mm: remove lru parameter from __pagevec_lru_add and remove parts of pagevec API
[linux-2.6-block.git] / mm / swap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swap.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
183ff22b 8 * This file contains the default values for the operation of the
1da177e4
LT
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16#include <linux/mm.h>
17#include <linux/sched.h>
18#include <linux/kernel_stat.h>
19#include <linux/swap.h>
20#include <linux/mman.h>
21#include <linux/pagemap.h>
22#include <linux/pagevec.h>
23#include <linux/init.h>
b95f1b31 24#include <linux/export.h>
1da177e4 25#include <linux/mm_inline.h>
1da177e4
LT
26#include <linux/percpu_counter.h>
27#include <linux/percpu.h>
28#include <linux/cpu.h>
29#include <linux/notifier.h>
e0bf68dd 30#include <linux/backing-dev.h>
66e1707b 31#include <linux/memcontrol.h>
5a0e3ad6 32#include <linux/gfp.h>
a27bb332 33#include <linux/uio.h>
1da177e4 34
64d6519d
LS
35#include "internal.h"
36
c6286c98
MG
37#define CREATE_TRACE_POINTS
38#include <trace/events/pagemap.h>
39
1da177e4
LT
40/* How many pages do we try to swap or page in/out together? */
41int page_cluster;
42
13f7f789 43static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
f84f9504 44static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
31560180 45static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
902aaed0 46
b221385b
AB
47/*
48 * This path almost never happens for VM activity - pages are normally
49 * freed via pagevecs. But it gets used by networking.
50 */
920c7a5d 51static void __page_cache_release(struct page *page)
b221385b
AB
52{
53 if (PageLRU(page)) {
b221385b 54 struct zone *zone = page_zone(page);
fa9add64
HD
55 struct lruvec *lruvec;
56 unsigned long flags;
b221385b
AB
57
58 spin_lock_irqsave(&zone->lru_lock, flags);
fa9add64 59 lruvec = mem_cgroup_page_lruvec(page, zone);
b221385b
AB
60 VM_BUG_ON(!PageLRU(page));
61 __ClearPageLRU(page);
fa9add64 62 del_page_from_lru_list(page, lruvec, page_off_lru(page));
b221385b
AB
63 spin_unlock_irqrestore(&zone->lru_lock, flags);
64 }
91807063
AA
65}
66
67static void __put_single_page(struct page *page)
68{
69 __page_cache_release(page);
fc91668e 70 free_hot_cold_page(page, 0);
b221385b
AB
71}
72
91807063 73static void __put_compound_page(struct page *page)
1da177e4 74{
91807063 75 compound_page_dtor *dtor;
1da177e4 76
91807063
AA
77 __page_cache_release(page);
78 dtor = get_compound_page_dtor(page);
79 (*dtor)(page);
80}
81
82static void put_compound_page(struct page *page)
83{
84 if (unlikely(PageTail(page))) {
85 /* __split_huge_page_refcount can run under us */
70b50f94
AA
86 struct page *page_head = compound_trans_head(page);
87
88 if (likely(page != page_head &&
89 get_page_unless_zero(page_head))) {
91807063 90 unsigned long flags;
5bf5f03c
PS
91
92 /*
93 * THP can not break up slab pages so avoid taking
94 * compound_lock(). Slab performs non-atomic bit ops
95 * on page->flags for better performance. In particular
96 * slab_unlock() in slub used to be a hot path. It is
97 * still hot on arches that do not support
98 * this_cpu_cmpxchg_double().
99 */
100 if (PageSlab(page_head)) {
101 if (PageTail(page)) {
102 if (put_page_testzero(page_head))
103 VM_BUG_ON(1);
104
105 atomic_dec(&page->_mapcount);
106 goto skip_lock_tail;
107 } else
108 goto skip_lock;
109 }
91807063 110 /*
70b50f94
AA
111 * page_head wasn't a dangling pointer but it
112 * may not be a head page anymore by the time
113 * we obtain the lock. That is ok as long as it
114 * can't be freed from under us.
91807063 115 */
91807063
AA
116 flags = compound_lock_irqsave(page_head);
117 if (unlikely(!PageTail(page))) {
118 /* __split_huge_page_refcount run before us */
119 compound_unlock_irqrestore(page_head, flags);
5bf5f03c 120skip_lock:
91807063
AA
121 if (put_page_testzero(page_head))
122 __put_single_page(page_head);
5bf5f03c 123out_put_single:
91807063
AA
124 if (put_page_testzero(page))
125 __put_single_page(page);
126 return;
127 }
128 VM_BUG_ON(page_head != page->first_page);
129 /*
130 * We can release the refcount taken by
70b50f94
AA
131 * get_page_unless_zero() now that
132 * __split_huge_page_refcount() is blocked on
133 * the compound_lock.
91807063
AA
134 */
135 if (put_page_testzero(page_head))
136 VM_BUG_ON(1);
137 /* __split_huge_page_refcount will wait now */
70b50f94
AA
138 VM_BUG_ON(page_mapcount(page) <= 0);
139 atomic_dec(&page->_mapcount);
91807063 140 VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
70b50f94 141 VM_BUG_ON(atomic_read(&page->_count) != 0);
91807063 142 compound_unlock_irqrestore(page_head, flags);
5bf5f03c
PS
143
144skip_lock_tail:
a95a82e9
AA
145 if (put_page_testzero(page_head)) {
146 if (PageHead(page_head))
147 __put_compound_page(page_head);
148 else
149 __put_single_page(page_head);
150 }
91807063
AA
151 } else {
152 /* page_head is a dangling pointer */
153 VM_BUG_ON(PageTail(page));
154 goto out_put_single;
155 }
156 } else if (put_page_testzero(page)) {
157 if (PageHead(page))
158 __put_compound_page(page);
159 else
160 __put_single_page(page);
1da177e4 161 }
8519fb30
NP
162}
163
164void put_page(struct page *page)
165{
166 if (unlikely(PageCompound(page)))
167 put_compound_page(page);
168 else if (put_page_testzero(page))
91807063 169 __put_single_page(page);
1da177e4
LT
170}
171EXPORT_SYMBOL(put_page);
1da177e4 172
70b50f94
AA
173/*
174 * This function is exported but must not be called by anything other
175 * than get_page(). It implements the slow path of get_page().
176 */
177bool __get_page_tail(struct page *page)
178{
179 /*
180 * This takes care of get_page() if run on a tail page
181 * returned by one of the get_user_pages/follow_page variants.
182 * get_user_pages/follow_page itself doesn't need the compound
183 * lock because it runs __get_page_tail_foll() under the
184 * proper PT lock that already serializes against
185 * split_huge_page().
186 */
187 unsigned long flags;
188 bool got = false;
189 struct page *page_head = compound_trans_head(page);
190
191 if (likely(page != page_head && get_page_unless_zero(page_head))) {
5bf5f03c
PS
192
193 /* Ref to put_compound_page() comment. */
194 if (PageSlab(page_head)) {
195 if (likely(PageTail(page))) {
196 __get_page_tail_foll(page, false);
197 return true;
198 } else {
199 put_page(page_head);
200 return false;
201 }
202 }
203
70b50f94
AA
204 /*
205 * page_head wasn't a dangling pointer but it
206 * may not be a head page anymore by the time
207 * we obtain the lock. That is ok as long as it
208 * can't be freed from under us.
209 */
210 flags = compound_lock_irqsave(page_head);
211 /* here __split_huge_page_refcount won't run anymore */
212 if (likely(PageTail(page))) {
213 __get_page_tail_foll(page, false);
214 got = true;
215 }
216 compound_unlock_irqrestore(page_head, flags);
217 if (unlikely(!got))
218 put_page(page_head);
219 }
220 return got;
221}
222EXPORT_SYMBOL(__get_page_tail);
223
1d7ea732 224/**
7682486b
RD
225 * put_pages_list() - release a list of pages
226 * @pages: list of pages threaded on page->lru
1d7ea732
AZ
227 *
228 * Release a list of pages which are strung together on page.lru. Currently
229 * used by read_cache_pages() and related error recovery code.
1d7ea732
AZ
230 */
231void put_pages_list(struct list_head *pages)
232{
233 while (!list_empty(pages)) {
234 struct page *victim;
235
236 victim = list_entry(pages->prev, struct page, lru);
237 list_del(&victim->lru);
238 page_cache_release(victim);
239 }
240}
241EXPORT_SYMBOL(put_pages_list);
242
18022c5d
MG
243/*
244 * get_kernel_pages() - pin kernel pages in memory
245 * @kiov: An array of struct kvec structures
246 * @nr_segs: number of segments to pin
247 * @write: pinning for read/write, currently ignored
248 * @pages: array that receives pointers to the pages pinned.
249 * Should be at least nr_segs long.
250 *
251 * Returns number of pages pinned. This may be fewer than the number
252 * requested. If nr_pages is 0 or negative, returns 0. If no pages
253 * were pinned, returns -errno. Each page returned must be released
254 * with a put_page() call when it is finished with.
255 */
256int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
257 struct page **pages)
258{
259 int seg;
260
261 for (seg = 0; seg < nr_segs; seg++) {
262 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
263 return seg;
264
5a178119 265 pages[seg] = kmap_to_page(kiov[seg].iov_base);
18022c5d
MG
266 page_cache_get(pages[seg]);
267 }
268
269 return seg;
270}
271EXPORT_SYMBOL_GPL(get_kernel_pages);
272
273/*
274 * get_kernel_page() - pin a kernel page in memory
275 * @start: starting kernel address
276 * @write: pinning for read/write, currently ignored
277 * @pages: array that receives pointer to the page pinned.
278 * Must be at least nr_segs long.
279 *
280 * Returns 1 if page is pinned. If the page was not pinned, returns
281 * -errno. The page returned must be released with a put_page() call
282 * when it is finished with.
283 */
284int get_kernel_page(unsigned long start, int write, struct page **pages)
285{
286 const struct kvec kiov = {
287 .iov_base = (void *)start,
288 .iov_len = PAGE_SIZE
289 };
290
291 return get_kernel_pages(&kiov, 1, write, pages);
292}
293EXPORT_SYMBOL_GPL(get_kernel_page);
294
3dd7ae8e 295static void pagevec_lru_move_fn(struct pagevec *pvec,
fa9add64
HD
296 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
297 void *arg)
902aaed0
HH
298{
299 int i;
902aaed0 300 struct zone *zone = NULL;
fa9add64 301 struct lruvec *lruvec;
3dd7ae8e 302 unsigned long flags = 0;
902aaed0
HH
303
304 for (i = 0; i < pagevec_count(pvec); i++) {
305 struct page *page = pvec->pages[i];
306 struct zone *pagezone = page_zone(page);
307
308 if (pagezone != zone) {
309 if (zone)
3dd7ae8e 310 spin_unlock_irqrestore(&zone->lru_lock, flags);
902aaed0 311 zone = pagezone;
3dd7ae8e 312 spin_lock_irqsave(&zone->lru_lock, flags);
902aaed0 313 }
3dd7ae8e 314
fa9add64
HD
315 lruvec = mem_cgroup_page_lruvec(page, zone);
316 (*move_fn)(page, lruvec, arg);
902aaed0
HH
317 }
318 if (zone)
3dd7ae8e 319 spin_unlock_irqrestore(&zone->lru_lock, flags);
83896fb5
LT
320 release_pages(pvec->pages, pvec->nr, pvec->cold);
321 pagevec_reinit(pvec);
d8505dee
SL
322}
323
fa9add64
HD
324static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
325 void *arg)
3dd7ae8e
SL
326{
327 int *pgmoved = arg;
3dd7ae8e
SL
328
329 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
330 enum lru_list lru = page_lru_base_type(page);
925b7673 331 list_move_tail(&page->lru, &lruvec->lists[lru]);
3dd7ae8e
SL
332 (*pgmoved)++;
333 }
334}
335
336/*
337 * pagevec_move_tail() must be called with IRQ disabled.
338 * Otherwise this may cause nasty races.
339 */
340static void pagevec_move_tail(struct pagevec *pvec)
341{
342 int pgmoved = 0;
343
344 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
345 __count_vm_events(PGROTATED, pgmoved);
346}
347
1da177e4
LT
348/*
349 * Writeback is about to end against a page which has been marked for immediate
350 * reclaim. If it still appears to be reclaimable, move it to the tail of the
902aaed0 351 * inactive list.
1da177e4 352 */
3dd7ae8e 353void rotate_reclaimable_page(struct page *page)
1da177e4 354{
ac6aadb2 355 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
894bc310 356 !PageUnevictable(page) && PageLRU(page)) {
ac6aadb2
MS
357 struct pagevec *pvec;
358 unsigned long flags;
359
360 page_cache_get(page);
361 local_irq_save(flags);
362 pvec = &__get_cpu_var(lru_rotate_pvecs);
363 if (!pagevec_add(pvec, page))
364 pagevec_move_tail(pvec);
365 local_irq_restore(flags);
366 }
1da177e4
LT
367}
368
fa9add64 369static void update_page_reclaim_stat(struct lruvec *lruvec,
3e2f41f1
KM
370 int file, int rotated)
371{
fa9add64 372 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
3e2f41f1
KM
373
374 reclaim_stat->recent_scanned[file]++;
375 if (rotated)
376 reclaim_stat->recent_rotated[file]++;
3e2f41f1
KM
377}
378
fa9add64
HD
379static void __activate_page(struct page *page, struct lruvec *lruvec,
380 void *arg)
1da177e4 381{
744ed144 382 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
7a608572
LT
383 int file = page_is_file_cache(page);
384 int lru = page_lru_base_type(page);
744ed144 385
fa9add64 386 del_page_from_lru_list(page, lruvec, lru);
7a608572
LT
387 SetPageActive(page);
388 lru += LRU_ACTIVE;
fa9add64 389 add_page_to_lru_list(page, lruvec, lru);
c6286c98 390 trace_mm_lru_activate(page, page_to_pfn(page));
4f98a2fe 391
fa9add64
HD
392 __count_vm_event(PGACTIVATE);
393 update_page_reclaim_stat(lruvec, file, 1);
1da177e4 394 }
eb709b0d
SL
395}
396
397#ifdef CONFIG_SMP
398static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
399
400static void activate_page_drain(int cpu)
401{
402 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
403
404 if (pagevec_count(pvec))
405 pagevec_lru_move_fn(pvec, __activate_page, NULL);
406}
407
408void activate_page(struct page *page)
409{
410 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
411 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
412
413 page_cache_get(page);
414 if (!pagevec_add(pvec, page))
415 pagevec_lru_move_fn(pvec, __activate_page, NULL);
416 put_cpu_var(activate_page_pvecs);
417 }
418}
419
420#else
421static inline void activate_page_drain(int cpu)
422{
423}
424
425void activate_page(struct page *page)
426{
427 struct zone *zone = page_zone(page);
428
429 spin_lock_irq(&zone->lru_lock);
fa9add64 430 __activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
1da177e4
LT
431 spin_unlock_irq(&zone->lru_lock);
432}
eb709b0d 433#endif
1da177e4 434
059285a2
MG
435static void __lru_cache_activate_page(struct page *page)
436{
437 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
438 int i;
439
440 /*
441 * Search backwards on the optimistic assumption that the page being
442 * activated has just been added to this pagevec. Note that only
443 * the local pagevec is examined as a !PageLRU page could be in the
444 * process of being released, reclaimed, migrated or on a remote
445 * pagevec that is currently being drained. Furthermore, marking
446 * a remote pagevec's page PageActive potentially hits a race where
447 * a page is marked PageActive just after it is added to the inactive
448 * list causing accounting errors and BUG_ON checks to trigger.
449 */
450 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
451 struct page *pagevec_page = pvec->pages[i];
452
453 if (pagevec_page == page) {
454 SetPageActive(page);
455 break;
456 }
457 }
458
459 put_cpu_var(lru_add_pvec);
460}
461
1da177e4
LT
462/*
463 * Mark a page as having seen activity.
464 *
465 * inactive,unreferenced -> inactive,referenced
466 * inactive,referenced -> active,unreferenced
467 * active,unreferenced -> active,referenced
468 */
920c7a5d 469void mark_page_accessed(struct page *page)
1da177e4 470{
894bc310 471 if (!PageActive(page) && !PageUnevictable(page) &&
059285a2
MG
472 PageReferenced(page)) {
473
474 /*
475 * If the page is on the LRU, queue it for activation via
476 * activate_page_pvecs. Otherwise, assume the page is on a
477 * pagevec, mark it active and it'll be moved to the active
478 * LRU on the next drain.
479 */
480 if (PageLRU(page))
481 activate_page(page);
482 else
483 __lru_cache_activate_page(page);
1da177e4
LT
484 ClearPageReferenced(page);
485 } else if (!PageReferenced(page)) {
486 SetPageReferenced(page);
487 }
488}
1da177e4
LT
489EXPORT_SYMBOL(mark_page_accessed);
490
d741c9cd 491/*
13f7f789
MG
492 * Queue the page for addition to the LRU via pagevec. The decision on whether
493 * to add the page to the [in]active [file|anon] list is deferred until the
494 * pagevec is drained. This gives a chance for the caller of __lru_cache_add()
495 * have the page added to the active list using mark_page_accessed().
d741c9cd 496 */
f04e9ebb 497void __lru_cache_add(struct page *page, enum lru_list lru)
1da177e4 498{
13f7f789
MG
499 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
500
501 if (is_active_lru(lru))
502 SetPageActive(page);
503 else
504 ClearPageActive(page);
1da177e4
LT
505
506 page_cache_get(page);
d741c9cd 507 if (!pagevec_space(pvec))
a0b8cab3 508 __pagevec_lru_add(pvec);
d741c9cd 509 pagevec_add(pvec, page);
13f7f789 510 put_cpu_var(lru_add_pvec);
1da177e4 511}
47846b06 512EXPORT_SYMBOL(__lru_cache_add);
1da177e4 513
f04e9ebb
KM
514/**
515 * lru_cache_add_lru - add a page to a page list
516 * @page: the page to be added to the LRU.
517 * @lru: the LRU list to which the page is added.
518 */
519void lru_cache_add_lru(struct page *page, enum lru_list lru)
1da177e4 520{
f04e9ebb 521 if (PageActive(page)) {
894bc310 522 VM_BUG_ON(PageUnevictable(page));
894bc310
LS
523 } else if (PageUnevictable(page)) {
524 VM_BUG_ON(PageActive(page));
f04e9ebb 525 }
1da177e4 526
13f7f789 527 VM_BUG_ON(PageLRU(page));
f04e9ebb 528 __lru_cache_add(page, lru);
1da177e4
LT
529}
530
894bc310
LS
531/**
532 * add_page_to_unevictable_list - add a page to the unevictable list
533 * @page: the page to be added to the unevictable list
534 *
535 * Add page directly to its zone's unevictable list. To avoid races with
536 * tasks that might be making the page evictable, through eg. munlock,
537 * munmap or exit, while it's not on the lru, we want to add the page
538 * while it's locked or otherwise "invisible" to other tasks. This is
539 * difficult to do when using the pagevec cache, so bypass that.
540 */
541void add_page_to_unevictable_list(struct page *page)
542{
543 struct zone *zone = page_zone(page);
fa9add64 544 struct lruvec *lruvec;
894bc310
LS
545
546 spin_lock_irq(&zone->lru_lock);
fa9add64 547 lruvec = mem_cgroup_page_lruvec(page, zone);
894bc310
LS
548 SetPageUnevictable(page);
549 SetPageLRU(page);
fa9add64 550 add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
894bc310
LS
551 spin_unlock_irq(&zone->lru_lock);
552}
553
31560180
MK
554/*
555 * If the page can not be invalidated, it is moved to the
556 * inactive list to speed up its reclaim. It is moved to the
557 * head of the list, rather than the tail, to give the flusher
558 * threads some time to write it out, as this is much more
559 * effective than the single-page writeout from reclaim.
278df9f4
MK
560 *
561 * If the page isn't page_mapped and dirty/writeback, the page
562 * could reclaim asap using PG_reclaim.
563 *
564 * 1. active, mapped page -> none
565 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
566 * 3. inactive, mapped page -> none
567 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
568 * 5. inactive, clean -> inactive, tail
569 * 6. Others -> none
570 *
571 * In 4, why it moves inactive's head, the VM expects the page would
572 * be write it out by flusher threads as this is much more effective
573 * than the single-page writeout from reclaim.
31560180 574 */
fa9add64
HD
575static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
576 void *arg)
31560180
MK
577{
578 int lru, file;
278df9f4 579 bool active;
31560180 580
278df9f4 581 if (!PageLRU(page))
31560180
MK
582 return;
583
bad49d9c
MK
584 if (PageUnevictable(page))
585 return;
586
31560180
MK
587 /* Some processes are using the page */
588 if (page_mapped(page))
589 return;
590
278df9f4 591 active = PageActive(page);
31560180
MK
592 file = page_is_file_cache(page);
593 lru = page_lru_base_type(page);
fa9add64
HD
594
595 del_page_from_lru_list(page, lruvec, lru + active);
31560180
MK
596 ClearPageActive(page);
597 ClearPageReferenced(page);
fa9add64 598 add_page_to_lru_list(page, lruvec, lru);
31560180 599
278df9f4
MK
600 if (PageWriteback(page) || PageDirty(page)) {
601 /*
602 * PG_reclaim could be raced with end_page_writeback
603 * It can make readahead confusing. But race window
604 * is _really_ small and it's non-critical problem.
605 */
606 SetPageReclaim(page);
607 } else {
608 /*
609 * The page's writeback ends up during pagevec
610 * We moves tha page into tail of inactive.
611 */
925b7673 612 list_move_tail(&page->lru, &lruvec->lists[lru]);
278df9f4
MK
613 __count_vm_event(PGROTATED);
614 }
615
616 if (active)
617 __count_vm_event(PGDEACTIVATE);
fa9add64 618 update_page_reclaim_stat(lruvec, file, 0);
31560180
MK
619}
620
902aaed0
HH
621/*
622 * Drain pages out of the cpu's pagevecs.
623 * Either "cpu" is the current CPU, and preemption has already been
624 * disabled; or "cpu" is being hot-unplugged, and is already dead.
625 */
f0cb3c76 626void lru_add_drain_cpu(int cpu)
1da177e4 627{
13f7f789 628 struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
1da177e4 629
13f7f789 630 if (pagevec_count(pvec))
a0b8cab3 631 __pagevec_lru_add(pvec);
902aaed0
HH
632
633 pvec = &per_cpu(lru_rotate_pvecs, cpu);
634 if (pagevec_count(pvec)) {
635 unsigned long flags;
636
637 /* No harm done if a racing interrupt already did this */
638 local_irq_save(flags);
639 pagevec_move_tail(pvec);
640 local_irq_restore(flags);
641 }
31560180
MK
642
643 pvec = &per_cpu(lru_deactivate_pvecs, cpu);
644 if (pagevec_count(pvec))
3dd7ae8e 645 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
eb709b0d
SL
646
647 activate_page_drain(cpu);
31560180
MK
648}
649
650/**
651 * deactivate_page - forcefully deactivate a page
652 * @page: page to deactivate
653 *
654 * This function hints the VM that @page is a good reclaim candidate,
655 * for example if its invalidation fails due to the page being dirty
656 * or under writeback.
657 */
658void deactivate_page(struct page *page)
659{
821ed6bb
MK
660 /*
661 * In a workload with many unevictable page such as mprotect, unevictable
662 * page deactivation for accelerating reclaim is pointless.
663 */
664 if (PageUnevictable(page))
665 return;
666
31560180
MK
667 if (likely(get_page_unless_zero(page))) {
668 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
669
670 if (!pagevec_add(pvec, page))
3dd7ae8e 671 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
31560180
MK
672 put_cpu_var(lru_deactivate_pvecs);
673 }
80bfed90
AM
674}
675
676void lru_add_drain(void)
677{
f0cb3c76 678 lru_add_drain_cpu(get_cpu());
80bfed90 679 put_cpu();
1da177e4
LT
680}
681
c4028958 682static void lru_add_drain_per_cpu(struct work_struct *dummy)
053837fc
NP
683{
684 lru_add_drain();
685}
686
687/*
688 * Returns 0 for success
689 */
690int lru_add_drain_all(void)
691{
c4028958 692 return schedule_on_each_cpu(lru_add_drain_per_cpu);
053837fc
NP
693}
694
1da177e4
LT
695/*
696 * Batched page_cache_release(). Decrement the reference count on all the
697 * passed pages. If it fell to zero then remove the page from the LRU and
698 * free it.
699 *
700 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
701 * for the remainder of the operation.
702 *
ab33dc09
FLVC
703 * The locking in this function is against shrink_inactive_list(): we recheck
704 * the page count inside the lock to see whether shrink_inactive_list()
705 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list()
706 * will free it.
1da177e4
LT
707 */
708void release_pages(struct page **pages, int nr, int cold)
709{
710 int i;
cc59850e 711 LIST_HEAD(pages_to_free);
1da177e4 712 struct zone *zone = NULL;
fa9add64 713 struct lruvec *lruvec;
902aaed0 714 unsigned long uninitialized_var(flags);
1da177e4 715
1da177e4
LT
716 for (i = 0; i < nr; i++) {
717 struct page *page = pages[i];
1da177e4 718
8519fb30
NP
719 if (unlikely(PageCompound(page))) {
720 if (zone) {
902aaed0 721 spin_unlock_irqrestore(&zone->lru_lock, flags);
8519fb30
NP
722 zone = NULL;
723 }
724 put_compound_page(page);
725 continue;
726 }
727
b5810039 728 if (!put_page_testzero(page))
1da177e4
LT
729 continue;
730
46453a6e
NP
731 if (PageLRU(page)) {
732 struct zone *pagezone = page_zone(page);
894bc310 733
46453a6e
NP
734 if (pagezone != zone) {
735 if (zone)
902aaed0
HH
736 spin_unlock_irqrestore(&zone->lru_lock,
737 flags);
46453a6e 738 zone = pagezone;
902aaed0 739 spin_lock_irqsave(&zone->lru_lock, flags);
46453a6e 740 }
fa9add64
HD
741
742 lruvec = mem_cgroup_page_lruvec(page, zone);
725d704e 743 VM_BUG_ON(!PageLRU(page));
67453911 744 __ClearPageLRU(page);
fa9add64 745 del_page_from_lru_list(page, lruvec, page_off_lru(page));
46453a6e
NP
746 }
747
cc59850e 748 list_add(&page->lru, &pages_to_free);
1da177e4
LT
749 }
750 if (zone)
902aaed0 751 spin_unlock_irqrestore(&zone->lru_lock, flags);
1da177e4 752
cc59850e 753 free_hot_cold_page_list(&pages_to_free, cold);
1da177e4 754}
0be8557b 755EXPORT_SYMBOL(release_pages);
1da177e4
LT
756
757/*
758 * The pages which we're about to release may be in the deferred lru-addition
759 * queues. That would prevent them from really being freed right now. That's
760 * OK from a correctness point of view but is inefficient - those pages may be
761 * cache-warm and we want to give them back to the page allocator ASAP.
762 *
763 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
764 * and __pagevec_lru_add_active() call release_pages() directly to avoid
765 * mutual recursion.
766 */
767void __pagevec_release(struct pagevec *pvec)
768{
769 lru_add_drain();
770 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
771 pagevec_reinit(pvec);
772}
7f285701
SF
773EXPORT_SYMBOL(__pagevec_release);
774
12d27107 775#ifdef CONFIG_TRANSPARENT_HUGEPAGE
71e3aac0 776/* used by __split_huge_page_refcount() */
fa9add64 777void lru_add_page_tail(struct page *page, struct page *page_tail,
5bc7b8ac 778 struct lruvec *lruvec, struct list_head *list)
71e3aac0 779{
7512102c 780 int uninitialized_var(active);
71e3aac0
AA
781 enum lru_list lru;
782 const int file = 0;
71e3aac0
AA
783
784 VM_BUG_ON(!PageHead(page));
785 VM_BUG_ON(PageCompound(page_tail));
786 VM_BUG_ON(PageLRU(page_tail));
fa9add64
HD
787 VM_BUG_ON(NR_CPUS != 1 &&
788 !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
71e3aac0 789
5bc7b8ac
SL
790 if (!list)
791 SetPageLRU(page_tail);
71e3aac0 792
39b5f29a 793 if (page_evictable(page_tail)) {
71e3aac0
AA
794 if (PageActive(page)) {
795 SetPageActive(page_tail);
796 active = 1;
797 lru = LRU_ACTIVE_ANON;
798 } else {
799 active = 0;
800 lru = LRU_INACTIVE_ANON;
801 }
71e3aac0
AA
802 } else {
803 SetPageUnevictable(page_tail);
12d27107
HD
804 lru = LRU_UNEVICTABLE;
805 }
806
807 if (likely(PageLRU(page)))
808 list_add_tail(&page_tail->lru, &page->lru);
5bc7b8ac
SL
809 else if (list) {
810 /* page reclaim is reclaiming a huge page */
811 get_page(page_tail);
812 list_add_tail(&page_tail->lru, list);
813 } else {
12d27107
HD
814 struct list_head *list_head;
815 /*
816 * Head page has not yet been counted, as an hpage,
817 * so we must account for each subpage individually.
818 *
819 * Use the standard add function to put page_tail on the list,
820 * but then correct its position so they all end up in order.
821 */
fa9add64 822 add_page_to_lru_list(page_tail, lruvec, lru);
12d27107
HD
823 list_head = page_tail->lru.prev;
824 list_move_tail(&page_tail->lru, list_head);
71e3aac0 825 }
7512102c
HD
826
827 if (!PageUnevictable(page))
fa9add64 828 update_page_reclaim_stat(lruvec, file, active);
71e3aac0 829}
12d27107 830#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
71e3aac0 831
fa9add64
HD
832static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
833 void *arg)
3dd7ae8e 834{
13f7f789
MG
835 int file = page_is_file_cache(page);
836 int active = PageActive(page);
837 enum lru_list lru = page_lru(page);
3dd7ae8e 838
3dd7ae8e
SL
839 VM_BUG_ON(PageUnevictable(page));
840 VM_BUG_ON(PageLRU(page));
841
842 SetPageLRU(page);
fa9add64
HD
843 add_page_to_lru_list(page, lruvec, lru);
844 update_page_reclaim_stat(lruvec, file, active);
c6286c98 845 trace_mm_lru_insertion(page, page_to_pfn(page), lru, trace_pagemap_flags(page));
3dd7ae8e
SL
846}
847
1da177e4
LT
848/*
849 * Add the passed pages to the LRU, then drop the caller's refcount
850 * on them. Reinitialises the caller's pagevec.
851 */
a0b8cab3 852void __pagevec_lru_add(struct pagevec *pvec)
1da177e4 853{
a0b8cab3 854 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
1da177e4 855}
5095ae83 856EXPORT_SYMBOL(__pagevec_lru_add);
1da177e4 857
1da177e4
LT
858/**
859 * pagevec_lookup - gang pagecache lookup
860 * @pvec: Where the resulting pages are placed
861 * @mapping: The address_space to search
862 * @start: The starting page index
863 * @nr_pages: The maximum number of pages
864 *
865 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
866 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
867 * reference against the pages in @pvec.
868 *
869 * The search returns a group of mapping-contiguous pages with ascending
870 * indexes. There may be holes in the indices due to not-present pages.
871 *
872 * pagevec_lookup() returns the number of pages which were found.
873 */
874unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
875 pgoff_t start, unsigned nr_pages)
876{
877 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
878 return pagevec_count(pvec);
879}
78539fdf
CH
880EXPORT_SYMBOL(pagevec_lookup);
881
1da177e4
LT
882unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
883 pgoff_t *index, int tag, unsigned nr_pages)
884{
885 pvec->nr = find_get_pages_tag(mapping, index, tag,
886 nr_pages, pvec->pages);
887 return pagevec_count(pvec);
888}
7f285701 889EXPORT_SYMBOL(pagevec_lookup_tag);
1da177e4 890
1da177e4
LT
891/*
892 * Perform any setup for the swap system
893 */
894void __init swap_setup(void)
895{
4481374c 896 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
e0bf68dd 897#ifdef CONFIG_SWAP
33806f06
SL
898 int i;
899
900 bdi_init(swapper_spaces[0].backing_dev_info);
901 for (i = 0; i < MAX_SWAPFILES; i++) {
902 spin_lock_init(&swapper_spaces[i].tree_lock);
903 INIT_LIST_HEAD(&swapper_spaces[i].i_mmap_nonlinear);
904 }
e0bf68dd
PZ
905#endif
906
1da177e4
LT
907 /* Use a smaller cluster for small-memory machines */
908 if (megs < 16)
909 page_cluster = 2;
910 else
911 page_cluster = 3;
912 /*
913 * Right now other parts of the system means that we
914 * _really_ don't want to cluster much more
915 */
1da177e4 916}