net/mlx4_core: Add bad-cable event support
[linux-2.6-block.git] / mm / swap_state.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swap_state.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 *
7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
8 */
1da177e4 9#include <linux/mm.h>
5a0e3ad6 10#include <linux/gfp.h>
1da177e4
LT
11#include <linux/kernel_stat.h>
12#include <linux/swap.h>
46017e95 13#include <linux/swapops.h>
1da177e4
LT
14#include <linux/init.h>
15#include <linux/pagemap.h>
1da177e4 16#include <linux/backing-dev.h>
3fb5c298 17#include <linux/blkdev.h>
c484d410 18#include <linux/pagevec.h>
b20a3503 19#include <linux/migrate.h>
1da177e4
LT
20
21#include <asm/pgtable.h>
22
23/*
24 * swapper_space is a fiction, retained to simplify the path through
7eaceacc 25 * vmscan's shrink_page_list.
1da177e4 26 */
f5e54d6e 27static const struct address_space_operations swap_aops = {
1da177e4 28 .writepage = swap_writepage,
62c230bc 29 .set_page_dirty = swap_set_page_dirty,
1c93923c 30#ifdef CONFIG_MIGRATION
e965f963 31 .migratepage = migrate_page,
1c93923c 32#endif
1da177e4
LT
33};
34
35static struct backing_dev_info swap_backing_dev_info = {
d993831f 36 .name = "swap",
4f98a2fe 37 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
1da177e4
LT
38};
39
33806f06
SL
40struct address_space swapper_spaces[MAX_SWAPFILES] = {
41 [0 ... MAX_SWAPFILES - 1] = {
42 .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
4bb5f5d9 43 .i_mmap_writable = ATOMIC_INIT(0),
33806f06
SL
44 .a_ops = &swap_aops,
45 .backing_dev_info = &swap_backing_dev_info,
46 }
1da177e4 47};
1da177e4
LT
48
49#define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
50
51static struct {
52 unsigned long add_total;
53 unsigned long del_total;
54 unsigned long find_success;
55 unsigned long find_total;
1da177e4
LT
56} swap_cache_info;
57
33806f06
SL
58unsigned long total_swapcache_pages(void)
59{
60 int i;
61 unsigned long ret = 0;
62
63 for (i = 0; i < MAX_SWAPFILES; i++)
64 ret += swapper_spaces[i].nrpages;
65 return ret;
66}
67
579f8290
SL
68static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
69
1da177e4
LT
70void show_swap_cache_info(void)
71{
33806f06 72 printk("%lu pages in swap cache\n", total_swapcache_pages());
2c97b7fc 73 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
1da177e4 74 swap_cache_info.add_total, swap_cache_info.del_total,
bb63be0a 75 swap_cache_info.find_success, swap_cache_info.find_total);
ec8acf20
SL
76 printk("Free swap = %ldkB\n",
77 get_nr_swap_pages() << (PAGE_SHIFT - 10));
1da177e4
LT
78 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
79}
80
81/*
31a56396 82 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
1da177e4
LT
83 * but sets SwapCache flag and private instead of mapping and index.
84 */
2f772e6c 85int __add_to_swap_cache(struct page *page, swp_entry_t entry)
1da177e4
LT
86{
87 int error;
33806f06 88 struct address_space *address_space;
1da177e4 89
309381fe
SL
90 VM_BUG_ON_PAGE(!PageLocked(page), page);
91 VM_BUG_ON_PAGE(PageSwapCache(page), page);
92 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
51726b12 93
31a56396
DN
94 page_cache_get(page);
95 SetPageSwapCache(page);
96 set_page_private(page, entry.val);
97
33806f06
SL
98 address_space = swap_address_space(entry);
99 spin_lock_irq(&address_space->tree_lock);
100 error = radix_tree_insert(&address_space->page_tree,
101 entry.val, page);
31a56396 102 if (likely(!error)) {
33806f06 103 address_space->nrpages++;
31a56396
DN
104 __inc_zone_page_state(page, NR_FILE_PAGES);
105 INC_CACHE_INFO(add_total);
106 }
33806f06 107 spin_unlock_irq(&address_space->tree_lock);
31a56396
DN
108
109 if (unlikely(error)) {
2ca4532a
DN
110 /*
111 * Only the context which have set SWAP_HAS_CACHE flag
112 * would call add_to_swap_cache().
113 * So add_to_swap_cache() doesn't returns -EEXIST.
114 */
115 VM_BUG_ON(error == -EEXIST);
31a56396
DN
116 set_page_private(page, 0UL);
117 ClearPageSwapCache(page);
118 page_cache_release(page);
119 }
120
121 return error;
122}
123
124
125int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
126{
127 int error;
128
5e4c0d97 129 error = radix_tree_maybe_preload(gfp_mask);
35c754d7 130 if (!error) {
31a56396 131 error = __add_to_swap_cache(page, entry);
1da177e4 132 radix_tree_preload_end();
fa1de900 133 }
1da177e4
LT
134 return error;
135}
136
1da177e4
LT
137/*
138 * This must be called only on pages that have
139 * been verified to be in the swap cache.
140 */
141void __delete_from_swap_cache(struct page *page)
142{
33806f06
SL
143 swp_entry_t entry;
144 struct address_space *address_space;
145
309381fe
SL
146 VM_BUG_ON_PAGE(!PageLocked(page), page);
147 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
148 VM_BUG_ON_PAGE(PageWriteback(page), page);
1da177e4 149
33806f06
SL
150 entry.val = page_private(page);
151 address_space = swap_address_space(entry);
152 radix_tree_delete(&address_space->page_tree, page_private(page));
4c21e2f2 153 set_page_private(page, 0);
1da177e4 154 ClearPageSwapCache(page);
33806f06 155 address_space->nrpages--;
347ce434 156 __dec_zone_page_state(page, NR_FILE_PAGES);
1da177e4
LT
157 INC_CACHE_INFO(del_total);
158}
159
160/**
161 * add_to_swap - allocate swap space for a page
162 * @page: page we want to move to swap
163 *
164 * Allocate swap space for the page and add the page to the
165 * swap cache. Caller needs to hold the page lock.
166 */
5bc7b8ac 167int add_to_swap(struct page *page, struct list_head *list)
1da177e4
LT
168{
169 swp_entry_t entry;
1da177e4
LT
170 int err;
171
309381fe
SL
172 VM_BUG_ON_PAGE(!PageLocked(page), page);
173 VM_BUG_ON_PAGE(!PageUptodate(page), page);
1da177e4 174
2ca4532a
DN
175 entry = get_swap_page();
176 if (!entry.val)
177 return 0;
178
3f04f62f 179 if (unlikely(PageTransHuge(page)))
5bc7b8ac 180 if (unlikely(split_huge_page_to_list(page, list))) {
0a31bc97 181 swapcache_free(entry);
3f04f62f
AA
182 return 0;
183 }
184
2ca4532a
DN
185 /*
186 * Radix-tree node allocations from PF_MEMALLOC contexts could
187 * completely exhaust the page allocator. __GFP_NOMEMALLOC
188 * stops emergency reserves from being allocated.
189 *
190 * TODO: this could cause a theoretical memory reclaim
191 * deadlock in the swap out path.
192 */
193 /*
194 * Add it to the swap cache and mark it dirty
195 */
196 err = add_to_swap_cache(page, entry,
197 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
198
199 if (!err) { /* Success */
200 SetPageDirty(page);
201 return 1;
202 } else { /* -ENOMEM radix-tree allocation failure */
bd53b714 203 /*
2ca4532a
DN
204 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
205 * clear SWAP_HAS_CACHE flag.
1da177e4 206 */
0a31bc97 207 swapcache_free(entry);
2ca4532a 208 return 0;
1da177e4
LT
209 }
210}
211
212/*
213 * This must be called only on pages that have
214 * been verified to be in the swap cache and locked.
215 * It will never put the page into the free list,
216 * the caller has a reference on the page.
217 */
218void delete_from_swap_cache(struct page *page)
219{
220 swp_entry_t entry;
33806f06 221 struct address_space *address_space;
1da177e4 222
4c21e2f2 223 entry.val = page_private(page);
1da177e4 224
33806f06
SL
225 address_space = swap_address_space(entry);
226 spin_lock_irq(&address_space->tree_lock);
1da177e4 227 __delete_from_swap_cache(page);
33806f06 228 spin_unlock_irq(&address_space->tree_lock);
1da177e4 229
0a31bc97 230 swapcache_free(entry);
1da177e4
LT
231 page_cache_release(page);
232}
233
1da177e4
LT
234/*
235 * If we are the only user, then try to free up the swap cache.
236 *
237 * Its ok to check for PageSwapCache without the page lock
a2c43eed
HD
238 * here because we are going to recheck again inside
239 * try_to_free_swap() _with_ the lock.
1da177e4
LT
240 * - Marcelo
241 */
242static inline void free_swap_cache(struct page *page)
243{
a2c43eed
HD
244 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
245 try_to_free_swap(page);
1da177e4
LT
246 unlock_page(page);
247 }
248}
249
250/*
251 * Perform a free_page(), also freeing any swap cache associated with
b8072f09 252 * this page if it is the last user of the page.
1da177e4
LT
253 */
254void free_page_and_swap_cache(struct page *page)
255{
256 free_swap_cache(page);
257 page_cache_release(page);
258}
259
260/*
261 * Passed an array of pages, drop them all from swapcache and then release
262 * them. They are removed from the LRU and freed if this is their last use.
263 */
264void free_pages_and_swap_cache(struct page **pages, int nr)
265{
1da177e4 266 struct page **pagep = pages;
aabfb572 267 int i;
1da177e4
LT
268
269 lru_add_drain();
aabfb572
MH
270 for (i = 0; i < nr; i++)
271 free_swap_cache(pagep[i]);
272 release_pages(pagep, nr, false);
1da177e4
LT
273}
274
275/*
276 * Lookup a swap entry in the swap cache. A found page will be returned
277 * unlocked and with its refcount incremented - we rely on the kernel
278 * lock getting page table operations atomic even if we drop the page
279 * lock before returning.
280 */
281struct page * lookup_swap_cache(swp_entry_t entry)
282{
283 struct page *page;
284
33806f06 285 page = find_get_page(swap_address_space(entry), entry.val);
1da177e4 286
579f8290 287 if (page) {
1da177e4 288 INC_CACHE_INFO(find_success);
579f8290
SL
289 if (TestClearPageReadahead(page))
290 atomic_inc(&swapin_readahead_hits);
291 }
1da177e4
LT
292
293 INC_CACHE_INFO(find_total);
294 return page;
295}
296
297/*
298 * Locate a page of swap in physical memory, reserving swap cache space
299 * and reading the disk if it is not already cached.
300 * A failure return means that either the page allocation failed or that
301 * the swap entry is no longer in use.
302 */
02098fea 303struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
1da177e4
LT
304 struct vm_area_struct *vma, unsigned long addr)
305{
306 struct page *found_page, *new_page = NULL;
307 int err;
308
309 do {
310 /*
311 * First check the swap cache. Since this is normally
312 * called after lookup_swap_cache() failed, re-calling
313 * that would confuse statistics.
314 */
33806f06
SL
315 found_page = find_get_page(swap_address_space(entry),
316 entry.val);
1da177e4
LT
317 if (found_page)
318 break;
319
320 /*
321 * Get a new page to read into from swap.
322 */
323 if (!new_page) {
02098fea 324 new_page = alloc_page_vma(gfp_mask, vma, addr);
1da177e4
LT
325 if (!new_page)
326 break; /* Out of memory */
327 }
328
31a56396
DN
329 /*
330 * call radix_tree_preload() while we can wait.
331 */
5e4c0d97 332 err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
31a56396
DN
333 if (err)
334 break;
335
f000944d
HD
336 /*
337 * Swap entry may have been freed since our caller observed it.
338 */
355cfa73 339 err = swapcache_prepare(entry);
cbab0e4e 340 if (err == -EEXIST) {
31a56396 341 radix_tree_preload_end();
cbab0e4e
RA
342 /*
343 * We might race against get_swap_page() and stumble
344 * across a SWAP_HAS_CACHE swap_map entry whose page
345 * has not been brought into the swapcache yet, while
346 * the other end is scheduled away waiting on discard
347 * I/O completion at scan_swap_map().
348 *
349 * In order to avoid turning this transitory state
350 * into a permanent loop around this -EEXIST case
351 * if !CONFIG_PREEMPT and the I/O completion happens
352 * to be waiting on the CPU waitqueue where we are now
353 * busy looping, we just conditionally invoke the
354 * scheduler here, if there are some more important
355 * tasks to run.
356 */
357 cond_resched();
355cfa73 358 continue;
31a56396
DN
359 }
360 if (err) { /* swp entry is obsolete ? */
361 radix_tree_preload_end();
f000944d 362 break;
31a56396 363 }
f000944d 364
2ca4532a 365 /* May fail (-ENOMEM) if radix-tree node allocation failed. */
f45840b5 366 __set_page_locked(new_page);
b2e18538 367 SetPageSwapBacked(new_page);
31a56396 368 err = __add_to_swap_cache(new_page, entry);
529ae9aa 369 if (likely(!err)) {
31a56396 370 radix_tree_preload_end();
1da177e4
LT
371 /*
372 * Initiate read into locked page and return.
373 */
c5fdae46 374 lru_cache_add_anon(new_page);
aca8bf32 375 swap_readpage(new_page);
1da177e4
LT
376 return new_page;
377 }
31a56396 378 radix_tree_preload_end();
b2e18538 379 ClearPageSwapBacked(new_page);
f45840b5 380 __clear_page_locked(new_page);
2ca4532a
DN
381 /*
382 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
383 * clear SWAP_HAS_CACHE flag.
384 */
0a31bc97 385 swapcache_free(entry);
f000944d 386 } while (err != -ENOMEM);
1da177e4
LT
387
388 if (new_page)
389 page_cache_release(new_page);
390 return found_page;
391}
46017e95 392
579f8290
SL
393static unsigned long swapin_nr_pages(unsigned long offset)
394{
395 static unsigned long prev_offset;
396 unsigned int pages, max_pages, last_ra;
397 static atomic_t last_readahead_pages;
398
399 max_pages = 1 << ACCESS_ONCE(page_cluster);
400 if (max_pages <= 1)
401 return 1;
402
403 /*
404 * This heuristic has been found to work well on both sequential and
405 * random loads, swapping to hard disk or to SSD: please don't ask
406 * what the "+ 2" means, it just happens to work well, that's all.
407 */
408 pages = atomic_xchg(&swapin_readahead_hits, 0) + 2;
409 if (pages == 2) {
410 /*
411 * We can have no readahead hits to judge by: but must not get
412 * stuck here forever, so check for an adjacent offset instead
413 * (and don't even bother to check whether swap type is same).
414 */
415 if (offset != prev_offset + 1 && offset != prev_offset - 1)
416 pages = 1;
417 prev_offset = offset;
418 } else {
419 unsigned int roundup = 4;
420 while (roundup < pages)
421 roundup <<= 1;
422 pages = roundup;
423 }
424
425 if (pages > max_pages)
426 pages = max_pages;
427
428 /* Don't shrink readahead too fast */
429 last_ra = atomic_read(&last_readahead_pages) / 2;
430 if (pages < last_ra)
431 pages = last_ra;
432 atomic_set(&last_readahead_pages, pages);
433
434 return pages;
435}
436
46017e95
HD
437/**
438 * swapin_readahead - swap in pages in hope we need them soon
439 * @entry: swap entry of this memory
7682486b 440 * @gfp_mask: memory allocation flags
46017e95
HD
441 * @vma: user vma this address belongs to
442 * @addr: target address for mempolicy
443 *
444 * Returns the struct page for entry and addr, after queueing swapin.
445 *
446 * Primitive swap readahead code. We simply read an aligned block of
447 * (1 << page_cluster) entries in the swap area. This method is chosen
448 * because it doesn't cost us any seek time. We also make sure to queue
449 * the 'original' request together with the readahead ones...
450 *
451 * This has been extended to use the NUMA policies from the mm triggering
452 * the readahead.
453 *
454 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
455 */
02098fea 456struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
46017e95
HD
457 struct vm_area_struct *vma, unsigned long addr)
458{
46017e95 459 struct page *page;
579f8290
SL
460 unsigned long entry_offset = swp_offset(entry);
461 unsigned long offset = entry_offset;
67f96aa2 462 unsigned long start_offset, end_offset;
579f8290 463 unsigned long mask;
3fb5c298 464 struct blk_plug plug;
46017e95 465
579f8290
SL
466 mask = swapin_nr_pages(offset) - 1;
467 if (!mask)
468 goto skip;
469
67f96aa2
RR
470 /* Read a page_cluster sized and aligned cluster around offset. */
471 start_offset = offset & ~mask;
472 end_offset = offset | mask;
473 if (!start_offset) /* First page is swap header. */
474 start_offset++;
475
3fb5c298 476 blk_start_plug(&plug);
67f96aa2 477 for (offset = start_offset; offset <= end_offset ; offset++) {
46017e95
HD
478 /* Ok, do the async read-ahead now */
479 page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
02098fea 480 gfp_mask, vma, addr);
46017e95 481 if (!page)
67f96aa2 482 continue;
579f8290
SL
483 if (offset != entry_offset)
484 SetPageReadahead(page);
46017e95
HD
485 page_cache_release(page);
486 }
3fb5c298
CE
487 blk_finish_plug(&plug);
488
46017e95 489 lru_add_drain(); /* Push any new pages onto the LRU now */
579f8290 490skip:
02098fea 491 return read_swap_cache_async(entry, gfp_mask, vma, addr);
46017e95 492}