mm: tail page refcounting optimization for slab and hugetlbfs
[linux-2.6-block.git] / mm / swap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swap.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
183ff22b 8 * This file contains the default values for the operation of the
1da177e4
LT
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16#include <linux/mm.h>
17#include <linux/sched.h>
18#include <linux/kernel_stat.h>
19#include <linux/swap.h>
20#include <linux/mman.h>
21#include <linux/pagemap.h>
22#include <linux/pagevec.h>
23#include <linux/init.h>
b95f1b31 24#include <linux/export.h>
1da177e4 25#include <linux/mm_inline.h>
1da177e4
LT
26#include <linux/percpu_counter.h>
27#include <linux/percpu.h>
28#include <linux/cpu.h>
29#include <linux/notifier.h>
e0bf68dd 30#include <linux/backing-dev.h>
66e1707b 31#include <linux/memcontrol.h>
5a0e3ad6 32#include <linux/gfp.h>
a27bb332 33#include <linux/uio.h>
7cb2ef56 34#include <linux/hugetlb.h>
1da177e4 35
64d6519d
LS
36#include "internal.h"
37
c6286c98
MG
38#define CREATE_TRACE_POINTS
39#include <trace/events/pagemap.h>
40
1da177e4
LT
41/* How many pages do we try to swap or page in/out together? */
42int page_cluster;
43
13f7f789 44static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
f84f9504 45static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
31560180 46static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
902aaed0 47
b221385b
AB
48/*
49 * This path almost never happens for VM activity - pages are normally
50 * freed via pagevecs. But it gets used by networking.
51 */
920c7a5d 52static void __page_cache_release(struct page *page)
b221385b
AB
53{
54 if (PageLRU(page)) {
b221385b 55 struct zone *zone = page_zone(page);
fa9add64
HD
56 struct lruvec *lruvec;
57 unsigned long flags;
b221385b
AB
58
59 spin_lock_irqsave(&zone->lru_lock, flags);
fa9add64 60 lruvec = mem_cgroup_page_lruvec(page, zone);
b221385b
AB
61 VM_BUG_ON(!PageLRU(page));
62 __ClearPageLRU(page);
fa9add64 63 del_page_from_lru_list(page, lruvec, page_off_lru(page));
b221385b
AB
64 spin_unlock_irqrestore(&zone->lru_lock, flags);
65 }
91807063
AA
66}
67
68static void __put_single_page(struct page *page)
69{
70 __page_cache_release(page);
fc91668e 71 free_hot_cold_page(page, 0);
b221385b
AB
72}
73
91807063 74static void __put_compound_page(struct page *page)
1da177e4 75{
91807063 76 compound_page_dtor *dtor;
1da177e4 77
91807063
AA
78 __page_cache_release(page);
79 dtor = get_compound_page_dtor(page);
80 (*dtor)(page);
81}
82
83static void put_compound_page(struct page *page)
84{
85 if (unlikely(PageTail(page))) {
86 /* __split_huge_page_refcount can run under us */
70b50f94
AA
87 struct page *page_head = compound_trans_head(page);
88
ebf360f9
AA
89 /*
90 * THP can not break up slab pages so avoid taking
44518d2b
AA
91 * compound_lock() and skip the tail page refcounting
92 * (in _mapcount) too. Slab performs non-atomic bit
93 * ops on page->flags for better performance. In
ebf360f9
AA
94 * particular slab_unlock() in slub used to be a hot
95 * path. It is still hot on arches that do not support
96 * this_cpu_cmpxchg_double().
97 *
98 * If "page" is part of a slab or hugetlbfs page it
99 * cannot be splitted and the head page cannot change
100 * from under us. And if "page" is part of a THP page
101 * under splitting, if the head page pointed by the
102 * THP tail isn't a THP head anymore, we'll find
103 * PageTail clear after smp_rmb() and we'll treat it
104 * as a single page.
105 */
44518d2b 106 if (!__compound_tail_refcounted(page_head)) {
ebf360f9
AA
107 /*
108 * If "page" is a THP tail, we must read the tail page
109 * flags after the head page flags. The
110 * split_huge_page side enforces write memory
111 * barriers between clearing PageTail and before the
112 * head page can be freed and reallocated.
113 */
114 smp_rmb();
115 if (likely(PageTail(page))) {
116 /*
117 * __split_huge_page_refcount
118 * cannot race here.
119 */
120 VM_BUG_ON(!PageHead(page_head));
44518d2b
AA
121 VM_BUG_ON(page_mapcount(page) != 0);
122 if (put_page_testzero(page_head)) {
123 /*
124 * If this is the tail of a
125 * slab compound page, the
126 * tail pin must not be the
127 * last reference held on the
128 * page, because the PG_slab
129 * cannot be cleared before
130 * all tail pins (which skips
131 * the _mapcount tail
132 * refcounting) have been
133 * released. For hugetlbfs the
134 * tail pin may be the last
135 * reference on the page
136 * instead, because
137 * PageHeadHuge will not go
138 * away until the compound
139 * page enters the buddy
140 * allocator.
141 */
142 VM_BUG_ON(PageSlab(page_head));
ebf360f9 143 __put_compound_page(page_head);
44518d2b 144 }
ebf360f9
AA
145 return;
146 } else
147 /*
148 * __split_huge_page_refcount
149 * run before us, "page" was a
150 * THP tail. The split
151 * page_head has been freed
152 * and reallocated as slab or
153 * hugetlbfs page of smaller
154 * order (only possible if
155 * reallocated as slab on
156 * x86).
157 */
158 goto out_put_single;
159 }
160
70b50f94
AA
161 if (likely(page != page_head &&
162 get_page_unless_zero(page_head))) {
91807063 163 unsigned long flags;
5bf5f03c 164
91807063 165 /*
70b50f94
AA
166 * page_head wasn't a dangling pointer but it
167 * may not be a head page anymore by the time
168 * we obtain the lock. That is ok as long as it
169 * can't be freed from under us.
91807063 170 */
91807063
AA
171 flags = compound_lock_irqsave(page_head);
172 if (unlikely(!PageTail(page))) {
173 /* __split_huge_page_refcount run before us */
174 compound_unlock_irqrestore(page_head, flags);
27c73ae7
AA
175 if (put_page_testzero(page_head)) {
176 /*
177 * The head page may have been
178 * freed and reallocated as a
179 * compound page of smaller
180 * order and then freed again.
181 * All we know is that it
182 * cannot have become: a THP
183 * page, a compound page of
184 * higher order, a tail page.
185 * That is because we still
186 * hold the refcount of the
187 * split THP tail and
188 * page_head was the THP head
189 * before the split.
190 */
191 if (PageHead(page_head))
192 __put_compound_page(page_head);
193 else
194 __put_single_page(page_head);
195 }
5bf5f03c 196out_put_single:
91807063
AA
197 if (put_page_testzero(page))
198 __put_single_page(page);
199 return;
200 }
201 VM_BUG_ON(page_head != page->first_page);
202 /*
203 * We can release the refcount taken by
70b50f94
AA
204 * get_page_unless_zero() now that
205 * __split_huge_page_refcount() is blocked on
206 * the compound_lock.
91807063
AA
207 */
208 if (put_page_testzero(page_head))
209 VM_BUG_ON(1);
210 /* __split_huge_page_refcount will wait now */
70b50f94
AA
211 VM_BUG_ON(page_mapcount(page) <= 0);
212 atomic_dec(&page->_mapcount);
91807063 213 VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
70b50f94 214 VM_BUG_ON(atomic_read(&page->_count) != 0);
91807063 215 compound_unlock_irqrestore(page_head, flags);
5bf5f03c 216
a95a82e9
AA
217 if (put_page_testzero(page_head)) {
218 if (PageHead(page_head))
219 __put_compound_page(page_head);
220 else
221 __put_single_page(page_head);
222 }
91807063
AA
223 } else {
224 /* page_head is a dangling pointer */
225 VM_BUG_ON(PageTail(page));
226 goto out_put_single;
227 }
228 } else if (put_page_testzero(page)) {
229 if (PageHead(page))
230 __put_compound_page(page);
231 else
232 __put_single_page(page);
1da177e4 233 }
8519fb30
NP
234}
235
236void put_page(struct page *page)
237{
238 if (unlikely(PageCompound(page)))
239 put_compound_page(page);
240 else if (put_page_testzero(page))
91807063 241 __put_single_page(page);
1da177e4
LT
242}
243EXPORT_SYMBOL(put_page);
1da177e4 244
70b50f94
AA
245/*
246 * This function is exported but must not be called by anything other
247 * than get_page(). It implements the slow path of get_page().
248 */
249bool __get_page_tail(struct page *page)
250{
251 /*
252 * This takes care of get_page() if run on a tail page
253 * returned by one of the get_user_pages/follow_page variants.
254 * get_user_pages/follow_page itself doesn't need the compound
255 * lock because it runs __get_page_tail_foll() under the
256 * proper PT lock that already serializes against
257 * split_huge_page().
258 */
27c73ae7 259 unsigned long flags;
ebf360f9 260 bool got;
27c73ae7 261 struct page *page_head = compound_trans_head(page);
70b50f94 262
ebf360f9
AA
263 /* Ref to put_compound_page() comment. */
264 if (PageSlab(page_head) || PageHeadHuge(page_head)) {
265 smp_rmb();
266 if (likely(PageTail(page))) {
267 /*
268 * This is a hugetlbfs page or a slab
269 * page. __split_huge_page_refcount
270 * cannot race here.
271 */
272 VM_BUG_ON(!PageHead(page_head));
273 __get_page_tail_foll(page, true);
274 return true;
275 } else {
276 /*
277 * __split_huge_page_refcount run
278 * before us, "page" was a THP
279 * tail. The split page_head has been
280 * freed and reallocated as slab or
281 * hugetlbfs page of smaller order
282 * (only possible if reallocated as
283 * slab on x86).
284 */
285 return false;
27c73ae7 286 }
ebf360f9 287 }
27c73ae7 288
ebf360f9
AA
289 got = false;
290 if (likely(page != page_head && get_page_unless_zero(page_head))) {
27c73ae7
AA
291 /*
292 * page_head wasn't a dangling pointer but it
293 * may not be a head page anymore by the time
294 * we obtain the lock. That is ok as long as it
295 * can't be freed from under us.
296 */
297 flags = compound_lock_irqsave(page_head);
298 /* here __split_huge_page_refcount won't run anymore */
299 if (likely(PageTail(page))) {
300 __get_page_tail_foll(page, false);
301 got = true;
5bf5f03c 302 }
27c73ae7
AA
303 compound_unlock_irqrestore(page_head, flags);
304 if (unlikely(!got))
305 put_page(page_head);
70b50f94
AA
306 }
307 return got;
308}
309EXPORT_SYMBOL(__get_page_tail);
310
1d7ea732 311/**
7682486b
RD
312 * put_pages_list() - release a list of pages
313 * @pages: list of pages threaded on page->lru
1d7ea732
AZ
314 *
315 * Release a list of pages which are strung together on page.lru. Currently
316 * used by read_cache_pages() and related error recovery code.
1d7ea732
AZ
317 */
318void put_pages_list(struct list_head *pages)
319{
320 while (!list_empty(pages)) {
321 struct page *victim;
322
323 victim = list_entry(pages->prev, struct page, lru);
324 list_del(&victim->lru);
325 page_cache_release(victim);
326 }
327}
328EXPORT_SYMBOL(put_pages_list);
329
18022c5d
MG
330/*
331 * get_kernel_pages() - pin kernel pages in memory
332 * @kiov: An array of struct kvec structures
333 * @nr_segs: number of segments to pin
334 * @write: pinning for read/write, currently ignored
335 * @pages: array that receives pointers to the pages pinned.
336 * Should be at least nr_segs long.
337 *
338 * Returns number of pages pinned. This may be fewer than the number
339 * requested. If nr_pages is 0 or negative, returns 0. If no pages
340 * were pinned, returns -errno. Each page returned must be released
341 * with a put_page() call when it is finished with.
342 */
343int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
344 struct page **pages)
345{
346 int seg;
347
348 for (seg = 0; seg < nr_segs; seg++) {
349 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
350 return seg;
351
5a178119 352 pages[seg] = kmap_to_page(kiov[seg].iov_base);
18022c5d
MG
353 page_cache_get(pages[seg]);
354 }
355
356 return seg;
357}
358EXPORT_SYMBOL_GPL(get_kernel_pages);
359
360/*
361 * get_kernel_page() - pin a kernel page in memory
362 * @start: starting kernel address
363 * @write: pinning for read/write, currently ignored
364 * @pages: array that receives pointer to the page pinned.
365 * Must be at least nr_segs long.
366 *
367 * Returns 1 if page is pinned. If the page was not pinned, returns
368 * -errno. The page returned must be released with a put_page() call
369 * when it is finished with.
370 */
371int get_kernel_page(unsigned long start, int write, struct page **pages)
372{
373 const struct kvec kiov = {
374 .iov_base = (void *)start,
375 .iov_len = PAGE_SIZE
376 };
377
378 return get_kernel_pages(&kiov, 1, write, pages);
379}
380EXPORT_SYMBOL_GPL(get_kernel_page);
381
3dd7ae8e 382static void pagevec_lru_move_fn(struct pagevec *pvec,
fa9add64
HD
383 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
384 void *arg)
902aaed0
HH
385{
386 int i;
902aaed0 387 struct zone *zone = NULL;
fa9add64 388 struct lruvec *lruvec;
3dd7ae8e 389 unsigned long flags = 0;
902aaed0
HH
390
391 for (i = 0; i < pagevec_count(pvec); i++) {
392 struct page *page = pvec->pages[i];
393 struct zone *pagezone = page_zone(page);
394
395 if (pagezone != zone) {
396 if (zone)
3dd7ae8e 397 spin_unlock_irqrestore(&zone->lru_lock, flags);
902aaed0 398 zone = pagezone;
3dd7ae8e 399 spin_lock_irqsave(&zone->lru_lock, flags);
902aaed0 400 }
3dd7ae8e 401
fa9add64
HD
402 lruvec = mem_cgroup_page_lruvec(page, zone);
403 (*move_fn)(page, lruvec, arg);
902aaed0
HH
404 }
405 if (zone)
3dd7ae8e 406 spin_unlock_irqrestore(&zone->lru_lock, flags);
83896fb5
LT
407 release_pages(pvec->pages, pvec->nr, pvec->cold);
408 pagevec_reinit(pvec);
d8505dee
SL
409}
410
fa9add64
HD
411static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
412 void *arg)
3dd7ae8e
SL
413{
414 int *pgmoved = arg;
3dd7ae8e
SL
415
416 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
417 enum lru_list lru = page_lru_base_type(page);
925b7673 418 list_move_tail(&page->lru, &lruvec->lists[lru]);
3dd7ae8e
SL
419 (*pgmoved)++;
420 }
421}
422
423/*
424 * pagevec_move_tail() must be called with IRQ disabled.
425 * Otherwise this may cause nasty races.
426 */
427static void pagevec_move_tail(struct pagevec *pvec)
428{
429 int pgmoved = 0;
430
431 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
432 __count_vm_events(PGROTATED, pgmoved);
433}
434
1da177e4
LT
435/*
436 * Writeback is about to end against a page which has been marked for immediate
437 * reclaim. If it still appears to be reclaimable, move it to the tail of the
902aaed0 438 * inactive list.
1da177e4 439 */
3dd7ae8e 440void rotate_reclaimable_page(struct page *page)
1da177e4 441{
ac6aadb2 442 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
894bc310 443 !PageUnevictable(page) && PageLRU(page)) {
ac6aadb2
MS
444 struct pagevec *pvec;
445 unsigned long flags;
446
447 page_cache_get(page);
448 local_irq_save(flags);
449 pvec = &__get_cpu_var(lru_rotate_pvecs);
450 if (!pagevec_add(pvec, page))
451 pagevec_move_tail(pvec);
452 local_irq_restore(flags);
453 }
1da177e4
LT
454}
455
fa9add64 456static void update_page_reclaim_stat(struct lruvec *lruvec,
3e2f41f1
KM
457 int file, int rotated)
458{
fa9add64 459 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
3e2f41f1
KM
460
461 reclaim_stat->recent_scanned[file]++;
462 if (rotated)
463 reclaim_stat->recent_rotated[file]++;
3e2f41f1
KM
464}
465
fa9add64
HD
466static void __activate_page(struct page *page, struct lruvec *lruvec,
467 void *arg)
1da177e4 468{
744ed144 469 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
7a608572
LT
470 int file = page_is_file_cache(page);
471 int lru = page_lru_base_type(page);
744ed144 472
fa9add64 473 del_page_from_lru_list(page, lruvec, lru);
7a608572
LT
474 SetPageActive(page);
475 lru += LRU_ACTIVE;
fa9add64 476 add_page_to_lru_list(page, lruvec, lru);
c6286c98 477 trace_mm_lru_activate(page, page_to_pfn(page));
4f98a2fe 478
fa9add64
HD
479 __count_vm_event(PGACTIVATE);
480 update_page_reclaim_stat(lruvec, file, 1);
1da177e4 481 }
eb709b0d
SL
482}
483
484#ifdef CONFIG_SMP
485static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
486
487static void activate_page_drain(int cpu)
488{
489 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
490
491 if (pagevec_count(pvec))
492 pagevec_lru_move_fn(pvec, __activate_page, NULL);
493}
494
5fbc4616
CM
495static bool need_activate_page_drain(int cpu)
496{
497 return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
498}
499
eb709b0d
SL
500void activate_page(struct page *page)
501{
502 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
503 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
504
505 page_cache_get(page);
506 if (!pagevec_add(pvec, page))
507 pagevec_lru_move_fn(pvec, __activate_page, NULL);
508 put_cpu_var(activate_page_pvecs);
509 }
510}
511
512#else
513static inline void activate_page_drain(int cpu)
514{
515}
516
5fbc4616
CM
517static bool need_activate_page_drain(int cpu)
518{
519 return false;
520}
521
eb709b0d
SL
522void activate_page(struct page *page)
523{
524 struct zone *zone = page_zone(page);
525
526 spin_lock_irq(&zone->lru_lock);
fa9add64 527 __activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
1da177e4
LT
528 spin_unlock_irq(&zone->lru_lock);
529}
eb709b0d 530#endif
1da177e4 531
059285a2
MG
532static void __lru_cache_activate_page(struct page *page)
533{
534 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
535 int i;
536
537 /*
538 * Search backwards on the optimistic assumption that the page being
539 * activated has just been added to this pagevec. Note that only
540 * the local pagevec is examined as a !PageLRU page could be in the
541 * process of being released, reclaimed, migrated or on a remote
542 * pagevec that is currently being drained. Furthermore, marking
543 * a remote pagevec's page PageActive potentially hits a race where
544 * a page is marked PageActive just after it is added to the inactive
545 * list causing accounting errors and BUG_ON checks to trigger.
546 */
547 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
548 struct page *pagevec_page = pvec->pages[i];
549
550 if (pagevec_page == page) {
551 SetPageActive(page);
552 break;
553 }
554 }
555
556 put_cpu_var(lru_add_pvec);
557}
558
1da177e4
LT
559/*
560 * Mark a page as having seen activity.
561 *
562 * inactive,unreferenced -> inactive,referenced
563 * inactive,referenced -> active,unreferenced
564 * active,unreferenced -> active,referenced
565 */
920c7a5d 566void mark_page_accessed(struct page *page)
1da177e4 567{
894bc310 568 if (!PageActive(page) && !PageUnevictable(page) &&
059285a2
MG
569 PageReferenced(page)) {
570
571 /*
572 * If the page is on the LRU, queue it for activation via
573 * activate_page_pvecs. Otherwise, assume the page is on a
574 * pagevec, mark it active and it'll be moved to the active
575 * LRU on the next drain.
576 */
577 if (PageLRU(page))
578 activate_page(page);
579 else
580 __lru_cache_activate_page(page);
1da177e4
LT
581 ClearPageReferenced(page);
582 } else if (!PageReferenced(page)) {
583 SetPageReferenced(page);
584 }
585}
1da177e4
LT
586EXPORT_SYMBOL(mark_page_accessed);
587
d741c9cd 588/*
13f7f789
MG
589 * Queue the page for addition to the LRU via pagevec. The decision on whether
590 * to add the page to the [in]active [file|anon] list is deferred until the
591 * pagevec is drained. This gives a chance for the caller of __lru_cache_add()
592 * have the page added to the active list using mark_page_accessed().
d741c9cd 593 */
c53954a0 594void __lru_cache_add(struct page *page)
1da177e4 595{
13f7f789
MG
596 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
597
1da177e4 598 page_cache_get(page);
d741c9cd 599 if (!pagevec_space(pvec))
a0b8cab3 600 __pagevec_lru_add(pvec);
d741c9cd 601 pagevec_add(pvec, page);
13f7f789 602 put_cpu_var(lru_add_pvec);
1da177e4 603}
47846b06 604EXPORT_SYMBOL(__lru_cache_add);
1da177e4 605
f04e9ebb 606/**
c53954a0 607 * lru_cache_add - add a page to a page list
f04e9ebb 608 * @page: the page to be added to the LRU.
f04e9ebb 609 */
c53954a0 610void lru_cache_add(struct page *page)
1da177e4 611{
ef2a2cbd 612 VM_BUG_ON(PageActive(page) && PageUnevictable(page));
13f7f789 613 VM_BUG_ON(PageLRU(page));
c53954a0 614 __lru_cache_add(page);
1da177e4
LT
615}
616
894bc310
LS
617/**
618 * add_page_to_unevictable_list - add a page to the unevictable list
619 * @page: the page to be added to the unevictable list
620 *
621 * Add page directly to its zone's unevictable list. To avoid races with
622 * tasks that might be making the page evictable, through eg. munlock,
623 * munmap or exit, while it's not on the lru, we want to add the page
624 * while it's locked or otherwise "invisible" to other tasks. This is
625 * difficult to do when using the pagevec cache, so bypass that.
626 */
627void add_page_to_unevictable_list(struct page *page)
628{
629 struct zone *zone = page_zone(page);
fa9add64 630 struct lruvec *lruvec;
894bc310
LS
631
632 spin_lock_irq(&zone->lru_lock);
fa9add64 633 lruvec = mem_cgroup_page_lruvec(page, zone);
ef2a2cbd 634 ClearPageActive(page);
894bc310
LS
635 SetPageUnevictable(page);
636 SetPageLRU(page);
fa9add64 637 add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
894bc310
LS
638 spin_unlock_irq(&zone->lru_lock);
639}
640
31560180
MK
641/*
642 * If the page can not be invalidated, it is moved to the
643 * inactive list to speed up its reclaim. It is moved to the
644 * head of the list, rather than the tail, to give the flusher
645 * threads some time to write it out, as this is much more
646 * effective than the single-page writeout from reclaim.
278df9f4
MK
647 *
648 * If the page isn't page_mapped and dirty/writeback, the page
649 * could reclaim asap using PG_reclaim.
650 *
651 * 1. active, mapped page -> none
652 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
653 * 3. inactive, mapped page -> none
654 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
655 * 5. inactive, clean -> inactive, tail
656 * 6. Others -> none
657 *
658 * In 4, why it moves inactive's head, the VM expects the page would
659 * be write it out by flusher threads as this is much more effective
660 * than the single-page writeout from reclaim.
31560180 661 */
fa9add64
HD
662static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
663 void *arg)
31560180
MK
664{
665 int lru, file;
278df9f4 666 bool active;
31560180 667
278df9f4 668 if (!PageLRU(page))
31560180
MK
669 return;
670
bad49d9c
MK
671 if (PageUnevictable(page))
672 return;
673
31560180
MK
674 /* Some processes are using the page */
675 if (page_mapped(page))
676 return;
677
278df9f4 678 active = PageActive(page);
31560180
MK
679 file = page_is_file_cache(page);
680 lru = page_lru_base_type(page);
fa9add64
HD
681
682 del_page_from_lru_list(page, lruvec, lru + active);
31560180
MK
683 ClearPageActive(page);
684 ClearPageReferenced(page);
fa9add64 685 add_page_to_lru_list(page, lruvec, lru);
31560180 686
278df9f4
MK
687 if (PageWriteback(page) || PageDirty(page)) {
688 /*
689 * PG_reclaim could be raced with end_page_writeback
690 * It can make readahead confusing. But race window
691 * is _really_ small and it's non-critical problem.
692 */
693 SetPageReclaim(page);
694 } else {
695 /*
696 * The page's writeback ends up during pagevec
697 * We moves tha page into tail of inactive.
698 */
925b7673 699 list_move_tail(&page->lru, &lruvec->lists[lru]);
278df9f4
MK
700 __count_vm_event(PGROTATED);
701 }
702
703 if (active)
704 __count_vm_event(PGDEACTIVATE);
fa9add64 705 update_page_reclaim_stat(lruvec, file, 0);
31560180
MK
706}
707
902aaed0
HH
708/*
709 * Drain pages out of the cpu's pagevecs.
710 * Either "cpu" is the current CPU, and preemption has already been
711 * disabled; or "cpu" is being hot-unplugged, and is already dead.
712 */
f0cb3c76 713void lru_add_drain_cpu(int cpu)
1da177e4 714{
13f7f789 715 struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
1da177e4 716
13f7f789 717 if (pagevec_count(pvec))
a0b8cab3 718 __pagevec_lru_add(pvec);
902aaed0
HH
719
720 pvec = &per_cpu(lru_rotate_pvecs, cpu);
721 if (pagevec_count(pvec)) {
722 unsigned long flags;
723
724 /* No harm done if a racing interrupt already did this */
725 local_irq_save(flags);
726 pagevec_move_tail(pvec);
727 local_irq_restore(flags);
728 }
31560180
MK
729
730 pvec = &per_cpu(lru_deactivate_pvecs, cpu);
731 if (pagevec_count(pvec))
3dd7ae8e 732 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
eb709b0d
SL
733
734 activate_page_drain(cpu);
31560180
MK
735}
736
737/**
738 * deactivate_page - forcefully deactivate a page
739 * @page: page to deactivate
740 *
741 * This function hints the VM that @page is a good reclaim candidate,
742 * for example if its invalidation fails due to the page being dirty
743 * or under writeback.
744 */
745void deactivate_page(struct page *page)
746{
821ed6bb
MK
747 /*
748 * In a workload with many unevictable page such as mprotect, unevictable
749 * page deactivation for accelerating reclaim is pointless.
750 */
751 if (PageUnevictable(page))
752 return;
753
31560180
MK
754 if (likely(get_page_unless_zero(page))) {
755 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
756
757 if (!pagevec_add(pvec, page))
3dd7ae8e 758 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
31560180
MK
759 put_cpu_var(lru_deactivate_pvecs);
760 }
80bfed90
AM
761}
762
763void lru_add_drain(void)
764{
f0cb3c76 765 lru_add_drain_cpu(get_cpu());
80bfed90 766 put_cpu();
1da177e4
LT
767}
768
c4028958 769static void lru_add_drain_per_cpu(struct work_struct *dummy)
053837fc
NP
770{
771 lru_add_drain();
772}
773
5fbc4616
CM
774static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
775
776void lru_add_drain_all(void)
053837fc 777{
5fbc4616
CM
778 static DEFINE_MUTEX(lock);
779 static struct cpumask has_work;
780 int cpu;
781
782 mutex_lock(&lock);
783 get_online_cpus();
784 cpumask_clear(&has_work);
785
786 for_each_online_cpu(cpu) {
787 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
788
789 if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
790 pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
791 pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) ||
792 need_activate_page_drain(cpu)) {
793 INIT_WORK(work, lru_add_drain_per_cpu);
794 schedule_work_on(cpu, work);
795 cpumask_set_cpu(cpu, &has_work);
796 }
797 }
798
799 for_each_cpu(cpu, &has_work)
800 flush_work(&per_cpu(lru_add_drain_work, cpu));
801
802 put_online_cpus();
803 mutex_unlock(&lock);
053837fc
NP
804}
805
1da177e4
LT
806/*
807 * Batched page_cache_release(). Decrement the reference count on all the
808 * passed pages. If it fell to zero then remove the page from the LRU and
809 * free it.
810 *
811 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
812 * for the remainder of the operation.
813 *
ab33dc09
FLVC
814 * The locking in this function is against shrink_inactive_list(): we recheck
815 * the page count inside the lock to see whether shrink_inactive_list()
816 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list()
817 * will free it.
1da177e4
LT
818 */
819void release_pages(struct page **pages, int nr, int cold)
820{
821 int i;
cc59850e 822 LIST_HEAD(pages_to_free);
1da177e4 823 struct zone *zone = NULL;
fa9add64 824 struct lruvec *lruvec;
902aaed0 825 unsigned long uninitialized_var(flags);
1da177e4 826
1da177e4
LT
827 for (i = 0; i < nr; i++) {
828 struct page *page = pages[i];
1da177e4 829
8519fb30
NP
830 if (unlikely(PageCompound(page))) {
831 if (zone) {
902aaed0 832 spin_unlock_irqrestore(&zone->lru_lock, flags);
8519fb30
NP
833 zone = NULL;
834 }
835 put_compound_page(page);
836 continue;
837 }
838
b5810039 839 if (!put_page_testzero(page))
1da177e4
LT
840 continue;
841
46453a6e
NP
842 if (PageLRU(page)) {
843 struct zone *pagezone = page_zone(page);
894bc310 844
46453a6e
NP
845 if (pagezone != zone) {
846 if (zone)
902aaed0
HH
847 spin_unlock_irqrestore(&zone->lru_lock,
848 flags);
46453a6e 849 zone = pagezone;
902aaed0 850 spin_lock_irqsave(&zone->lru_lock, flags);
46453a6e 851 }
fa9add64
HD
852
853 lruvec = mem_cgroup_page_lruvec(page, zone);
725d704e 854 VM_BUG_ON(!PageLRU(page));
67453911 855 __ClearPageLRU(page);
fa9add64 856 del_page_from_lru_list(page, lruvec, page_off_lru(page));
46453a6e
NP
857 }
858
c53954a0
MG
859 /* Clear Active bit in case of parallel mark_page_accessed */
860 ClearPageActive(page);
861
cc59850e 862 list_add(&page->lru, &pages_to_free);
1da177e4
LT
863 }
864 if (zone)
902aaed0 865 spin_unlock_irqrestore(&zone->lru_lock, flags);
1da177e4 866
cc59850e 867 free_hot_cold_page_list(&pages_to_free, cold);
1da177e4 868}
0be8557b 869EXPORT_SYMBOL(release_pages);
1da177e4
LT
870
871/*
872 * The pages which we're about to release may be in the deferred lru-addition
873 * queues. That would prevent them from really being freed right now. That's
874 * OK from a correctness point of view but is inefficient - those pages may be
875 * cache-warm and we want to give them back to the page allocator ASAP.
876 *
877 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
878 * and __pagevec_lru_add_active() call release_pages() directly to avoid
879 * mutual recursion.
880 */
881void __pagevec_release(struct pagevec *pvec)
882{
883 lru_add_drain();
884 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
885 pagevec_reinit(pvec);
886}
7f285701
SF
887EXPORT_SYMBOL(__pagevec_release);
888
12d27107 889#ifdef CONFIG_TRANSPARENT_HUGEPAGE
71e3aac0 890/* used by __split_huge_page_refcount() */
fa9add64 891void lru_add_page_tail(struct page *page, struct page *page_tail,
5bc7b8ac 892 struct lruvec *lruvec, struct list_head *list)
71e3aac0 893{
71e3aac0 894 const int file = 0;
71e3aac0
AA
895
896 VM_BUG_ON(!PageHead(page));
897 VM_BUG_ON(PageCompound(page_tail));
898 VM_BUG_ON(PageLRU(page_tail));
fa9add64
HD
899 VM_BUG_ON(NR_CPUS != 1 &&
900 !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
71e3aac0 901
5bc7b8ac
SL
902 if (!list)
903 SetPageLRU(page_tail);
71e3aac0 904
12d27107
HD
905 if (likely(PageLRU(page)))
906 list_add_tail(&page_tail->lru, &page->lru);
5bc7b8ac
SL
907 else if (list) {
908 /* page reclaim is reclaiming a huge page */
909 get_page(page_tail);
910 list_add_tail(&page_tail->lru, list);
911 } else {
12d27107
HD
912 struct list_head *list_head;
913 /*
914 * Head page has not yet been counted, as an hpage,
915 * so we must account for each subpage individually.
916 *
917 * Use the standard add function to put page_tail on the list,
918 * but then correct its position so they all end up in order.
919 */
e180cf80 920 add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
12d27107
HD
921 list_head = page_tail->lru.prev;
922 list_move_tail(&page_tail->lru, list_head);
71e3aac0 923 }
7512102c
HD
924
925 if (!PageUnevictable(page))
e180cf80 926 update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
71e3aac0 927}
12d27107 928#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
71e3aac0 929
fa9add64
HD
930static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
931 void *arg)
3dd7ae8e 932{
13f7f789
MG
933 int file = page_is_file_cache(page);
934 int active = PageActive(page);
935 enum lru_list lru = page_lru(page);
3dd7ae8e 936
3dd7ae8e
SL
937 VM_BUG_ON(PageLRU(page));
938
939 SetPageLRU(page);
fa9add64
HD
940 add_page_to_lru_list(page, lruvec, lru);
941 update_page_reclaim_stat(lruvec, file, active);
c6286c98 942 trace_mm_lru_insertion(page, page_to_pfn(page), lru, trace_pagemap_flags(page));
3dd7ae8e
SL
943}
944
1da177e4
LT
945/*
946 * Add the passed pages to the LRU, then drop the caller's refcount
947 * on them. Reinitialises the caller's pagevec.
948 */
a0b8cab3 949void __pagevec_lru_add(struct pagevec *pvec)
1da177e4 950{
a0b8cab3 951 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
1da177e4 952}
5095ae83 953EXPORT_SYMBOL(__pagevec_lru_add);
1da177e4 954
1da177e4
LT
955/**
956 * pagevec_lookup - gang pagecache lookup
957 * @pvec: Where the resulting pages are placed
958 * @mapping: The address_space to search
959 * @start: The starting page index
960 * @nr_pages: The maximum number of pages
961 *
962 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
963 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
964 * reference against the pages in @pvec.
965 *
966 * The search returns a group of mapping-contiguous pages with ascending
967 * indexes. There may be holes in the indices due to not-present pages.
968 *
969 * pagevec_lookup() returns the number of pages which were found.
970 */
971unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
972 pgoff_t start, unsigned nr_pages)
973{
974 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
975 return pagevec_count(pvec);
976}
78539fdf
CH
977EXPORT_SYMBOL(pagevec_lookup);
978
1da177e4
LT
979unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
980 pgoff_t *index, int tag, unsigned nr_pages)
981{
982 pvec->nr = find_get_pages_tag(mapping, index, tag,
983 nr_pages, pvec->pages);
984 return pagevec_count(pvec);
985}
7f285701 986EXPORT_SYMBOL(pagevec_lookup_tag);
1da177e4 987
1da177e4
LT
988/*
989 * Perform any setup for the swap system
990 */
991void __init swap_setup(void)
992{
4481374c 993 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
e0bf68dd 994#ifdef CONFIG_SWAP
33806f06
SL
995 int i;
996
8077c0d9
MP
997 if (bdi_init(swapper_spaces[0].backing_dev_info))
998 panic("Failed to init swap bdi");
33806f06
SL
999 for (i = 0; i < MAX_SWAPFILES; i++) {
1000 spin_lock_init(&swapper_spaces[i].tree_lock);
1001 INIT_LIST_HEAD(&swapper_spaces[i].i_mmap_nonlinear);
1002 }
e0bf68dd
PZ
1003#endif
1004
1da177e4
LT
1005 /* Use a smaller cluster for small-memory machines */
1006 if (megs < 16)
1007 page_cluster = 2;
1008 else
1009 page_cluster = 3;
1010 /*
1011 * Right now other parts of the system means that we
1012 * _really_ don't want to cluster much more
1013 */
1da177e4 1014}