lustre: remove unused declaration
[linux-2.6-block.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
072441e2 17#include <linux/shmem_fs.h>
1da177e4 18#include <linux/blkdev.h>
20137a49 19#include <linux/random.h>
1da177e4
LT
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
5ad64688 24#include <linux/ksm.h>
1da177e4
LT
25#include <linux/rmap.h>
26#include <linux/security.h>
27#include <linux/backing-dev.h>
fc0abb14 28#include <linux/mutex.h>
c59ede7b 29#include <linux/capability.h>
1da177e4 30#include <linux/syscalls.h>
8a9f3ccd 31#include <linux/memcontrol.h>
66d7dd51 32#include <linux/poll.h>
72788c38 33#include <linux/oom.h>
38b5faf4
DM
34#include <linux/frontswap.h>
35#include <linux/swapfile.h>
f981c595 36#include <linux/export.h>
1da177e4
LT
37
38#include <asm/pgtable.h>
39#include <asm/tlbflush.h>
40#include <linux/swapops.h>
5d1ea48b 41#include <linux/swap_cgroup.h>
1da177e4 42
570a335b
HD
43static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 unsigned char);
45static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 46static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 47
38b5faf4 48DEFINE_SPINLOCK(swap_lock);
7c363b8c 49static unsigned int nr_swapfiles;
ec8acf20
SL
50atomic_long_t nr_swap_pages;
51/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 52long total_swap_pages;
78ecba08 53static int least_priority;
1da177e4 54
1da177e4
LT
55static const char Bad_file[] = "Bad swap file entry ";
56static const char Unused_file[] = "Unused swap file entry ";
57static const char Bad_offset[] = "Bad swap offset entry ";
58static const char Unused_offset[] = "Unused swap offset entry ";
59
adfab836
DS
60/*
61 * all active swap_info_structs
62 * protected with swap_lock, and ordered by priority.
63 */
18ab4d4c
DS
64PLIST_HEAD(swap_active_head);
65
66/*
67 * all available (active, not full) swap_info_structs
68 * protected with swap_avail_lock, ordered by priority.
69 * This is used by get_swap_page() instead of swap_active_head
70 * because swap_active_head includes all swap_info_structs,
71 * but get_swap_page() doesn't need to look at full ones.
72 * This uses its own lock instead of swap_lock because when a
73 * swap_info_struct changes between not-full/full, it needs to
74 * add/remove itself to/from this list, but the swap_info_struct->lock
75 * is held and the locking order requires swap_lock to be taken
76 * before any swap_info_struct->lock.
77 */
78static PLIST_HEAD(swap_avail_head);
79static DEFINE_SPINLOCK(swap_avail_lock);
1da177e4 80
38b5faf4 81struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 82
fc0abb14 83static DEFINE_MUTEX(swapon_mutex);
1da177e4 84
66d7dd51
KS
85static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
86/* Activity counter to indicate that a swapon or swapoff has occurred */
87static atomic_t proc_poll_event = ATOMIC_INIT(0);
88
8d69aaee 89static inline unsigned char swap_count(unsigned char ent)
355cfa73 90{
570a335b 91 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
355cfa73
KH
92}
93
efa90a98 94/* returns 1 if swap entry is freed */
c9e44410
KH
95static int
96__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
97{
efa90a98 98 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
99 struct page *page;
100 int ret = 0;
101
33806f06 102 page = find_get_page(swap_address_space(entry), entry.val);
c9e44410
KH
103 if (!page)
104 return 0;
105 /*
106 * This function is called from scan_swap_map() and it's called
107 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
108 * We have to use trylock for avoiding deadlock. This is a special
109 * case and you should use try_to_free_swap() with explicit lock_page()
110 * in usual operations.
111 */
112 if (trylock_page(page)) {
113 ret = try_to_free_swap(page);
114 unlock_page(page);
115 }
116 page_cache_release(page);
117 return ret;
118}
355cfa73 119
6a6ba831
HD
120/*
121 * swapon tell device that all the old swap contents can be discarded,
122 * to allow the swap device to optimize its wear-levelling.
123 */
124static int discard_swap(struct swap_info_struct *si)
125{
126 struct swap_extent *se;
9625a5f2
HD
127 sector_t start_block;
128 sector_t nr_blocks;
6a6ba831
HD
129 int err = 0;
130
9625a5f2
HD
131 /* Do not discard the swap header page! */
132 se = &si->first_swap_extent;
133 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
134 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
135 if (nr_blocks) {
136 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 137 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
138 if (err)
139 return err;
140 cond_resched();
141 }
6a6ba831 142
9625a5f2
HD
143 list_for_each_entry(se, &si->first_swap_extent.list, list) {
144 start_block = se->start_block << (PAGE_SHIFT - 9);
145 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
146
147 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 148 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
149 if (err)
150 break;
151
152 cond_resched();
153 }
154 return err; /* That will often be -EOPNOTSUPP */
155}
156
7992fde7
HD
157/*
158 * swap allocation tell device that a cluster of swap can now be discarded,
159 * to allow the swap device to optimize its wear-levelling.
160 */
161static void discard_swap_cluster(struct swap_info_struct *si,
162 pgoff_t start_page, pgoff_t nr_pages)
163{
164 struct swap_extent *se = si->curr_swap_extent;
165 int found_extent = 0;
166
167 while (nr_pages) {
7992fde7
HD
168 if (se->start_page <= start_page &&
169 start_page < se->start_page + se->nr_pages) {
170 pgoff_t offset = start_page - se->start_page;
171 sector_t start_block = se->start_block + offset;
858a2990 172 sector_t nr_blocks = se->nr_pages - offset;
7992fde7
HD
173
174 if (nr_blocks > nr_pages)
175 nr_blocks = nr_pages;
176 start_page += nr_blocks;
177 nr_pages -= nr_blocks;
178
179 if (!found_extent++)
180 si->curr_swap_extent = se;
181
182 start_block <<= PAGE_SHIFT - 9;
183 nr_blocks <<= PAGE_SHIFT - 9;
184 if (blkdev_issue_discard(si->bdev, start_block,
dd3932ed 185 nr_blocks, GFP_NOIO, 0))
7992fde7
HD
186 break;
187 }
188
a8ae4991 189 se = list_next_entry(se, list);
7992fde7
HD
190 }
191}
192
048c27fd
HD
193#define SWAPFILE_CLUSTER 256
194#define LATENCY_LIMIT 256
195
2a8f9449
SL
196static inline void cluster_set_flag(struct swap_cluster_info *info,
197 unsigned int flag)
198{
199 info->flags = flag;
200}
201
202static inline unsigned int cluster_count(struct swap_cluster_info *info)
203{
204 return info->data;
205}
206
207static inline void cluster_set_count(struct swap_cluster_info *info,
208 unsigned int c)
209{
210 info->data = c;
211}
212
213static inline void cluster_set_count_flag(struct swap_cluster_info *info,
214 unsigned int c, unsigned int f)
215{
216 info->flags = f;
217 info->data = c;
218}
219
220static inline unsigned int cluster_next(struct swap_cluster_info *info)
221{
222 return info->data;
223}
224
225static inline void cluster_set_next(struct swap_cluster_info *info,
226 unsigned int n)
227{
228 info->data = n;
229}
230
231static inline void cluster_set_next_flag(struct swap_cluster_info *info,
232 unsigned int n, unsigned int f)
233{
234 info->flags = f;
235 info->data = n;
236}
237
238static inline bool cluster_is_free(struct swap_cluster_info *info)
239{
240 return info->flags & CLUSTER_FLAG_FREE;
241}
242
243static inline bool cluster_is_null(struct swap_cluster_info *info)
244{
245 return info->flags & CLUSTER_FLAG_NEXT_NULL;
246}
247
248static inline void cluster_set_null(struct swap_cluster_info *info)
249{
250 info->flags = CLUSTER_FLAG_NEXT_NULL;
251 info->data = 0;
252}
253
815c2c54
SL
254/* Add a cluster to discard list and schedule it to do discard */
255static void swap_cluster_schedule_discard(struct swap_info_struct *si,
256 unsigned int idx)
257{
258 /*
259 * If scan_swap_map() can't find a free cluster, it will check
260 * si->swap_map directly. To make sure the discarding cluster isn't
261 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
262 * will be cleared after discard
263 */
264 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
265 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
266
267 if (cluster_is_null(&si->discard_cluster_head)) {
268 cluster_set_next_flag(&si->discard_cluster_head,
269 idx, 0);
270 cluster_set_next_flag(&si->discard_cluster_tail,
271 idx, 0);
272 } else {
273 unsigned int tail = cluster_next(&si->discard_cluster_tail);
274 cluster_set_next(&si->cluster_info[tail], idx);
275 cluster_set_next_flag(&si->discard_cluster_tail,
276 idx, 0);
277 }
278
279 schedule_work(&si->discard_work);
280}
281
282/*
283 * Doing discard actually. After a cluster discard is finished, the cluster
284 * will be added to free cluster list. caller should hold si->lock.
285*/
286static void swap_do_scheduled_discard(struct swap_info_struct *si)
287{
288 struct swap_cluster_info *info;
289 unsigned int idx;
290
291 info = si->cluster_info;
292
293 while (!cluster_is_null(&si->discard_cluster_head)) {
294 idx = cluster_next(&si->discard_cluster_head);
295
296 cluster_set_next_flag(&si->discard_cluster_head,
297 cluster_next(&info[idx]), 0);
298 if (cluster_next(&si->discard_cluster_tail) == idx) {
299 cluster_set_null(&si->discard_cluster_head);
300 cluster_set_null(&si->discard_cluster_tail);
301 }
302 spin_unlock(&si->lock);
303
304 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
305 SWAPFILE_CLUSTER);
306
307 spin_lock(&si->lock);
308 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
309 if (cluster_is_null(&si->free_cluster_head)) {
310 cluster_set_next_flag(&si->free_cluster_head,
311 idx, 0);
312 cluster_set_next_flag(&si->free_cluster_tail,
313 idx, 0);
314 } else {
315 unsigned int tail;
316
317 tail = cluster_next(&si->free_cluster_tail);
318 cluster_set_next(&info[tail], idx);
319 cluster_set_next_flag(&si->free_cluster_tail,
320 idx, 0);
321 }
322 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
323 0, SWAPFILE_CLUSTER);
324 }
325}
326
327static void swap_discard_work(struct work_struct *work)
328{
329 struct swap_info_struct *si;
330
331 si = container_of(work, struct swap_info_struct, discard_work);
332
333 spin_lock(&si->lock);
334 swap_do_scheduled_discard(si);
335 spin_unlock(&si->lock);
336}
337
2a8f9449
SL
338/*
339 * The cluster corresponding to page_nr will be used. The cluster will be
340 * removed from free cluster list and its usage counter will be increased.
341 */
342static void inc_cluster_info_page(struct swap_info_struct *p,
343 struct swap_cluster_info *cluster_info, unsigned long page_nr)
344{
345 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
346
347 if (!cluster_info)
348 return;
349 if (cluster_is_free(&cluster_info[idx])) {
350 VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
351 cluster_set_next_flag(&p->free_cluster_head,
352 cluster_next(&cluster_info[idx]), 0);
353 if (cluster_next(&p->free_cluster_tail) == idx) {
354 cluster_set_null(&p->free_cluster_tail);
355 cluster_set_null(&p->free_cluster_head);
356 }
357 cluster_set_count_flag(&cluster_info[idx], 0, 0);
358 }
359
360 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
361 cluster_set_count(&cluster_info[idx],
362 cluster_count(&cluster_info[idx]) + 1);
363}
364
365/*
366 * The cluster corresponding to page_nr decreases one usage. If the usage
367 * counter becomes 0, which means no page in the cluster is in using, we can
368 * optionally discard the cluster and add it to free cluster list.
369 */
370static void dec_cluster_info_page(struct swap_info_struct *p,
371 struct swap_cluster_info *cluster_info, unsigned long page_nr)
372{
373 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
374
375 if (!cluster_info)
376 return;
377
378 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
379 cluster_set_count(&cluster_info[idx],
380 cluster_count(&cluster_info[idx]) - 1);
381
382 if (cluster_count(&cluster_info[idx]) == 0) {
815c2c54
SL
383 /*
384 * If the swap is discardable, prepare discard the cluster
385 * instead of free it immediately. The cluster will be freed
386 * after discard.
387 */
edfe23da
SL
388 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
389 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
815c2c54
SL
390 swap_cluster_schedule_discard(p, idx);
391 return;
392 }
393
2a8f9449
SL
394 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
395 if (cluster_is_null(&p->free_cluster_head)) {
396 cluster_set_next_flag(&p->free_cluster_head, idx, 0);
397 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
398 } else {
399 unsigned int tail = cluster_next(&p->free_cluster_tail);
400 cluster_set_next(&cluster_info[tail], idx);
401 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
402 }
403 }
404}
405
406/*
407 * It's possible scan_swap_map() uses a free cluster in the middle of free
408 * cluster list. Avoiding such abuse to avoid list corruption.
409 */
ebc2a1a6
SL
410static bool
411scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
2a8f9449
SL
412 unsigned long offset)
413{
ebc2a1a6
SL
414 struct percpu_cluster *percpu_cluster;
415 bool conflict;
416
2a8f9449 417 offset /= SWAPFILE_CLUSTER;
ebc2a1a6 418 conflict = !cluster_is_null(&si->free_cluster_head) &&
2a8f9449
SL
419 offset != cluster_next(&si->free_cluster_head) &&
420 cluster_is_free(&si->cluster_info[offset]);
ebc2a1a6
SL
421
422 if (!conflict)
423 return false;
424
425 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
426 cluster_set_null(&percpu_cluster->index);
427 return true;
428}
429
430/*
431 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
432 * might involve allocating a new cluster for current CPU too.
433 */
434static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
435 unsigned long *offset, unsigned long *scan_base)
436{
437 struct percpu_cluster *cluster;
438 bool found_free;
439 unsigned long tmp;
440
441new_cluster:
442 cluster = this_cpu_ptr(si->percpu_cluster);
443 if (cluster_is_null(&cluster->index)) {
444 if (!cluster_is_null(&si->free_cluster_head)) {
445 cluster->index = si->free_cluster_head;
446 cluster->next = cluster_next(&cluster->index) *
447 SWAPFILE_CLUSTER;
448 } else if (!cluster_is_null(&si->discard_cluster_head)) {
449 /*
450 * we don't have free cluster but have some clusters in
451 * discarding, do discard now and reclaim them
452 */
453 swap_do_scheduled_discard(si);
454 *scan_base = *offset = si->cluster_next;
455 goto new_cluster;
456 } else
457 return;
458 }
459
460 found_free = false;
461
462 /*
463 * Other CPUs can use our cluster if they can't find a free cluster,
464 * check if there is still free entry in the cluster
465 */
466 tmp = cluster->next;
467 while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
468 SWAPFILE_CLUSTER) {
469 if (!si->swap_map[tmp]) {
470 found_free = true;
471 break;
472 }
473 tmp++;
474 }
475 if (!found_free) {
476 cluster_set_null(&cluster->index);
477 goto new_cluster;
478 }
479 cluster->next = tmp + 1;
480 *offset = tmp;
481 *scan_base = tmp;
2a8f9449
SL
482}
483
24b8ff7c
CEB
484static unsigned long scan_swap_map(struct swap_info_struct *si,
485 unsigned char usage)
1da177e4 486{
ebebbbe9 487 unsigned long offset;
c60aa176 488 unsigned long scan_base;
7992fde7 489 unsigned long last_in_cluster = 0;
048c27fd 490 int latency_ration = LATENCY_LIMIT;
7dfad418 491
886bb7e9 492 /*
7dfad418
HD
493 * We try to cluster swap pages by allocating them sequentially
494 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
495 * way, however, we resort to first-free allocation, starting
496 * a new cluster. This prevents us from scattering swap pages
497 * all over the entire swap partition, so that we reduce
498 * overall disk seek times between swap pages. -- sct
499 * But we do now try to find an empty cluster. -Andrea
c60aa176 500 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
501 */
502
52b7efdb 503 si->flags += SWP_SCANNING;
c60aa176 504 scan_base = offset = si->cluster_next;
ebebbbe9 505
ebc2a1a6
SL
506 /* SSD algorithm */
507 if (si->cluster_info) {
508 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
509 goto checks;
510 }
511
ebebbbe9
HD
512 if (unlikely(!si->cluster_nr--)) {
513 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
514 si->cluster_nr = SWAPFILE_CLUSTER - 1;
515 goto checks;
516 }
2a8f9449 517
ec8acf20 518 spin_unlock(&si->lock);
7dfad418 519
c60aa176
HD
520 /*
521 * If seek is expensive, start searching for new cluster from
522 * start of partition, to minimize the span of allocated swap.
50088c44
CY
523 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
524 * case, just handled by scan_swap_map_try_ssd_cluster() above.
c60aa176 525 */
50088c44 526 scan_base = offset = si->lowest_bit;
7dfad418
HD
527 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
528
529 /* Locate the first empty (unaligned) cluster */
530 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 531 if (si->swap_map[offset])
7dfad418
HD
532 last_in_cluster = offset + SWAPFILE_CLUSTER;
533 else if (offset == last_in_cluster) {
ec8acf20 534 spin_lock(&si->lock);
ebebbbe9
HD
535 offset -= SWAPFILE_CLUSTER - 1;
536 si->cluster_next = offset;
537 si->cluster_nr = SWAPFILE_CLUSTER - 1;
c60aa176
HD
538 goto checks;
539 }
540 if (unlikely(--latency_ration < 0)) {
541 cond_resched();
542 latency_ration = LATENCY_LIMIT;
543 }
544 }
545
546 offset = scan_base;
ec8acf20 547 spin_lock(&si->lock);
ebebbbe9 548 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1da177e4 549 }
7dfad418 550
ebebbbe9 551checks:
ebc2a1a6
SL
552 if (si->cluster_info) {
553 while (scan_swap_map_ssd_cluster_conflict(si, offset))
554 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
555 }
ebebbbe9 556 if (!(si->flags & SWP_WRITEOK))
52b7efdb 557 goto no_page;
7dfad418
HD
558 if (!si->highest_bit)
559 goto no_page;
ebebbbe9 560 if (offset > si->highest_bit)
c60aa176 561 scan_base = offset = si->lowest_bit;
c9e44410 562
b73d7fce
HD
563 /* reuse swap entry of cache-only swap if not busy. */
564 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 565 int swap_was_freed;
ec8acf20 566 spin_unlock(&si->lock);
c9e44410 567 swap_was_freed = __try_to_reclaim_swap(si, offset);
ec8acf20 568 spin_lock(&si->lock);
c9e44410
KH
569 /* entry was freed successfully, try to use this again */
570 if (swap_was_freed)
571 goto checks;
572 goto scan; /* check next one */
573 }
574
ebebbbe9
HD
575 if (si->swap_map[offset])
576 goto scan;
577
578 if (offset == si->lowest_bit)
579 si->lowest_bit++;
580 if (offset == si->highest_bit)
581 si->highest_bit--;
582 si->inuse_pages++;
583 if (si->inuse_pages == si->pages) {
584 si->lowest_bit = si->max;
585 si->highest_bit = 0;
18ab4d4c
DS
586 spin_lock(&swap_avail_lock);
587 plist_del(&si->avail_list, &swap_avail_head);
588 spin_unlock(&swap_avail_lock);
1da177e4 589 }
253d553b 590 si->swap_map[offset] = usage;
2a8f9449 591 inc_cluster_info_page(si, si->cluster_info, offset);
ebebbbe9
HD
592 si->cluster_next = offset + 1;
593 si->flags -= SWP_SCANNING;
7992fde7 594
ebebbbe9 595 return offset;
7dfad418 596
ebebbbe9 597scan:
ec8acf20 598 spin_unlock(&si->lock);
7dfad418 599 while (++offset <= si->highest_bit) {
52b7efdb 600 if (!si->swap_map[offset]) {
ec8acf20 601 spin_lock(&si->lock);
52b7efdb
HD
602 goto checks;
603 }
c9e44410 604 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 605 spin_lock(&si->lock);
c9e44410
KH
606 goto checks;
607 }
048c27fd
HD
608 if (unlikely(--latency_ration < 0)) {
609 cond_resched();
610 latency_ration = LATENCY_LIMIT;
611 }
7dfad418 612 }
c60aa176 613 offset = si->lowest_bit;
a5998061 614 while (offset < scan_base) {
c60aa176 615 if (!si->swap_map[offset]) {
ec8acf20 616 spin_lock(&si->lock);
c60aa176
HD
617 goto checks;
618 }
c9e44410 619 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 620 spin_lock(&si->lock);
c9e44410
KH
621 goto checks;
622 }
c60aa176
HD
623 if (unlikely(--latency_ration < 0)) {
624 cond_resched();
625 latency_ration = LATENCY_LIMIT;
626 }
a5998061 627 offset++;
c60aa176 628 }
ec8acf20 629 spin_lock(&si->lock);
7dfad418
HD
630
631no_page:
52b7efdb 632 si->flags -= SWP_SCANNING;
1da177e4
LT
633 return 0;
634}
635
636swp_entry_t get_swap_page(void)
637{
adfab836 638 struct swap_info_struct *si, *next;
fb4f88dc 639 pgoff_t offset;
1da177e4 640
ec8acf20 641 if (atomic_long_read(&nr_swap_pages) <= 0)
fb4f88dc 642 goto noswap;
ec8acf20 643 atomic_long_dec(&nr_swap_pages);
fb4f88dc 644
18ab4d4c
DS
645 spin_lock(&swap_avail_lock);
646
647start_over:
648 plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
649 /* requeue si to after same-priority siblings */
650 plist_requeue(&si->avail_list, &swap_avail_head);
651 spin_unlock(&swap_avail_lock);
ec8acf20 652 spin_lock(&si->lock);
adfab836 653 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
18ab4d4c
DS
654 spin_lock(&swap_avail_lock);
655 if (plist_node_empty(&si->avail_list)) {
656 spin_unlock(&si->lock);
657 goto nextsi;
658 }
659 WARN(!si->highest_bit,
660 "swap_info %d in list but !highest_bit\n",
661 si->type);
662 WARN(!(si->flags & SWP_WRITEOK),
663 "swap_info %d in list but !SWP_WRITEOK\n",
664 si->type);
665 plist_del(&si->avail_list, &swap_avail_head);
ec8acf20 666 spin_unlock(&si->lock);
18ab4d4c 667 goto nextsi;
ec8acf20 668 }
fb4f88dc 669
355cfa73 670 /* This is called for allocating swap entry for cache */
253d553b 671 offset = scan_swap_map(si, SWAP_HAS_CACHE);
ec8acf20
SL
672 spin_unlock(&si->lock);
673 if (offset)
adfab836 674 return swp_entry(si->type, offset);
18ab4d4c
DS
675 pr_debug("scan_swap_map of si %d failed to find offset\n",
676 si->type);
677 spin_lock(&swap_avail_lock);
678nextsi:
adfab836
DS
679 /*
680 * if we got here, it's likely that si was almost full before,
681 * and since scan_swap_map() can drop the si->lock, multiple
682 * callers probably all tried to get a page from the same si
18ab4d4c
DS
683 * and it filled up before we could get one; or, the si filled
684 * up between us dropping swap_avail_lock and taking si->lock.
685 * Since we dropped the swap_avail_lock, the swap_avail_head
686 * list may have been modified; so if next is still in the
687 * swap_avail_head list then try it, otherwise start over.
adfab836 688 */
18ab4d4c
DS
689 if (plist_node_empty(&next->avail_list))
690 goto start_over;
1da177e4 691 }
fb4f88dc 692
18ab4d4c
DS
693 spin_unlock(&swap_avail_lock);
694
ec8acf20 695 atomic_long_inc(&nr_swap_pages);
fb4f88dc 696noswap:
fb4f88dc 697 return (swp_entry_t) {0};
1da177e4
LT
698}
699
2de1a7e4 700/* The only caller of this function is now suspend routine */
910321ea
HD
701swp_entry_t get_swap_page_of_type(int type)
702{
703 struct swap_info_struct *si;
704 pgoff_t offset;
705
910321ea 706 si = swap_info[type];
ec8acf20 707 spin_lock(&si->lock);
910321ea 708 if (si && (si->flags & SWP_WRITEOK)) {
ec8acf20 709 atomic_long_dec(&nr_swap_pages);
910321ea
HD
710 /* This is called for allocating swap entry, not cache */
711 offset = scan_swap_map(si, 1);
712 if (offset) {
ec8acf20 713 spin_unlock(&si->lock);
910321ea
HD
714 return swp_entry(type, offset);
715 }
ec8acf20 716 atomic_long_inc(&nr_swap_pages);
910321ea 717 }
ec8acf20 718 spin_unlock(&si->lock);
910321ea
HD
719 return (swp_entry_t) {0};
720}
721
73c34b6a 722static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1da177e4 723{
73c34b6a 724 struct swap_info_struct *p;
1da177e4
LT
725 unsigned long offset, type;
726
727 if (!entry.val)
728 goto out;
729 type = swp_type(entry);
730 if (type >= nr_swapfiles)
731 goto bad_nofile;
efa90a98 732 p = swap_info[type];
1da177e4
LT
733 if (!(p->flags & SWP_USED))
734 goto bad_device;
735 offset = swp_offset(entry);
736 if (offset >= p->max)
737 goto bad_offset;
738 if (!p->swap_map[offset])
739 goto bad_free;
ec8acf20 740 spin_lock(&p->lock);
1da177e4
LT
741 return p;
742
743bad_free:
465c47fd 744 pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
1da177e4
LT
745 goto out;
746bad_offset:
465c47fd 747 pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
1da177e4
LT
748 goto out;
749bad_device:
465c47fd 750 pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
1da177e4
LT
751 goto out;
752bad_nofile:
465c47fd 753 pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
754out:
755 return NULL;
886bb7e9 756}
1da177e4 757
8d69aaee
HD
758static unsigned char swap_entry_free(struct swap_info_struct *p,
759 swp_entry_t entry, unsigned char usage)
1da177e4 760{
253d553b 761 unsigned long offset = swp_offset(entry);
8d69aaee
HD
762 unsigned char count;
763 unsigned char has_cache;
355cfa73 764
253d553b
HD
765 count = p->swap_map[offset];
766 has_cache = count & SWAP_HAS_CACHE;
767 count &= ~SWAP_HAS_CACHE;
355cfa73 768
253d553b 769 if (usage == SWAP_HAS_CACHE) {
355cfa73 770 VM_BUG_ON(!has_cache);
253d553b 771 has_cache = 0;
aaa46865
HD
772 } else if (count == SWAP_MAP_SHMEM) {
773 /*
774 * Or we could insist on shmem.c using a special
775 * swap_shmem_free() and free_shmem_swap_and_cache()...
776 */
777 count = 0;
570a335b
HD
778 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
779 if (count == COUNT_CONTINUED) {
780 if (swap_count_continued(p, offset, count))
781 count = SWAP_MAP_MAX | COUNT_CONTINUED;
782 else
783 count = SWAP_MAP_MAX;
784 } else
785 count--;
786 }
253d553b 787
253d553b
HD
788 usage = count | has_cache;
789 p->swap_map[offset] = usage;
355cfa73 790
355cfa73 791 /* free if no reference */
253d553b 792 if (!usage) {
37e84351 793 mem_cgroup_uncharge_swap(entry);
2a8f9449 794 dec_cluster_info_page(p, p->cluster_info, offset);
355cfa73
KH
795 if (offset < p->lowest_bit)
796 p->lowest_bit = offset;
18ab4d4c
DS
797 if (offset > p->highest_bit) {
798 bool was_full = !p->highest_bit;
355cfa73 799 p->highest_bit = offset;
18ab4d4c
DS
800 if (was_full && (p->flags & SWP_WRITEOK)) {
801 spin_lock(&swap_avail_lock);
802 WARN_ON(!plist_node_empty(&p->avail_list));
803 if (plist_node_empty(&p->avail_list))
804 plist_add(&p->avail_list,
805 &swap_avail_head);
806 spin_unlock(&swap_avail_lock);
807 }
808 }
ec8acf20 809 atomic_long_inc(&nr_swap_pages);
355cfa73 810 p->inuse_pages--;
38b5faf4 811 frontswap_invalidate_page(p->type, offset);
73744923
MG
812 if (p->flags & SWP_BLKDEV) {
813 struct gendisk *disk = p->bdev->bd_disk;
814 if (disk->fops->swap_slot_free_notify)
815 disk->fops->swap_slot_free_notify(p->bdev,
816 offset);
817 }
1da177e4 818 }
253d553b
HD
819
820 return usage;
1da177e4
LT
821}
822
823/*
2de1a7e4 824 * Caller has made sure that the swap device corresponding to entry
1da177e4
LT
825 * is still around or has not been recycled.
826 */
827void swap_free(swp_entry_t entry)
828{
73c34b6a 829 struct swap_info_struct *p;
1da177e4
LT
830
831 p = swap_info_get(entry);
832 if (p) {
253d553b 833 swap_entry_free(p, entry, 1);
ec8acf20 834 spin_unlock(&p->lock);
1da177e4
LT
835 }
836}
837
cb4b86ba
KH
838/*
839 * Called after dropping swapcache to decrease refcnt to swap entries.
840 */
0a31bc97 841void swapcache_free(swp_entry_t entry)
cb4b86ba 842{
355cfa73
KH
843 struct swap_info_struct *p;
844
355cfa73
KH
845 p = swap_info_get(entry);
846 if (p) {
0a31bc97 847 swap_entry_free(p, entry, SWAP_HAS_CACHE);
ec8acf20 848 spin_unlock(&p->lock);
355cfa73 849 }
cb4b86ba
KH
850}
851
1da177e4 852/*
c475a8ab 853 * How many references to page are currently swapped out?
570a335b
HD
854 * This does not give an exact answer when swap count is continued,
855 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 856 */
bde05d1c 857int page_swapcount(struct page *page)
1da177e4 858{
c475a8ab
HD
859 int count = 0;
860 struct swap_info_struct *p;
1da177e4
LT
861 swp_entry_t entry;
862
4c21e2f2 863 entry.val = page_private(page);
1da177e4
LT
864 p = swap_info_get(entry);
865 if (p) {
355cfa73 866 count = swap_count(p->swap_map[swp_offset(entry)]);
ec8acf20 867 spin_unlock(&p->lock);
1da177e4 868 }
c475a8ab 869 return count;
1da177e4
LT
870}
871
8334b962
MK
872/*
873 * How many references to @entry are currently swapped out?
874 * This considers COUNT_CONTINUED so it returns exact answer.
875 */
876int swp_swapcount(swp_entry_t entry)
877{
878 int count, tmp_count, n;
879 struct swap_info_struct *p;
880 struct page *page;
881 pgoff_t offset;
882 unsigned char *map;
883
884 p = swap_info_get(entry);
885 if (!p)
886 return 0;
887
888 count = swap_count(p->swap_map[swp_offset(entry)]);
889 if (!(count & COUNT_CONTINUED))
890 goto out;
891
892 count &= ~COUNT_CONTINUED;
893 n = SWAP_MAP_MAX + 1;
894
895 offset = swp_offset(entry);
896 page = vmalloc_to_page(p->swap_map + offset);
897 offset &= ~PAGE_MASK;
898 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
899
900 do {
a8ae4991 901 page = list_next_entry(page, lru);
8334b962
MK
902 map = kmap_atomic(page);
903 tmp_count = map[offset];
904 kunmap_atomic(map);
905
906 count += (tmp_count & ~COUNT_CONTINUED) * n;
907 n *= (SWAP_CONT_MAX + 1);
908 } while (tmp_count & COUNT_CONTINUED);
909out:
910 spin_unlock(&p->lock);
911 return count;
912}
913
1da177e4 914/*
7b1fe597
HD
915 * We can write to an anon page without COW if there are no other references
916 * to it. And as a side-effect, free up its swap: because the old content
917 * on disk will never be read, and seeking back there to write new content
918 * later would only waste time away from clustering.
1da177e4 919 */
7b1fe597 920int reuse_swap_page(struct page *page)
1da177e4 921{
c475a8ab
HD
922 int count;
923
309381fe 924 VM_BUG_ON_PAGE(!PageLocked(page), page);
5ad64688
HD
925 if (unlikely(PageKsm(page)))
926 return 0;
1f25fe20
KS
927 /* The page is part of THP and cannot be reused */
928 if (PageTransCompound(page))
929 return 0;
c475a8ab 930 count = page_mapcount(page);
7b1fe597 931 if (count <= 1 && PageSwapCache(page)) {
c475a8ab 932 count += page_swapcount(page);
7b1fe597
HD
933 if (count == 1 && !PageWriteback(page)) {
934 delete_from_swap_cache(page);
935 SetPageDirty(page);
936 }
937 }
5ad64688 938 return count <= 1;
1da177e4
LT
939}
940
941/*
a2c43eed
HD
942 * If swap is getting full, or if there are no more mappings of this page,
943 * then try_to_free_swap is called to free its swap space.
1da177e4 944 */
a2c43eed 945int try_to_free_swap(struct page *page)
1da177e4 946{
309381fe 947 VM_BUG_ON_PAGE(!PageLocked(page), page);
1da177e4
LT
948
949 if (!PageSwapCache(page))
950 return 0;
951 if (PageWriteback(page))
952 return 0;
a2c43eed 953 if (page_swapcount(page))
1da177e4
LT
954 return 0;
955
b73d7fce
HD
956 /*
957 * Once hibernation has begun to create its image of memory,
958 * there's a danger that one of the calls to try_to_free_swap()
959 * - most probably a call from __try_to_reclaim_swap() while
960 * hibernation is allocating its own swap pages for the image,
961 * but conceivably even a call from memory reclaim - will free
962 * the swap from a page which has already been recorded in the
963 * image as a clean swapcache page, and then reuse its swap for
964 * another page of the image. On waking from hibernation, the
965 * original page might be freed under memory pressure, then
966 * later read back in from swap, now with the wrong data.
967 *
2de1a7e4 968 * Hibernation suspends storage while it is writing the image
f90ac398 969 * to disk so check that here.
b73d7fce 970 */
f90ac398 971 if (pm_suspended_storage())
b73d7fce
HD
972 return 0;
973
a2c43eed
HD
974 delete_from_swap_cache(page);
975 SetPageDirty(page);
976 return 1;
68a22394
RR
977}
978
1da177e4
LT
979/*
980 * Free the swap entry like above, but also try to
981 * free the page cache entry if it is the last user.
982 */
2509ef26 983int free_swap_and_cache(swp_entry_t entry)
1da177e4 984{
2509ef26 985 struct swap_info_struct *p;
1da177e4
LT
986 struct page *page = NULL;
987
a7420aa5 988 if (non_swap_entry(entry))
2509ef26 989 return 1;
0697212a 990
1da177e4
LT
991 p = swap_info_get(entry);
992 if (p) {
253d553b 993 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
33806f06
SL
994 page = find_get_page(swap_address_space(entry),
995 entry.val);
8413ac9d 996 if (page && !trylock_page(page)) {
93fac704
NP
997 page_cache_release(page);
998 page = NULL;
999 }
1000 }
ec8acf20 1001 spin_unlock(&p->lock);
1da177e4
LT
1002 }
1003 if (page) {
a2c43eed
HD
1004 /*
1005 * Not mapped elsewhere, or swap space full? Free it!
1006 * Also recheck PageSwapCache now page is locked (above).
1007 */
93fac704 1008 if (PageSwapCache(page) && !PageWriteback(page) &&
5ccc5aba 1009 (!page_mapped(page) || mem_cgroup_swap_full(page))) {
1da177e4
LT
1010 delete_from_swap_cache(page);
1011 SetPageDirty(page);
1012 }
1013 unlock_page(page);
1014 page_cache_release(page);
1015 }
2509ef26 1016 return p != NULL;
1da177e4
LT
1017}
1018
b0cb1a19 1019#ifdef CONFIG_HIBERNATION
f577eb30 1020/*
915bae9e 1021 * Find the swap type that corresponds to given device (if any).
f577eb30 1022 *
915bae9e
RW
1023 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1024 * from 0, in which the swap header is expected to be located.
1025 *
1026 * This is needed for the suspend to disk (aka swsusp).
f577eb30 1027 */
7bf23687 1028int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 1029{
915bae9e 1030 struct block_device *bdev = NULL;
efa90a98 1031 int type;
f577eb30 1032
915bae9e
RW
1033 if (device)
1034 bdev = bdget(device);
1035
f577eb30 1036 spin_lock(&swap_lock);
efa90a98
HD
1037 for (type = 0; type < nr_swapfiles; type++) {
1038 struct swap_info_struct *sis = swap_info[type];
f577eb30 1039
915bae9e 1040 if (!(sis->flags & SWP_WRITEOK))
f577eb30 1041 continue;
b6b5bce3 1042
915bae9e 1043 if (!bdev) {
7bf23687 1044 if (bdev_p)
dddac6a7 1045 *bdev_p = bdgrab(sis->bdev);
7bf23687 1046
6e1819d6 1047 spin_unlock(&swap_lock);
efa90a98 1048 return type;
6e1819d6 1049 }
915bae9e 1050 if (bdev == sis->bdev) {
9625a5f2 1051 struct swap_extent *se = &sis->first_swap_extent;
915bae9e 1052
915bae9e 1053 if (se->start_block == offset) {
7bf23687 1054 if (bdev_p)
dddac6a7 1055 *bdev_p = bdgrab(sis->bdev);
7bf23687 1056
915bae9e
RW
1057 spin_unlock(&swap_lock);
1058 bdput(bdev);
efa90a98 1059 return type;
915bae9e 1060 }
f577eb30
RW
1061 }
1062 }
1063 spin_unlock(&swap_lock);
915bae9e
RW
1064 if (bdev)
1065 bdput(bdev);
1066
f577eb30
RW
1067 return -ENODEV;
1068}
1069
73c34b6a
HD
1070/*
1071 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1072 * corresponding to given index in swap_info (swap type).
1073 */
1074sector_t swapdev_block(int type, pgoff_t offset)
1075{
1076 struct block_device *bdev;
1077
1078 if ((unsigned int)type >= nr_swapfiles)
1079 return 0;
1080 if (!(swap_info[type]->flags & SWP_WRITEOK))
1081 return 0;
d4906e1a 1082 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
1083}
1084
f577eb30
RW
1085/*
1086 * Return either the total number of swap pages of given type, or the number
1087 * of free pages of that type (depending on @free)
1088 *
1089 * This is needed for software suspend
1090 */
1091unsigned int count_swap_pages(int type, int free)
1092{
1093 unsigned int n = 0;
1094
efa90a98
HD
1095 spin_lock(&swap_lock);
1096 if ((unsigned int)type < nr_swapfiles) {
1097 struct swap_info_struct *sis = swap_info[type];
1098
ec8acf20 1099 spin_lock(&sis->lock);
efa90a98
HD
1100 if (sis->flags & SWP_WRITEOK) {
1101 n = sis->pages;
f577eb30 1102 if (free)
efa90a98 1103 n -= sis->inuse_pages;
f577eb30 1104 }
ec8acf20 1105 spin_unlock(&sis->lock);
f577eb30 1106 }
efa90a98 1107 spin_unlock(&swap_lock);
f577eb30
RW
1108 return n;
1109}
73c34b6a 1110#endif /* CONFIG_HIBERNATION */
f577eb30 1111
9f8bdb3f 1112static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
179ef71c 1113{
9f8bdb3f 1114 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
179ef71c
CG
1115}
1116
1da177e4 1117/*
72866f6f
HD
1118 * No need to decide whether this PTE shares the swap entry with others,
1119 * just let do_wp_page work it out if a write is requested later - to
1120 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 1121 */
044d66c1 1122static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
1123 unsigned long addr, swp_entry_t entry, struct page *page)
1124{
9e16b7fb 1125 struct page *swapcache;
72835c86 1126 struct mem_cgroup *memcg;
044d66c1
HD
1127 spinlock_t *ptl;
1128 pte_t *pte;
1129 int ret = 1;
1130
9e16b7fb
HD
1131 swapcache = page;
1132 page = ksm_might_need_to_copy(page, vma, addr);
1133 if (unlikely(!page))
1134 return -ENOMEM;
1135
f627c2f5
KS
1136 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1137 &memcg, false)) {
044d66c1 1138 ret = -ENOMEM;
85d9fc89
KH
1139 goto out_nolock;
1140 }
044d66c1
HD
1141
1142 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
9f8bdb3f 1143 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
f627c2f5 1144 mem_cgroup_cancel_charge(page, memcg, false);
044d66c1
HD
1145 ret = 0;
1146 goto out;
1147 }
8a9f3ccd 1148
b084d435 1149 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 1150 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
1151 get_page(page);
1152 set_pte_at(vma->vm_mm, addr, pte,
1153 pte_mkold(mk_pte(page, vma->vm_page_prot)));
00501b53 1154 if (page == swapcache) {
d281ee61 1155 page_add_anon_rmap(page, vma, addr, false);
f627c2f5 1156 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1157 } else { /* ksm created a completely new copy */
d281ee61 1158 page_add_new_anon_rmap(page, vma, addr, false);
f627c2f5 1159 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53
JW
1160 lru_cache_add_active_or_unevictable(page, vma);
1161 }
1da177e4
LT
1162 swap_free(entry);
1163 /*
1164 * Move the page to the active list so it is not
1165 * immediately swapped out again after swapon.
1166 */
1167 activate_page(page);
044d66c1
HD
1168out:
1169 pte_unmap_unlock(pte, ptl);
85d9fc89 1170out_nolock:
9e16b7fb
HD
1171 if (page != swapcache) {
1172 unlock_page(page);
1173 put_page(page);
1174 }
044d66c1 1175 return ret;
1da177e4
LT
1176}
1177
1178static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1179 unsigned long addr, unsigned long end,
1180 swp_entry_t entry, struct page *page)
1181{
1da177e4 1182 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 1183 pte_t *pte;
8a9f3ccd 1184 int ret = 0;
1da177e4 1185
044d66c1
HD
1186 /*
1187 * We don't actually need pte lock while scanning for swp_pte: since
1188 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1189 * page table while we're scanning; though it could get zapped, and on
1190 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1191 * of unmatched parts which look like swp_pte, so unuse_pte must
1192 * recheck under pte lock. Scanning without pte lock lets it be
2de1a7e4 1193 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
044d66c1
HD
1194 */
1195 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1196 do {
1197 /*
1198 * swapoff spends a _lot_ of time in this loop!
1199 * Test inline before going to call unuse_pte.
1200 */
9f8bdb3f 1201 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
044d66c1
HD
1202 pte_unmap(pte);
1203 ret = unuse_pte(vma, pmd, addr, entry, page);
1204 if (ret)
1205 goto out;
1206 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1207 }
1208 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
1209 pte_unmap(pte - 1);
1210out:
8a9f3ccd 1211 return ret;
1da177e4
LT
1212}
1213
1214static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1215 unsigned long addr, unsigned long end,
1216 swp_entry_t entry, struct page *page)
1217{
1218 pmd_t *pmd;
1219 unsigned long next;
8a9f3ccd 1220 int ret;
1da177e4
LT
1221
1222 pmd = pmd_offset(pud, addr);
1223 do {
1224 next = pmd_addr_end(addr, end);
1a5a9906 1225 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 1226 continue;
8a9f3ccd
BS
1227 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1228 if (ret)
1229 return ret;
1da177e4
LT
1230 } while (pmd++, addr = next, addr != end);
1231 return 0;
1232}
1233
1234static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1235 unsigned long addr, unsigned long end,
1236 swp_entry_t entry, struct page *page)
1237{
1238 pud_t *pud;
1239 unsigned long next;
8a9f3ccd 1240 int ret;
1da177e4
LT
1241
1242 pud = pud_offset(pgd, addr);
1243 do {
1244 next = pud_addr_end(addr, end);
1245 if (pud_none_or_clear_bad(pud))
1246 continue;
8a9f3ccd
BS
1247 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1248 if (ret)
1249 return ret;
1da177e4
LT
1250 } while (pud++, addr = next, addr != end);
1251 return 0;
1252}
1253
1254static int unuse_vma(struct vm_area_struct *vma,
1255 swp_entry_t entry, struct page *page)
1256{
1257 pgd_t *pgd;
1258 unsigned long addr, end, next;
8a9f3ccd 1259 int ret;
1da177e4 1260
3ca7b3c5 1261 if (page_anon_vma(page)) {
1da177e4
LT
1262 addr = page_address_in_vma(page, vma);
1263 if (addr == -EFAULT)
1264 return 0;
1265 else
1266 end = addr + PAGE_SIZE;
1267 } else {
1268 addr = vma->vm_start;
1269 end = vma->vm_end;
1270 }
1271
1272 pgd = pgd_offset(vma->vm_mm, addr);
1273 do {
1274 next = pgd_addr_end(addr, end);
1275 if (pgd_none_or_clear_bad(pgd))
1276 continue;
8a9f3ccd
BS
1277 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1278 if (ret)
1279 return ret;
1da177e4
LT
1280 } while (pgd++, addr = next, addr != end);
1281 return 0;
1282}
1283
1284static int unuse_mm(struct mm_struct *mm,
1285 swp_entry_t entry, struct page *page)
1286{
1287 struct vm_area_struct *vma;
8a9f3ccd 1288 int ret = 0;
1da177e4
LT
1289
1290 if (!down_read_trylock(&mm->mmap_sem)) {
1291 /*
7d03431c
FLVC
1292 * Activate page so shrink_inactive_list is unlikely to unmap
1293 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 1294 */
c475a8ab 1295 activate_page(page);
1da177e4
LT
1296 unlock_page(page);
1297 down_read(&mm->mmap_sem);
1298 lock_page(page);
1299 }
1da177e4 1300 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 1301 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4
LT
1302 break;
1303 }
1da177e4 1304 up_read(&mm->mmap_sem);
8a9f3ccd 1305 return (ret < 0)? ret: 0;
1da177e4
LT
1306}
1307
1308/*
38b5faf4
DM
1309 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1310 * from current position to next entry still in use.
1da177e4
LT
1311 * Recycle to start on reaching the end, returning 0 when empty.
1312 */
6eb396dc 1313static unsigned int find_next_to_unuse(struct swap_info_struct *si,
38b5faf4 1314 unsigned int prev, bool frontswap)
1da177e4 1315{
6eb396dc
HD
1316 unsigned int max = si->max;
1317 unsigned int i = prev;
8d69aaee 1318 unsigned char count;
1da177e4
LT
1319
1320 /*
5d337b91 1321 * No need for swap_lock here: we're just looking
1da177e4
LT
1322 * for whether an entry is in use, not modifying it; false
1323 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 1324 * allocations from this area (while holding swap_lock).
1da177e4
LT
1325 */
1326 for (;;) {
1327 if (++i >= max) {
1328 if (!prev) {
1329 i = 0;
1330 break;
1331 }
1332 /*
1333 * No entries in use at top of swap_map,
1334 * loop back to start and recheck there.
1335 */
1336 max = prev + 1;
1337 prev = 0;
1338 i = 1;
1339 }
38b5faf4
DM
1340 if (frontswap) {
1341 if (frontswap_test(si, i))
1342 break;
1343 else
1344 continue;
1345 }
4db0c3c2 1346 count = READ_ONCE(si->swap_map[i]);
355cfa73 1347 if (count && swap_count(count) != SWAP_MAP_BAD)
1da177e4
LT
1348 break;
1349 }
1350 return i;
1351}
1352
1353/*
1354 * We completely avoid races by reading each swap page in advance,
1355 * and then search for the process using it. All the necessary
1356 * page table adjustments can then be made atomically.
38b5faf4
DM
1357 *
1358 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1359 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1da177e4 1360 */
38b5faf4
DM
1361int try_to_unuse(unsigned int type, bool frontswap,
1362 unsigned long pages_to_unuse)
1da177e4 1363{
efa90a98 1364 struct swap_info_struct *si = swap_info[type];
1da177e4 1365 struct mm_struct *start_mm;
edfe23da
SL
1366 volatile unsigned char *swap_map; /* swap_map is accessed without
1367 * locking. Mark it as volatile
1368 * to prevent compiler doing
1369 * something odd.
1370 */
8d69aaee 1371 unsigned char swcount;
1da177e4
LT
1372 struct page *page;
1373 swp_entry_t entry;
6eb396dc 1374 unsigned int i = 0;
1da177e4 1375 int retval = 0;
1da177e4
LT
1376
1377 /*
1378 * When searching mms for an entry, a good strategy is to
1379 * start at the first mm we freed the previous entry from
1380 * (though actually we don't notice whether we or coincidence
1381 * freed the entry). Initialize this start_mm with a hold.
1382 *
1383 * A simpler strategy would be to start at the last mm we
1384 * freed the previous entry from; but that would take less
1385 * advantage of mmlist ordering, which clusters forked mms
1386 * together, child after parent. If we race with dup_mmap(), we
1387 * prefer to resolve parent before child, lest we miss entries
1388 * duplicated after we scanned child: using last mm would invert
570a335b 1389 * that.
1da177e4
LT
1390 */
1391 start_mm = &init_mm;
1392 atomic_inc(&init_mm.mm_users);
1393
1394 /*
1395 * Keep on scanning until all entries have gone. Usually,
1396 * one pass through swap_map is enough, but not necessarily:
1397 * there are races when an instance of an entry might be missed.
1398 */
38b5faf4 1399 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1da177e4
LT
1400 if (signal_pending(current)) {
1401 retval = -EINTR;
1402 break;
1403 }
1404
886bb7e9 1405 /*
1da177e4
LT
1406 * Get a page for the entry, using the existing swap
1407 * cache page if there is one. Otherwise, get a clean
886bb7e9 1408 * page and read the swap into it.
1da177e4
LT
1409 */
1410 swap_map = &si->swap_map[i];
1411 entry = swp_entry(type, i);
02098fea
HD
1412 page = read_swap_cache_async(entry,
1413 GFP_HIGHUSER_MOVABLE, NULL, 0);
1da177e4
LT
1414 if (!page) {
1415 /*
1416 * Either swap_duplicate() failed because entry
1417 * has been freed independently, and will not be
1418 * reused since sys_swapoff() already disabled
1419 * allocation from here, or alloc_page() failed.
1420 */
edfe23da
SL
1421 swcount = *swap_map;
1422 /*
1423 * We don't hold lock here, so the swap entry could be
1424 * SWAP_MAP_BAD (when the cluster is discarding).
1425 * Instead of fail out, We can just skip the swap
1426 * entry because swapoff will wait for discarding
1427 * finish anyway.
1428 */
1429 if (!swcount || swcount == SWAP_MAP_BAD)
1da177e4
LT
1430 continue;
1431 retval = -ENOMEM;
1432 break;
1433 }
1434
1435 /*
1436 * Don't hold on to start_mm if it looks like exiting.
1437 */
1438 if (atomic_read(&start_mm->mm_users) == 1) {
1439 mmput(start_mm);
1440 start_mm = &init_mm;
1441 atomic_inc(&init_mm.mm_users);
1442 }
1443
1444 /*
1445 * Wait for and lock page. When do_swap_page races with
1446 * try_to_unuse, do_swap_page can handle the fault much
1447 * faster than try_to_unuse can locate the entry. This
1448 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1449 * defer to do_swap_page in such a case - in some tests,
1450 * do_swap_page and try_to_unuse repeatedly compete.
1451 */
1452 wait_on_page_locked(page);
1453 wait_on_page_writeback(page);
1454 lock_page(page);
1455 wait_on_page_writeback(page);
1456
1457 /*
1458 * Remove all references to entry.
1da177e4 1459 */
1da177e4 1460 swcount = *swap_map;
aaa46865
HD
1461 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1462 retval = shmem_unuse(entry, page);
1463 /* page has already been unlocked and released */
1464 if (retval < 0)
1465 break;
1466 continue;
1da177e4 1467 }
aaa46865
HD
1468 if (swap_count(swcount) && start_mm != &init_mm)
1469 retval = unuse_mm(start_mm, entry, page);
1470
355cfa73 1471 if (swap_count(*swap_map)) {
1da177e4
LT
1472 int set_start_mm = (*swap_map >= swcount);
1473 struct list_head *p = &start_mm->mmlist;
1474 struct mm_struct *new_start_mm = start_mm;
1475 struct mm_struct *prev_mm = start_mm;
1476 struct mm_struct *mm;
1477
1478 atomic_inc(&new_start_mm->mm_users);
1479 atomic_inc(&prev_mm->mm_users);
1480 spin_lock(&mmlist_lock);
aaa46865 1481 while (swap_count(*swap_map) && !retval &&
1da177e4
LT
1482 (p = p->next) != &start_mm->mmlist) {
1483 mm = list_entry(p, struct mm_struct, mmlist);
70af7c5c 1484 if (!atomic_inc_not_zero(&mm->mm_users))
1da177e4 1485 continue;
1da177e4
LT
1486 spin_unlock(&mmlist_lock);
1487 mmput(prev_mm);
1488 prev_mm = mm;
1489
1490 cond_resched();
1491
1492 swcount = *swap_map;
355cfa73 1493 if (!swap_count(swcount)) /* any usage ? */
1da177e4 1494 ;
aaa46865 1495 else if (mm == &init_mm)
1da177e4 1496 set_start_mm = 1;
aaa46865 1497 else
1da177e4 1498 retval = unuse_mm(mm, entry, page);
355cfa73 1499
32c5fc10 1500 if (set_start_mm && *swap_map < swcount) {
1da177e4
LT
1501 mmput(new_start_mm);
1502 atomic_inc(&mm->mm_users);
1503 new_start_mm = mm;
1504 set_start_mm = 0;
1505 }
1506 spin_lock(&mmlist_lock);
1507 }
1508 spin_unlock(&mmlist_lock);
1509 mmput(prev_mm);
1510 mmput(start_mm);
1511 start_mm = new_start_mm;
1512 }
1513 if (retval) {
1514 unlock_page(page);
1515 page_cache_release(page);
1516 break;
1517 }
1518
1da177e4
LT
1519 /*
1520 * If a reference remains (rare), we would like to leave
1521 * the page in the swap cache; but try_to_unmap could
1522 * then re-duplicate the entry once we drop page lock,
1523 * so we might loop indefinitely; also, that page could
1524 * not be swapped out to other storage meanwhile. So:
1525 * delete from cache even if there's another reference,
1526 * after ensuring that the data has been saved to disk -
1527 * since if the reference remains (rarer), it will be
1528 * read from disk into another page. Splitting into two
1529 * pages would be incorrect if swap supported "shared
1530 * private" pages, but they are handled by tmpfs files.
5ad64688
HD
1531 *
1532 * Given how unuse_vma() targets one particular offset
1533 * in an anon_vma, once the anon_vma has been determined,
1534 * this splitting happens to be just what is needed to
1535 * handle where KSM pages have been swapped out: re-reading
1536 * is unnecessarily slow, but we can fix that later on.
1da177e4 1537 */
355cfa73
KH
1538 if (swap_count(*swap_map) &&
1539 PageDirty(page) && PageSwapCache(page)) {
1da177e4
LT
1540 struct writeback_control wbc = {
1541 .sync_mode = WB_SYNC_NONE,
1542 };
1543
1544 swap_writepage(page, &wbc);
1545 lock_page(page);
1546 wait_on_page_writeback(page);
1547 }
68bdc8d6
HD
1548
1549 /*
1550 * It is conceivable that a racing task removed this page from
1551 * swap cache just before we acquired the page lock at the top,
1552 * or while we dropped it in unuse_mm(). The page might even
1553 * be back in swap cache on another swap area: that we must not
1554 * delete, since it may not have been written out to swap yet.
1555 */
1556 if (PageSwapCache(page) &&
1557 likely(page_private(page) == entry.val))
2e0e26c7 1558 delete_from_swap_cache(page);
1da177e4
LT
1559
1560 /*
1561 * So we could skip searching mms once swap count went
1562 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 1563 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
1564 */
1565 SetPageDirty(page);
1566 unlock_page(page);
1567 page_cache_release(page);
1568
1569 /*
1570 * Make sure that we aren't completely killing
1571 * interactive performance.
1572 */
1573 cond_resched();
38b5faf4
DM
1574 if (frontswap && pages_to_unuse > 0) {
1575 if (!--pages_to_unuse)
1576 break;
1577 }
1da177e4
LT
1578 }
1579
1580 mmput(start_mm);
1da177e4
LT
1581 return retval;
1582}
1583
1584/*
5d337b91
HD
1585 * After a successful try_to_unuse, if no swap is now in use, we know
1586 * we can empty the mmlist. swap_lock must be held on entry and exit.
1587 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
1588 * added to the mmlist just after page_duplicate - before would be racy.
1589 */
1590static void drain_mmlist(void)
1591{
1592 struct list_head *p, *next;
efa90a98 1593 unsigned int type;
1da177e4 1594
efa90a98
HD
1595 for (type = 0; type < nr_swapfiles; type++)
1596 if (swap_info[type]->inuse_pages)
1da177e4
LT
1597 return;
1598 spin_lock(&mmlist_lock);
1599 list_for_each_safe(p, next, &init_mm.mmlist)
1600 list_del_init(p);
1601 spin_unlock(&mmlist_lock);
1602}
1603
1604/*
1605 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
1606 * corresponds to page offset for the specified swap entry.
1607 * Note that the type of this function is sector_t, but it returns page offset
1608 * into the bdev, not sector offset.
1da177e4 1609 */
d4906e1a 1610static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 1611{
f29ad6a9
HD
1612 struct swap_info_struct *sis;
1613 struct swap_extent *start_se;
1614 struct swap_extent *se;
1615 pgoff_t offset;
1616
efa90a98 1617 sis = swap_info[swp_type(entry)];
f29ad6a9
HD
1618 *bdev = sis->bdev;
1619
1620 offset = swp_offset(entry);
1621 start_se = sis->curr_swap_extent;
1622 se = start_se;
1da177e4
LT
1623
1624 for ( ; ; ) {
1da177e4
LT
1625 if (se->start_page <= offset &&
1626 offset < (se->start_page + se->nr_pages)) {
1627 return se->start_block + (offset - se->start_page);
1628 }
a8ae4991 1629 se = list_next_entry(se, list);
1da177e4
LT
1630 sis->curr_swap_extent = se;
1631 BUG_ON(se == start_se); /* It *must* be present */
1632 }
1633}
1634
d4906e1a
LS
1635/*
1636 * Returns the page offset into bdev for the specified page's swap entry.
1637 */
1638sector_t map_swap_page(struct page *page, struct block_device **bdev)
1639{
1640 swp_entry_t entry;
1641 entry.val = page_private(page);
1642 return map_swap_entry(entry, bdev);
1643}
1644
1da177e4
LT
1645/*
1646 * Free all of a swapdev's extent information
1647 */
1648static void destroy_swap_extents(struct swap_info_struct *sis)
1649{
9625a5f2 1650 while (!list_empty(&sis->first_swap_extent.list)) {
1da177e4
LT
1651 struct swap_extent *se;
1652
a8ae4991 1653 se = list_first_entry(&sis->first_swap_extent.list,
1da177e4
LT
1654 struct swap_extent, list);
1655 list_del(&se->list);
1656 kfree(se);
1657 }
62c230bc
MG
1658
1659 if (sis->flags & SWP_FILE) {
1660 struct file *swap_file = sis->swap_file;
1661 struct address_space *mapping = swap_file->f_mapping;
1662
1663 sis->flags &= ~SWP_FILE;
1664 mapping->a_ops->swap_deactivate(swap_file);
1665 }
1da177e4
LT
1666}
1667
1668/*
1669 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 1670 * extent list. The extent list is kept sorted in page order.
1da177e4 1671 *
11d31886 1672 * This function rather assumes that it is called in ascending page order.
1da177e4 1673 */
a509bc1a 1674int
1da177e4
LT
1675add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1676 unsigned long nr_pages, sector_t start_block)
1677{
1678 struct swap_extent *se;
1679 struct swap_extent *new_se;
1680 struct list_head *lh;
1681
9625a5f2
HD
1682 if (start_page == 0) {
1683 se = &sis->first_swap_extent;
1684 sis->curr_swap_extent = se;
1685 se->start_page = 0;
1686 se->nr_pages = nr_pages;
1687 se->start_block = start_block;
1688 return 1;
1689 } else {
1690 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1da177e4 1691 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
1692 BUG_ON(se->start_page + se->nr_pages != start_page);
1693 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
1694 /* Merge it */
1695 se->nr_pages += nr_pages;
1696 return 0;
1697 }
1da177e4
LT
1698 }
1699
1700 /*
1701 * No merge. Insert a new extent, preserving ordering.
1702 */
1703 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1704 if (new_se == NULL)
1705 return -ENOMEM;
1706 new_se->start_page = start_page;
1707 new_se->nr_pages = nr_pages;
1708 new_se->start_block = start_block;
1709
9625a5f2 1710 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
53092a74 1711 return 1;
1da177e4
LT
1712}
1713
1714/*
1715 * A `swap extent' is a simple thing which maps a contiguous range of pages
1716 * onto a contiguous range of disk blocks. An ordered list of swap extents
1717 * is built at swapon time and is then used at swap_writepage/swap_readpage
1718 * time for locating where on disk a page belongs.
1719 *
1720 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1721 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1722 * swap files identically.
1723 *
1724 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1725 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1726 * swapfiles are handled *identically* after swapon time.
1727 *
1728 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1729 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1730 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1731 * requirements, they are simply tossed out - we will never use those blocks
1732 * for swapping.
1733 *
b0d9bcd4 1734 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
1735 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1736 * which will scribble on the fs.
1737 *
1738 * The amount of disk space which a single swap extent represents varies.
1739 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1740 * extents in the list. To avoid much list walking, we cache the previous
1741 * search location in `curr_swap_extent', and start new searches from there.
1742 * This is extremely effective. The average number of iterations in
1743 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1744 */
53092a74 1745static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 1746{
62c230bc
MG
1747 struct file *swap_file = sis->swap_file;
1748 struct address_space *mapping = swap_file->f_mapping;
1749 struct inode *inode = mapping->host;
1da177e4
LT
1750 int ret;
1751
1da177e4
LT
1752 if (S_ISBLK(inode->i_mode)) {
1753 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 1754 *span = sis->pages;
a509bc1a 1755 return ret;
1da177e4
LT
1756 }
1757
62c230bc 1758 if (mapping->a_ops->swap_activate) {
a509bc1a 1759 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
62c230bc
MG
1760 if (!ret) {
1761 sis->flags |= SWP_FILE;
1762 ret = add_swap_extent(sis, 0, sis->max, 0);
1763 *span = sis->pages;
1764 }
a509bc1a 1765 return ret;
62c230bc
MG
1766 }
1767
a509bc1a 1768 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
1769}
1770
cf0cac0a 1771static void _enable_swap_info(struct swap_info_struct *p, int prio,
2a8f9449
SL
1772 unsigned char *swap_map,
1773 struct swap_cluster_info *cluster_info)
40531542 1774{
40531542
CEB
1775 if (prio >= 0)
1776 p->prio = prio;
1777 else
1778 p->prio = --least_priority;
18ab4d4c
DS
1779 /*
1780 * the plist prio is negated because plist ordering is
1781 * low-to-high, while swap ordering is high-to-low
1782 */
1783 p->list.prio = -p->prio;
1784 p->avail_list.prio = -p->prio;
40531542 1785 p->swap_map = swap_map;
2a8f9449 1786 p->cluster_info = cluster_info;
40531542 1787 p->flags |= SWP_WRITEOK;
ec8acf20 1788 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
1789 total_swap_pages += p->pages;
1790
adfab836 1791 assert_spin_locked(&swap_lock);
adfab836 1792 /*
18ab4d4c
DS
1793 * both lists are plists, and thus priority ordered.
1794 * swap_active_head needs to be priority ordered for swapoff(),
1795 * which on removal of any swap_info_struct with an auto-assigned
1796 * (i.e. negative) priority increments the auto-assigned priority
1797 * of any lower-priority swap_info_structs.
1798 * swap_avail_head needs to be priority ordered for get_swap_page(),
1799 * which allocates swap pages from the highest available priority
1800 * swap_info_struct.
adfab836 1801 */
18ab4d4c
DS
1802 plist_add(&p->list, &swap_active_head);
1803 spin_lock(&swap_avail_lock);
1804 plist_add(&p->avail_list, &swap_avail_head);
1805 spin_unlock(&swap_avail_lock);
cf0cac0a
CEB
1806}
1807
1808static void enable_swap_info(struct swap_info_struct *p, int prio,
1809 unsigned char *swap_map,
2a8f9449 1810 struct swap_cluster_info *cluster_info,
cf0cac0a
CEB
1811 unsigned long *frontswap_map)
1812{
4f89849d 1813 frontswap_init(p->type, frontswap_map);
cf0cac0a 1814 spin_lock(&swap_lock);
ec8acf20 1815 spin_lock(&p->lock);
2a8f9449 1816 _enable_swap_info(p, prio, swap_map, cluster_info);
ec8acf20 1817 spin_unlock(&p->lock);
cf0cac0a
CEB
1818 spin_unlock(&swap_lock);
1819}
1820
1821static void reinsert_swap_info(struct swap_info_struct *p)
1822{
1823 spin_lock(&swap_lock);
ec8acf20 1824 spin_lock(&p->lock);
2a8f9449 1825 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
ec8acf20 1826 spin_unlock(&p->lock);
40531542
CEB
1827 spin_unlock(&swap_lock);
1828}
1829
c4ea37c2 1830SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 1831{
73c34b6a 1832 struct swap_info_struct *p = NULL;
8d69aaee 1833 unsigned char *swap_map;
2a8f9449 1834 struct swap_cluster_info *cluster_info;
4f89849d 1835 unsigned long *frontswap_map;
1da177e4
LT
1836 struct file *swap_file, *victim;
1837 struct address_space *mapping;
1838 struct inode *inode;
91a27b2a 1839 struct filename *pathname;
adfab836 1840 int err, found = 0;
5b808a23 1841 unsigned int old_block_size;
886bb7e9 1842
1da177e4
LT
1843 if (!capable(CAP_SYS_ADMIN))
1844 return -EPERM;
1845
191c5424
AV
1846 BUG_ON(!current->mm);
1847
1da177e4 1848 pathname = getname(specialfile);
1da177e4 1849 if (IS_ERR(pathname))
f58b59c1 1850 return PTR_ERR(pathname);
1da177e4 1851
669abf4e 1852 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
1853 err = PTR_ERR(victim);
1854 if (IS_ERR(victim))
1855 goto out;
1856
1857 mapping = victim->f_mapping;
5d337b91 1858 spin_lock(&swap_lock);
18ab4d4c 1859 plist_for_each_entry(p, &swap_active_head, list) {
22c6f8fd 1860 if (p->flags & SWP_WRITEOK) {
adfab836
DS
1861 if (p->swap_file->f_mapping == mapping) {
1862 found = 1;
1da177e4 1863 break;
adfab836 1864 }
1da177e4 1865 }
1da177e4 1866 }
adfab836 1867 if (!found) {
1da177e4 1868 err = -EINVAL;
5d337b91 1869 spin_unlock(&swap_lock);
1da177e4
LT
1870 goto out_dput;
1871 }
191c5424 1872 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
1873 vm_unacct_memory(p->pages);
1874 else {
1875 err = -ENOMEM;
5d337b91 1876 spin_unlock(&swap_lock);
1da177e4
LT
1877 goto out_dput;
1878 }
18ab4d4c
DS
1879 spin_lock(&swap_avail_lock);
1880 plist_del(&p->avail_list, &swap_avail_head);
1881 spin_unlock(&swap_avail_lock);
ec8acf20 1882 spin_lock(&p->lock);
78ecba08 1883 if (p->prio < 0) {
adfab836
DS
1884 struct swap_info_struct *si = p;
1885
18ab4d4c 1886 plist_for_each_entry_continue(si, &swap_active_head, list) {
adfab836 1887 si->prio++;
18ab4d4c
DS
1888 si->list.prio--;
1889 si->avail_list.prio--;
adfab836 1890 }
78ecba08
HD
1891 least_priority++;
1892 }
18ab4d4c 1893 plist_del(&p->list, &swap_active_head);
ec8acf20 1894 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
1895 total_swap_pages -= p->pages;
1896 p->flags &= ~SWP_WRITEOK;
ec8acf20 1897 spin_unlock(&p->lock);
5d337b91 1898 spin_unlock(&swap_lock);
fb4f88dc 1899
e1e12d2f 1900 set_current_oom_origin();
adfab836 1901 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
e1e12d2f 1902 clear_current_oom_origin();
1da177e4 1903
1da177e4
LT
1904 if (err) {
1905 /* re-insert swap space back into swap_list */
cf0cac0a 1906 reinsert_swap_info(p);
1da177e4
LT
1907 goto out_dput;
1908 }
52b7efdb 1909
815c2c54
SL
1910 flush_work(&p->discard_work);
1911
5d337b91 1912 destroy_swap_extents(p);
570a335b
HD
1913 if (p->flags & SWP_CONTINUED)
1914 free_swap_count_continuations(p);
1915
fc0abb14 1916 mutex_lock(&swapon_mutex);
5d337b91 1917 spin_lock(&swap_lock);
ec8acf20 1918 spin_lock(&p->lock);
5d337b91
HD
1919 drain_mmlist();
1920
52b7efdb 1921 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
1922 p->highest_bit = 0; /* cuts scans short */
1923 while (p->flags >= SWP_SCANNING) {
ec8acf20 1924 spin_unlock(&p->lock);
5d337b91 1925 spin_unlock(&swap_lock);
13e4b57f 1926 schedule_timeout_uninterruptible(1);
5d337b91 1927 spin_lock(&swap_lock);
ec8acf20 1928 spin_lock(&p->lock);
52b7efdb 1929 }
52b7efdb 1930
1da177e4 1931 swap_file = p->swap_file;
5b808a23 1932 old_block_size = p->old_block_size;
1da177e4
LT
1933 p->swap_file = NULL;
1934 p->max = 0;
1935 swap_map = p->swap_map;
1936 p->swap_map = NULL;
2a8f9449
SL
1937 cluster_info = p->cluster_info;
1938 p->cluster_info = NULL;
4f89849d 1939 frontswap_map = frontswap_map_get(p);
ec8acf20 1940 spin_unlock(&p->lock);
5d337b91 1941 spin_unlock(&swap_lock);
adfab836 1942 frontswap_invalidate_area(p->type);
58e97ba6 1943 frontswap_map_set(p, NULL);
fc0abb14 1944 mutex_unlock(&swapon_mutex);
ebc2a1a6
SL
1945 free_percpu(p->percpu_cluster);
1946 p->percpu_cluster = NULL;
1da177e4 1947 vfree(swap_map);
2a8f9449 1948 vfree(cluster_info);
4f89849d 1949 vfree(frontswap_map);
2de1a7e4 1950 /* Destroy swap account information */
adfab836 1951 swap_cgroup_swapoff(p->type);
27a7faa0 1952
1da177e4
LT
1953 inode = mapping->host;
1954 if (S_ISBLK(inode->i_mode)) {
1955 struct block_device *bdev = I_BDEV(inode);
5b808a23 1956 set_blocksize(bdev, old_block_size);
e525fd89 1957 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 1958 } else {
1b1dcc1b 1959 mutex_lock(&inode->i_mutex);
1da177e4 1960 inode->i_flags &= ~S_SWAPFILE;
1b1dcc1b 1961 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1962 }
1963 filp_close(swap_file, NULL);
f893ab41
WY
1964
1965 /*
1966 * Clear the SWP_USED flag after all resources are freed so that swapon
1967 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
1968 * not hold p->lock after we cleared its SWP_WRITEOK.
1969 */
1970 spin_lock(&swap_lock);
1971 p->flags = 0;
1972 spin_unlock(&swap_lock);
1973
1da177e4 1974 err = 0;
66d7dd51
KS
1975 atomic_inc(&proc_poll_event);
1976 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
1977
1978out_dput:
1979 filp_close(victim, NULL);
1980out:
f58b59c1 1981 putname(pathname);
1da177e4
LT
1982 return err;
1983}
1984
1985#ifdef CONFIG_PROC_FS
66d7dd51
KS
1986static unsigned swaps_poll(struct file *file, poll_table *wait)
1987{
f1514638 1988 struct seq_file *seq = file->private_data;
66d7dd51
KS
1989
1990 poll_wait(file, &proc_poll_wait, wait);
1991
f1514638
KS
1992 if (seq->poll_event != atomic_read(&proc_poll_event)) {
1993 seq->poll_event = atomic_read(&proc_poll_event);
66d7dd51
KS
1994 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1995 }
1996
1997 return POLLIN | POLLRDNORM;
1998}
1999
1da177e4
LT
2000/* iterator */
2001static void *swap_start(struct seq_file *swap, loff_t *pos)
2002{
efa90a98
HD
2003 struct swap_info_struct *si;
2004 int type;
1da177e4
LT
2005 loff_t l = *pos;
2006
fc0abb14 2007 mutex_lock(&swapon_mutex);
1da177e4 2008
881e4aab
SS
2009 if (!l)
2010 return SEQ_START_TOKEN;
2011
efa90a98
HD
2012 for (type = 0; type < nr_swapfiles; type++) {
2013 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2014 si = swap_info[type];
2015 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2016 continue;
881e4aab 2017 if (!--l)
efa90a98 2018 return si;
1da177e4
LT
2019 }
2020
2021 return NULL;
2022}
2023
2024static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2025{
efa90a98
HD
2026 struct swap_info_struct *si = v;
2027 int type;
1da177e4 2028
881e4aab 2029 if (v == SEQ_START_TOKEN)
efa90a98
HD
2030 type = 0;
2031 else
2032 type = si->type + 1;
881e4aab 2033
efa90a98
HD
2034 for (; type < nr_swapfiles; type++) {
2035 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2036 si = swap_info[type];
2037 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4
LT
2038 continue;
2039 ++*pos;
efa90a98 2040 return si;
1da177e4
LT
2041 }
2042
2043 return NULL;
2044}
2045
2046static void swap_stop(struct seq_file *swap, void *v)
2047{
fc0abb14 2048 mutex_unlock(&swapon_mutex);
1da177e4
LT
2049}
2050
2051static int swap_show(struct seq_file *swap, void *v)
2052{
efa90a98 2053 struct swap_info_struct *si = v;
1da177e4
LT
2054 struct file *file;
2055 int len;
2056
efa90a98 2057 if (si == SEQ_START_TOKEN) {
881e4aab
SS
2058 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2059 return 0;
2060 }
1da177e4 2061
efa90a98 2062 file = si->swap_file;
2726d566 2063 len = seq_file_path(swap, file, " \t\n\\");
6eb396dc 2064 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9 2065 len < 40 ? 40 - len : 1, " ",
496ad9aa 2066 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 2067 "partition" : "file\t",
efa90a98
HD
2068 si->pages << (PAGE_SHIFT - 10),
2069 si->inuse_pages << (PAGE_SHIFT - 10),
2070 si->prio);
1da177e4
LT
2071 return 0;
2072}
2073
15ad7cdc 2074static const struct seq_operations swaps_op = {
1da177e4
LT
2075 .start = swap_start,
2076 .next = swap_next,
2077 .stop = swap_stop,
2078 .show = swap_show
2079};
2080
2081static int swaps_open(struct inode *inode, struct file *file)
2082{
f1514638 2083 struct seq_file *seq;
66d7dd51
KS
2084 int ret;
2085
66d7dd51 2086 ret = seq_open(file, &swaps_op);
f1514638 2087 if (ret)
66d7dd51 2088 return ret;
66d7dd51 2089
f1514638
KS
2090 seq = file->private_data;
2091 seq->poll_event = atomic_read(&proc_poll_event);
2092 return 0;
1da177e4
LT
2093}
2094
15ad7cdc 2095static const struct file_operations proc_swaps_operations = {
1da177e4
LT
2096 .open = swaps_open,
2097 .read = seq_read,
2098 .llseek = seq_lseek,
2099 .release = seq_release,
66d7dd51 2100 .poll = swaps_poll,
1da177e4
LT
2101};
2102
2103static int __init procswaps_init(void)
2104{
3d71f86f 2105 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
2106 return 0;
2107}
2108__initcall(procswaps_init);
2109#endif /* CONFIG_PROC_FS */
2110
1796316a
JB
2111#ifdef MAX_SWAPFILES_CHECK
2112static int __init max_swapfiles_check(void)
2113{
2114 MAX_SWAPFILES_CHECK();
2115 return 0;
2116}
2117late_initcall(max_swapfiles_check);
2118#endif
2119
53cbb243 2120static struct swap_info_struct *alloc_swap_info(void)
1da177e4 2121{
73c34b6a 2122 struct swap_info_struct *p;
1da177e4 2123 unsigned int type;
efa90a98
HD
2124
2125 p = kzalloc(sizeof(*p), GFP_KERNEL);
2126 if (!p)
53cbb243 2127 return ERR_PTR(-ENOMEM);
efa90a98 2128
5d337b91 2129 spin_lock(&swap_lock);
efa90a98
HD
2130 for (type = 0; type < nr_swapfiles; type++) {
2131 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 2132 break;
efa90a98 2133 }
0697212a 2134 if (type >= MAX_SWAPFILES) {
5d337b91 2135 spin_unlock(&swap_lock);
efa90a98 2136 kfree(p);
730c0581 2137 return ERR_PTR(-EPERM);
1da177e4 2138 }
efa90a98
HD
2139 if (type >= nr_swapfiles) {
2140 p->type = type;
2141 swap_info[type] = p;
2142 /*
2143 * Write swap_info[type] before nr_swapfiles, in case a
2144 * racing procfs swap_start() or swap_next() is reading them.
2145 * (We never shrink nr_swapfiles, we never free this entry.)
2146 */
2147 smp_wmb();
2148 nr_swapfiles++;
2149 } else {
2150 kfree(p);
2151 p = swap_info[type];
2152 /*
2153 * Do not memset this entry: a racing procfs swap_next()
2154 * would be relying on p->type to remain valid.
2155 */
2156 }
9625a5f2 2157 INIT_LIST_HEAD(&p->first_swap_extent.list);
18ab4d4c
DS
2158 plist_node_init(&p->list, 0);
2159 plist_node_init(&p->avail_list, 0);
1da177e4 2160 p->flags = SWP_USED;
5d337b91 2161 spin_unlock(&swap_lock);
ec8acf20 2162 spin_lock_init(&p->lock);
efa90a98 2163
53cbb243 2164 return p;
53cbb243
CEB
2165}
2166
4d0e1e10
CEB
2167static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2168{
2169 int error;
2170
2171 if (S_ISBLK(inode->i_mode)) {
2172 p->bdev = bdgrab(I_BDEV(inode));
2173 error = blkdev_get(p->bdev,
6f179af8 2174 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
4d0e1e10
CEB
2175 if (error < 0) {
2176 p->bdev = NULL;
6f179af8 2177 return error;
4d0e1e10
CEB
2178 }
2179 p->old_block_size = block_size(p->bdev);
2180 error = set_blocksize(p->bdev, PAGE_SIZE);
2181 if (error < 0)
87ade72a 2182 return error;
4d0e1e10
CEB
2183 p->flags |= SWP_BLKDEV;
2184 } else if (S_ISREG(inode->i_mode)) {
2185 p->bdev = inode->i_sb->s_bdev;
2186 mutex_lock(&inode->i_mutex);
87ade72a
CEB
2187 if (IS_SWAPFILE(inode))
2188 return -EBUSY;
2189 } else
2190 return -EINVAL;
4d0e1e10
CEB
2191
2192 return 0;
4d0e1e10
CEB
2193}
2194
ca8bd38b
CEB
2195static unsigned long read_swap_header(struct swap_info_struct *p,
2196 union swap_header *swap_header,
2197 struct inode *inode)
2198{
2199 int i;
2200 unsigned long maxpages;
2201 unsigned long swapfilepages;
d6bbbd29 2202 unsigned long last_page;
ca8bd38b
CEB
2203
2204 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
465c47fd 2205 pr_err("Unable to find swap-space signature\n");
38719025 2206 return 0;
ca8bd38b
CEB
2207 }
2208
2209 /* swap partition endianess hack... */
2210 if (swab32(swap_header->info.version) == 1) {
2211 swab32s(&swap_header->info.version);
2212 swab32s(&swap_header->info.last_page);
2213 swab32s(&swap_header->info.nr_badpages);
2214 for (i = 0; i < swap_header->info.nr_badpages; i++)
2215 swab32s(&swap_header->info.badpages[i]);
2216 }
2217 /* Check the swap header's sub-version */
2218 if (swap_header->info.version != 1) {
465c47fd
AM
2219 pr_warn("Unable to handle swap header version %d\n",
2220 swap_header->info.version);
38719025 2221 return 0;
ca8bd38b
CEB
2222 }
2223
2224 p->lowest_bit = 1;
2225 p->cluster_next = 1;
2226 p->cluster_nr = 0;
2227
2228 /*
2229 * Find out how many pages are allowed for a single swap
9b15b817 2230 * device. There are two limiting factors: 1) the number
a2c16d6c
HD
2231 * of bits for the swap offset in the swp_entry_t type, and
2232 * 2) the number of bits in the swap pte as defined by the
9b15b817 2233 * different architectures. In order to find the
a2c16d6c 2234 * largest possible bit mask, a swap entry with swap type 0
ca8bd38b 2235 * and swap offset ~0UL is created, encoded to a swap pte,
a2c16d6c 2236 * decoded to a swp_entry_t again, and finally the swap
ca8bd38b
CEB
2237 * offset is extracted. This will mask all the bits from
2238 * the initial ~0UL mask that can't be encoded in either
2239 * the swp_entry_t or the architecture definition of a
9b15b817 2240 * swap pte.
ca8bd38b
CEB
2241 */
2242 maxpages = swp_offset(pte_to_swp_entry(
9b15b817 2243 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
d6bbbd29
RJ
2244 last_page = swap_header->info.last_page;
2245 if (last_page > maxpages) {
465c47fd 2246 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
d6bbbd29
RJ
2247 maxpages << (PAGE_SHIFT - 10),
2248 last_page << (PAGE_SHIFT - 10));
2249 }
2250 if (maxpages > last_page) {
2251 maxpages = last_page + 1;
ca8bd38b
CEB
2252 /* p->max is an unsigned int: don't overflow it */
2253 if ((unsigned int)maxpages == 0)
2254 maxpages = UINT_MAX;
2255 }
2256 p->highest_bit = maxpages - 1;
2257
2258 if (!maxpages)
38719025 2259 return 0;
ca8bd38b
CEB
2260 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2261 if (swapfilepages && maxpages > swapfilepages) {
465c47fd 2262 pr_warn("Swap area shorter than signature indicates\n");
38719025 2263 return 0;
ca8bd38b
CEB
2264 }
2265 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 2266 return 0;
ca8bd38b 2267 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 2268 return 0;
ca8bd38b
CEB
2269
2270 return maxpages;
ca8bd38b
CEB
2271}
2272
915d4d7b
CEB
2273static int setup_swap_map_and_extents(struct swap_info_struct *p,
2274 union swap_header *swap_header,
2275 unsigned char *swap_map,
2a8f9449 2276 struct swap_cluster_info *cluster_info,
915d4d7b
CEB
2277 unsigned long maxpages,
2278 sector_t *span)
2279{
2280 int i;
915d4d7b
CEB
2281 unsigned int nr_good_pages;
2282 int nr_extents;
2a8f9449
SL
2283 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2284 unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
915d4d7b
CEB
2285
2286 nr_good_pages = maxpages - 1; /* omit header page */
2287
2a8f9449
SL
2288 cluster_set_null(&p->free_cluster_head);
2289 cluster_set_null(&p->free_cluster_tail);
815c2c54
SL
2290 cluster_set_null(&p->discard_cluster_head);
2291 cluster_set_null(&p->discard_cluster_tail);
2a8f9449 2292
915d4d7b
CEB
2293 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2294 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
2295 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2296 return -EINVAL;
915d4d7b
CEB
2297 if (page_nr < maxpages) {
2298 swap_map[page_nr] = SWAP_MAP_BAD;
2299 nr_good_pages--;
2a8f9449
SL
2300 /*
2301 * Haven't marked the cluster free yet, no list
2302 * operation involved
2303 */
2304 inc_cluster_info_page(p, cluster_info, page_nr);
915d4d7b
CEB
2305 }
2306 }
2307
2a8f9449
SL
2308 /* Haven't marked the cluster free yet, no list operation involved */
2309 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2310 inc_cluster_info_page(p, cluster_info, i);
2311
915d4d7b
CEB
2312 if (nr_good_pages) {
2313 swap_map[0] = SWAP_MAP_BAD;
2a8f9449
SL
2314 /*
2315 * Not mark the cluster free yet, no list
2316 * operation involved
2317 */
2318 inc_cluster_info_page(p, cluster_info, 0);
915d4d7b
CEB
2319 p->max = maxpages;
2320 p->pages = nr_good_pages;
2321 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
2322 if (nr_extents < 0)
2323 return nr_extents;
915d4d7b
CEB
2324 nr_good_pages = p->pages;
2325 }
2326 if (!nr_good_pages) {
465c47fd 2327 pr_warn("Empty swap-file\n");
bdb8e3f6 2328 return -EINVAL;
915d4d7b
CEB
2329 }
2330
2a8f9449
SL
2331 if (!cluster_info)
2332 return nr_extents;
2333
2334 for (i = 0; i < nr_clusters; i++) {
2335 if (!cluster_count(&cluster_info[idx])) {
2336 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2337 if (cluster_is_null(&p->free_cluster_head)) {
2338 cluster_set_next_flag(&p->free_cluster_head,
2339 idx, 0);
2340 cluster_set_next_flag(&p->free_cluster_tail,
2341 idx, 0);
2342 } else {
2343 unsigned int tail;
2344
2345 tail = cluster_next(&p->free_cluster_tail);
2346 cluster_set_next(&cluster_info[tail], idx);
2347 cluster_set_next_flag(&p->free_cluster_tail,
2348 idx, 0);
2349 }
2350 }
2351 idx++;
2352 if (idx == nr_clusters)
2353 idx = 0;
2354 }
915d4d7b 2355 return nr_extents;
915d4d7b
CEB
2356}
2357
dcf6b7dd
RA
2358/*
2359 * Helper to sys_swapon determining if a given swap
2360 * backing device queue supports DISCARD operations.
2361 */
2362static bool swap_discardable(struct swap_info_struct *si)
2363{
2364 struct request_queue *q = bdev_get_queue(si->bdev);
2365
2366 if (!q || !blk_queue_discard(q))
2367 return false;
2368
2369 return true;
2370}
2371
53cbb243
CEB
2372SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2373{
2374 struct swap_info_struct *p;
91a27b2a 2375 struct filename *name;
53cbb243
CEB
2376 struct file *swap_file = NULL;
2377 struct address_space *mapping;
40531542 2378 int prio;
53cbb243
CEB
2379 int error;
2380 union swap_header *swap_header;
915d4d7b 2381 int nr_extents;
53cbb243
CEB
2382 sector_t span;
2383 unsigned long maxpages;
53cbb243 2384 unsigned char *swap_map = NULL;
2a8f9449 2385 struct swap_cluster_info *cluster_info = NULL;
38b5faf4 2386 unsigned long *frontswap_map = NULL;
53cbb243
CEB
2387 struct page *page = NULL;
2388 struct inode *inode = NULL;
53cbb243 2389
d15cab97
HD
2390 if (swap_flags & ~SWAP_FLAGS_VALID)
2391 return -EINVAL;
2392
53cbb243
CEB
2393 if (!capable(CAP_SYS_ADMIN))
2394 return -EPERM;
2395
2396 p = alloc_swap_info();
2542e513
CEB
2397 if (IS_ERR(p))
2398 return PTR_ERR(p);
53cbb243 2399
815c2c54
SL
2400 INIT_WORK(&p->discard_work, swap_discard_work);
2401
1da177e4 2402 name = getname(specialfile);
1da177e4 2403 if (IS_ERR(name)) {
7de7fb6b 2404 error = PTR_ERR(name);
1da177e4 2405 name = NULL;
bd69010b 2406 goto bad_swap;
1da177e4 2407 }
669abf4e 2408 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 2409 if (IS_ERR(swap_file)) {
7de7fb6b 2410 error = PTR_ERR(swap_file);
1da177e4 2411 swap_file = NULL;
bd69010b 2412 goto bad_swap;
1da177e4
LT
2413 }
2414
2415 p->swap_file = swap_file;
2416 mapping = swap_file->f_mapping;
2130781e 2417 inode = mapping->host;
6f179af8 2418
2130781e 2419 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
4d0e1e10
CEB
2420 error = claim_swapfile(p, inode);
2421 if (unlikely(error))
1da177e4 2422 goto bad_swap;
1da177e4 2423
1da177e4
LT
2424 /*
2425 * Read the swap header.
2426 */
2427 if (!mapping->a_ops->readpage) {
2428 error = -EINVAL;
2429 goto bad_swap;
2430 }
090d2b18 2431 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
2432 if (IS_ERR(page)) {
2433 error = PTR_ERR(page);
2434 goto bad_swap;
2435 }
81e33971 2436 swap_header = kmap(page);
1da177e4 2437
ca8bd38b
CEB
2438 maxpages = read_swap_header(p, swap_header, inode);
2439 if (unlikely(!maxpages)) {
1da177e4
LT
2440 error = -EINVAL;
2441 goto bad_swap;
2442 }
886bb7e9 2443
81e33971 2444 /* OK, set up the swap map and apply the bad block list */
803d0c83 2445 swap_map = vzalloc(maxpages);
81e33971
HD
2446 if (!swap_map) {
2447 error = -ENOMEM;
2448 goto bad_swap;
2449 }
2a8f9449 2450 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
6f179af8
HD
2451 int cpu;
2452
2a8f9449
SL
2453 p->flags |= SWP_SOLIDSTATE;
2454 /*
2455 * select a random position to start with to help wear leveling
2456 * SSD
2457 */
2458 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2459
2460 cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2461 SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2462 if (!cluster_info) {
2463 error = -ENOMEM;
2464 goto bad_swap;
2465 }
ebc2a1a6
SL
2466 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2467 if (!p->percpu_cluster) {
2468 error = -ENOMEM;
2469 goto bad_swap;
2470 }
6f179af8 2471 for_each_possible_cpu(cpu) {
ebc2a1a6 2472 struct percpu_cluster *cluster;
6f179af8 2473 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
ebc2a1a6
SL
2474 cluster_set_null(&cluster->index);
2475 }
2a8f9449 2476 }
1da177e4 2477
1421ef3c
CEB
2478 error = swap_cgroup_swapon(p->type, maxpages);
2479 if (error)
2480 goto bad_swap;
2481
915d4d7b 2482 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2a8f9449 2483 cluster_info, maxpages, &span);
915d4d7b
CEB
2484 if (unlikely(nr_extents < 0)) {
2485 error = nr_extents;
1da177e4
LT
2486 goto bad_swap;
2487 }
38b5faf4
DM
2488 /* frontswap enabled? set up bit-per-page map for frontswap */
2489 if (frontswap_enabled)
7b57976d 2490 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
1da177e4 2491
2a8f9449
SL
2492 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2493 /*
2494 * When discard is enabled for swap with no particular
2495 * policy flagged, we set all swap discard flags here in
2496 * order to sustain backward compatibility with older
2497 * swapon(8) releases.
2498 */
2499 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2500 SWP_PAGE_DISCARD);
dcf6b7dd 2501
2a8f9449
SL
2502 /*
2503 * By flagging sys_swapon, a sysadmin can tell us to
2504 * either do single-time area discards only, or to just
2505 * perform discards for released swap page-clusters.
2506 * Now it's time to adjust the p->flags accordingly.
2507 */
2508 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2509 p->flags &= ~SWP_PAGE_DISCARD;
2510 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2511 p->flags &= ~SWP_AREA_DISCARD;
2512
2513 /* issue a swapon-time discard if it's still required */
2514 if (p->flags & SWP_AREA_DISCARD) {
2515 int err = discard_swap(p);
2516 if (unlikely(err))
2517 pr_err("swapon: discard_swap(%p): %d\n",
2518 p, err);
dcf6b7dd 2519 }
20137a49 2520 }
6a6ba831 2521
fc0abb14 2522 mutex_lock(&swapon_mutex);
40531542 2523 prio = -1;
78ecba08 2524 if (swap_flags & SWAP_FLAG_PREFER)
40531542 2525 prio =
78ecba08 2526 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2a8f9449 2527 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
c69dbfb8 2528
465c47fd 2529 pr_info("Adding %uk swap on %s. "
dcf6b7dd 2530 "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 2531 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
2532 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2533 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 2534 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
2535 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2536 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 2537 (frontswap_map) ? "FS" : "");
c69dbfb8 2538
fc0abb14 2539 mutex_unlock(&swapon_mutex);
66d7dd51
KS
2540 atomic_inc(&proc_poll_event);
2541 wake_up_interruptible(&proc_poll_wait);
2542
9b01c350
CEB
2543 if (S_ISREG(inode->i_mode))
2544 inode->i_flags |= S_SWAPFILE;
1da177e4
LT
2545 error = 0;
2546 goto out;
2547bad_swap:
ebc2a1a6
SL
2548 free_percpu(p->percpu_cluster);
2549 p->percpu_cluster = NULL;
bd69010b 2550 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
2551 set_blocksize(p->bdev, p->old_block_size);
2552 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2553 }
4cd3bb10 2554 destroy_swap_extents(p);
e8e6c2ec 2555 swap_cgroup_swapoff(p->type);
5d337b91 2556 spin_lock(&swap_lock);
1da177e4 2557 p->swap_file = NULL;
1da177e4 2558 p->flags = 0;
5d337b91 2559 spin_unlock(&swap_lock);
1da177e4 2560 vfree(swap_map);
2a8f9449 2561 vfree(cluster_info);
52c50567 2562 if (swap_file) {
2130781e 2563 if (inode && S_ISREG(inode->i_mode)) {
52c50567 2564 mutex_unlock(&inode->i_mutex);
2130781e
CEB
2565 inode = NULL;
2566 }
1da177e4 2567 filp_close(swap_file, NULL);
52c50567 2568 }
1da177e4
LT
2569out:
2570 if (page && !IS_ERR(page)) {
2571 kunmap(page);
2572 page_cache_release(page);
2573 }
2574 if (name)
2575 putname(name);
9b01c350 2576 if (inode && S_ISREG(inode->i_mode))
1b1dcc1b 2577 mutex_unlock(&inode->i_mutex);
1da177e4
LT
2578 return error;
2579}
2580
2581void si_swapinfo(struct sysinfo *val)
2582{
efa90a98 2583 unsigned int type;
1da177e4
LT
2584 unsigned long nr_to_be_unused = 0;
2585
5d337b91 2586 spin_lock(&swap_lock);
efa90a98
HD
2587 for (type = 0; type < nr_swapfiles; type++) {
2588 struct swap_info_struct *si = swap_info[type];
2589
2590 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2591 nr_to_be_unused += si->inuse_pages;
1da177e4 2592 }
ec8acf20 2593 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 2594 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 2595 spin_unlock(&swap_lock);
1da177e4
LT
2596}
2597
2598/*
2599 * Verify that a swap entry is valid and increment its swap map count.
2600 *
355cfa73
KH
2601 * Returns error code in following case.
2602 * - success -> 0
2603 * - swp_entry is invalid -> EINVAL
2604 * - swp_entry is migration entry -> EINVAL
2605 * - swap-cache reference is requested but there is already one. -> EEXIST
2606 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 2607 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 2608 */
8d69aaee 2609static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 2610{
73c34b6a 2611 struct swap_info_struct *p;
1da177e4 2612 unsigned long offset, type;
8d69aaee
HD
2613 unsigned char count;
2614 unsigned char has_cache;
253d553b 2615 int err = -EINVAL;
1da177e4 2616
a7420aa5 2617 if (non_swap_entry(entry))
253d553b 2618 goto out;
0697212a 2619
1da177e4
LT
2620 type = swp_type(entry);
2621 if (type >= nr_swapfiles)
2622 goto bad_file;
efa90a98 2623 p = swap_info[type];
1da177e4
LT
2624 offset = swp_offset(entry);
2625
ec8acf20 2626 spin_lock(&p->lock);
355cfa73
KH
2627 if (unlikely(offset >= p->max))
2628 goto unlock_out;
2629
253d553b 2630 count = p->swap_map[offset];
edfe23da
SL
2631
2632 /*
2633 * swapin_readahead() doesn't check if a swap entry is valid, so the
2634 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2635 */
2636 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2637 err = -ENOENT;
2638 goto unlock_out;
2639 }
2640
253d553b
HD
2641 has_cache = count & SWAP_HAS_CACHE;
2642 count &= ~SWAP_HAS_CACHE;
2643 err = 0;
355cfa73 2644
253d553b 2645 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
2646
2647 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
2648 if (!has_cache && count)
2649 has_cache = SWAP_HAS_CACHE;
2650 else if (has_cache) /* someone else added cache */
2651 err = -EEXIST;
2652 else /* no users remaining */
2653 err = -ENOENT;
355cfa73
KH
2654
2655 } else if (count || has_cache) {
253d553b 2656
570a335b
HD
2657 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2658 count += usage;
2659 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 2660 err = -EINVAL;
570a335b
HD
2661 else if (swap_count_continued(p, offset, count))
2662 count = COUNT_CONTINUED;
2663 else
2664 err = -ENOMEM;
355cfa73 2665 } else
253d553b
HD
2666 err = -ENOENT; /* unused swap entry */
2667
2668 p->swap_map[offset] = count | has_cache;
2669
355cfa73 2670unlock_out:
ec8acf20 2671 spin_unlock(&p->lock);
1da177e4 2672out:
253d553b 2673 return err;
1da177e4
LT
2674
2675bad_file:
465c47fd 2676 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
2677 goto out;
2678}
253d553b 2679
aaa46865
HD
2680/*
2681 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2682 * (in which case its reference count is never incremented).
2683 */
2684void swap_shmem_alloc(swp_entry_t entry)
2685{
2686 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2687}
2688
355cfa73 2689/*
08259d58
HD
2690 * Increase reference count of swap entry by 1.
2691 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2692 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2693 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2694 * might occur if a page table entry has got corrupted.
355cfa73 2695 */
570a335b 2696int swap_duplicate(swp_entry_t entry)
355cfa73 2697{
570a335b
HD
2698 int err = 0;
2699
2700 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2701 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2702 return err;
355cfa73 2703}
1da177e4 2704
cb4b86ba 2705/*
355cfa73
KH
2706 * @entry: swap entry for which we allocate swap cache.
2707 *
73c34b6a 2708 * Called when allocating swap cache for existing swap entry,
355cfa73
KH
2709 * This can return error codes. Returns 0 at success.
2710 * -EBUSY means there is a swap cache.
2711 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
2712 */
2713int swapcache_prepare(swp_entry_t entry)
2714{
253d553b 2715 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
2716}
2717
f981c595
MG
2718struct swap_info_struct *page_swap_info(struct page *page)
2719{
2720 swp_entry_t swap = { .val = page_private(page) };
2721 BUG_ON(!PageSwapCache(page));
2722 return swap_info[swp_type(swap)];
2723}
2724
2725/*
2726 * out-of-line __page_file_ methods to avoid include hell.
2727 */
2728struct address_space *__page_file_mapping(struct page *page)
2729{
309381fe 2730 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
f981c595
MG
2731 return page_swap_info(page)->swap_file->f_mapping;
2732}
2733EXPORT_SYMBOL_GPL(__page_file_mapping);
2734
2735pgoff_t __page_file_index(struct page *page)
2736{
2737 swp_entry_t swap = { .val = page_private(page) };
309381fe 2738 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
f981c595
MG
2739 return swp_offset(swap);
2740}
2741EXPORT_SYMBOL_GPL(__page_file_index);
2742
570a335b
HD
2743/*
2744 * add_swap_count_continuation - called when a swap count is duplicated
2745 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2746 * page of the original vmalloc'ed swap_map, to hold the continuation count
2747 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2748 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2749 *
2750 * These continuation pages are seldom referenced: the common paths all work
2751 * on the original swap_map, only referring to a continuation page when the
2752 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2753 *
2754 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2755 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2756 * can be called after dropping locks.
2757 */
2758int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2759{
2760 struct swap_info_struct *si;
2761 struct page *head;
2762 struct page *page;
2763 struct page *list_page;
2764 pgoff_t offset;
2765 unsigned char count;
2766
2767 /*
2768 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2769 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2770 */
2771 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2772
2773 si = swap_info_get(entry);
2774 if (!si) {
2775 /*
2776 * An acceptable race has occurred since the failing
2777 * __swap_duplicate(): the swap entry has been freed,
2778 * perhaps even the whole swap_map cleared for swapoff.
2779 */
2780 goto outer;
2781 }
2782
2783 offset = swp_offset(entry);
2784 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2785
2786 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2787 /*
2788 * The higher the swap count, the more likely it is that tasks
2789 * will race to add swap count continuation: we need to avoid
2790 * over-provisioning.
2791 */
2792 goto out;
2793 }
2794
2795 if (!page) {
ec8acf20 2796 spin_unlock(&si->lock);
570a335b
HD
2797 return -ENOMEM;
2798 }
2799
2800 /*
2801 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2de1a7e4
SJ
2802 * no architecture is using highmem pages for kernel page tables: so it
2803 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
570a335b
HD
2804 */
2805 head = vmalloc_to_page(si->swap_map + offset);
2806 offset &= ~PAGE_MASK;
2807
2808 /*
2809 * Page allocation does not initialize the page's lru field,
2810 * but it does always reset its private field.
2811 */
2812 if (!page_private(head)) {
2813 BUG_ON(count & COUNT_CONTINUED);
2814 INIT_LIST_HEAD(&head->lru);
2815 set_page_private(head, SWP_CONTINUED);
2816 si->flags |= SWP_CONTINUED;
2817 }
2818
2819 list_for_each_entry(list_page, &head->lru, lru) {
2820 unsigned char *map;
2821
2822 /*
2823 * If the previous map said no continuation, but we've found
2824 * a continuation page, free our allocation and use this one.
2825 */
2826 if (!(count & COUNT_CONTINUED))
2827 goto out;
2828
9b04c5fe 2829 map = kmap_atomic(list_page) + offset;
570a335b 2830 count = *map;
9b04c5fe 2831 kunmap_atomic(map);
570a335b
HD
2832
2833 /*
2834 * If this continuation count now has some space in it,
2835 * free our allocation and use this one.
2836 */
2837 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2838 goto out;
2839 }
2840
2841 list_add_tail(&page->lru, &head->lru);
2842 page = NULL; /* now it's attached, don't free it */
2843out:
ec8acf20 2844 spin_unlock(&si->lock);
570a335b
HD
2845outer:
2846 if (page)
2847 __free_page(page);
2848 return 0;
2849}
2850
2851/*
2852 * swap_count_continued - when the original swap_map count is incremented
2853 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2854 * into, carry if so, or else fail until a new continuation page is allocated;
2855 * when the original swap_map count is decremented from 0 with continuation,
2856 * borrow from the continuation and report whether it still holds more.
2857 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2858 */
2859static bool swap_count_continued(struct swap_info_struct *si,
2860 pgoff_t offset, unsigned char count)
2861{
2862 struct page *head;
2863 struct page *page;
2864 unsigned char *map;
2865
2866 head = vmalloc_to_page(si->swap_map + offset);
2867 if (page_private(head) != SWP_CONTINUED) {
2868 BUG_ON(count & COUNT_CONTINUED);
2869 return false; /* need to add count continuation */
2870 }
2871
2872 offset &= ~PAGE_MASK;
2873 page = list_entry(head->lru.next, struct page, lru);
9b04c5fe 2874 map = kmap_atomic(page) + offset;
570a335b
HD
2875
2876 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2877 goto init_map; /* jump over SWAP_CONT_MAX checks */
2878
2879 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2880 /*
2881 * Think of how you add 1 to 999
2882 */
2883 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 2884 kunmap_atomic(map);
570a335b
HD
2885 page = list_entry(page->lru.next, struct page, lru);
2886 BUG_ON(page == head);
9b04c5fe 2887 map = kmap_atomic(page) + offset;
570a335b
HD
2888 }
2889 if (*map == SWAP_CONT_MAX) {
9b04c5fe 2890 kunmap_atomic(map);
570a335b
HD
2891 page = list_entry(page->lru.next, struct page, lru);
2892 if (page == head)
2893 return false; /* add count continuation */
9b04c5fe 2894 map = kmap_atomic(page) + offset;
570a335b
HD
2895init_map: *map = 0; /* we didn't zero the page */
2896 }
2897 *map += 1;
9b04c5fe 2898 kunmap_atomic(map);
570a335b
HD
2899 page = list_entry(page->lru.prev, struct page, lru);
2900 while (page != head) {
9b04c5fe 2901 map = kmap_atomic(page) + offset;
570a335b 2902 *map = COUNT_CONTINUED;
9b04c5fe 2903 kunmap_atomic(map);
570a335b
HD
2904 page = list_entry(page->lru.prev, struct page, lru);
2905 }
2906 return true; /* incremented */
2907
2908 } else { /* decrementing */
2909 /*
2910 * Think of how you subtract 1 from 1000
2911 */
2912 BUG_ON(count != COUNT_CONTINUED);
2913 while (*map == COUNT_CONTINUED) {
9b04c5fe 2914 kunmap_atomic(map);
570a335b
HD
2915 page = list_entry(page->lru.next, struct page, lru);
2916 BUG_ON(page == head);
9b04c5fe 2917 map = kmap_atomic(page) + offset;
570a335b
HD
2918 }
2919 BUG_ON(*map == 0);
2920 *map -= 1;
2921 if (*map == 0)
2922 count = 0;
9b04c5fe 2923 kunmap_atomic(map);
570a335b
HD
2924 page = list_entry(page->lru.prev, struct page, lru);
2925 while (page != head) {
9b04c5fe 2926 map = kmap_atomic(page) + offset;
570a335b
HD
2927 *map = SWAP_CONT_MAX | count;
2928 count = COUNT_CONTINUED;
9b04c5fe 2929 kunmap_atomic(map);
570a335b
HD
2930 page = list_entry(page->lru.prev, struct page, lru);
2931 }
2932 return count == COUNT_CONTINUED;
2933 }
2934}
2935
2936/*
2937 * free_swap_count_continuations - swapoff free all the continuation pages
2938 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2939 */
2940static void free_swap_count_continuations(struct swap_info_struct *si)
2941{
2942 pgoff_t offset;
2943
2944 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2945 struct page *head;
2946 head = vmalloc_to_page(si->swap_map + offset);
2947 if (page_private(head)) {
0d576d20
GT
2948 struct page *page, *next;
2949
2950 list_for_each_entry_safe(page, next, &head->lru, lru) {
2951 list_del(&page->lru);
570a335b
HD
2952 __free_page(page);
2953 }
2954 }
2955 }
2956}