swap: make each swap partition have one address_space
[linux-2.6-block.git] / mm / swap_state.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swap_state.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 *
7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
8 */
1da177e4 9#include <linux/mm.h>
5a0e3ad6 10#include <linux/gfp.h>
1da177e4
LT
11#include <linux/kernel_stat.h>
12#include <linux/swap.h>
46017e95 13#include <linux/swapops.h>
1da177e4
LT
14#include <linux/init.h>
15#include <linux/pagemap.h>
1da177e4 16#include <linux/backing-dev.h>
3fb5c298 17#include <linux/blkdev.h>
c484d410 18#include <linux/pagevec.h>
b20a3503 19#include <linux/migrate.h>
8c7c6e34 20#include <linux/page_cgroup.h>
1da177e4
LT
21
22#include <asm/pgtable.h>
23
24/*
25 * swapper_space is a fiction, retained to simplify the path through
7eaceacc 26 * vmscan's shrink_page_list.
1da177e4 27 */
f5e54d6e 28static const struct address_space_operations swap_aops = {
1da177e4 29 .writepage = swap_writepage,
62c230bc 30 .set_page_dirty = swap_set_page_dirty,
e965f963 31 .migratepage = migrate_page,
1da177e4
LT
32};
33
34static struct backing_dev_info swap_backing_dev_info = {
d993831f 35 .name = "swap",
4f98a2fe 36 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
1da177e4
LT
37};
38
33806f06
SL
39struct address_space swapper_spaces[MAX_SWAPFILES] = {
40 [0 ... MAX_SWAPFILES - 1] = {
41 .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
42 .a_ops = &swap_aops,
43 .backing_dev_info = &swap_backing_dev_info,
44 }
1da177e4 45};
1da177e4
LT
46
47#define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
48
49static struct {
50 unsigned long add_total;
51 unsigned long del_total;
52 unsigned long find_success;
53 unsigned long find_total;
1da177e4
LT
54} swap_cache_info;
55
33806f06
SL
56unsigned long total_swapcache_pages(void)
57{
58 int i;
59 unsigned long ret = 0;
60
61 for (i = 0; i < MAX_SWAPFILES; i++)
62 ret += swapper_spaces[i].nrpages;
63 return ret;
64}
65
1da177e4
LT
66void show_swap_cache_info(void)
67{
33806f06 68 printk("%lu pages in swap cache\n", total_swapcache_pages());
2c97b7fc 69 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
1da177e4 70 swap_cache_info.add_total, swap_cache_info.del_total,
bb63be0a 71 swap_cache_info.find_success, swap_cache_info.find_total);
07279cdf 72 printk("Free swap = %ldkB\n", nr_swap_pages << (PAGE_SHIFT - 10));
1da177e4
LT
73 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
74}
75
76/*
31a56396 77 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
1da177e4
LT
78 * but sets SwapCache flag and private instead of mapping and index.
79 */
31a56396 80static int __add_to_swap_cache(struct page *page, swp_entry_t entry)
1da177e4
LT
81{
82 int error;
33806f06 83 struct address_space *address_space;
1da177e4 84
51726b12
HD
85 VM_BUG_ON(!PageLocked(page));
86 VM_BUG_ON(PageSwapCache(page));
87 VM_BUG_ON(!PageSwapBacked(page));
88
31a56396
DN
89 page_cache_get(page);
90 SetPageSwapCache(page);
91 set_page_private(page, entry.val);
92
33806f06
SL
93 address_space = swap_address_space(entry);
94 spin_lock_irq(&address_space->tree_lock);
95 error = radix_tree_insert(&address_space->page_tree,
96 entry.val, page);
31a56396 97 if (likely(!error)) {
33806f06 98 address_space->nrpages++;
31a56396
DN
99 __inc_zone_page_state(page, NR_FILE_PAGES);
100 INC_CACHE_INFO(add_total);
101 }
33806f06 102 spin_unlock_irq(&address_space->tree_lock);
31a56396
DN
103
104 if (unlikely(error)) {
2ca4532a
DN
105 /*
106 * Only the context which have set SWAP_HAS_CACHE flag
107 * would call add_to_swap_cache().
108 * So add_to_swap_cache() doesn't returns -EEXIST.
109 */
110 VM_BUG_ON(error == -EEXIST);
31a56396
DN
111 set_page_private(page, 0UL);
112 ClearPageSwapCache(page);
113 page_cache_release(page);
114 }
115
116 return error;
117}
118
119
120int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
121{
122 int error;
123
35c754d7
BS
124 error = radix_tree_preload(gfp_mask);
125 if (!error) {
31a56396 126 error = __add_to_swap_cache(page, entry);
1da177e4 127 radix_tree_preload_end();
fa1de900 128 }
1da177e4
LT
129 return error;
130}
131
1da177e4
LT
132/*
133 * This must be called only on pages that have
134 * been verified to be in the swap cache.
135 */
136void __delete_from_swap_cache(struct page *page)
137{
33806f06
SL
138 swp_entry_t entry;
139 struct address_space *address_space;
140
51726b12
HD
141 VM_BUG_ON(!PageLocked(page));
142 VM_BUG_ON(!PageSwapCache(page));
143 VM_BUG_ON(PageWriteback(page));
1da177e4 144
33806f06
SL
145 entry.val = page_private(page);
146 address_space = swap_address_space(entry);
147 radix_tree_delete(&address_space->page_tree, page_private(page));
4c21e2f2 148 set_page_private(page, 0);
1da177e4 149 ClearPageSwapCache(page);
33806f06 150 address_space->nrpages--;
347ce434 151 __dec_zone_page_state(page, NR_FILE_PAGES);
1da177e4
LT
152 INC_CACHE_INFO(del_total);
153}
154
155/**
156 * add_to_swap - allocate swap space for a page
157 * @page: page we want to move to swap
158 *
159 * Allocate swap space for the page and add the page to the
160 * swap cache. Caller needs to hold the page lock.
161 */
ac47b003 162int add_to_swap(struct page *page)
1da177e4
LT
163{
164 swp_entry_t entry;
1da177e4
LT
165 int err;
166
51726b12
HD
167 VM_BUG_ON(!PageLocked(page));
168 VM_BUG_ON(!PageUptodate(page));
1da177e4 169
2ca4532a
DN
170 entry = get_swap_page();
171 if (!entry.val)
172 return 0;
173
3f04f62f
AA
174 if (unlikely(PageTransHuge(page)))
175 if (unlikely(split_huge_page(page))) {
176 swapcache_free(entry, NULL);
177 return 0;
178 }
179
2ca4532a
DN
180 /*
181 * Radix-tree node allocations from PF_MEMALLOC contexts could
182 * completely exhaust the page allocator. __GFP_NOMEMALLOC
183 * stops emergency reserves from being allocated.
184 *
185 * TODO: this could cause a theoretical memory reclaim
186 * deadlock in the swap out path.
187 */
188 /*
189 * Add it to the swap cache and mark it dirty
190 */
191 err = add_to_swap_cache(page, entry,
192 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
193
194 if (!err) { /* Success */
195 SetPageDirty(page);
196 return 1;
197 } else { /* -ENOMEM radix-tree allocation failure */
bd53b714 198 /*
2ca4532a
DN
199 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
200 * clear SWAP_HAS_CACHE flag.
1da177e4 201 */
2ca4532a
DN
202 swapcache_free(entry, NULL);
203 return 0;
1da177e4
LT
204 }
205}
206
207/*
208 * This must be called only on pages that have
209 * been verified to be in the swap cache and locked.
210 * It will never put the page into the free list,
211 * the caller has a reference on the page.
212 */
213void delete_from_swap_cache(struct page *page)
214{
215 swp_entry_t entry;
33806f06 216 struct address_space *address_space;
1da177e4 217
4c21e2f2 218 entry.val = page_private(page);
1da177e4 219
33806f06
SL
220 address_space = swap_address_space(entry);
221 spin_lock_irq(&address_space->tree_lock);
1da177e4 222 __delete_from_swap_cache(page);
33806f06 223 spin_unlock_irq(&address_space->tree_lock);
1da177e4 224
cb4b86ba 225 swapcache_free(entry, page);
1da177e4
LT
226 page_cache_release(page);
227}
228
1da177e4
LT
229/*
230 * If we are the only user, then try to free up the swap cache.
231 *
232 * Its ok to check for PageSwapCache without the page lock
a2c43eed
HD
233 * here because we are going to recheck again inside
234 * try_to_free_swap() _with_ the lock.
1da177e4
LT
235 * - Marcelo
236 */
237static inline void free_swap_cache(struct page *page)
238{
a2c43eed
HD
239 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
240 try_to_free_swap(page);
1da177e4
LT
241 unlock_page(page);
242 }
243}
244
245/*
246 * Perform a free_page(), also freeing any swap cache associated with
b8072f09 247 * this page if it is the last user of the page.
1da177e4
LT
248 */
249void free_page_and_swap_cache(struct page *page)
250{
251 free_swap_cache(page);
252 page_cache_release(page);
253}
254
255/*
256 * Passed an array of pages, drop them all from swapcache and then release
257 * them. They are removed from the LRU and freed if this is their last use.
258 */
259void free_pages_and_swap_cache(struct page **pages, int nr)
260{
1da177e4
LT
261 struct page **pagep = pages;
262
263 lru_add_drain();
264 while (nr) {
c484d410 265 int todo = min(nr, PAGEVEC_SIZE);
1da177e4
LT
266 int i;
267
268 for (i = 0; i < todo; i++)
269 free_swap_cache(pagep[i]);
270 release_pages(pagep, todo, 0);
271 pagep += todo;
272 nr -= todo;
273 }
274}
275
276/*
277 * Lookup a swap entry in the swap cache. A found page will be returned
278 * unlocked and with its refcount incremented - we rely on the kernel
279 * lock getting page table operations atomic even if we drop the page
280 * lock before returning.
281 */
282struct page * lookup_swap_cache(swp_entry_t entry)
283{
284 struct page *page;
285
33806f06 286 page = find_get_page(swap_address_space(entry), entry.val);
1da177e4
LT
287
288 if (page)
289 INC_CACHE_INFO(find_success);
290
291 INC_CACHE_INFO(find_total);
292 return page;
293}
294
295/*
296 * Locate a page of swap in physical memory, reserving swap cache space
297 * and reading the disk if it is not already cached.
298 * A failure return means that either the page allocation failed or that
299 * the swap entry is no longer in use.
300 */
02098fea 301struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
1da177e4
LT
302 struct vm_area_struct *vma, unsigned long addr)
303{
304 struct page *found_page, *new_page = NULL;
305 int err;
306
307 do {
308 /*
309 * First check the swap cache. Since this is normally
310 * called after lookup_swap_cache() failed, re-calling
311 * that would confuse statistics.
312 */
33806f06
SL
313 found_page = find_get_page(swap_address_space(entry),
314 entry.val);
1da177e4
LT
315 if (found_page)
316 break;
317
318 /*
319 * Get a new page to read into from swap.
320 */
321 if (!new_page) {
02098fea 322 new_page = alloc_page_vma(gfp_mask, vma, addr);
1da177e4
LT
323 if (!new_page)
324 break; /* Out of memory */
325 }
326
31a56396
DN
327 /*
328 * call radix_tree_preload() while we can wait.
329 */
330 err = radix_tree_preload(gfp_mask & GFP_KERNEL);
331 if (err)
332 break;
333
f000944d
HD
334 /*
335 * Swap entry may have been freed since our caller observed it.
336 */
355cfa73 337 err = swapcache_prepare(entry);
31a56396
DN
338 if (err == -EEXIST) { /* seems racy */
339 radix_tree_preload_end();
355cfa73 340 continue;
31a56396
DN
341 }
342 if (err) { /* swp entry is obsolete ? */
343 radix_tree_preload_end();
f000944d 344 break;
31a56396 345 }
f000944d 346
2ca4532a 347 /* May fail (-ENOMEM) if radix-tree node allocation failed. */
f45840b5 348 __set_page_locked(new_page);
b2e18538 349 SetPageSwapBacked(new_page);
31a56396 350 err = __add_to_swap_cache(new_page, entry);
529ae9aa 351 if (likely(!err)) {
31a56396 352 radix_tree_preload_end();
1da177e4
LT
353 /*
354 * Initiate read into locked page and return.
355 */
c5fdae46 356 lru_cache_add_anon(new_page);
aca8bf32 357 swap_readpage(new_page);
1da177e4
LT
358 return new_page;
359 }
31a56396 360 radix_tree_preload_end();
b2e18538 361 ClearPageSwapBacked(new_page);
f45840b5 362 __clear_page_locked(new_page);
2ca4532a
DN
363 /*
364 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
365 * clear SWAP_HAS_CACHE flag.
366 */
cb4b86ba 367 swapcache_free(entry, NULL);
f000944d 368 } while (err != -ENOMEM);
1da177e4
LT
369
370 if (new_page)
371 page_cache_release(new_page);
372 return found_page;
373}
46017e95
HD
374
375/**
376 * swapin_readahead - swap in pages in hope we need them soon
377 * @entry: swap entry of this memory
7682486b 378 * @gfp_mask: memory allocation flags
46017e95
HD
379 * @vma: user vma this address belongs to
380 * @addr: target address for mempolicy
381 *
382 * Returns the struct page for entry and addr, after queueing swapin.
383 *
384 * Primitive swap readahead code. We simply read an aligned block of
385 * (1 << page_cluster) entries in the swap area. This method is chosen
386 * because it doesn't cost us any seek time. We also make sure to queue
387 * the 'original' request together with the readahead ones...
388 *
389 * This has been extended to use the NUMA policies from the mm triggering
390 * the readahead.
391 *
392 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
393 */
02098fea 394struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
46017e95
HD
395 struct vm_area_struct *vma, unsigned long addr)
396{
46017e95 397 struct page *page;
67f96aa2
RR
398 unsigned long offset = swp_offset(entry);
399 unsigned long start_offset, end_offset;
400 unsigned long mask = (1UL << page_cluster) - 1;
3fb5c298 401 struct blk_plug plug;
46017e95 402
67f96aa2
RR
403 /* Read a page_cluster sized and aligned cluster around offset. */
404 start_offset = offset & ~mask;
405 end_offset = offset | mask;
406 if (!start_offset) /* First page is swap header. */
407 start_offset++;
408
3fb5c298 409 blk_start_plug(&plug);
67f96aa2 410 for (offset = start_offset; offset <= end_offset ; offset++) {
46017e95
HD
411 /* Ok, do the async read-ahead now */
412 page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
02098fea 413 gfp_mask, vma, addr);
46017e95 414 if (!page)
67f96aa2 415 continue;
46017e95
HD
416 page_cache_release(page);
417 }
3fb5c298
CE
418 blk_finish_plug(&plug);
419
46017e95 420 lru_add_drain(); /* Push any new pages onto the LRU now */
02098fea 421 return read_swap_cache_async(entry, gfp_mask, vma, addr);
46017e95 422}