mm: add get_kernel_page[s] for pinning of kernel addresses for I/O
[linux-2.6-block.git] / mm / swap_state.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swap_state.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 *
7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
8 */
1da177e4 9#include <linux/mm.h>
5a0e3ad6 10#include <linux/gfp.h>
1da177e4
LT
11#include <linux/kernel_stat.h>
12#include <linux/swap.h>
46017e95 13#include <linux/swapops.h>
1da177e4
LT
14#include <linux/init.h>
15#include <linux/pagemap.h>
1da177e4 16#include <linux/backing-dev.h>
3fb5c298 17#include <linux/blkdev.h>
c484d410 18#include <linux/pagevec.h>
b20a3503 19#include <linux/migrate.h>
8c7c6e34 20#include <linux/page_cgroup.h>
1da177e4
LT
21
22#include <asm/pgtable.h>
23
24/*
25 * swapper_space is a fiction, retained to simplify the path through
7eaceacc 26 * vmscan's shrink_page_list.
1da177e4 27 */
f5e54d6e 28static const struct address_space_operations swap_aops = {
1da177e4 29 .writepage = swap_writepage,
aca50bd3 30 .set_page_dirty = __set_page_dirty_no_writeback,
e965f963 31 .migratepage = migrate_page,
1da177e4
LT
32};
33
34static struct backing_dev_info swap_backing_dev_info = {
d993831f 35 .name = "swap",
4f98a2fe 36 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
1da177e4
LT
37};
38
39struct address_space swapper_space = {
40 .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
19fd6231 41 .tree_lock = __SPIN_LOCK_UNLOCKED(swapper_space.tree_lock),
1da177e4
LT
42 .a_ops = &swap_aops,
43 .i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear),
44 .backing_dev_info = &swap_backing_dev_info,
45};
1da177e4
LT
46
47#define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
48
49static struct {
50 unsigned long add_total;
51 unsigned long del_total;
52 unsigned long find_success;
53 unsigned long find_total;
1da177e4
LT
54} swap_cache_info;
55
56void show_swap_cache_info(void)
57{
2c97b7fc
JW
58 printk("%lu pages in swap cache\n", total_swapcache_pages);
59 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
1da177e4 60 swap_cache_info.add_total, swap_cache_info.del_total,
bb63be0a 61 swap_cache_info.find_success, swap_cache_info.find_total);
07279cdf 62 printk("Free swap = %ldkB\n", nr_swap_pages << (PAGE_SHIFT - 10));
1da177e4
LT
63 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
64}
65
66/*
31a56396 67 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
1da177e4
LT
68 * but sets SwapCache flag and private instead of mapping and index.
69 */
31a56396 70static int __add_to_swap_cache(struct page *page, swp_entry_t entry)
1da177e4
LT
71{
72 int error;
73
51726b12
HD
74 VM_BUG_ON(!PageLocked(page));
75 VM_BUG_ON(PageSwapCache(page));
76 VM_BUG_ON(!PageSwapBacked(page));
77
31a56396
DN
78 page_cache_get(page);
79 SetPageSwapCache(page);
80 set_page_private(page, entry.val);
81
82 spin_lock_irq(&swapper_space.tree_lock);
83 error = radix_tree_insert(&swapper_space.page_tree, entry.val, page);
84 if (likely(!error)) {
85 total_swapcache_pages++;
86 __inc_zone_page_state(page, NR_FILE_PAGES);
87 INC_CACHE_INFO(add_total);
88 }
89 spin_unlock_irq(&swapper_space.tree_lock);
90
91 if (unlikely(error)) {
2ca4532a
DN
92 /*
93 * Only the context which have set SWAP_HAS_CACHE flag
94 * would call add_to_swap_cache().
95 * So add_to_swap_cache() doesn't returns -EEXIST.
96 */
97 VM_BUG_ON(error == -EEXIST);
31a56396
DN
98 set_page_private(page, 0UL);
99 ClearPageSwapCache(page);
100 page_cache_release(page);
101 }
102
103 return error;
104}
105
106
107int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
108{
109 int error;
110
35c754d7
BS
111 error = radix_tree_preload(gfp_mask);
112 if (!error) {
31a56396 113 error = __add_to_swap_cache(page, entry);
1da177e4 114 radix_tree_preload_end();
fa1de900 115 }
1da177e4
LT
116 return error;
117}
118
1da177e4
LT
119/*
120 * This must be called only on pages that have
121 * been verified to be in the swap cache.
122 */
123void __delete_from_swap_cache(struct page *page)
124{
51726b12
HD
125 VM_BUG_ON(!PageLocked(page));
126 VM_BUG_ON(!PageSwapCache(page));
127 VM_BUG_ON(PageWriteback(page));
1da177e4 128
4c21e2f2
HD
129 radix_tree_delete(&swapper_space.page_tree, page_private(page));
130 set_page_private(page, 0);
1da177e4
LT
131 ClearPageSwapCache(page);
132 total_swapcache_pages--;
347ce434 133 __dec_zone_page_state(page, NR_FILE_PAGES);
1da177e4
LT
134 INC_CACHE_INFO(del_total);
135}
136
137/**
138 * add_to_swap - allocate swap space for a page
139 * @page: page we want to move to swap
140 *
141 * Allocate swap space for the page and add the page to the
142 * swap cache. Caller needs to hold the page lock.
143 */
ac47b003 144int add_to_swap(struct page *page)
1da177e4
LT
145{
146 swp_entry_t entry;
1da177e4
LT
147 int err;
148
51726b12
HD
149 VM_BUG_ON(!PageLocked(page));
150 VM_BUG_ON(!PageUptodate(page));
1da177e4 151
2ca4532a
DN
152 entry = get_swap_page();
153 if (!entry.val)
154 return 0;
155
3f04f62f
AA
156 if (unlikely(PageTransHuge(page)))
157 if (unlikely(split_huge_page(page))) {
158 swapcache_free(entry, NULL);
159 return 0;
160 }
161
2ca4532a
DN
162 /*
163 * Radix-tree node allocations from PF_MEMALLOC contexts could
164 * completely exhaust the page allocator. __GFP_NOMEMALLOC
165 * stops emergency reserves from being allocated.
166 *
167 * TODO: this could cause a theoretical memory reclaim
168 * deadlock in the swap out path.
169 */
170 /*
171 * Add it to the swap cache and mark it dirty
172 */
173 err = add_to_swap_cache(page, entry,
174 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
175
176 if (!err) { /* Success */
177 SetPageDirty(page);
178 return 1;
179 } else { /* -ENOMEM radix-tree allocation failure */
bd53b714 180 /*
2ca4532a
DN
181 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
182 * clear SWAP_HAS_CACHE flag.
1da177e4 183 */
2ca4532a
DN
184 swapcache_free(entry, NULL);
185 return 0;
1da177e4
LT
186 }
187}
188
189/*
190 * This must be called only on pages that have
191 * been verified to be in the swap cache and locked.
192 * It will never put the page into the free list,
193 * the caller has a reference on the page.
194 */
195void delete_from_swap_cache(struct page *page)
196{
197 swp_entry_t entry;
198
4c21e2f2 199 entry.val = page_private(page);
1da177e4 200
19fd6231 201 spin_lock_irq(&swapper_space.tree_lock);
1da177e4 202 __delete_from_swap_cache(page);
19fd6231 203 spin_unlock_irq(&swapper_space.tree_lock);
1da177e4 204
cb4b86ba 205 swapcache_free(entry, page);
1da177e4
LT
206 page_cache_release(page);
207}
208
1da177e4
LT
209/*
210 * If we are the only user, then try to free up the swap cache.
211 *
212 * Its ok to check for PageSwapCache without the page lock
a2c43eed
HD
213 * here because we are going to recheck again inside
214 * try_to_free_swap() _with_ the lock.
1da177e4
LT
215 * - Marcelo
216 */
217static inline void free_swap_cache(struct page *page)
218{
a2c43eed
HD
219 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
220 try_to_free_swap(page);
1da177e4
LT
221 unlock_page(page);
222 }
223}
224
225/*
226 * Perform a free_page(), also freeing any swap cache associated with
b8072f09 227 * this page if it is the last user of the page.
1da177e4
LT
228 */
229void free_page_and_swap_cache(struct page *page)
230{
231 free_swap_cache(page);
232 page_cache_release(page);
233}
234
235/*
236 * Passed an array of pages, drop them all from swapcache and then release
237 * them. They are removed from the LRU and freed if this is their last use.
238 */
239void free_pages_and_swap_cache(struct page **pages, int nr)
240{
1da177e4
LT
241 struct page **pagep = pages;
242
243 lru_add_drain();
244 while (nr) {
c484d410 245 int todo = min(nr, PAGEVEC_SIZE);
1da177e4
LT
246 int i;
247
248 for (i = 0; i < todo; i++)
249 free_swap_cache(pagep[i]);
250 release_pages(pagep, todo, 0);
251 pagep += todo;
252 nr -= todo;
253 }
254}
255
256/*
257 * Lookup a swap entry in the swap cache. A found page will be returned
258 * unlocked and with its refcount incremented - we rely on the kernel
259 * lock getting page table operations atomic even if we drop the page
260 * lock before returning.
261 */
262struct page * lookup_swap_cache(swp_entry_t entry)
263{
264 struct page *page;
265
266 page = find_get_page(&swapper_space, entry.val);
267
268 if (page)
269 INC_CACHE_INFO(find_success);
270
271 INC_CACHE_INFO(find_total);
272 return page;
273}
274
275/*
276 * Locate a page of swap in physical memory, reserving swap cache space
277 * and reading the disk if it is not already cached.
278 * A failure return means that either the page allocation failed or that
279 * the swap entry is no longer in use.
280 */
02098fea 281struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
1da177e4
LT
282 struct vm_area_struct *vma, unsigned long addr)
283{
284 struct page *found_page, *new_page = NULL;
285 int err;
286
287 do {
288 /*
289 * First check the swap cache. Since this is normally
290 * called after lookup_swap_cache() failed, re-calling
291 * that would confuse statistics.
292 */
293 found_page = find_get_page(&swapper_space, entry.val);
294 if (found_page)
295 break;
296
297 /*
298 * Get a new page to read into from swap.
299 */
300 if (!new_page) {
02098fea 301 new_page = alloc_page_vma(gfp_mask, vma, addr);
1da177e4
LT
302 if (!new_page)
303 break; /* Out of memory */
304 }
305
31a56396
DN
306 /*
307 * call radix_tree_preload() while we can wait.
308 */
309 err = radix_tree_preload(gfp_mask & GFP_KERNEL);
310 if (err)
311 break;
312
f000944d
HD
313 /*
314 * Swap entry may have been freed since our caller observed it.
315 */
355cfa73 316 err = swapcache_prepare(entry);
31a56396
DN
317 if (err == -EEXIST) { /* seems racy */
318 radix_tree_preload_end();
355cfa73 319 continue;
31a56396
DN
320 }
321 if (err) { /* swp entry is obsolete ? */
322 radix_tree_preload_end();
f000944d 323 break;
31a56396 324 }
f000944d 325
2ca4532a 326 /* May fail (-ENOMEM) if radix-tree node allocation failed. */
f45840b5 327 __set_page_locked(new_page);
b2e18538 328 SetPageSwapBacked(new_page);
31a56396 329 err = __add_to_swap_cache(new_page, entry);
529ae9aa 330 if (likely(!err)) {
31a56396 331 radix_tree_preload_end();
1da177e4
LT
332 /*
333 * Initiate read into locked page and return.
334 */
c5fdae46 335 lru_cache_add_anon(new_page);
aca8bf32 336 swap_readpage(new_page);
1da177e4
LT
337 return new_page;
338 }
31a56396 339 radix_tree_preload_end();
b2e18538 340 ClearPageSwapBacked(new_page);
f45840b5 341 __clear_page_locked(new_page);
2ca4532a
DN
342 /*
343 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
344 * clear SWAP_HAS_CACHE flag.
345 */
cb4b86ba 346 swapcache_free(entry, NULL);
f000944d 347 } while (err != -ENOMEM);
1da177e4
LT
348
349 if (new_page)
350 page_cache_release(new_page);
351 return found_page;
352}
46017e95
HD
353
354/**
355 * swapin_readahead - swap in pages in hope we need them soon
356 * @entry: swap entry of this memory
7682486b 357 * @gfp_mask: memory allocation flags
46017e95
HD
358 * @vma: user vma this address belongs to
359 * @addr: target address for mempolicy
360 *
361 * Returns the struct page for entry and addr, after queueing swapin.
362 *
363 * Primitive swap readahead code. We simply read an aligned block of
364 * (1 << page_cluster) entries in the swap area. This method is chosen
365 * because it doesn't cost us any seek time. We also make sure to queue
366 * the 'original' request together with the readahead ones...
367 *
368 * This has been extended to use the NUMA policies from the mm triggering
369 * the readahead.
370 *
371 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
372 */
02098fea 373struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
46017e95
HD
374 struct vm_area_struct *vma, unsigned long addr)
375{
46017e95 376 struct page *page;
67f96aa2
RR
377 unsigned long offset = swp_offset(entry);
378 unsigned long start_offset, end_offset;
379 unsigned long mask = (1UL << page_cluster) - 1;
3fb5c298 380 struct blk_plug plug;
46017e95 381
67f96aa2
RR
382 /* Read a page_cluster sized and aligned cluster around offset. */
383 start_offset = offset & ~mask;
384 end_offset = offset | mask;
385 if (!start_offset) /* First page is swap header. */
386 start_offset++;
387
3fb5c298 388 blk_start_plug(&plug);
67f96aa2 389 for (offset = start_offset; offset <= end_offset ; offset++) {
46017e95
HD
390 /* Ok, do the async read-ahead now */
391 page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
02098fea 392 gfp_mask, vma, addr);
46017e95 393 if (!page)
67f96aa2 394 continue;
46017e95
HD
395 page_cache_release(page);
396 }
3fb5c298
CE
397 blk_finish_plug(&plug);
398
46017e95 399 lru_add_drain(); /* Push any new pages onto the LRU now */
02098fea 400 return read_swap_cache_async(entry, gfp_mask, vma, addr);
46017e95 401}