PCI: dwc: pci-dra7xx: Enable errata i870 for both EP and RC mode
[linux-2.6-block.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4 8#include <linux/mm.h>
6e84f315 9#include <linux/sched/mm.h>
29930025 10#include <linux/sched/task.h>
1da177e4
LT
11#include <linux/hugetlb.h>
12#include <linux/mman.h>
13#include <linux/slab.h>
14#include <linux/kernel_stat.h>
15#include <linux/swap.h>
16#include <linux/vmalloc.h>
17#include <linux/pagemap.h>
18#include <linux/namei.h>
072441e2 19#include <linux/shmem_fs.h>
1da177e4 20#include <linux/blkdev.h>
20137a49 21#include <linux/random.h>
1da177e4
LT
22#include <linux/writeback.h>
23#include <linux/proc_fs.h>
24#include <linux/seq_file.h>
25#include <linux/init.h>
5ad64688 26#include <linux/ksm.h>
1da177e4
LT
27#include <linux/rmap.h>
28#include <linux/security.h>
29#include <linux/backing-dev.h>
fc0abb14 30#include <linux/mutex.h>
c59ede7b 31#include <linux/capability.h>
1da177e4 32#include <linux/syscalls.h>
8a9f3ccd 33#include <linux/memcontrol.h>
66d7dd51 34#include <linux/poll.h>
72788c38 35#include <linux/oom.h>
38b5faf4
DM
36#include <linux/frontswap.h>
37#include <linux/swapfile.h>
f981c595 38#include <linux/export.h>
67afa38e 39#include <linux/swap_slots.h>
155b5f88 40#include <linux/sort.h>
1da177e4
LT
41
42#include <asm/pgtable.h>
43#include <asm/tlbflush.h>
44#include <linux/swapops.h>
5d1ea48b 45#include <linux/swap_cgroup.h>
1da177e4 46
570a335b
HD
47static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 unsigned char);
49static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 50static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 51
38b5faf4 52DEFINE_SPINLOCK(swap_lock);
7c363b8c 53static unsigned int nr_swapfiles;
ec8acf20 54atomic_long_t nr_swap_pages;
fb0fec50
CW
55/*
56 * Some modules use swappable objects and may try to swap them out under
57 * memory pressure (via the shrinker). Before doing so, they may wish to
58 * check to see if any swap space is available.
59 */
60EXPORT_SYMBOL_GPL(nr_swap_pages);
ec8acf20 61/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 62long total_swap_pages;
a2468cc9 63static int least_priority = -1;
1da177e4 64
1da177e4
LT
65static const char Bad_file[] = "Bad swap file entry ";
66static const char Unused_file[] = "Unused swap file entry ";
67static const char Bad_offset[] = "Bad swap offset entry ";
68static const char Unused_offset[] = "Unused swap offset entry ";
69
adfab836
DS
70/*
71 * all active swap_info_structs
72 * protected with swap_lock, and ordered by priority.
73 */
18ab4d4c
DS
74PLIST_HEAD(swap_active_head);
75
76/*
77 * all available (active, not full) swap_info_structs
78 * protected with swap_avail_lock, ordered by priority.
79 * This is used by get_swap_page() instead of swap_active_head
80 * because swap_active_head includes all swap_info_structs,
81 * but get_swap_page() doesn't need to look at full ones.
82 * This uses its own lock instead of swap_lock because when a
83 * swap_info_struct changes between not-full/full, it needs to
84 * add/remove itself to/from this list, but the swap_info_struct->lock
85 * is held and the locking order requires swap_lock to be taken
86 * before any swap_info_struct->lock.
87 */
bfc6b1ca 88static struct plist_head *swap_avail_heads;
18ab4d4c 89static DEFINE_SPINLOCK(swap_avail_lock);
1da177e4 90
38b5faf4 91struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 92
fc0abb14 93static DEFINE_MUTEX(swapon_mutex);
1da177e4 94
66d7dd51
KS
95static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96/* Activity counter to indicate that a swapon or swapoff has occurred */
97static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
81a0298b
HY
99atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
8d69aaee 101static inline unsigned char swap_count(unsigned char ent)
355cfa73 102{
955c97f0 103 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
355cfa73
KH
104}
105
efa90a98 106/* returns 1 if swap entry is freed */
c9e44410
KH
107static int
108__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
109{
efa90a98 110 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
111 struct page *page;
112 int ret = 0;
113
f6ab1f7f 114 page = find_get_page(swap_address_space(entry), swp_offset(entry));
c9e44410
KH
115 if (!page)
116 return 0;
117 /*
118 * This function is called from scan_swap_map() and it's called
119 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
120 * We have to use trylock for avoiding deadlock. This is a special
121 * case and you should use try_to_free_swap() with explicit lock_page()
122 * in usual operations.
123 */
124 if (trylock_page(page)) {
125 ret = try_to_free_swap(page);
126 unlock_page(page);
127 }
09cbfeaf 128 put_page(page);
c9e44410
KH
129 return ret;
130}
355cfa73 131
6a6ba831
HD
132/*
133 * swapon tell device that all the old swap contents can be discarded,
134 * to allow the swap device to optimize its wear-levelling.
135 */
136static int discard_swap(struct swap_info_struct *si)
137{
138 struct swap_extent *se;
9625a5f2
HD
139 sector_t start_block;
140 sector_t nr_blocks;
6a6ba831
HD
141 int err = 0;
142
9625a5f2
HD
143 /* Do not discard the swap header page! */
144 se = &si->first_swap_extent;
145 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
146 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
147 if (nr_blocks) {
148 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 149 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
150 if (err)
151 return err;
152 cond_resched();
153 }
6a6ba831 154
9625a5f2
HD
155 list_for_each_entry(se, &si->first_swap_extent.list, list) {
156 start_block = se->start_block << (PAGE_SHIFT - 9);
157 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
158
159 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 160 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
161 if (err)
162 break;
163
164 cond_resched();
165 }
166 return err; /* That will often be -EOPNOTSUPP */
167}
168
7992fde7
HD
169/*
170 * swap allocation tell device that a cluster of swap can now be discarded,
171 * to allow the swap device to optimize its wear-levelling.
172 */
173static void discard_swap_cluster(struct swap_info_struct *si,
174 pgoff_t start_page, pgoff_t nr_pages)
175{
176 struct swap_extent *se = si->curr_swap_extent;
177 int found_extent = 0;
178
179 while (nr_pages) {
7992fde7
HD
180 if (se->start_page <= start_page &&
181 start_page < se->start_page + se->nr_pages) {
182 pgoff_t offset = start_page - se->start_page;
183 sector_t start_block = se->start_block + offset;
858a2990 184 sector_t nr_blocks = se->nr_pages - offset;
7992fde7
HD
185
186 if (nr_blocks > nr_pages)
187 nr_blocks = nr_pages;
188 start_page += nr_blocks;
189 nr_pages -= nr_blocks;
190
191 if (!found_extent++)
192 si->curr_swap_extent = se;
193
194 start_block <<= PAGE_SHIFT - 9;
195 nr_blocks <<= PAGE_SHIFT - 9;
196 if (blkdev_issue_discard(si->bdev, start_block,
dd3932ed 197 nr_blocks, GFP_NOIO, 0))
7992fde7
HD
198 break;
199 }
200
a8ae4991 201 se = list_next_entry(se, list);
7992fde7
HD
202 }
203}
204
38d8b4e6
HY
205#ifdef CONFIG_THP_SWAP
206#define SWAPFILE_CLUSTER HPAGE_PMD_NR
a448f2d0
HY
207
208#define swap_entry_size(size) (size)
38d8b4e6 209#else
048c27fd 210#define SWAPFILE_CLUSTER 256
a448f2d0
HY
211
212/*
213 * Define swap_entry_size() as constant to let compiler to optimize
214 * out some code if !CONFIG_THP_SWAP
215 */
216#define swap_entry_size(size) 1
38d8b4e6 217#endif
048c27fd
HD
218#define LATENCY_LIMIT 256
219
2a8f9449
SL
220static inline void cluster_set_flag(struct swap_cluster_info *info,
221 unsigned int flag)
222{
223 info->flags = flag;
224}
225
226static inline unsigned int cluster_count(struct swap_cluster_info *info)
227{
228 return info->data;
229}
230
231static inline void cluster_set_count(struct swap_cluster_info *info,
232 unsigned int c)
233{
234 info->data = c;
235}
236
237static inline void cluster_set_count_flag(struct swap_cluster_info *info,
238 unsigned int c, unsigned int f)
239{
240 info->flags = f;
241 info->data = c;
242}
243
244static inline unsigned int cluster_next(struct swap_cluster_info *info)
245{
246 return info->data;
247}
248
249static inline void cluster_set_next(struct swap_cluster_info *info,
250 unsigned int n)
251{
252 info->data = n;
253}
254
255static inline void cluster_set_next_flag(struct swap_cluster_info *info,
256 unsigned int n, unsigned int f)
257{
258 info->flags = f;
259 info->data = n;
260}
261
262static inline bool cluster_is_free(struct swap_cluster_info *info)
263{
264 return info->flags & CLUSTER_FLAG_FREE;
265}
266
267static inline bool cluster_is_null(struct swap_cluster_info *info)
268{
269 return info->flags & CLUSTER_FLAG_NEXT_NULL;
270}
271
272static inline void cluster_set_null(struct swap_cluster_info *info)
273{
274 info->flags = CLUSTER_FLAG_NEXT_NULL;
275 info->data = 0;
276}
277
e0709829
HY
278static inline bool cluster_is_huge(struct swap_cluster_info *info)
279{
33ee011e
HY
280 if (IS_ENABLED(CONFIG_THP_SWAP))
281 return info->flags & CLUSTER_FLAG_HUGE;
282 return false;
e0709829
HY
283}
284
285static inline void cluster_clear_huge(struct swap_cluster_info *info)
286{
287 info->flags &= ~CLUSTER_FLAG_HUGE;
288}
289
235b6217
HY
290static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
291 unsigned long offset)
292{
293 struct swap_cluster_info *ci;
294
295 ci = si->cluster_info;
296 if (ci) {
297 ci += offset / SWAPFILE_CLUSTER;
298 spin_lock(&ci->lock);
299 }
300 return ci;
301}
302
303static inline void unlock_cluster(struct swap_cluster_info *ci)
304{
305 if (ci)
306 spin_unlock(&ci->lock);
307}
308
59d98bf3
HY
309/*
310 * Determine the locking method in use for this device. Return
311 * swap_cluster_info if SSD-style cluster-based locking is in place.
312 */
235b6217 313static inline struct swap_cluster_info *lock_cluster_or_swap_info(
59d98bf3 314 struct swap_info_struct *si, unsigned long offset)
235b6217
HY
315{
316 struct swap_cluster_info *ci;
317
59d98bf3 318 /* Try to use fine-grained SSD-style locking if available: */
235b6217 319 ci = lock_cluster(si, offset);
59d98bf3 320 /* Otherwise, fall back to traditional, coarse locking: */
235b6217
HY
321 if (!ci)
322 spin_lock(&si->lock);
323
324 return ci;
325}
326
327static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
328 struct swap_cluster_info *ci)
329{
330 if (ci)
331 unlock_cluster(ci);
332 else
333 spin_unlock(&si->lock);
334}
335
6b534915
HY
336static inline bool cluster_list_empty(struct swap_cluster_list *list)
337{
338 return cluster_is_null(&list->head);
339}
340
341static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
342{
343 return cluster_next(&list->head);
344}
345
346static void cluster_list_init(struct swap_cluster_list *list)
347{
348 cluster_set_null(&list->head);
349 cluster_set_null(&list->tail);
350}
351
352static void cluster_list_add_tail(struct swap_cluster_list *list,
353 struct swap_cluster_info *ci,
354 unsigned int idx)
355{
356 if (cluster_list_empty(list)) {
357 cluster_set_next_flag(&list->head, idx, 0);
358 cluster_set_next_flag(&list->tail, idx, 0);
359 } else {
235b6217 360 struct swap_cluster_info *ci_tail;
6b534915
HY
361 unsigned int tail = cluster_next(&list->tail);
362
235b6217
HY
363 /*
364 * Nested cluster lock, but both cluster locks are
365 * only acquired when we held swap_info_struct->lock
366 */
367 ci_tail = ci + tail;
368 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
369 cluster_set_next(ci_tail, idx);
0ef017d1 370 spin_unlock(&ci_tail->lock);
6b534915
HY
371 cluster_set_next_flag(&list->tail, idx, 0);
372 }
373}
374
375static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
376 struct swap_cluster_info *ci)
377{
378 unsigned int idx;
379
380 idx = cluster_next(&list->head);
381 if (cluster_next(&list->tail) == idx) {
382 cluster_set_null(&list->head);
383 cluster_set_null(&list->tail);
384 } else
385 cluster_set_next_flag(&list->head,
386 cluster_next(&ci[idx]), 0);
387
388 return idx;
389}
390
815c2c54
SL
391/* Add a cluster to discard list and schedule it to do discard */
392static void swap_cluster_schedule_discard(struct swap_info_struct *si,
393 unsigned int idx)
394{
395 /*
396 * If scan_swap_map() can't find a free cluster, it will check
397 * si->swap_map directly. To make sure the discarding cluster isn't
398 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
399 * will be cleared after discard
400 */
401 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
402 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
403
6b534915 404 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
815c2c54
SL
405
406 schedule_work(&si->discard_work);
407}
408
38d8b4e6
HY
409static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
410{
411 struct swap_cluster_info *ci = si->cluster_info;
412
413 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
414 cluster_list_add_tail(&si->free_clusters, ci, idx);
415}
416
815c2c54
SL
417/*
418 * Doing discard actually. After a cluster discard is finished, the cluster
419 * will be added to free cluster list. caller should hold si->lock.
420*/
421static void swap_do_scheduled_discard(struct swap_info_struct *si)
422{
235b6217 423 struct swap_cluster_info *info, *ci;
815c2c54
SL
424 unsigned int idx;
425
426 info = si->cluster_info;
427
6b534915
HY
428 while (!cluster_list_empty(&si->discard_clusters)) {
429 idx = cluster_list_del_first(&si->discard_clusters, info);
815c2c54
SL
430 spin_unlock(&si->lock);
431
432 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
433 SWAPFILE_CLUSTER);
434
435 spin_lock(&si->lock);
235b6217 436 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
38d8b4e6 437 __free_cluster(si, idx);
815c2c54
SL
438 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
439 0, SWAPFILE_CLUSTER);
235b6217 440 unlock_cluster(ci);
815c2c54
SL
441 }
442}
443
444static void swap_discard_work(struct work_struct *work)
445{
446 struct swap_info_struct *si;
447
448 si = container_of(work, struct swap_info_struct, discard_work);
449
450 spin_lock(&si->lock);
451 swap_do_scheduled_discard(si);
452 spin_unlock(&si->lock);
453}
454
38d8b4e6
HY
455static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
456{
457 struct swap_cluster_info *ci = si->cluster_info;
458
459 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
460 cluster_list_del_first(&si->free_clusters, ci);
461 cluster_set_count_flag(ci + idx, 0, 0);
462}
463
464static void free_cluster(struct swap_info_struct *si, unsigned long idx)
465{
466 struct swap_cluster_info *ci = si->cluster_info + idx;
467
468 VM_BUG_ON(cluster_count(ci) != 0);
469 /*
470 * If the swap is discardable, prepare discard the cluster
471 * instead of free it immediately. The cluster will be freed
472 * after discard.
473 */
474 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
475 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
476 swap_cluster_schedule_discard(si, idx);
477 return;
478 }
479
480 __free_cluster(si, idx);
481}
482
2a8f9449
SL
483/*
484 * The cluster corresponding to page_nr will be used. The cluster will be
485 * removed from free cluster list and its usage counter will be increased.
486 */
487static void inc_cluster_info_page(struct swap_info_struct *p,
488 struct swap_cluster_info *cluster_info, unsigned long page_nr)
489{
490 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
491
492 if (!cluster_info)
493 return;
38d8b4e6
HY
494 if (cluster_is_free(&cluster_info[idx]))
495 alloc_cluster(p, idx);
2a8f9449
SL
496
497 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
498 cluster_set_count(&cluster_info[idx],
499 cluster_count(&cluster_info[idx]) + 1);
500}
501
502/*
503 * The cluster corresponding to page_nr decreases one usage. If the usage
504 * counter becomes 0, which means no page in the cluster is in using, we can
505 * optionally discard the cluster and add it to free cluster list.
506 */
507static void dec_cluster_info_page(struct swap_info_struct *p,
508 struct swap_cluster_info *cluster_info, unsigned long page_nr)
509{
510 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
511
512 if (!cluster_info)
513 return;
514
515 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
516 cluster_set_count(&cluster_info[idx],
517 cluster_count(&cluster_info[idx]) - 1);
518
38d8b4e6
HY
519 if (cluster_count(&cluster_info[idx]) == 0)
520 free_cluster(p, idx);
2a8f9449
SL
521}
522
523/*
524 * It's possible scan_swap_map() uses a free cluster in the middle of free
525 * cluster list. Avoiding such abuse to avoid list corruption.
526 */
ebc2a1a6
SL
527static bool
528scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
2a8f9449
SL
529 unsigned long offset)
530{
ebc2a1a6
SL
531 struct percpu_cluster *percpu_cluster;
532 bool conflict;
533
2a8f9449 534 offset /= SWAPFILE_CLUSTER;
6b534915
HY
535 conflict = !cluster_list_empty(&si->free_clusters) &&
536 offset != cluster_list_first(&si->free_clusters) &&
2a8f9449 537 cluster_is_free(&si->cluster_info[offset]);
ebc2a1a6
SL
538
539 if (!conflict)
540 return false;
541
542 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
543 cluster_set_null(&percpu_cluster->index);
544 return true;
545}
546
547/*
548 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
549 * might involve allocating a new cluster for current CPU too.
550 */
36005bae 551static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
ebc2a1a6
SL
552 unsigned long *offset, unsigned long *scan_base)
553{
554 struct percpu_cluster *cluster;
235b6217 555 struct swap_cluster_info *ci;
ebc2a1a6 556 bool found_free;
235b6217 557 unsigned long tmp, max;
ebc2a1a6
SL
558
559new_cluster:
560 cluster = this_cpu_ptr(si->percpu_cluster);
561 if (cluster_is_null(&cluster->index)) {
6b534915
HY
562 if (!cluster_list_empty(&si->free_clusters)) {
563 cluster->index = si->free_clusters.head;
ebc2a1a6
SL
564 cluster->next = cluster_next(&cluster->index) *
565 SWAPFILE_CLUSTER;
6b534915 566 } else if (!cluster_list_empty(&si->discard_clusters)) {
ebc2a1a6
SL
567 /*
568 * we don't have free cluster but have some clusters in
569 * discarding, do discard now and reclaim them
570 */
571 swap_do_scheduled_discard(si);
572 *scan_base = *offset = si->cluster_next;
573 goto new_cluster;
574 } else
36005bae 575 return false;
ebc2a1a6
SL
576 }
577
578 found_free = false;
579
580 /*
581 * Other CPUs can use our cluster if they can't find a free cluster,
582 * check if there is still free entry in the cluster
583 */
584 tmp = cluster->next;
235b6217
HY
585 max = min_t(unsigned long, si->max,
586 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
587 if (tmp >= max) {
588 cluster_set_null(&cluster->index);
589 goto new_cluster;
590 }
591 ci = lock_cluster(si, tmp);
592 while (tmp < max) {
ebc2a1a6
SL
593 if (!si->swap_map[tmp]) {
594 found_free = true;
595 break;
596 }
597 tmp++;
598 }
235b6217 599 unlock_cluster(ci);
ebc2a1a6
SL
600 if (!found_free) {
601 cluster_set_null(&cluster->index);
602 goto new_cluster;
603 }
604 cluster->next = tmp + 1;
605 *offset = tmp;
606 *scan_base = tmp;
36005bae 607 return found_free;
2a8f9449
SL
608}
609
a2468cc9
AL
610static void __del_from_avail_list(struct swap_info_struct *p)
611{
612 int nid;
613
614 for_each_node(nid)
615 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
616}
617
618static void del_from_avail_list(struct swap_info_struct *p)
619{
620 spin_lock(&swap_avail_lock);
621 __del_from_avail_list(p);
622 spin_unlock(&swap_avail_lock);
623}
624
38d8b4e6
HY
625static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
626 unsigned int nr_entries)
627{
628 unsigned int end = offset + nr_entries - 1;
629
630 if (offset == si->lowest_bit)
631 si->lowest_bit += nr_entries;
632 if (end == si->highest_bit)
633 si->highest_bit -= nr_entries;
634 si->inuse_pages += nr_entries;
635 if (si->inuse_pages == si->pages) {
636 si->lowest_bit = si->max;
637 si->highest_bit = 0;
a2468cc9 638 del_from_avail_list(si);
38d8b4e6
HY
639 }
640}
641
a2468cc9
AL
642static void add_to_avail_list(struct swap_info_struct *p)
643{
644 int nid;
645
646 spin_lock(&swap_avail_lock);
647 for_each_node(nid) {
648 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
649 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
650 }
651 spin_unlock(&swap_avail_lock);
652}
653
38d8b4e6
HY
654static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
655 unsigned int nr_entries)
656{
657 unsigned long end = offset + nr_entries - 1;
658 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
659
660 if (offset < si->lowest_bit)
661 si->lowest_bit = offset;
662 if (end > si->highest_bit) {
663 bool was_full = !si->highest_bit;
664
665 si->highest_bit = end;
a2468cc9
AL
666 if (was_full && (si->flags & SWP_WRITEOK))
667 add_to_avail_list(si);
38d8b4e6
HY
668 }
669 atomic_long_add(nr_entries, &nr_swap_pages);
670 si->inuse_pages -= nr_entries;
671 if (si->flags & SWP_BLKDEV)
672 swap_slot_free_notify =
673 si->bdev->bd_disk->fops->swap_slot_free_notify;
674 else
675 swap_slot_free_notify = NULL;
676 while (offset <= end) {
677 frontswap_invalidate_page(si->type, offset);
678 if (swap_slot_free_notify)
679 swap_slot_free_notify(si->bdev, offset);
680 offset++;
681 }
682}
683
36005bae
TC
684static int scan_swap_map_slots(struct swap_info_struct *si,
685 unsigned char usage, int nr,
686 swp_entry_t slots[])
1da177e4 687{
235b6217 688 struct swap_cluster_info *ci;
ebebbbe9 689 unsigned long offset;
c60aa176 690 unsigned long scan_base;
7992fde7 691 unsigned long last_in_cluster = 0;
048c27fd 692 int latency_ration = LATENCY_LIMIT;
36005bae
TC
693 int n_ret = 0;
694
695 if (nr > SWAP_BATCH)
696 nr = SWAP_BATCH;
7dfad418 697
886bb7e9 698 /*
7dfad418
HD
699 * We try to cluster swap pages by allocating them sequentially
700 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
701 * way, however, we resort to first-free allocation, starting
702 * a new cluster. This prevents us from scattering swap pages
703 * all over the entire swap partition, so that we reduce
704 * overall disk seek times between swap pages. -- sct
705 * But we do now try to find an empty cluster. -Andrea
c60aa176 706 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
707 */
708
52b7efdb 709 si->flags += SWP_SCANNING;
c60aa176 710 scan_base = offset = si->cluster_next;
ebebbbe9 711
ebc2a1a6
SL
712 /* SSD algorithm */
713 if (si->cluster_info) {
36005bae
TC
714 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
715 goto checks;
716 else
717 goto scan;
ebc2a1a6
SL
718 }
719
ebebbbe9
HD
720 if (unlikely(!si->cluster_nr--)) {
721 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
722 si->cluster_nr = SWAPFILE_CLUSTER - 1;
723 goto checks;
724 }
2a8f9449 725
ec8acf20 726 spin_unlock(&si->lock);
7dfad418 727
c60aa176
HD
728 /*
729 * If seek is expensive, start searching for new cluster from
730 * start of partition, to minimize the span of allocated swap.
50088c44
CY
731 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
732 * case, just handled by scan_swap_map_try_ssd_cluster() above.
c60aa176 733 */
50088c44 734 scan_base = offset = si->lowest_bit;
7dfad418
HD
735 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
736
737 /* Locate the first empty (unaligned) cluster */
738 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 739 if (si->swap_map[offset])
7dfad418
HD
740 last_in_cluster = offset + SWAPFILE_CLUSTER;
741 else if (offset == last_in_cluster) {
ec8acf20 742 spin_lock(&si->lock);
ebebbbe9
HD
743 offset -= SWAPFILE_CLUSTER - 1;
744 si->cluster_next = offset;
745 si->cluster_nr = SWAPFILE_CLUSTER - 1;
c60aa176
HD
746 goto checks;
747 }
748 if (unlikely(--latency_ration < 0)) {
749 cond_resched();
750 latency_ration = LATENCY_LIMIT;
751 }
752 }
753
754 offset = scan_base;
ec8acf20 755 spin_lock(&si->lock);
ebebbbe9 756 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1da177e4 757 }
7dfad418 758
ebebbbe9 759checks:
ebc2a1a6 760 if (si->cluster_info) {
36005bae
TC
761 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
762 /* take a break if we already got some slots */
763 if (n_ret)
764 goto done;
765 if (!scan_swap_map_try_ssd_cluster(si, &offset,
766 &scan_base))
767 goto scan;
768 }
ebc2a1a6 769 }
ebebbbe9 770 if (!(si->flags & SWP_WRITEOK))
52b7efdb 771 goto no_page;
7dfad418
HD
772 if (!si->highest_bit)
773 goto no_page;
ebebbbe9 774 if (offset > si->highest_bit)
c60aa176 775 scan_base = offset = si->lowest_bit;
c9e44410 776
235b6217 777 ci = lock_cluster(si, offset);
b73d7fce
HD
778 /* reuse swap entry of cache-only swap if not busy. */
779 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 780 int swap_was_freed;
235b6217 781 unlock_cluster(ci);
ec8acf20 782 spin_unlock(&si->lock);
c9e44410 783 swap_was_freed = __try_to_reclaim_swap(si, offset);
ec8acf20 784 spin_lock(&si->lock);
c9e44410
KH
785 /* entry was freed successfully, try to use this again */
786 if (swap_was_freed)
787 goto checks;
788 goto scan; /* check next one */
789 }
790
235b6217
HY
791 if (si->swap_map[offset]) {
792 unlock_cluster(ci);
36005bae
TC
793 if (!n_ret)
794 goto scan;
795 else
796 goto done;
235b6217 797 }
2872bb2d
HY
798 si->swap_map[offset] = usage;
799 inc_cluster_info_page(si, si->cluster_info, offset);
800 unlock_cluster(ci);
ebebbbe9 801
38d8b4e6 802 swap_range_alloc(si, offset, 1);
ebebbbe9 803 si->cluster_next = offset + 1;
36005bae
TC
804 slots[n_ret++] = swp_entry(si->type, offset);
805
806 /* got enough slots or reach max slots? */
807 if ((n_ret == nr) || (offset >= si->highest_bit))
808 goto done;
809
810 /* search for next available slot */
811
812 /* time to take a break? */
813 if (unlikely(--latency_ration < 0)) {
814 if (n_ret)
815 goto done;
816 spin_unlock(&si->lock);
817 cond_resched();
818 spin_lock(&si->lock);
819 latency_ration = LATENCY_LIMIT;
820 }
821
822 /* try to get more slots in cluster */
823 if (si->cluster_info) {
824 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
825 goto checks;
826 else
827 goto done;
828 }
829 /* non-ssd case */
830 ++offset;
831
832 /* non-ssd case, still more slots in cluster? */
833 if (si->cluster_nr && !si->swap_map[offset]) {
834 --si->cluster_nr;
835 goto checks;
836 }
7992fde7 837
36005bae
TC
838done:
839 si->flags -= SWP_SCANNING;
840 return n_ret;
7dfad418 841
ebebbbe9 842scan:
ec8acf20 843 spin_unlock(&si->lock);
7dfad418 844 while (++offset <= si->highest_bit) {
52b7efdb 845 if (!si->swap_map[offset]) {
ec8acf20 846 spin_lock(&si->lock);
52b7efdb
HD
847 goto checks;
848 }
c9e44410 849 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 850 spin_lock(&si->lock);
c9e44410
KH
851 goto checks;
852 }
048c27fd
HD
853 if (unlikely(--latency_ration < 0)) {
854 cond_resched();
855 latency_ration = LATENCY_LIMIT;
856 }
7dfad418 857 }
c60aa176 858 offset = si->lowest_bit;
a5998061 859 while (offset < scan_base) {
c60aa176 860 if (!si->swap_map[offset]) {
ec8acf20 861 spin_lock(&si->lock);
c60aa176
HD
862 goto checks;
863 }
c9e44410 864 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 865 spin_lock(&si->lock);
c9e44410
KH
866 goto checks;
867 }
c60aa176
HD
868 if (unlikely(--latency_ration < 0)) {
869 cond_resched();
870 latency_ration = LATENCY_LIMIT;
871 }
a5998061 872 offset++;
c60aa176 873 }
ec8acf20 874 spin_lock(&si->lock);
7dfad418
HD
875
876no_page:
52b7efdb 877 si->flags -= SWP_SCANNING;
36005bae 878 return n_ret;
1da177e4
LT
879}
880
38d8b4e6
HY
881static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
882{
883 unsigned long idx;
884 struct swap_cluster_info *ci;
885 unsigned long offset, i;
886 unsigned char *map;
887
fe5266d5
HY
888 /*
889 * Should not even be attempting cluster allocations when huge
890 * page swap is disabled. Warn and fail the allocation.
891 */
892 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
893 VM_WARN_ON_ONCE(1);
894 return 0;
895 }
896
38d8b4e6
HY
897 if (cluster_list_empty(&si->free_clusters))
898 return 0;
899
900 idx = cluster_list_first(&si->free_clusters);
901 offset = idx * SWAPFILE_CLUSTER;
902 ci = lock_cluster(si, offset);
903 alloc_cluster(si, idx);
e0709829 904 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
38d8b4e6
HY
905
906 map = si->swap_map + offset;
907 for (i = 0; i < SWAPFILE_CLUSTER; i++)
908 map[i] = SWAP_HAS_CACHE;
909 unlock_cluster(ci);
910 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
911 *slot = swp_entry(si->type, offset);
912
913 return 1;
914}
915
916static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
917{
918 unsigned long offset = idx * SWAPFILE_CLUSTER;
919 struct swap_cluster_info *ci;
920
921 ci = lock_cluster(si, offset);
922 cluster_set_count_flag(ci, 0, 0);
923 free_cluster(si, idx);
924 unlock_cluster(ci);
925 swap_range_free(si, offset, SWAPFILE_CLUSTER);
926}
38d8b4e6 927
36005bae
TC
928static unsigned long scan_swap_map(struct swap_info_struct *si,
929 unsigned char usage)
930{
931 swp_entry_t entry;
932 int n_ret;
933
934 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
935
936 if (n_ret)
937 return swp_offset(entry);
938 else
939 return 0;
940
941}
942
5d5e8f19 943int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1da177e4 944{
5d5e8f19 945 unsigned long size = swap_entry_size(entry_size);
adfab836 946 struct swap_info_struct *si, *next;
36005bae
TC
947 long avail_pgs;
948 int n_ret = 0;
a2468cc9 949 int node;
1da177e4 950
38d8b4e6 951 /* Only single cluster request supported */
5d5e8f19 952 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
38d8b4e6 953
5d5e8f19 954 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
36005bae 955 if (avail_pgs <= 0)
fb4f88dc 956 goto noswap;
36005bae
TC
957
958 if (n_goal > SWAP_BATCH)
959 n_goal = SWAP_BATCH;
960
961 if (n_goal > avail_pgs)
962 n_goal = avail_pgs;
963
5d5e8f19 964 atomic_long_sub(n_goal * size, &nr_swap_pages);
fb4f88dc 965
18ab4d4c
DS
966 spin_lock(&swap_avail_lock);
967
968start_over:
a2468cc9
AL
969 node = numa_node_id();
970 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
18ab4d4c 971 /* requeue si to after same-priority siblings */
a2468cc9 972 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
18ab4d4c 973 spin_unlock(&swap_avail_lock);
ec8acf20 974 spin_lock(&si->lock);
adfab836 975 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
18ab4d4c 976 spin_lock(&swap_avail_lock);
a2468cc9 977 if (plist_node_empty(&si->avail_lists[node])) {
18ab4d4c
DS
978 spin_unlock(&si->lock);
979 goto nextsi;
980 }
981 WARN(!si->highest_bit,
982 "swap_info %d in list but !highest_bit\n",
983 si->type);
984 WARN(!(si->flags & SWP_WRITEOK),
985 "swap_info %d in list but !SWP_WRITEOK\n",
986 si->type);
a2468cc9 987 __del_from_avail_list(si);
ec8acf20 988 spin_unlock(&si->lock);
18ab4d4c 989 goto nextsi;
ec8acf20 990 }
5d5e8f19 991 if (size == SWAPFILE_CLUSTER) {
f0eea189
HY
992 if (!(si->flags & SWP_FILE))
993 n_ret = swap_alloc_cluster(si, swp_entries);
994 } else
38d8b4e6
HY
995 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
996 n_goal, swp_entries);
ec8acf20 997 spin_unlock(&si->lock);
5d5e8f19 998 if (n_ret || size == SWAPFILE_CLUSTER)
36005bae 999 goto check_out;
18ab4d4c 1000 pr_debug("scan_swap_map of si %d failed to find offset\n",
36005bae
TC
1001 si->type);
1002
18ab4d4c
DS
1003 spin_lock(&swap_avail_lock);
1004nextsi:
adfab836
DS
1005 /*
1006 * if we got here, it's likely that si was almost full before,
1007 * and since scan_swap_map() can drop the si->lock, multiple
1008 * callers probably all tried to get a page from the same si
18ab4d4c
DS
1009 * and it filled up before we could get one; or, the si filled
1010 * up between us dropping swap_avail_lock and taking si->lock.
1011 * Since we dropped the swap_avail_lock, the swap_avail_head
1012 * list may have been modified; so if next is still in the
36005bae
TC
1013 * swap_avail_head list then try it, otherwise start over
1014 * if we have not gotten any slots.
adfab836 1015 */
a2468cc9 1016 if (plist_node_empty(&next->avail_lists[node]))
18ab4d4c 1017 goto start_over;
1da177e4 1018 }
fb4f88dc 1019
18ab4d4c
DS
1020 spin_unlock(&swap_avail_lock);
1021
36005bae
TC
1022check_out:
1023 if (n_ret < n_goal)
5d5e8f19 1024 atomic_long_add((long)(n_goal - n_ret) * size,
38d8b4e6 1025 &nr_swap_pages);
fb4f88dc 1026noswap:
36005bae
TC
1027 return n_ret;
1028}
1029
2de1a7e4 1030/* The only caller of this function is now suspend routine */
910321ea
HD
1031swp_entry_t get_swap_page_of_type(int type)
1032{
1033 struct swap_info_struct *si;
1034 pgoff_t offset;
1035
910321ea 1036 si = swap_info[type];
ec8acf20 1037 spin_lock(&si->lock);
910321ea 1038 if (si && (si->flags & SWP_WRITEOK)) {
ec8acf20 1039 atomic_long_dec(&nr_swap_pages);
910321ea
HD
1040 /* This is called for allocating swap entry, not cache */
1041 offset = scan_swap_map(si, 1);
1042 if (offset) {
ec8acf20 1043 spin_unlock(&si->lock);
910321ea
HD
1044 return swp_entry(type, offset);
1045 }
ec8acf20 1046 atomic_long_inc(&nr_swap_pages);
910321ea 1047 }
ec8acf20 1048 spin_unlock(&si->lock);
910321ea
HD
1049 return (swp_entry_t) {0};
1050}
1051
e8c26ab6 1052static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1da177e4 1053{
73c34b6a 1054 struct swap_info_struct *p;
1da177e4
LT
1055 unsigned long offset, type;
1056
1057 if (!entry.val)
1058 goto out;
1059 type = swp_type(entry);
1060 if (type >= nr_swapfiles)
1061 goto bad_nofile;
efa90a98 1062 p = swap_info[type];
1da177e4
LT
1063 if (!(p->flags & SWP_USED))
1064 goto bad_device;
1065 offset = swp_offset(entry);
1066 if (offset >= p->max)
1067 goto bad_offset;
1da177e4
LT
1068 return p;
1069
1da177e4 1070bad_offset:
6a991fc7 1071 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1da177e4
LT
1072 goto out;
1073bad_device:
6a991fc7 1074 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1da177e4
LT
1075 goto out;
1076bad_nofile:
6a991fc7 1077 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
1078out:
1079 return NULL;
886bb7e9 1080}
1da177e4 1081
e8c26ab6
TC
1082static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1083{
1084 struct swap_info_struct *p;
1085
1086 p = __swap_info_get(entry);
1087 if (!p)
1088 goto out;
1089 if (!p->swap_map[swp_offset(entry)])
1090 goto bad_free;
1091 return p;
1092
1093bad_free:
1094 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1095 goto out;
1096out:
1097 return NULL;
1098}
1099
235b6217
HY
1100static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1101{
1102 struct swap_info_struct *p;
1103
1104 p = _swap_info_get(entry);
1105 if (p)
1106 spin_lock(&p->lock);
1107 return p;
1108}
1109
7c00bafe
TC
1110static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1111 struct swap_info_struct *q)
1112{
1113 struct swap_info_struct *p;
1114
1115 p = _swap_info_get(entry);
1116
1117 if (p != q) {
1118 if (q != NULL)
1119 spin_unlock(&q->lock);
1120 if (p != NULL)
1121 spin_lock(&p->lock);
1122 }
1123 return p;
1124}
1125
b32d5f32
HY
1126static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1127 unsigned long offset,
1128 unsigned char usage)
1da177e4 1129{
8d69aaee
HD
1130 unsigned char count;
1131 unsigned char has_cache;
235b6217 1132
253d553b 1133 count = p->swap_map[offset];
235b6217 1134
253d553b
HD
1135 has_cache = count & SWAP_HAS_CACHE;
1136 count &= ~SWAP_HAS_CACHE;
355cfa73 1137
253d553b 1138 if (usage == SWAP_HAS_CACHE) {
355cfa73 1139 VM_BUG_ON(!has_cache);
253d553b 1140 has_cache = 0;
aaa46865
HD
1141 } else if (count == SWAP_MAP_SHMEM) {
1142 /*
1143 * Or we could insist on shmem.c using a special
1144 * swap_shmem_free() and free_shmem_swap_and_cache()...
1145 */
1146 count = 0;
570a335b
HD
1147 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1148 if (count == COUNT_CONTINUED) {
1149 if (swap_count_continued(p, offset, count))
1150 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1151 else
1152 count = SWAP_MAP_MAX;
1153 } else
1154 count--;
1155 }
253d553b 1156
253d553b 1157 usage = count | has_cache;
7c00bafe
TC
1158 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1159
b32d5f32
HY
1160 return usage;
1161}
1162
1163static unsigned char __swap_entry_free(struct swap_info_struct *p,
1164 swp_entry_t entry, unsigned char usage)
1165{
1166 struct swap_cluster_info *ci;
1167 unsigned long offset = swp_offset(entry);
1168
1169 ci = lock_cluster_or_swap_info(p, offset);
1170 usage = __swap_entry_free_locked(p, offset, usage);
7c00bafe
TC
1171 unlock_cluster_or_swap_info(p, ci);
1172
1173 return usage;
1174}
355cfa73 1175
7c00bafe
TC
1176static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1177{
1178 struct swap_cluster_info *ci;
1179 unsigned long offset = swp_offset(entry);
1180 unsigned char count;
1181
1182 ci = lock_cluster(p, offset);
1183 count = p->swap_map[offset];
1184 VM_BUG_ON(count != SWAP_HAS_CACHE);
1185 p->swap_map[offset] = 0;
1186 dec_cluster_info_page(p, p->cluster_info, offset);
235b6217
HY
1187 unlock_cluster(ci);
1188
38d8b4e6
HY
1189 mem_cgroup_uncharge_swap(entry, 1);
1190 swap_range_free(p, offset, 1);
1da177e4
LT
1191}
1192
1193/*
2de1a7e4 1194 * Caller has made sure that the swap device corresponding to entry
1da177e4
LT
1195 * is still around or has not been recycled.
1196 */
1197void swap_free(swp_entry_t entry)
1198{
73c34b6a 1199 struct swap_info_struct *p;
1da177e4 1200
235b6217 1201 p = _swap_info_get(entry);
7c00bafe
TC
1202 if (p) {
1203 if (!__swap_entry_free(p, entry, 1))
67afa38e 1204 free_swap_slot(entry);
7c00bafe 1205 }
1da177e4
LT
1206}
1207
cb4b86ba
KH
1208/*
1209 * Called after dropping swapcache to decrease refcnt to swap entries.
1210 */
a448f2d0 1211void put_swap_page(struct page *page, swp_entry_t entry)
38d8b4e6
HY
1212{
1213 unsigned long offset = swp_offset(entry);
1214 unsigned long idx = offset / SWAPFILE_CLUSTER;
1215 struct swap_cluster_info *ci;
1216 struct swap_info_struct *si;
1217 unsigned char *map;
a3aea839
HY
1218 unsigned int i, free_entries = 0;
1219 unsigned char val;
a448f2d0 1220 int size = swap_entry_size(hpage_nr_pages(page));
fe5266d5 1221
a3aea839 1222 si = _swap_info_get(entry);
38d8b4e6
HY
1223 if (!si)
1224 return;
1225
c2343d27 1226 ci = lock_cluster_or_swap_info(si, offset);
a448f2d0 1227 if (size == SWAPFILE_CLUSTER) {
a448f2d0
HY
1228 VM_BUG_ON(!cluster_is_huge(ci));
1229 map = si->swap_map + offset;
1230 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1231 val = map[i];
1232 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1233 if (val == SWAP_HAS_CACHE)
1234 free_entries++;
1235 }
a448f2d0 1236 cluster_clear_huge(ci);
a448f2d0 1237 if (free_entries == SWAPFILE_CLUSTER) {
c2343d27 1238 unlock_cluster_or_swap_info(si, ci);
a448f2d0
HY
1239 spin_lock(&si->lock);
1240 ci = lock_cluster(si, offset);
1241 memset(map, 0, SWAPFILE_CLUSTER);
1242 unlock_cluster(ci);
1243 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1244 swap_free_cluster(si, idx);
1245 spin_unlock(&si->lock);
1246 return;
1247 }
1248 }
c2343d27
HY
1249 for (i = 0; i < size; i++, entry.val++) {
1250 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1251 unlock_cluster_or_swap_info(si, ci);
1252 free_swap_slot(entry);
1253 if (i == size - 1)
1254 return;
1255 lock_cluster_or_swap_info(si, offset);
a3aea839
HY
1256 }
1257 }
c2343d27 1258 unlock_cluster_or_swap_info(si, ci);
38d8b4e6 1259}
59807685 1260
fe5266d5 1261#ifdef CONFIG_THP_SWAP
59807685
HY
1262int split_swap_cluster(swp_entry_t entry)
1263{
1264 struct swap_info_struct *si;
1265 struct swap_cluster_info *ci;
1266 unsigned long offset = swp_offset(entry);
1267
1268 si = _swap_info_get(entry);
1269 if (!si)
1270 return -EBUSY;
1271 ci = lock_cluster(si, offset);
1272 cluster_clear_huge(ci);
1273 unlock_cluster(ci);
1274 return 0;
1275}
fe5266d5 1276#endif
38d8b4e6 1277
155b5f88
HY
1278static int swp_entry_cmp(const void *ent1, const void *ent2)
1279{
1280 const swp_entry_t *e1 = ent1, *e2 = ent2;
1281
1282 return (int)swp_type(*e1) - (int)swp_type(*e2);
1283}
1284
7c00bafe
TC
1285void swapcache_free_entries(swp_entry_t *entries, int n)
1286{
1287 struct swap_info_struct *p, *prev;
1288 int i;
1289
1290 if (n <= 0)
1291 return;
1292
1293 prev = NULL;
1294 p = NULL;
155b5f88
HY
1295
1296 /*
1297 * Sort swap entries by swap device, so each lock is only taken once.
1298 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1299 * so low that it isn't necessary to optimize further.
1300 */
1301 if (nr_swapfiles > 1)
1302 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
7c00bafe
TC
1303 for (i = 0; i < n; ++i) {
1304 p = swap_info_get_cont(entries[i], prev);
1305 if (p)
1306 swap_entry_free(p, entries[i]);
7c00bafe
TC
1307 prev = p;
1308 }
235b6217 1309 if (p)
7c00bafe 1310 spin_unlock(&p->lock);
cb4b86ba
KH
1311}
1312
1da177e4 1313/*
c475a8ab 1314 * How many references to page are currently swapped out?
570a335b
HD
1315 * This does not give an exact answer when swap count is continued,
1316 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 1317 */
bde05d1c 1318int page_swapcount(struct page *page)
1da177e4 1319{
c475a8ab
HD
1320 int count = 0;
1321 struct swap_info_struct *p;
235b6217 1322 struct swap_cluster_info *ci;
1da177e4 1323 swp_entry_t entry;
235b6217 1324 unsigned long offset;
1da177e4 1325
4c21e2f2 1326 entry.val = page_private(page);
235b6217 1327 p = _swap_info_get(entry);
1da177e4 1328 if (p) {
235b6217
HY
1329 offset = swp_offset(entry);
1330 ci = lock_cluster_or_swap_info(p, offset);
1331 count = swap_count(p->swap_map[offset]);
1332 unlock_cluster_or_swap_info(p, ci);
1da177e4 1333 }
c475a8ab 1334 return count;
1da177e4
LT
1335}
1336
aa8d22a1
MK
1337int __swap_count(struct swap_info_struct *si, swp_entry_t entry)
1338{
1339 pgoff_t offset = swp_offset(entry);
1340
1341 return swap_count(si->swap_map[offset]);
1342}
1343
322b8afe
HY
1344static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1345{
1346 int count = 0;
1347 pgoff_t offset = swp_offset(entry);
1348 struct swap_cluster_info *ci;
1349
1350 ci = lock_cluster_or_swap_info(si, offset);
1351 count = swap_count(si->swap_map[offset]);
1352 unlock_cluster_or_swap_info(si, ci);
1353 return count;
1354}
1355
e8c26ab6
TC
1356/*
1357 * How many references to @entry are currently swapped out?
1358 * This does not give an exact answer when swap count is continued,
1359 * but does include the high COUNT_CONTINUED flag to allow for that.
1360 */
1361int __swp_swapcount(swp_entry_t entry)
1362{
1363 int count = 0;
e8c26ab6 1364 struct swap_info_struct *si;
e8c26ab6
TC
1365
1366 si = __swap_info_get(entry);
322b8afe
HY
1367 if (si)
1368 count = swap_swapcount(si, entry);
e8c26ab6
TC
1369 return count;
1370}
1371
8334b962
MK
1372/*
1373 * How many references to @entry are currently swapped out?
1374 * This considers COUNT_CONTINUED so it returns exact answer.
1375 */
1376int swp_swapcount(swp_entry_t entry)
1377{
1378 int count, tmp_count, n;
1379 struct swap_info_struct *p;
235b6217 1380 struct swap_cluster_info *ci;
8334b962
MK
1381 struct page *page;
1382 pgoff_t offset;
1383 unsigned char *map;
1384
235b6217 1385 p = _swap_info_get(entry);
8334b962
MK
1386 if (!p)
1387 return 0;
1388
235b6217
HY
1389 offset = swp_offset(entry);
1390
1391 ci = lock_cluster_or_swap_info(p, offset);
1392
1393 count = swap_count(p->swap_map[offset]);
8334b962
MK
1394 if (!(count & COUNT_CONTINUED))
1395 goto out;
1396
1397 count &= ~COUNT_CONTINUED;
1398 n = SWAP_MAP_MAX + 1;
1399
8334b962
MK
1400 page = vmalloc_to_page(p->swap_map + offset);
1401 offset &= ~PAGE_MASK;
1402 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1403
1404 do {
a8ae4991 1405 page = list_next_entry(page, lru);
8334b962
MK
1406 map = kmap_atomic(page);
1407 tmp_count = map[offset];
1408 kunmap_atomic(map);
1409
1410 count += (tmp_count & ~COUNT_CONTINUED) * n;
1411 n *= (SWAP_CONT_MAX + 1);
1412 } while (tmp_count & COUNT_CONTINUED);
1413out:
235b6217 1414 unlock_cluster_or_swap_info(p, ci);
8334b962
MK
1415 return count;
1416}
1417
e0709829
HY
1418static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1419 swp_entry_t entry)
1420{
1421 struct swap_cluster_info *ci;
1422 unsigned char *map = si->swap_map;
1423 unsigned long roffset = swp_offset(entry);
1424 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1425 int i;
1426 bool ret = false;
1427
1428 ci = lock_cluster_or_swap_info(si, offset);
1429 if (!ci || !cluster_is_huge(ci)) {
afa4711e 1430 if (swap_count(map[roffset]))
e0709829
HY
1431 ret = true;
1432 goto unlock_out;
1433 }
1434 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
afa4711e 1435 if (swap_count(map[offset + i])) {
e0709829
HY
1436 ret = true;
1437 break;
1438 }
1439 }
1440unlock_out:
1441 unlock_cluster_or_swap_info(si, ci);
1442 return ret;
1443}
1444
1445static bool page_swapped(struct page *page)
1446{
1447 swp_entry_t entry;
1448 struct swap_info_struct *si;
1449
fe5266d5 1450 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
e0709829
HY
1451 return page_swapcount(page) != 0;
1452
1453 page = compound_head(page);
1454 entry.val = page_private(page);
1455 si = _swap_info_get(entry);
1456 if (si)
1457 return swap_page_trans_huge_swapped(si, entry);
1458 return false;
1459}
ba3c4ce6
HY
1460
1461static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1462 int *total_swapcount)
1463{
1464 int i, map_swapcount, _total_mapcount, _total_swapcount;
1465 unsigned long offset = 0;
1466 struct swap_info_struct *si;
1467 struct swap_cluster_info *ci = NULL;
1468 unsigned char *map = NULL;
1469 int mapcount, swapcount = 0;
1470
1471 /* hugetlbfs shouldn't call it */
1472 VM_BUG_ON_PAGE(PageHuge(page), page);
1473
fe5266d5
HY
1474 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1475 mapcount = page_trans_huge_mapcount(page, total_mapcount);
ba3c4ce6
HY
1476 if (PageSwapCache(page))
1477 swapcount = page_swapcount(page);
1478 if (total_swapcount)
1479 *total_swapcount = swapcount;
1480 return mapcount + swapcount;
1481 }
1482
1483 page = compound_head(page);
1484
1485 _total_mapcount = _total_swapcount = map_swapcount = 0;
1486 if (PageSwapCache(page)) {
1487 swp_entry_t entry;
1488
1489 entry.val = page_private(page);
1490 si = _swap_info_get(entry);
1491 if (si) {
1492 map = si->swap_map;
1493 offset = swp_offset(entry);
1494 }
1495 }
1496 if (map)
1497 ci = lock_cluster(si, offset);
1498 for (i = 0; i < HPAGE_PMD_NR; i++) {
1499 mapcount = atomic_read(&page[i]._mapcount) + 1;
1500 _total_mapcount += mapcount;
1501 if (map) {
1502 swapcount = swap_count(map[offset + i]);
1503 _total_swapcount += swapcount;
1504 }
1505 map_swapcount = max(map_swapcount, mapcount + swapcount);
1506 }
1507 unlock_cluster(ci);
1508 if (PageDoubleMap(page)) {
1509 map_swapcount -= 1;
1510 _total_mapcount -= HPAGE_PMD_NR;
1511 }
1512 mapcount = compound_mapcount(page);
1513 map_swapcount += mapcount;
1514 _total_mapcount += mapcount;
1515 if (total_mapcount)
1516 *total_mapcount = _total_mapcount;
1517 if (total_swapcount)
1518 *total_swapcount = _total_swapcount;
1519
1520 return map_swapcount;
1521}
e0709829 1522
1da177e4 1523/*
7b1fe597
HD
1524 * We can write to an anon page without COW if there are no other references
1525 * to it. And as a side-effect, free up its swap: because the old content
1526 * on disk will never be read, and seeking back there to write new content
1527 * later would only waste time away from clustering.
6d0a07ed 1528 *
ba3c4ce6 1529 * NOTE: total_map_swapcount should not be relied upon by the caller if
6d0a07ed
AA
1530 * reuse_swap_page() returns false, but it may be always overwritten
1531 * (see the other implementation for CONFIG_SWAP=n).
1da177e4 1532 */
ba3c4ce6 1533bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1da177e4 1534{
ba3c4ce6 1535 int count, total_mapcount, total_swapcount;
c475a8ab 1536
309381fe 1537 VM_BUG_ON_PAGE(!PageLocked(page), page);
5ad64688 1538 if (unlikely(PageKsm(page)))
6d0a07ed 1539 return false;
ba3c4ce6
HY
1540 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1541 &total_swapcount);
1542 if (total_map_swapcount)
1543 *total_map_swapcount = total_mapcount + total_swapcount;
1544 if (count == 1 && PageSwapCache(page) &&
1545 (likely(!PageTransCompound(page)) ||
1546 /* The remaining swap count will be freed soon */
1547 total_swapcount == page_swapcount(page))) {
f0571429 1548 if (!PageWriteback(page)) {
ba3c4ce6 1549 page = compound_head(page);
7b1fe597
HD
1550 delete_from_swap_cache(page);
1551 SetPageDirty(page);
f0571429
MK
1552 } else {
1553 swp_entry_t entry;
1554 struct swap_info_struct *p;
1555
1556 entry.val = page_private(page);
1557 p = swap_info_get(entry);
1558 if (p->flags & SWP_STABLE_WRITES) {
1559 spin_unlock(&p->lock);
1560 return false;
1561 }
1562 spin_unlock(&p->lock);
7b1fe597
HD
1563 }
1564 }
ba3c4ce6 1565
5ad64688 1566 return count <= 1;
1da177e4
LT
1567}
1568
1569/*
a2c43eed
HD
1570 * If swap is getting full, or if there are no more mappings of this page,
1571 * then try_to_free_swap is called to free its swap space.
1da177e4 1572 */
a2c43eed 1573int try_to_free_swap(struct page *page)
1da177e4 1574{
309381fe 1575 VM_BUG_ON_PAGE(!PageLocked(page), page);
1da177e4
LT
1576
1577 if (!PageSwapCache(page))
1578 return 0;
1579 if (PageWriteback(page))
1580 return 0;
e0709829 1581 if (page_swapped(page))
1da177e4
LT
1582 return 0;
1583
b73d7fce
HD
1584 /*
1585 * Once hibernation has begun to create its image of memory,
1586 * there's a danger that one of the calls to try_to_free_swap()
1587 * - most probably a call from __try_to_reclaim_swap() while
1588 * hibernation is allocating its own swap pages for the image,
1589 * but conceivably even a call from memory reclaim - will free
1590 * the swap from a page which has already been recorded in the
1591 * image as a clean swapcache page, and then reuse its swap for
1592 * another page of the image. On waking from hibernation, the
1593 * original page might be freed under memory pressure, then
1594 * later read back in from swap, now with the wrong data.
1595 *
2de1a7e4 1596 * Hibernation suspends storage while it is writing the image
f90ac398 1597 * to disk so check that here.
b73d7fce 1598 */
f90ac398 1599 if (pm_suspended_storage())
b73d7fce
HD
1600 return 0;
1601
e0709829 1602 page = compound_head(page);
a2c43eed
HD
1603 delete_from_swap_cache(page);
1604 SetPageDirty(page);
1605 return 1;
68a22394
RR
1606}
1607
1da177e4
LT
1608/*
1609 * Free the swap entry like above, but also try to
1610 * free the page cache entry if it is the last user.
1611 */
2509ef26 1612int free_swap_and_cache(swp_entry_t entry)
1da177e4 1613{
2509ef26 1614 struct swap_info_struct *p;
1da177e4 1615 struct page *page = NULL;
7c00bafe 1616 unsigned char count;
1da177e4 1617
a7420aa5 1618 if (non_swap_entry(entry))
2509ef26 1619 return 1;
0697212a 1620
7c00bafe 1621 p = _swap_info_get(entry);
1da177e4 1622 if (p) {
7c00bafe 1623 count = __swap_entry_free(p, entry, 1);
e0709829
HY
1624 if (count == SWAP_HAS_CACHE &&
1625 !swap_page_trans_huge_swapped(p, entry)) {
33806f06 1626 page = find_get_page(swap_address_space(entry),
f6ab1f7f 1627 swp_offset(entry));
8413ac9d 1628 if (page && !trylock_page(page)) {
09cbfeaf 1629 put_page(page);
93fac704
NP
1630 page = NULL;
1631 }
7c00bafe 1632 } else if (!count)
67afa38e 1633 free_swap_slot(entry);
1da177e4
LT
1634 }
1635 if (page) {
a2c43eed
HD
1636 /*
1637 * Not mapped elsewhere, or swap space full? Free it!
1638 * Also recheck PageSwapCache now page is locked (above).
1639 */
93fac704 1640 if (PageSwapCache(page) && !PageWriteback(page) &&
322b8afe 1641 (!page_mapped(page) || mem_cgroup_swap_full(page)) &&
e0709829
HY
1642 !swap_page_trans_huge_swapped(p, entry)) {
1643 page = compound_head(page);
1da177e4
LT
1644 delete_from_swap_cache(page);
1645 SetPageDirty(page);
1646 }
1647 unlock_page(page);
09cbfeaf 1648 put_page(page);
1da177e4 1649 }
2509ef26 1650 return p != NULL;
1da177e4
LT
1651}
1652
b0cb1a19 1653#ifdef CONFIG_HIBERNATION
f577eb30 1654/*
915bae9e 1655 * Find the swap type that corresponds to given device (if any).
f577eb30 1656 *
915bae9e
RW
1657 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1658 * from 0, in which the swap header is expected to be located.
1659 *
1660 * This is needed for the suspend to disk (aka swsusp).
f577eb30 1661 */
7bf23687 1662int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 1663{
915bae9e 1664 struct block_device *bdev = NULL;
efa90a98 1665 int type;
f577eb30 1666
915bae9e
RW
1667 if (device)
1668 bdev = bdget(device);
1669
f577eb30 1670 spin_lock(&swap_lock);
efa90a98
HD
1671 for (type = 0; type < nr_swapfiles; type++) {
1672 struct swap_info_struct *sis = swap_info[type];
f577eb30 1673
915bae9e 1674 if (!(sis->flags & SWP_WRITEOK))
f577eb30 1675 continue;
b6b5bce3 1676
915bae9e 1677 if (!bdev) {
7bf23687 1678 if (bdev_p)
dddac6a7 1679 *bdev_p = bdgrab(sis->bdev);
7bf23687 1680
6e1819d6 1681 spin_unlock(&swap_lock);
efa90a98 1682 return type;
6e1819d6 1683 }
915bae9e 1684 if (bdev == sis->bdev) {
9625a5f2 1685 struct swap_extent *se = &sis->first_swap_extent;
915bae9e 1686
915bae9e 1687 if (se->start_block == offset) {
7bf23687 1688 if (bdev_p)
dddac6a7 1689 *bdev_p = bdgrab(sis->bdev);
7bf23687 1690
915bae9e
RW
1691 spin_unlock(&swap_lock);
1692 bdput(bdev);
efa90a98 1693 return type;
915bae9e 1694 }
f577eb30
RW
1695 }
1696 }
1697 spin_unlock(&swap_lock);
915bae9e
RW
1698 if (bdev)
1699 bdput(bdev);
1700
f577eb30
RW
1701 return -ENODEV;
1702}
1703
73c34b6a
HD
1704/*
1705 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1706 * corresponding to given index in swap_info (swap type).
1707 */
1708sector_t swapdev_block(int type, pgoff_t offset)
1709{
1710 struct block_device *bdev;
1711
1712 if ((unsigned int)type >= nr_swapfiles)
1713 return 0;
1714 if (!(swap_info[type]->flags & SWP_WRITEOK))
1715 return 0;
d4906e1a 1716 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
1717}
1718
f577eb30
RW
1719/*
1720 * Return either the total number of swap pages of given type, or the number
1721 * of free pages of that type (depending on @free)
1722 *
1723 * This is needed for software suspend
1724 */
1725unsigned int count_swap_pages(int type, int free)
1726{
1727 unsigned int n = 0;
1728
efa90a98
HD
1729 spin_lock(&swap_lock);
1730 if ((unsigned int)type < nr_swapfiles) {
1731 struct swap_info_struct *sis = swap_info[type];
1732
ec8acf20 1733 spin_lock(&sis->lock);
efa90a98
HD
1734 if (sis->flags & SWP_WRITEOK) {
1735 n = sis->pages;
f577eb30 1736 if (free)
efa90a98 1737 n -= sis->inuse_pages;
f577eb30 1738 }
ec8acf20 1739 spin_unlock(&sis->lock);
f577eb30 1740 }
efa90a98 1741 spin_unlock(&swap_lock);
f577eb30
RW
1742 return n;
1743}
73c34b6a 1744#endif /* CONFIG_HIBERNATION */
f577eb30 1745
9f8bdb3f 1746static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
179ef71c 1747{
9f8bdb3f 1748 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
179ef71c
CG
1749}
1750
1da177e4 1751/*
72866f6f
HD
1752 * No need to decide whether this PTE shares the swap entry with others,
1753 * just let do_wp_page work it out if a write is requested later - to
1754 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 1755 */
044d66c1 1756static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
1757 unsigned long addr, swp_entry_t entry, struct page *page)
1758{
9e16b7fb 1759 struct page *swapcache;
72835c86 1760 struct mem_cgroup *memcg;
044d66c1
HD
1761 spinlock_t *ptl;
1762 pte_t *pte;
1763 int ret = 1;
1764
9e16b7fb
HD
1765 swapcache = page;
1766 page = ksm_might_need_to_copy(page, vma, addr);
1767 if (unlikely(!page))
1768 return -ENOMEM;
1769
f627c2f5
KS
1770 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1771 &memcg, false)) {
044d66c1 1772 ret = -ENOMEM;
85d9fc89
KH
1773 goto out_nolock;
1774 }
044d66c1
HD
1775
1776 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
9f8bdb3f 1777 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
f627c2f5 1778 mem_cgroup_cancel_charge(page, memcg, false);
044d66c1
HD
1779 ret = 0;
1780 goto out;
1781 }
8a9f3ccd 1782
b084d435 1783 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 1784 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
1785 get_page(page);
1786 set_pte_at(vma->vm_mm, addr, pte,
1787 pte_mkold(mk_pte(page, vma->vm_page_prot)));
00501b53 1788 if (page == swapcache) {
d281ee61 1789 page_add_anon_rmap(page, vma, addr, false);
f627c2f5 1790 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1791 } else { /* ksm created a completely new copy */
d281ee61 1792 page_add_new_anon_rmap(page, vma, addr, false);
f627c2f5 1793 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53
JW
1794 lru_cache_add_active_or_unevictable(page, vma);
1795 }
1da177e4
LT
1796 swap_free(entry);
1797 /*
1798 * Move the page to the active list so it is not
1799 * immediately swapped out again after swapon.
1800 */
1801 activate_page(page);
044d66c1
HD
1802out:
1803 pte_unmap_unlock(pte, ptl);
85d9fc89 1804out_nolock:
9e16b7fb
HD
1805 if (page != swapcache) {
1806 unlock_page(page);
1807 put_page(page);
1808 }
044d66c1 1809 return ret;
1da177e4
LT
1810}
1811
1812static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1813 unsigned long addr, unsigned long end,
1814 swp_entry_t entry, struct page *page)
1815{
1da177e4 1816 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 1817 pte_t *pte;
8a9f3ccd 1818 int ret = 0;
1da177e4 1819
044d66c1
HD
1820 /*
1821 * We don't actually need pte lock while scanning for swp_pte: since
1822 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1823 * page table while we're scanning; though it could get zapped, and on
1824 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1825 * of unmatched parts which look like swp_pte, so unuse_pte must
1826 * recheck under pte lock. Scanning without pte lock lets it be
2de1a7e4 1827 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
044d66c1
HD
1828 */
1829 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1830 do {
1831 /*
1832 * swapoff spends a _lot_ of time in this loop!
1833 * Test inline before going to call unuse_pte.
1834 */
9f8bdb3f 1835 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
044d66c1
HD
1836 pte_unmap(pte);
1837 ret = unuse_pte(vma, pmd, addr, entry, page);
1838 if (ret)
1839 goto out;
1840 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1841 }
1842 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
1843 pte_unmap(pte - 1);
1844out:
8a9f3ccd 1845 return ret;
1da177e4
LT
1846}
1847
1848static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1849 unsigned long addr, unsigned long end,
1850 swp_entry_t entry, struct page *page)
1851{
1852 pmd_t *pmd;
1853 unsigned long next;
8a9f3ccd 1854 int ret;
1da177e4
LT
1855
1856 pmd = pmd_offset(pud, addr);
1857 do {
dc644a07 1858 cond_resched();
1da177e4 1859 next = pmd_addr_end(addr, end);
1a5a9906 1860 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 1861 continue;
8a9f3ccd
BS
1862 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1863 if (ret)
1864 return ret;
1da177e4
LT
1865 } while (pmd++, addr = next, addr != end);
1866 return 0;
1867}
1868
c2febafc 1869static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1da177e4
LT
1870 unsigned long addr, unsigned long end,
1871 swp_entry_t entry, struct page *page)
1872{
1873 pud_t *pud;
1874 unsigned long next;
8a9f3ccd 1875 int ret;
1da177e4 1876
c2febafc 1877 pud = pud_offset(p4d, addr);
1da177e4
LT
1878 do {
1879 next = pud_addr_end(addr, end);
1880 if (pud_none_or_clear_bad(pud))
1881 continue;
8a9f3ccd
BS
1882 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1883 if (ret)
1884 return ret;
1da177e4
LT
1885 } while (pud++, addr = next, addr != end);
1886 return 0;
1887}
1888
c2febafc
KS
1889static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1890 unsigned long addr, unsigned long end,
1891 swp_entry_t entry, struct page *page)
1892{
1893 p4d_t *p4d;
1894 unsigned long next;
1895 int ret;
1896
1897 p4d = p4d_offset(pgd, addr);
1898 do {
1899 next = p4d_addr_end(addr, end);
1900 if (p4d_none_or_clear_bad(p4d))
1901 continue;
1902 ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1903 if (ret)
1904 return ret;
1905 } while (p4d++, addr = next, addr != end);
1906 return 0;
1907}
1908
1da177e4
LT
1909static int unuse_vma(struct vm_area_struct *vma,
1910 swp_entry_t entry, struct page *page)
1911{
1912 pgd_t *pgd;
1913 unsigned long addr, end, next;
8a9f3ccd 1914 int ret;
1da177e4 1915
3ca7b3c5 1916 if (page_anon_vma(page)) {
1da177e4
LT
1917 addr = page_address_in_vma(page, vma);
1918 if (addr == -EFAULT)
1919 return 0;
1920 else
1921 end = addr + PAGE_SIZE;
1922 } else {
1923 addr = vma->vm_start;
1924 end = vma->vm_end;
1925 }
1926
1927 pgd = pgd_offset(vma->vm_mm, addr);
1928 do {
1929 next = pgd_addr_end(addr, end);
1930 if (pgd_none_or_clear_bad(pgd))
1931 continue;
c2febafc 1932 ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
8a9f3ccd
BS
1933 if (ret)
1934 return ret;
1da177e4
LT
1935 } while (pgd++, addr = next, addr != end);
1936 return 0;
1937}
1938
1939static int unuse_mm(struct mm_struct *mm,
1940 swp_entry_t entry, struct page *page)
1941{
1942 struct vm_area_struct *vma;
8a9f3ccd 1943 int ret = 0;
1da177e4
LT
1944
1945 if (!down_read_trylock(&mm->mmap_sem)) {
1946 /*
7d03431c
FLVC
1947 * Activate page so shrink_inactive_list is unlikely to unmap
1948 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 1949 */
c475a8ab 1950 activate_page(page);
1da177e4
LT
1951 unlock_page(page);
1952 down_read(&mm->mmap_sem);
1953 lock_page(page);
1954 }
1da177e4 1955 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 1956 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4 1957 break;
dc644a07 1958 cond_resched();
1da177e4 1959 }
1da177e4 1960 up_read(&mm->mmap_sem);
8a9f3ccd 1961 return (ret < 0)? ret: 0;
1da177e4
LT
1962}
1963
1964/*
38b5faf4
DM
1965 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1966 * from current position to next entry still in use.
1da177e4
LT
1967 * Recycle to start on reaching the end, returning 0 when empty.
1968 */
6eb396dc 1969static unsigned int find_next_to_unuse(struct swap_info_struct *si,
38b5faf4 1970 unsigned int prev, bool frontswap)
1da177e4 1971{
6eb396dc
HD
1972 unsigned int max = si->max;
1973 unsigned int i = prev;
8d69aaee 1974 unsigned char count;
1da177e4
LT
1975
1976 /*
5d337b91 1977 * No need for swap_lock here: we're just looking
1da177e4
LT
1978 * for whether an entry is in use, not modifying it; false
1979 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 1980 * allocations from this area (while holding swap_lock).
1da177e4
LT
1981 */
1982 for (;;) {
1983 if (++i >= max) {
1984 if (!prev) {
1985 i = 0;
1986 break;
1987 }
1988 /*
1989 * No entries in use at top of swap_map,
1990 * loop back to start and recheck there.
1991 */
1992 max = prev + 1;
1993 prev = 0;
1994 i = 1;
1995 }
4db0c3c2 1996 count = READ_ONCE(si->swap_map[i]);
355cfa73 1997 if (count && swap_count(count) != SWAP_MAP_BAD)
dc644a07
HD
1998 if (!frontswap || frontswap_test(si, i))
1999 break;
2000 if ((i % LATENCY_LIMIT) == 0)
2001 cond_resched();
1da177e4
LT
2002 }
2003 return i;
2004}
2005
2006/*
2007 * We completely avoid races by reading each swap page in advance,
2008 * and then search for the process using it. All the necessary
2009 * page table adjustments can then be made atomically.
38b5faf4
DM
2010 *
2011 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
2012 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1da177e4 2013 */
38b5faf4
DM
2014int try_to_unuse(unsigned int type, bool frontswap,
2015 unsigned long pages_to_unuse)
1da177e4 2016{
efa90a98 2017 struct swap_info_struct *si = swap_info[type];
1da177e4 2018 struct mm_struct *start_mm;
edfe23da
SL
2019 volatile unsigned char *swap_map; /* swap_map is accessed without
2020 * locking. Mark it as volatile
2021 * to prevent compiler doing
2022 * something odd.
2023 */
8d69aaee 2024 unsigned char swcount;
1da177e4
LT
2025 struct page *page;
2026 swp_entry_t entry;
6eb396dc 2027 unsigned int i = 0;
1da177e4 2028 int retval = 0;
1da177e4
LT
2029
2030 /*
2031 * When searching mms for an entry, a good strategy is to
2032 * start at the first mm we freed the previous entry from
2033 * (though actually we don't notice whether we or coincidence
2034 * freed the entry). Initialize this start_mm with a hold.
2035 *
2036 * A simpler strategy would be to start at the last mm we
2037 * freed the previous entry from; but that would take less
2038 * advantage of mmlist ordering, which clusters forked mms
2039 * together, child after parent. If we race with dup_mmap(), we
2040 * prefer to resolve parent before child, lest we miss entries
2041 * duplicated after we scanned child: using last mm would invert
570a335b 2042 * that.
1da177e4
LT
2043 */
2044 start_mm = &init_mm;
3fce371b 2045 mmget(&init_mm);
1da177e4
LT
2046
2047 /*
2048 * Keep on scanning until all entries have gone. Usually,
2049 * one pass through swap_map is enough, but not necessarily:
2050 * there are races when an instance of an entry might be missed.
2051 */
38b5faf4 2052 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1da177e4
LT
2053 if (signal_pending(current)) {
2054 retval = -EINTR;
2055 break;
2056 }
2057
886bb7e9 2058 /*
1da177e4
LT
2059 * Get a page for the entry, using the existing swap
2060 * cache page if there is one. Otherwise, get a clean
886bb7e9 2061 * page and read the swap into it.
1da177e4
LT
2062 */
2063 swap_map = &si->swap_map[i];
2064 entry = swp_entry(type, i);
02098fea 2065 page = read_swap_cache_async(entry,
23955622 2066 GFP_HIGHUSER_MOVABLE, NULL, 0, false);
1da177e4
LT
2067 if (!page) {
2068 /*
2069 * Either swap_duplicate() failed because entry
2070 * has been freed independently, and will not be
2071 * reused since sys_swapoff() already disabled
2072 * allocation from here, or alloc_page() failed.
2073 */
edfe23da
SL
2074 swcount = *swap_map;
2075 /*
2076 * We don't hold lock here, so the swap entry could be
2077 * SWAP_MAP_BAD (when the cluster is discarding).
2078 * Instead of fail out, We can just skip the swap
2079 * entry because swapoff will wait for discarding
2080 * finish anyway.
2081 */
2082 if (!swcount || swcount == SWAP_MAP_BAD)
1da177e4
LT
2083 continue;
2084 retval = -ENOMEM;
2085 break;
2086 }
2087
2088 /*
2089 * Don't hold on to start_mm if it looks like exiting.
2090 */
2091 if (atomic_read(&start_mm->mm_users) == 1) {
2092 mmput(start_mm);
2093 start_mm = &init_mm;
3fce371b 2094 mmget(&init_mm);
1da177e4
LT
2095 }
2096
2097 /*
2098 * Wait for and lock page. When do_swap_page races with
2099 * try_to_unuse, do_swap_page can handle the fault much
2100 * faster than try_to_unuse can locate the entry. This
2101 * apparently redundant "wait_on_page_locked" lets try_to_unuse
2102 * defer to do_swap_page in such a case - in some tests,
2103 * do_swap_page and try_to_unuse repeatedly compete.
2104 */
2105 wait_on_page_locked(page);
2106 wait_on_page_writeback(page);
2107 lock_page(page);
2108 wait_on_page_writeback(page);
2109
2110 /*
2111 * Remove all references to entry.
1da177e4 2112 */
1da177e4 2113 swcount = *swap_map;
aaa46865
HD
2114 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
2115 retval = shmem_unuse(entry, page);
2116 /* page has already been unlocked and released */
2117 if (retval < 0)
2118 break;
2119 continue;
1da177e4 2120 }
aaa46865
HD
2121 if (swap_count(swcount) && start_mm != &init_mm)
2122 retval = unuse_mm(start_mm, entry, page);
2123
355cfa73 2124 if (swap_count(*swap_map)) {
1da177e4
LT
2125 int set_start_mm = (*swap_map >= swcount);
2126 struct list_head *p = &start_mm->mmlist;
2127 struct mm_struct *new_start_mm = start_mm;
2128 struct mm_struct *prev_mm = start_mm;
2129 struct mm_struct *mm;
2130
3fce371b
VN
2131 mmget(new_start_mm);
2132 mmget(prev_mm);
1da177e4 2133 spin_lock(&mmlist_lock);
aaa46865 2134 while (swap_count(*swap_map) && !retval &&
1da177e4
LT
2135 (p = p->next) != &start_mm->mmlist) {
2136 mm = list_entry(p, struct mm_struct, mmlist);
388f7934 2137 if (!mmget_not_zero(mm))
1da177e4 2138 continue;
1da177e4
LT
2139 spin_unlock(&mmlist_lock);
2140 mmput(prev_mm);
2141 prev_mm = mm;
2142
2143 cond_resched();
2144
2145 swcount = *swap_map;
355cfa73 2146 if (!swap_count(swcount)) /* any usage ? */
1da177e4 2147 ;
aaa46865 2148 else if (mm == &init_mm)
1da177e4 2149 set_start_mm = 1;
aaa46865 2150 else
1da177e4 2151 retval = unuse_mm(mm, entry, page);
355cfa73 2152
32c5fc10 2153 if (set_start_mm && *swap_map < swcount) {
1da177e4 2154 mmput(new_start_mm);
3fce371b 2155 mmget(mm);
1da177e4
LT
2156 new_start_mm = mm;
2157 set_start_mm = 0;
2158 }
2159 spin_lock(&mmlist_lock);
2160 }
2161 spin_unlock(&mmlist_lock);
2162 mmput(prev_mm);
2163 mmput(start_mm);
2164 start_mm = new_start_mm;
2165 }
2166 if (retval) {
2167 unlock_page(page);
09cbfeaf 2168 put_page(page);
1da177e4
LT
2169 break;
2170 }
2171
1da177e4
LT
2172 /*
2173 * If a reference remains (rare), we would like to leave
2174 * the page in the swap cache; but try_to_unmap could
2175 * then re-duplicate the entry once we drop page lock,
2176 * so we might loop indefinitely; also, that page could
2177 * not be swapped out to other storage meanwhile. So:
2178 * delete from cache even if there's another reference,
2179 * after ensuring that the data has been saved to disk -
2180 * since if the reference remains (rarer), it will be
2181 * read from disk into another page. Splitting into two
2182 * pages would be incorrect if swap supported "shared
2183 * private" pages, but they are handled by tmpfs files.
5ad64688
HD
2184 *
2185 * Given how unuse_vma() targets one particular offset
2186 * in an anon_vma, once the anon_vma has been determined,
2187 * this splitting happens to be just what is needed to
2188 * handle where KSM pages have been swapped out: re-reading
2189 * is unnecessarily slow, but we can fix that later on.
1da177e4 2190 */
355cfa73
KH
2191 if (swap_count(*swap_map) &&
2192 PageDirty(page) && PageSwapCache(page)) {
1da177e4
LT
2193 struct writeback_control wbc = {
2194 .sync_mode = WB_SYNC_NONE,
2195 };
2196
e0709829 2197 swap_writepage(compound_head(page), &wbc);
1da177e4
LT
2198 lock_page(page);
2199 wait_on_page_writeback(page);
2200 }
68bdc8d6
HD
2201
2202 /*
2203 * It is conceivable that a racing task removed this page from
2204 * swap cache just before we acquired the page lock at the top,
2205 * or while we dropped it in unuse_mm(). The page might even
2206 * be back in swap cache on another swap area: that we must not
2207 * delete, since it may not have been written out to swap yet.
2208 */
2209 if (PageSwapCache(page) &&
e0709829
HY
2210 likely(page_private(page) == entry.val) &&
2211 !page_swapped(page))
2212 delete_from_swap_cache(compound_head(page));
1da177e4
LT
2213
2214 /*
2215 * So we could skip searching mms once swap count went
2216 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 2217 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
2218 */
2219 SetPageDirty(page);
2220 unlock_page(page);
09cbfeaf 2221 put_page(page);
1da177e4
LT
2222
2223 /*
2224 * Make sure that we aren't completely killing
2225 * interactive performance.
2226 */
2227 cond_resched();
38b5faf4
DM
2228 if (frontswap && pages_to_unuse > 0) {
2229 if (!--pages_to_unuse)
2230 break;
2231 }
1da177e4
LT
2232 }
2233
2234 mmput(start_mm);
1da177e4
LT
2235 return retval;
2236}
2237
2238/*
5d337b91
HD
2239 * After a successful try_to_unuse, if no swap is now in use, we know
2240 * we can empty the mmlist. swap_lock must be held on entry and exit.
2241 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
2242 * added to the mmlist just after page_duplicate - before would be racy.
2243 */
2244static void drain_mmlist(void)
2245{
2246 struct list_head *p, *next;
efa90a98 2247 unsigned int type;
1da177e4 2248
efa90a98
HD
2249 for (type = 0; type < nr_swapfiles; type++)
2250 if (swap_info[type]->inuse_pages)
1da177e4
LT
2251 return;
2252 spin_lock(&mmlist_lock);
2253 list_for_each_safe(p, next, &init_mm.mmlist)
2254 list_del_init(p);
2255 spin_unlock(&mmlist_lock);
2256}
2257
2258/*
2259 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
2260 * corresponds to page offset for the specified swap entry.
2261 * Note that the type of this function is sector_t, but it returns page offset
2262 * into the bdev, not sector offset.
1da177e4 2263 */
d4906e1a 2264static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 2265{
f29ad6a9
HD
2266 struct swap_info_struct *sis;
2267 struct swap_extent *start_se;
2268 struct swap_extent *se;
2269 pgoff_t offset;
2270
efa90a98 2271 sis = swap_info[swp_type(entry)];
f29ad6a9
HD
2272 *bdev = sis->bdev;
2273
2274 offset = swp_offset(entry);
2275 start_se = sis->curr_swap_extent;
2276 se = start_se;
1da177e4
LT
2277
2278 for ( ; ; ) {
1da177e4
LT
2279 if (se->start_page <= offset &&
2280 offset < (se->start_page + se->nr_pages)) {
2281 return se->start_block + (offset - se->start_page);
2282 }
a8ae4991 2283 se = list_next_entry(se, list);
1da177e4
LT
2284 sis->curr_swap_extent = se;
2285 BUG_ON(se == start_se); /* It *must* be present */
2286 }
2287}
2288
d4906e1a
LS
2289/*
2290 * Returns the page offset into bdev for the specified page's swap entry.
2291 */
2292sector_t map_swap_page(struct page *page, struct block_device **bdev)
2293{
2294 swp_entry_t entry;
2295 entry.val = page_private(page);
2296 return map_swap_entry(entry, bdev);
2297}
2298
1da177e4
LT
2299/*
2300 * Free all of a swapdev's extent information
2301 */
2302static void destroy_swap_extents(struct swap_info_struct *sis)
2303{
9625a5f2 2304 while (!list_empty(&sis->first_swap_extent.list)) {
1da177e4
LT
2305 struct swap_extent *se;
2306
a8ae4991 2307 se = list_first_entry(&sis->first_swap_extent.list,
1da177e4
LT
2308 struct swap_extent, list);
2309 list_del(&se->list);
2310 kfree(se);
2311 }
62c230bc
MG
2312
2313 if (sis->flags & SWP_FILE) {
2314 struct file *swap_file = sis->swap_file;
2315 struct address_space *mapping = swap_file->f_mapping;
2316
2317 sis->flags &= ~SWP_FILE;
2318 mapping->a_ops->swap_deactivate(swap_file);
2319 }
1da177e4
LT
2320}
2321
2322/*
2323 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 2324 * extent list. The extent list is kept sorted in page order.
1da177e4 2325 *
11d31886 2326 * This function rather assumes that it is called in ascending page order.
1da177e4 2327 */
a509bc1a 2328int
1da177e4
LT
2329add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2330 unsigned long nr_pages, sector_t start_block)
2331{
2332 struct swap_extent *se;
2333 struct swap_extent *new_se;
2334 struct list_head *lh;
2335
9625a5f2
HD
2336 if (start_page == 0) {
2337 se = &sis->first_swap_extent;
2338 sis->curr_swap_extent = se;
2339 se->start_page = 0;
2340 se->nr_pages = nr_pages;
2341 se->start_block = start_block;
2342 return 1;
2343 } else {
2344 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1da177e4 2345 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
2346 BUG_ON(se->start_page + se->nr_pages != start_page);
2347 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
2348 /* Merge it */
2349 se->nr_pages += nr_pages;
2350 return 0;
2351 }
1da177e4
LT
2352 }
2353
2354 /*
2355 * No merge. Insert a new extent, preserving ordering.
2356 */
2357 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2358 if (new_se == NULL)
2359 return -ENOMEM;
2360 new_se->start_page = start_page;
2361 new_se->nr_pages = nr_pages;
2362 new_se->start_block = start_block;
2363
9625a5f2 2364 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
53092a74 2365 return 1;
1da177e4
LT
2366}
2367
2368/*
2369 * A `swap extent' is a simple thing which maps a contiguous range of pages
2370 * onto a contiguous range of disk blocks. An ordered list of swap extents
2371 * is built at swapon time and is then used at swap_writepage/swap_readpage
2372 * time for locating where on disk a page belongs.
2373 *
2374 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2375 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2376 * swap files identically.
2377 *
2378 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2379 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2380 * swapfiles are handled *identically* after swapon time.
2381 *
2382 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2383 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2384 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2385 * requirements, they are simply tossed out - we will never use those blocks
2386 * for swapping.
2387 *
b0d9bcd4 2388 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
2389 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2390 * which will scribble on the fs.
2391 *
2392 * The amount of disk space which a single swap extent represents varies.
2393 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2394 * extents in the list. To avoid much list walking, we cache the previous
2395 * search location in `curr_swap_extent', and start new searches from there.
2396 * This is extremely effective. The average number of iterations in
2397 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2398 */
53092a74 2399static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 2400{
62c230bc
MG
2401 struct file *swap_file = sis->swap_file;
2402 struct address_space *mapping = swap_file->f_mapping;
2403 struct inode *inode = mapping->host;
1da177e4
LT
2404 int ret;
2405
1da177e4
LT
2406 if (S_ISBLK(inode->i_mode)) {
2407 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 2408 *span = sis->pages;
a509bc1a 2409 return ret;
1da177e4
LT
2410 }
2411
62c230bc 2412 if (mapping->a_ops->swap_activate) {
a509bc1a 2413 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
62c230bc
MG
2414 if (!ret) {
2415 sis->flags |= SWP_FILE;
2416 ret = add_swap_extent(sis, 0, sis->max, 0);
2417 *span = sis->pages;
2418 }
a509bc1a 2419 return ret;
62c230bc
MG
2420 }
2421
a509bc1a 2422 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
2423}
2424
a2468cc9
AL
2425static int swap_node(struct swap_info_struct *p)
2426{
2427 struct block_device *bdev;
2428
2429 if (p->bdev)
2430 bdev = p->bdev;
2431 else
2432 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2433
2434 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2435}
2436
cf0cac0a 2437static void _enable_swap_info(struct swap_info_struct *p, int prio,
2a8f9449
SL
2438 unsigned char *swap_map,
2439 struct swap_cluster_info *cluster_info)
40531542 2440{
a2468cc9
AL
2441 int i;
2442
40531542
CEB
2443 if (prio >= 0)
2444 p->prio = prio;
2445 else
2446 p->prio = --least_priority;
18ab4d4c
DS
2447 /*
2448 * the plist prio is negated because plist ordering is
2449 * low-to-high, while swap ordering is high-to-low
2450 */
2451 p->list.prio = -p->prio;
a2468cc9
AL
2452 for_each_node(i) {
2453 if (p->prio >= 0)
2454 p->avail_lists[i].prio = -p->prio;
2455 else {
2456 if (swap_node(p) == i)
2457 p->avail_lists[i].prio = 1;
2458 else
2459 p->avail_lists[i].prio = -p->prio;
2460 }
2461 }
40531542 2462 p->swap_map = swap_map;
2a8f9449 2463 p->cluster_info = cluster_info;
40531542 2464 p->flags |= SWP_WRITEOK;
ec8acf20 2465 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
2466 total_swap_pages += p->pages;
2467
adfab836 2468 assert_spin_locked(&swap_lock);
adfab836 2469 /*
18ab4d4c
DS
2470 * both lists are plists, and thus priority ordered.
2471 * swap_active_head needs to be priority ordered for swapoff(),
2472 * which on removal of any swap_info_struct with an auto-assigned
2473 * (i.e. negative) priority increments the auto-assigned priority
2474 * of any lower-priority swap_info_structs.
2475 * swap_avail_head needs to be priority ordered for get_swap_page(),
2476 * which allocates swap pages from the highest available priority
2477 * swap_info_struct.
adfab836 2478 */
18ab4d4c 2479 plist_add(&p->list, &swap_active_head);
a2468cc9 2480 add_to_avail_list(p);
cf0cac0a
CEB
2481}
2482
2483static void enable_swap_info(struct swap_info_struct *p, int prio,
2484 unsigned char *swap_map,
2a8f9449 2485 struct swap_cluster_info *cluster_info,
cf0cac0a
CEB
2486 unsigned long *frontswap_map)
2487{
4f89849d 2488 frontswap_init(p->type, frontswap_map);
cf0cac0a 2489 spin_lock(&swap_lock);
ec8acf20 2490 spin_lock(&p->lock);
2a8f9449 2491 _enable_swap_info(p, prio, swap_map, cluster_info);
ec8acf20 2492 spin_unlock(&p->lock);
cf0cac0a
CEB
2493 spin_unlock(&swap_lock);
2494}
2495
2496static void reinsert_swap_info(struct swap_info_struct *p)
2497{
2498 spin_lock(&swap_lock);
ec8acf20 2499 spin_lock(&p->lock);
2a8f9449 2500 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
ec8acf20 2501 spin_unlock(&p->lock);
40531542
CEB
2502 spin_unlock(&swap_lock);
2503}
2504
67afa38e
TC
2505bool has_usable_swap(void)
2506{
2507 bool ret = true;
2508
2509 spin_lock(&swap_lock);
2510 if (plist_head_empty(&swap_active_head))
2511 ret = false;
2512 spin_unlock(&swap_lock);
2513 return ret;
2514}
2515
c4ea37c2 2516SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 2517{
73c34b6a 2518 struct swap_info_struct *p = NULL;
8d69aaee 2519 unsigned char *swap_map;
2a8f9449 2520 struct swap_cluster_info *cluster_info;
4f89849d 2521 unsigned long *frontswap_map;
1da177e4
LT
2522 struct file *swap_file, *victim;
2523 struct address_space *mapping;
2524 struct inode *inode;
91a27b2a 2525 struct filename *pathname;
adfab836 2526 int err, found = 0;
5b808a23 2527 unsigned int old_block_size;
886bb7e9 2528
1da177e4
LT
2529 if (!capable(CAP_SYS_ADMIN))
2530 return -EPERM;
2531
191c5424
AV
2532 BUG_ON(!current->mm);
2533
1da177e4 2534 pathname = getname(specialfile);
1da177e4 2535 if (IS_ERR(pathname))
f58b59c1 2536 return PTR_ERR(pathname);
1da177e4 2537
669abf4e 2538 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
2539 err = PTR_ERR(victim);
2540 if (IS_ERR(victim))
2541 goto out;
2542
2543 mapping = victim->f_mapping;
5d337b91 2544 spin_lock(&swap_lock);
18ab4d4c 2545 plist_for_each_entry(p, &swap_active_head, list) {
22c6f8fd 2546 if (p->flags & SWP_WRITEOK) {
adfab836
DS
2547 if (p->swap_file->f_mapping == mapping) {
2548 found = 1;
1da177e4 2549 break;
adfab836 2550 }
1da177e4 2551 }
1da177e4 2552 }
adfab836 2553 if (!found) {
1da177e4 2554 err = -EINVAL;
5d337b91 2555 spin_unlock(&swap_lock);
1da177e4
LT
2556 goto out_dput;
2557 }
191c5424 2558 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
2559 vm_unacct_memory(p->pages);
2560 else {
2561 err = -ENOMEM;
5d337b91 2562 spin_unlock(&swap_lock);
1da177e4
LT
2563 goto out_dput;
2564 }
a2468cc9 2565 del_from_avail_list(p);
ec8acf20 2566 spin_lock(&p->lock);
78ecba08 2567 if (p->prio < 0) {
adfab836 2568 struct swap_info_struct *si = p;
a2468cc9 2569 int nid;
adfab836 2570
18ab4d4c 2571 plist_for_each_entry_continue(si, &swap_active_head, list) {
adfab836 2572 si->prio++;
18ab4d4c 2573 si->list.prio--;
a2468cc9
AL
2574 for_each_node(nid) {
2575 if (si->avail_lists[nid].prio != 1)
2576 si->avail_lists[nid].prio--;
2577 }
adfab836 2578 }
78ecba08
HD
2579 least_priority++;
2580 }
18ab4d4c 2581 plist_del(&p->list, &swap_active_head);
ec8acf20 2582 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
2583 total_swap_pages -= p->pages;
2584 p->flags &= ~SWP_WRITEOK;
ec8acf20 2585 spin_unlock(&p->lock);
5d337b91 2586 spin_unlock(&swap_lock);
fb4f88dc 2587
039939a6
TC
2588 disable_swap_slots_cache_lock();
2589
e1e12d2f 2590 set_current_oom_origin();
adfab836 2591 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
e1e12d2f 2592 clear_current_oom_origin();
1da177e4 2593
1da177e4
LT
2594 if (err) {
2595 /* re-insert swap space back into swap_list */
cf0cac0a 2596 reinsert_swap_info(p);
039939a6 2597 reenable_swap_slots_cache_unlock();
1da177e4
LT
2598 goto out_dput;
2599 }
52b7efdb 2600
039939a6
TC
2601 reenable_swap_slots_cache_unlock();
2602
815c2c54
SL
2603 flush_work(&p->discard_work);
2604
5d337b91 2605 destroy_swap_extents(p);
570a335b
HD
2606 if (p->flags & SWP_CONTINUED)
2607 free_swap_count_continuations(p);
2608
81a0298b
HY
2609 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2610 atomic_dec(&nr_rotate_swap);
2611
fc0abb14 2612 mutex_lock(&swapon_mutex);
5d337b91 2613 spin_lock(&swap_lock);
ec8acf20 2614 spin_lock(&p->lock);
5d337b91
HD
2615 drain_mmlist();
2616
52b7efdb 2617 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
2618 p->highest_bit = 0; /* cuts scans short */
2619 while (p->flags >= SWP_SCANNING) {
ec8acf20 2620 spin_unlock(&p->lock);
5d337b91 2621 spin_unlock(&swap_lock);
13e4b57f 2622 schedule_timeout_uninterruptible(1);
5d337b91 2623 spin_lock(&swap_lock);
ec8acf20 2624 spin_lock(&p->lock);
52b7efdb 2625 }
52b7efdb 2626
1da177e4 2627 swap_file = p->swap_file;
5b808a23 2628 old_block_size = p->old_block_size;
1da177e4
LT
2629 p->swap_file = NULL;
2630 p->max = 0;
2631 swap_map = p->swap_map;
2632 p->swap_map = NULL;
2a8f9449
SL
2633 cluster_info = p->cluster_info;
2634 p->cluster_info = NULL;
4f89849d 2635 frontswap_map = frontswap_map_get(p);
ec8acf20 2636 spin_unlock(&p->lock);
5d337b91 2637 spin_unlock(&swap_lock);
adfab836 2638 frontswap_invalidate_area(p->type);
58e97ba6 2639 frontswap_map_set(p, NULL);
fc0abb14 2640 mutex_unlock(&swapon_mutex);
ebc2a1a6
SL
2641 free_percpu(p->percpu_cluster);
2642 p->percpu_cluster = NULL;
1da177e4 2643 vfree(swap_map);
54f180d3
HY
2644 kvfree(cluster_info);
2645 kvfree(frontswap_map);
2de1a7e4 2646 /* Destroy swap account information */
adfab836 2647 swap_cgroup_swapoff(p->type);
4b3ef9da 2648 exit_swap_address_space(p->type);
27a7faa0 2649
1da177e4
LT
2650 inode = mapping->host;
2651 if (S_ISBLK(inode->i_mode)) {
2652 struct block_device *bdev = I_BDEV(inode);
5b808a23 2653 set_blocksize(bdev, old_block_size);
e525fd89 2654 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2655 } else {
5955102c 2656 inode_lock(inode);
1da177e4 2657 inode->i_flags &= ~S_SWAPFILE;
5955102c 2658 inode_unlock(inode);
1da177e4
LT
2659 }
2660 filp_close(swap_file, NULL);
f893ab41
WY
2661
2662 /*
2663 * Clear the SWP_USED flag after all resources are freed so that swapon
2664 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2665 * not hold p->lock after we cleared its SWP_WRITEOK.
2666 */
2667 spin_lock(&swap_lock);
2668 p->flags = 0;
2669 spin_unlock(&swap_lock);
2670
1da177e4 2671 err = 0;
66d7dd51
KS
2672 atomic_inc(&proc_poll_event);
2673 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
2674
2675out_dput:
2676 filp_close(victim, NULL);
2677out:
f58b59c1 2678 putname(pathname);
1da177e4
LT
2679 return err;
2680}
2681
2682#ifdef CONFIG_PROC_FS
9dd95748 2683static __poll_t swaps_poll(struct file *file, poll_table *wait)
66d7dd51 2684{
f1514638 2685 struct seq_file *seq = file->private_data;
66d7dd51
KS
2686
2687 poll_wait(file, &proc_poll_wait, wait);
2688
f1514638
KS
2689 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2690 seq->poll_event = atomic_read(&proc_poll_event);
a9a08845 2691 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
66d7dd51
KS
2692 }
2693
a9a08845 2694 return EPOLLIN | EPOLLRDNORM;
66d7dd51
KS
2695}
2696
1da177e4
LT
2697/* iterator */
2698static void *swap_start(struct seq_file *swap, loff_t *pos)
2699{
efa90a98
HD
2700 struct swap_info_struct *si;
2701 int type;
1da177e4
LT
2702 loff_t l = *pos;
2703
fc0abb14 2704 mutex_lock(&swapon_mutex);
1da177e4 2705
881e4aab
SS
2706 if (!l)
2707 return SEQ_START_TOKEN;
2708
efa90a98
HD
2709 for (type = 0; type < nr_swapfiles; type++) {
2710 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2711 si = swap_info[type];
2712 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2713 continue;
881e4aab 2714 if (!--l)
efa90a98 2715 return si;
1da177e4
LT
2716 }
2717
2718 return NULL;
2719}
2720
2721static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2722{
efa90a98
HD
2723 struct swap_info_struct *si = v;
2724 int type;
1da177e4 2725
881e4aab 2726 if (v == SEQ_START_TOKEN)
efa90a98
HD
2727 type = 0;
2728 else
2729 type = si->type + 1;
881e4aab 2730
efa90a98
HD
2731 for (; type < nr_swapfiles; type++) {
2732 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2733 si = swap_info[type];
2734 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4
LT
2735 continue;
2736 ++*pos;
efa90a98 2737 return si;
1da177e4
LT
2738 }
2739
2740 return NULL;
2741}
2742
2743static void swap_stop(struct seq_file *swap, void *v)
2744{
fc0abb14 2745 mutex_unlock(&swapon_mutex);
1da177e4
LT
2746}
2747
2748static int swap_show(struct seq_file *swap, void *v)
2749{
efa90a98 2750 struct swap_info_struct *si = v;
1da177e4
LT
2751 struct file *file;
2752 int len;
2753
efa90a98 2754 if (si == SEQ_START_TOKEN) {
881e4aab
SS
2755 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2756 return 0;
2757 }
1da177e4 2758
efa90a98 2759 file = si->swap_file;
2726d566 2760 len = seq_file_path(swap, file, " \t\n\\");
6eb396dc 2761 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9 2762 len < 40 ? 40 - len : 1, " ",
496ad9aa 2763 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 2764 "partition" : "file\t",
efa90a98
HD
2765 si->pages << (PAGE_SHIFT - 10),
2766 si->inuse_pages << (PAGE_SHIFT - 10),
2767 si->prio);
1da177e4
LT
2768 return 0;
2769}
2770
15ad7cdc 2771static const struct seq_operations swaps_op = {
1da177e4
LT
2772 .start = swap_start,
2773 .next = swap_next,
2774 .stop = swap_stop,
2775 .show = swap_show
2776};
2777
2778static int swaps_open(struct inode *inode, struct file *file)
2779{
f1514638 2780 struct seq_file *seq;
66d7dd51
KS
2781 int ret;
2782
66d7dd51 2783 ret = seq_open(file, &swaps_op);
f1514638 2784 if (ret)
66d7dd51 2785 return ret;
66d7dd51 2786
f1514638
KS
2787 seq = file->private_data;
2788 seq->poll_event = atomic_read(&proc_poll_event);
2789 return 0;
1da177e4
LT
2790}
2791
15ad7cdc 2792static const struct file_operations proc_swaps_operations = {
1da177e4
LT
2793 .open = swaps_open,
2794 .read = seq_read,
2795 .llseek = seq_lseek,
2796 .release = seq_release,
66d7dd51 2797 .poll = swaps_poll,
1da177e4
LT
2798};
2799
2800static int __init procswaps_init(void)
2801{
3d71f86f 2802 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
2803 return 0;
2804}
2805__initcall(procswaps_init);
2806#endif /* CONFIG_PROC_FS */
2807
1796316a
JB
2808#ifdef MAX_SWAPFILES_CHECK
2809static int __init max_swapfiles_check(void)
2810{
2811 MAX_SWAPFILES_CHECK();
2812 return 0;
2813}
2814late_initcall(max_swapfiles_check);
2815#endif
2816
53cbb243 2817static struct swap_info_struct *alloc_swap_info(void)
1da177e4 2818{
73c34b6a 2819 struct swap_info_struct *p;
1da177e4 2820 unsigned int type;
a2468cc9 2821 int i;
efa90a98
HD
2822
2823 p = kzalloc(sizeof(*p), GFP_KERNEL);
2824 if (!p)
53cbb243 2825 return ERR_PTR(-ENOMEM);
efa90a98 2826
5d337b91 2827 spin_lock(&swap_lock);
efa90a98
HD
2828 for (type = 0; type < nr_swapfiles; type++) {
2829 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 2830 break;
efa90a98 2831 }
0697212a 2832 if (type >= MAX_SWAPFILES) {
5d337b91 2833 spin_unlock(&swap_lock);
efa90a98 2834 kfree(p);
730c0581 2835 return ERR_PTR(-EPERM);
1da177e4 2836 }
efa90a98
HD
2837 if (type >= nr_swapfiles) {
2838 p->type = type;
2839 swap_info[type] = p;
2840 /*
2841 * Write swap_info[type] before nr_swapfiles, in case a
2842 * racing procfs swap_start() or swap_next() is reading them.
2843 * (We never shrink nr_swapfiles, we never free this entry.)
2844 */
2845 smp_wmb();
2846 nr_swapfiles++;
2847 } else {
2848 kfree(p);
2849 p = swap_info[type];
2850 /*
2851 * Do not memset this entry: a racing procfs swap_next()
2852 * would be relying on p->type to remain valid.
2853 */
2854 }
9625a5f2 2855 INIT_LIST_HEAD(&p->first_swap_extent.list);
18ab4d4c 2856 plist_node_init(&p->list, 0);
a2468cc9
AL
2857 for_each_node(i)
2858 plist_node_init(&p->avail_lists[i], 0);
1da177e4 2859 p->flags = SWP_USED;
5d337b91 2860 spin_unlock(&swap_lock);
ec8acf20 2861 spin_lock_init(&p->lock);
2628bd6f 2862 spin_lock_init(&p->cont_lock);
efa90a98 2863
53cbb243 2864 return p;
53cbb243
CEB
2865}
2866
4d0e1e10
CEB
2867static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2868{
2869 int error;
2870
2871 if (S_ISBLK(inode->i_mode)) {
2872 p->bdev = bdgrab(I_BDEV(inode));
2873 error = blkdev_get(p->bdev,
6f179af8 2874 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
4d0e1e10
CEB
2875 if (error < 0) {
2876 p->bdev = NULL;
6f179af8 2877 return error;
4d0e1e10
CEB
2878 }
2879 p->old_block_size = block_size(p->bdev);
2880 error = set_blocksize(p->bdev, PAGE_SIZE);
2881 if (error < 0)
87ade72a 2882 return error;
4d0e1e10
CEB
2883 p->flags |= SWP_BLKDEV;
2884 } else if (S_ISREG(inode->i_mode)) {
2885 p->bdev = inode->i_sb->s_bdev;
5955102c 2886 inode_lock(inode);
87ade72a
CEB
2887 if (IS_SWAPFILE(inode))
2888 return -EBUSY;
2889 } else
2890 return -EINVAL;
4d0e1e10
CEB
2891
2892 return 0;
4d0e1e10
CEB
2893}
2894
377eeaa8
AK
2895
2896/*
2897 * Find out how many pages are allowed for a single swap device. There
2898 * are two limiting factors:
2899 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2900 * 2) the number of bits in the swap pte, as defined by the different
2901 * architectures.
2902 *
2903 * In order to find the largest possible bit mask, a swap entry with
2904 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2905 * decoded to a swp_entry_t again, and finally the swap offset is
2906 * extracted.
2907 *
2908 * This will mask all the bits from the initial ~0UL mask that can't
2909 * be encoded in either the swp_entry_t or the architecture definition
2910 * of a swap pte.
2911 */
2912unsigned long generic_max_swapfile_size(void)
2913{
2914 return swp_offset(pte_to_swp_entry(
2915 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2916}
2917
2918/* Can be overridden by an architecture for additional checks. */
2919__weak unsigned long max_swapfile_size(void)
2920{
2921 return generic_max_swapfile_size();
2922}
2923
ca8bd38b
CEB
2924static unsigned long read_swap_header(struct swap_info_struct *p,
2925 union swap_header *swap_header,
2926 struct inode *inode)
2927{
2928 int i;
2929 unsigned long maxpages;
2930 unsigned long swapfilepages;
d6bbbd29 2931 unsigned long last_page;
ca8bd38b
CEB
2932
2933 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
465c47fd 2934 pr_err("Unable to find swap-space signature\n");
38719025 2935 return 0;
ca8bd38b
CEB
2936 }
2937
2938 /* swap partition endianess hack... */
2939 if (swab32(swap_header->info.version) == 1) {
2940 swab32s(&swap_header->info.version);
2941 swab32s(&swap_header->info.last_page);
2942 swab32s(&swap_header->info.nr_badpages);
dd111be6
JH
2943 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2944 return 0;
ca8bd38b
CEB
2945 for (i = 0; i < swap_header->info.nr_badpages; i++)
2946 swab32s(&swap_header->info.badpages[i]);
2947 }
2948 /* Check the swap header's sub-version */
2949 if (swap_header->info.version != 1) {
465c47fd
AM
2950 pr_warn("Unable to handle swap header version %d\n",
2951 swap_header->info.version);
38719025 2952 return 0;
ca8bd38b
CEB
2953 }
2954
2955 p->lowest_bit = 1;
2956 p->cluster_next = 1;
2957 p->cluster_nr = 0;
2958
377eeaa8 2959 maxpages = max_swapfile_size();
d6bbbd29 2960 last_page = swap_header->info.last_page;
a06ad633
TA
2961 if (!last_page) {
2962 pr_warn("Empty swap-file\n");
2963 return 0;
2964 }
d6bbbd29 2965 if (last_page > maxpages) {
465c47fd 2966 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
d6bbbd29
RJ
2967 maxpages << (PAGE_SHIFT - 10),
2968 last_page << (PAGE_SHIFT - 10));
2969 }
2970 if (maxpages > last_page) {
2971 maxpages = last_page + 1;
ca8bd38b
CEB
2972 /* p->max is an unsigned int: don't overflow it */
2973 if ((unsigned int)maxpages == 0)
2974 maxpages = UINT_MAX;
2975 }
2976 p->highest_bit = maxpages - 1;
2977
2978 if (!maxpages)
38719025 2979 return 0;
ca8bd38b
CEB
2980 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2981 if (swapfilepages && maxpages > swapfilepages) {
465c47fd 2982 pr_warn("Swap area shorter than signature indicates\n");
38719025 2983 return 0;
ca8bd38b
CEB
2984 }
2985 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 2986 return 0;
ca8bd38b 2987 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 2988 return 0;
ca8bd38b
CEB
2989
2990 return maxpages;
ca8bd38b
CEB
2991}
2992
4b3ef9da 2993#define SWAP_CLUSTER_INFO_COLS \
235b6217 2994 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
4b3ef9da
HY
2995#define SWAP_CLUSTER_SPACE_COLS \
2996 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2997#define SWAP_CLUSTER_COLS \
2998 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
235b6217 2999
915d4d7b
CEB
3000static int setup_swap_map_and_extents(struct swap_info_struct *p,
3001 union swap_header *swap_header,
3002 unsigned char *swap_map,
2a8f9449 3003 struct swap_cluster_info *cluster_info,
915d4d7b
CEB
3004 unsigned long maxpages,
3005 sector_t *span)
3006{
235b6217 3007 unsigned int j, k;
915d4d7b
CEB
3008 unsigned int nr_good_pages;
3009 int nr_extents;
2a8f9449 3010 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
235b6217
HY
3011 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3012 unsigned long i, idx;
915d4d7b
CEB
3013
3014 nr_good_pages = maxpages - 1; /* omit header page */
3015
6b534915
HY
3016 cluster_list_init(&p->free_clusters);
3017 cluster_list_init(&p->discard_clusters);
2a8f9449 3018
915d4d7b
CEB
3019 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3020 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
3021 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3022 return -EINVAL;
915d4d7b
CEB
3023 if (page_nr < maxpages) {
3024 swap_map[page_nr] = SWAP_MAP_BAD;
3025 nr_good_pages--;
2a8f9449
SL
3026 /*
3027 * Haven't marked the cluster free yet, no list
3028 * operation involved
3029 */
3030 inc_cluster_info_page(p, cluster_info, page_nr);
915d4d7b
CEB
3031 }
3032 }
3033
2a8f9449
SL
3034 /* Haven't marked the cluster free yet, no list operation involved */
3035 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3036 inc_cluster_info_page(p, cluster_info, i);
3037
915d4d7b
CEB
3038 if (nr_good_pages) {
3039 swap_map[0] = SWAP_MAP_BAD;
2a8f9449
SL
3040 /*
3041 * Not mark the cluster free yet, no list
3042 * operation involved
3043 */
3044 inc_cluster_info_page(p, cluster_info, 0);
915d4d7b
CEB
3045 p->max = maxpages;
3046 p->pages = nr_good_pages;
3047 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
3048 if (nr_extents < 0)
3049 return nr_extents;
915d4d7b
CEB
3050 nr_good_pages = p->pages;
3051 }
3052 if (!nr_good_pages) {
465c47fd 3053 pr_warn("Empty swap-file\n");
bdb8e3f6 3054 return -EINVAL;
915d4d7b
CEB
3055 }
3056
2a8f9449
SL
3057 if (!cluster_info)
3058 return nr_extents;
3059
235b6217 3060
4b3ef9da
HY
3061 /*
3062 * Reduce false cache line sharing between cluster_info and
3063 * sharing same address space.
3064 */
235b6217
HY
3065 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3066 j = (k + col) % SWAP_CLUSTER_COLS;
3067 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3068 idx = i * SWAP_CLUSTER_COLS + j;
3069 if (idx >= nr_clusters)
3070 continue;
3071 if (cluster_count(&cluster_info[idx]))
3072 continue;
2a8f9449 3073 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
6b534915
HY
3074 cluster_list_add_tail(&p->free_clusters, cluster_info,
3075 idx);
2a8f9449 3076 }
2a8f9449 3077 }
915d4d7b 3078 return nr_extents;
915d4d7b
CEB
3079}
3080
dcf6b7dd
RA
3081/*
3082 * Helper to sys_swapon determining if a given swap
3083 * backing device queue supports DISCARD operations.
3084 */
3085static bool swap_discardable(struct swap_info_struct *si)
3086{
3087 struct request_queue *q = bdev_get_queue(si->bdev);
3088
3089 if (!q || !blk_queue_discard(q))
3090 return false;
3091
3092 return true;
3093}
3094
53cbb243
CEB
3095SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3096{
3097 struct swap_info_struct *p;
91a27b2a 3098 struct filename *name;
53cbb243
CEB
3099 struct file *swap_file = NULL;
3100 struct address_space *mapping;
40531542 3101 int prio;
53cbb243
CEB
3102 int error;
3103 union swap_header *swap_header;
915d4d7b 3104 int nr_extents;
53cbb243
CEB
3105 sector_t span;
3106 unsigned long maxpages;
53cbb243 3107 unsigned char *swap_map = NULL;
2a8f9449 3108 struct swap_cluster_info *cluster_info = NULL;
38b5faf4 3109 unsigned long *frontswap_map = NULL;
53cbb243
CEB
3110 struct page *page = NULL;
3111 struct inode *inode = NULL;
7cbf3192 3112 bool inced_nr_rotate_swap = false;
53cbb243 3113
d15cab97
HD
3114 if (swap_flags & ~SWAP_FLAGS_VALID)
3115 return -EINVAL;
3116
53cbb243
CEB
3117 if (!capable(CAP_SYS_ADMIN))
3118 return -EPERM;
3119
a2468cc9
AL
3120 if (!swap_avail_heads)
3121 return -ENOMEM;
3122
53cbb243 3123 p = alloc_swap_info();
2542e513
CEB
3124 if (IS_ERR(p))
3125 return PTR_ERR(p);
53cbb243 3126
815c2c54
SL
3127 INIT_WORK(&p->discard_work, swap_discard_work);
3128
1da177e4 3129 name = getname(specialfile);
1da177e4 3130 if (IS_ERR(name)) {
7de7fb6b 3131 error = PTR_ERR(name);
1da177e4 3132 name = NULL;
bd69010b 3133 goto bad_swap;
1da177e4 3134 }
669abf4e 3135 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 3136 if (IS_ERR(swap_file)) {
7de7fb6b 3137 error = PTR_ERR(swap_file);
1da177e4 3138 swap_file = NULL;
bd69010b 3139 goto bad_swap;
1da177e4
LT
3140 }
3141
3142 p->swap_file = swap_file;
3143 mapping = swap_file->f_mapping;
2130781e 3144 inode = mapping->host;
6f179af8 3145
5955102c 3146 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
4d0e1e10
CEB
3147 error = claim_swapfile(p, inode);
3148 if (unlikely(error))
1da177e4 3149 goto bad_swap;
1da177e4 3150
1da177e4
LT
3151 /*
3152 * Read the swap header.
3153 */
3154 if (!mapping->a_ops->readpage) {
3155 error = -EINVAL;
3156 goto bad_swap;
3157 }
090d2b18 3158 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
3159 if (IS_ERR(page)) {
3160 error = PTR_ERR(page);
3161 goto bad_swap;
3162 }
81e33971 3163 swap_header = kmap(page);
1da177e4 3164
ca8bd38b
CEB
3165 maxpages = read_swap_header(p, swap_header, inode);
3166 if (unlikely(!maxpages)) {
1da177e4
LT
3167 error = -EINVAL;
3168 goto bad_swap;
3169 }
886bb7e9 3170
81e33971 3171 /* OK, set up the swap map and apply the bad block list */
803d0c83 3172 swap_map = vzalloc(maxpages);
81e33971
HD
3173 if (!swap_map) {
3174 error = -ENOMEM;
3175 goto bad_swap;
3176 }
f0571429
MK
3177
3178 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3179 p->flags |= SWP_STABLE_WRITES;
3180
539a6fea
MK
3181 if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3182 p->flags |= SWP_SYNCHRONOUS_IO;
3183
2a8f9449 3184 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
6f179af8 3185 int cpu;
235b6217 3186 unsigned long ci, nr_cluster;
6f179af8 3187
2a8f9449
SL
3188 p->flags |= SWP_SOLIDSTATE;
3189 /*
3190 * select a random position to start with to help wear leveling
3191 * SSD
3192 */
3193 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
235b6217 3194 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2a8f9449 3195
778e1cdd 3196 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
54f180d3 3197 GFP_KERNEL);
2a8f9449
SL
3198 if (!cluster_info) {
3199 error = -ENOMEM;
3200 goto bad_swap;
3201 }
235b6217
HY
3202
3203 for (ci = 0; ci < nr_cluster; ci++)
3204 spin_lock_init(&((cluster_info + ci)->lock));
3205
ebc2a1a6
SL
3206 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3207 if (!p->percpu_cluster) {
3208 error = -ENOMEM;
3209 goto bad_swap;
3210 }
6f179af8 3211 for_each_possible_cpu(cpu) {
ebc2a1a6 3212 struct percpu_cluster *cluster;
6f179af8 3213 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
ebc2a1a6
SL
3214 cluster_set_null(&cluster->index);
3215 }
7cbf3192 3216 } else {
81a0298b 3217 atomic_inc(&nr_rotate_swap);
7cbf3192
OS
3218 inced_nr_rotate_swap = true;
3219 }
1da177e4 3220
1421ef3c
CEB
3221 error = swap_cgroup_swapon(p->type, maxpages);
3222 if (error)
3223 goto bad_swap;
3224
915d4d7b 3225 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2a8f9449 3226 cluster_info, maxpages, &span);
915d4d7b
CEB
3227 if (unlikely(nr_extents < 0)) {
3228 error = nr_extents;
1da177e4
LT
3229 goto bad_swap;
3230 }
38b5faf4 3231 /* frontswap enabled? set up bit-per-page map for frontswap */
8ea1d2a1 3232 if (IS_ENABLED(CONFIG_FRONTSWAP))
778e1cdd
KC
3233 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3234 sizeof(long),
54f180d3 3235 GFP_KERNEL);
1da177e4 3236
2a8f9449
SL
3237 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3238 /*
3239 * When discard is enabled for swap with no particular
3240 * policy flagged, we set all swap discard flags here in
3241 * order to sustain backward compatibility with older
3242 * swapon(8) releases.
3243 */
3244 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3245 SWP_PAGE_DISCARD);
dcf6b7dd 3246
2a8f9449
SL
3247 /*
3248 * By flagging sys_swapon, a sysadmin can tell us to
3249 * either do single-time area discards only, or to just
3250 * perform discards for released swap page-clusters.
3251 * Now it's time to adjust the p->flags accordingly.
3252 */
3253 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3254 p->flags &= ~SWP_PAGE_DISCARD;
3255 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3256 p->flags &= ~SWP_AREA_DISCARD;
3257
3258 /* issue a swapon-time discard if it's still required */
3259 if (p->flags & SWP_AREA_DISCARD) {
3260 int err = discard_swap(p);
3261 if (unlikely(err))
3262 pr_err("swapon: discard_swap(%p): %d\n",
3263 p, err);
dcf6b7dd 3264 }
20137a49 3265 }
6a6ba831 3266
4b3ef9da
HY
3267 error = init_swap_address_space(p->type, maxpages);
3268 if (error)
3269 goto bad_swap;
3270
fc0abb14 3271 mutex_lock(&swapon_mutex);
40531542 3272 prio = -1;
78ecba08 3273 if (swap_flags & SWAP_FLAG_PREFER)
40531542 3274 prio =
78ecba08 3275 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2a8f9449 3276 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
c69dbfb8 3277
756a025f 3278 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 3279 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
3280 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3281 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 3282 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
3283 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3284 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 3285 (frontswap_map) ? "FS" : "");
c69dbfb8 3286
fc0abb14 3287 mutex_unlock(&swapon_mutex);
66d7dd51
KS
3288 atomic_inc(&proc_poll_event);
3289 wake_up_interruptible(&proc_poll_wait);
3290
9b01c350
CEB
3291 if (S_ISREG(inode->i_mode))
3292 inode->i_flags |= S_SWAPFILE;
1da177e4
LT
3293 error = 0;
3294 goto out;
3295bad_swap:
ebc2a1a6
SL
3296 free_percpu(p->percpu_cluster);
3297 p->percpu_cluster = NULL;
bd69010b 3298 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
3299 set_blocksize(p->bdev, p->old_block_size);
3300 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 3301 }
4cd3bb10 3302 destroy_swap_extents(p);
e8e6c2ec 3303 swap_cgroup_swapoff(p->type);
5d337b91 3304 spin_lock(&swap_lock);
1da177e4 3305 p->swap_file = NULL;
1da177e4 3306 p->flags = 0;
5d337b91 3307 spin_unlock(&swap_lock);
1da177e4 3308 vfree(swap_map);
8606a1a9 3309 kvfree(cluster_info);
b6b1fd2a 3310 kvfree(frontswap_map);
7cbf3192
OS
3311 if (inced_nr_rotate_swap)
3312 atomic_dec(&nr_rotate_swap);
52c50567 3313 if (swap_file) {
2130781e 3314 if (inode && S_ISREG(inode->i_mode)) {
5955102c 3315 inode_unlock(inode);
2130781e
CEB
3316 inode = NULL;
3317 }
1da177e4 3318 filp_close(swap_file, NULL);
52c50567 3319 }
1da177e4
LT
3320out:
3321 if (page && !IS_ERR(page)) {
3322 kunmap(page);
09cbfeaf 3323 put_page(page);
1da177e4
LT
3324 }
3325 if (name)
3326 putname(name);
9b01c350 3327 if (inode && S_ISREG(inode->i_mode))
5955102c 3328 inode_unlock(inode);
039939a6
TC
3329 if (!error)
3330 enable_swap_slots_cache();
1da177e4
LT
3331 return error;
3332}
3333
3334void si_swapinfo(struct sysinfo *val)
3335{
efa90a98 3336 unsigned int type;
1da177e4
LT
3337 unsigned long nr_to_be_unused = 0;
3338
5d337b91 3339 spin_lock(&swap_lock);
efa90a98
HD
3340 for (type = 0; type < nr_swapfiles; type++) {
3341 struct swap_info_struct *si = swap_info[type];
3342
3343 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3344 nr_to_be_unused += si->inuse_pages;
1da177e4 3345 }
ec8acf20 3346 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 3347 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 3348 spin_unlock(&swap_lock);
1da177e4
LT
3349}
3350
3351/*
3352 * Verify that a swap entry is valid and increment its swap map count.
3353 *
355cfa73
KH
3354 * Returns error code in following case.
3355 * - success -> 0
3356 * - swp_entry is invalid -> EINVAL
3357 * - swp_entry is migration entry -> EINVAL
3358 * - swap-cache reference is requested but there is already one. -> EEXIST
3359 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 3360 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 3361 */
8d69aaee 3362static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 3363{
73c34b6a 3364 struct swap_info_struct *p;
235b6217 3365 struct swap_cluster_info *ci;
1da177e4 3366 unsigned long offset, type;
8d69aaee
HD
3367 unsigned char count;
3368 unsigned char has_cache;
253d553b 3369 int err = -EINVAL;
1da177e4 3370
a7420aa5 3371 if (non_swap_entry(entry))
253d553b 3372 goto out;
0697212a 3373
1da177e4
LT
3374 type = swp_type(entry);
3375 if (type >= nr_swapfiles)
3376 goto bad_file;
efa90a98 3377 p = swap_info[type];
1da177e4 3378 offset = swp_offset(entry);
355cfa73 3379 if (unlikely(offset >= p->max))
235b6217
HY
3380 goto out;
3381
3382 ci = lock_cluster_or_swap_info(p, offset);
355cfa73 3383
253d553b 3384 count = p->swap_map[offset];
edfe23da
SL
3385
3386 /*
3387 * swapin_readahead() doesn't check if a swap entry is valid, so the
3388 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3389 */
3390 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3391 err = -ENOENT;
3392 goto unlock_out;
3393 }
3394
253d553b
HD
3395 has_cache = count & SWAP_HAS_CACHE;
3396 count &= ~SWAP_HAS_CACHE;
3397 err = 0;
355cfa73 3398
253d553b 3399 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
3400
3401 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
3402 if (!has_cache && count)
3403 has_cache = SWAP_HAS_CACHE;
3404 else if (has_cache) /* someone else added cache */
3405 err = -EEXIST;
3406 else /* no users remaining */
3407 err = -ENOENT;
355cfa73
KH
3408
3409 } else if (count || has_cache) {
253d553b 3410
570a335b
HD
3411 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3412 count += usage;
3413 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 3414 err = -EINVAL;
570a335b
HD
3415 else if (swap_count_continued(p, offset, count))
3416 count = COUNT_CONTINUED;
3417 else
3418 err = -ENOMEM;
355cfa73 3419 } else
253d553b
HD
3420 err = -ENOENT; /* unused swap entry */
3421
3422 p->swap_map[offset] = count | has_cache;
3423
355cfa73 3424unlock_out:
235b6217 3425 unlock_cluster_or_swap_info(p, ci);
1da177e4 3426out:
253d553b 3427 return err;
1da177e4
LT
3428
3429bad_file:
465c47fd 3430 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
3431 goto out;
3432}
253d553b 3433
aaa46865
HD
3434/*
3435 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3436 * (in which case its reference count is never incremented).
3437 */
3438void swap_shmem_alloc(swp_entry_t entry)
3439{
3440 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3441}
3442
355cfa73 3443/*
08259d58
HD
3444 * Increase reference count of swap entry by 1.
3445 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3446 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3447 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3448 * might occur if a page table entry has got corrupted.
355cfa73 3449 */
570a335b 3450int swap_duplicate(swp_entry_t entry)
355cfa73 3451{
570a335b
HD
3452 int err = 0;
3453
3454 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3455 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3456 return err;
355cfa73 3457}
1da177e4 3458
cb4b86ba 3459/*
355cfa73
KH
3460 * @entry: swap entry for which we allocate swap cache.
3461 *
73c34b6a 3462 * Called when allocating swap cache for existing swap entry,
355cfa73
KH
3463 * This can return error codes. Returns 0 at success.
3464 * -EBUSY means there is a swap cache.
3465 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
3466 */
3467int swapcache_prepare(swp_entry_t entry)
3468{
253d553b 3469 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
3470}
3471
0bcac06f
MK
3472struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3473{
3474 return swap_info[swp_type(entry)];
3475}
3476
f981c595
MG
3477struct swap_info_struct *page_swap_info(struct page *page)
3478{
0bcac06f
MK
3479 swp_entry_t entry = { .val = page_private(page) };
3480 return swp_swap_info(entry);
f981c595
MG
3481}
3482
3483/*
3484 * out-of-line __page_file_ methods to avoid include hell.
3485 */
3486struct address_space *__page_file_mapping(struct page *page)
3487{
f981c595
MG
3488 return page_swap_info(page)->swap_file->f_mapping;
3489}
3490EXPORT_SYMBOL_GPL(__page_file_mapping);
3491
3492pgoff_t __page_file_index(struct page *page)
3493{
3494 swp_entry_t swap = { .val = page_private(page) };
f981c595
MG
3495 return swp_offset(swap);
3496}
3497EXPORT_SYMBOL_GPL(__page_file_index);
3498
570a335b
HD
3499/*
3500 * add_swap_count_continuation - called when a swap count is duplicated
3501 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3502 * page of the original vmalloc'ed swap_map, to hold the continuation count
3503 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3504 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3505 *
3506 * These continuation pages are seldom referenced: the common paths all work
3507 * on the original swap_map, only referring to a continuation page when the
3508 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3509 *
3510 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3511 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3512 * can be called after dropping locks.
3513 */
3514int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3515{
3516 struct swap_info_struct *si;
235b6217 3517 struct swap_cluster_info *ci;
570a335b
HD
3518 struct page *head;
3519 struct page *page;
3520 struct page *list_page;
3521 pgoff_t offset;
3522 unsigned char count;
3523
3524 /*
3525 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3526 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3527 */
3528 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3529
3530 si = swap_info_get(entry);
3531 if (!si) {
3532 /*
3533 * An acceptable race has occurred since the failing
3534 * __swap_duplicate(): the swap entry has been freed,
3535 * perhaps even the whole swap_map cleared for swapoff.
3536 */
3537 goto outer;
3538 }
3539
3540 offset = swp_offset(entry);
235b6217
HY
3541
3542 ci = lock_cluster(si, offset);
3543
570a335b
HD
3544 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3545
3546 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3547 /*
3548 * The higher the swap count, the more likely it is that tasks
3549 * will race to add swap count continuation: we need to avoid
3550 * over-provisioning.
3551 */
3552 goto out;
3553 }
3554
3555 if (!page) {
235b6217 3556 unlock_cluster(ci);
ec8acf20 3557 spin_unlock(&si->lock);
570a335b
HD
3558 return -ENOMEM;
3559 }
3560
3561 /*
3562 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2de1a7e4
SJ
3563 * no architecture is using highmem pages for kernel page tables: so it
3564 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
570a335b
HD
3565 */
3566 head = vmalloc_to_page(si->swap_map + offset);
3567 offset &= ~PAGE_MASK;
3568
2628bd6f 3569 spin_lock(&si->cont_lock);
570a335b
HD
3570 /*
3571 * Page allocation does not initialize the page's lru field,
3572 * but it does always reset its private field.
3573 */
3574 if (!page_private(head)) {
3575 BUG_ON(count & COUNT_CONTINUED);
3576 INIT_LIST_HEAD(&head->lru);
3577 set_page_private(head, SWP_CONTINUED);
3578 si->flags |= SWP_CONTINUED;
3579 }
3580
3581 list_for_each_entry(list_page, &head->lru, lru) {
3582 unsigned char *map;
3583
3584 /*
3585 * If the previous map said no continuation, but we've found
3586 * a continuation page, free our allocation and use this one.
3587 */
3588 if (!(count & COUNT_CONTINUED))
2628bd6f 3589 goto out_unlock_cont;
570a335b 3590
9b04c5fe 3591 map = kmap_atomic(list_page) + offset;
570a335b 3592 count = *map;
9b04c5fe 3593 kunmap_atomic(map);
570a335b
HD
3594
3595 /*
3596 * If this continuation count now has some space in it,
3597 * free our allocation and use this one.
3598 */
3599 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2628bd6f 3600 goto out_unlock_cont;
570a335b
HD
3601 }
3602
3603 list_add_tail(&page->lru, &head->lru);
3604 page = NULL; /* now it's attached, don't free it */
2628bd6f
HY
3605out_unlock_cont:
3606 spin_unlock(&si->cont_lock);
570a335b 3607out:
235b6217 3608 unlock_cluster(ci);
ec8acf20 3609 spin_unlock(&si->lock);
570a335b
HD
3610outer:
3611 if (page)
3612 __free_page(page);
3613 return 0;
3614}
3615
3616/*
3617 * swap_count_continued - when the original swap_map count is incremented
3618 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3619 * into, carry if so, or else fail until a new continuation page is allocated;
3620 * when the original swap_map count is decremented from 0 with continuation,
3621 * borrow from the continuation and report whether it still holds more.
235b6217
HY
3622 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3623 * lock.
570a335b
HD
3624 */
3625static bool swap_count_continued(struct swap_info_struct *si,
3626 pgoff_t offset, unsigned char count)
3627{
3628 struct page *head;
3629 struct page *page;
3630 unsigned char *map;
2628bd6f 3631 bool ret;
570a335b
HD
3632
3633 head = vmalloc_to_page(si->swap_map + offset);
3634 if (page_private(head) != SWP_CONTINUED) {
3635 BUG_ON(count & COUNT_CONTINUED);
3636 return false; /* need to add count continuation */
3637 }
3638
2628bd6f 3639 spin_lock(&si->cont_lock);
570a335b
HD
3640 offset &= ~PAGE_MASK;
3641 page = list_entry(head->lru.next, struct page, lru);
9b04c5fe 3642 map = kmap_atomic(page) + offset;
570a335b
HD
3643
3644 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3645 goto init_map; /* jump over SWAP_CONT_MAX checks */
3646
3647 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3648 /*
3649 * Think of how you add 1 to 999
3650 */
3651 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 3652 kunmap_atomic(map);
570a335b
HD
3653 page = list_entry(page->lru.next, struct page, lru);
3654 BUG_ON(page == head);
9b04c5fe 3655 map = kmap_atomic(page) + offset;
570a335b
HD
3656 }
3657 if (*map == SWAP_CONT_MAX) {
9b04c5fe 3658 kunmap_atomic(map);
570a335b 3659 page = list_entry(page->lru.next, struct page, lru);
2628bd6f
HY
3660 if (page == head) {
3661 ret = false; /* add count continuation */
3662 goto out;
3663 }
9b04c5fe 3664 map = kmap_atomic(page) + offset;
570a335b
HD
3665init_map: *map = 0; /* we didn't zero the page */
3666 }
3667 *map += 1;
9b04c5fe 3668 kunmap_atomic(map);
570a335b
HD
3669 page = list_entry(page->lru.prev, struct page, lru);
3670 while (page != head) {
9b04c5fe 3671 map = kmap_atomic(page) + offset;
570a335b 3672 *map = COUNT_CONTINUED;
9b04c5fe 3673 kunmap_atomic(map);
570a335b
HD
3674 page = list_entry(page->lru.prev, struct page, lru);
3675 }
2628bd6f 3676 ret = true; /* incremented */
570a335b
HD
3677
3678 } else { /* decrementing */
3679 /*
3680 * Think of how you subtract 1 from 1000
3681 */
3682 BUG_ON(count != COUNT_CONTINUED);
3683 while (*map == COUNT_CONTINUED) {
9b04c5fe 3684 kunmap_atomic(map);
570a335b
HD
3685 page = list_entry(page->lru.next, struct page, lru);
3686 BUG_ON(page == head);
9b04c5fe 3687 map = kmap_atomic(page) + offset;
570a335b
HD
3688 }
3689 BUG_ON(*map == 0);
3690 *map -= 1;
3691 if (*map == 0)
3692 count = 0;
9b04c5fe 3693 kunmap_atomic(map);
570a335b
HD
3694 page = list_entry(page->lru.prev, struct page, lru);
3695 while (page != head) {
9b04c5fe 3696 map = kmap_atomic(page) + offset;
570a335b
HD
3697 *map = SWAP_CONT_MAX | count;
3698 count = COUNT_CONTINUED;
9b04c5fe 3699 kunmap_atomic(map);
570a335b
HD
3700 page = list_entry(page->lru.prev, struct page, lru);
3701 }
2628bd6f 3702 ret = count == COUNT_CONTINUED;
570a335b 3703 }
2628bd6f
HY
3704out:
3705 spin_unlock(&si->cont_lock);
3706 return ret;
570a335b
HD
3707}
3708
3709/*
3710 * free_swap_count_continuations - swapoff free all the continuation pages
3711 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3712 */
3713static void free_swap_count_continuations(struct swap_info_struct *si)
3714{
3715 pgoff_t offset;
3716
3717 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3718 struct page *head;
3719 head = vmalloc_to_page(si->swap_map + offset);
3720 if (page_private(head)) {
0d576d20
GT
3721 struct page *page, *next;
3722
3723 list_for_each_entry_safe(page, next, &head->lru, lru) {
3724 list_del(&page->lru);
570a335b
HD
3725 __free_page(page);
3726 }
3727 }
3728 }
3729}
a2468cc9 3730
2cf85583
TH
3731#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3732void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3733 gfp_t gfp_mask)
3734{
3735 struct swap_info_struct *si, *next;
3736 if (!(gfp_mask & __GFP_IO) || !memcg)
3737 return;
3738
3739 if (!blk_cgroup_congested())
3740 return;
3741
3742 /*
3743 * We've already scheduled a throttle, avoid taking the global swap
3744 * lock.
3745 */
3746 if (current->throttle_queue)
3747 return;
3748
3749 spin_lock(&swap_avail_lock);
3750 plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3751 avail_lists[node]) {
3752 if (si->bdev) {
3753 blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3754 true);
3755 break;
3756 }
3757 }
3758 spin_unlock(&swap_avail_lock);
3759}
3760#endif
3761
a2468cc9
AL
3762static int __init swapfile_init(void)
3763{
3764 int nid;
3765
3766 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3767 GFP_KERNEL);
3768 if (!swap_avail_heads) {
3769 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3770 return -ENOMEM;
3771 }
3772
3773 for_each_node(nid)
3774 plist_head_init(&swap_avail_heads[nid]);
3775
3776 return 0;
3777}
3778subsys_initcall(swapfile_init);