tmpfs: fix mounts when size is less than the page size
[linux-2.6-block.git] / mm / swap_state.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swap_state.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 *
7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
8 */
9#include <linux/module.h>
10#include <linux/mm.h>
11#include <linux/kernel_stat.h>
12#include <linux/swap.h>
46017e95 13#include <linux/swapops.h>
1da177e4
LT
14#include <linux/init.h>
15#include <linux/pagemap.h>
16#include <linux/buffer_head.h>
17#include <linux/backing-dev.h>
c484d410 18#include <linux/pagevec.h>
b20a3503 19#include <linux/migrate.h>
1da177e4
LT
20
21#include <asm/pgtable.h>
22
23/*
24 * swapper_space is a fiction, retained to simplify the path through
2706a1b8 25 * vmscan's shrink_page_list, to make sync_page look nicer, and to allow
1da177e4
LT
26 * future use of radix_tree tags in the swap cache.
27 */
f5e54d6e 28static const struct address_space_operations swap_aops = {
1da177e4
LT
29 .writepage = swap_writepage,
30 .sync_page = block_sync_page,
31 .set_page_dirty = __set_page_dirty_nobuffers,
e965f963 32 .migratepage = migrate_page,
1da177e4
LT
33};
34
35static struct backing_dev_info swap_backing_dev_info = {
36 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
37 .unplug_io_fn = swap_unplug_io_fn,
38};
39
40struct address_space swapper_space = {
41 .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
e4d91918 42 .tree_lock = __RW_LOCK_UNLOCKED(swapper_space.tree_lock),
1da177e4
LT
43 .a_ops = &swap_aops,
44 .i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear),
45 .backing_dev_info = &swap_backing_dev_info,
46};
1da177e4
LT
47
48#define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
49
50static struct {
51 unsigned long add_total;
52 unsigned long del_total;
53 unsigned long find_success;
54 unsigned long find_total;
55 unsigned long noent_race;
56 unsigned long exist_race;
57} swap_cache_info;
58
59void show_swap_cache_info(void)
60{
61 printk("Swap cache: add %lu, delete %lu, find %lu/%lu, race %lu+%lu\n",
62 swap_cache_info.add_total, swap_cache_info.del_total,
63 swap_cache_info.find_success, swap_cache_info.find_total,
64 swap_cache_info.noent_race, swap_cache_info.exist_race);
65 printk("Free swap = %lukB\n", nr_swap_pages << (PAGE_SHIFT - 10));
66 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
67}
68
69/*
70 * __add_to_swap_cache resembles add_to_page_cache on swapper_space,
71 * but sets SwapCache flag and private instead of mapping and index.
72 */
9de75d11 73static int __add_to_swap_cache(struct page *page, swp_entry_t entry,
dd0fc66f 74 gfp_t gfp_mask)
1da177e4
LT
75{
76 int error;
77
b55ed816 78 BUG_ON(!PageLocked(page));
1da177e4
LT
79 BUG_ON(PageSwapCache(page));
80 BUG_ON(PagePrivate(page));
81 error = radix_tree_preload(gfp_mask);
82 if (!error) {
83 write_lock_irq(&swapper_space.tree_lock);
84 error = radix_tree_insert(&swapper_space.page_tree,
85 entry.val, page);
86 if (!error) {
87 page_cache_get(page);
1da177e4 88 SetPageSwapCache(page);
4c21e2f2 89 set_page_private(page, entry.val);
1da177e4 90 total_swapcache_pages++;
347ce434 91 __inc_zone_page_state(page, NR_FILE_PAGES);
1da177e4
LT
92 }
93 write_unlock_irq(&swapper_space.tree_lock);
94 radix_tree_preload_end();
95 }
96 return error;
97}
98
02098fea
HD
99static int add_to_swap_cache(struct page *page, swp_entry_t entry,
100 gfp_t gfp_mask)
1da177e4
LT
101{
102 int error;
103
b55ed816 104 BUG_ON(PageLocked(page));
1da177e4
LT
105 if (!swap_duplicate(entry)) {
106 INC_CACHE_INFO(noent_race);
107 return -ENOENT;
108 }
b55ed816 109 SetPageLocked(page);
02098fea 110 error = __add_to_swap_cache(page, entry, gfp_mask & GFP_KERNEL);
1da177e4
LT
111 /*
112 * Anon pages are already on the LRU, we don't run lru_cache_add here.
113 */
114 if (error) {
b55ed816 115 ClearPageLocked(page);
1da177e4
LT
116 swap_free(entry);
117 if (error == -EEXIST)
118 INC_CACHE_INFO(exist_race);
119 return error;
120 }
121 INC_CACHE_INFO(add_total);
122 return 0;
123}
124
125/*
126 * This must be called only on pages that have
127 * been verified to be in the swap cache.
128 */
129void __delete_from_swap_cache(struct page *page)
130{
131 BUG_ON(!PageLocked(page));
132 BUG_ON(!PageSwapCache(page));
133 BUG_ON(PageWriteback(page));
3279ffd9 134 BUG_ON(PagePrivate(page));
1da177e4 135
4c21e2f2
HD
136 radix_tree_delete(&swapper_space.page_tree, page_private(page));
137 set_page_private(page, 0);
1da177e4
LT
138 ClearPageSwapCache(page);
139 total_swapcache_pages--;
347ce434 140 __dec_zone_page_state(page, NR_FILE_PAGES);
1da177e4
LT
141 INC_CACHE_INFO(del_total);
142}
143
144/**
145 * add_to_swap - allocate swap space for a page
146 * @page: page we want to move to swap
147 *
148 * Allocate swap space for the page and add the page to the
149 * swap cache. Caller needs to hold the page lock.
150 */
1480a540 151int add_to_swap(struct page * page, gfp_t gfp_mask)
1da177e4
LT
152{
153 swp_entry_t entry;
1da177e4
LT
154 int err;
155
e74ca2b4 156 BUG_ON(!PageLocked(page));
1da177e4
LT
157
158 for (;;) {
159 entry = get_swap_page();
160 if (!entry.val)
161 return 0;
162
bd53b714
NP
163 /*
164 * Radix-tree node allocations from PF_MEMALLOC contexts could
165 * completely exhaust the page allocator. __GFP_NOMEMALLOC
166 * stops emergency reserves from being allocated.
1da177e4 167 *
bd53b714
NP
168 * TODO: this could cause a theoretical memory reclaim
169 * deadlock in the swap out path.
1da177e4 170 */
1da177e4
LT
171 /*
172 * Add it to the swap cache and mark it dirty
173 */
bd53b714 174 err = __add_to_swap_cache(page, entry,
1480a540 175 gfp_mask|__GFP_NOMEMALLOC|__GFP_NOWARN);
1da177e4
LT
176
177 switch (err) {
178 case 0: /* Success */
179 SetPageUptodate(page);
180 SetPageDirty(page);
181 INC_CACHE_INFO(add_total);
182 return 1;
183 case -EEXIST:
184 /* Raced with "speculative" read_swap_cache_async */
185 INC_CACHE_INFO(exist_race);
186 swap_free(entry);
187 continue;
188 default:
189 /* -ENOMEM radix-tree allocation failure */
190 swap_free(entry);
191 return 0;
192 }
193 }
194}
195
196/*
197 * This must be called only on pages that have
198 * been verified to be in the swap cache and locked.
199 * It will never put the page into the free list,
200 * the caller has a reference on the page.
201 */
202void delete_from_swap_cache(struct page *page)
203{
204 swp_entry_t entry;
205
4c21e2f2 206 entry.val = page_private(page);
1da177e4
LT
207
208 write_lock_irq(&swapper_space.tree_lock);
209 __delete_from_swap_cache(page);
210 write_unlock_irq(&swapper_space.tree_lock);
211
212 swap_free(entry);
213 page_cache_release(page);
214}
215
216/*
217 * Strange swizzling function only for use by shmem_writepage
218 */
219int move_to_swap_cache(struct page *page, swp_entry_t entry)
220{
221 int err = __add_to_swap_cache(page, entry, GFP_ATOMIC);
222 if (!err) {
223 remove_from_page_cache(page);
224 page_cache_release(page); /* pagecache ref */
225 if (!swap_duplicate(entry))
226 BUG();
227 SetPageDirty(page);
228 INC_CACHE_INFO(add_total);
229 } else if (err == -EEXIST)
230 INC_CACHE_INFO(exist_race);
231 return err;
232}
233
234/*
235 * Strange swizzling function for shmem_getpage (and shmem_unuse)
236 */
237int move_from_swap_cache(struct page *page, unsigned long index,
238 struct address_space *mapping)
239{
240 int err = add_to_page_cache(page, mapping, index, GFP_ATOMIC);
241 if (!err) {
242 delete_from_swap_cache(page);
243 /* shift page from clean_pages to dirty_pages list */
244 ClearPageDirty(page);
245 set_page_dirty(page);
246 }
247 return err;
248}
249
250/*
251 * If we are the only user, then try to free up the swap cache.
252 *
253 * Its ok to check for PageSwapCache without the page lock
254 * here because we are going to recheck again inside
255 * exclusive_swap_page() _with_ the lock.
256 * - Marcelo
257 */
258static inline void free_swap_cache(struct page *page)
259{
260 if (PageSwapCache(page) && !TestSetPageLocked(page)) {
261 remove_exclusive_swap_page(page);
262 unlock_page(page);
263 }
264}
265
266/*
267 * Perform a free_page(), also freeing any swap cache associated with
b8072f09 268 * this page if it is the last user of the page.
1da177e4
LT
269 */
270void free_page_and_swap_cache(struct page *page)
271{
272 free_swap_cache(page);
273 page_cache_release(page);
274}
275
276/*
277 * Passed an array of pages, drop them all from swapcache and then release
278 * them. They are removed from the LRU and freed if this is their last use.
279 */
280void free_pages_and_swap_cache(struct page **pages, int nr)
281{
1da177e4
LT
282 struct page **pagep = pages;
283
284 lru_add_drain();
285 while (nr) {
c484d410 286 int todo = min(nr, PAGEVEC_SIZE);
1da177e4
LT
287 int i;
288
289 for (i = 0; i < todo; i++)
290 free_swap_cache(pagep[i]);
291 release_pages(pagep, todo, 0);
292 pagep += todo;
293 nr -= todo;
294 }
295}
296
297/*
298 * Lookup a swap entry in the swap cache. A found page will be returned
299 * unlocked and with its refcount incremented - we rely on the kernel
300 * lock getting page table operations atomic even if we drop the page
301 * lock before returning.
302 */
303struct page * lookup_swap_cache(swp_entry_t entry)
304{
305 struct page *page;
306
307 page = find_get_page(&swapper_space, entry.val);
308
309 if (page)
310 INC_CACHE_INFO(find_success);
311
312 INC_CACHE_INFO(find_total);
313 return page;
314}
315
316/*
317 * Locate a page of swap in physical memory, reserving swap cache space
318 * and reading the disk if it is not already cached.
319 * A failure return means that either the page allocation failed or that
320 * the swap entry is no longer in use.
321 */
02098fea 322struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
1da177e4
LT
323 struct vm_area_struct *vma, unsigned long addr)
324{
325 struct page *found_page, *new_page = NULL;
326 int err;
327
328 do {
329 /*
330 * First check the swap cache. Since this is normally
331 * called after lookup_swap_cache() failed, re-calling
332 * that would confuse statistics.
333 */
334 found_page = find_get_page(&swapper_space, entry.val);
335 if (found_page)
336 break;
337
338 /*
339 * Get a new page to read into from swap.
340 */
341 if (!new_page) {
02098fea 342 new_page = alloc_page_vma(gfp_mask, vma, addr);
1da177e4
LT
343 if (!new_page)
344 break; /* Out of memory */
345 }
346
347 /*
348 * Associate the page with swap entry in the swap cache.
349 * May fail (-ENOENT) if swap entry has been freed since
350 * our caller observed it. May fail (-EEXIST) if there
351 * is already a page associated with this entry in the
352 * swap cache: added by a racing read_swap_cache_async,
353 * or by try_to_swap_out (or shmem_writepage) re-using
354 * the just freed swap entry for an existing page.
355 * May fail (-ENOMEM) if radix-tree node allocation failed.
356 */
02098fea 357 err = add_to_swap_cache(new_page, entry, gfp_mask);
1da177e4
LT
358 if (!err) {
359 /*
360 * Initiate read into locked page and return.
361 */
362 lru_cache_add_active(new_page);
363 swap_readpage(NULL, new_page);
364 return new_page;
365 }
366 } while (err != -ENOENT && err != -ENOMEM);
367
368 if (new_page)
369 page_cache_release(new_page);
370 return found_page;
371}
46017e95
HD
372
373/**
374 * swapin_readahead - swap in pages in hope we need them soon
375 * @entry: swap entry of this memory
376 * @vma: user vma this address belongs to
377 * @addr: target address for mempolicy
378 *
379 * Returns the struct page for entry and addr, after queueing swapin.
380 *
381 * Primitive swap readahead code. We simply read an aligned block of
382 * (1 << page_cluster) entries in the swap area. This method is chosen
383 * because it doesn't cost us any seek time. We also make sure to queue
384 * the 'original' request together with the readahead ones...
385 *
386 * This has been extended to use the NUMA policies from the mm triggering
387 * the readahead.
388 *
389 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
390 */
02098fea 391struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
46017e95
HD
392 struct vm_area_struct *vma, unsigned long addr)
393{
394 int nr_pages;
395 struct page *page;
396 unsigned long offset;
397 unsigned long end_offset;
398
399 /*
400 * Get starting offset for readaround, and number of pages to read.
401 * Adjust starting address by readbehind (for NUMA interleave case)?
402 * No, it's very unlikely that swap layout would follow vma layout,
403 * more likely that neighbouring swap pages came from the same node:
404 * so use the same "addr" to choose the same node for each swap read.
405 */
406 nr_pages = valid_swaphandles(entry, &offset);
407 for (end_offset = offset + nr_pages; offset < end_offset; offset++) {
408 /* Ok, do the async read-ahead now */
409 page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
02098fea 410 gfp_mask, vma, addr);
46017e95
HD
411 if (!page)
412 break;
413 page_cache_release(page);
414 }
415 lru_add_drain(); /* Push any new pages onto the LRU now */
02098fea 416 return read_swap_cache_async(entry, gfp_mask, vma, addr);
46017e95 417}