don't actually need pte lock while scanning for swp_pte: since
533 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
534 * page table while we're scanning; though it could get zapped, and on
535 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
536 * of unmatched parts which look like swp_pte, so unuse_pte must
537 * recheck under pte lock. Scanning without pte lock lets it be
538 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
539 */
540 pte = pte_offset_map(pmd, addr);
1da177e4
LT
541 do {
542 /*
543 * swapoff spends a _lot_ of time in this loop!
544 * Test inline before going to call unuse_pte.
545 */
546 if (unlikely(pte_same(*pte, swp_pte))) {
044d66c1
HD
547 pte_unmap(pte);
548 ret = unuse_pte(vma, pmd, addr, entry, page);
549 if (ret)
550 goto out;
551 pte = pte_offset_map(pmd, addr);
1da177e4
LT
552 }
553 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
554 pte_unmap(pte - 1);
555out:
8a9f3ccd 556 return ret;
1da177e4
LT
557}
558
559static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
560 unsigned long addr, unsigned long end,
561 swp_entry_t entry, struct page *page)
562{
563 pmd_t *pmd;
564 unsigned long next;
8a9f3ccd 565 int ret;
1da177e4
LT
566
567 pmd = pmd_offset(pud, addr);
568 do {
569 next = pmd_addr_end(addr, end);
570 if (pmd_none_or_clear_bad(pmd))
571 continue;
8a9f3ccd
BS
572 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
573 if (ret)
574 return ret;
1da177e4
LT
575 } while (pmd++, addr = next, addr != end);
576 return 0;
577}
578
579static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
580 unsigned long addr, unsigned long end,
581 swp_entry_t entry, struct page *page)
582{
583 pud_t *pud;
584 unsigned long next;
8a9f3ccd 585 int ret;
1da177e4
LT
586
587 pud = pud_offset(pgd, addr);
588 do {
589 next = pud_addr_end(addr, end);
590 if (pud_none_or_clear_bad(pud))
591 continue;
8a9f3ccd
BS
592 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
593 if (ret)
594 return ret;
1da177e4
LT
595 } while (pud++, addr = next, addr != end);
596 return 0;
597}
598
599static int unuse_vma(struct vm_area_struct *vma,
600 swp_entry_t entry, struct page *page)
601{
602 pgd_t *pgd;
603 unsigned long addr, end, next;
8a9f3ccd 604 int ret;
1da177e4
LT
605
606 if (page->mapping) {
607 addr = page_address_in_vma(page, vma);
608 if (addr == -EFAULT)
609 return 0;
610 else
611 end = addr + PAGE_SIZE;
612 } else {
613 addr = vma->vm_start;
614 end = vma->vm_end;
615 }
616
617 pgd = pgd_offset(vma->vm_mm, addr);
618 do {
619 next = pgd_addr_end(addr, end);
620 if (pgd_none_or_clear_bad(pgd))
621 continue;
8a9f3ccd
BS
622 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
623 if (ret)
624 return ret;
1da177e4
LT
625 } while (pgd++, addr = next, addr != end);
626 return 0;
627}
628
629static int unuse_mm(struct mm_struct *mm,
630 swp_entry_t entry, struct page *page)
631{
632 struct vm_area_struct *vma;
8a9f3ccd 633 int ret = 0;
1da177e4
LT
634
635 if (!down_read_trylock(&mm->mmap_sem)) {
636 /*
7d03431c
FLVC
637 * Activate page so shrink_inactive_list is unlikely to unmap
638 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 639 */
c475a8ab 640 activate_page(page);
1da177e4
LT
641 unlock_page(page);
642 down_read(&mm->mmap_sem);
643 lock_page(page);
644 }
1da177e4 645 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 646 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4
LT
647 break;
648 }
1da177e4 649 up_read(&mm->mmap_sem);
8a9f3ccd 650 return (ret < 0)? ret: 0;
1da177e4
LT
651}
652
653/*
654 * Scan swap_map from current position to next entry still in use.
655 * Recycle to start on reaching the end, returning 0 when empty.
656 */
6eb396dc
HD
657static unsigned int find_next_to_unuse(struct swap_info_struct *si,
658 unsigned int prev)
1da177e4 659{
6eb396dc
HD
660 unsigned int max = si->max;
661 unsigned int i = prev;
1da177e4
LT
662 int count;
663
664 /*
5d337b91 665 * No need for swap_lock here: we're just looking
1da177e4
LT
666 * for whether an entry is in use, not modifying it; false
667 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 668 * allocations from this area (while holding swap_lock).
1da177e4
LT
669 */
670 for (;;) {
671 if (++i >= max) {
672 if (!prev) {
673 i = 0;
674 break;
675 }
676 /*
677 * No entries in use at top of swap_map,
678 * loop back to start and recheck there.
679 */
680 max = prev + 1;
681 prev = 0;
682 i = 1;
683 }
684 count = si->swap_map[i];
685 if (count && count != SWAP_MAP_BAD)
686 break;
687 }
688 return i;
689}
690
691/*
692 * We completely avoid races by reading each swap page in advance,
693 * and then search for the process using it. All the necessary
694 * page table adjustments can then be made atomically.
695 */
696static int try_to_unuse(unsigned int type)
697{
698 struct swap_info_struct * si = &swap_info[type];
699 struct mm_struct *start_mm;
700 unsigned short *swap_map;
701 unsigned short swcount;
702 struct page *page;
703 swp_entry_t entry;
6eb396dc 704 unsigned int i = 0;
1da177e4
LT
705 int retval = 0;
706 int reset_overflow = 0;
707 int shmem;
708
709 /*
710 * When searching mms for an entry, a good strategy is to
711 * start at the first mm we freed the previous entry from
712 * (though actually we don't notice whether we or coincidence
713 * freed the entry). Initialize this start_mm with a hold.
714 *
715 * A simpler strategy would be to start at the last mm we
716 * freed the previous entry from; but that would take less
717 * advantage of mmlist ordering, which clusters forked mms
718 * together, child after parent. If we race with dup_mmap(), we
719 * prefer to resolve parent before child, lest we miss entries
720 * duplicated after we scanned child: using last mm would invert
721 * that. Though it's only a serious concern when an overflowed
722 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
723 */
724 start_mm = &init_mm;
725 atomic_inc(&init_mm.mm_users);
726
727 /*
728 * Keep on scanning until all entries have gone. Usually,
729 * one pass through swap_map is enough, but not necessarily:
730 * there are races when an instance of an entry might be missed.
731 */
732 while ((i = find_next_to_unuse(si, i)) != 0) {
733 if (signal_pending(current)) {
734 retval = -EINTR;
735 break;
736 }
737
738 /*
739 * Get a page for the entry, using the existing swap
740 * cache page if there is one. Otherwise, get a clean
741 * page and read the swap into it.
742 */
743 swap_map = &si->swap_map[i];
744 entry = swp_entry(type, i);
02098fea
HD
745 page = read_swap_cache_async(entry,
746 GFP_HIGHUSER_MOVABLE, NULL, 0);
1da177e4
LT
747 if (!page) {
748 /*
749 * Either swap_duplicate() failed because entry
750 * has been freed independently, and will not be
751 * reused since sys_swapoff() already disabled
752 * allocation from here, or alloc_page() failed.
753 */
754 if (!*swap_map)
755 continue;
756 retval = -ENOMEM;
757 break;
758 }
759
760 /*
761 * Don't hold on to start_mm if it looks like exiting.
762 */
763 if (atomic_read(&start_mm->mm_users) == 1) {
764 mmput(start_mm);
765 start_mm = &init_mm;
766 atomic_inc(&init_mm.mm_users);
767 }
768
769 /*
770 * Wait for and lock page. When do_swap_page races with
771 * try_to_unuse, do_swap_page can handle the fault much
772 * faster than try_to_unuse can locate the entry. This
773 * apparently redundant "wait_on_page_locked" lets try_to_unuse
774 * defer to do_swap_page in such a case - in some tests,
775 * do_swap_page and try_to_unuse repeatedly compete.
776 */
777 wait_on_page_locked(page);
778 wait_on_page_writeback(page);
779 lock_page(page);
780 wait_on_page_writeback(page);
781
782 /*
783 * Remove all references to entry.
784 * Whenever we reach init_mm, there's no address space
785 * to search, but use it as a reminder to search shmem.
786 */
787 shmem = 0;
788 swcount = *swap_map;
789 if (swcount > 1) {
790 if (start_mm == &init_mm)
791 shmem = shmem_unuse(entry, page);
792 else
793 retval = unuse_mm(start_mm, entry, page);
794 }
795 if (*swap_map > 1) {
796 int set_start_mm = (*swap_map >= swcount);
797 struct list_head *p = &start_mm->mmlist;
798 struct mm_struct *new_start_mm = start_mm;
799 struct mm_struct *prev_mm = start_mm;
800 struct mm_struct *mm;
801
802 atomic_inc(&new_start_mm->mm_users);
803 atomic_inc(&prev_mm->mm_users);
804 spin_lock(&mmlist_lock);
2e0e26c7 805 while (*swap_map > 1 && !retval && !shmem &&
1da177e4
LT
806 (p = p->next) != &start_mm->mmlist) {
807 mm = list_entry(p, struct mm_struct, mmlist);
70af7c5c 808 if (!atomic_inc_not_zero(&mm->mm_users))
1da177e4 809 continue;
1da177e4
LT
810 spin_unlock(&mmlist_lock);
811 mmput(prev_mm);
812 prev_mm = mm;
813
814 cond_resched();
815
816 swcount = *swap_map;
817 if (swcount <= 1)
818 ;
819 else if (mm == &init_mm) {
820 set_start_mm = 1;
821 shmem = shmem_unuse(entry, page);
822 } else
823 retval = unuse_mm(mm, entry, page);
824 if (set_start_mm && *swap_map < swcount) {
825 mmput(new_start_mm);
826 atomic_inc(&mm->mm_users);
827 new_start_mm = mm;
828 set_start_mm = 0;
829 }
830 spin_lock(&mmlist_lock);
831 }
832 spin_unlock(&mmlist_lock);
833 mmput(prev_mm);
834 mmput(start_mm);
835 start_mm = new_start_mm;
836 }
2e0e26c7
HD
837 if (shmem) {
838 /* page has already been unlocked and released */
839 if (shmem > 0)
840 continue;
841 retval = shmem;
842 break;
843 }
1da177e4
LT
844 if (retval) {
845 unlock_page(page);
846 page_cache_release(page);
847 break;
848 }
849
850 /*
851 * How could swap count reach 0x7fff when the maximum
852 * pid is 0x7fff, and there's no way to repeat a swap
853 * page within an mm (except in shmem, where it's the
854 * shared object which takes the reference count)?
855 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
856 *
857 * If that's wrong, then we should worry more about
858 * exit_mmap() and do_munmap() cases described above:
859 * we might be resetting SWAP_MAP_MAX too early here.
860 * We know "Undead"s can happen, they're okay, so don't
861 * report them; but do report if we reset SWAP_MAP_MAX.
862 */
863 if (*swap_map == SWAP_MAP_MAX) {
5d337b91 864 spin_lock(&swap_lock);
1da177e4 865 *swap_map = 1;
5d337b91 866 spin_unlock(&swap_lock);
1da177e4
LT
867 reset_overflow = 1;
868 }
869
870 /*
871 * If a reference remains (rare), we would like to leave
872 * the page in the swap cache; but try_to_unmap could
873 * then re-duplicate the entry once we drop page lock,
874 * so we might loop indefinitely; also, that page could
875 * not be swapped out to other storage meanwhile. So:
876 * delete from cache even if there's another reference,
877 * after ensuring that the data has been saved to disk -
878 * since if the reference remains (rarer), it will be
879 * read from disk into another page. Splitting into two
880 * pages would be incorrect if swap supported "shared
881 * private" pages, but they are handled by tmpfs files.
1da177e4
LT
882 */
883 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
884 struct writeback_control wbc = {
885 .sync_mode = WB_SYNC_NONE,
886 };
887
888 swap_writepage(page, &wbc);
889 lock_page(page);
890 wait_on_page_writeback(page);
891 }
2e0e26c7
HD
892 if (PageSwapCache(page))
893 delete_from_swap_cache(page);
1da177e4
LT
894
895 /*
896 * So we could skip searching mms once swap count went
897 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 898 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
899 */
900 SetPageDirty(page);
901 unlock_page(page);
902 page_cache_release(page);
903
904 /*
905 * Make sure that we aren't completely killing
906 * interactive performance.
907 */
908 cond_resched();
909 }
910
911 mmput(start_mm);
912 if (reset_overflow) {
913 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
914 swap_overflow = 0;
915 }
916 return retval;
917}
918
919/*
5d337b91
HD
920 * After a successful try_to_unuse, if no swap is now in use, we know
921 * we can empty the mmlist. swap_lock must be held on entry and exit.
922 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
923 * added to the mmlist just after page_duplicate - before would be racy.
924 */
925static void drain_mmlist(void)
926{
927 struct list_head *p, *next;
928 unsigned int i;
929
930 for (i = 0; i < nr_swapfiles; i++)
931 if (swap_info[i].inuse_pages)
932 return;
933 spin_lock(&mmlist_lock);
934 list_for_each_safe(p, next, &init_mm.mmlist)
935 list_del_init(p);
936 spin_unlock(&mmlist_lock);
937}
938
939/*
940 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
941 * corresponds to page offset `offset'.
942 */
943sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
944{
945 struct swap_extent *se = sis->curr_swap_extent;
946 struct swap_extent *start_se = se;
947
948 for ( ; ; ) {
949 struct list_head *lh;
950
951 if (se->start_page <= offset &&
952 offset < (se->start_page + se->nr_pages)) {
953 return se->start_block + (offset - se->start_page);
954 }
11d31886 955 lh = se->list.next;
1da177e4 956 if (lh == &sis->extent_list)
11d31886 957 lh = lh->next;
1da177e4
LT
958 se = list_entry(lh, struct swap_extent, list);
959 sis->curr_swap_extent = se;
960 BUG_ON(se == start_se); /* It *must* be present */
961 }
962}
963
b0cb1a19 964#ifdef CONFIG_HIBERNATION
3aef83e0
RW
965/*
966 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
967 * corresponding to given index in swap_info (swap type).
968 */
969sector_t swapdev_block(int swap_type, pgoff_t offset)
970{
971 struct swap_info_struct *sis;
972
973 if (swap_type >= nr_swapfiles)
974 return 0;
975
976 sis = swap_info + swap_type;
977 return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0;
978}
b0cb1a19 979#endif /* CONFIG_HIBERNATION */
3aef83e0 980
1da177e4
LT
981/*
982 * Free all of a swapdev's extent information
983 */
984static void destroy_swap_extents(struct swap_info_struct *sis)
985{
986 while (!list_empty(&sis->extent_list)) {
987 struct swap_extent *se;
988
989 se = list_entry(sis->extent_list.next,
990 struct swap_extent, list);
991 list_del(&se->list);
992 kfree(se);
993 }
1da177e4
LT
994}
995
996/*
997 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 998 * extent list. The extent list is kept sorted in page order.
1da177e4 999 *
11d31886 1000 * This function rather assumes that it is called in ascending page order.
1da177e4
LT
1001 */
1002static int
1003add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1004 unsigned long nr_pages, sector_t start_block)
1005{
1006 struct swap_extent *se;
1007 struct swap_extent *new_se;
1008 struct list_head *lh;
1009
11d31886
HD
1010 lh = sis->extent_list.prev; /* The highest page extent */
1011 if (lh != &sis->extent_list) {
1da177e4 1012 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
1013 BUG_ON(se->start_page + se->nr_pages != start_page);
1014 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
1015 /* Merge it */
1016 se->nr_pages += nr_pages;
1017 return 0;
1018 }
1da177e4
LT
1019 }
1020
1021 /*
1022 * No merge. Insert a new extent, preserving ordering.
1023 */
1024 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1025 if (new_se == NULL)
1026 return -ENOMEM;
1027 new_se->start_page = start_page;
1028 new_se->nr_pages = nr_pages;
1029 new_se->start_block = start_block;
1030
11d31886 1031 list_add_tail(&new_se->list, &sis->extent_list);
53092a74 1032 return 1;
1da177e4
LT
1033}
1034
1035/*
1036 * A `swap extent' is a simple thing which maps a contiguous range of pages
1037 * onto a contiguous range of disk blocks. An ordered list of swap extents
1038 * is built at swapon time and is then used at swap_writepage/swap_readpage
1039 * time for locating where on disk a page belongs.
1040 *
1041 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1042 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1043 * swap files identically.
1044 *
1045 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1046 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1047 * swapfiles are handled *identically* after swapon time.
1048 *
1049 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1050 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1051 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1052 * requirements, they are simply tossed out - we will never use those blocks
1053 * for swapping.
1054 *
b0d9bcd4 1055 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
1056 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1057 * which will scribble on the fs.
1058 *
1059 * The amount of disk space which a single swap extent represents varies.
1060 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1061 * extents in the list. To avoid much list walking, we cache the previous
1062 * search location in `curr_swap_extent', and start new searches from there.
1063 * This is extremely effective. The average number of iterations in
1064 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1065 */
53092a74 1066static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4
LT
1067{
1068 struct inode *inode;
1069 unsigned blocks_per_page;
1070 unsigned long page_no;
1071 unsigned blkbits;
1072 sector_t probe_block;
1073 sector_t last_block;
53092a74
HD
1074 sector_t lowest_block = -1;
1075 sector_t highest_block = 0;
1076 int nr_extents = 0;
1da177e4
LT
1077 int ret;
1078
1079 inode = sis->swap_file->f_mapping->host;
1080 if (S_ISBLK(inode->i_mode)) {
1081 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 1082 *span = sis->pages;
1da177e4
LT
1083 goto done;
1084 }
1085
1086 blkbits = inode->i_blkbits;
1087 blocks_per_page = PAGE_SIZE >> blkbits;
1088
1089 /*
1090 * Map all the blocks into the extent list. This code doesn't try
1091 * to be very smart.
1092 */
1093 probe_block = 0;
1094 page_no = 0;
1095 last_block = i_size_read(inode) >> blkbits;
1096 while ((probe_block + blocks_per_page) <= last_block &&
1097 page_no < sis->max) {
1098 unsigned block_in_page;
1099 sector_t first_block;
1100
1101 first_block = bmap(inode, probe_block);
1102 if (first_block == 0)
1103 goto bad_bmap;
1104
1105 /*
1106 * It must be PAGE_SIZE aligned on-disk
1107 */
1108 if (first_block & (blocks_per_page - 1)) {
1109 probe_block++;
1110 goto reprobe;
1111 }
1112
1113 for (block_in_page = 1; block_in_page < blocks_per_page;
1114 block_in_page++) {
1115 sector_t block;
1116
1117 block = bmap(inode, probe_block + block_in_page);
1118 if (block == 0)
1119 goto bad_bmap;
1120 if (block != first_block + block_in_page) {
1121 /* Discontiguity */
1122 probe_block++;
1123 goto reprobe;
1124 }
1125 }
1126
53092a74
HD
1127 first_block >>= (PAGE_SHIFT - blkbits);
1128 if (page_no) { /* exclude the header page */
1129 if (first_block < lowest_block)
1130 lowest_block = first_block;
1131 if (first_block > highest_block)
1132 highest_block = first_block;
1133 }
1134
1da177e4
LT
1135 /*
1136 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1137 */
53092a74
HD
1138 ret = add_swap_extent(sis, page_no, 1, first_block);
1139 if (ret < 0)
1da177e4 1140 goto out;
53092a74 1141 nr_extents += ret;
1da177e4
LT
1142 page_no++;
1143 probe_block += blocks_per_page;
1144reprobe:
1145 continue;
1146 }
53092a74
HD
1147 ret = nr_extents;
1148 *span = 1 + highest_block - lowest_block;
1da177e4 1149 if (page_no == 0)
e2244ec2 1150 page_no = 1; /* force Empty message */
1da177e4 1151 sis->max = page_no;
e2244ec2 1152 sis->pages = page_no - 1;
1da177e4
LT
1153 sis->highest_bit = page_no - 1;
1154done:
1155 sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1156 struct swap_extent, list);
1157 goto out;
1158bad_bmap:
1159 printk(KERN_ERR "swapon: swapfile has holes\n");
1160 ret = -EINVAL;
1161out:
1162 return ret;
1163}
1164
1165#if 0 /* We don't need this yet */
1166#include <linux/backing-dev.h>
1167int page_queue_congested(struct page *page)
1168{
1169 struct backing_dev_info *bdi;
1170
51726b12 1171 VM_BUG_ON(!PageLocked(page)); /* It pins the swap_info_struct */
1da177e4
LT
1172
1173 if (PageSwapCache(page)) {
4c21e2f2 1174 swp_entry_t entry = { .val = page_private(page) };
1da177e4
LT
1175 struct swap_info_struct *sis;
1176
1177 sis = get_swap_info_struct(swp_type(entry));
1178 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1179 } else
1180 bdi = page->mapping->backing_dev_info;
1181 return bdi_write_congested(bdi);
1182}
1183#endif
1184
1185asmlinkage long sys_swapoff(const char __user * specialfile)
1186{
1187 struct swap_info_struct * p = NULL;
1188 unsigned short *swap_map;
1189 struct file *swap_file, *victim;
1190 struct address_space *mapping;
1191 struct inode *inode;
1192 char * pathname;
1193 int i, type, prev;
1194 int err;
1195
1196 if (!capable(CAP_SYS_ADMIN))
1197 return -EPERM;
1198
1199 pathname = getname(specialfile);
1200 err = PTR_ERR(pathname);
1201 if (IS_ERR(pathname))
1202 goto out;
1203
1204 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1205 putname(pathname);
1206 err = PTR_ERR(victim);
1207 if (IS_ERR(victim))
1208 goto out;
1209
1210 mapping = victim->f_mapping;
1211 prev = -1;
5d337b91 1212 spin_lock(&swap_lock);
1da177e4
LT
1213 for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1214 p = swap_info + type;
1215 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1216 if (p->swap_file->f_mapping == mapping)
1217 break;
1218 }
1219 prev = type;
1220 }
1221 if (type < 0) {
1222 err = -EINVAL;
5d337b91 1223 spin_unlock(&swap_lock);
1da177e4
LT
1224 goto out_dput;
1225 }
1226 if (!security_vm_enough_memory(p->pages))
1227 vm_unacct_memory(p->pages);
1228 else {
1229 err = -ENOMEM;
5d337b91 1230 spin_unlock(&swap_lock);
1da177e4
LT
1231 goto out_dput;
1232 }
1233 if (prev < 0) {
1234 swap_list.head = p->next;
1235 } else {
1236 swap_info[prev].next = p->next;
1237 }
1238 if (type == swap_list.next) {
1239 /* just pick something that's safe... */
1240 swap_list.next = swap_list.head;
1241 }
78ecba08
HD
1242 if (p->prio < 0) {
1243 for (i = p->next; i >= 0; i = swap_info[i].next)
1244 swap_info[i].prio = p->prio--;
1245 least_priority++;
1246 }
1da177e4
LT
1247 nr_swap_pages -= p->pages;
1248 total_swap_pages -= p->pages;
1249 p->flags &= ~SWP_WRITEOK;
5d337b91 1250 spin_unlock(&swap_lock);
fb4f88dc 1251
1da177e4
LT
1252 current->flags |= PF_SWAPOFF;
1253 err = try_to_unuse(type);
1254 current->flags &= ~PF_SWAPOFF;
1255
1da177e4
LT
1256 if (err) {
1257 /* re-insert swap space back into swap_list */
5d337b91 1258 spin_lock(&swap_lock);
78ecba08
HD
1259 if (p->prio < 0)
1260 p->prio = --least_priority;
1261 prev = -1;
1262 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1da177e4
LT
1263 if (p->prio >= swap_info[i].prio)
1264 break;
78ecba08
HD
1265 prev = i;
1266 }
1da177e4
LT
1267 p->next = i;
1268 if (prev < 0)
1269 swap_list.head = swap_list.next = p - swap_info;
1270 else
1271 swap_info[prev].next = p - swap_info;
1272 nr_swap_pages += p->pages;
1273 total_swap_pages += p->pages;
1274 p->flags |= SWP_WRITEOK;
5d337b91 1275 spin_unlock(&swap_lock);
1da177e4
LT
1276 goto out_dput;
1277 }
52b7efdb
HD
1278
1279 /* wait for any unplug function to finish */
1280 down_write(&swap_unplug_sem);
1281 up_write(&swap_unplug_sem);
1282
5d337b91 1283 destroy_swap_extents(p);
fc0abb14 1284 mutex_lock(&swapon_mutex);
5d337b91
HD
1285 spin_lock(&swap_lock);
1286 drain_mmlist();
1287
52b7efdb 1288 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
1289 p->highest_bit = 0; /* cuts scans short */
1290 while (p->flags >= SWP_SCANNING) {
5d337b91 1291 spin_unlock(&swap_lock);
13e4b57f 1292 schedule_timeout_uninterruptible(1);
5d337b91 1293 spin_lock(&swap_lock);
52b7efdb 1294 }
52b7efdb 1295
1da177e4
LT
1296 swap_file = p->swap_file;
1297 p->swap_file = NULL;
1298 p->max = 0;
1299 swap_map = p->swap_map;
1300 p->swap_map = NULL;
1301 p->flags = 0;
5d337b91 1302 spin_unlock(&swap_lock);
fc0abb14 1303 mutex_unlock(&swapon_mutex);
1da177e4
LT
1304 vfree(swap_map);
1305 inode = mapping->host;
1306 if (S_ISBLK(inode->i_mode)) {
1307 struct block_device *bdev = I_BDEV(inode);
1308 set_blocksize(bdev, p->old_block_size);
1309 bd_release(bdev);
1310 } else {
1b1dcc1b 1311 mutex_lock(&inode->i_mutex);
1da177e4 1312 inode->i_flags &= ~S_SWAPFILE;
1b1dcc1b 1313 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1314 }
1315 filp_close(swap_file, NULL);
1316 err = 0;
1317
1318out_dput:
1319 filp_close(victim, NULL);
1320out:
1321 return err;
1322}
1323
1324#ifdef CONFIG_PROC_FS
1325/* iterator */
1326static void *swap_start(struct seq_file *swap, loff_t *pos)
1327{
1328 struct swap_info_struct *ptr = swap_info;
1329 int i;
1330 loff_t l = *pos;
1331
fc0abb14 1332 mutex_lock(&swapon_mutex);
1da177e4 1333
881e4aab
SS
1334 if (!l)
1335 return SEQ_START_TOKEN;
1336
1da177e4
LT
1337 for (i = 0; i < nr_swapfiles; i++, ptr++) {
1338 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1339 continue;
881e4aab 1340 if (!--l)
1da177e4
LT
1341 return ptr;
1342 }
1343
1344 return NULL;
1345}
1346
1347static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1348{
881e4aab 1349 struct swap_info_struct *ptr;
1da177e4
LT
1350 struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1351
881e4aab
SS
1352 if (v == SEQ_START_TOKEN)
1353 ptr = swap_info;
1354 else {
1355 ptr = v;
1356 ptr++;
1357 }
1358
1359 for (; ptr < endptr; ptr++) {
1da177e4
LT
1360 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1361 continue;
1362 ++*pos;
1363 return ptr;
1364 }
1365
1366 return NULL;
1367}
1368
1369static void swap_stop(struct seq_file *swap, void *v)
1370{
fc0abb14 1371 mutex_unlock(&swapon_mutex);
1da177e4
LT
1372}
1373
1374static int swap_show(struct seq_file *swap, void *v)
1375{
1376 struct swap_info_struct *ptr = v;
1377 struct file *file;
1378 int len;
1379
881e4aab
SS
1380 if (ptr == SEQ_START_TOKEN) {
1381 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1382 return 0;
1383 }
1da177e4
LT
1384
1385 file = ptr->swap_file;
c32c2f63 1386 len = seq_path(swap, &file->f_path, " \t\n\\");
6eb396dc 1387 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1da177e4 1388 len < 40 ? 40 - len : 1, " ",
d3ac7f89 1389 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1da177e4
LT
1390 "partition" : "file\t",
1391 ptr->pages << (PAGE_SHIFT - 10),
1392 ptr->inuse_pages << (PAGE_SHIFT - 10),
1393 ptr->prio);
1394 return 0;
1395}
1396
15ad7cdc 1397static const struct seq_operations swaps_op = {
1da177e4
LT
1398 .start = swap_start,
1399 .next = swap_next,
1400 .stop = swap_stop,
1401 .show = swap_show
1402};
1403
1404static int swaps_open(struct inode *inode, struct file *file)
1405{
1406 return seq_open(file, &swaps_op);
1407}
1408
15ad7cdc 1409static const struct file_operations proc_swaps_operations = {
1da177e4
LT
1410 .open = swaps_open,
1411 .read = seq_read,
1412 .llseek = seq_lseek,
1413 .release = seq_release,
1414};
1415
1416static int __init procswaps_init(void)
1417{
3d71f86f 1418 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
1419 return 0;
1420}
1421__initcall(procswaps_init);
1422#endif /* CONFIG_PROC_FS */
1423
1796316a
JB
1424#ifdef MAX_SWAPFILES_CHECK
1425static int __init max_swapfiles_check(void)
1426{
1427 MAX_SWAPFILES_CHECK();
1428 return 0;
1429}
1430late_initcall(max_swapfiles_check);
1431#endif
1432
1da177e4
LT
1433/*
1434 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1435 *
1436 * The swapon system call
1437 */
1438asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1439{
1440 struct swap_info_struct * p;
1441 char *name = NULL;
1442 struct block_device *bdev = NULL;
1443 struct file *swap_file = NULL;
1444 struct address_space *mapping;
1445 unsigned int type;
1446 int i, prev;
1447 int error;
1da177e4
LT
1448 union swap_header *swap_header = NULL;
1449 int swap_header_version;
6eb396dc
HD
1450 unsigned int nr_good_pages = 0;
1451 int nr_extents = 0;
53092a74 1452 sector_t span;
1da177e4
LT
1453 unsigned long maxpages = 1;
1454 int swapfilesize;
78ecba08 1455 unsigned short *swap_map = NULL;
1da177e4
LT
1456 struct page *page = NULL;
1457 struct inode *inode = NULL;
1458 int did_down = 0;
1459
1460 if (!capable(CAP_SYS_ADMIN))
1461 return -EPERM;
5d337b91 1462 spin_lock(&swap_lock);
1da177e4
LT
1463 p = swap_info;
1464 for (type = 0 ; type < nr_swapfiles ; type++,p++)
1465 if (!(p->flags & SWP_USED))
1466 break;
1467 error = -EPERM;
0697212a 1468 if (type >= MAX_SWAPFILES) {
5d337b91 1469 spin_unlock(&swap_lock);
1da177e4
LT
1470 goto out;
1471 }
1472 if (type >= nr_swapfiles)
1473 nr_swapfiles = type+1;
78ecba08 1474 memset(p, 0, sizeof(*p));
1da177e4
LT
1475 INIT_LIST_HEAD(&p->extent_list);
1476 p->flags = SWP_USED;
1da177e4 1477 p->next = -1;
5d337b91 1478 spin_unlock(&swap_lock);
1da177e4
LT
1479 name = getname(specialfile);
1480 error = PTR_ERR(name);
1481 if (IS_ERR(name)) {
1482 name = NULL;
1483 goto bad_swap_2;
1484 }
1485 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1486 error = PTR_ERR(swap_file);
1487 if (IS_ERR(swap_file)) {
1488 swap_file = NULL;
1489 goto bad_swap_2;
1490 }
1491
1492 p->swap_file = swap_file;
1493 mapping = swap_file->f_mapping;
1494 inode = mapping->host;
1495
1496 error = -EBUSY;
1497 for (i = 0; i < nr_swapfiles; i++) {
1498 struct swap_info_struct *q = &swap_info[i];
1499
1500 if (i == type || !q->swap_file)
1501 continue;
1502 if (mapping == q->swap_file->f_mapping)
1503 goto bad_swap;
1504 }
1505
1506 error = -EINVAL;
1507 if (S_ISBLK(inode->i_mode)) {
1508 bdev = I_BDEV(inode);
1509 error = bd_claim(bdev, sys_swapon);
1510 if (error < 0) {
1511 bdev = NULL;
f7b3a435 1512 error = -EINVAL;
1da177e4
LT
1513 goto bad_swap;
1514 }
1515 p->old_block_size = block_size(bdev);
1516 error = set_blocksize(bdev, PAGE_SIZE);
1517 if (error < 0)
1518 goto bad_swap;
1519 p->bdev = bdev;
1520 } else if (S_ISREG(inode->i_mode)) {
1521 p->bdev = inode->i_sb->s_bdev;
1b1dcc1b 1522 mutex_lock(&inode->i_mutex);
1da177e4
LT
1523 did_down = 1;
1524 if (IS_SWAPFILE(inode)) {
1525 error = -EBUSY;
1526 goto bad_swap;
1527 }
1528 } else {
1529 goto bad_swap;
1530 }
1531
1532 swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1533
1534 /*
1535 * Read the swap header.
1536 */
1537 if (!mapping->a_ops->readpage) {
1538 error = -EINVAL;
1539 goto bad_swap;
1540 }
090d2b18 1541 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
1542 if (IS_ERR(page)) {
1543 error = PTR_ERR(page);
1544 goto bad_swap;
1545 }
1da177e4
LT
1546 kmap(page);
1547 swap_header = page_address(page);
1548
1549 if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1550 swap_header_version = 1;
1551 else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1552 swap_header_version = 2;
1553 else {
e97a3111 1554 printk(KERN_ERR "Unable to find swap-space signature\n");
1da177e4
LT
1555 error = -EINVAL;
1556 goto bad_swap;
1557 }
1558
1559 switch (swap_header_version) {
1560 case 1:
1561 printk(KERN_ERR "version 0 swap is no longer supported. "
1562 "Use mkswap -v1 %s\n", name);
1563 error = -EINVAL;
1564 goto bad_swap;
1565 case 2:
797df574
CD
1566 /* swap partition endianess hack... */
1567 if (swab32(swap_header->info.version) == 1) {
1568 swab32s(&swap_header->info.version);
1569 swab32s(&swap_header->info.last_page);
1570 swab32s(&swap_header->info.nr_badpages);
1571 for (i = 0; i < swap_header->info.nr_badpages; i++)
1572 swab32s(&swap_header->info.badpages[i]);
1573 }
1da177e4
LT
1574 /* Check the swap header's sub-version and the size of
1575 the swap file and bad block lists */
1576 if (swap_header->info.version != 1) {
1577 printk(KERN_WARNING
1578 "Unable to handle swap header version %d\n",
1579 swap_header->info.version);
1580 error = -EINVAL;
1581 goto bad_swap;
1582 }
1583
1584 p->lowest_bit = 1;
52b7efdb
HD
1585 p->cluster_next = 1;
1586
1da177e4
LT
1587 /*
1588 * Find out how many pages are allowed for a single swap
1589 * device. There are two limiting factors: 1) the number of
1590 * bits for the swap offset in the swp_entry_t type and
1591 * 2) the number of bits in the a swap pte as defined by
1592 * the different architectures. In order to find the
1593 * largest possible bit mask a swap entry with swap type 0
1594 * and swap offset ~0UL is created, encoded to a swap pte,
1595 * decoded to a swp_entry_t again and finally the swap
1596 * offset is extracted. This will mask all the bits from
1597 * the initial ~0UL mask that can't be encoded in either
1598 * the swp_entry_t or the architecture definition of a
1599 * swap pte.
1600 */
1601 maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1602 if (maxpages > swap_header->info.last_page)
1603 maxpages = swap_header->info.last_page;
1604 p->highest_bit = maxpages - 1;
1605
1606 error = -EINVAL;
e2244ec2
HD
1607 if (!maxpages)
1608 goto bad_swap;
5d1854e1
ES
1609 if (swapfilesize && maxpages > swapfilesize) {
1610 printk(KERN_WARNING
1611 "Swap area shorter than signature indicates\n");
1612 goto bad_swap;
1613 }
e2244ec2
HD
1614 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1615 goto bad_swap;
1da177e4
LT
1616 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1617 goto bad_swap;
cd105df4 1618
1da177e4 1619 /* OK, set up the swap map and apply the bad block list */
78ecba08
HD
1620 swap_map = vmalloc(maxpages * sizeof(short));
1621 if (!swap_map) {
1da177e4
LT
1622 error = -ENOMEM;
1623 goto bad_swap;
1624 }
1625
1626 error = 0;
78ecba08 1627 memset(swap_map, 0, maxpages * sizeof(short));
cd105df4
TK
1628 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1629 int page_nr = swap_header->info.badpages[i];
1630 if (page_nr <= 0 || page_nr >= swap_header->info.last_page)
1da177e4
LT
1631 error = -EINVAL;
1632 else
78ecba08 1633 swap_map[page_nr] = SWAP_MAP_BAD;
1da177e4
LT
1634 }
1635 nr_good_pages = swap_header->info.last_page -
1636 swap_header->info.nr_badpages -
1637 1 /* header page */;
cd105df4 1638 if (error)
1da177e4
LT
1639 goto bad_swap;
1640 }
e2244ec2 1641
e2244ec2 1642 if (nr_good_pages) {
78ecba08 1643 swap_map[0] = SWAP_MAP_BAD;
e2244ec2
HD
1644 p->max = maxpages;
1645 p->pages = nr_good_pages;
53092a74
HD
1646 nr_extents = setup_swap_extents(p, &span);
1647 if (nr_extents < 0) {
1648 error = nr_extents;
e2244ec2 1649 goto bad_swap;
53092a74 1650 }
e2244ec2
HD
1651 nr_good_pages = p->pages;
1652 }
1da177e4
LT
1653 if (!nr_good_pages) {
1654 printk(KERN_WARNING "Empty swap-file\n");
1655 error = -EINVAL;
1656 goto bad_swap;
1657 }
1da177e4 1658
fc0abb14 1659 mutex_lock(&swapon_mutex);
5d337b91 1660 spin_lock(&swap_lock);
78ecba08
HD
1661 if (swap_flags & SWAP_FLAG_PREFER)
1662 p->prio =
1663 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
1664 else
1665 p->prio = --least_priority;
1666 p->swap_map = swap_map;
1da177e4
LT
1667 p->flags = SWP_ACTIVE;
1668 nr_swap_pages += nr_good_pages;
1669 total_swap_pages += nr_good_pages;
53092a74 1670
6eb396dc 1671 printk(KERN_INFO "Adding %uk swap on %s. "
53092a74
HD
1672 "Priority:%d extents:%d across:%lluk\n",
1673 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1674 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1da177e4
LT
1675
1676 /* insert swap space into swap_list: */
1677 prev = -1;
1678 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1679 if (p->prio >= swap_info[i].prio) {
1680 break;
1681 }
1682 prev = i;
1683 }
1684 p->next = i;
1685 if (prev < 0) {
1686 swap_list.head = swap_list.next = p - swap_info;
1687 } else {
1688 swap_info[prev].next = p - swap_info;
1689 }
5d337b91 1690 spin_unlock(&swap_lock);
fc0abb14 1691 mutex_unlock(&swapon_mutex);
1da177e4
LT
1692 error = 0;
1693 goto out;
1694bad_swap:
1695 if (bdev) {
1696 set_blocksize(bdev, p->old_block_size);
1697 bd_release(bdev);
1698 }
4cd3bb10 1699 destroy_swap_extents(p);
1da177e4 1700bad_swap_2:
5d337b91 1701 spin_lock(&swap_lock);
1da177e4 1702 p->swap_file = NULL;
1da177e4 1703 p->flags = 0;
5d337b91 1704 spin_unlock(&swap_lock);
1da177e4
LT
1705 vfree(swap_map);
1706 if (swap_file)
1707 filp_close(swap_file, NULL);
1708out:
1709 if (page && !IS_ERR(page)) {
1710 kunmap(page);
1711 page_cache_release(page);
1712 }
1713 if (name)
1714 putname(name);
1715 if (did_down) {
1716 if (!error)
1717 inode->i_flags |= S_SWAPFILE;
1b1dcc1b 1718 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1719 }
1720 return error;
1721}
1722
1723void si_swapinfo(struct sysinfo *val)
1724{
1725 unsigned int i;
1726 unsigned long nr_to_be_unused = 0;
1727
5d337b91 1728 spin_lock(&swap_lock);
1da177e4
LT
1729 for (i = 0; i < nr_swapfiles; i++) {
1730 if (!(swap_info[i].flags & SWP_USED) ||
1731 (swap_info[i].flags & SWP_WRITEOK))
1732 continue;
1733 nr_to_be_unused += swap_info[i].inuse_pages;
1734 }
1735 val->freeswap = nr_swap_pages + nr_to_be_unused;
1736 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 1737 spin_unlock(&swap_lock);
1da177e4
LT
1738}
1739
1740/*
1741 * Verify that a swap entry is valid and increment its swap map count.
1742 *
1743 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1744 * "permanent", but will be reclaimed by the next swapoff.
1745 */
1746int swap_duplicate(swp_entry_t entry)
1747{
1748 struct swap_info_struct * p;
1749 unsigned long offset, type;
1750 int result = 0;
1751
0697212a
CL
1752 if (is_migration_entry(entry))
1753 return 1;
1754
1da177e4
LT
1755 type = swp_type(entry);
1756 if (type >= nr_swapfiles)
1757 goto bad_file;
1758 p = type + swap_info;
1759 offset = swp_offset(entry);
1760
5d337b91 1761 spin_lock(&swap_lock);
1da177e4
LT
1762 if (offset < p->max && p->swap_map[offset]) {
1763 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1764 p->swap_map[offset]++;
1765 result = 1;
1766 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1767 if (swap_overflow++ < 5)
1768 printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1769 p->swap_map[offset] = SWAP_MAP_MAX;
1770 result = 1;
1771 }
1772 }
5d337b91 1773 spin_unlock(&swap_lock);
1da177e4
LT
1774out:
1775 return result;
1776
1777bad_file:
1778 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1779 goto out;
1780}
1781
1782struct swap_info_struct *
1783get_swap_info_struct(unsigned type)
1784{
1785 return &swap_info[type];
1786}
1787
1788/*
5d337b91 1789 * swap_lock prevents swap_map being freed. Don't grab an extra
1da177e4
LT
1790 * reference on the swaphandle, it doesn't matter if it becomes unused.
1791 */
1792int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1793{
8952898b 1794 struct swap_info_struct *si;
3f9e7949 1795 int our_page_cluster = page_cluster;
8952898b
HD
1796 pgoff_t target, toff;
1797 pgoff_t base, end;
1798 int nr_pages = 0;
1da177e4 1799
3f9e7949 1800 if (!our_page_cluster) /* no readahead */
1da177e4 1801 return 0;
8952898b
HD
1802
1803 si = &swap_info[swp_type(entry)];
1804 target = swp_offset(entry);
1805 base = (target >> our_page_cluster) << our_page_cluster;
1806 end = base + (1 << our_page_cluster);
1807 if (!base) /* first page is swap header */
1808 base++;
1da177e4 1809
5d337b91 1810 spin_lock(&swap_lock);
8952898b
HD
1811 if (end > si->max) /* don't go beyond end of map */
1812 end = si->max;
1813
1814 /* Count contiguous allocated slots above our target */
1815 for (toff = target; ++toff < end; nr_pages++) {
1816 /* Don't read in free or bad pages */
1817 if (!si->swap_map[toff])
1818 break;
1819 if (si->swap_map[toff] == SWAP_MAP_BAD)
1da177e4 1820 break;
8952898b
HD
1821 }
1822 /* Count contiguous allocated slots below our target */
1823 for (toff = target; --toff >= base; nr_pages++) {
1da177e4 1824 /* Don't read in free or bad pages */
8952898b 1825 if (!si->swap_map[toff])
1da177e4 1826 break;
8952898b 1827 if (si->swap_map[toff] == SWAP_MAP_BAD)
1da177e4 1828 break;
8952898b 1829 }
5d337b91 1830 spin_unlock(&swap_lock);
8952898b
HD
1831
1832 /*
1833 * Indicate starting offset, and return number of pages to get:
1834 * if only 1, say 0, since there's then no readahead to be done.
1835 */
1836 *offset = ++toff;
1837 return nr_pages? ++nr_pages: 0;
1da177e4 1838}