net: add {READ|WRITE}_ONCE() annotations on ->rskq_accept_head
[linux-2.6-block.git] / mm / swapfile.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
1da177e4 9#include <linux/mm.h>
6e84f315 10#include <linux/sched/mm.h>
29930025 11#include <linux/sched/task.h>
1da177e4
LT
12#include <linux/hugetlb.h>
13#include <linux/mman.h>
14#include <linux/slab.h>
15#include <linux/kernel_stat.h>
16#include <linux/swap.h>
17#include <linux/vmalloc.h>
18#include <linux/pagemap.h>
19#include <linux/namei.h>
072441e2 20#include <linux/shmem_fs.h>
1da177e4 21#include <linux/blkdev.h>
20137a49 22#include <linux/random.h>
1da177e4
LT
23#include <linux/writeback.h>
24#include <linux/proc_fs.h>
25#include <linux/seq_file.h>
26#include <linux/init.h>
5ad64688 27#include <linux/ksm.h>
1da177e4
LT
28#include <linux/rmap.h>
29#include <linux/security.h>
30#include <linux/backing-dev.h>
fc0abb14 31#include <linux/mutex.h>
c59ede7b 32#include <linux/capability.h>
1da177e4 33#include <linux/syscalls.h>
8a9f3ccd 34#include <linux/memcontrol.h>
66d7dd51 35#include <linux/poll.h>
72788c38 36#include <linux/oom.h>
38b5faf4
DM
37#include <linux/frontswap.h>
38#include <linux/swapfile.h>
f981c595 39#include <linux/export.h>
67afa38e 40#include <linux/swap_slots.h>
155b5f88 41#include <linux/sort.h>
1da177e4
LT
42
43#include <asm/pgtable.h>
44#include <asm/tlbflush.h>
45#include <linux/swapops.h>
5d1ea48b 46#include <linux/swap_cgroup.h>
1da177e4 47
570a335b
HD
48static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49 unsigned char);
50static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 51static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 52
38b5faf4 53DEFINE_SPINLOCK(swap_lock);
7c363b8c 54static unsigned int nr_swapfiles;
ec8acf20 55atomic_long_t nr_swap_pages;
fb0fec50
CW
56/*
57 * Some modules use swappable objects and may try to swap them out under
58 * memory pressure (via the shrinker). Before doing so, they may wish to
59 * check to see if any swap space is available.
60 */
61EXPORT_SYMBOL_GPL(nr_swap_pages);
ec8acf20 62/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 63long total_swap_pages;
a2468cc9 64static int least_priority = -1;
1da177e4 65
1da177e4
LT
66static const char Bad_file[] = "Bad swap file entry ";
67static const char Unused_file[] = "Unused swap file entry ";
68static const char Bad_offset[] = "Bad swap offset entry ";
69static const char Unused_offset[] = "Unused swap offset entry ";
70
adfab836
DS
71/*
72 * all active swap_info_structs
73 * protected with swap_lock, and ordered by priority.
74 */
18ab4d4c
DS
75PLIST_HEAD(swap_active_head);
76
77/*
78 * all available (active, not full) swap_info_structs
79 * protected with swap_avail_lock, ordered by priority.
80 * This is used by get_swap_page() instead of swap_active_head
81 * because swap_active_head includes all swap_info_structs,
82 * but get_swap_page() doesn't need to look at full ones.
83 * This uses its own lock instead of swap_lock because when a
84 * swap_info_struct changes between not-full/full, it needs to
85 * add/remove itself to/from this list, but the swap_info_struct->lock
86 * is held and the locking order requires swap_lock to be taken
87 * before any swap_info_struct->lock.
88 */
bfc6b1ca 89static struct plist_head *swap_avail_heads;
18ab4d4c 90static DEFINE_SPINLOCK(swap_avail_lock);
1da177e4 91
38b5faf4 92struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 93
fc0abb14 94static DEFINE_MUTEX(swapon_mutex);
1da177e4 95
66d7dd51
KS
96static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
97/* Activity counter to indicate that a swapon or swapoff has occurred */
98static atomic_t proc_poll_event = ATOMIC_INIT(0);
99
81a0298b
HY
100atomic_t nr_rotate_swap = ATOMIC_INIT(0);
101
c10d38cc
DJ
102static struct swap_info_struct *swap_type_to_swap_info(int type)
103{
104 if (type >= READ_ONCE(nr_swapfiles))
105 return NULL;
106
107 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */
108 return READ_ONCE(swap_info[type]);
109}
110
8d69aaee 111static inline unsigned char swap_count(unsigned char ent)
355cfa73 112{
955c97f0 113 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
355cfa73
KH
114}
115
bcd49e86
HY
116/* Reclaim the swap entry anyway if possible */
117#define TTRS_ANYWAY 0x1
118/*
119 * Reclaim the swap entry if there are no more mappings of the
120 * corresponding page
121 */
122#define TTRS_UNMAPPED 0x2
123/* Reclaim the swap entry if swap is getting full*/
124#define TTRS_FULL 0x4
125
efa90a98 126/* returns 1 if swap entry is freed */
bcd49e86
HY
127static int __try_to_reclaim_swap(struct swap_info_struct *si,
128 unsigned long offset, unsigned long flags)
c9e44410 129{
efa90a98 130 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
131 struct page *page;
132 int ret = 0;
133
bcd49e86 134 page = find_get_page(swap_address_space(entry), offset);
c9e44410
KH
135 if (!page)
136 return 0;
137 /*
bcd49e86
HY
138 * When this function is called from scan_swap_map_slots() and it's
139 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
140 * here. We have to use trylock for avoiding deadlock. This is a special
c9e44410
KH
141 * case and you should use try_to_free_swap() with explicit lock_page()
142 * in usual operations.
143 */
144 if (trylock_page(page)) {
bcd49e86
HY
145 if ((flags & TTRS_ANYWAY) ||
146 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
147 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
148 ret = try_to_free_swap(page);
c9e44410
KH
149 unlock_page(page);
150 }
09cbfeaf 151 put_page(page);
c9e44410
KH
152 return ret;
153}
355cfa73 154
4efaceb1
AL
155static inline struct swap_extent *first_se(struct swap_info_struct *sis)
156{
157 struct rb_node *rb = rb_first(&sis->swap_extent_root);
158 return rb_entry(rb, struct swap_extent, rb_node);
159}
160
161static inline struct swap_extent *next_se(struct swap_extent *se)
162{
163 struct rb_node *rb = rb_next(&se->rb_node);
164 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
165}
166
6a6ba831
HD
167/*
168 * swapon tell device that all the old swap contents can be discarded,
169 * to allow the swap device to optimize its wear-levelling.
170 */
171static int discard_swap(struct swap_info_struct *si)
172{
173 struct swap_extent *se;
9625a5f2
HD
174 sector_t start_block;
175 sector_t nr_blocks;
6a6ba831
HD
176 int err = 0;
177
9625a5f2 178 /* Do not discard the swap header page! */
4efaceb1 179 se = first_se(si);
9625a5f2
HD
180 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
181 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
182 if (nr_blocks) {
183 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 184 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
185 if (err)
186 return err;
187 cond_resched();
188 }
6a6ba831 189
4efaceb1 190 for (se = next_se(se); se; se = next_se(se)) {
9625a5f2
HD
191 start_block = se->start_block << (PAGE_SHIFT - 9);
192 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
193
194 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 195 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
196 if (err)
197 break;
198
199 cond_resched();
200 }
201 return err; /* That will often be -EOPNOTSUPP */
202}
203
4efaceb1
AL
204static struct swap_extent *
205offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
206{
207 struct swap_extent *se;
208 struct rb_node *rb;
209
210 rb = sis->swap_extent_root.rb_node;
211 while (rb) {
212 se = rb_entry(rb, struct swap_extent, rb_node);
213 if (offset < se->start_page)
214 rb = rb->rb_left;
215 else if (offset >= se->start_page + se->nr_pages)
216 rb = rb->rb_right;
217 else
218 return se;
219 }
220 /* It *must* be present */
221 BUG();
222}
223
7992fde7
HD
224/*
225 * swap allocation tell device that a cluster of swap can now be discarded,
226 * to allow the swap device to optimize its wear-levelling.
227 */
228static void discard_swap_cluster(struct swap_info_struct *si,
229 pgoff_t start_page, pgoff_t nr_pages)
230{
4efaceb1 231 struct swap_extent *se = offset_to_swap_extent(si, start_page);
7992fde7
HD
232
233 while (nr_pages) {
4efaceb1
AL
234 pgoff_t offset = start_page - se->start_page;
235 sector_t start_block = se->start_block + offset;
236 sector_t nr_blocks = se->nr_pages - offset;
237
238 if (nr_blocks > nr_pages)
239 nr_blocks = nr_pages;
240 start_page += nr_blocks;
241 nr_pages -= nr_blocks;
242
243 start_block <<= PAGE_SHIFT - 9;
244 nr_blocks <<= PAGE_SHIFT - 9;
245 if (blkdev_issue_discard(si->bdev, start_block,
246 nr_blocks, GFP_NOIO, 0))
247 break;
7992fde7 248
4efaceb1 249 se = next_se(se);
7992fde7
HD
250 }
251}
252
38d8b4e6
HY
253#ifdef CONFIG_THP_SWAP
254#define SWAPFILE_CLUSTER HPAGE_PMD_NR
a448f2d0
HY
255
256#define swap_entry_size(size) (size)
38d8b4e6 257#else
048c27fd 258#define SWAPFILE_CLUSTER 256
a448f2d0
HY
259
260/*
261 * Define swap_entry_size() as constant to let compiler to optimize
262 * out some code if !CONFIG_THP_SWAP
263 */
264#define swap_entry_size(size) 1
38d8b4e6 265#endif
048c27fd
HD
266#define LATENCY_LIMIT 256
267
2a8f9449
SL
268static inline void cluster_set_flag(struct swap_cluster_info *info,
269 unsigned int flag)
270{
271 info->flags = flag;
272}
273
274static inline unsigned int cluster_count(struct swap_cluster_info *info)
275{
276 return info->data;
277}
278
279static inline void cluster_set_count(struct swap_cluster_info *info,
280 unsigned int c)
281{
282 info->data = c;
283}
284
285static inline void cluster_set_count_flag(struct swap_cluster_info *info,
286 unsigned int c, unsigned int f)
287{
288 info->flags = f;
289 info->data = c;
290}
291
292static inline unsigned int cluster_next(struct swap_cluster_info *info)
293{
294 return info->data;
295}
296
297static inline void cluster_set_next(struct swap_cluster_info *info,
298 unsigned int n)
299{
300 info->data = n;
301}
302
303static inline void cluster_set_next_flag(struct swap_cluster_info *info,
304 unsigned int n, unsigned int f)
305{
306 info->flags = f;
307 info->data = n;
308}
309
310static inline bool cluster_is_free(struct swap_cluster_info *info)
311{
312 return info->flags & CLUSTER_FLAG_FREE;
313}
314
315static inline bool cluster_is_null(struct swap_cluster_info *info)
316{
317 return info->flags & CLUSTER_FLAG_NEXT_NULL;
318}
319
320static inline void cluster_set_null(struct swap_cluster_info *info)
321{
322 info->flags = CLUSTER_FLAG_NEXT_NULL;
323 info->data = 0;
324}
325
e0709829
HY
326static inline bool cluster_is_huge(struct swap_cluster_info *info)
327{
33ee011e
HY
328 if (IS_ENABLED(CONFIG_THP_SWAP))
329 return info->flags & CLUSTER_FLAG_HUGE;
330 return false;
e0709829
HY
331}
332
333static inline void cluster_clear_huge(struct swap_cluster_info *info)
334{
335 info->flags &= ~CLUSTER_FLAG_HUGE;
336}
337
235b6217
HY
338static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
339 unsigned long offset)
340{
341 struct swap_cluster_info *ci;
342
343 ci = si->cluster_info;
344 if (ci) {
345 ci += offset / SWAPFILE_CLUSTER;
346 spin_lock(&ci->lock);
347 }
348 return ci;
349}
350
351static inline void unlock_cluster(struct swap_cluster_info *ci)
352{
353 if (ci)
354 spin_unlock(&ci->lock);
355}
356
59d98bf3
HY
357/*
358 * Determine the locking method in use for this device. Return
359 * swap_cluster_info if SSD-style cluster-based locking is in place.
360 */
235b6217 361static inline struct swap_cluster_info *lock_cluster_or_swap_info(
59d98bf3 362 struct swap_info_struct *si, unsigned long offset)
235b6217
HY
363{
364 struct swap_cluster_info *ci;
365
59d98bf3 366 /* Try to use fine-grained SSD-style locking if available: */
235b6217 367 ci = lock_cluster(si, offset);
59d98bf3 368 /* Otherwise, fall back to traditional, coarse locking: */
235b6217
HY
369 if (!ci)
370 spin_lock(&si->lock);
371
372 return ci;
373}
374
375static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
376 struct swap_cluster_info *ci)
377{
378 if (ci)
379 unlock_cluster(ci);
380 else
381 spin_unlock(&si->lock);
382}
383
6b534915
HY
384static inline bool cluster_list_empty(struct swap_cluster_list *list)
385{
386 return cluster_is_null(&list->head);
387}
388
389static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
390{
391 return cluster_next(&list->head);
392}
393
394static void cluster_list_init(struct swap_cluster_list *list)
395{
396 cluster_set_null(&list->head);
397 cluster_set_null(&list->tail);
398}
399
400static void cluster_list_add_tail(struct swap_cluster_list *list,
401 struct swap_cluster_info *ci,
402 unsigned int idx)
403{
404 if (cluster_list_empty(list)) {
405 cluster_set_next_flag(&list->head, idx, 0);
406 cluster_set_next_flag(&list->tail, idx, 0);
407 } else {
235b6217 408 struct swap_cluster_info *ci_tail;
6b534915
HY
409 unsigned int tail = cluster_next(&list->tail);
410
235b6217
HY
411 /*
412 * Nested cluster lock, but both cluster locks are
413 * only acquired when we held swap_info_struct->lock
414 */
415 ci_tail = ci + tail;
416 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
417 cluster_set_next(ci_tail, idx);
0ef017d1 418 spin_unlock(&ci_tail->lock);
6b534915
HY
419 cluster_set_next_flag(&list->tail, idx, 0);
420 }
421}
422
423static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
424 struct swap_cluster_info *ci)
425{
426 unsigned int idx;
427
428 idx = cluster_next(&list->head);
429 if (cluster_next(&list->tail) == idx) {
430 cluster_set_null(&list->head);
431 cluster_set_null(&list->tail);
432 } else
433 cluster_set_next_flag(&list->head,
434 cluster_next(&ci[idx]), 0);
435
436 return idx;
437}
438
815c2c54
SL
439/* Add a cluster to discard list and schedule it to do discard */
440static void swap_cluster_schedule_discard(struct swap_info_struct *si,
441 unsigned int idx)
442{
443 /*
444 * If scan_swap_map() can't find a free cluster, it will check
445 * si->swap_map directly. To make sure the discarding cluster isn't
446 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
447 * will be cleared after discard
448 */
449 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
450 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
451
6b534915 452 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
815c2c54
SL
453
454 schedule_work(&si->discard_work);
455}
456
38d8b4e6
HY
457static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
458{
459 struct swap_cluster_info *ci = si->cluster_info;
460
461 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
462 cluster_list_add_tail(&si->free_clusters, ci, idx);
463}
464
815c2c54
SL
465/*
466 * Doing discard actually. After a cluster discard is finished, the cluster
467 * will be added to free cluster list. caller should hold si->lock.
468*/
469static void swap_do_scheduled_discard(struct swap_info_struct *si)
470{
235b6217 471 struct swap_cluster_info *info, *ci;
815c2c54
SL
472 unsigned int idx;
473
474 info = si->cluster_info;
475
6b534915
HY
476 while (!cluster_list_empty(&si->discard_clusters)) {
477 idx = cluster_list_del_first(&si->discard_clusters, info);
815c2c54
SL
478 spin_unlock(&si->lock);
479
480 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
481 SWAPFILE_CLUSTER);
482
483 spin_lock(&si->lock);
235b6217 484 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
38d8b4e6 485 __free_cluster(si, idx);
815c2c54
SL
486 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
487 0, SWAPFILE_CLUSTER);
235b6217 488 unlock_cluster(ci);
815c2c54
SL
489 }
490}
491
492static void swap_discard_work(struct work_struct *work)
493{
494 struct swap_info_struct *si;
495
496 si = container_of(work, struct swap_info_struct, discard_work);
497
498 spin_lock(&si->lock);
499 swap_do_scheduled_discard(si);
500 spin_unlock(&si->lock);
501}
502
38d8b4e6
HY
503static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
504{
505 struct swap_cluster_info *ci = si->cluster_info;
506
507 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
508 cluster_list_del_first(&si->free_clusters, ci);
509 cluster_set_count_flag(ci + idx, 0, 0);
510}
511
512static void free_cluster(struct swap_info_struct *si, unsigned long idx)
513{
514 struct swap_cluster_info *ci = si->cluster_info + idx;
515
516 VM_BUG_ON(cluster_count(ci) != 0);
517 /*
518 * If the swap is discardable, prepare discard the cluster
519 * instead of free it immediately. The cluster will be freed
520 * after discard.
521 */
522 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
523 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
524 swap_cluster_schedule_discard(si, idx);
525 return;
526 }
527
528 __free_cluster(si, idx);
529}
530
2a8f9449
SL
531/*
532 * The cluster corresponding to page_nr will be used. The cluster will be
533 * removed from free cluster list and its usage counter will be increased.
534 */
535static void inc_cluster_info_page(struct swap_info_struct *p,
536 struct swap_cluster_info *cluster_info, unsigned long page_nr)
537{
538 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
539
540 if (!cluster_info)
541 return;
38d8b4e6
HY
542 if (cluster_is_free(&cluster_info[idx]))
543 alloc_cluster(p, idx);
2a8f9449
SL
544
545 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
546 cluster_set_count(&cluster_info[idx],
547 cluster_count(&cluster_info[idx]) + 1);
548}
549
550/*
551 * The cluster corresponding to page_nr decreases one usage. If the usage
552 * counter becomes 0, which means no page in the cluster is in using, we can
553 * optionally discard the cluster and add it to free cluster list.
554 */
555static void dec_cluster_info_page(struct swap_info_struct *p,
556 struct swap_cluster_info *cluster_info, unsigned long page_nr)
557{
558 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
559
560 if (!cluster_info)
561 return;
562
563 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
564 cluster_set_count(&cluster_info[idx],
565 cluster_count(&cluster_info[idx]) - 1);
566
38d8b4e6
HY
567 if (cluster_count(&cluster_info[idx]) == 0)
568 free_cluster(p, idx);
2a8f9449
SL
569}
570
571/*
572 * It's possible scan_swap_map() uses a free cluster in the middle of free
573 * cluster list. Avoiding such abuse to avoid list corruption.
574 */
ebc2a1a6
SL
575static bool
576scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
2a8f9449
SL
577 unsigned long offset)
578{
ebc2a1a6
SL
579 struct percpu_cluster *percpu_cluster;
580 bool conflict;
581
2a8f9449 582 offset /= SWAPFILE_CLUSTER;
6b534915
HY
583 conflict = !cluster_list_empty(&si->free_clusters) &&
584 offset != cluster_list_first(&si->free_clusters) &&
2a8f9449 585 cluster_is_free(&si->cluster_info[offset]);
ebc2a1a6
SL
586
587 if (!conflict)
588 return false;
589
590 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
591 cluster_set_null(&percpu_cluster->index);
592 return true;
593}
594
595/*
596 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
597 * might involve allocating a new cluster for current CPU too.
598 */
36005bae 599static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
ebc2a1a6
SL
600 unsigned long *offset, unsigned long *scan_base)
601{
602 struct percpu_cluster *cluster;
235b6217 603 struct swap_cluster_info *ci;
ebc2a1a6 604 bool found_free;
235b6217 605 unsigned long tmp, max;
ebc2a1a6
SL
606
607new_cluster:
608 cluster = this_cpu_ptr(si->percpu_cluster);
609 if (cluster_is_null(&cluster->index)) {
6b534915
HY
610 if (!cluster_list_empty(&si->free_clusters)) {
611 cluster->index = si->free_clusters.head;
ebc2a1a6
SL
612 cluster->next = cluster_next(&cluster->index) *
613 SWAPFILE_CLUSTER;
6b534915 614 } else if (!cluster_list_empty(&si->discard_clusters)) {
ebc2a1a6
SL
615 /*
616 * we don't have free cluster but have some clusters in
617 * discarding, do discard now and reclaim them
618 */
619 swap_do_scheduled_discard(si);
620 *scan_base = *offset = si->cluster_next;
621 goto new_cluster;
622 } else
36005bae 623 return false;
ebc2a1a6
SL
624 }
625
626 found_free = false;
627
628 /*
629 * Other CPUs can use our cluster if they can't find a free cluster,
630 * check if there is still free entry in the cluster
631 */
632 tmp = cluster->next;
235b6217
HY
633 max = min_t(unsigned long, si->max,
634 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
635 if (tmp >= max) {
636 cluster_set_null(&cluster->index);
637 goto new_cluster;
638 }
639 ci = lock_cluster(si, tmp);
640 while (tmp < max) {
ebc2a1a6
SL
641 if (!si->swap_map[tmp]) {
642 found_free = true;
643 break;
644 }
645 tmp++;
646 }
235b6217 647 unlock_cluster(ci);
ebc2a1a6
SL
648 if (!found_free) {
649 cluster_set_null(&cluster->index);
650 goto new_cluster;
651 }
652 cluster->next = tmp + 1;
653 *offset = tmp;
654 *scan_base = tmp;
36005bae 655 return found_free;
2a8f9449
SL
656}
657
a2468cc9
AL
658static void __del_from_avail_list(struct swap_info_struct *p)
659{
660 int nid;
661
662 for_each_node(nid)
663 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
664}
665
666static void del_from_avail_list(struct swap_info_struct *p)
667{
668 spin_lock(&swap_avail_lock);
669 __del_from_avail_list(p);
670 spin_unlock(&swap_avail_lock);
671}
672
38d8b4e6
HY
673static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
674 unsigned int nr_entries)
675{
676 unsigned int end = offset + nr_entries - 1;
677
678 if (offset == si->lowest_bit)
679 si->lowest_bit += nr_entries;
680 if (end == si->highest_bit)
681 si->highest_bit -= nr_entries;
682 si->inuse_pages += nr_entries;
683 if (si->inuse_pages == si->pages) {
684 si->lowest_bit = si->max;
685 si->highest_bit = 0;
a2468cc9 686 del_from_avail_list(si);
38d8b4e6
HY
687 }
688}
689
a2468cc9
AL
690static void add_to_avail_list(struct swap_info_struct *p)
691{
692 int nid;
693
694 spin_lock(&swap_avail_lock);
695 for_each_node(nid) {
696 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
697 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
698 }
699 spin_unlock(&swap_avail_lock);
700}
701
38d8b4e6
HY
702static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
703 unsigned int nr_entries)
704{
705 unsigned long end = offset + nr_entries - 1;
706 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
707
708 if (offset < si->lowest_bit)
709 si->lowest_bit = offset;
710 if (end > si->highest_bit) {
711 bool was_full = !si->highest_bit;
712
713 si->highest_bit = end;
a2468cc9
AL
714 if (was_full && (si->flags & SWP_WRITEOK))
715 add_to_avail_list(si);
38d8b4e6
HY
716 }
717 atomic_long_add(nr_entries, &nr_swap_pages);
718 si->inuse_pages -= nr_entries;
719 if (si->flags & SWP_BLKDEV)
720 swap_slot_free_notify =
721 si->bdev->bd_disk->fops->swap_slot_free_notify;
722 else
723 swap_slot_free_notify = NULL;
724 while (offset <= end) {
725 frontswap_invalidate_page(si->type, offset);
726 if (swap_slot_free_notify)
727 swap_slot_free_notify(si->bdev, offset);
728 offset++;
729 }
730}
731
36005bae
TC
732static int scan_swap_map_slots(struct swap_info_struct *si,
733 unsigned char usage, int nr,
734 swp_entry_t slots[])
1da177e4 735{
235b6217 736 struct swap_cluster_info *ci;
ebebbbe9 737 unsigned long offset;
c60aa176 738 unsigned long scan_base;
7992fde7 739 unsigned long last_in_cluster = 0;
048c27fd 740 int latency_ration = LATENCY_LIMIT;
36005bae
TC
741 int n_ret = 0;
742
743 if (nr > SWAP_BATCH)
744 nr = SWAP_BATCH;
7dfad418 745
886bb7e9 746 /*
7dfad418
HD
747 * We try to cluster swap pages by allocating them sequentially
748 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
749 * way, however, we resort to first-free allocation, starting
750 * a new cluster. This prevents us from scattering swap pages
751 * all over the entire swap partition, so that we reduce
752 * overall disk seek times between swap pages. -- sct
753 * But we do now try to find an empty cluster. -Andrea
c60aa176 754 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
755 */
756
52b7efdb 757 si->flags += SWP_SCANNING;
c60aa176 758 scan_base = offset = si->cluster_next;
ebebbbe9 759
ebc2a1a6
SL
760 /* SSD algorithm */
761 if (si->cluster_info) {
36005bae
TC
762 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
763 goto checks;
764 else
765 goto scan;
ebc2a1a6
SL
766 }
767
ebebbbe9
HD
768 if (unlikely(!si->cluster_nr--)) {
769 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
770 si->cluster_nr = SWAPFILE_CLUSTER - 1;
771 goto checks;
772 }
2a8f9449 773
ec8acf20 774 spin_unlock(&si->lock);
7dfad418 775
c60aa176
HD
776 /*
777 * If seek is expensive, start searching for new cluster from
778 * start of partition, to minimize the span of allocated swap.
50088c44
CY
779 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
780 * case, just handled by scan_swap_map_try_ssd_cluster() above.
c60aa176 781 */
50088c44 782 scan_base = offset = si->lowest_bit;
7dfad418
HD
783 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
784
785 /* Locate the first empty (unaligned) cluster */
786 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 787 if (si->swap_map[offset])
7dfad418
HD
788 last_in_cluster = offset + SWAPFILE_CLUSTER;
789 else if (offset == last_in_cluster) {
ec8acf20 790 spin_lock(&si->lock);
ebebbbe9
HD
791 offset -= SWAPFILE_CLUSTER - 1;
792 si->cluster_next = offset;
793 si->cluster_nr = SWAPFILE_CLUSTER - 1;
c60aa176
HD
794 goto checks;
795 }
796 if (unlikely(--latency_ration < 0)) {
797 cond_resched();
798 latency_ration = LATENCY_LIMIT;
799 }
800 }
801
802 offset = scan_base;
ec8acf20 803 spin_lock(&si->lock);
ebebbbe9 804 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1da177e4 805 }
7dfad418 806
ebebbbe9 807checks:
ebc2a1a6 808 if (si->cluster_info) {
36005bae
TC
809 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
810 /* take a break if we already got some slots */
811 if (n_ret)
812 goto done;
813 if (!scan_swap_map_try_ssd_cluster(si, &offset,
814 &scan_base))
815 goto scan;
816 }
ebc2a1a6 817 }
ebebbbe9 818 if (!(si->flags & SWP_WRITEOK))
52b7efdb 819 goto no_page;
7dfad418
HD
820 if (!si->highest_bit)
821 goto no_page;
ebebbbe9 822 if (offset > si->highest_bit)
c60aa176 823 scan_base = offset = si->lowest_bit;
c9e44410 824
235b6217 825 ci = lock_cluster(si, offset);
b73d7fce
HD
826 /* reuse swap entry of cache-only swap if not busy. */
827 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 828 int swap_was_freed;
235b6217 829 unlock_cluster(ci);
ec8acf20 830 spin_unlock(&si->lock);
bcd49e86 831 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
ec8acf20 832 spin_lock(&si->lock);
c9e44410
KH
833 /* entry was freed successfully, try to use this again */
834 if (swap_was_freed)
835 goto checks;
836 goto scan; /* check next one */
837 }
838
235b6217
HY
839 if (si->swap_map[offset]) {
840 unlock_cluster(ci);
36005bae
TC
841 if (!n_ret)
842 goto scan;
843 else
844 goto done;
235b6217 845 }
2872bb2d
HY
846 si->swap_map[offset] = usage;
847 inc_cluster_info_page(si, si->cluster_info, offset);
848 unlock_cluster(ci);
ebebbbe9 849
38d8b4e6 850 swap_range_alloc(si, offset, 1);
ebebbbe9 851 si->cluster_next = offset + 1;
36005bae
TC
852 slots[n_ret++] = swp_entry(si->type, offset);
853
854 /* got enough slots or reach max slots? */
855 if ((n_ret == nr) || (offset >= si->highest_bit))
856 goto done;
857
858 /* search for next available slot */
859
860 /* time to take a break? */
861 if (unlikely(--latency_ration < 0)) {
862 if (n_ret)
863 goto done;
864 spin_unlock(&si->lock);
865 cond_resched();
866 spin_lock(&si->lock);
867 latency_ration = LATENCY_LIMIT;
868 }
869
870 /* try to get more slots in cluster */
871 if (si->cluster_info) {
872 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
873 goto checks;
874 else
875 goto done;
876 }
877 /* non-ssd case */
878 ++offset;
879
880 /* non-ssd case, still more slots in cluster? */
881 if (si->cluster_nr && !si->swap_map[offset]) {
882 --si->cluster_nr;
883 goto checks;
884 }
7992fde7 885
36005bae
TC
886done:
887 si->flags -= SWP_SCANNING;
888 return n_ret;
7dfad418 889
ebebbbe9 890scan:
ec8acf20 891 spin_unlock(&si->lock);
7dfad418 892 while (++offset <= si->highest_bit) {
52b7efdb 893 if (!si->swap_map[offset]) {
ec8acf20 894 spin_lock(&si->lock);
52b7efdb
HD
895 goto checks;
896 }
c9e44410 897 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 898 spin_lock(&si->lock);
c9e44410
KH
899 goto checks;
900 }
048c27fd
HD
901 if (unlikely(--latency_ration < 0)) {
902 cond_resched();
903 latency_ration = LATENCY_LIMIT;
904 }
7dfad418 905 }
c60aa176 906 offset = si->lowest_bit;
a5998061 907 while (offset < scan_base) {
c60aa176 908 if (!si->swap_map[offset]) {
ec8acf20 909 spin_lock(&si->lock);
c60aa176
HD
910 goto checks;
911 }
c9e44410 912 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 913 spin_lock(&si->lock);
c9e44410
KH
914 goto checks;
915 }
c60aa176
HD
916 if (unlikely(--latency_ration < 0)) {
917 cond_resched();
918 latency_ration = LATENCY_LIMIT;
919 }
a5998061 920 offset++;
c60aa176 921 }
ec8acf20 922 spin_lock(&si->lock);
7dfad418
HD
923
924no_page:
52b7efdb 925 si->flags -= SWP_SCANNING;
36005bae 926 return n_ret;
1da177e4
LT
927}
928
38d8b4e6
HY
929static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
930{
931 unsigned long idx;
932 struct swap_cluster_info *ci;
933 unsigned long offset, i;
934 unsigned char *map;
935
fe5266d5
HY
936 /*
937 * Should not even be attempting cluster allocations when huge
938 * page swap is disabled. Warn and fail the allocation.
939 */
940 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
941 VM_WARN_ON_ONCE(1);
942 return 0;
943 }
944
38d8b4e6
HY
945 if (cluster_list_empty(&si->free_clusters))
946 return 0;
947
948 idx = cluster_list_first(&si->free_clusters);
949 offset = idx * SWAPFILE_CLUSTER;
950 ci = lock_cluster(si, offset);
951 alloc_cluster(si, idx);
e0709829 952 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
38d8b4e6
HY
953
954 map = si->swap_map + offset;
955 for (i = 0; i < SWAPFILE_CLUSTER; i++)
956 map[i] = SWAP_HAS_CACHE;
957 unlock_cluster(ci);
958 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
959 *slot = swp_entry(si->type, offset);
960
961 return 1;
962}
963
964static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
965{
966 unsigned long offset = idx * SWAPFILE_CLUSTER;
967 struct swap_cluster_info *ci;
968
969 ci = lock_cluster(si, offset);
979aafa5 970 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
38d8b4e6
HY
971 cluster_set_count_flag(ci, 0, 0);
972 free_cluster(si, idx);
973 unlock_cluster(ci);
974 swap_range_free(si, offset, SWAPFILE_CLUSTER);
975}
38d8b4e6 976
36005bae
TC
977static unsigned long scan_swap_map(struct swap_info_struct *si,
978 unsigned char usage)
979{
980 swp_entry_t entry;
981 int n_ret;
982
983 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
984
985 if (n_ret)
986 return swp_offset(entry);
987 else
988 return 0;
989
990}
991
5d5e8f19 992int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1da177e4 993{
5d5e8f19 994 unsigned long size = swap_entry_size(entry_size);
adfab836 995 struct swap_info_struct *si, *next;
36005bae
TC
996 long avail_pgs;
997 int n_ret = 0;
a2468cc9 998 int node;
1da177e4 999
38d8b4e6 1000 /* Only single cluster request supported */
5d5e8f19 1001 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
38d8b4e6 1002
5d5e8f19 1003 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
36005bae 1004 if (avail_pgs <= 0)
fb4f88dc 1005 goto noswap;
36005bae
TC
1006
1007 if (n_goal > SWAP_BATCH)
1008 n_goal = SWAP_BATCH;
1009
1010 if (n_goal > avail_pgs)
1011 n_goal = avail_pgs;
1012
5d5e8f19 1013 atomic_long_sub(n_goal * size, &nr_swap_pages);
fb4f88dc 1014
18ab4d4c
DS
1015 spin_lock(&swap_avail_lock);
1016
1017start_over:
a2468cc9
AL
1018 node = numa_node_id();
1019 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
18ab4d4c 1020 /* requeue si to after same-priority siblings */
a2468cc9 1021 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
18ab4d4c 1022 spin_unlock(&swap_avail_lock);
ec8acf20 1023 spin_lock(&si->lock);
adfab836 1024 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
18ab4d4c 1025 spin_lock(&swap_avail_lock);
a2468cc9 1026 if (plist_node_empty(&si->avail_lists[node])) {
18ab4d4c
DS
1027 spin_unlock(&si->lock);
1028 goto nextsi;
1029 }
1030 WARN(!si->highest_bit,
1031 "swap_info %d in list but !highest_bit\n",
1032 si->type);
1033 WARN(!(si->flags & SWP_WRITEOK),
1034 "swap_info %d in list but !SWP_WRITEOK\n",
1035 si->type);
a2468cc9 1036 __del_from_avail_list(si);
ec8acf20 1037 spin_unlock(&si->lock);
18ab4d4c 1038 goto nextsi;
ec8acf20 1039 }
5d5e8f19 1040 if (size == SWAPFILE_CLUSTER) {
bc4ae27d 1041 if (!(si->flags & SWP_FS))
f0eea189
HY
1042 n_ret = swap_alloc_cluster(si, swp_entries);
1043 } else
38d8b4e6
HY
1044 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1045 n_goal, swp_entries);
ec8acf20 1046 spin_unlock(&si->lock);
5d5e8f19 1047 if (n_ret || size == SWAPFILE_CLUSTER)
36005bae 1048 goto check_out;
18ab4d4c 1049 pr_debug("scan_swap_map of si %d failed to find offset\n",
36005bae
TC
1050 si->type);
1051
18ab4d4c
DS
1052 spin_lock(&swap_avail_lock);
1053nextsi:
adfab836
DS
1054 /*
1055 * if we got here, it's likely that si was almost full before,
1056 * and since scan_swap_map() can drop the si->lock, multiple
1057 * callers probably all tried to get a page from the same si
18ab4d4c
DS
1058 * and it filled up before we could get one; or, the si filled
1059 * up between us dropping swap_avail_lock and taking si->lock.
1060 * Since we dropped the swap_avail_lock, the swap_avail_head
1061 * list may have been modified; so if next is still in the
36005bae
TC
1062 * swap_avail_head list then try it, otherwise start over
1063 * if we have not gotten any slots.
adfab836 1064 */
a2468cc9 1065 if (plist_node_empty(&next->avail_lists[node]))
18ab4d4c 1066 goto start_over;
1da177e4 1067 }
fb4f88dc 1068
18ab4d4c
DS
1069 spin_unlock(&swap_avail_lock);
1070
36005bae
TC
1071check_out:
1072 if (n_ret < n_goal)
5d5e8f19 1073 atomic_long_add((long)(n_goal - n_ret) * size,
38d8b4e6 1074 &nr_swap_pages);
fb4f88dc 1075noswap:
36005bae
TC
1076 return n_ret;
1077}
1078
2de1a7e4 1079/* The only caller of this function is now suspend routine */
910321ea
HD
1080swp_entry_t get_swap_page_of_type(int type)
1081{
c10d38cc 1082 struct swap_info_struct *si = swap_type_to_swap_info(type);
910321ea
HD
1083 pgoff_t offset;
1084
c10d38cc
DJ
1085 if (!si)
1086 goto fail;
1087
ec8acf20 1088 spin_lock(&si->lock);
c10d38cc 1089 if (si->flags & SWP_WRITEOK) {
ec8acf20 1090 atomic_long_dec(&nr_swap_pages);
910321ea
HD
1091 /* This is called for allocating swap entry, not cache */
1092 offset = scan_swap_map(si, 1);
1093 if (offset) {
ec8acf20 1094 spin_unlock(&si->lock);
910321ea
HD
1095 return swp_entry(type, offset);
1096 }
ec8acf20 1097 atomic_long_inc(&nr_swap_pages);
910321ea 1098 }
ec8acf20 1099 spin_unlock(&si->lock);
c10d38cc 1100fail:
910321ea
HD
1101 return (swp_entry_t) {0};
1102}
1103
e8c26ab6 1104static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1da177e4 1105{
73c34b6a 1106 struct swap_info_struct *p;
eb085574 1107 unsigned long offset;
1da177e4
LT
1108
1109 if (!entry.val)
1110 goto out;
eb085574 1111 p = swp_swap_info(entry);
c10d38cc 1112 if (!p)
1da177e4 1113 goto bad_nofile;
1da177e4
LT
1114 if (!(p->flags & SWP_USED))
1115 goto bad_device;
1116 offset = swp_offset(entry);
1117 if (offset >= p->max)
1118 goto bad_offset;
1da177e4
LT
1119 return p;
1120
1da177e4 1121bad_offset:
6a991fc7 1122 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1da177e4
LT
1123 goto out;
1124bad_device:
6a991fc7 1125 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1da177e4
LT
1126 goto out;
1127bad_nofile:
6a991fc7 1128 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
1129out:
1130 return NULL;
886bb7e9 1131}
1da177e4 1132
e8c26ab6
TC
1133static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1134{
1135 struct swap_info_struct *p;
1136
1137 p = __swap_info_get(entry);
1138 if (!p)
1139 goto out;
1140 if (!p->swap_map[swp_offset(entry)])
1141 goto bad_free;
1142 return p;
1143
1144bad_free:
1145 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1146 goto out;
1147out:
1148 return NULL;
1149}
1150
235b6217
HY
1151static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1152{
1153 struct swap_info_struct *p;
1154
1155 p = _swap_info_get(entry);
1156 if (p)
1157 spin_lock(&p->lock);
1158 return p;
1159}
1160
7c00bafe
TC
1161static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1162 struct swap_info_struct *q)
1163{
1164 struct swap_info_struct *p;
1165
1166 p = _swap_info_get(entry);
1167
1168 if (p != q) {
1169 if (q != NULL)
1170 spin_unlock(&q->lock);
1171 if (p != NULL)
1172 spin_lock(&p->lock);
1173 }
1174 return p;
1175}
1176
b32d5f32
HY
1177static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1178 unsigned long offset,
1179 unsigned char usage)
1da177e4 1180{
8d69aaee
HD
1181 unsigned char count;
1182 unsigned char has_cache;
235b6217 1183
253d553b 1184 count = p->swap_map[offset];
235b6217 1185
253d553b
HD
1186 has_cache = count & SWAP_HAS_CACHE;
1187 count &= ~SWAP_HAS_CACHE;
355cfa73 1188
253d553b 1189 if (usage == SWAP_HAS_CACHE) {
355cfa73 1190 VM_BUG_ON(!has_cache);
253d553b 1191 has_cache = 0;
aaa46865
HD
1192 } else if (count == SWAP_MAP_SHMEM) {
1193 /*
1194 * Or we could insist on shmem.c using a special
1195 * swap_shmem_free() and free_shmem_swap_and_cache()...
1196 */
1197 count = 0;
570a335b
HD
1198 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1199 if (count == COUNT_CONTINUED) {
1200 if (swap_count_continued(p, offset, count))
1201 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1202 else
1203 count = SWAP_MAP_MAX;
1204 } else
1205 count--;
1206 }
253d553b 1207
253d553b 1208 usage = count | has_cache;
7c00bafe
TC
1209 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1210
b32d5f32
HY
1211 return usage;
1212}
1213
eb085574
HY
1214/*
1215 * Check whether swap entry is valid in the swap device. If so,
1216 * return pointer to swap_info_struct, and keep the swap entry valid
1217 * via preventing the swap device from being swapoff, until
1218 * put_swap_device() is called. Otherwise return NULL.
1219 *
1220 * The entirety of the RCU read critical section must come before the
1221 * return from or after the call to synchronize_rcu() in
1222 * enable_swap_info() or swapoff(). So if "si->flags & SWP_VALID" is
1223 * true, the si->map, si->cluster_info, etc. must be valid in the
1224 * critical section.
1225 *
1226 * Notice that swapoff or swapoff+swapon can still happen before the
1227 * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1228 * in put_swap_device() if there isn't any other way to prevent
1229 * swapoff, such as page lock, page table lock, etc. The caller must
1230 * be prepared for that. For example, the following situation is
1231 * possible.
1232 *
1233 * CPU1 CPU2
1234 * do_swap_page()
1235 * ... swapoff+swapon
1236 * __read_swap_cache_async()
1237 * swapcache_prepare()
1238 * __swap_duplicate()
1239 * // check swap_map
1240 * // verify PTE not changed
1241 *
1242 * In __swap_duplicate(), the swap_map need to be checked before
1243 * changing partly because the specified swap entry may be for another
1244 * swap device which has been swapoff. And in do_swap_page(), after
1245 * the page is read from the swap device, the PTE is verified not
1246 * changed with the page table locked to check whether the swap device
1247 * has been swapoff or swapoff+swapon.
1248 */
1249struct swap_info_struct *get_swap_device(swp_entry_t entry)
1250{
1251 struct swap_info_struct *si;
1252 unsigned long offset;
1253
1254 if (!entry.val)
1255 goto out;
1256 si = swp_swap_info(entry);
1257 if (!si)
1258 goto bad_nofile;
1259
1260 rcu_read_lock();
1261 if (!(si->flags & SWP_VALID))
1262 goto unlock_out;
1263 offset = swp_offset(entry);
1264 if (offset >= si->max)
1265 goto unlock_out;
1266
1267 return si;
1268bad_nofile:
1269 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1270out:
1271 return NULL;
1272unlock_out:
1273 rcu_read_unlock();
1274 return NULL;
1275}
1276
b32d5f32
HY
1277static unsigned char __swap_entry_free(struct swap_info_struct *p,
1278 swp_entry_t entry, unsigned char usage)
1279{
1280 struct swap_cluster_info *ci;
1281 unsigned long offset = swp_offset(entry);
1282
1283 ci = lock_cluster_or_swap_info(p, offset);
1284 usage = __swap_entry_free_locked(p, offset, usage);
7c00bafe 1285 unlock_cluster_or_swap_info(p, ci);
10e364da
HY
1286 if (!usage)
1287 free_swap_slot(entry);
7c00bafe
TC
1288
1289 return usage;
1290}
355cfa73 1291
7c00bafe
TC
1292static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1293{
1294 struct swap_cluster_info *ci;
1295 unsigned long offset = swp_offset(entry);
1296 unsigned char count;
1297
1298 ci = lock_cluster(p, offset);
1299 count = p->swap_map[offset];
1300 VM_BUG_ON(count != SWAP_HAS_CACHE);
1301 p->swap_map[offset] = 0;
1302 dec_cluster_info_page(p, p->cluster_info, offset);
235b6217
HY
1303 unlock_cluster(ci);
1304
38d8b4e6
HY
1305 mem_cgroup_uncharge_swap(entry, 1);
1306 swap_range_free(p, offset, 1);
1da177e4
LT
1307}
1308
1309/*
2de1a7e4 1310 * Caller has made sure that the swap device corresponding to entry
1da177e4
LT
1311 * is still around or has not been recycled.
1312 */
1313void swap_free(swp_entry_t entry)
1314{
73c34b6a 1315 struct swap_info_struct *p;
1da177e4 1316
235b6217 1317 p = _swap_info_get(entry);
10e364da
HY
1318 if (p)
1319 __swap_entry_free(p, entry, 1);
1da177e4
LT
1320}
1321
cb4b86ba
KH
1322/*
1323 * Called after dropping swapcache to decrease refcnt to swap entries.
1324 */
a448f2d0 1325void put_swap_page(struct page *page, swp_entry_t entry)
38d8b4e6
HY
1326{
1327 unsigned long offset = swp_offset(entry);
1328 unsigned long idx = offset / SWAPFILE_CLUSTER;
1329 struct swap_cluster_info *ci;
1330 struct swap_info_struct *si;
1331 unsigned char *map;
a3aea839
HY
1332 unsigned int i, free_entries = 0;
1333 unsigned char val;
a448f2d0 1334 int size = swap_entry_size(hpage_nr_pages(page));
fe5266d5 1335
a3aea839 1336 si = _swap_info_get(entry);
38d8b4e6
HY
1337 if (!si)
1338 return;
1339
c2343d27 1340 ci = lock_cluster_or_swap_info(si, offset);
a448f2d0 1341 if (size == SWAPFILE_CLUSTER) {
a448f2d0
HY
1342 VM_BUG_ON(!cluster_is_huge(ci));
1343 map = si->swap_map + offset;
1344 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1345 val = map[i];
1346 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1347 if (val == SWAP_HAS_CACHE)
1348 free_entries++;
1349 }
a448f2d0 1350 cluster_clear_huge(ci);
a448f2d0 1351 if (free_entries == SWAPFILE_CLUSTER) {
c2343d27 1352 unlock_cluster_or_swap_info(si, ci);
a448f2d0 1353 spin_lock(&si->lock);
a448f2d0
HY
1354 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1355 swap_free_cluster(si, idx);
1356 spin_unlock(&si->lock);
1357 return;
1358 }
1359 }
c2343d27
HY
1360 for (i = 0; i < size; i++, entry.val++) {
1361 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1362 unlock_cluster_or_swap_info(si, ci);
1363 free_swap_slot(entry);
1364 if (i == size - 1)
1365 return;
1366 lock_cluster_or_swap_info(si, offset);
a3aea839
HY
1367 }
1368 }
c2343d27 1369 unlock_cluster_or_swap_info(si, ci);
38d8b4e6 1370}
59807685 1371
fe5266d5 1372#ifdef CONFIG_THP_SWAP
59807685
HY
1373int split_swap_cluster(swp_entry_t entry)
1374{
1375 struct swap_info_struct *si;
1376 struct swap_cluster_info *ci;
1377 unsigned long offset = swp_offset(entry);
1378
1379 si = _swap_info_get(entry);
1380 if (!si)
1381 return -EBUSY;
1382 ci = lock_cluster(si, offset);
1383 cluster_clear_huge(ci);
1384 unlock_cluster(ci);
1385 return 0;
1386}
fe5266d5 1387#endif
38d8b4e6 1388
155b5f88
HY
1389static int swp_entry_cmp(const void *ent1, const void *ent2)
1390{
1391 const swp_entry_t *e1 = ent1, *e2 = ent2;
1392
1393 return (int)swp_type(*e1) - (int)swp_type(*e2);
1394}
1395
7c00bafe
TC
1396void swapcache_free_entries(swp_entry_t *entries, int n)
1397{
1398 struct swap_info_struct *p, *prev;
1399 int i;
1400
1401 if (n <= 0)
1402 return;
1403
1404 prev = NULL;
1405 p = NULL;
155b5f88
HY
1406
1407 /*
1408 * Sort swap entries by swap device, so each lock is only taken once.
1409 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1410 * so low that it isn't necessary to optimize further.
1411 */
1412 if (nr_swapfiles > 1)
1413 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
7c00bafe
TC
1414 for (i = 0; i < n; ++i) {
1415 p = swap_info_get_cont(entries[i], prev);
1416 if (p)
1417 swap_entry_free(p, entries[i]);
7c00bafe
TC
1418 prev = p;
1419 }
235b6217 1420 if (p)
7c00bafe 1421 spin_unlock(&p->lock);
cb4b86ba
KH
1422}
1423
1da177e4 1424/*
c475a8ab 1425 * How many references to page are currently swapped out?
570a335b
HD
1426 * This does not give an exact answer when swap count is continued,
1427 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 1428 */
bde05d1c 1429int page_swapcount(struct page *page)
1da177e4 1430{
c475a8ab
HD
1431 int count = 0;
1432 struct swap_info_struct *p;
235b6217 1433 struct swap_cluster_info *ci;
1da177e4 1434 swp_entry_t entry;
235b6217 1435 unsigned long offset;
1da177e4 1436
4c21e2f2 1437 entry.val = page_private(page);
235b6217 1438 p = _swap_info_get(entry);
1da177e4 1439 if (p) {
235b6217
HY
1440 offset = swp_offset(entry);
1441 ci = lock_cluster_or_swap_info(p, offset);
1442 count = swap_count(p->swap_map[offset]);
1443 unlock_cluster_or_swap_info(p, ci);
1da177e4 1444 }
c475a8ab 1445 return count;
1da177e4
LT
1446}
1447
eb085574 1448int __swap_count(swp_entry_t entry)
aa8d22a1 1449{
eb085574 1450 struct swap_info_struct *si;
aa8d22a1 1451 pgoff_t offset = swp_offset(entry);
eb085574 1452 int count = 0;
aa8d22a1 1453
eb085574
HY
1454 si = get_swap_device(entry);
1455 if (si) {
1456 count = swap_count(si->swap_map[offset]);
1457 put_swap_device(si);
1458 }
1459 return count;
aa8d22a1
MK
1460}
1461
322b8afe
HY
1462static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1463{
1464 int count = 0;
1465 pgoff_t offset = swp_offset(entry);
1466 struct swap_cluster_info *ci;
1467
1468 ci = lock_cluster_or_swap_info(si, offset);
1469 count = swap_count(si->swap_map[offset]);
1470 unlock_cluster_or_swap_info(si, ci);
1471 return count;
1472}
1473
e8c26ab6
TC
1474/*
1475 * How many references to @entry are currently swapped out?
1476 * This does not give an exact answer when swap count is continued,
1477 * but does include the high COUNT_CONTINUED flag to allow for that.
1478 */
1479int __swp_swapcount(swp_entry_t entry)
1480{
1481 int count = 0;
e8c26ab6 1482 struct swap_info_struct *si;
e8c26ab6 1483
eb085574
HY
1484 si = get_swap_device(entry);
1485 if (si) {
322b8afe 1486 count = swap_swapcount(si, entry);
eb085574
HY
1487 put_swap_device(si);
1488 }
e8c26ab6
TC
1489 return count;
1490}
1491
8334b962
MK
1492/*
1493 * How many references to @entry are currently swapped out?
1494 * This considers COUNT_CONTINUED so it returns exact answer.
1495 */
1496int swp_swapcount(swp_entry_t entry)
1497{
1498 int count, tmp_count, n;
1499 struct swap_info_struct *p;
235b6217 1500 struct swap_cluster_info *ci;
8334b962
MK
1501 struct page *page;
1502 pgoff_t offset;
1503 unsigned char *map;
1504
235b6217 1505 p = _swap_info_get(entry);
8334b962
MK
1506 if (!p)
1507 return 0;
1508
235b6217
HY
1509 offset = swp_offset(entry);
1510
1511 ci = lock_cluster_or_swap_info(p, offset);
1512
1513 count = swap_count(p->swap_map[offset]);
8334b962
MK
1514 if (!(count & COUNT_CONTINUED))
1515 goto out;
1516
1517 count &= ~COUNT_CONTINUED;
1518 n = SWAP_MAP_MAX + 1;
1519
8334b962
MK
1520 page = vmalloc_to_page(p->swap_map + offset);
1521 offset &= ~PAGE_MASK;
1522 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1523
1524 do {
a8ae4991 1525 page = list_next_entry(page, lru);
8334b962
MK
1526 map = kmap_atomic(page);
1527 tmp_count = map[offset];
1528 kunmap_atomic(map);
1529
1530 count += (tmp_count & ~COUNT_CONTINUED) * n;
1531 n *= (SWAP_CONT_MAX + 1);
1532 } while (tmp_count & COUNT_CONTINUED);
1533out:
235b6217 1534 unlock_cluster_or_swap_info(p, ci);
8334b962
MK
1535 return count;
1536}
1537
e0709829
HY
1538static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1539 swp_entry_t entry)
1540{
1541 struct swap_cluster_info *ci;
1542 unsigned char *map = si->swap_map;
1543 unsigned long roffset = swp_offset(entry);
1544 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1545 int i;
1546 bool ret = false;
1547
1548 ci = lock_cluster_or_swap_info(si, offset);
1549 if (!ci || !cluster_is_huge(ci)) {
afa4711e 1550 if (swap_count(map[roffset]))
e0709829
HY
1551 ret = true;
1552 goto unlock_out;
1553 }
1554 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
afa4711e 1555 if (swap_count(map[offset + i])) {
e0709829
HY
1556 ret = true;
1557 break;
1558 }
1559 }
1560unlock_out:
1561 unlock_cluster_or_swap_info(si, ci);
1562 return ret;
1563}
1564
1565static bool page_swapped(struct page *page)
1566{
1567 swp_entry_t entry;
1568 struct swap_info_struct *si;
1569
fe5266d5 1570 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
e0709829
HY
1571 return page_swapcount(page) != 0;
1572
1573 page = compound_head(page);
1574 entry.val = page_private(page);
1575 si = _swap_info_get(entry);
1576 if (si)
1577 return swap_page_trans_huge_swapped(si, entry);
1578 return false;
1579}
ba3c4ce6
HY
1580
1581static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1582 int *total_swapcount)
1583{
1584 int i, map_swapcount, _total_mapcount, _total_swapcount;
1585 unsigned long offset = 0;
1586 struct swap_info_struct *si;
1587 struct swap_cluster_info *ci = NULL;
1588 unsigned char *map = NULL;
1589 int mapcount, swapcount = 0;
1590
1591 /* hugetlbfs shouldn't call it */
1592 VM_BUG_ON_PAGE(PageHuge(page), page);
1593
fe5266d5
HY
1594 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1595 mapcount = page_trans_huge_mapcount(page, total_mapcount);
ba3c4ce6
HY
1596 if (PageSwapCache(page))
1597 swapcount = page_swapcount(page);
1598 if (total_swapcount)
1599 *total_swapcount = swapcount;
1600 return mapcount + swapcount;
1601 }
1602
1603 page = compound_head(page);
1604
1605 _total_mapcount = _total_swapcount = map_swapcount = 0;
1606 if (PageSwapCache(page)) {
1607 swp_entry_t entry;
1608
1609 entry.val = page_private(page);
1610 si = _swap_info_get(entry);
1611 if (si) {
1612 map = si->swap_map;
1613 offset = swp_offset(entry);
1614 }
1615 }
1616 if (map)
1617 ci = lock_cluster(si, offset);
1618 for (i = 0; i < HPAGE_PMD_NR; i++) {
1619 mapcount = atomic_read(&page[i]._mapcount) + 1;
1620 _total_mapcount += mapcount;
1621 if (map) {
1622 swapcount = swap_count(map[offset + i]);
1623 _total_swapcount += swapcount;
1624 }
1625 map_swapcount = max(map_swapcount, mapcount + swapcount);
1626 }
1627 unlock_cluster(ci);
1628 if (PageDoubleMap(page)) {
1629 map_swapcount -= 1;
1630 _total_mapcount -= HPAGE_PMD_NR;
1631 }
1632 mapcount = compound_mapcount(page);
1633 map_swapcount += mapcount;
1634 _total_mapcount += mapcount;
1635 if (total_mapcount)
1636 *total_mapcount = _total_mapcount;
1637 if (total_swapcount)
1638 *total_swapcount = _total_swapcount;
1639
1640 return map_swapcount;
1641}
e0709829 1642
1da177e4 1643/*
7b1fe597
HD
1644 * We can write to an anon page without COW if there are no other references
1645 * to it. And as a side-effect, free up its swap: because the old content
1646 * on disk will never be read, and seeking back there to write new content
1647 * later would only waste time away from clustering.
6d0a07ed 1648 *
ba3c4ce6 1649 * NOTE: total_map_swapcount should not be relied upon by the caller if
6d0a07ed
AA
1650 * reuse_swap_page() returns false, but it may be always overwritten
1651 * (see the other implementation for CONFIG_SWAP=n).
1da177e4 1652 */
ba3c4ce6 1653bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1da177e4 1654{
ba3c4ce6 1655 int count, total_mapcount, total_swapcount;
c475a8ab 1656
309381fe 1657 VM_BUG_ON_PAGE(!PageLocked(page), page);
5ad64688 1658 if (unlikely(PageKsm(page)))
6d0a07ed 1659 return false;
ba3c4ce6
HY
1660 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1661 &total_swapcount);
1662 if (total_map_swapcount)
1663 *total_map_swapcount = total_mapcount + total_swapcount;
1664 if (count == 1 && PageSwapCache(page) &&
1665 (likely(!PageTransCompound(page)) ||
1666 /* The remaining swap count will be freed soon */
1667 total_swapcount == page_swapcount(page))) {
f0571429 1668 if (!PageWriteback(page)) {
ba3c4ce6 1669 page = compound_head(page);
7b1fe597
HD
1670 delete_from_swap_cache(page);
1671 SetPageDirty(page);
f0571429
MK
1672 } else {
1673 swp_entry_t entry;
1674 struct swap_info_struct *p;
1675
1676 entry.val = page_private(page);
1677 p = swap_info_get(entry);
1678 if (p->flags & SWP_STABLE_WRITES) {
1679 spin_unlock(&p->lock);
1680 return false;
1681 }
1682 spin_unlock(&p->lock);
7b1fe597
HD
1683 }
1684 }
ba3c4ce6 1685
5ad64688 1686 return count <= 1;
1da177e4
LT
1687}
1688
1689/*
a2c43eed
HD
1690 * If swap is getting full, or if there are no more mappings of this page,
1691 * then try_to_free_swap is called to free its swap space.
1da177e4 1692 */
a2c43eed 1693int try_to_free_swap(struct page *page)
1da177e4 1694{
309381fe 1695 VM_BUG_ON_PAGE(!PageLocked(page), page);
1da177e4
LT
1696
1697 if (!PageSwapCache(page))
1698 return 0;
1699 if (PageWriteback(page))
1700 return 0;
e0709829 1701 if (page_swapped(page))
1da177e4
LT
1702 return 0;
1703
b73d7fce
HD
1704 /*
1705 * Once hibernation has begun to create its image of memory,
1706 * there's a danger that one of the calls to try_to_free_swap()
1707 * - most probably a call from __try_to_reclaim_swap() while
1708 * hibernation is allocating its own swap pages for the image,
1709 * but conceivably even a call from memory reclaim - will free
1710 * the swap from a page which has already been recorded in the
1711 * image as a clean swapcache page, and then reuse its swap for
1712 * another page of the image. On waking from hibernation, the
1713 * original page might be freed under memory pressure, then
1714 * later read back in from swap, now with the wrong data.
1715 *
2de1a7e4 1716 * Hibernation suspends storage while it is writing the image
f90ac398 1717 * to disk so check that here.
b73d7fce 1718 */
f90ac398 1719 if (pm_suspended_storage())
b73d7fce
HD
1720 return 0;
1721
e0709829 1722 page = compound_head(page);
a2c43eed
HD
1723 delete_from_swap_cache(page);
1724 SetPageDirty(page);
1725 return 1;
68a22394
RR
1726}
1727
1da177e4
LT
1728/*
1729 * Free the swap entry like above, but also try to
1730 * free the page cache entry if it is the last user.
1731 */
2509ef26 1732int free_swap_and_cache(swp_entry_t entry)
1da177e4 1733{
2509ef26 1734 struct swap_info_struct *p;
7c00bafe 1735 unsigned char count;
1da177e4 1736
a7420aa5 1737 if (non_swap_entry(entry))
2509ef26 1738 return 1;
0697212a 1739
7c00bafe 1740 p = _swap_info_get(entry);
1da177e4 1741 if (p) {
7c00bafe 1742 count = __swap_entry_free(p, entry, 1);
e0709829 1743 if (count == SWAP_HAS_CACHE &&
bcd49e86
HY
1744 !swap_page_trans_huge_swapped(p, entry))
1745 __try_to_reclaim_swap(p, swp_offset(entry),
1746 TTRS_UNMAPPED | TTRS_FULL);
1da177e4 1747 }
2509ef26 1748 return p != NULL;
1da177e4
LT
1749}
1750
b0cb1a19 1751#ifdef CONFIG_HIBERNATION
f577eb30 1752/*
915bae9e 1753 * Find the swap type that corresponds to given device (if any).
f577eb30 1754 *
915bae9e
RW
1755 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1756 * from 0, in which the swap header is expected to be located.
1757 *
1758 * This is needed for the suspend to disk (aka swsusp).
f577eb30 1759 */
7bf23687 1760int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 1761{
915bae9e 1762 struct block_device *bdev = NULL;
efa90a98 1763 int type;
f577eb30 1764
915bae9e
RW
1765 if (device)
1766 bdev = bdget(device);
1767
f577eb30 1768 spin_lock(&swap_lock);
efa90a98
HD
1769 for (type = 0; type < nr_swapfiles; type++) {
1770 struct swap_info_struct *sis = swap_info[type];
f577eb30 1771
915bae9e 1772 if (!(sis->flags & SWP_WRITEOK))
f577eb30 1773 continue;
b6b5bce3 1774
915bae9e 1775 if (!bdev) {
7bf23687 1776 if (bdev_p)
dddac6a7 1777 *bdev_p = bdgrab(sis->bdev);
7bf23687 1778
6e1819d6 1779 spin_unlock(&swap_lock);
efa90a98 1780 return type;
6e1819d6 1781 }
915bae9e 1782 if (bdev == sis->bdev) {
4efaceb1 1783 struct swap_extent *se = first_se(sis);
915bae9e 1784
915bae9e 1785 if (se->start_block == offset) {
7bf23687 1786 if (bdev_p)
dddac6a7 1787 *bdev_p = bdgrab(sis->bdev);
7bf23687 1788
915bae9e
RW
1789 spin_unlock(&swap_lock);
1790 bdput(bdev);
efa90a98 1791 return type;
915bae9e 1792 }
f577eb30
RW
1793 }
1794 }
1795 spin_unlock(&swap_lock);
915bae9e
RW
1796 if (bdev)
1797 bdput(bdev);
1798
f577eb30
RW
1799 return -ENODEV;
1800}
1801
73c34b6a
HD
1802/*
1803 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1804 * corresponding to given index in swap_info (swap type).
1805 */
1806sector_t swapdev_block(int type, pgoff_t offset)
1807{
1808 struct block_device *bdev;
c10d38cc 1809 struct swap_info_struct *si = swap_type_to_swap_info(type);
73c34b6a 1810
c10d38cc 1811 if (!si || !(si->flags & SWP_WRITEOK))
73c34b6a 1812 return 0;
d4906e1a 1813 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
1814}
1815
f577eb30
RW
1816/*
1817 * Return either the total number of swap pages of given type, or the number
1818 * of free pages of that type (depending on @free)
1819 *
1820 * This is needed for software suspend
1821 */
1822unsigned int count_swap_pages(int type, int free)
1823{
1824 unsigned int n = 0;
1825
efa90a98
HD
1826 spin_lock(&swap_lock);
1827 if ((unsigned int)type < nr_swapfiles) {
1828 struct swap_info_struct *sis = swap_info[type];
1829
ec8acf20 1830 spin_lock(&sis->lock);
efa90a98
HD
1831 if (sis->flags & SWP_WRITEOK) {
1832 n = sis->pages;
f577eb30 1833 if (free)
efa90a98 1834 n -= sis->inuse_pages;
f577eb30 1835 }
ec8acf20 1836 spin_unlock(&sis->lock);
f577eb30 1837 }
efa90a98 1838 spin_unlock(&swap_lock);
f577eb30
RW
1839 return n;
1840}
73c34b6a 1841#endif /* CONFIG_HIBERNATION */
f577eb30 1842
9f8bdb3f 1843static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
179ef71c 1844{
9f8bdb3f 1845 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
179ef71c
CG
1846}
1847
1da177e4 1848/*
72866f6f
HD
1849 * No need to decide whether this PTE shares the swap entry with others,
1850 * just let do_wp_page work it out if a write is requested later - to
1851 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 1852 */
044d66c1 1853static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
1854 unsigned long addr, swp_entry_t entry, struct page *page)
1855{
9e16b7fb 1856 struct page *swapcache;
72835c86 1857 struct mem_cgroup *memcg;
044d66c1
HD
1858 spinlock_t *ptl;
1859 pte_t *pte;
1860 int ret = 1;
1861
9e16b7fb
HD
1862 swapcache = page;
1863 page = ksm_might_need_to_copy(page, vma, addr);
1864 if (unlikely(!page))
1865 return -ENOMEM;
1866
f627c2f5
KS
1867 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1868 &memcg, false)) {
044d66c1 1869 ret = -ENOMEM;
85d9fc89
KH
1870 goto out_nolock;
1871 }
044d66c1
HD
1872
1873 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
9f8bdb3f 1874 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
f627c2f5 1875 mem_cgroup_cancel_charge(page, memcg, false);
044d66c1
HD
1876 ret = 0;
1877 goto out;
1878 }
8a9f3ccd 1879
b084d435 1880 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 1881 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
1882 get_page(page);
1883 set_pte_at(vma->vm_mm, addr, pte,
1884 pte_mkold(mk_pte(page, vma->vm_page_prot)));
00501b53 1885 if (page == swapcache) {
d281ee61 1886 page_add_anon_rmap(page, vma, addr, false);
f627c2f5 1887 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1888 } else { /* ksm created a completely new copy */
d281ee61 1889 page_add_new_anon_rmap(page, vma, addr, false);
f627c2f5 1890 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53
JW
1891 lru_cache_add_active_or_unevictable(page, vma);
1892 }
1da177e4
LT
1893 swap_free(entry);
1894 /*
1895 * Move the page to the active list so it is not
1896 * immediately swapped out again after swapon.
1897 */
1898 activate_page(page);
044d66c1
HD
1899out:
1900 pte_unmap_unlock(pte, ptl);
85d9fc89 1901out_nolock:
9e16b7fb
HD
1902 if (page != swapcache) {
1903 unlock_page(page);
1904 put_page(page);
1905 }
044d66c1 1906 return ret;
1da177e4
LT
1907}
1908
1909static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
b56a2d8a
VRP
1910 unsigned long addr, unsigned long end,
1911 unsigned int type, bool frontswap,
1912 unsigned long *fs_pages_to_unuse)
1da177e4 1913{
b56a2d8a
VRP
1914 struct page *page;
1915 swp_entry_t entry;
705e87c0 1916 pte_t *pte;
b56a2d8a
VRP
1917 struct swap_info_struct *si;
1918 unsigned long offset;
8a9f3ccd 1919 int ret = 0;
b56a2d8a 1920 volatile unsigned char *swap_map;
1da177e4 1921
b56a2d8a 1922 si = swap_info[type];
044d66c1 1923 pte = pte_offset_map(pmd, addr);
1da177e4 1924 do {
b56a2d8a
VRP
1925 struct vm_fault vmf;
1926
1927 if (!is_swap_pte(*pte))
1928 continue;
1929
1930 entry = pte_to_swp_entry(*pte);
1931 if (swp_type(entry) != type)
1932 continue;
1933
1934 offset = swp_offset(entry);
1935 if (frontswap && !frontswap_test(si, offset))
1936 continue;
1937
1938 pte_unmap(pte);
1939 swap_map = &si->swap_map[offset];
1940 vmf.vma = vma;
1941 vmf.address = addr;
1942 vmf.pmd = pmd;
1943 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, &vmf);
1944 if (!page) {
1945 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1946 goto try_next;
1947 return -ENOMEM;
1948 }
1949
1950 lock_page(page);
1951 wait_on_page_writeback(page);
1952 ret = unuse_pte(vma, pmd, addr, entry, page);
1953 if (ret < 0) {
1954 unlock_page(page);
1955 put_page(page);
1956 goto out;
1957 }
1958
1959 try_to_free_swap(page);
1960 unlock_page(page);
1961 put_page(page);
1962
1963 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1964 ret = FRONTSWAP_PAGES_UNUSED;
1965 goto out;
1da177e4 1966 }
b56a2d8a
VRP
1967try_next:
1968 pte = pte_offset_map(pmd, addr);
1da177e4 1969 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1 1970 pte_unmap(pte - 1);
b56a2d8a
VRP
1971
1972 ret = 0;
044d66c1 1973out:
8a9f3ccd 1974 return ret;
1da177e4
LT
1975}
1976
1977static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1978 unsigned long addr, unsigned long end,
b56a2d8a
VRP
1979 unsigned int type, bool frontswap,
1980 unsigned long *fs_pages_to_unuse)
1da177e4
LT
1981{
1982 pmd_t *pmd;
1983 unsigned long next;
8a9f3ccd 1984 int ret;
1da177e4
LT
1985
1986 pmd = pmd_offset(pud, addr);
1987 do {
dc644a07 1988 cond_resched();
1da177e4 1989 next = pmd_addr_end(addr, end);
1a5a9906 1990 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 1991 continue;
b56a2d8a
VRP
1992 ret = unuse_pte_range(vma, pmd, addr, next, type,
1993 frontswap, fs_pages_to_unuse);
8a9f3ccd
BS
1994 if (ret)
1995 return ret;
1da177e4
LT
1996 } while (pmd++, addr = next, addr != end);
1997 return 0;
1998}
1999
c2febafc 2000static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 2001 unsigned long addr, unsigned long end,
b56a2d8a
VRP
2002 unsigned int type, bool frontswap,
2003 unsigned long *fs_pages_to_unuse)
1da177e4
LT
2004{
2005 pud_t *pud;
2006 unsigned long next;
8a9f3ccd 2007 int ret;
1da177e4 2008
c2febafc 2009 pud = pud_offset(p4d, addr);
1da177e4
LT
2010 do {
2011 next = pud_addr_end(addr, end);
2012 if (pud_none_or_clear_bad(pud))
2013 continue;
b56a2d8a
VRP
2014 ret = unuse_pmd_range(vma, pud, addr, next, type,
2015 frontswap, fs_pages_to_unuse);
8a9f3ccd
BS
2016 if (ret)
2017 return ret;
1da177e4
LT
2018 } while (pud++, addr = next, addr != end);
2019 return 0;
2020}
2021
c2febafc
KS
2022static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2023 unsigned long addr, unsigned long end,
b56a2d8a
VRP
2024 unsigned int type, bool frontswap,
2025 unsigned long *fs_pages_to_unuse)
c2febafc
KS
2026{
2027 p4d_t *p4d;
2028 unsigned long next;
2029 int ret;
2030
2031 p4d = p4d_offset(pgd, addr);
2032 do {
2033 next = p4d_addr_end(addr, end);
2034 if (p4d_none_or_clear_bad(p4d))
2035 continue;
b56a2d8a
VRP
2036 ret = unuse_pud_range(vma, p4d, addr, next, type,
2037 frontswap, fs_pages_to_unuse);
c2febafc
KS
2038 if (ret)
2039 return ret;
2040 } while (p4d++, addr = next, addr != end);
2041 return 0;
2042}
2043
b56a2d8a
VRP
2044static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2045 bool frontswap, unsigned long *fs_pages_to_unuse)
1da177e4
LT
2046{
2047 pgd_t *pgd;
2048 unsigned long addr, end, next;
8a9f3ccd 2049 int ret;
1da177e4 2050
b56a2d8a
VRP
2051 addr = vma->vm_start;
2052 end = vma->vm_end;
1da177e4
LT
2053
2054 pgd = pgd_offset(vma->vm_mm, addr);
2055 do {
2056 next = pgd_addr_end(addr, end);
2057 if (pgd_none_or_clear_bad(pgd))
2058 continue;
b56a2d8a
VRP
2059 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2060 frontswap, fs_pages_to_unuse);
8a9f3ccd
BS
2061 if (ret)
2062 return ret;
1da177e4
LT
2063 } while (pgd++, addr = next, addr != end);
2064 return 0;
2065}
2066
b56a2d8a
VRP
2067static int unuse_mm(struct mm_struct *mm, unsigned int type,
2068 bool frontswap, unsigned long *fs_pages_to_unuse)
1da177e4
LT
2069{
2070 struct vm_area_struct *vma;
8a9f3ccd 2071 int ret = 0;
1da177e4 2072
b56a2d8a 2073 down_read(&mm->mmap_sem);
1da177e4 2074 for (vma = mm->mmap; vma; vma = vma->vm_next) {
b56a2d8a
VRP
2075 if (vma->anon_vma) {
2076 ret = unuse_vma(vma, type, frontswap,
2077 fs_pages_to_unuse);
2078 if (ret)
2079 break;
2080 }
dc644a07 2081 cond_resched();
1da177e4 2082 }
1da177e4 2083 up_read(&mm->mmap_sem);
b56a2d8a 2084 return ret;
1da177e4
LT
2085}
2086
2087/*
38b5faf4 2088 * Scan swap_map (or frontswap_map if frontswap parameter is true)
b56a2d8a
VRP
2089 * from current position to next entry still in use. Return 0
2090 * if there are no inuse entries after prev till end of the map.
1da177e4 2091 */
6eb396dc 2092static unsigned int find_next_to_unuse(struct swap_info_struct *si,
38b5faf4 2093 unsigned int prev, bool frontswap)
1da177e4 2094{
b56a2d8a 2095 unsigned int i;
8d69aaee 2096 unsigned char count;
1da177e4
LT
2097
2098 /*
5d337b91 2099 * No need for swap_lock here: we're just looking
1da177e4
LT
2100 * for whether an entry is in use, not modifying it; false
2101 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 2102 * allocations from this area (while holding swap_lock).
1da177e4 2103 */
b56a2d8a 2104 for (i = prev + 1; i < si->max; i++) {
4db0c3c2 2105 count = READ_ONCE(si->swap_map[i]);
355cfa73 2106 if (count && swap_count(count) != SWAP_MAP_BAD)
dc644a07
HD
2107 if (!frontswap || frontswap_test(si, i))
2108 break;
2109 if ((i % LATENCY_LIMIT) == 0)
2110 cond_resched();
1da177e4 2111 }
b56a2d8a
VRP
2112
2113 if (i == si->max)
2114 i = 0;
2115
1da177e4
LT
2116 return i;
2117}
2118
2119/*
b56a2d8a 2120 * If the boolean frontswap is true, only unuse pages_to_unuse pages;
38b5faf4 2121 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1da177e4 2122 */
38b5faf4
DM
2123int try_to_unuse(unsigned int type, bool frontswap,
2124 unsigned long pages_to_unuse)
1da177e4 2125{
b56a2d8a
VRP
2126 struct mm_struct *prev_mm;
2127 struct mm_struct *mm;
2128 struct list_head *p;
2129 int retval = 0;
efa90a98 2130 struct swap_info_struct *si = swap_info[type];
1da177e4
LT
2131 struct page *page;
2132 swp_entry_t entry;
b56a2d8a 2133 unsigned int i;
1da177e4 2134
b56a2d8a
VRP
2135 if (!si->inuse_pages)
2136 return 0;
1da177e4 2137
b56a2d8a
VRP
2138 if (!frontswap)
2139 pages_to_unuse = 0;
2140
2141retry:
2142 retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2143 if (retval)
2144 goto out;
2145
2146 prev_mm = &init_mm;
2147 mmget(prev_mm);
2148
2149 spin_lock(&mmlist_lock);
2150 p = &init_mm.mmlist;
64165b1a
HD
2151 while (si->inuse_pages &&
2152 !signal_pending(current) &&
2153 (p = p->next) != &init_mm.mmlist) {
1da177e4 2154
b56a2d8a
VRP
2155 mm = list_entry(p, struct mm_struct, mmlist);
2156 if (!mmget_not_zero(mm))
2157 continue;
2158 spin_unlock(&mmlist_lock);
2159 mmput(prev_mm);
2160 prev_mm = mm;
2161 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
1da177e4 2162
b56a2d8a
VRP
2163 if (retval) {
2164 mmput(prev_mm);
2165 goto out;
1da177e4
LT
2166 }
2167
2168 /*
b56a2d8a
VRP
2169 * Make sure that we aren't completely killing
2170 * interactive performance.
1da177e4 2171 */
b56a2d8a
VRP
2172 cond_resched();
2173 spin_lock(&mmlist_lock);
2174 }
2175 spin_unlock(&mmlist_lock);
1da177e4 2176
b56a2d8a 2177 mmput(prev_mm);
1da177e4 2178
b56a2d8a 2179 i = 0;
64165b1a
HD
2180 while (si->inuse_pages &&
2181 !signal_pending(current) &&
2182 (i = find_next_to_unuse(si, i, frontswap)) != 0) {
1da177e4 2183
b56a2d8a
VRP
2184 entry = swp_entry(type, i);
2185 page = find_get_page(swap_address_space(entry), i);
2186 if (!page)
2187 continue;
68bdc8d6
HD
2188
2189 /*
2190 * It is conceivable that a racing task removed this page from
b56a2d8a
VRP
2191 * swap cache just before we acquired the page lock. The page
2192 * might even be back in swap cache on another swap area. But
2193 * that is okay, try_to_free_swap() only removes stale pages.
1da177e4 2194 */
b56a2d8a
VRP
2195 lock_page(page);
2196 wait_on_page_writeback(page);
2197 try_to_free_swap(page);
1da177e4 2198 unlock_page(page);
09cbfeaf 2199 put_page(page);
1da177e4
LT
2200
2201 /*
b56a2d8a
VRP
2202 * For frontswap, we just need to unuse pages_to_unuse, if
2203 * it was specified. Need not check frontswap again here as
2204 * we already zeroed out pages_to_unuse if not frontswap.
1da177e4 2205 */
b56a2d8a
VRP
2206 if (pages_to_unuse && --pages_to_unuse == 0)
2207 goto out;
1da177e4
LT
2208 }
2209
b56a2d8a
VRP
2210 /*
2211 * Lets check again to see if there are still swap entries in the map.
2212 * If yes, we would need to do retry the unuse logic again.
2213 * Under global memory pressure, swap entries can be reinserted back
2214 * into process space after the mmlist loop above passes over them.
dd862deb 2215 *
af53d3e9
HD
2216 * Limit the number of retries? No: when mmget_not_zero() above fails,
2217 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2218 * at its own independent pace; and even shmem_writepage() could have
2219 * been preempted after get_swap_page(), temporarily hiding that swap.
2220 * It's easy and robust (though cpu-intensive) just to keep retrying.
b56a2d8a 2221 */
64165b1a
HD
2222 if (si->inuse_pages) {
2223 if (!signal_pending(current))
2224 goto retry;
2225 retval = -EINTR;
2226 }
b56a2d8a
VRP
2227out:
2228 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
1da177e4
LT
2229}
2230
2231/*
5d337b91
HD
2232 * After a successful try_to_unuse, if no swap is now in use, we know
2233 * we can empty the mmlist. swap_lock must be held on entry and exit.
2234 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
2235 * added to the mmlist just after page_duplicate - before would be racy.
2236 */
2237static void drain_mmlist(void)
2238{
2239 struct list_head *p, *next;
efa90a98 2240 unsigned int type;
1da177e4 2241
efa90a98
HD
2242 for (type = 0; type < nr_swapfiles; type++)
2243 if (swap_info[type]->inuse_pages)
1da177e4
LT
2244 return;
2245 spin_lock(&mmlist_lock);
2246 list_for_each_safe(p, next, &init_mm.mmlist)
2247 list_del_init(p);
2248 spin_unlock(&mmlist_lock);
2249}
2250
2251/*
2252 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
2253 * corresponds to page offset for the specified swap entry.
2254 * Note that the type of this function is sector_t, but it returns page offset
2255 * into the bdev, not sector offset.
1da177e4 2256 */
d4906e1a 2257static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 2258{
f29ad6a9 2259 struct swap_info_struct *sis;
f29ad6a9
HD
2260 struct swap_extent *se;
2261 pgoff_t offset;
2262
c10d38cc 2263 sis = swp_swap_info(entry);
f29ad6a9
HD
2264 *bdev = sis->bdev;
2265
2266 offset = swp_offset(entry);
4efaceb1
AL
2267 se = offset_to_swap_extent(sis, offset);
2268 return se->start_block + (offset - se->start_page);
1da177e4
LT
2269}
2270
d4906e1a
LS
2271/*
2272 * Returns the page offset into bdev for the specified page's swap entry.
2273 */
2274sector_t map_swap_page(struct page *page, struct block_device **bdev)
2275{
2276 swp_entry_t entry;
2277 entry.val = page_private(page);
2278 return map_swap_entry(entry, bdev);
2279}
2280
1da177e4
LT
2281/*
2282 * Free all of a swapdev's extent information
2283 */
2284static void destroy_swap_extents(struct swap_info_struct *sis)
2285{
4efaceb1
AL
2286 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2287 struct rb_node *rb = sis->swap_extent_root.rb_node;
2288 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
1da177e4 2289
4efaceb1 2290 rb_erase(rb, &sis->swap_extent_root);
1da177e4
LT
2291 kfree(se);
2292 }
62c230bc 2293
bc4ae27d 2294 if (sis->flags & SWP_ACTIVATED) {
62c230bc
MG
2295 struct file *swap_file = sis->swap_file;
2296 struct address_space *mapping = swap_file->f_mapping;
2297
bc4ae27d
OS
2298 sis->flags &= ~SWP_ACTIVATED;
2299 if (mapping->a_ops->swap_deactivate)
2300 mapping->a_ops->swap_deactivate(swap_file);
62c230bc 2301 }
1da177e4
LT
2302}
2303
2304/*
2305 * Add a block range (and the corresponding page range) into this swapdev's
4efaceb1 2306 * extent tree.
1da177e4 2307 *
11d31886 2308 * This function rather assumes that it is called in ascending page order.
1da177e4 2309 */
a509bc1a 2310int
1da177e4
LT
2311add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2312 unsigned long nr_pages, sector_t start_block)
2313{
4efaceb1 2314 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
1da177e4
LT
2315 struct swap_extent *se;
2316 struct swap_extent *new_se;
4efaceb1
AL
2317
2318 /*
2319 * place the new node at the right most since the
2320 * function is called in ascending page order.
2321 */
2322 while (*link) {
2323 parent = *link;
2324 link = &parent->rb_right;
2325 }
2326
2327 if (parent) {
2328 se = rb_entry(parent, struct swap_extent, rb_node);
11d31886
HD
2329 BUG_ON(se->start_page + se->nr_pages != start_page);
2330 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
2331 /* Merge it */
2332 se->nr_pages += nr_pages;
2333 return 0;
2334 }
1da177e4
LT
2335 }
2336
4efaceb1 2337 /* No merge, insert a new extent. */
1da177e4
LT
2338 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2339 if (new_se == NULL)
2340 return -ENOMEM;
2341 new_se->start_page = start_page;
2342 new_se->nr_pages = nr_pages;
2343 new_se->start_block = start_block;
2344
4efaceb1
AL
2345 rb_link_node(&new_se->rb_node, parent, link);
2346 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
53092a74 2347 return 1;
1da177e4 2348}
aa8aa8a3 2349EXPORT_SYMBOL_GPL(add_swap_extent);
1da177e4
LT
2350
2351/*
2352 * A `swap extent' is a simple thing which maps a contiguous range of pages
2353 * onto a contiguous range of disk blocks. An ordered list of swap extents
2354 * is built at swapon time and is then used at swap_writepage/swap_readpage
2355 * time for locating where on disk a page belongs.
2356 *
2357 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2358 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2359 * swap files identically.
2360 *
2361 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2362 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2363 * swapfiles are handled *identically* after swapon time.
2364 *
2365 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2366 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2367 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2368 * requirements, they are simply tossed out - we will never use those blocks
2369 * for swapping.
2370 *
1638045c
DW
2371 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2372 * prevents users from writing to the swap device, which will corrupt memory.
1da177e4
LT
2373 *
2374 * The amount of disk space which a single swap extent represents varies.
2375 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2376 * extents in the list. To avoid much list walking, we cache the previous
2377 * search location in `curr_swap_extent', and start new searches from there.
2378 * This is extremely effective. The average number of iterations in
2379 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2380 */
53092a74 2381static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 2382{
62c230bc
MG
2383 struct file *swap_file = sis->swap_file;
2384 struct address_space *mapping = swap_file->f_mapping;
2385 struct inode *inode = mapping->host;
1da177e4
LT
2386 int ret;
2387
1da177e4
LT
2388 if (S_ISBLK(inode->i_mode)) {
2389 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 2390 *span = sis->pages;
a509bc1a 2391 return ret;
1da177e4
LT
2392 }
2393
62c230bc 2394 if (mapping->a_ops->swap_activate) {
a509bc1a 2395 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
bc4ae27d
OS
2396 if (ret >= 0)
2397 sis->flags |= SWP_ACTIVATED;
62c230bc 2398 if (!ret) {
bc4ae27d 2399 sis->flags |= SWP_FS;
62c230bc
MG
2400 ret = add_swap_extent(sis, 0, sis->max, 0);
2401 *span = sis->pages;
2402 }
a509bc1a 2403 return ret;
62c230bc
MG
2404 }
2405
a509bc1a 2406 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
2407}
2408
a2468cc9
AL
2409static int swap_node(struct swap_info_struct *p)
2410{
2411 struct block_device *bdev;
2412
2413 if (p->bdev)
2414 bdev = p->bdev;
2415 else
2416 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2417
2418 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2419}
2420
eb085574
HY
2421static void setup_swap_info(struct swap_info_struct *p, int prio,
2422 unsigned char *swap_map,
2423 struct swap_cluster_info *cluster_info)
40531542 2424{
a2468cc9
AL
2425 int i;
2426
40531542
CEB
2427 if (prio >= 0)
2428 p->prio = prio;
2429 else
2430 p->prio = --least_priority;
18ab4d4c
DS
2431 /*
2432 * the plist prio is negated because plist ordering is
2433 * low-to-high, while swap ordering is high-to-low
2434 */
2435 p->list.prio = -p->prio;
a2468cc9
AL
2436 for_each_node(i) {
2437 if (p->prio >= 0)
2438 p->avail_lists[i].prio = -p->prio;
2439 else {
2440 if (swap_node(p) == i)
2441 p->avail_lists[i].prio = 1;
2442 else
2443 p->avail_lists[i].prio = -p->prio;
2444 }
2445 }
40531542 2446 p->swap_map = swap_map;
2a8f9449 2447 p->cluster_info = cluster_info;
eb085574
HY
2448}
2449
2450static void _enable_swap_info(struct swap_info_struct *p)
2451{
2452 p->flags |= SWP_WRITEOK | SWP_VALID;
ec8acf20 2453 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
2454 total_swap_pages += p->pages;
2455
adfab836 2456 assert_spin_locked(&swap_lock);
adfab836 2457 /*
18ab4d4c
DS
2458 * both lists are plists, and thus priority ordered.
2459 * swap_active_head needs to be priority ordered for swapoff(),
2460 * which on removal of any swap_info_struct with an auto-assigned
2461 * (i.e. negative) priority increments the auto-assigned priority
2462 * of any lower-priority swap_info_structs.
2463 * swap_avail_head needs to be priority ordered for get_swap_page(),
2464 * which allocates swap pages from the highest available priority
2465 * swap_info_struct.
adfab836 2466 */
18ab4d4c 2467 plist_add(&p->list, &swap_active_head);
a2468cc9 2468 add_to_avail_list(p);
cf0cac0a
CEB
2469}
2470
2471static void enable_swap_info(struct swap_info_struct *p, int prio,
2472 unsigned char *swap_map,
2a8f9449 2473 struct swap_cluster_info *cluster_info,
cf0cac0a
CEB
2474 unsigned long *frontswap_map)
2475{
4f89849d 2476 frontswap_init(p->type, frontswap_map);
cf0cac0a 2477 spin_lock(&swap_lock);
ec8acf20 2478 spin_lock(&p->lock);
eb085574
HY
2479 setup_swap_info(p, prio, swap_map, cluster_info);
2480 spin_unlock(&p->lock);
2481 spin_unlock(&swap_lock);
2482 /*
2483 * Guarantee swap_map, cluster_info, etc. fields are valid
2484 * between get/put_swap_device() if SWP_VALID bit is set
2485 */
2486 synchronize_rcu();
2487 spin_lock(&swap_lock);
2488 spin_lock(&p->lock);
2489 _enable_swap_info(p);
ec8acf20 2490 spin_unlock(&p->lock);
cf0cac0a
CEB
2491 spin_unlock(&swap_lock);
2492}
2493
2494static void reinsert_swap_info(struct swap_info_struct *p)
2495{
2496 spin_lock(&swap_lock);
ec8acf20 2497 spin_lock(&p->lock);
eb085574
HY
2498 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2499 _enable_swap_info(p);
ec8acf20 2500 spin_unlock(&p->lock);
40531542
CEB
2501 spin_unlock(&swap_lock);
2502}
2503
67afa38e
TC
2504bool has_usable_swap(void)
2505{
2506 bool ret = true;
2507
2508 spin_lock(&swap_lock);
2509 if (plist_head_empty(&swap_active_head))
2510 ret = false;
2511 spin_unlock(&swap_lock);
2512 return ret;
2513}
2514
c4ea37c2 2515SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 2516{
73c34b6a 2517 struct swap_info_struct *p = NULL;
8d69aaee 2518 unsigned char *swap_map;
2a8f9449 2519 struct swap_cluster_info *cluster_info;
4f89849d 2520 unsigned long *frontswap_map;
1da177e4
LT
2521 struct file *swap_file, *victim;
2522 struct address_space *mapping;
2523 struct inode *inode;
91a27b2a 2524 struct filename *pathname;
adfab836 2525 int err, found = 0;
5b808a23 2526 unsigned int old_block_size;
886bb7e9 2527
1da177e4
LT
2528 if (!capable(CAP_SYS_ADMIN))
2529 return -EPERM;
2530
191c5424
AV
2531 BUG_ON(!current->mm);
2532
1da177e4 2533 pathname = getname(specialfile);
1da177e4 2534 if (IS_ERR(pathname))
f58b59c1 2535 return PTR_ERR(pathname);
1da177e4 2536
669abf4e 2537 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
2538 err = PTR_ERR(victim);
2539 if (IS_ERR(victim))
2540 goto out;
2541
2542 mapping = victim->f_mapping;
5d337b91 2543 spin_lock(&swap_lock);
18ab4d4c 2544 plist_for_each_entry(p, &swap_active_head, list) {
22c6f8fd 2545 if (p->flags & SWP_WRITEOK) {
adfab836
DS
2546 if (p->swap_file->f_mapping == mapping) {
2547 found = 1;
1da177e4 2548 break;
adfab836 2549 }
1da177e4 2550 }
1da177e4 2551 }
adfab836 2552 if (!found) {
1da177e4 2553 err = -EINVAL;
5d337b91 2554 spin_unlock(&swap_lock);
1da177e4
LT
2555 goto out_dput;
2556 }
191c5424 2557 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
2558 vm_unacct_memory(p->pages);
2559 else {
2560 err = -ENOMEM;
5d337b91 2561 spin_unlock(&swap_lock);
1da177e4
LT
2562 goto out_dput;
2563 }
a2468cc9 2564 del_from_avail_list(p);
ec8acf20 2565 spin_lock(&p->lock);
78ecba08 2566 if (p->prio < 0) {
adfab836 2567 struct swap_info_struct *si = p;
a2468cc9 2568 int nid;
adfab836 2569
18ab4d4c 2570 plist_for_each_entry_continue(si, &swap_active_head, list) {
adfab836 2571 si->prio++;
18ab4d4c 2572 si->list.prio--;
a2468cc9
AL
2573 for_each_node(nid) {
2574 if (si->avail_lists[nid].prio != 1)
2575 si->avail_lists[nid].prio--;
2576 }
adfab836 2577 }
78ecba08
HD
2578 least_priority++;
2579 }
18ab4d4c 2580 plist_del(&p->list, &swap_active_head);
ec8acf20 2581 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
2582 total_swap_pages -= p->pages;
2583 p->flags &= ~SWP_WRITEOK;
ec8acf20 2584 spin_unlock(&p->lock);
5d337b91 2585 spin_unlock(&swap_lock);
fb4f88dc 2586
039939a6
TC
2587 disable_swap_slots_cache_lock();
2588
e1e12d2f 2589 set_current_oom_origin();
adfab836 2590 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
e1e12d2f 2591 clear_current_oom_origin();
1da177e4 2592
1da177e4
LT
2593 if (err) {
2594 /* re-insert swap space back into swap_list */
cf0cac0a 2595 reinsert_swap_info(p);
039939a6 2596 reenable_swap_slots_cache_unlock();
1da177e4
LT
2597 goto out_dput;
2598 }
52b7efdb 2599
039939a6
TC
2600 reenable_swap_slots_cache_unlock();
2601
eb085574
HY
2602 spin_lock(&swap_lock);
2603 spin_lock(&p->lock);
2604 p->flags &= ~SWP_VALID; /* mark swap device as invalid */
2605 spin_unlock(&p->lock);
2606 spin_unlock(&swap_lock);
2607 /*
2608 * wait for swap operations protected by get/put_swap_device()
2609 * to complete
2610 */
2611 synchronize_rcu();
2612
815c2c54
SL
2613 flush_work(&p->discard_work);
2614
5d337b91 2615 destroy_swap_extents(p);
570a335b
HD
2616 if (p->flags & SWP_CONTINUED)
2617 free_swap_count_continuations(p);
2618
81a0298b
HY
2619 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2620 atomic_dec(&nr_rotate_swap);
2621
fc0abb14 2622 mutex_lock(&swapon_mutex);
5d337b91 2623 spin_lock(&swap_lock);
ec8acf20 2624 spin_lock(&p->lock);
5d337b91
HD
2625 drain_mmlist();
2626
52b7efdb 2627 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
2628 p->highest_bit = 0; /* cuts scans short */
2629 while (p->flags >= SWP_SCANNING) {
ec8acf20 2630 spin_unlock(&p->lock);
5d337b91 2631 spin_unlock(&swap_lock);
13e4b57f 2632 schedule_timeout_uninterruptible(1);
5d337b91 2633 spin_lock(&swap_lock);
ec8acf20 2634 spin_lock(&p->lock);
52b7efdb 2635 }
52b7efdb 2636
1da177e4 2637 swap_file = p->swap_file;
5b808a23 2638 old_block_size = p->old_block_size;
1da177e4
LT
2639 p->swap_file = NULL;
2640 p->max = 0;
2641 swap_map = p->swap_map;
2642 p->swap_map = NULL;
2a8f9449
SL
2643 cluster_info = p->cluster_info;
2644 p->cluster_info = NULL;
4f89849d 2645 frontswap_map = frontswap_map_get(p);
ec8acf20 2646 spin_unlock(&p->lock);
5d337b91 2647 spin_unlock(&swap_lock);
adfab836 2648 frontswap_invalidate_area(p->type);
58e97ba6 2649 frontswap_map_set(p, NULL);
fc0abb14 2650 mutex_unlock(&swapon_mutex);
ebc2a1a6
SL
2651 free_percpu(p->percpu_cluster);
2652 p->percpu_cluster = NULL;
1da177e4 2653 vfree(swap_map);
54f180d3
HY
2654 kvfree(cluster_info);
2655 kvfree(frontswap_map);
2de1a7e4 2656 /* Destroy swap account information */
adfab836 2657 swap_cgroup_swapoff(p->type);
4b3ef9da 2658 exit_swap_address_space(p->type);
27a7faa0 2659
1da177e4
LT
2660 inode = mapping->host;
2661 if (S_ISBLK(inode->i_mode)) {
2662 struct block_device *bdev = I_BDEV(inode);
1638045c 2663
5b808a23 2664 set_blocksize(bdev, old_block_size);
e525fd89 2665 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2666 }
1638045c
DW
2667
2668 inode_lock(inode);
2669 inode->i_flags &= ~S_SWAPFILE;
2670 inode_unlock(inode);
1da177e4 2671 filp_close(swap_file, NULL);
f893ab41
WY
2672
2673 /*
2674 * Clear the SWP_USED flag after all resources are freed so that swapon
2675 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2676 * not hold p->lock after we cleared its SWP_WRITEOK.
2677 */
2678 spin_lock(&swap_lock);
2679 p->flags = 0;
2680 spin_unlock(&swap_lock);
2681
1da177e4 2682 err = 0;
66d7dd51
KS
2683 atomic_inc(&proc_poll_event);
2684 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
2685
2686out_dput:
2687 filp_close(victim, NULL);
2688out:
f58b59c1 2689 putname(pathname);
1da177e4
LT
2690 return err;
2691}
2692
2693#ifdef CONFIG_PROC_FS
9dd95748 2694static __poll_t swaps_poll(struct file *file, poll_table *wait)
66d7dd51 2695{
f1514638 2696 struct seq_file *seq = file->private_data;
66d7dd51
KS
2697
2698 poll_wait(file, &proc_poll_wait, wait);
2699
f1514638
KS
2700 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2701 seq->poll_event = atomic_read(&proc_poll_event);
a9a08845 2702 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
66d7dd51
KS
2703 }
2704
a9a08845 2705 return EPOLLIN | EPOLLRDNORM;
66d7dd51
KS
2706}
2707
1da177e4
LT
2708/* iterator */
2709static void *swap_start(struct seq_file *swap, loff_t *pos)
2710{
efa90a98
HD
2711 struct swap_info_struct *si;
2712 int type;
1da177e4
LT
2713 loff_t l = *pos;
2714
fc0abb14 2715 mutex_lock(&swapon_mutex);
1da177e4 2716
881e4aab
SS
2717 if (!l)
2718 return SEQ_START_TOKEN;
2719
c10d38cc 2720 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
efa90a98 2721 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2722 continue;
881e4aab 2723 if (!--l)
efa90a98 2724 return si;
1da177e4
LT
2725 }
2726
2727 return NULL;
2728}
2729
2730static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2731{
efa90a98
HD
2732 struct swap_info_struct *si = v;
2733 int type;
1da177e4 2734
881e4aab 2735 if (v == SEQ_START_TOKEN)
efa90a98
HD
2736 type = 0;
2737 else
2738 type = si->type + 1;
881e4aab 2739
c10d38cc 2740 for (; (si = swap_type_to_swap_info(type)); type++) {
efa90a98 2741 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4
LT
2742 continue;
2743 ++*pos;
efa90a98 2744 return si;
1da177e4
LT
2745 }
2746
2747 return NULL;
2748}
2749
2750static void swap_stop(struct seq_file *swap, void *v)
2751{
fc0abb14 2752 mutex_unlock(&swapon_mutex);
1da177e4
LT
2753}
2754
2755static int swap_show(struct seq_file *swap, void *v)
2756{
efa90a98 2757 struct swap_info_struct *si = v;
1da177e4
LT
2758 struct file *file;
2759 int len;
2760
efa90a98 2761 if (si == SEQ_START_TOKEN) {
881e4aab
SS
2762 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2763 return 0;
2764 }
1da177e4 2765
efa90a98 2766 file = si->swap_file;
2726d566 2767 len = seq_file_path(swap, file, " \t\n\\");
6eb396dc 2768 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9 2769 len < 40 ? 40 - len : 1, " ",
496ad9aa 2770 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 2771 "partition" : "file\t",
efa90a98
HD
2772 si->pages << (PAGE_SHIFT - 10),
2773 si->inuse_pages << (PAGE_SHIFT - 10),
2774 si->prio);
1da177e4
LT
2775 return 0;
2776}
2777
15ad7cdc 2778static const struct seq_operations swaps_op = {
1da177e4
LT
2779 .start = swap_start,
2780 .next = swap_next,
2781 .stop = swap_stop,
2782 .show = swap_show
2783};
2784
2785static int swaps_open(struct inode *inode, struct file *file)
2786{
f1514638 2787 struct seq_file *seq;
66d7dd51
KS
2788 int ret;
2789
66d7dd51 2790 ret = seq_open(file, &swaps_op);
f1514638 2791 if (ret)
66d7dd51 2792 return ret;
66d7dd51 2793
f1514638
KS
2794 seq = file->private_data;
2795 seq->poll_event = atomic_read(&proc_poll_event);
2796 return 0;
1da177e4
LT
2797}
2798
15ad7cdc 2799static const struct file_operations proc_swaps_operations = {
1da177e4
LT
2800 .open = swaps_open,
2801 .read = seq_read,
2802 .llseek = seq_lseek,
2803 .release = seq_release,
66d7dd51 2804 .poll = swaps_poll,
1da177e4
LT
2805};
2806
2807static int __init procswaps_init(void)
2808{
3d71f86f 2809 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
2810 return 0;
2811}
2812__initcall(procswaps_init);
2813#endif /* CONFIG_PROC_FS */
2814
1796316a
JB
2815#ifdef MAX_SWAPFILES_CHECK
2816static int __init max_swapfiles_check(void)
2817{
2818 MAX_SWAPFILES_CHECK();
2819 return 0;
2820}
2821late_initcall(max_swapfiles_check);
2822#endif
2823
53cbb243 2824static struct swap_info_struct *alloc_swap_info(void)
1da177e4 2825{
73c34b6a 2826 struct swap_info_struct *p;
1da177e4 2827 unsigned int type;
a2468cc9 2828 int i;
efa90a98 2829
96008744 2830 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
efa90a98 2831 if (!p)
53cbb243 2832 return ERR_PTR(-ENOMEM);
efa90a98 2833
5d337b91 2834 spin_lock(&swap_lock);
efa90a98
HD
2835 for (type = 0; type < nr_swapfiles; type++) {
2836 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 2837 break;
efa90a98 2838 }
0697212a 2839 if (type >= MAX_SWAPFILES) {
5d337b91 2840 spin_unlock(&swap_lock);
873d7bcf 2841 kvfree(p);
730c0581 2842 return ERR_PTR(-EPERM);
1da177e4 2843 }
efa90a98
HD
2844 if (type >= nr_swapfiles) {
2845 p->type = type;
c10d38cc 2846 WRITE_ONCE(swap_info[type], p);
efa90a98
HD
2847 /*
2848 * Write swap_info[type] before nr_swapfiles, in case a
2849 * racing procfs swap_start() or swap_next() is reading them.
2850 * (We never shrink nr_swapfiles, we never free this entry.)
2851 */
2852 smp_wmb();
c10d38cc 2853 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
efa90a98 2854 } else {
873d7bcf 2855 kvfree(p);
efa90a98
HD
2856 p = swap_info[type];
2857 /*
2858 * Do not memset this entry: a racing procfs swap_next()
2859 * would be relying on p->type to remain valid.
2860 */
2861 }
4efaceb1 2862 p->swap_extent_root = RB_ROOT;
18ab4d4c 2863 plist_node_init(&p->list, 0);
a2468cc9
AL
2864 for_each_node(i)
2865 plist_node_init(&p->avail_lists[i], 0);
1da177e4 2866 p->flags = SWP_USED;
5d337b91 2867 spin_unlock(&swap_lock);
ec8acf20 2868 spin_lock_init(&p->lock);
2628bd6f 2869 spin_lock_init(&p->cont_lock);
efa90a98 2870
53cbb243 2871 return p;
53cbb243
CEB
2872}
2873
4d0e1e10
CEB
2874static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2875{
2876 int error;
2877
2878 if (S_ISBLK(inode->i_mode)) {
2879 p->bdev = bdgrab(I_BDEV(inode));
2880 error = blkdev_get(p->bdev,
6f179af8 2881 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
4d0e1e10
CEB
2882 if (error < 0) {
2883 p->bdev = NULL;
6f179af8 2884 return error;
4d0e1e10
CEB
2885 }
2886 p->old_block_size = block_size(p->bdev);
2887 error = set_blocksize(p->bdev, PAGE_SIZE);
2888 if (error < 0)
87ade72a 2889 return error;
4d0e1e10
CEB
2890 p->flags |= SWP_BLKDEV;
2891 } else if (S_ISREG(inode->i_mode)) {
2892 p->bdev = inode->i_sb->s_bdev;
1638045c
DW
2893 }
2894
2895 inode_lock(inode);
2896 if (IS_SWAPFILE(inode))
2897 return -EBUSY;
4d0e1e10
CEB
2898
2899 return 0;
4d0e1e10
CEB
2900}
2901
377eeaa8
AK
2902
2903/*
2904 * Find out how many pages are allowed for a single swap device. There
2905 * are two limiting factors:
2906 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2907 * 2) the number of bits in the swap pte, as defined by the different
2908 * architectures.
2909 *
2910 * In order to find the largest possible bit mask, a swap entry with
2911 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2912 * decoded to a swp_entry_t again, and finally the swap offset is
2913 * extracted.
2914 *
2915 * This will mask all the bits from the initial ~0UL mask that can't
2916 * be encoded in either the swp_entry_t or the architecture definition
2917 * of a swap pte.
2918 */
2919unsigned long generic_max_swapfile_size(void)
2920{
2921 return swp_offset(pte_to_swp_entry(
2922 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2923}
2924
2925/* Can be overridden by an architecture for additional checks. */
2926__weak unsigned long max_swapfile_size(void)
2927{
2928 return generic_max_swapfile_size();
2929}
2930
ca8bd38b
CEB
2931static unsigned long read_swap_header(struct swap_info_struct *p,
2932 union swap_header *swap_header,
2933 struct inode *inode)
2934{
2935 int i;
2936 unsigned long maxpages;
2937 unsigned long swapfilepages;
d6bbbd29 2938 unsigned long last_page;
ca8bd38b
CEB
2939
2940 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
465c47fd 2941 pr_err("Unable to find swap-space signature\n");
38719025 2942 return 0;
ca8bd38b
CEB
2943 }
2944
2945 /* swap partition endianess hack... */
2946 if (swab32(swap_header->info.version) == 1) {
2947 swab32s(&swap_header->info.version);
2948 swab32s(&swap_header->info.last_page);
2949 swab32s(&swap_header->info.nr_badpages);
dd111be6
JH
2950 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2951 return 0;
ca8bd38b
CEB
2952 for (i = 0; i < swap_header->info.nr_badpages; i++)
2953 swab32s(&swap_header->info.badpages[i]);
2954 }
2955 /* Check the swap header's sub-version */
2956 if (swap_header->info.version != 1) {
465c47fd
AM
2957 pr_warn("Unable to handle swap header version %d\n",
2958 swap_header->info.version);
38719025 2959 return 0;
ca8bd38b
CEB
2960 }
2961
2962 p->lowest_bit = 1;
2963 p->cluster_next = 1;
2964 p->cluster_nr = 0;
2965
377eeaa8 2966 maxpages = max_swapfile_size();
d6bbbd29 2967 last_page = swap_header->info.last_page;
a06ad633
TA
2968 if (!last_page) {
2969 pr_warn("Empty swap-file\n");
2970 return 0;
2971 }
d6bbbd29 2972 if (last_page > maxpages) {
465c47fd 2973 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
d6bbbd29
RJ
2974 maxpages << (PAGE_SHIFT - 10),
2975 last_page << (PAGE_SHIFT - 10));
2976 }
2977 if (maxpages > last_page) {
2978 maxpages = last_page + 1;
ca8bd38b
CEB
2979 /* p->max is an unsigned int: don't overflow it */
2980 if ((unsigned int)maxpages == 0)
2981 maxpages = UINT_MAX;
2982 }
2983 p->highest_bit = maxpages - 1;
2984
2985 if (!maxpages)
38719025 2986 return 0;
ca8bd38b
CEB
2987 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2988 if (swapfilepages && maxpages > swapfilepages) {
465c47fd 2989 pr_warn("Swap area shorter than signature indicates\n");
38719025 2990 return 0;
ca8bd38b
CEB
2991 }
2992 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 2993 return 0;
ca8bd38b 2994 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 2995 return 0;
ca8bd38b
CEB
2996
2997 return maxpages;
ca8bd38b
CEB
2998}
2999
4b3ef9da 3000#define SWAP_CLUSTER_INFO_COLS \
235b6217 3001 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
4b3ef9da
HY
3002#define SWAP_CLUSTER_SPACE_COLS \
3003 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3004#define SWAP_CLUSTER_COLS \
3005 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
235b6217 3006
915d4d7b
CEB
3007static int setup_swap_map_and_extents(struct swap_info_struct *p,
3008 union swap_header *swap_header,
3009 unsigned char *swap_map,
2a8f9449 3010 struct swap_cluster_info *cluster_info,
915d4d7b
CEB
3011 unsigned long maxpages,
3012 sector_t *span)
3013{
235b6217 3014 unsigned int j, k;
915d4d7b
CEB
3015 unsigned int nr_good_pages;
3016 int nr_extents;
2a8f9449 3017 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
235b6217
HY
3018 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3019 unsigned long i, idx;
915d4d7b
CEB
3020
3021 nr_good_pages = maxpages - 1; /* omit header page */
3022
6b534915
HY
3023 cluster_list_init(&p->free_clusters);
3024 cluster_list_init(&p->discard_clusters);
2a8f9449 3025
915d4d7b
CEB
3026 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3027 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
3028 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3029 return -EINVAL;
915d4d7b
CEB
3030 if (page_nr < maxpages) {
3031 swap_map[page_nr] = SWAP_MAP_BAD;
3032 nr_good_pages--;
2a8f9449
SL
3033 /*
3034 * Haven't marked the cluster free yet, no list
3035 * operation involved
3036 */
3037 inc_cluster_info_page(p, cluster_info, page_nr);
915d4d7b
CEB
3038 }
3039 }
3040
2a8f9449
SL
3041 /* Haven't marked the cluster free yet, no list operation involved */
3042 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3043 inc_cluster_info_page(p, cluster_info, i);
3044
915d4d7b
CEB
3045 if (nr_good_pages) {
3046 swap_map[0] = SWAP_MAP_BAD;
2a8f9449
SL
3047 /*
3048 * Not mark the cluster free yet, no list
3049 * operation involved
3050 */
3051 inc_cluster_info_page(p, cluster_info, 0);
915d4d7b
CEB
3052 p->max = maxpages;
3053 p->pages = nr_good_pages;
3054 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
3055 if (nr_extents < 0)
3056 return nr_extents;
915d4d7b
CEB
3057 nr_good_pages = p->pages;
3058 }
3059 if (!nr_good_pages) {
465c47fd 3060 pr_warn("Empty swap-file\n");
bdb8e3f6 3061 return -EINVAL;
915d4d7b
CEB
3062 }
3063
2a8f9449
SL
3064 if (!cluster_info)
3065 return nr_extents;
3066
235b6217 3067
4b3ef9da
HY
3068 /*
3069 * Reduce false cache line sharing between cluster_info and
3070 * sharing same address space.
3071 */
235b6217
HY
3072 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3073 j = (k + col) % SWAP_CLUSTER_COLS;
3074 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3075 idx = i * SWAP_CLUSTER_COLS + j;
3076 if (idx >= nr_clusters)
3077 continue;
3078 if (cluster_count(&cluster_info[idx]))
3079 continue;
2a8f9449 3080 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
6b534915
HY
3081 cluster_list_add_tail(&p->free_clusters, cluster_info,
3082 idx);
2a8f9449 3083 }
2a8f9449 3084 }
915d4d7b 3085 return nr_extents;
915d4d7b
CEB
3086}
3087
dcf6b7dd
RA
3088/*
3089 * Helper to sys_swapon determining if a given swap
3090 * backing device queue supports DISCARD operations.
3091 */
3092static bool swap_discardable(struct swap_info_struct *si)
3093{
3094 struct request_queue *q = bdev_get_queue(si->bdev);
3095
3096 if (!q || !blk_queue_discard(q))
3097 return false;
3098
3099 return true;
3100}
3101
53cbb243
CEB
3102SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3103{
3104 struct swap_info_struct *p;
91a27b2a 3105 struct filename *name;
53cbb243
CEB
3106 struct file *swap_file = NULL;
3107 struct address_space *mapping;
40531542 3108 int prio;
53cbb243
CEB
3109 int error;
3110 union swap_header *swap_header;
915d4d7b 3111 int nr_extents;
53cbb243
CEB
3112 sector_t span;
3113 unsigned long maxpages;
53cbb243 3114 unsigned char *swap_map = NULL;
2a8f9449 3115 struct swap_cluster_info *cluster_info = NULL;
38b5faf4 3116 unsigned long *frontswap_map = NULL;
53cbb243
CEB
3117 struct page *page = NULL;
3118 struct inode *inode = NULL;
7cbf3192 3119 bool inced_nr_rotate_swap = false;
53cbb243 3120
d15cab97
HD
3121 if (swap_flags & ~SWAP_FLAGS_VALID)
3122 return -EINVAL;
3123
53cbb243
CEB
3124 if (!capable(CAP_SYS_ADMIN))
3125 return -EPERM;
3126
a2468cc9
AL
3127 if (!swap_avail_heads)
3128 return -ENOMEM;
3129
53cbb243 3130 p = alloc_swap_info();
2542e513
CEB
3131 if (IS_ERR(p))
3132 return PTR_ERR(p);
53cbb243 3133
815c2c54
SL
3134 INIT_WORK(&p->discard_work, swap_discard_work);
3135
1da177e4 3136 name = getname(specialfile);
1da177e4 3137 if (IS_ERR(name)) {
7de7fb6b 3138 error = PTR_ERR(name);
1da177e4 3139 name = NULL;
bd69010b 3140 goto bad_swap;
1da177e4 3141 }
669abf4e 3142 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 3143 if (IS_ERR(swap_file)) {
7de7fb6b 3144 error = PTR_ERR(swap_file);
1da177e4 3145 swap_file = NULL;
bd69010b 3146 goto bad_swap;
1da177e4
LT
3147 }
3148
3149 p->swap_file = swap_file;
3150 mapping = swap_file->f_mapping;
2130781e 3151 inode = mapping->host;
6f179af8 3152
5955102c 3153 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
4d0e1e10
CEB
3154 error = claim_swapfile(p, inode);
3155 if (unlikely(error))
1da177e4 3156 goto bad_swap;
1da177e4 3157
1da177e4
LT
3158 /*
3159 * Read the swap header.
3160 */
3161 if (!mapping->a_ops->readpage) {
3162 error = -EINVAL;
3163 goto bad_swap;
3164 }
090d2b18 3165 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
3166 if (IS_ERR(page)) {
3167 error = PTR_ERR(page);
3168 goto bad_swap;
3169 }
81e33971 3170 swap_header = kmap(page);
1da177e4 3171
ca8bd38b
CEB
3172 maxpages = read_swap_header(p, swap_header, inode);
3173 if (unlikely(!maxpages)) {
1da177e4
LT
3174 error = -EINVAL;
3175 goto bad_swap;
3176 }
886bb7e9 3177
81e33971 3178 /* OK, set up the swap map and apply the bad block list */
803d0c83 3179 swap_map = vzalloc(maxpages);
81e33971
HD
3180 if (!swap_map) {
3181 error = -ENOMEM;
3182 goto bad_swap;
3183 }
f0571429
MK
3184
3185 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3186 p->flags |= SWP_STABLE_WRITES;
3187
539a6fea
MK
3188 if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3189 p->flags |= SWP_SYNCHRONOUS_IO;
3190
2a8f9449 3191 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
6f179af8 3192 int cpu;
235b6217 3193 unsigned long ci, nr_cluster;
6f179af8 3194
2a8f9449
SL
3195 p->flags |= SWP_SOLIDSTATE;
3196 /*
3197 * select a random position to start with to help wear leveling
3198 * SSD
3199 */
3200 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
235b6217 3201 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2a8f9449 3202
778e1cdd 3203 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
54f180d3 3204 GFP_KERNEL);
2a8f9449
SL
3205 if (!cluster_info) {
3206 error = -ENOMEM;
3207 goto bad_swap;
3208 }
235b6217
HY
3209
3210 for (ci = 0; ci < nr_cluster; ci++)
3211 spin_lock_init(&((cluster_info + ci)->lock));
3212
ebc2a1a6
SL
3213 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3214 if (!p->percpu_cluster) {
3215 error = -ENOMEM;
3216 goto bad_swap;
3217 }
6f179af8 3218 for_each_possible_cpu(cpu) {
ebc2a1a6 3219 struct percpu_cluster *cluster;
6f179af8 3220 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
ebc2a1a6
SL
3221 cluster_set_null(&cluster->index);
3222 }
7cbf3192 3223 } else {
81a0298b 3224 atomic_inc(&nr_rotate_swap);
7cbf3192
OS
3225 inced_nr_rotate_swap = true;
3226 }
1da177e4 3227
1421ef3c
CEB
3228 error = swap_cgroup_swapon(p->type, maxpages);
3229 if (error)
3230 goto bad_swap;
3231
915d4d7b 3232 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2a8f9449 3233 cluster_info, maxpages, &span);
915d4d7b
CEB
3234 if (unlikely(nr_extents < 0)) {
3235 error = nr_extents;
1da177e4
LT
3236 goto bad_swap;
3237 }
38b5faf4 3238 /* frontswap enabled? set up bit-per-page map for frontswap */
8ea1d2a1 3239 if (IS_ENABLED(CONFIG_FRONTSWAP))
778e1cdd
KC
3240 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3241 sizeof(long),
54f180d3 3242 GFP_KERNEL);
1da177e4 3243
2a8f9449
SL
3244 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3245 /*
3246 * When discard is enabled for swap with no particular
3247 * policy flagged, we set all swap discard flags here in
3248 * order to sustain backward compatibility with older
3249 * swapon(8) releases.
3250 */
3251 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3252 SWP_PAGE_DISCARD);
dcf6b7dd 3253
2a8f9449
SL
3254 /*
3255 * By flagging sys_swapon, a sysadmin can tell us to
3256 * either do single-time area discards only, or to just
3257 * perform discards for released swap page-clusters.
3258 * Now it's time to adjust the p->flags accordingly.
3259 */
3260 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3261 p->flags &= ~SWP_PAGE_DISCARD;
3262 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3263 p->flags &= ~SWP_AREA_DISCARD;
3264
3265 /* issue a swapon-time discard if it's still required */
3266 if (p->flags & SWP_AREA_DISCARD) {
3267 int err = discard_swap(p);
3268 if (unlikely(err))
3269 pr_err("swapon: discard_swap(%p): %d\n",
3270 p, err);
dcf6b7dd 3271 }
20137a49 3272 }
6a6ba831 3273
4b3ef9da
HY
3274 error = init_swap_address_space(p->type, maxpages);
3275 if (error)
3276 goto bad_swap;
3277
dc617f29
DW
3278 /*
3279 * Flush any pending IO and dirty mappings before we start using this
3280 * swap device.
3281 */
3282 inode->i_flags |= S_SWAPFILE;
3283 error = inode_drain_writes(inode);
3284 if (error) {
3285 inode->i_flags &= ~S_SWAPFILE;
3286 goto bad_swap;
3287 }
3288
fc0abb14 3289 mutex_lock(&swapon_mutex);
40531542 3290 prio = -1;
78ecba08 3291 if (swap_flags & SWAP_FLAG_PREFER)
40531542 3292 prio =
78ecba08 3293 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2a8f9449 3294 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
c69dbfb8 3295
756a025f 3296 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 3297 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
3298 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3299 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 3300 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
3301 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3302 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 3303 (frontswap_map) ? "FS" : "");
c69dbfb8 3304
fc0abb14 3305 mutex_unlock(&swapon_mutex);
66d7dd51
KS
3306 atomic_inc(&proc_poll_event);
3307 wake_up_interruptible(&proc_poll_wait);
3308
1da177e4
LT
3309 error = 0;
3310 goto out;
3311bad_swap:
ebc2a1a6
SL
3312 free_percpu(p->percpu_cluster);
3313 p->percpu_cluster = NULL;
bd69010b 3314 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
3315 set_blocksize(p->bdev, p->old_block_size);
3316 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 3317 }
4cd3bb10 3318 destroy_swap_extents(p);
e8e6c2ec 3319 swap_cgroup_swapoff(p->type);
5d337b91 3320 spin_lock(&swap_lock);
1da177e4 3321 p->swap_file = NULL;
1da177e4 3322 p->flags = 0;
5d337b91 3323 spin_unlock(&swap_lock);
1da177e4 3324 vfree(swap_map);
8606a1a9 3325 kvfree(cluster_info);
b6b1fd2a 3326 kvfree(frontswap_map);
7cbf3192
OS
3327 if (inced_nr_rotate_swap)
3328 atomic_dec(&nr_rotate_swap);
52c50567 3329 if (swap_file) {
1638045c 3330 if (inode) {
5955102c 3331 inode_unlock(inode);
2130781e
CEB
3332 inode = NULL;
3333 }
1da177e4 3334 filp_close(swap_file, NULL);
52c50567 3335 }
1da177e4
LT
3336out:
3337 if (page && !IS_ERR(page)) {
3338 kunmap(page);
09cbfeaf 3339 put_page(page);
1da177e4
LT
3340 }
3341 if (name)
3342 putname(name);
1638045c 3343 if (inode)
5955102c 3344 inode_unlock(inode);
039939a6
TC
3345 if (!error)
3346 enable_swap_slots_cache();
1da177e4
LT
3347 return error;
3348}
3349
3350void si_swapinfo(struct sysinfo *val)
3351{
efa90a98 3352 unsigned int type;
1da177e4
LT
3353 unsigned long nr_to_be_unused = 0;
3354
5d337b91 3355 spin_lock(&swap_lock);
efa90a98
HD
3356 for (type = 0; type < nr_swapfiles; type++) {
3357 struct swap_info_struct *si = swap_info[type];
3358
3359 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3360 nr_to_be_unused += si->inuse_pages;
1da177e4 3361 }
ec8acf20 3362 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 3363 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 3364 spin_unlock(&swap_lock);
1da177e4
LT
3365}
3366
3367/*
3368 * Verify that a swap entry is valid and increment its swap map count.
3369 *
355cfa73
KH
3370 * Returns error code in following case.
3371 * - success -> 0
3372 * - swp_entry is invalid -> EINVAL
3373 * - swp_entry is migration entry -> EINVAL
3374 * - swap-cache reference is requested but there is already one. -> EEXIST
3375 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 3376 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 3377 */
8d69aaee 3378static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 3379{
73c34b6a 3380 struct swap_info_struct *p;
235b6217 3381 struct swap_cluster_info *ci;
c10d38cc 3382 unsigned long offset;
8d69aaee
HD
3383 unsigned char count;
3384 unsigned char has_cache;
253d553b 3385 int err = -EINVAL;
1da177e4 3386
eb085574 3387 p = get_swap_device(entry);
c10d38cc 3388 if (!p)
235b6217
HY
3389 goto out;
3390
eb085574 3391 offset = swp_offset(entry);
235b6217 3392 ci = lock_cluster_or_swap_info(p, offset);
355cfa73 3393
253d553b 3394 count = p->swap_map[offset];
edfe23da
SL
3395
3396 /*
3397 * swapin_readahead() doesn't check if a swap entry is valid, so the
3398 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3399 */
3400 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3401 err = -ENOENT;
3402 goto unlock_out;
3403 }
3404
253d553b
HD
3405 has_cache = count & SWAP_HAS_CACHE;
3406 count &= ~SWAP_HAS_CACHE;
3407 err = 0;
355cfa73 3408
253d553b 3409 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
3410
3411 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
3412 if (!has_cache && count)
3413 has_cache = SWAP_HAS_CACHE;
3414 else if (has_cache) /* someone else added cache */
3415 err = -EEXIST;
3416 else /* no users remaining */
3417 err = -ENOENT;
355cfa73
KH
3418
3419 } else if (count || has_cache) {
253d553b 3420
570a335b
HD
3421 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3422 count += usage;
3423 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 3424 err = -EINVAL;
570a335b
HD
3425 else if (swap_count_continued(p, offset, count))
3426 count = COUNT_CONTINUED;
3427 else
3428 err = -ENOMEM;
355cfa73 3429 } else
253d553b
HD
3430 err = -ENOENT; /* unused swap entry */
3431
3432 p->swap_map[offset] = count | has_cache;
3433
355cfa73 3434unlock_out:
235b6217 3435 unlock_cluster_or_swap_info(p, ci);
1da177e4 3436out:
eb085574
HY
3437 if (p)
3438 put_swap_device(p);
253d553b 3439 return err;
1da177e4 3440}
253d553b 3441
aaa46865
HD
3442/*
3443 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3444 * (in which case its reference count is never incremented).
3445 */
3446void swap_shmem_alloc(swp_entry_t entry)
3447{
3448 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3449}
3450
355cfa73 3451/*
08259d58
HD
3452 * Increase reference count of swap entry by 1.
3453 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3454 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3455 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3456 * might occur if a page table entry has got corrupted.
355cfa73 3457 */
570a335b 3458int swap_duplicate(swp_entry_t entry)
355cfa73 3459{
570a335b
HD
3460 int err = 0;
3461
3462 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3463 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3464 return err;
355cfa73 3465}
1da177e4 3466
cb4b86ba 3467/*
355cfa73
KH
3468 * @entry: swap entry for which we allocate swap cache.
3469 *
73c34b6a 3470 * Called when allocating swap cache for existing swap entry,
355cfa73
KH
3471 * This can return error codes. Returns 0 at success.
3472 * -EBUSY means there is a swap cache.
3473 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
3474 */
3475int swapcache_prepare(swp_entry_t entry)
3476{
253d553b 3477 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
3478}
3479
0bcac06f
MK
3480struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3481{
c10d38cc 3482 return swap_type_to_swap_info(swp_type(entry));
0bcac06f
MK
3483}
3484
f981c595
MG
3485struct swap_info_struct *page_swap_info(struct page *page)
3486{
0bcac06f
MK
3487 swp_entry_t entry = { .val = page_private(page) };
3488 return swp_swap_info(entry);
f981c595
MG
3489}
3490
3491/*
3492 * out-of-line __page_file_ methods to avoid include hell.
3493 */
3494struct address_space *__page_file_mapping(struct page *page)
3495{
f981c595
MG
3496 return page_swap_info(page)->swap_file->f_mapping;
3497}
3498EXPORT_SYMBOL_GPL(__page_file_mapping);
3499
3500pgoff_t __page_file_index(struct page *page)
3501{
3502 swp_entry_t swap = { .val = page_private(page) };
f981c595
MG
3503 return swp_offset(swap);
3504}
3505EXPORT_SYMBOL_GPL(__page_file_index);
3506
570a335b
HD
3507/*
3508 * add_swap_count_continuation - called when a swap count is duplicated
3509 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3510 * page of the original vmalloc'ed swap_map, to hold the continuation count
3511 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3512 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3513 *
3514 * These continuation pages are seldom referenced: the common paths all work
3515 * on the original swap_map, only referring to a continuation page when the
3516 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3517 *
3518 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3519 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3520 * can be called after dropping locks.
3521 */
3522int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3523{
3524 struct swap_info_struct *si;
235b6217 3525 struct swap_cluster_info *ci;
570a335b
HD
3526 struct page *head;
3527 struct page *page;
3528 struct page *list_page;
3529 pgoff_t offset;
3530 unsigned char count;
eb085574 3531 int ret = 0;
570a335b
HD
3532
3533 /*
3534 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3535 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3536 */
3537 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3538
eb085574 3539 si = get_swap_device(entry);
570a335b
HD
3540 if (!si) {
3541 /*
3542 * An acceptable race has occurred since the failing
eb085574 3543 * __swap_duplicate(): the swap device may be swapoff
570a335b
HD
3544 */
3545 goto outer;
3546 }
eb085574 3547 spin_lock(&si->lock);
570a335b
HD
3548
3549 offset = swp_offset(entry);
235b6217
HY
3550
3551 ci = lock_cluster(si, offset);
3552
570a335b
HD
3553 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3554
3555 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3556 /*
3557 * The higher the swap count, the more likely it is that tasks
3558 * will race to add swap count continuation: we need to avoid
3559 * over-provisioning.
3560 */
3561 goto out;
3562 }
3563
3564 if (!page) {
eb085574
HY
3565 ret = -ENOMEM;
3566 goto out;
570a335b
HD
3567 }
3568
3569 /*
3570 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2de1a7e4
SJ
3571 * no architecture is using highmem pages for kernel page tables: so it
3572 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
570a335b
HD
3573 */
3574 head = vmalloc_to_page(si->swap_map + offset);
3575 offset &= ~PAGE_MASK;
3576
2628bd6f 3577 spin_lock(&si->cont_lock);
570a335b
HD
3578 /*
3579 * Page allocation does not initialize the page's lru field,
3580 * but it does always reset its private field.
3581 */
3582 if (!page_private(head)) {
3583 BUG_ON(count & COUNT_CONTINUED);
3584 INIT_LIST_HEAD(&head->lru);
3585 set_page_private(head, SWP_CONTINUED);
3586 si->flags |= SWP_CONTINUED;
3587 }
3588
3589 list_for_each_entry(list_page, &head->lru, lru) {
3590 unsigned char *map;
3591
3592 /*
3593 * If the previous map said no continuation, but we've found
3594 * a continuation page, free our allocation and use this one.
3595 */
3596 if (!(count & COUNT_CONTINUED))
2628bd6f 3597 goto out_unlock_cont;
570a335b 3598
9b04c5fe 3599 map = kmap_atomic(list_page) + offset;
570a335b 3600 count = *map;
9b04c5fe 3601 kunmap_atomic(map);
570a335b
HD
3602
3603 /*
3604 * If this continuation count now has some space in it,
3605 * free our allocation and use this one.
3606 */
3607 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2628bd6f 3608 goto out_unlock_cont;
570a335b
HD
3609 }
3610
3611 list_add_tail(&page->lru, &head->lru);
3612 page = NULL; /* now it's attached, don't free it */
2628bd6f
HY
3613out_unlock_cont:
3614 spin_unlock(&si->cont_lock);
570a335b 3615out:
235b6217 3616 unlock_cluster(ci);
ec8acf20 3617 spin_unlock(&si->lock);
eb085574 3618 put_swap_device(si);
570a335b
HD
3619outer:
3620 if (page)
3621 __free_page(page);
eb085574 3622 return ret;
570a335b
HD
3623}
3624
3625/*
3626 * swap_count_continued - when the original swap_map count is incremented
3627 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3628 * into, carry if so, or else fail until a new continuation page is allocated;
3629 * when the original swap_map count is decremented from 0 with continuation,
3630 * borrow from the continuation and report whether it still holds more.
235b6217
HY
3631 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3632 * lock.
570a335b
HD
3633 */
3634static bool swap_count_continued(struct swap_info_struct *si,
3635 pgoff_t offset, unsigned char count)
3636{
3637 struct page *head;
3638 struct page *page;
3639 unsigned char *map;
2628bd6f 3640 bool ret;
570a335b
HD
3641
3642 head = vmalloc_to_page(si->swap_map + offset);
3643 if (page_private(head) != SWP_CONTINUED) {
3644 BUG_ON(count & COUNT_CONTINUED);
3645 return false; /* need to add count continuation */
3646 }
3647
2628bd6f 3648 spin_lock(&si->cont_lock);
570a335b
HD
3649 offset &= ~PAGE_MASK;
3650 page = list_entry(head->lru.next, struct page, lru);
9b04c5fe 3651 map = kmap_atomic(page) + offset;
570a335b
HD
3652
3653 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3654 goto init_map; /* jump over SWAP_CONT_MAX checks */
3655
3656 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3657 /*
3658 * Think of how you add 1 to 999
3659 */
3660 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 3661 kunmap_atomic(map);
570a335b
HD
3662 page = list_entry(page->lru.next, struct page, lru);
3663 BUG_ON(page == head);
9b04c5fe 3664 map = kmap_atomic(page) + offset;
570a335b
HD
3665 }
3666 if (*map == SWAP_CONT_MAX) {
9b04c5fe 3667 kunmap_atomic(map);
570a335b 3668 page = list_entry(page->lru.next, struct page, lru);
2628bd6f
HY
3669 if (page == head) {
3670 ret = false; /* add count continuation */
3671 goto out;
3672 }
9b04c5fe 3673 map = kmap_atomic(page) + offset;
570a335b
HD
3674init_map: *map = 0; /* we didn't zero the page */
3675 }
3676 *map += 1;
9b04c5fe 3677 kunmap_atomic(map);
570a335b
HD
3678 page = list_entry(page->lru.prev, struct page, lru);
3679 while (page != head) {
9b04c5fe 3680 map = kmap_atomic(page) + offset;
570a335b 3681 *map = COUNT_CONTINUED;
9b04c5fe 3682 kunmap_atomic(map);
570a335b
HD
3683 page = list_entry(page->lru.prev, struct page, lru);
3684 }
2628bd6f 3685 ret = true; /* incremented */
570a335b
HD
3686
3687 } else { /* decrementing */
3688 /*
3689 * Think of how you subtract 1 from 1000
3690 */
3691 BUG_ON(count != COUNT_CONTINUED);
3692 while (*map == COUNT_CONTINUED) {
9b04c5fe 3693 kunmap_atomic(map);
570a335b
HD
3694 page = list_entry(page->lru.next, struct page, lru);
3695 BUG_ON(page == head);
9b04c5fe 3696 map = kmap_atomic(page) + offset;
570a335b
HD
3697 }
3698 BUG_ON(*map == 0);
3699 *map -= 1;
3700 if (*map == 0)
3701 count = 0;
9b04c5fe 3702 kunmap_atomic(map);
570a335b
HD
3703 page = list_entry(page->lru.prev, struct page, lru);
3704 while (page != head) {
9b04c5fe 3705 map = kmap_atomic(page) + offset;
570a335b
HD
3706 *map = SWAP_CONT_MAX | count;
3707 count = COUNT_CONTINUED;
9b04c5fe 3708 kunmap_atomic(map);
570a335b
HD
3709 page = list_entry(page->lru.prev, struct page, lru);
3710 }
2628bd6f 3711 ret = count == COUNT_CONTINUED;
570a335b 3712 }
2628bd6f
HY
3713out:
3714 spin_unlock(&si->cont_lock);
3715 return ret;
570a335b
HD
3716}
3717
3718/*
3719 * free_swap_count_continuations - swapoff free all the continuation pages
3720 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3721 */
3722static void free_swap_count_continuations(struct swap_info_struct *si)
3723{
3724 pgoff_t offset;
3725
3726 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3727 struct page *head;
3728 head = vmalloc_to_page(si->swap_map + offset);
3729 if (page_private(head)) {
0d576d20
GT
3730 struct page *page, *next;
3731
3732 list_for_each_entry_safe(page, next, &head->lru, lru) {
3733 list_del(&page->lru);
570a335b
HD
3734 __free_page(page);
3735 }
3736 }
3737 }
3738}
a2468cc9 3739
2cf85583
TH
3740#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3741void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3742 gfp_t gfp_mask)
3743{
3744 struct swap_info_struct *si, *next;
3745 if (!(gfp_mask & __GFP_IO) || !memcg)
3746 return;
3747
3748 if (!blk_cgroup_congested())
3749 return;
3750
3751 /*
3752 * We've already scheduled a throttle, avoid taking the global swap
3753 * lock.
3754 */
3755 if (current->throttle_queue)
3756 return;
3757
3758 spin_lock(&swap_avail_lock);
3759 plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3760 avail_lists[node]) {
3761 if (si->bdev) {
3762 blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3763 true);
3764 break;
3765 }
3766 }
3767 spin_unlock(&swap_avail_lock);
3768}
3769#endif
3770
a2468cc9
AL
3771static int __init swapfile_init(void)
3772{
3773 int nid;
3774
3775 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3776 GFP_KERNEL);
3777 if (!swap_avail_heads) {
3778 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3779 return -ENOMEM;
3780 }
3781
3782 for_each_node(nid)
3783 plist_head_init(&swap_avail_heads[nid]);
3784
3785 return 0;
3786}
3787subsys_initcall(swapfile_init);