mm: loosen MADV_NOHUGEPAGE to enable Qemu postcopy on s390
[linux-2.6-block.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
072441e2 17#include <linux/shmem_fs.h>
1da177e4 18#include <linux/blkdev.h>
20137a49 19#include <linux/random.h>
1da177e4
LT
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
5ad64688 24#include <linux/ksm.h>
1da177e4
LT
25#include <linux/rmap.h>
26#include <linux/security.h>
27#include <linux/backing-dev.h>
fc0abb14 28#include <linux/mutex.h>
c59ede7b 29#include <linux/capability.h>
1da177e4 30#include <linux/syscalls.h>
8a9f3ccd 31#include <linux/memcontrol.h>
66d7dd51 32#include <linux/poll.h>
72788c38 33#include <linux/oom.h>
38b5faf4
DM
34#include <linux/frontswap.h>
35#include <linux/swapfile.h>
f981c595 36#include <linux/export.h>
1da177e4
LT
37
38#include <asm/pgtable.h>
39#include <asm/tlbflush.h>
40#include <linux/swapops.h>
5d1ea48b 41#include <linux/swap_cgroup.h>
1da177e4 42
570a335b
HD
43static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 unsigned char);
45static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 46static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 47
38b5faf4 48DEFINE_SPINLOCK(swap_lock);
7c363b8c 49static unsigned int nr_swapfiles;
ec8acf20
SL
50atomic_long_t nr_swap_pages;
51/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 52long total_swap_pages;
78ecba08 53static int least_priority;
1da177e4 54
1da177e4
LT
55static const char Bad_file[] = "Bad swap file entry ";
56static const char Unused_file[] = "Unused swap file entry ";
57static const char Bad_offset[] = "Bad swap offset entry ";
58static const char Unused_offset[] = "Unused swap offset entry ";
59
adfab836
DS
60/*
61 * all active swap_info_structs
62 * protected with swap_lock, and ordered by priority.
63 */
18ab4d4c
DS
64PLIST_HEAD(swap_active_head);
65
66/*
67 * all available (active, not full) swap_info_structs
68 * protected with swap_avail_lock, ordered by priority.
69 * This is used by get_swap_page() instead of swap_active_head
70 * because swap_active_head includes all swap_info_structs,
71 * but get_swap_page() doesn't need to look at full ones.
72 * This uses its own lock instead of swap_lock because when a
73 * swap_info_struct changes between not-full/full, it needs to
74 * add/remove itself to/from this list, but the swap_info_struct->lock
75 * is held and the locking order requires swap_lock to be taken
76 * before any swap_info_struct->lock.
77 */
78static PLIST_HEAD(swap_avail_head);
79static DEFINE_SPINLOCK(swap_avail_lock);
1da177e4 80
38b5faf4 81struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 82
fc0abb14 83static DEFINE_MUTEX(swapon_mutex);
1da177e4 84
66d7dd51
KS
85static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
86/* Activity counter to indicate that a swapon or swapoff has occurred */
87static atomic_t proc_poll_event = ATOMIC_INIT(0);
88
8d69aaee 89static inline unsigned char swap_count(unsigned char ent)
355cfa73 90{
570a335b 91 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
355cfa73
KH
92}
93
efa90a98 94/* returns 1 if swap entry is freed */
c9e44410
KH
95static int
96__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
97{
efa90a98 98 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
99 struct page *page;
100 int ret = 0;
101
33806f06 102 page = find_get_page(swap_address_space(entry), entry.val);
c9e44410
KH
103 if (!page)
104 return 0;
105 /*
106 * This function is called from scan_swap_map() and it's called
107 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
108 * We have to use trylock for avoiding deadlock. This is a special
109 * case and you should use try_to_free_swap() with explicit lock_page()
110 * in usual operations.
111 */
112 if (trylock_page(page)) {
113 ret = try_to_free_swap(page);
114 unlock_page(page);
115 }
116 page_cache_release(page);
117 return ret;
118}
355cfa73 119
6a6ba831
HD
120/*
121 * swapon tell device that all the old swap contents can be discarded,
122 * to allow the swap device to optimize its wear-levelling.
123 */
124static int discard_swap(struct swap_info_struct *si)
125{
126 struct swap_extent *se;
9625a5f2
HD
127 sector_t start_block;
128 sector_t nr_blocks;
6a6ba831
HD
129 int err = 0;
130
9625a5f2
HD
131 /* Do not discard the swap header page! */
132 se = &si->first_swap_extent;
133 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
134 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
135 if (nr_blocks) {
136 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 137 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
138 if (err)
139 return err;
140 cond_resched();
141 }
6a6ba831 142
9625a5f2
HD
143 list_for_each_entry(se, &si->first_swap_extent.list, list) {
144 start_block = se->start_block << (PAGE_SHIFT - 9);
145 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
146
147 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 148 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
149 if (err)
150 break;
151
152 cond_resched();
153 }
154 return err; /* That will often be -EOPNOTSUPP */
155}
156
7992fde7
HD
157/*
158 * swap allocation tell device that a cluster of swap can now be discarded,
159 * to allow the swap device to optimize its wear-levelling.
160 */
161static void discard_swap_cluster(struct swap_info_struct *si,
162 pgoff_t start_page, pgoff_t nr_pages)
163{
164 struct swap_extent *se = si->curr_swap_extent;
165 int found_extent = 0;
166
167 while (nr_pages) {
168 struct list_head *lh;
169
170 if (se->start_page <= start_page &&
171 start_page < se->start_page + se->nr_pages) {
172 pgoff_t offset = start_page - se->start_page;
173 sector_t start_block = se->start_block + offset;
858a2990 174 sector_t nr_blocks = se->nr_pages - offset;
7992fde7
HD
175
176 if (nr_blocks > nr_pages)
177 nr_blocks = nr_pages;
178 start_page += nr_blocks;
179 nr_pages -= nr_blocks;
180
181 if (!found_extent++)
182 si->curr_swap_extent = se;
183
184 start_block <<= PAGE_SHIFT - 9;
185 nr_blocks <<= PAGE_SHIFT - 9;
186 if (blkdev_issue_discard(si->bdev, start_block,
dd3932ed 187 nr_blocks, GFP_NOIO, 0))
7992fde7
HD
188 break;
189 }
190
191 lh = se->list.next;
7992fde7
HD
192 se = list_entry(lh, struct swap_extent, list);
193 }
194}
195
048c27fd
HD
196#define SWAPFILE_CLUSTER 256
197#define LATENCY_LIMIT 256
198
2a8f9449
SL
199static inline void cluster_set_flag(struct swap_cluster_info *info,
200 unsigned int flag)
201{
202 info->flags = flag;
203}
204
205static inline unsigned int cluster_count(struct swap_cluster_info *info)
206{
207 return info->data;
208}
209
210static inline void cluster_set_count(struct swap_cluster_info *info,
211 unsigned int c)
212{
213 info->data = c;
214}
215
216static inline void cluster_set_count_flag(struct swap_cluster_info *info,
217 unsigned int c, unsigned int f)
218{
219 info->flags = f;
220 info->data = c;
221}
222
223static inline unsigned int cluster_next(struct swap_cluster_info *info)
224{
225 return info->data;
226}
227
228static inline void cluster_set_next(struct swap_cluster_info *info,
229 unsigned int n)
230{
231 info->data = n;
232}
233
234static inline void cluster_set_next_flag(struct swap_cluster_info *info,
235 unsigned int n, unsigned int f)
236{
237 info->flags = f;
238 info->data = n;
239}
240
241static inline bool cluster_is_free(struct swap_cluster_info *info)
242{
243 return info->flags & CLUSTER_FLAG_FREE;
244}
245
246static inline bool cluster_is_null(struct swap_cluster_info *info)
247{
248 return info->flags & CLUSTER_FLAG_NEXT_NULL;
249}
250
251static inline void cluster_set_null(struct swap_cluster_info *info)
252{
253 info->flags = CLUSTER_FLAG_NEXT_NULL;
254 info->data = 0;
255}
256
815c2c54
SL
257/* Add a cluster to discard list and schedule it to do discard */
258static void swap_cluster_schedule_discard(struct swap_info_struct *si,
259 unsigned int idx)
260{
261 /*
262 * If scan_swap_map() can't find a free cluster, it will check
263 * si->swap_map directly. To make sure the discarding cluster isn't
264 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
265 * will be cleared after discard
266 */
267 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
268 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
269
270 if (cluster_is_null(&si->discard_cluster_head)) {
271 cluster_set_next_flag(&si->discard_cluster_head,
272 idx, 0);
273 cluster_set_next_flag(&si->discard_cluster_tail,
274 idx, 0);
275 } else {
276 unsigned int tail = cluster_next(&si->discard_cluster_tail);
277 cluster_set_next(&si->cluster_info[tail], idx);
278 cluster_set_next_flag(&si->discard_cluster_tail,
279 idx, 0);
280 }
281
282 schedule_work(&si->discard_work);
283}
284
285/*
286 * Doing discard actually. After a cluster discard is finished, the cluster
287 * will be added to free cluster list. caller should hold si->lock.
288*/
289static void swap_do_scheduled_discard(struct swap_info_struct *si)
290{
291 struct swap_cluster_info *info;
292 unsigned int idx;
293
294 info = si->cluster_info;
295
296 while (!cluster_is_null(&si->discard_cluster_head)) {
297 idx = cluster_next(&si->discard_cluster_head);
298
299 cluster_set_next_flag(&si->discard_cluster_head,
300 cluster_next(&info[idx]), 0);
301 if (cluster_next(&si->discard_cluster_tail) == idx) {
302 cluster_set_null(&si->discard_cluster_head);
303 cluster_set_null(&si->discard_cluster_tail);
304 }
305 spin_unlock(&si->lock);
306
307 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
308 SWAPFILE_CLUSTER);
309
310 spin_lock(&si->lock);
311 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
312 if (cluster_is_null(&si->free_cluster_head)) {
313 cluster_set_next_flag(&si->free_cluster_head,
314 idx, 0);
315 cluster_set_next_flag(&si->free_cluster_tail,
316 idx, 0);
317 } else {
318 unsigned int tail;
319
320 tail = cluster_next(&si->free_cluster_tail);
321 cluster_set_next(&info[tail], idx);
322 cluster_set_next_flag(&si->free_cluster_tail,
323 idx, 0);
324 }
325 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
326 0, SWAPFILE_CLUSTER);
327 }
328}
329
330static void swap_discard_work(struct work_struct *work)
331{
332 struct swap_info_struct *si;
333
334 si = container_of(work, struct swap_info_struct, discard_work);
335
336 spin_lock(&si->lock);
337 swap_do_scheduled_discard(si);
338 spin_unlock(&si->lock);
339}
340
2a8f9449
SL
341/*
342 * The cluster corresponding to page_nr will be used. The cluster will be
343 * removed from free cluster list and its usage counter will be increased.
344 */
345static void inc_cluster_info_page(struct swap_info_struct *p,
346 struct swap_cluster_info *cluster_info, unsigned long page_nr)
347{
348 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
349
350 if (!cluster_info)
351 return;
352 if (cluster_is_free(&cluster_info[idx])) {
353 VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
354 cluster_set_next_flag(&p->free_cluster_head,
355 cluster_next(&cluster_info[idx]), 0);
356 if (cluster_next(&p->free_cluster_tail) == idx) {
357 cluster_set_null(&p->free_cluster_tail);
358 cluster_set_null(&p->free_cluster_head);
359 }
360 cluster_set_count_flag(&cluster_info[idx], 0, 0);
361 }
362
363 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
364 cluster_set_count(&cluster_info[idx],
365 cluster_count(&cluster_info[idx]) + 1);
366}
367
368/*
369 * The cluster corresponding to page_nr decreases one usage. If the usage
370 * counter becomes 0, which means no page in the cluster is in using, we can
371 * optionally discard the cluster and add it to free cluster list.
372 */
373static void dec_cluster_info_page(struct swap_info_struct *p,
374 struct swap_cluster_info *cluster_info, unsigned long page_nr)
375{
376 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
377
378 if (!cluster_info)
379 return;
380
381 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
382 cluster_set_count(&cluster_info[idx],
383 cluster_count(&cluster_info[idx]) - 1);
384
385 if (cluster_count(&cluster_info[idx]) == 0) {
815c2c54
SL
386 /*
387 * If the swap is discardable, prepare discard the cluster
388 * instead of free it immediately. The cluster will be freed
389 * after discard.
390 */
edfe23da
SL
391 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
392 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
815c2c54
SL
393 swap_cluster_schedule_discard(p, idx);
394 return;
395 }
396
2a8f9449
SL
397 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
398 if (cluster_is_null(&p->free_cluster_head)) {
399 cluster_set_next_flag(&p->free_cluster_head, idx, 0);
400 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
401 } else {
402 unsigned int tail = cluster_next(&p->free_cluster_tail);
403 cluster_set_next(&cluster_info[tail], idx);
404 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
405 }
406 }
407}
408
409/*
410 * It's possible scan_swap_map() uses a free cluster in the middle of free
411 * cluster list. Avoiding such abuse to avoid list corruption.
412 */
ebc2a1a6
SL
413static bool
414scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
2a8f9449
SL
415 unsigned long offset)
416{
ebc2a1a6
SL
417 struct percpu_cluster *percpu_cluster;
418 bool conflict;
419
2a8f9449 420 offset /= SWAPFILE_CLUSTER;
ebc2a1a6 421 conflict = !cluster_is_null(&si->free_cluster_head) &&
2a8f9449
SL
422 offset != cluster_next(&si->free_cluster_head) &&
423 cluster_is_free(&si->cluster_info[offset]);
ebc2a1a6
SL
424
425 if (!conflict)
426 return false;
427
428 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
429 cluster_set_null(&percpu_cluster->index);
430 return true;
431}
432
433/*
434 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
435 * might involve allocating a new cluster for current CPU too.
436 */
437static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
438 unsigned long *offset, unsigned long *scan_base)
439{
440 struct percpu_cluster *cluster;
441 bool found_free;
442 unsigned long tmp;
443
444new_cluster:
445 cluster = this_cpu_ptr(si->percpu_cluster);
446 if (cluster_is_null(&cluster->index)) {
447 if (!cluster_is_null(&si->free_cluster_head)) {
448 cluster->index = si->free_cluster_head;
449 cluster->next = cluster_next(&cluster->index) *
450 SWAPFILE_CLUSTER;
451 } else if (!cluster_is_null(&si->discard_cluster_head)) {
452 /*
453 * we don't have free cluster but have some clusters in
454 * discarding, do discard now and reclaim them
455 */
456 swap_do_scheduled_discard(si);
457 *scan_base = *offset = si->cluster_next;
458 goto new_cluster;
459 } else
460 return;
461 }
462
463 found_free = false;
464
465 /*
466 * Other CPUs can use our cluster if they can't find a free cluster,
467 * check if there is still free entry in the cluster
468 */
469 tmp = cluster->next;
470 while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
471 SWAPFILE_CLUSTER) {
472 if (!si->swap_map[tmp]) {
473 found_free = true;
474 break;
475 }
476 tmp++;
477 }
478 if (!found_free) {
479 cluster_set_null(&cluster->index);
480 goto new_cluster;
481 }
482 cluster->next = tmp + 1;
483 *offset = tmp;
484 *scan_base = tmp;
2a8f9449
SL
485}
486
24b8ff7c
CEB
487static unsigned long scan_swap_map(struct swap_info_struct *si,
488 unsigned char usage)
1da177e4 489{
ebebbbe9 490 unsigned long offset;
c60aa176 491 unsigned long scan_base;
7992fde7 492 unsigned long last_in_cluster = 0;
048c27fd 493 int latency_ration = LATENCY_LIMIT;
7dfad418 494
886bb7e9 495 /*
7dfad418
HD
496 * We try to cluster swap pages by allocating them sequentially
497 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
498 * way, however, we resort to first-free allocation, starting
499 * a new cluster. This prevents us from scattering swap pages
500 * all over the entire swap partition, so that we reduce
501 * overall disk seek times between swap pages. -- sct
502 * But we do now try to find an empty cluster. -Andrea
c60aa176 503 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
504 */
505
52b7efdb 506 si->flags += SWP_SCANNING;
c60aa176 507 scan_base = offset = si->cluster_next;
ebebbbe9 508
ebc2a1a6
SL
509 /* SSD algorithm */
510 if (si->cluster_info) {
511 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
512 goto checks;
513 }
514
ebebbbe9
HD
515 if (unlikely(!si->cluster_nr--)) {
516 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
517 si->cluster_nr = SWAPFILE_CLUSTER - 1;
518 goto checks;
519 }
2a8f9449 520
ec8acf20 521 spin_unlock(&si->lock);
7dfad418 522
c60aa176
HD
523 /*
524 * If seek is expensive, start searching for new cluster from
525 * start of partition, to minimize the span of allocated swap.
50088c44
CY
526 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
527 * case, just handled by scan_swap_map_try_ssd_cluster() above.
c60aa176 528 */
50088c44 529 scan_base = offset = si->lowest_bit;
7dfad418
HD
530 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
531
532 /* Locate the first empty (unaligned) cluster */
533 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 534 if (si->swap_map[offset])
7dfad418
HD
535 last_in_cluster = offset + SWAPFILE_CLUSTER;
536 else if (offset == last_in_cluster) {
ec8acf20 537 spin_lock(&si->lock);
ebebbbe9
HD
538 offset -= SWAPFILE_CLUSTER - 1;
539 si->cluster_next = offset;
540 si->cluster_nr = SWAPFILE_CLUSTER - 1;
c60aa176
HD
541 goto checks;
542 }
543 if (unlikely(--latency_ration < 0)) {
544 cond_resched();
545 latency_ration = LATENCY_LIMIT;
546 }
547 }
548
549 offset = scan_base;
ec8acf20 550 spin_lock(&si->lock);
ebebbbe9 551 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1da177e4 552 }
7dfad418 553
ebebbbe9 554checks:
ebc2a1a6
SL
555 if (si->cluster_info) {
556 while (scan_swap_map_ssd_cluster_conflict(si, offset))
557 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
558 }
ebebbbe9 559 if (!(si->flags & SWP_WRITEOK))
52b7efdb 560 goto no_page;
7dfad418
HD
561 if (!si->highest_bit)
562 goto no_page;
ebebbbe9 563 if (offset > si->highest_bit)
c60aa176 564 scan_base = offset = si->lowest_bit;
c9e44410 565
b73d7fce
HD
566 /* reuse swap entry of cache-only swap if not busy. */
567 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 568 int swap_was_freed;
ec8acf20 569 spin_unlock(&si->lock);
c9e44410 570 swap_was_freed = __try_to_reclaim_swap(si, offset);
ec8acf20 571 spin_lock(&si->lock);
c9e44410
KH
572 /* entry was freed successfully, try to use this again */
573 if (swap_was_freed)
574 goto checks;
575 goto scan; /* check next one */
576 }
577
ebebbbe9
HD
578 if (si->swap_map[offset])
579 goto scan;
580
581 if (offset == si->lowest_bit)
582 si->lowest_bit++;
583 if (offset == si->highest_bit)
584 si->highest_bit--;
585 si->inuse_pages++;
586 if (si->inuse_pages == si->pages) {
587 si->lowest_bit = si->max;
588 si->highest_bit = 0;
18ab4d4c
DS
589 spin_lock(&swap_avail_lock);
590 plist_del(&si->avail_list, &swap_avail_head);
591 spin_unlock(&swap_avail_lock);
1da177e4 592 }
253d553b 593 si->swap_map[offset] = usage;
2a8f9449 594 inc_cluster_info_page(si, si->cluster_info, offset);
ebebbbe9
HD
595 si->cluster_next = offset + 1;
596 si->flags -= SWP_SCANNING;
7992fde7 597
ebebbbe9 598 return offset;
7dfad418 599
ebebbbe9 600scan:
ec8acf20 601 spin_unlock(&si->lock);
7dfad418 602 while (++offset <= si->highest_bit) {
52b7efdb 603 if (!si->swap_map[offset]) {
ec8acf20 604 spin_lock(&si->lock);
52b7efdb
HD
605 goto checks;
606 }
c9e44410 607 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 608 spin_lock(&si->lock);
c9e44410
KH
609 goto checks;
610 }
048c27fd
HD
611 if (unlikely(--latency_ration < 0)) {
612 cond_resched();
613 latency_ration = LATENCY_LIMIT;
614 }
7dfad418 615 }
c60aa176 616 offset = si->lowest_bit;
a5998061 617 while (offset < scan_base) {
c60aa176 618 if (!si->swap_map[offset]) {
ec8acf20 619 spin_lock(&si->lock);
c60aa176
HD
620 goto checks;
621 }
c9e44410 622 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 623 spin_lock(&si->lock);
c9e44410
KH
624 goto checks;
625 }
c60aa176
HD
626 if (unlikely(--latency_ration < 0)) {
627 cond_resched();
628 latency_ration = LATENCY_LIMIT;
629 }
a5998061 630 offset++;
c60aa176 631 }
ec8acf20 632 spin_lock(&si->lock);
7dfad418
HD
633
634no_page:
52b7efdb 635 si->flags -= SWP_SCANNING;
1da177e4
LT
636 return 0;
637}
638
639swp_entry_t get_swap_page(void)
640{
adfab836 641 struct swap_info_struct *si, *next;
fb4f88dc 642 pgoff_t offset;
1da177e4 643
ec8acf20 644 if (atomic_long_read(&nr_swap_pages) <= 0)
fb4f88dc 645 goto noswap;
ec8acf20 646 atomic_long_dec(&nr_swap_pages);
fb4f88dc 647
18ab4d4c
DS
648 spin_lock(&swap_avail_lock);
649
650start_over:
651 plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
652 /* requeue si to after same-priority siblings */
653 plist_requeue(&si->avail_list, &swap_avail_head);
654 spin_unlock(&swap_avail_lock);
ec8acf20 655 spin_lock(&si->lock);
adfab836 656 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
18ab4d4c
DS
657 spin_lock(&swap_avail_lock);
658 if (plist_node_empty(&si->avail_list)) {
659 spin_unlock(&si->lock);
660 goto nextsi;
661 }
662 WARN(!si->highest_bit,
663 "swap_info %d in list but !highest_bit\n",
664 si->type);
665 WARN(!(si->flags & SWP_WRITEOK),
666 "swap_info %d in list but !SWP_WRITEOK\n",
667 si->type);
668 plist_del(&si->avail_list, &swap_avail_head);
ec8acf20 669 spin_unlock(&si->lock);
18ab4d4c 670 goto nextsi;
ec8acf20 671 }
fb4f88dc 672
355cfa73 673 /* This is called for allocating swap entry for cache */
253d553b 674 offset = scan_swap_map(si, SWAP_HAS_CACHE);
ec8acf20
SL
675 spin_unlock(&si->lock);
676 if (offset)
adfab836 677 return swp_entry(si->type, offset);
18ab4d4c
DS
678 pr_debug("scan_swap_map of si %d failed to find offset\n",
679 si->type);
680 spin_lock(&swap_avail_lock);
681nextsi:
adfab836
DS
682 /*
683 * if we got here, it's likely that si was almost full before,
684 * and since scan_swap_map() can drop the si->lock, multiple
685 * callers probably all tried to get a page from the same si
18ab4d4c
DS
686 * and it filled up before we could get one; or, the si filled
687 * up between us dropping swap_avail_lock and taking si->lock.
688 * Since we dropped the swap_avail_lock, the swap_avail_head
689 * list may have been modified; so if next is still in the
690 * swap_avail_head list then try it, otherwise start over.
adfab836 691 */
18ab4d4c
DS
692 if (plist_node_empty(&next->avail_list))
693 goto start_over;
1da177e4 694 }
fb4f88dc 695
18ab4d4c
DS
696 spin_unlock(&swap_avail_lock);
697
ec8acf20 698 atomic_long_inc(&nr_swap_pages);
fb4f88dc 699noswap:
fb4f88dc 700 return (swp_entry_t) {0};
1da177e4
LT
701}
702
2de1a7e4 703/* The only caller of this function is now suspend routine */
910321ea
HD
704swp_entry_t get_swap_page_of_type(int type)
705{
706 struct swap_info_struct *si;
707 pgoff_t offset;
708
910321ea 709 si = swap_info[type];
ec8acf20 710 spin_lock(&si->lock);
910321ea 711 if (si && (si->flags & SWP_WRITEOK)) {
ec8acf20 712 atomic_long_dec(&nr_swap_pages);
910321ea
HD
713 /* This is called for allocating swap entry, not cache */
714 offset = scan_swap_map(si, 1);
715 if (offset) {
ec8acf20 716 spin_unlock(&si->lock);
910321ea
HD
717 return swp_entry(type, offset);
718 }
ec8acf20 719 atomic_long_inc(&nr_swap_pages);
910321ea 720 }
ec8acf20 721 spin_unlock(&si->lock);
910321ea
HD
722 return (swp_entry_t) {0};
723}
724
73c34b6a 725static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1da177e4 726{
73c34b6a 727 struct swap_info_struct *p;
1da177e4
LT
728 unsigned long offset, type;
729
730 if (!entry.val)
731 goto out;
732 type = swp_type(entry);
733 if (type >= nr_swapfiles)
734 goto bad_nofile;
efa90a98 735 p = swap_info[type];
1da177e4
LT
736 if (!(p->flags & SWP_USED))
737 goto bad_device;
738 offset = swp_offset(entry);
739 if (offset >= p->max)
740 goto bad_offset;
741 if (!p->swap_map[offset])
742 goto bad_free;
ec8acf20 743 spin_lock(&p->lock);
1da177e4
LT
744 return p;
745
746bad_free:
465c47fd 747 pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
1da177e4
LT
748 goto out;
749bad_offset:
465c47fd 750 pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
1da177e4
LT
751 goto out;
752bad_device:
465c47fd 753 pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
1da177e4
LT
754 goto out;
755bad_nofile:
465c47fd 756 pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
757out:
758 return NULL;
886bb7e9 759}
1da177e4 760
8d69aaee
HD
761static unsigned char swap_entry_free(struct swap_info_struct *p,
762 swp_entry_t entry, unsigned char usage)
1da177e4 763{
253d553b 764 unsigned long offset = swp_offset(entry);
8d69aaee
HD
765 unsigned char count;
766 unsigned char has_cache;
355cfa73 767
253d553b
HD
768 count = p->swap_map[offset];
769 has_cache = count & SWAP_HAS_CACHE;
770 count &= ~SWAP_HAS_CACHE;
355cfa73 771
253d553b 772 if (usage == SWAP_HAS_CACHE) {
355cfa73 773 VM_BUG_ON(!has_cache);
253d553b 774 has_cache = 0;
aaa46865
HD
775 } else if (count == SWAP_MAP_SHMEM) {
776 /*
777 * Or we could insist on shmem.c using a special
778 * swap_shmem_free() and free_shmem_swap_and_cache()...
779 */
780 count = 0;
570a335b
HD
781 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
782 if (count == COUNT_CONTINUED) {
783 if (swap_count_continued(p, offset, count))
784 count = SWAP_MAP_MAX | COUNT_CONTINUED;
785 else
786 count = SWAP_MAP_MAX;
787 } else
788 count--;
789 }
253d553b
HD
790
791 if (!count)
792 mem_cgroup_uncharge_swap(entry);
793
794 usage = count | has_cache;
795 p->swap_map[offset] = usage;
355cfa73 796
355cfa73 797 /* free if no reference */
253d553b 798 if (!usage) {
2a8f9449 799 dec_cluster_info_page(p, p->cluster_info, offset);
355cfa73
KH
800 if (offset < p->lowest_bit)
801 p->lowest_bit = offset;
18ab4d4c
DS
802 if (offset > p->highest_bit) {
803 bool was_full = !p->highest_bit;
355cfa73 804 p->highest_bit = offset;
18ab4d4c
DS
805 if (was_full && (p->flags & SWP_WRITEOK)) {
806 spin_lock(&swap_avail_lock);
807 WARN_ON(!plist_node_empty(&p->avail_list));
808 if (plist_node_empty(&p->avail_list))
809 plist_add(&p->avail_list,
810 &swap_avail_head);
811 spin_unlock(&swap_avail_lock);
812 }
813 }
ec8acf20 814 atomic_long_inc(&nr_swap_pages);
355cfa73 815 p->inuse_pages--;
38b5faf4 816 frontswap_invalidate_page(p->type, offset);
73744923
MG
817 if (p->flags & SWP_BLKDEV) {
818 struct gendisk *disk = p->bdev->bd_disk;
819 if (disk->fops->swap_slot_free_notify)
820 disk->fops->swap_slot_free_notify(p->bdev,
821 offset);
822 }
1da177e4 823 }
253d553b
HD
824
825 return usage;
1da177e4
LT
826}
827
828/*
2de1a7e4 829 * Caller has made sure that the swap device corresponding to entry
1da177e4
LT
830 * is still around or has not been recycled.
831 */
832void swap_free(swp_entry_t entry)
833{
73c34b6a 834 struct swap_info_struct *p;
1da177e4
LT
835
836 p = swap_info_get(entry);
837 if (p) {
253d553b 838 swap_entry_free(p, entry, 1);
ec8acf20 839 spin_unlock(&p->lock);
1da177e4
LT
840 }
841}
842
cb4b86ba
KH
843/*
844 * Called after dropping swapcache to decrease refcnt to swap entries.
845 */
0a31bc97 846void swapcache_free(swp_entry_t entry)
cb4b86ba 847{
355cfa73
KH
848 struct swap_info_struct *p;
849
355cfa73
KH
850 p = swap_info_get(entry);
851 if (p) {
0a31bc97 852 swap_entry_free(p, entry, SWAP_HAS_CACHE);
ec8acf20 853 spin_unlock(&p->lock);
355cfa73 854 }
cb4b86ba
KH
855}
856
1da177e4 857/*
c475a8ab 858 * How many references to page are currently swapped out?
570a335b
HD
859 * This does not give an exact answer when swap count is continued,
860 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 861 */
bde05d1c 862int page_swapcount(struct page *page)
1da177e4 863{
c475a8ab
HD
864 int count = 0;
865 struct swap_info_struct *p;
1da177e4
LT
866 swp_entry_t entry;
867
4c21e2f2 868 entry.val = page_private(page);
1da177e4
LT
869 p = swap_info_get(entry);
870 if (p) {
355cfa73 871 count = swap_count(p->swap_map[swp_offset(entry)]);
ec8acf20 872 spin_unlock(&p->lock);
1da177e4 873 }
c475a8ab 874 return count;
1da177e4
LT
875}
876
8334b962
MK
877/*
878 * How many references to @entry are currently swapped out?
879 * This considers COUNT_CONTINUED so it returns exact answer.
880 */
881int swp_swapcount(swp_entry_t entry)
882{
883 int count, tmp_count, n;
884 struct swap_info_struct *p;
885 struct page *page;
886 pgoff_t offset;
887 unsigned char *map;
888
889 p = swap_info_get(entry);
890 if (!p)
891 return 0;
892
893 count = swap_count(p->swap_map[swp_offset(entry)]);
894 if (!(count & COUNT_CONTINUED))
895 goto out;
896
897 count &= ~COUNT_CONTINUED;
898 n = SWAP_MAP_MAX + 1;
899
900 offset = swp_offset(entry);
901 page = vmalloc_to_page(p->swap_map + offset);
902 offset &= ~PAGE_MASK;
903 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
904
905 do {
906 page = list_entry(page->lru.next, struct page, lru);
907 map = kmap_atomic(page);
908 tmp_count = map[offset];
909 kunmap_atomic(map);
910
911 count += (tmp_count & ~COUNT_CONTINUED) * n;
912 n *= (SWAP_CONT_MAX + 1);
913 } while (tmp_count & COUNT_CONTINUED);
914out:
915 spin_unlock(&p->lock);
916 return count;
917}
918
1da177e4 919/*
7b1fe597
HD
920 * We can write to an anon page without COW if there are no other references
921 * to it. And as a side-effect, free up its swap: because the old content
922 * on disk will never be read, and seeking back there to write new content
923 * later would only waste time away from clustering.
1da177e4 924 */
7b1fe597 925int reuse_swap_page(struct page *page)
1da177e4 926{
c475a8ab
HD
927 int count;
928
309381fe 929 VM_BUG_ON_PAGE(!PageLocked(page), page);
5ad64688
HD
930 if (unlikely(PageKsm(page)))
931 return 0;
c475a8ab 932 count = page_mapcount(page);
7b1fe597 933 if (count <= 1 && PageSwapCache(page)) {
c475a8ab 934 count += page_swapcount(page);
7b1fe597
HD
935 if (count == 1 && !PageWriteback(page)) {
936 delete_from_swap_cache(page);
937 SetPageDirty(page);
938 }
939 }
5ad64688 940 return count <= 1;
1da177e4
LT
941}
942
943/*
a2c43eed
HD
944 * If swap is getting full, or if there are no more mappings of this page,
945 * then try_to_free_swap is called to free its swap space.
1da177e4 946 */
a2c43eed 947int try_to_free_swap(struct page *page)
1da177e4 948{
309381fe 949 VM_BUG_ON_PAGE(!PageLocked(page), page);
1da177e4
LT
950
951 if (!PageSwapCache(page))
952 return 0;
953 if (PageWriteback(page))
954 return 0;
a2c43eed 955 if (page_swapcount(page))
1da177e4
LT
956 return 0;
957
b73d7fce
HD
958 /*
959 * Once hibernation has begun to create its image of memory,
960 * there's a danger that one of the calls to try_to_free_swap()
961 * - most probably a call from __try_to_reclaim_swap() while
962 * hibernation is allocating its own swap pages for the image,
963 * but conceivably even a call from memory reclaim - will free
964 * the swap from a page which has already been recorded in the
965 * image as a clean swapcache page, and then reuse its swap for
966 * another page of the image. On waking from hibernation, the
967 * original page might be freed under memory pressure, then
968 * later read back in from swap, now with the wrong data.
969 *
2de1a7e4 970 * Hibernation suspends storage while it is writing the image
f90ac398 971 * to disk so check that here.
b73d7fce 972 */
f90ac398 973 if (pm_suspended_storage())
b73d7fce
HD
974 return 0;
975
a2c43eed
HD
976 delete_from_swap_cache(page);
977 SetPageDirty(page);
978 return 1;
68a22394
RR
979}
980
1da177e4
LT
981/*
982 * Free the swap entry like above, but also try to
983 * free the page cache entry if it is the last user.
984 */
2509ef26 985int free_swap_and_cache(swp_entry_t entry)
1da177e4 986{
2509ef26 987 struct swap_info_struct *p;
1da177e4
LT
988 struct page *page = NULL;
989
a7420aa5 990 if (non_swap_entry(entry))
2509ef26 991 return 1;
0697212a 992
1da177e4
LT
993 p = swap_info_get(entry);
994 if (p) {
253d553b 995 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
33806f06
SL
996 page = find_get_page(swap_address_space(entry),
997 entry.val);
8413ac9d 998 if (page && !trylock_page(page)) {
93fac704
NP
999 page_cache_release(page);
1000 page = NULL;
1001 }
1002 }
ec8acf20 1003 spin_unlock(&p->lock);
1da177e4
LT
1004 }
1005 if (page) {
a2c43eed
HD
1006 /*
1007 * Not mapped elsewhere, or swap space full? Free it!
1008 * Also recheck PageSwapCache now page is locked (above).
1009 */
93fac704 1010 if (PageSwapCache(page) && !PageWriteback(page) &&
a2c43eed 1011 (!page_mapped(page) || vm_swap_full())) {
1da177e4
LT
1012 delete_from_swap_cache(page);
1013 SetPageDirty(page);
1014 }
1015 unlock_page(page);
1016 page_cache_release(page);
1017 }
2509ef26 1018 return p != NULL;
1da177e4
LT
1019}
1020
b0cb1a19 1021#ifdef CONFIG_HIBERNATION
f577eb30 1022/*
915bae9e 1023 * Find the swap type that corresponds to given device (if any).
f577eb30 1024 *
915bae9e
RW
1025 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1026 * from 0, in which the swap header is expected to be located.
1027 *
1028 * This is needed for the suspend to disk (aka swsusp).
f577eb30 1029 */
7bf23687 1030int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 1031{
915bae9e 1032 struct block_device *bdev = NULL;
efa90a98 1033 int type;
f577eb30 1034
915bae9e
RW
1035 if (device)
1036 bdev = bdget(device);
1037
f577eb30 1038 spin_lock(&swap_lock);
efa90a98
HD
1039 for (type = 0; type < nr_swapfiles; type++) {
1040 struct swap_info_struct *sis = swap_info[type];
f577eb30 1041
915bae9e 1042 if (!(sis->flags & SWP_WRITEOK))
f577eb30 1043 continue;
b6b5bce3 1044
915bae9e 1045 if (!bdev) {
7bf23687 1046 if (bdev_p)
dddac6a7 1047 *bdev_p = bdgrab(sis->bdev);
7bf23687 1048
6e1819d6 1049 spin_unlock(&swap_lock);
efa90a98 1050 return type;
6e1819d6 1051 }
915bae9e 1052 if (bdev == sis->bdev) {
9625a5f2 1053 struct swap_extent *se = &sis->first_swap_extent;
915bae9e 1054
915bae9e 1055 if (se->start_block == offset) {
7bf23687 1056 if (bdev_p)
dddac6a7 1057 *bdev_p = bdgrab(sis->bdev);
7bf23687 1058
915bae9e
RW
1059 spin_unlock(&swap_lock);
1060 bdput(bdev);
efa90a98 1061 return type;
915bae9e 1062 }
f577eb30
RW
1063 }
1064 }
1065 spin_unlock(&swap_lock);
915bae9e
RW
1066 if (bdev)
1067 bdput(bdev);
1068
f577eb30
RW
1069 return -ENODEV;
1070}
1071
73c34b6a
HD
1072/*
1073 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1074 * corresponding to given index in swap_info (swap type).
1075 */
1076sector_t swapdev_block(int type, pgoff_t offset)
1077{
1078 struct block_device *bdev;
1079
1080 if ((unsigned int)type >= nr_swapfiles)
1081 return 0;
1082 if (!(swap_info[type]->flags & SWP_WRITEOK))
1083 return 0;
d4906e1a 1084 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
1085}
1086
f577eb30
RW
1087/*
1088 * Return either the total number of swap pages of given type, or the number
1089 * of free pages of that type (depending on @free)
1090 *
1091 * This is needed for software suspend
1092 */
1093unsigned int count_swap_pages(int type, int free)
1094{
1095 unsigned int n = 0;
1096
efa90a98
HD
1097 spin_lock(&swap_lock);
1098 if ((unsigned int)type < nr_swapfiles) {
1099 struct swap_info_struct *sis = swap_info[type];
1100
ec8acf20 1101 spin_lock(&sis->lock);
efa90a98
HD
1102 if (sis->flags & SWP_WRITEOK) {
1103 n = sis->pages;
f577eb30 1104 if (free)
efa90a98 1105 n -= sis->inuse_pages;
f577eb30 1106 }
ec8acf20 1107 spin_unlock(&sis->lock);
f577eb30 1108 }
efa90a98 1109 spin_unlock(&swap_lock);
f577eb30
RW
1110 return n;
1111}
73c34b6a 1112#endif /* CONFIG_HIBERNATION */
f577eb30 1113
179ef71c
CG
1114static inline int maybe_same_pte(pte_t pte, pte_t swp_pte)
1115{
1116#ifdef CONFIG_MEM_SOFT_DIRTY
1117 /*
1118 * When pte keeps soft dirty bit the pte generated
1119 * from swap entry does not has it, still it's same
1120 * pte from logical point of view.
1121 */
1122 pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte);
1123 return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty);
1124#else
1125 return pte_same(pte, swp_pte);
1126#endif
1127}
1128
1da177e4 1129/*
72866f6f
HD
1130 * No need to decide whether this PTE shares the swap entry with others,
1131 * just let do_wp_page work it out if a write is requested later - to
1132 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 1133 */
044d66c1 1134static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
1135 unsigned long addr, swp_entry_t entry, struct page *page)
1136{
9e16b7fb 1137 struct page *swapcache;
72835c86 1138 struct mem_cgroup *memcg;
044d66c1
HD
1139 spinlock_t *ptl;
1140 pte_t *pte;
1141 int ret = 1;
1142
9e16b7fb
HD
1143 swapcache = page;
1144 page = ksm_might_need_to_copy(page, vma, addr);
1145 if (unlikely(!page))
1146 return -ENOMEM;
1147
00501b53 1148 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg)) {
044d66c1 1149 ret = -ENOMEM;
85d9fc89
KH
1150 goto out_nolock;
1151 }
044d66c1
HD
1152
1153 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
179ef71c 1154 if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) {
00501b53 1155 mem_cgroup_cancel_charge(page, memcg);
044d66c1
HD
1156 ret = 0;
1157 goto out;
1158 }
8a9f3ccd 1159
b084d435 1160 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 1161 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
1162 get_page(page);
1163 set_pte_at(vma->vm_mm, addr, pte,
1164 pte_mkold(mk_pte(page, vma->vm_page_prot)));
00501b53 1165 if (page == swapcache) {
9e16b7fb 1166 page_add_anon_rmap(page, vma, addr);
00501b53
JW
1167 mem_cgroup_commit_charge(page, memcg, true);
1168 } else { /* ksm created a completely new copy */
9e16b7fb 1169 page_add_new_anon_rmap(page, vma, addr);
00501b53
JW
1170 mem_cgroup_commit_charge(page, memcg, false);
1171 lru_cache_add_active_or_unevictable(page, vma);
1172 }
1da177e4
LT
1173 swap_free(entry);
1174 /*
1175 * Move the page to the active list so it is not
1176 * immediately swapped out again after swapon.
1177 */
1178 activate_page(page);
044d66c1
HD
1179out:
1180 pte_unmap_unlock(pte, ptl);
85d9fc89 1181out_nolock:
9e16b7fb
HD
1182 if (page != swapcache) {
1183 unlock_page(page);
1184 put_page(page);
1185 }
044d66c1 1186 return ret;
1da177e4
LT
1187}
1188
1189static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1190 unsigned long addr, unsigned long end,
1191 swp_entry_t entry, struct page *page)
1192{
1da177e4 1193 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 1194 pte_t *pte;
8a9f3ccd 1195 int ret = 0;
1da177e4 1196
044d66c1
HD
1197 /*
1198 * We don't actually need pte lock while scanning for swp_pte: since
1199 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1200 * page table while we're scanning; though it could get zapped, and on
1201 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1202 * of unmatched parts which look like swp_pte, so unuse_pte must
1203 * recheck under pte lock. Scanning without pte lock lets it be
2de1a7e4 1204 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
044d66c1
HD
1205 */
1206 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1207 do {
1208 /*
1209 * swapoff spends a _lot_ of time in this loop!
1210 * Test inline before going to call unuse_pte.
1211 */
179ef71c 1212 if (unlikely(maybe_same_pte(*pte, swp_pte))) {
044d66c1
HD
1213 pte_unmap(pte);
1214 ret = unuse_pte(vma, pmd, addr, entry, page);
1215 if (ret)
1216 goto out;
1217 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1218 }
1219 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
1220 pte_unmap(pte - 1);
1221out:
8a9f3ccd 1222 return ret;
1da177e4
LT
1223}
1224
1225static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1226 unsigned long addr, unsigned long end,
1227 swp_entry_t entry, struct page *page)
1228{
1229 pmd_t *pmd;
1230 unsigned long next;
8a9f3ccd 1231 int ret;
1da177e4
LT
1232
1233 pmd = pmd_offset(pud, addr);
1234 do {
1235 next = pmd_addr_end(addr, end);
1a5a9906 1236 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 1237 continue;
8a9f3ccd
BS
1238 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1239 if (ret)
1240 return ret;
1da177e4
LT
1241 } while (pmd++, addr = next, addr != end);
1242 return 0;
1243}
1244
1245static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1246 unsigned long addr, unsigned long end,
1247 swp_entry_t entry, struct page *page)
1248{
1249 pud_t *pud;
1250 unsigned long next;
8a9f3ccd 1251 int ret;
1da177e4
LT
1252
1253 pud = pud_offset(pgd, addr);
1254 do {
1255 next = pud_addr_end(addr, end);
1256 if (pud_none_or_clear_bad(pud))
1257 continue;
8a9f3ccd
BS
1258 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1259 if (ret)
1260 return ret;
1da177e4
LT
1261 } while (pud++, addr = next, addr != end);
1262 return 0;
1263}
1264
1265static int unuse_vma(struct vm_area_struct *vma,
1266 swp_entry_t entry, struct page *page)
1267{
1268 pgd_t *pgd;
1269 unsigned long addr, end, next;
8a9f3ccd 1270 int ret;
1da177e4 1271
3ca7b3c5 1272 if (page_anon_vma(page)) {
1da177e4
LT
1273 addr = page_address_in_vma(page, vma);
1274 if (addr == -EFAULT)
1275 return 0;
1276 else
1277 end = addr + PAGE_SIZE;
1278 } else {
1279 addr = vma->vm_start;
1280 end = vma->vm_end;
1281 }
1282
1283 pgd = pgd_offset(vma->vm_mm, addr);
1284 do {
1285 next = pgd_addr_end(addr, end);
1286 if (pgd_none_or_clear_bad(pgd))
1287 continue;
8a9f3ccd
BS
1288 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1289 if (ret)
1290 return ret;
1da177e4
LT
1291 } while (pgd++, addr = next, addr != end);
1292 return 0;
1293}
1294
1295static int unuse_mm(struct mm_struct *mm,
1296 swp_entry_t entry, struct page *page)
1297{
1298 struct vm_area_struct *vma;
8a9f3ccd 1299 int ret = 0;
1da177e4
LT
1300
1301 if (!down_read_trylock(&mm->mmap_sem)) {
1302 /*
7d03431c
FLVC
1303 * Activate page so shrink_inactive_list is unlikely to unmap
1304 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 1305 */
c475a8ab 1306 activate_page(page);
1da177e4
LT
1307 unlock_page(page);
1308 down_read(&mm->mmap_sem);
1309 lock_page(page);
1310 }
1da177e4 1311 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 1312 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4
LT
1313 break;
1314 }
1da177e4 1315 up_read(&mm->mmap_sem);
8a9f3ccd 1316 return (ret < 0)? ret: 0;
1da177e4
LT
1317}
1318
1319/*
38b5faf4
DM
1320 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1321 * from current position to next entry still in use.
1da177e4
LT
1322 * Recycle to start on reaching the end, returning 0 when empty.
1323 */
6eb396dc 1324static unsigned int find_next_to_unuse(struct swap_info_struct *si,
38b5faf4 1325 unsigned int prev, bool frontswap)
1da177e4 1326{
6eb396dc
HD
1327 unsigned int max = si->max;
1328 unsigned int i = prev;
8d69aaee 1329 unsigned char count;
1da177e4
LT
1330
1331 /*
5d337b91 1332 * No need for swap_lock here: we're just looking
1da177e4
LT
1333 * for whether an entry is in use, not modifying it; false
1334 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 1335 * allocations from this area (while holding swap_lock).
1da177e4
LT
1336 */
1337 for (;;) {
1338 if (++i >= max) {
1339 if (!prev) {
1340 i = 0;
1341 break;
1342 }
1343 /*
1344 * No entries in use at top of swap_map,
1345 * loop back to start and recheck there.
1346 */
1347 max = prev + 1;
1348 prev = 0;
1349 i = 1;
1350 }
38b5faf4
DM
1351 if (frontswap) {
1352 if (frontswap_test(si, i))
1353 break;
1354 else
1355 continue;
1356 }
4db0c3c2 1357 count = READ_ONCE(si->swap_map[i]);
355cfa73 1358 if (count && swap_count(count) != SWAP_MAP_BAD)
1da177e4
LT
1359 break;
1360 }
1361 return i;
1362}
1363
1364/*
1365 * We completely avoid races by reading each swap page in advance,
1366 * and then search for the process using it. All the necessary
1367 * page table adjustments can then be made atomically.
38b5faf4
DM
1368 *
1369 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1370 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1da177e4 1371 */
38b5faf4
DM
1372int try_to_unuse(unsigned int type, bool frontswap,
1373 unsigned long pages_to_unuse)
1da177e4 1374{
efa90a98 1375 struct swap_info_struct *si = swap_info[type];
1da177e4 1376 struct mm_struct *start_mm;
edfe23da
SL
1377 volatile unsigned char *swap_map; /* swap_map is accessed without
1378 * locking. Mark it as volatile
1379 * to prevent compiler doing
1380 * something odd.
1381 */
8d69aaee 1382 unsigned char swcount;
1da177e4
LT
1383 struct page *page;
1384 swp_entry_t entry;
6eb396dc 1385 unsigned int i = 0;
1da177e4 1386 int retval = 0;
1da177e4
LT
1387
1388 /*
1389 * When searching mms for an entry, a good strategy is to
1390 * start at the first mm we freed the previous entry from
1391 * (though actually we don't notice whether we or coincidence
1392 * freed the entry). Initialize this start_mm with a hold.
1393 *
1394 * A simpler strategy would be to start at the last mm we
1395 * freed the previous entry from; but that would take less
1396 * advantage of mmlist ordering, which clusters forked mms
1397 * together, child after parent. If we race with dup_mmap(), we
1398 * prefer to resolve parent before child, lest we miss entries
1399 * duplicated after we scanned child: using last mm would invert
570a335b 1400 * that.
1da177e4
LT
1401 */
1402 start_mm = &init_mm;
1403 atomic_inc(&init_mm.mm_users);
1404
1405 /*
1406 * Keep on scanning until all entries have gone. Usually,
1407 * one pass through swap_map is enough, but not necessarily:
1408 * there are races when an instance of an entry might be missed.
1409 */
38b5faf4 1410 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1da177e4
LT
1411 if (signal_pending(current)) {
1412 retval = -EINTR;
1413 break;
1414 }
1415
886bb7e9 1416 /*
1da177e4
LT
1417 * Get a page for the entry, using the existing swap
1418 * cache page if there is one. Otherwise, get a clean
886bb7e9 1419 * page and read the swap into it.
1da177e4
LT
1420 */
1421 swap_map = &si->swap_map[i];
1422 entry = swp_entry(type, i);
02098fea
HD
1423 page = read_swap_cache_async(entry,
1424 GFP_HIGHUSER_MOVABLE, NULL, 0);
1da177e4
LT
1425 if (!page) {
1426 /*
1427 * Either swap_duplicate() failed because entry
1428 * has been freed independently, and will not be
1429 * reused since sys_swapoff() already disabled
1430 * allocation from here, or alloc_page() failed.
1431 */
edfe23da
SL
1432 swcount = *swap_map;
1433 /*
1434 * We don't hold lock here, so the swap entry could be
1435 * SWAP_MAP_BAD (when the cluster is discarding).
1436 * Instead of fail out, We can just skip the swap
1437 * entry because swapoff will wait for discarding
1438 * finish anyway.
1439 */
1440 if (!swcount || swcount == SWAP_MAP_BAD)
1da177e4
LT
1441 continue;
1442 retval = -ENOMEM;
1443 break;
1444 }
1445
1446 /*
1447 * Don't hold on to start_mm if it looks like exiting.
1448 */
1449 if (atomic_read(&start_mm->mm_users) == 1) {
1450 mmput(start_mm);
1451 start_mm = &init_mm;
1452 atomic_inc(&init_mm.mm_users);
1453 }
1454
1455 /*
1456 * Wait for and lock page. When do_swap_page races with
1457 * try_to_unuse, do_swap_page can handle the fault much
1458 * faster than try_to_unuse can locate the entry. This
1459 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1460 * defer to do_swap_page in such a case - in some tests,
1461 * do_swap_page and try_to_unuse repeatedly compete.
1462 */
1463 wait_on_page_locked(page);
1464 wait_on_page_writeback(page);
1465 lock_page(page);
1466 wait_on_page_writeback(page);
1467
1468 /*
1469 * Remove all references to entry.
1da177e4 1470 */
1da177e4 1471 swcount = *swap_map;
aaa46865
HD
1472 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1473 retval = shmem_unuse(entry, page);
1474 /* page has already been unlocked and released */
1475 if (retval < 0)
1476 break;
1477 continue;
1da177e4 1478 }
aaa46865
HD
1479 if (swap_count(swcount) && start_mm != &init_mm)
1480 retval = unuse_mm(start_mm, entry, page);
1481
355cfa73 1482 if (swap_count(*swap_map)) {
1da177e4
LT
1483 int set_start_mm = (*swap_map >= swcount);
1484 struct list_head *p = &start_mm->mmlist;
1485 struct mm_struct *new_start_mm = start_mm;
1486 struct mm_struct *prev_mm = start_mm;
1487 struct mm_struct *mm;
1488
1489 atomic_inc(&new_start_mm->mm_users);
1490 atomic_inc(&prev_mm->mm_users);
1491 spin_lock(&mmlist_lock);
aaa46865 1492 while (swap_count(*swap_map) && !retval &&
1da177e4
LT
1493 (p = p->next) != &start_mm->mmlist) {
1494 mm = list_entry(p, struct mm_struct, mmlist);
70af7c5c 1495 if (!atomic_inc_not_zero(&mm->mm_users))
1da177e4 1496 continue;
1da177e4
LT
1497 spin_unlock(&mmlist_lock);
1498 mmput(prev_mm);
1499 prev_mm = mm;
1500
1501 cond_resched();
1502
1503 swcount = *swap_map;
355cfa73 1504 if (!swap_count(swcount)) /* any usage ? */
1da177e4 1505 ;
aaa46865 1506 else if (mm == &init_mm)
1da177e4 1507 set_start_mm = 1;
aaa46865 1508 else
1da177e4 1509 retval = unuse_mm(mm, entry, page);
355cfa73 1510
32c5fc10 1511 if (set_start_mm && *swap_map < swcount) {
1da177e4
LT
1512 mmput(new_start_mm);
1513 atomic_inc(&mm->mm_users);
1514 new_start_mm = mm;
1515 set_start_mm = 0;
1516 }
1517 spin_lock(&mmlist_lock);
1518 }
1519 spin_unlock(&mmlist_lock);
1520 mmput(prev_mm);
1521 mmput(start_mm);
1522 start_mm = new_start_mm;
1523 }
1524 if (retval) {
1525 unlock_page(page);
1526 page_cache_release(page);
1527 break;
1528 }
1529
1da177e4
LT
1530 /*
1531 * If a reference remains (rare), we would like to leave
1532 * the page in the swap cache; but try_to_unmap could
1533 * then re-duplicate the entry once we drop page lock,
1534 * so we might loop indefinitely; also, that page could
1535 * not be swapped out to other storage meanwhile. So:
1536 * delete from cache even if there's another reference,
1537 * after ensuring that the data has been saved to disk -
1538 * since if the reference remains (rarer), it will be
1539 * read from disk into another page. Splitting into two
1540 * pages would be incorrect if swap supported "shared
1541 * private" pages, but they are handled by tmpfs files.
5ad64688
HD
1542 *
1543 * Given how unuse_vma() targets one particular offset
1544 * in an anon_vma, once the anon_vma has been determined,
1545 * this splitting happens to be just what is needed to
1546 * handle where KSM pages have been swapped out: re-reading
1547 * is unnecessarily slow, but we can fix that later on.
1da177e4 1548 */
355cfa73
KH
1549 if (swap_count(*swap_map) &&
1550 PageDirty(page) && PageSwapCache(page)) {
1da177e4
LT
1551 struct writeback_control wbc = {
1552 .sync_mode = WB_SYNC_NONE,
1553 };
1554
1555 swap_writepage(page, &wbc);
1556 lock_page(page);
1557 wait_on_page_writeback(page);
1558 }
68bdc8d6
HD
1559
1560 /*
1561 * It is conceivable that a racing task removed this page from
1562 * swap cache just before we acquired the page lock at the top,
1563 * or while we dropped it in unuse_mm(). The page might even
1564 * be back in swap cache on another swap area: that we must not
1565 * delete, since it may not have been written out to swap yet.
1566 */
1567 if (PageSwapCache(page) &&
1568 likely(page_private(page) == entry.val))
2e0e26c7 1569 delete_from_swap_cache(page);
1da177e4
LT
1570
1571 /*
1572 * So we could skip searching mms once swap count went
1573 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 1574 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
1575 */
1576 SetPageDirty(page);
1577 unlock_page(page);
1578 page_cache_release(page);
1579
1580 /*
1581 * Make sure that we aren't completely killing
1582 * interactive performance.
1583 */
1584 cond_resched();
38b5faf4
DM
1585 if (frontswap && pages_to_unuse > 0) {
1586 if (!--pages_to_unuse)
1587 break;
1588 }
1da177e4
LT
1589 }
1590
1591 mmput(start_mm);
1da177e4
LT
1592 return retval;
1593}
1594
1595/*
5d337b91
HD
1596 * After a successful try_to_unuse, if no swap is now in use, we know
1597 * we can empty the mmlist. swap_lock must be held on entry and exit.
1598 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
1599 * added to the mmlist just after page_duplicate - before would be racy.
1600 */
1601static void drain_mmlist(void)
1602{
1603 struct list_head *p, *next;
efa90a98 1604 unsigned int type;
1da177e4 1605
efa90a98
HD
1606 for (type = 0; type < nr_swapfiles; type++)
1607 if (swap_info[type]->inuse_pages)
1da177e4
LT
1608 return;
1609 spin_lock(&mmlist_lock);
1610 list_for_each_safe(p, next, &init_mm.mmlist)
1611 list_del_init(p);
1612 spin_unlock(&mmlist_lock);
1613}
1614
1615/*
1616 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
1617 * corresponds to page offset for the specified swap entry.
1618 * Note that the type of this function is sector_t, but it returns page offset
1619 * into the bdev, not sector offset.
1da177e4 1620 */
d4906e1a 1621static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 1622{
f29ad6a9
HD
1623 struct swap_info_struct *sis;
1624 struct swap_extent *start_se;
1625 struct swap_extent *se;
1626 pgoff_t offset;
1627
efa90a98 1628 sis = swap_info[swp_type(entry)];
f29ad6a9
HD
1629 *bdev = sis->bdev;
1630
1631 offset = swp_offset(entry);
1632 start_se = sis->curr_swap_extent;
1633 se = start_se;
1da177e4
LT
1634
1635 for ( ; ; ) {
1636 struct list_head *lh;
1637
1638 if (se->start_page <= offset &&
1639 offset < (se->start_page + se->nr_pages)) {
1640 return se->start_block + (offset - se->start_page);
1641 }
11d31886 1642 lh = se->list.next;
1da177e4
LT
1643 se = list_entry(lh, struct swap_extent, list);
1644 sis->curr_swap_extent = se;
1645 BUG_ON(se == start_se); /* It *must* be present */
1646 }
1647}
1648
d4906e1a
LS
1649/*
1650 * Returns the page offset into bdev for the specified page's swap entry.
1651 */
1652sector_t map_swap_page(struct page *page, struct block_device **bdev)
1653{
1654 swp_entry_t entry;
1655 entry.val = page_private(page);
1656 return map_swap_entry(entry, bdev);
1657}
1658
1da177e4
LT
1659/*
1660 * Free all of a swapdev's extent information
1661 */
1662static void destroy_swap_extents(struct swap_info_struct *sis)
1663{
9625a5f2 1664 while (!list_empty(&sis->first_swap_extent.list)) {
1da177e4
LT
1665 struct swap_extent *se;
1666
9625a5f2 1667 se = list_entry(sis->first_swap_extent.list.next,
1da177e4
LT
1668 struct swap_extent, list);
1669 list_del(&se->list);
1670 kfree(se);
1671 }
62c230bc
MG
1672
1673 if (sis->flags & SWP_FILE) {
1674 struct file *swap_file = sis->swap_file;
1675 struct address_space *mapping = swap_file->f_mapping;
1676
1677 sis->flags &= ~SWP_FILE;
1678 mapping->a_ops->swap_deactivate(swap_file);
1679 }
1da177e4
LT
1680}
1681
1682/*
1683 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 1684 * extent list. The extent list is kept sorted in page order.
1da177e4 1685 *
11d31886 1686 * This function rather assumes that it is called in ascending page order.
1da177e4 1687 */
a509bc1a 1688int
1da177e4
LT
1689add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1690 unsigned long nr_pages, sector_t start_block)
1691{
1692 struct swap_extent *se;
1693 struct swap_extent *new_se;
1694 struct list_head *lh;
1695
9625a5f2
HD
1696 if (start_page == 0) {
1697 se = &sis->first_swap_extent;
1698 sis->curr_swap_extent = se;
1699 se->start_page = 0;
1700 se->nr_pages = nr_pages;
1701 se->start_block = start_block;
1702 return 1;
1703 } else {
1704 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1da177e4 1705 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
1706 BUG_ON(se->start_page + se->nr_pages != start_page);
1707 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
1708 /* Merge it */
1709 se->nr_pages += nr_pages;
1710 return 0;
1711 }
1da177e4
LT
1712 }
1713
1714 /*
1715 * No merge. Insert a new extent, preserving ordering.
1716 */
1717 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1718 if (new_se == NULL)
1719 return -ENOMEM;
1720 new_se->start_page = start_page;
1721 new_se->nr_pages = nr_pages;
1722 new_se->start_block = start_block;
1723
9625a5f2 1724 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
53092a74 1725 return 1;
1da177e4
LT
1726}
1727
1728/*
1729 * A `swap extent' is a simple thing which maps a contiguous range of pages
1730 * onto a contiguous range of disk blocks. An ordered list of swap extents
1731 * is built at swapon time and is then used at swap_writepage/swap_readpage
1732 * time for locating where on disk a page belongs.
1733 *
1734 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1735 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1736 * swap files identically.
1737 *
1738 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1739 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1740 * swapfiles are handled *identically* after swapon time.
1741 *
1742 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1743 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1744 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1745 * requirements, they are simply tossed out - we will never use those blocks
1746 * for swapping.
1747 *
b0d9bcd4 1748 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
1749 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1750 * which will scribble on the fs.
1751 *
1752 * The amount of disk space which a single swap extent represents varies.
1753 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1754 * extents in the list. To avoid much list walking, we cache the previous
1755 * search location in `curr_swap_extent', and start new searches from there.
1756 * This is extremely effective. The average number of iterations in
1757 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1758 */
53092a74 1759static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 1760{
62c230bc
MG
1761 struct file *swap_file = sis->swap_file;
1762 struct address_space *mapping = swap_file->f_mapping;
1763 struct inode *inode = mapping->host;
1da177e4
LT
1764 int ret;
1765
1da177e4
LT
1766 if (S_ISBLK(inode->i_mode)) {
1767 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 1768 *span = sis->pages;
a509bc1a 1769 return ret;
1da177e4
LT
1770 }
1771
62c230bc 1772 if (mapping->a_ops->swap_activate) {
a509bc1a 1773 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
62c230bc
MG
1774 if (!ret) {
1775 sis->flags |= SWP_FILE;
1776 ret = add_swap_extent(sis, 0, sis->max, 0);
1777 *span = sis->pages;
1778 }
a509bc1a 1779 return ret;
62c230bc
MG
1780 }
1781
a509bc1a 1782 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
1783}
1784
cf0cac0a 1785static void _enable_swap_info(struct swap_info_struct *p, int prio,
2a8f9449
SL
1786 unsigned char *swap_map,
1787 struct swap_cluster_info *cluster_info)
40531542 1788{
40531542
CEB
1789 if (prio >= 0)
1790 p->prio = prio;
1791 else
1792 p->prio = --least_priority;
18ab4d4c
DS
1793 /*
1794 * the plist prio is negated because plist ordering is
1795 * low-to-high, while swap ordering is high-to-low
1796 */
1797 p->list.prio = -p->prio;
1798 p->avail_list.prio = -p->prio;
40531542 1799 p->swap_map = swap_map;
2a8f9449 1800 p->cluster_info = cluster_info;
40531542 1801 p->flags |= SWP_WRITEOK;
ec8acf20 1802 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
1803 total_swap_pages += p->pages;
1804
adfab836 1805 assert_spin_locked(&swap_lock);
adfab836 1806 /*
18ab4d4c
DS
1807 * both lists are plists, and thus priority ordered.
1808 * swap_active_head needs to be priority ordered for swapoff(),
1809 * which on removal of any swap_info_struct with an auto-assigned
1810 * (i.e. negative) priority increments the auto-assigned priority
1811 * of any lower-priority swap_info_structs.
1812 * swap_avail_head needs to be priority ordered for get_swap_page(),
1813 * which allocates swap pages from the highest available priority
1814 * swap_info_struct.
adfab836 1815 */
18ab4d4c
DS
1816 plist_add(&p->list, &swap_active_head);
1817 spin_lock(&swap_avail_lock);
1818 plist_add(&p->avail_list, &swap_avail_head);
1819 spin_unlock(&swap_avail_lock);
cf0cac0a
CEB
1820}
1821
1822static void enable_swap_info(struct swap_info_struct *p, int prio,
1823 unsigned char *swap_map,
2a8f9449 1824 struct swap_cluster_info *cluster_info,
cf0cac0a
CEB
1825 unsigned long *frontswap_map)
1826{
4f89849d 1827 frontswap_init(p->type, frontswap_map);
cf0cac0a 1828 spin_lock(&swap_lock);
ec8acf20 1829 spin_lock(&p->lock);
2a8f9449 1830 _enable_swap_info(p, prio, swap_map, cluster_info);
ec8acf20 1831 spin_unlock(&p->lock);
cf0cac0a
CEB
1832 spin_unlock(&swap_lock);
1833}
1834
1835static void reinsert_swap_info(struct swap_info_struct *p)
1836{
1837 spin_lock(&swap_lock);
ec8acf20 1838 spin_lock(&p->lock);
2a8f9449 1839 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
ec8acf20 1840 spin_unlock(&p->lock);
40531542
CEB
1841 spin_unlock(&swap_lock);
1842}
1843
c4ea37c2 1844SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 1845{
73c34b6a 1846 struct swap_info_struct *p = NULL;
8d69aaee 1847 unsigned char *swap_map;
2a8f9449 1848 struct swap_cluster_info *cluster_info;
4f89849d 1849 unsigned long *frontswap_map;
1da177e4
LT
1850 struct file *swap_file, *victim;
1851 struct address_space *mapping;
1852 struct inode *inode;
91a27b2a 1853 struct filename *pathname;
adfab836 1854 int err, found = 0;
5b808a23 1855 unsigned int old_block_size;
886bb7e9 1856
1da177e4
LT
1857 if (!capable(CAP_SYS_ADMIN))
1858 return -EPERM;
1859
191c5424
AV
1860 BUG_ON(!current->mm);
1861
1da177e4 1862 pathname = getname(specialfile);
1da177e4 1863 if (IS_ERR(pathname))
f58b59c1 1864 return PTR_ERR(pathname);
1da177e4 1865
669abf4e 1866 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
1867 err = PTR_ERR(victim);
1868 if (IS_ERR(victim))
1869 goto out;
1870
1871 mapping = victim->f_mapping;
5d337b91 1872 spin_lock(&swap_lock);
18ab4d4c 1873 plist_for_each_entry(p, &swap_active_head, list) {
22c6f8fd 1874 if (p->flags & SWP_WRITEOK) {
adfab836
DS
1875 if (p->swap_file->f_mapping == mapping) {
1876 found = 1;
1da177e4 1877 break;
adfab836 1878 }
1da177e4 1879 }
1da177e4 1880 }
adfab836 1881 if (!found) {
1da177e4 1882 err = -EINVAL;
5d337b91 1883 spin_unlock(&swap_lock);
1da177e4
LT
1884 goto out_dput;
1885 }
191c5424 1886 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
1887 vm_unacct_memory(p->pages);
1888 else {
1889 err = -ENOMEM;
5d337b91 1890 spin_unlock(&swap_lock);
1da177e4
LT
1891 goto out_dput;
1892 }
18ab4d4c
DS
1893 spin_lock(&swap_avail_lock);
1894 plist_del(&p->avail_list, &swap_avail_head);
1895 spin_unlock(&swap_avail_lock);
ec8acf20 1896 spin_lock(&p->lock);
78ecba08 1897 if (p->prio < 0) {
adfab836
DS
1898 struct swap_info_struct *si = p;
1899
18ab4d4c 1900 plist_for_each_entry_continue(si, &swap_active_head, list) {
adfab836 1901 si->prio++;
18ab4d4c
DS
1902 si->list.prio--;
1903 si->avail_list.prio--;
adfab836 1904 }
78ecba08
HD
1905 least_priority++;
1906 }
18ab4d4c 1907 plist_del(&p->list, &swap_active_head);
ec8acf20 1908 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
1909 total_swap_pages -= p->pages;
1910 p->flags &= ~SWP_WRITEOK;
ec8acf20 1911 spin_unlock(&p->lock);
5d337b91 1912 spin_unlock(&swap_lock);
fb4f88dc 1913
e1e12d2f 1914 set_current_oom_origin();
adfab836 1915 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
e1e12d2f 1916 clear_current_oom_origin();
1da177e4 1917
1da177e4
LT
1918 if (err) {
1919 /* re-insert swap space back into swap_list */
cf0cac0a 1920 reinsert_swap_info(p);
1da177e4
LT
1921 goto out_dput;
1922 }
52b7efdb 1923
815c2c54
SL
1924 flush_work(&p->discard_work);
1925
5d337b91 1926 destroy_swap_extents(p);
570a335b
HD
1927 if (p->flags & SWP_CONTINUED)
1928 free_swap_count_continuations(p);
1929
fc0abb14 1930 mutex_lock(&swapon_mutex);
5d337b91 1931 spin_lock(&swap_lock);
ec8acf20 1932 spin_lock(&p->lock);
5d337b91
HD
1933 drain_mmlist();
1934
52b7efdb 1935 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
1936 p->highest_bit = 0; /* cuts scans short */
1937 while (p->flags >= SWP_SCANNING) {
ec8acf20 1938 spin_unlock(&p->lock);
5d337b91 1939 spin_unlock(&swap_lock);
13e4b57f 1940 schedule_timeout_uninterruptible(1);
5d337b91 1941 spin_lock(&swap_lock);
ec8acf20 1942 spin_lock(&p->lock);
52b7efdb 1943 }
52b7efdb 1944
1da177e4 1945 swap_file = p->swap_file;
5b808a23 1946 old_block_size = p->old_block_size;
1da177e4
LT
1947 p->swap_file = NULL;
1948 p->max = 0;
1949 swap_map = p->swap_map;
1950 p->swap_map = NULL;
2a8f9449
SL
1951 cluster_info = p->cluster_info;
1952 p->cluster_info = NULL;
4f89849d 1953 frontswap_map = frontswap_map_get(p);
ec8acf20 1954 spin_unlock(&p->lock);
5d337b91 1955 spin_unlock(&swap_lock);
adfab836 1956 frontswap_invalidate_area(p->type);
58e97ba6 1957 frontswap_map_set(p, NULL);
fc0abb14 1958 mutex_unlock(&swapon_mutex);
ebc2a1a6
SL
1959 free_percpu(p->percpu_cluster);
1960 p->percpu_cluster = NULL;
1da177e4 1961 vfree(swap_map);
2a8f9449 1962 vfree(cluster_info);
4f89849d 1963 vfree(frontswap_map);
2de1a7e4 1964 /* Destroy swap account information */
adfab836 1965 swap_cgroup_swapoff(p->type);
27a7faa0 1966
1da177e4
LT
1967 inode = mapping->host;
1968 if (S_ISBLK(inode->i_mode)) {
1969 struct block_device *bdev = I_BDEV(inode);
5b808a23 1970 set_blocksize(bdev, old_block_size);
e525fd89 1971 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 1972 } else {
1b1dcc1b 1973 mutex_lock(&inode->i_mutex);
1da177e4 1974 inode->i_flags &= ~S_SWAPFILE;
1b1dcc1b 1975 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1976 }
1977 filp_close(swap_file, NULL);
f893ab41
WY
1978
1979 /*
1980 * Clear the SWP_USED flag after all resources are freed so that swapon
1981 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
1982 * not hold p->lock after we cleared its SWP_WRITEOK.
1983 */
1984 spin_lock(&swap_lock);
1985 p->flags = 0;
1986 spin_unlock(&swap_lock);
1987
1da177e4 1988 err = 0;
66d7dd51
KS
1989 atomic_inc(&proc_poll_event);
1990 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
1991
1992out_dput:
1993 filp_close(victim, NULL);
1994out:
f58b59c1 1995 putname(pathname);
1da177e4
LT
1996 return err;
1997}
1998
1999#ifdef CONFIG_PROC_FS
66d7dd51
KS
2000static unsigned swaps_poll(struct file *file, poll_table *wait)
2001{
f1514638 2002 struct seq_file *seq = file->private_data;
66d7dd51
KS
2003
2004 poll_wait(file, &proc_poll_wait, wait);
2005
f1514638
KS
2006 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2007 seq->poll_event = atomic_read(&proc_poll_event);
66d7dd51
KS
2008 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2009 }
2010
2011 return POLLIN | POLLRDNORM;
2012}
2013
1da177e4
LT
2014/* iterator */
2015static void *swap_start(struct seq_file *swap, loff_t *pos)
2016{
efa90a98
HD
2017 struct swap_info_struct *si;
2018 int type;
1da177e4
LT
2019 loff_t l = *pos;
2020
fc0abb14 2021 mutex_lock(&swapon_mutex);
1da177e4 2022
881e4aab
SS
2023 if (!l)
2024 return SEQ_START_TOKEN;
2025
efa90a98
HD
2026 for (type = 0; type < nr_swapfiles; type++) {
2027 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2028 si = swap_info[type];
2029 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2030 continue;
881e4aab 2031 if (!--l)
efa90a98 2032 return si;
1da177e4
LT
2033 }
2034
2035 return NULL;
2036}
2037
2038static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2039{
efa90a98
HD
2040 struct swap_info_struct *si = v;
2041 int type;
1da177e4 2042
881e4aab 2043 if (v == SEQ_START_TOKEN)
efa90a98
HD
2044 type = 0;
2045 else
2046 type = si->type + 1;
881e4aab 2047
efa90a98
HD
2048 for (; type < nr_swapfiles; type++) {
2049 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2050 si = swap_info[type];
2051 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4
LT
2052 continue;
2053 ++*pos;
efa90a98 2054 return si;
1da177e4
LT
2055 }
2056
2057 return NULL;
2058}
2059
2060static void swap_stop(struct seq_file *swap, void *v)
2061{
fc0abb14 2062 mutex_unlock(&swapon_mutex);
1da177e4
LT
2063}
2064
2065static int swap_show(struct seq_file *swap, void *v)
2066{
efa90a98 2067 struct swap_info_struct *si = v;
1da177e4
LT
2068 struct file *file;
2069 int len;
2070
efa90a98 2071 if (si == SEQ_START_TOKEN) {
881e4aab
SS
2072 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2073 return 0;
2074 }
1da177e4 2075
efa90a98 2076 file = si->swap_file;
2726d566 2077 len = seq_file_path(swap, file, " \t\n\\");
6eb396dc 2078 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9 2079 len < 40 ? 40 - len : 1, " ",
496ad9aa 2080 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 2081 "partition" : "file\t",
efa90a98
HD
2082 si->pages << (PAGE_SHIFT - 10),
2083 si->inuse_pages << (PAGE_SHIFT - 10),
2084 si->prio);
1da177e4
LT
2085 return 0;
2086}
2087
15ad7cdc 2088static const struct seq_operations swaps_op = {
1da177e4
LT
2089 .start = swap_start,
2090 .next = swap_next,
2091 .stop = swap_stop,
2092 .show = swap_show
2093};
2094
2095static int swaps_open(struct inode *inode, struct file *file)
2096{
f1514638 2097 struct seq_file *seq;
66d7dd51
KS
2098 int ret;
2099
66d7dd51 2100 ret = seq_open(file, &swaps_op);
f1514638 2101 if (ret)
66d7dd51 2102 return ret;
66d7dd51 2103
f1514638
KS
2104 seq = file->private_data;
2105 seq->poll_event = atomic_read(&proc_poll_event);
2106 return 0;
1da177e4
LT
2107}
2108
15ad7cdc 2109static const struct file_operations proc_swaps_operations = {
1da177e4
LT
2110 .open = swaps_open,
2111 .read = seq_read,
2112 .llseek = seq_lseek,
2113 .release = seq_release,
66d7dd51 2114 .poll = swaps_poll,
1da177e4
LT
2115};
2116
2117static int __init procswaps_init(void)
2118{
3d71f86f 2119 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
2120 return 0;
2121}
2122__initcall(procswaps_init);
2123#endif /* CONFIG_PROC_FS */
2124
1796316a
JB
2125#ifdef MAX_SWAPFILES_CHECK
2126static int __init max_swapfiles_check(void)
2127{
2128 MAX_SWAPFILES_CHECK();
2129 return 0;
2130}
2131late_initcall(max_swapfiles_check);
2132#endif
2133
53cbb243 2134static struct swap_info_struct *alloc_swap_info(void)
1da177e4 2135{
73c34b6a 2136 struct swap_info_struct *p;
1da177e4 2137 unsigned int type;
efa90a98
HD
2138
2139 p = kzalloc(sizeof(*p), GFP_KERNEL);
2140 if (!p)
53cbb243 2141 return ERR_PTR(-ENOMEM);
efa90a98 2142
5d337b91 2143 spin_lock(&swap_lock);
efa90a98
HD
2144 for (type = 0; type < nr_swapfiles; type++) {
2145 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 2146 break;
efa90a98 2147 }
0697212a 2148 if (type >= MAX_SWAPFILES) {
5d337b91 2149 spin_unlock(&swap_lock);
efa90a98 2150 kfree(p);
730c0581 2151 return ERR_PTR(-EPERM);
1da177e4 2152 }
efa90a98
HD
2153 if (type >= nr_swapfiles) {
2154 p->type = type;
2155 swap_info[type] = p;
2156 /*
2157 * Write swap_info[type] before nr_swapfiles, in case a
2158 * racing procfs swap_start() or swap_next() is reading them.
2159 * (We never shrink nr_swapfiles, we never free this entry.)
2160 */
2161 smp_wmb();
2162 nr_swapfiles++;
2163 } else {
2164 kfree(p);
2165 p = swap_info[type];
2166 /*
2167 * Do not memset this entry: a racing procfs swap_next()
2168 * would be relying on p->type to remain valid.
2169 */
2170 }
9625a5f2 2171 INIT_LIST_HEAD(&p->first_swap_extent.list);
18ab4d4c
DS
2172 plist_node_init(&p->list, 0);
2173 plist_node_init(&p->avail_list, 0);
1da177e4 2174 p->flags = SWP_USED;
5d337b91 2175 spin_unlock(&swap_lock);
ec8acf20 2176 spin_lock_init(&p->lock);
efa90a98 2177
53cbb243 2178 return p;
53cbb243
CEB
2179}
2180
4d0e1e10
CEB
2181static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2182{
2183 int error;
2184
2185 if (S_ISBLK(inode->i_mode)) {
2186 p->bdev = bdgrab(I_BDEV(inode));
2187 error = blkdev_get(p->bdev,
6f179af8 2188 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
4d0e1e10
CEB
2189 if (error < 0) {
2190 p->bdev = NULL;
6f179af8 2191 return error;
4d0e1e10
CEB
2192 }
2193 p->old_block_size = block_size(p->bdev);
2194 error = set_blocksize(p->bdev, PAGE_SIZE);
2195 if (error < 0)
87ade72a 2196 return error;
4d0e1e10
CEB
2197 p->flags |= SWP_BLKDEV;
2198 } else if (S_ISREG(inode->i_mode)) {
2199 p->bdev = inode->i_sb->s_bdev;
2200 mutex_lock(&inode->i_mutex);
87ade72a
CEB
2201 if (IS_SWAPFILE(inode))
2202 return -EBUSY;
2203 } else
2204 return -EINVAL;
4d0e1e10
CEB
2205
2206 return 0;
4d0e1e10
CEB
2207}
2208
ca8bd38b
CEB
2209static unsigned long read_swap_header(struct swap_info_struct *p,
2210 union swap_header *swap_header,
2211 struct inode *inode)
2212{
2213 int i;
2214 unsigned long maxpages;
2215 unsigned long swapfilepages;
d6bbbd29 2216 unsigned long last_page;
ca8bd38b
CEB
2217
2218 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
465c47fd 2219 pr_err("Unable to find swap-space signature\n");
38719025 2220 return 0;
ca8bd38b
CEB
2221 }
2222
2223 /* swap partition endianess hack... */
2224 if (swab32(swap_header->info.version) == 1) {
2225 swab32s(&swap_header->info.version);
2226 swab32s(&swap_header->info.last_page);
2227 swab32s(&swap_header->info.nr_badpages);
2228 for (i = 0; i < swap_header->info.nr_badpages; i++)
2229 swab32s(&swap_header->info.badpages[i]);
2230 }
2231 /* Check the swap header's sub-version */
2232 if (swap_header->info.version != 1) {
465c47fd
AM
2233 pr_warn("Unable to handle swap header version %d\n",
2234 swap_header->info.version);
38719025 2235 return 0;
ca8bd38b
CEB
2236 }
2237
2238 p->lowest_bit = 1;
2239 p->cluster_next = 1;
2240 p->cluster_nr = 0;
2241
2242 /*
2243 * Find out how many pages are allowed for a single swap
9b15b817 2244 * device. There are two limiting factors: 1) the number
a2c16d6c
HD
2245 * of bits for the swap offset in the swp_entry_t type, and
2246 * 2) the number of bits in the swap pte as defined by the
9b15b817 2247 * different architectures. In order to find the
a2c16d6c 2248 * largest possible bit mask, a swap entry with swap type 0
ca8bd38b 2249 * and swap offset ~0UL is created, encoded to a swap pte,
a2c16d6c 2250 * decoded to a swp_entry_t again, and finally the swap
ca8bd38b
CEB
2251 * offset is extracted. This will mask all the bits from
2252 * the initial ~0UL mask that can't be encoded in either
2253 * the swp_entry_t or the architecture definition of a
9b15b817 2254 * swap pte.
ca8bd38b
CEB
2255 */
2256 maxpages = swp_offset(pte_to_swp_entry(
9b15b817 2257 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
d6bbbd29
RJ
2258 last_page = swap_header->info.last_page;
2259 if (last_page > maxpages) {
465c47fd 2260 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
d6bbbd29
RJ
2261 maxpages << (PAGE_SHIFT - 10),
2262 last_page << (PAGE_SHIFT - 10));
2263 }
2264 if (maxpages > last_page) {
2265 maxpages = last_page + 1;
ca8bd38b
CEB
2266 /* p->max is an unsigned int: don't overflow it */
2267 if ((unsigned int)maxpages == 0)
2268 maxpages = UINT_MAX;
2269 }
2270 p->highest_bit = maxpages - 1;
2271
2272 if (!maxpages)
38719025 2273 return 0;
ca8bd38b
CEB
2274 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2275 if (swapfilepages && maxpages > swapfilepages) {
465c47fd 2276 pr_warn("Swap area shorter than signature indicates\n");
38719025 2277 return 0;
ca8bd38b
CEB
2278 }
2279 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 2280 return 0;
ca8bd38b 2281 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 2282 return 0;
ca8bd38b
CEB
2283
2284 return maxpages;
ca8bd38b
CEB
2285}
2286
915d4d7b
CEB
2287static int setup_swap_map_and_extents(struct swap_info_struct *p,
2288 union swap_header *swap_header,
2289 unsigned char *swap_map,
2a8f9449 2290 struct swap_cluster_info *cluster_info,
915d4d7b
CEB
2291 unsigned long maxpages,
2292 sector_t *span)
2293{
2294 int i;
915d4d7b
CEB
2295 unsigned int nr_good_pages;
2296 int nr_extents;
2a8f9449
SL
2297 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2298 unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
915d4d7b
CEB
2299
2300 nr_good_pages = maxpages - 1; /* omit header page */
2301
2a8f9449
SL
2302 cluster_set_null(&p->free_cluster_head);
2303 cluster_set_null(&p->free_cluster_tail);
815c2c54
SL
2304 cluster_set_null(&p->discard_cluster_head);
2305 cluster_set_null(&p->discard_cluster_tail);
2a8f9449 2306
915d4d7b
CEB
2307 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2308 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
2309 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2310 return -EINVAL;
915d4d7b
CEB
2311 if (page_nr < maxpages) {
2312 swap_map[page_nr] = SWAP_MAP_BAD;
2313 nr_good_pages--;
2a8f9449
SL
2314 /*
2315 * Haven't marked the cluster free yet, no list
2316 * operation involved
2317 */
2318 inc_cluster_info_page(p, cluster_info, page_nr);
915d4d7b
CEB
2319 }
2320 }
2321
2a8f9449
SL
2322 /* Haven't marked the cluster free yet, no list operation involved */
2323 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2324 inc_cluster_info_page(p, cluster_info, i);
2325
915d4d7b
CEB
2326 if (nr_good_pages) {
2327 swap_map[0] = SWAP_MAP_BAD;
2a8f9449
SL
2328 /*
2329 * Not mark the cluster free yet, no list
2330 * operation involved
2331 */
2332 inc_cluster_info_page(p, cluster_info, 0);
915d4d7b
CEB
2333 p->max = maxpages;
2334 p->pages = nr_good_pages;
2335 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
2336 if (nr_extents < 0)
2337 return nr_extents;
915d4d7b
CEB
2338 nr_good_pages = p->pages;
2339 }
2340 if (!nr_good_pages) {
465c47fd 2341 pr_warn("Empty swap-file\n");
bdb8e3f6 2342 return -EINVAL;
915d4d7b
CEB
2343 }
2344
2a8f9449
SL
2345 if (!cluster_info)
2346 return nr_extents;
2347
2348 for (i = 0; i < nr_clusters; i++) {
2349 if (!cluster_count(&cluster_info[idx])) {
2350 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2351 if (cluster_is_null(&p->free_cluster_head)) {
2352 cluster_set_next_flag(&p->free_cluster_head,
2353 idx, 0);
2354 cluster_set_next_flag(&p->free_cluster_tail,
2355 idx, 0);
2356 } else {
2357 unsigned int tail;
2358
2359 tail = cluster_next(&p->free_cluster_tail);
2360 cluster_set_next(&cluster_info[tail], idx);
2361 cluster_set_next_flag(&p->free_cluster_tail,
2362 idx, 0);
2363 }
2364 }
2365 idx++;
2366 if (idx == nr_clusters)
2367 idx = 0;
2368 }
915d4d7b 2369 return nr_extents;
915d4d7b
CEB
2370}
2371
dcf6b7dd
RA
2372/*
2373 * Helper to sys_swapon determining if a given swap
2374 * backing device queue supports DISCARD operations.
2375 */
2376static bool swap_discardable(struct swap_info_struct *si)
2377{
2378 struct request_queue *q = bdev_get_queue(si->bdev);
2379
2380 if (!q || !blk_queue_discard(q))
2381 return false;
2382
2383 return true;
2384}
2385
53cbb243
CEB
2386SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2387{
2388 struct swap_info_struct *p;
91a27b2a 2389 struct filename *name;
53cbb243
CEB
2390 struct file *swap_file = NULL;
2391 struct address_space *mapping;
40531542 2392 int prio;
53cbb243
CEB
2393 int error;
2394 union swap_header *swap_header;
915d4d7b 2395 int nr_extents;
53cbb243
CEB
2396 sector_t span;
2397 unsigned long maxpages;
53cbb243 2398 unsigned char *swap_map = NULL;
2a8f9449 2399 struct swap_cluster_info *cluster_info = NULL;
38b5faf4 2400 unsigned long *frontswap_map = NULL;
53cbb243
CEB
2401 struct page *page = NULL;
2402 struct inode *inode = NULL;
53cbb243 2403
d15cab97
HD
2404 if (swap_flags & ~SWAP_FLAGS_VALID)
2405 return -EINVAL;
2406
53cbb243
CEB
2407 if (!capable(CAP_SYS_ADMIN))
2408 return -EPERM;
2409
2410 p = alloc_swap_info();
2542e513
CEB
2411 if (IS_ERR(p))
2412 return PTR_ERR(p);
53cbb243 2413
815c2c54
SL
2414 INIT_WORK(&p->discard_work, swap_discard_work);
2415
1da177e4 2416 name = getname(specialfile);
1da177e4 2417 if (IS_ERR(name)) {
7de7fb6b 2418 error = PTR_ERR(name);
1da177e4 2419 name = NULL;
bd69010b 2420 goto bad_swap;
1da177e4 2421 }
669abf4e 2422 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 2423 if (IS_ERR(swap_file)) {
7de7fb6b 2424 error = PTR_ERR(swap_file);
1da177e4 2425 swap_file = NULL;
bd69010b 2426 goto bad_swap;
1da177e4
LT
2427 }
2428
2429 p->swap_file = swap_file;
2430 mapping = swap_file->f_mapping;
2130781e 2431 inode = mapping->host;
6f179af8 2432
2130781e 2433 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
4d0e1e10
CEB
2434 error = claim_swapfile(p, inode);
2435 if (unlikely(error))
1da177e4 2436 goto bad_swap;
1da177e4 2437
1da177e4
LT
2438 /*
2439 * Read the swap header.
2440 */
2441 if (!mapping->a_ops->readpage) {
2442 error = -EINVAL;
2443 goto bad_swap;
2444 }
090d2b18 2445 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
2446 if (IS_ERR(page)) {
2447 error = PTR_ERR(page);
2448 goto bad_swap;
2449 }
81e33971 2450 swap_header = kmap(page);
1da177e4 2451
ca8bd38b
CEB
2452 maxpages = read_swap_header(p, swap_header, inode);
2453 if (unlikely(!maxpages)) {
1da177e4
LT
2454 error = -EINVAL;
2455 goto bad_swap;
2456 }
886bb7e9 2457
81e33971 2458 /* OK, set up the swap map and apply the bad block list */
803d0c83 2459 swap_map = vzalloc(maxpages);
81e33971
HD
2460 if (!swap_map) {
2461 error = -ENOMEM;
2462 goto bad_swap;
2463 }
2a8f9449 2464 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
6f179af8
HD
2465 int cpu;
2466
2a8f9449
SL
2467 p->flags |= SWP_SOLIDSTATE;
2468 /*
2469 * select a random position to start with to help wear leveling
2470 * SSD
2471 */
2472 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2473
2474 cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2475 SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2476 if (!cluster_info) {
2477 error = -ENOMEM;
2478 goto bad_swap;
2479 }
ebc2a1a6
SL
2480 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2481 if (!p->percpu_cluster) {
2482 error = -ENOMEM;
2483 goto bad_swap;
2484 }
6f179af8 2485 for_each_possible_cpu(cpu) {
ebc2a1a6 2486 struct percpu_cluster *cluster;
6f179af8 2487 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
ebc2a1a6
SL
2488 cluster_set_null(&cluster->index);
2489 }
2a8f9449 2490 }
1da177e4 2491
1421ef3c
CEB
2492 error = swap_cgroup_swapon(p->type, maxpages);
2493 if (error)
2494 goto bad_swap;
2495
915d4d7b 2496 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2a8f9449 2497 cluster_info, maxpages, &span);
915d4d7b
CEB
2498 if (unlikely(nr_extents < 0)) {
2499 error = nr_extents;
1da177e4
LT
2500 goto bad_swap;
2501 }
38b5faf4
DM
2502 /* frontswap enabled? set up bit-per-page map for frontswap */
2503 if (frontswap_enabled)
7b57976d 2504 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
1da177e4 2505
2a8f9449
SL
2506 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2507 /*
2508 * When discard is enabled for swap with no particular
2509 * policy flagged, we set all swap discard flags here in
2510 * order to sustain backward compatibility with older
2511 * swapon(8) releases.
2512 */
2513 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2514 SWP_PAGE_DISCARD);
dcf6b7dd 2515
2a8f9449
SL
2516 /*
2517 * By flagging sys_swapon, a sysadmin can tell us to
2518 * either do single-time area discards only, or to just
2519 * perform discards for released swap page-clusters.
2520 * Now it's time to adjust the p->flags accordingly.
2521 */
2522 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2523 p->flags &= ~SWP_PAGE_DISCARD;
2524 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2525 p->flags &= ~SWP_AREA_DISCARD;
2526
2527 /* issue a swapon-time discard if it's still required */
2528 if (p->flags & SWP_AREA_DISCARD) {
2529 int err = discard_swap(p);
2530 if (unlikely(err))
2531 pr_err("swapon: discard_swap(%p): %d\n",
2532 p, err);
dcf6b7dd 2533 }
20137a49 2534 }
6a6ba831 2535
fc0abb14 2536 mutex_lock(&swapon_mutex);
40531542 2537 prio = -1;
78ecba08 2538 if (swap_flags & SWAP_FLAG_PREFER)
40531542 2539 prio =
78ecba08 2540 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2a8f9449 2541 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
c69dbfb8 2542
465c47fd 2543 pr_info("Adding %uk swap on %s. "
dcf6b7dd 2544 "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 2545 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
2546 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2547 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 2548 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
2549 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2550 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 2551 (frontswap_map) ? "FS" : "");
c69dbfb8 2552
fc0abb14 2553 mutex_unlock(&swapon_mutex);
66d7dd51
KS
2554 atomic_inc(&proc_poll_event);
2555 wake_up_interruptible(&proc_poll_wait);
2556
9b01c350
CEB
2557 if (S_ISREG(inode->i_mode))
2558 inode->i_flags |= S_SWAPFILE;
1da177e4
LT
2559 error = 0;
2560 goto out;
2561bad_swap:
ebc2a1a6
SL
2562 free_percpu(p->percpu_cluster);
2563 p->percpu_cluster = NULL;
bd69010b 2564 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
2565 set_blocksize(p->bdev, p->old_block_size);
2566 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2567 }
4cd3bb10 2568 destroy_swap_extents(p);
e8e6c2ec 2569 swap_cgroup_swapoff(p->type);
5d337b91 2570 spin_lock(&swap_lock);
1da177e4 2571 p->swap_file = NULL;
1da177e4 2572 p->flags = 0;
5d337b91 2573 spin_unlock(&swap_lock);
1da177e4 2574 vfree(swap_map);
2a8f9449 2575 vfree(cluster_info);
52c50567 2576 if (swap_file) {
2130781e 2577 if (inode && S_ISREG(inode->i_mode)) {
52c50567 2578 mutex_unlock(&inode->i_mutex);
2130781e
CEB
2579 inode = NULL;
2580 }
1da177e4 2581 filp_close(swap_file, NULL);
52c50567 2582 }
1da177e4
LT
2583out:
2584 if (page && !IS_ERR(page)) {
2585 kunmap(page);
2586 page_cache_release(page);
2587 }
2588 if (name)
2589 putname(name);
9b01c350 2590 if (inode && S_ISREG(inode->i_mode))
1b1dcc1b 2591 mutex_unlock(&inode->i_mutex);
1da177e4
LT
2592 return error;
2593}
2594
2595void si_swapinfo(struct sysinfo *val)
2596{
efa90a98 2597 unsigned int type;
1da177e4
LT
2598 unsigned long nr_to_be_unused = 0;
2599
5d337b91 2600 spin_lock(&swap_lock);
efa90a98
HD
2601 for (type = 0; type < nr_swapfiles; type++) {
2602 struct swap_info_struct *si = swap_info[type];
2603
2604 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2605 nr_to_be_unused += si->inuse_pages;
1da177e4 2606 }
ec8acf20 2607 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 2608 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 2609 spin_unlock(&swap_lock);
1da177e4
LT
2610}
2611
2612/*
2613 * Verify that a swap entry is valid and increment its swap map count.
2614 *
355cfa73
KH
2615 * Returns error code in following case.
2616 * - success -> 0
2617 * - swp_entry is invalid -> EINVAL
2618 * - swp_entry is migration entry -> EINVAL
2619 * - swap-cache reference is requested but there is already one. -> EEXIST
2620 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 2621 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 2622 */
8d69aaee 2623static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 2624{
73c34b6a 2625 struct swap_info_struct *p;
1da177e4 2626 unsigned long offset, type;
8d69aaee
HD
2627 unsigned char count;
2628 unsigned char has_cache;
253d553b 2629 int err = -EINVAL;
1da177e4 2630
a7420aa5 2631 if (non_swap_entry(entry))
253d553b 2632 goto out;
0697212a 2633
1da177e4
LT
2634 type = swp_type(entry);
2635 if (type >= nr_swapfiles)
2636 goto bad_file;
efa90a98 2637 p = swap_info[type];
1da177e4
LT
2638 offset = swp_offset(entry);
2639
ec8acf20 2640 spin_lock(&p->lock);
355cfa73
KH
2641 if (unlikely(offset >= p->max))
2642 goto unlock_out;
2643
253d553b 2644 count = p->swap_map[offset];
edfe23da
SL
2645
2646 /*
2647 * swapin_readahead() doesn't check if a swap entry is valid, so the
2648 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2649 */
2650 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2651 err = -ENOENT;
2652 goto unlock_out;
2653 }
2654
253d553b
HD
2655 has_cache = count & SWAP_HAS_CACHE;
2656 count &= ~SWAP_HAS_CACHE;
2657 err = 0;
355cfa73 2658
253d553b 2659 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
2660
2661 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
2662 if (!has_cache && count)
2663 has_cache = SWAP_HAS_CACHE;
2664 else if (has_cache) /* someone else added cache */
2665 err = -EEXIST;
2666 else /* no users remaining */
2667 err = -ENOENT;
355cfa73
KH
2668
2669 } else if (count || has_cache) {
253d553b 2670
570a335b
HD
2671 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2672 count += usage;
2673 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 2674 err = -EINVAL;
570a335b
HD
2675 else if (swap_count_continued(p, offset, count))
2676 count = COUNT_CONTINUED;
2677 else
2678 err = -ENOMEM;
355cfa73 2679 } else
253d553b
HD
2680 err = -ENOENT; /* unused swap entry */
2681
2682 p->swap_map[offset] = count | has_cache;
2683
355cfa73 2684unlock_out:
ec8acf20 2685 spin_unlock(&p->lock);
1da177e4 2686out:
253d553b 2687 return err;
1da177e4
LT
2688
2689bad_file:
465c47fd 2690 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
2691 goto out;
2692}
253d553b 2693
aaa46865
HD
2694/*
2695 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2696 * (in which case its reference count is never incremented).
2697 */
2698void swap_shmem_alloc(swp_entry_t entry)
2699{
2700 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2701}
2702
355cfa73 2703/*
08259d58
HD
2704 * Increase reference count of swap entry by 1.
2705 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2706 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2707 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2708 * might occur if a page table entry has got corrupted.
355cfa73 2709 */
570a335b 2710int swap_duplicate(swp_entry_t entry)
355cfa73 2711{
570a335b
HD
2712 int err = 0;
2713
2714 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2715 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2716 return err;
355cfa73 2717}
1da177e4 2718
cb4b86ba 2719/*
355cfa73
KH
2720 * @entry: swap entry for which we allocate swap cache.
2721 *
73c34b6a 2722 * Called when allocating swap cache for existing swap entry,
355cfa73
KH
2723 * This can return error codes. Returns 0 at success.
2724 * -EBUSY means there is a swap cache.
2725 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
2726 */
2727int swapcache_prepare(swp_entry_t entry)
2728{
253d553b 2729 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
2730}
2731
f981c595
MG
2732struct swap_info_struct *page_swap_info(struct page *page)
2733{
2734 swp_entry_t swap = { .val = page_private(page) };
2735 BUG_ON(!PageSwapCache(page));
2736 return swap_info[swp_type(swap)];
2737}
2738
2739/*
2740 * out-of-line __page_file_ methods to avoid include hell.
2741 */
2742struct address_space *__page_file_mapping(struct page *page)
2743{
309381fe 2744 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
f981c595
MG
2745 return page_swap_info(page)->swap_file->f_mapping;
2746}
2747EXPORT_SYMBOL_GPL(__page_file_mapping);
2748
2749pgoff_t __page_file_index(struct page *page)
2750{
2751 swp_entry_t swap = { .val = page_private(page) };
309381fe 2752 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
f981c595
MG
2753 return swp_offset(swap);
2754}
2755EXPORT_SYMBOL_GPL(__page_file_index);
2756
570a335b
HD
2757/*
2758 * add_swap_count_continuation - called when a swap count is duplicated
2759 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2760 * page of the original vmalloc'ed swap_map, to hold the continuation count
2761 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2762 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2763 *
2764 * These continuation pages are seldom referenced: the common paths all work
2765 * on the original swap_map, only referring to a continuation page when the
2766 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2767 *
2768 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2769 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2770 * can be called after dropping locks.
2771 */
2772int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2773{
2774 struct swap_info_struct *si;
2775 struct page *head;
2776 struct page *page;
2777 struct page *list_page;
2778 pgoff_t offset;
2779 unsigned char count;
2780
2781 /*
2782 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2783 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2784 */
2785 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2786
2787 si = swap_info_get(entry);
2788 if (!si) {
2789 /*
2790 * An acceptable race has occurred since the failing
2791 * __swap_duplicate(): the swap entry has been freed,
2792 * perhaps even the whole swap_map cleared for swapoff.
2793 */
2794 goto outer;
2795 }
2796
2797 offset = swp_offset(entry);
2798 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2799
2800 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2801 /*
2802 * The higher the swap count, the more likely it is that tasks
2803 * will race to add swap count continuation: we need to avoid
2804 * over-provisioning.
2805 */
2806 goto out;
2807 }
2808
2809 if (!page) {
ec8acf20 2810 spin_unlock(&si->lock);
570a335b
HD
2811 return -ENOMEM;
2812 }
2813
2814 /*
2815 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2de1a7e4
SJ
2816 * no architecture is using highmem pages for kernel page tables: so it
2817 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
570a335b
HD
2818 */
2819 head = vmalloc_to_page(si->swap_map + offset);
2820 offset &= ~PAGE_MASK;
2821
2822 /*
2823 * Page allocation does not initialize the page's lru field,
2824 * but it does always reset its private field.
2825 */
2826 if (!page_private(head)) {
2827 BUG_ON(count & COUNT_CONTINUED);
2828 INIT_LIST_HEAD(&head->lru);
2829 set_page_private(head, SWP_CONTINUED);
2830 si->flags |= SWP_CONTINUED;
2831 }
2832
2833 list_for_each_entry(list_page, &head->lru, lru) {
2834 unsigned char *map;
2835
2836 /*
2837 * If the previous map said no continuation, but we've found
2838 * a continuation page, free our allocation and use this one.
2839 */
2840 if (!(count & COUNT_CONTINUED))
2841 goto out;
2842
9b04c5fe 2843 map = kmap_atomic(list_page) + offset;
570a335b 2844 count = *map;
9b04c5fe 2845 kunmap_atomic(map);
570a335b
HD
2846
2847 /*
2848 * If this continuation count now has some space in it,
2849 * free our allocation and use this one.
2850 */
2851 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2852 goto out;
2853 }
2854
2855 list_add_tail(&page->lru, &head->lru);
2856 page = NULL; /* now it's attached, don't free it */
2857out:
ec8acf20 2858 spin_unlock(&si->lock);
570a335b
HD
2859outer:
2860 if (page)
2861 __free_page(page);
2862 return 0;
2863}
2864
2865/*
2866 * swap_count_continued - when the original swap_map count is incremented
2867 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2868 * into, carry if so, or else fail until a new continuation page is allocated;
2869 * when the original swap_map count is decremented from 0 with continuation,
2870 * borrow from the continuation and report whether it still holds more.
2871 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2872 */
2873static bool swap_count_continued(struct swap_info_struct *si,
2874 pgoff_t offset, unsigned char count)
2875{
2876 struct page *head;
2877 struct page *page;
2878 unsigned char *map;
2879
2880 head = vmalloc_to_page(si->swap_map + offset);
2881 if (page_private(head) != SWP_CONTINUED) {
2882 BUG_ON(count & COUNT_CONTINUED);
2883 return false; /* need to add count continuation */
2884 }
2885
2886 offset &= ~PAGE_MASK;
2887 page = list_entry(head->lru.next, struct page, lru);
9b04c5fe 2888 map = kmap_atomic(page) + offset;
570a335b
HD
2889
2890 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2891 goto init_map; /* jump over SWAP_CONT_MAX checks */
2892
2893 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2894 /*
2895 * Think of how you add 1 to 999
2896 */
2897 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 2898 kunmap_atomic(map);
570a335b
HD
2899 page = list_entry(page->lru.next, struct page, lru);
2900 BUG_ON(page == head);
9b04c5fe 2901 map = kmap_atomic(page) + offset;
570a335b
HD
2902 }
2903 if (*map == SWAP_CONT_MAX) {
9b04c5fe 2904 kunmap_atomic(map);
570a335b
HD
2905 page = list_entry(page->lru.next, struct page, lru);
2906 if (page == head)
2907 return false; /* add count continuation */
9b04c5fe 2908 map = kmap_atomic(page) + offset;
570a335b
HD
2909init_map: *map = 0; /* we didn't zero the page */
2910 }
2911 *map += 1;
9b04c5fe 2912 kunmap_atomic(map);
570a335b
HD
2913 page = list_entry(page->lru.prev, struct page, lru);
2914 while (page != head) {
9b04c5fe 2915 map = kmap_atomic(page) + offset;
570a335b 2916 *map = COUNT_CONTINUED;
9b04c5fe 2917 kunmap_atomic(map);
570a335b
HD
2918 page = list_entry(page->lru.prev, struct page, lru);
2919 }
2920 return true; /* incremented */
2921
2922 } else { /* decrementing */
2923 /*
2924 * Think of how you subtract 1 from 1000
2925 */
2926 BUG_ON(count != COUNT_CONTINUED);
2927 while (*map == COUNT_CONTINUED) {
9b04c5fe 2928 kunmap_atomic(map);
570a335b
HD
2929 page = list_entry(page->lru.next, struct page, lru);
2930 BUG_ON(page == head);
9b04c5fe 2931 map = kmap_atomic(page) + offset;
570a335b
HD
2932 }
2933 BUG_ON(*map == 0);
2934 *map -= 1;
2935 if (*map == 0)
2936 count = 0;
9b04c5fe 2937 kunmap_atomic(map);
570a335b
HD
2938 page = list_entry(page->lru.prev, struct page, lru);
2939 while (page != head) {
9b04c5fe 2940 map = kmap_atomic(page) + offset;
570a335b
HD
2941 *map = SWAP_CONT_MAX | count;
2942 count = COUNT_CONTINUED;
9b04c5fe 2943 kunmap_atomic(map);
570a335b
HD
2944 page = list_entry(page->lru.prev, struct page, lru);
2945 }
2946 return count == COUNT_CONTINUED;
2947 }
2948}
2949
2950/*
2951 * free_swap_count_continuations - swapoff free all the continuation pages
2952 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2953 */
2954static void free_swap_count_continuations(struct swap_info_struct *si)
2955{
2956 pgoff_t offset;
2957
2958 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2959 struct page *head;
2960 head = vmalloc_to_page(si->swap_map + offset);
2961 if (page_private(head)) {
2962 struct list_head *this, *next;
2963 list_for_each_safe(this, next, &head->lru) {
2964 struct page *page;
2965 page = list_entry(this, struct page, lru);
2966 list_del(this);
2967 __free_page(page);
2968 }
2969 }
2970 }
2971}