dt-bindings: mmc: fsl-imx-esdhc: add imx8m compatible string
[linux-2.6-block.git] / mm / swap.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/swap.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
183ff22b 9 * This file contains the default values for the operation of the
1da177e4 10 * Linux VM subsystem. Fine-tuning documentation can be found in
57043247 11 * Documentation/admin-guide/sysctl/vm.rst.
1da177e4
LT
12 * Started 18.12.91
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
15 */
16
17#include <linux/mm.h>
18#include <linux/sched.h>
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/mman.h>
22#include <linux/pagemap.h>
23#include <linux/pagevec.h>
24#include <linux/init.h>
b95f1b31 25#include <linux/export.h>
1da177e4 26#include <linux/mm_inline.h>
1da177e4 27#include <linux/percpu_counter.h>
3565fce3 28#include <linux/memremap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/cpu.h>
31#include <linux/notifier.h>
e0bf68dd 32#include <linux/backing-dev.h>
66e1707b 33#include <linux/memcontrol.h>
5a0e3ad6 34#include <linux/gfp.h>
a27bb332 35#include <linux/uio.h>
822fc613 36#include <linux/hugetlb.h>
33c3fc71 37#include <linux/page_idle.h>
1da177e4 38
64d6519d
LS
39#include "internal.h"
40
c6286c98
MG
41#define CREATE_TRACE_POINTS
42#include <trace/events/pagemap.h>
43
1da177e4
LT
44/* How many pages do we try to swap or page in/out together? */
45int page_cluster;
46
13f7f789 47static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
f84f9504 48static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
cc5993bd 49static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs);
9c276cc6 50static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
f7ad2a6c 51static DEFINE_PER_CPU(struct pagevec, lru_lazyfree_pvecs);
a4a921aa
ML
52#ifdef CONFIG_SMP
53static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
54#endif
902aaed0 55
b221385b
AB
56/*
57 * This path almost never happens for VM activity - pages are normally
58 * freed via pagevecs. But it gets used by networking.
59 */
920c7a5d 60static void __page_cache_release(struct page *page)
b221385b
AB
61{
62 if (PageLRU(page)) {
f4b7e272 63 pg_data_t *pgdat = page_pgdat(page);
fa9add64
HD
64 struct lruvec *lruvec;
65 unsigned long flags;
b221385b 66
f4b7e272
AR
67 spin_lock_irqsave(&pgdat->lru_lock, flags);
68 lruvec = mem_cgroup_page_lruvec(page, pgdat);
309381fe 69 VM_BUG_ON_PAGE(!PageLRU(page), page);
b221385b 70 __ClearPageLRU(page);
fa9add64 71 del_page_from_lru_list(page, lruvec, page_off_lru(page));
f4b7e272 72 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
b221385b 73 }
62906027 74 __ClearPageWaiters(page);
91807063
AA
75}
76
77static void __put_single_page(struct page *page)
78{
79 __page_cache_release(page);
7ae88534 80 mem_cgroup_uncharge(page);
2d4894b5 81 free_unref_page(page);
b221385b
AB
82}
83
91807063 84static void __put_compound_page(struct page *page)
1da177e4 85{
91807063 86 compound_page_dtor *dtor;
1da177e4 87
822fc613
NH
88 /*
89 * __page_cache_release() is supposed to be called for thp, not for
90 * hugetlb. This is because hugetlb page does never have PageLRU set
91 * (it's never listed to any LRU lists) and no memcg routines should
92 * be called for hugetlb (it has a separate hugetlb_cgroup.)
93 */
94 if (!PageHuge(page))
95 __page_cache_release(page);
91807063
AA
96 dtor = get_compound_page_dtor(page);
97 (*dtor)(page);
98}
99
ddc58f27 100void __put_page(struct page *page)
8519fb30 101{
71389703
DW
102 if (is_zone_device_page(page)) {
103 put_dev_pagemap(page->pgmap);
104
105 /*
106 * The page belongs to the device that created pgmap. Do
107 * not return it to page allocator.
108 */
109 return;
110 }
111
8519fb30 112 if (unlikely(PageCompound(page)))
ddc58f27
KS
113 __put_compound_page(page);
114 else
91807063 115 __put_single_page(page);
1da177e4 116}
ddc58f27 117EXPORT_SYMBOL(__put_page);
70b50f94 118
1d7ea732 119/**
7682486b
RD
120 * put_pages_list() - release a list of pages
121 * @pages: list of pages threaded on page->lru
1d7ea732
AZ
122 *
123 * Release a list of pages which are strung together on page.lru. Currently
124 * used by read_cache_pages() and related error recovery code.
1d7ea732
AZ
125 */
126void put_pages_list(struct list_head *pages)
127{
128 while (!list_empty(pages)) {
129 struct page *victim;
130
f86196ea 131 victim = lru_to_page(pages);
1d7ea732 132 list_del(&victim->lru);
09cbfeaf 133 put_page(victim);
1d7ea732
AZ
134 }
135}
136EXPORT_SYMBOL(put_pages_list);
137
18022c5d
MG
138/*
139 * get_kernel_pages() - pin kernel pages in memory
140 * @kiov: An array of struct kvec structures
141 * @nr_segs: number of segments to pin
142 * @write: pinning for read/write, currently ignored
143 * @pages: array that receives pointers to the pages pinned.
144 * Should be at least nr_segs long.
145 *
146 * Returns number of pages pinned. This may be fewer than the number
147 * requested. If nr_pages is 0 or negative, returns 0. If no pages
148 * were pinned, returns -errno. Each page returned must be released
149 * with a put_page() call when it is finished with.
150 */
151int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
152 struct page **pages)
153{
154 int seg;
155
156 for (seg = 0; seg < nr_segs; seg++) {
157 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
158 return seg;
159
5a178119 160 pages[seg] = kmap_to_page(kiov[seg].iov_base);
09cbfeaf 161 get_page(pages[seg]);
18022c5d
MG
162 }
163
164 return seg;
165}
166EXPORT_SYMBOL_GPL(get_kernel_pages);
167
168/*
169 * get_kernel_page() - pin a kernel page in memory
170 * @start: starting kernel address
171 * @write: pinning for read/write, currently ignored
172 * @pages: array that receives pointer to the page pinned.
173 * Must be at least nr_segs long.
174 *
175 * Returns 1 if page is pinned. If the page was not pinned, returns
176 * -errno. The page returned must be released with a put_page() call
177 * when it is finished with.
178 */
179int get_kernel_page(unsigned long start, int write, struct page **pages)
180{
181 const struct kvec kiov = {
182 .iov_base = (void *)start,
183 .iov_len = PAGE_SIZE
184 };
185
186 return get_kernel_pages(&kiov, 1, write, pages);
187}
188EXPORT_SYMBOL_GPL(get_kernel_page);
189
3dd7ae8e 190static void pagevec_lru_move_fn(struct pagevec *pvec,
fa9add64
HD
191 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
192 void *arg)
902aaed0
HH
193{
194 int i;
68eb0731 195 struct pglist_data *pgdat = NULL;
fa9add64 196 struct lruvec *lruvec;
3dd7ae8e 197 unsigned long flags = 0;
902aaed0
HH
198
199 for (i = 0; i < pagevec_count(pvec); i++) {
200 struct page *page = pvec->pages[i];
68eb0731 201 struct pglist_data *pagepgdat = page_pgdat(page);
902aaed0 202
68eb0731
MG
203 if (pagepgdat != pgdat) {
204 if (pgdat)
205 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
206 pgdat = pagepgdat;
207 spin_lock_irqsave(&pgdat->lru_lock, flags);
902aaed0 208 }
3dd7ae8e 209
68eb0731 210 lruvec = mem_cgroup_page_lruvec(page, pgdat);
fa9add64 211 (*move_fn)(page, lruvec, arg);
902aaed0 212 }
68eb0731
MG
213 if (pgdat)
214 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
c6f92f9f 215 release_pages(pvec->pages, pvec->nr);
83896fb5 216 pagevec_reinit(pvec);
d8505dee
SL
217}
218
fa9add64
HD
219static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
220 void *arg)
3dd7ae8e
SL
221{
222 int *pgmoved = arg;
3dd7ae8e 223
c55e8d03
JW
224 if (PageLRU(page) && !PageUnevictable(page)) {
225 del_page_from_lru_list(page, lruvec, page_lru(page));
226 ClearPageActive(page);
227 add_page_to_lru_list_tail(page, lruvec, page_lru(page));
3dd7ae8e
SL
228 (*pgmoved)++;
229 }
230}
231
232/*
233 * pagevec_move_tail() must be called with IRQ disabled.
234 * Otherwise this may cause nasty races.
235 */
236static void pagevec_move_tail(struct pagevec *pvec)
237{
238 int pgmoved = 0;
239
240 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
241 __count_vm_events(PGROTATED, pgmoved);
242}
243
1da177e4
LT
244/*
245 * Writeback is about to end against a page which has been marked for immediate
246 * reclaim. If it still appears to be reclaimable, move it to the tail of the
902aaed0 247 * inactive list.
1da177e4 248 */
3dd7ae8e 249void rotate_reclaimable_page(struct page *page)
1da177e4 250{
c55e8d03 251 if (!PageLocked(page) && !PageDirty(page) &&
894bc310 252 !PageUnevictable(page) && PageLRU(page)) {
ac6aadb2
MS
253 struct pagevec *pvec;
254 unsigned long flags;
255
09cbfeaf 256 get_page(page);
ac6aadb2 257 local_irq_save(flags);
7c8e0181 258 pvec = this_cpu_ptr(&lru_rotate_pvecs);
8f182270 259 if (!pagevec_add(pvec, page) || PageCompound(page))
ac6aadb2
MS
260 pagevec_move_tail(pvec);
261 local_irq_restore(flags);
262 }
1da177e4
LT
263}
264
fa9add64 265static void update_page_reclaim_stat(struct lruvec *lruvec,
3e2f41f1
KM
266 int file, int rotated)
267{
fa9add64 268 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
3e2f41f1
KM
269
270 reclaim_stat->recent_scanned[file]++;
271 if (rotated)
272 reclaim_stat->recent_rotated[file]++;
3e2f41f1
KM
273}
274
fa9add64
HD
275static void __activate_page(struct page *page, struct lruvec *lruvec,
276 void *arg)
1da177e4 277{
744ed144 278 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
7a608572
LT
279 int file = page_is_file_cache(page);
280 int lru = page_lru_base_type(page);
744ed144 281
fa9add64 282 del_page_from_lru_list(page, lruvec, lru);
7a608572
LT
283 SetPageActive(page);
284 lru += LRU_ACTIVE;
fa9add64 285 add_page_to_lru_list(page, lruvec, lru);
24b7e581 286 trace_mm_lru_activate(page);
4f98a2fe 287
fa9add64
HD
288 __count_vm_event(PGACTIVATE);
289 update_page_reclaim_stat(lruvec, file, 1);
1da177e4 290 }
eb709b0d
SL
291}
292
293#ifdef CONFIG_SMP
eb709b0d
SL
294static void activate_page_drain(int cpu)
295{
296 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
297
298 if (pagevec_count(pvec))
299 pagevec_lru_move_fn(pvec, __activate_page, NULL);
300}
301
5fbc4616
CM
302static bool need_activate_page_drain(int cpu)
303{
304 return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
305}
306
eb709b0d
SL
307void activate_page(struct page *page)
308{
800d8c63 309 page = compound_head(page);
eb709b0d
SL
310 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
311 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
312
09cbfeaf 313 get_page(page);
8f182270 314 if (!pagevec_add(pvec, page) || PageCompound(page))
eb709b0d
SL
315 pagevec_lru_move_fn(pvec, __activate_page, NULL);
316 put_cpu_var(activate_page_pvecs);
317 }
318}
319
320#else
321static inline void activate_page_drain(int cpu)
322{
323}
324
325void activate_page(struct page *page)
326{
f4b7e272 327 pg_data_t *pgdat = page_pgdat(page);
eb709b0d 328
800d8c63 329 page = compound_head(page);
f4b7e272
AR
330 spin_lock_irq(&pgdat->lru_lock);
331 __activate_page(page, mem_cgroup_page_lruvec(page, pgdat), NULL);
332 spin_unlock_irq(&pgdat->lru_lock);
1da177e4 333}
eb709b0d 334#endif
1da177e4 335
059285a2
MG
336static void __lru_cache_activate_page(struct page *page)
337{
338 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
339 int i;
340
341 /*
342 * Search backwards on the optimistic assumption that the page being
343 * activated has just been added to this pagevec. Note that only
344 * the local pagevec is examined as a !PageLRU page could be in the
345 * process of being released, reclaimed, migrated or on a remote
346 * pagevec that is currently being drained. Furthermore, marking
347 * a remote pagevec's page PageActive potentially hits a race where
348 * a page is marked PageActive just after it is added to the inactive
349 * list causing accounting errors and BUG_ON checks to trigger.
350 */
351 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
352 struct page *pagevec_page = pvec->pages[i];
353
354 if (pagevec_page == page) {
355 SetPageActive(page);
356 break;
357 }
358 }
359
360 put_cpu_var(lru_add_pvec);
361}
362
1da177e4
LT
363/*
364 * Mark a page as having seen activity.
365 *
366 * inactive,unreferenced -> inactive,referenced
367 * inactive,referenced -> active,unreferenced
368 * active,unreferenced -> active,referenced
eb39d618
HD
369 *
370 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
371 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
1da177e4 372 */
920c7a5d 373void mark_page_accessed(struct page *page)
1da177e4 374{
e90309c9 375 page = compound_head(page);
894bc310 376 if (!PageActive(page) && !PageUnevictable(page) &&
059285a2
MG
377 PageReferenced(page)) {
378
379 /*
380 * If the page is on the LRU, queue it for activation via
381 * activate_page_pvecs. Otherwise, assume the page is on a
382 * pagevec, mark it active and it'll be moved to the active
383 * LRU on the next drain.
384 */
385 if (PageLRU(page))
386 activate_page(page);
387 else
388 __lru_cache_activate_page(page);
1da177e4 389 ClearPageReferenced(page);
a528910e
JW
390 if (page_is_file_cache(page))
391 workingset_activation(page);
1da177e4
LT
392 } else if (!PageReferenced(page)) {
393 SetPageReferenced(page);
394 }
33c3fc71
VD
395 if (page_is_idle(page))
396 clear_page_idle(page);
1da177e4 397}
1da177e4
LT
398EXPORT_SYMBOL(mark_page_accessed);
399
2329d375 400static void __lru_cache_add(struct page *page)
1da177e4 401{
13f7f789
MG
402 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
403
09cbfeaf 404 get_page(page);
8f182270 405 if (!pagevec_add(pvec, page) || PageCompound(page))
a0b8cab3 406 __pagevec_lru_add(pvec);
13f7f789 407 put_cpu_var(lru_add_pvec);
1da177e4 408}
2329d375
JZ
409
410/**
e02a9f04 411 * lru_cache_add_anon - add a page to the page lists
2329d375
JZ
412 * @page: the page to add
413 */
414void lru_cache_add_anon(struct page *page)
415{
6fb81a17
MG
416 if (PageActive(page))
417 ClearPageActive(page);
2329d375
JZ
418 __lru_cache_add(page);
419}
420
421void lru_cache_add_file(struct page *page)
422{
6fb81a17
MG
423 if (PageActive(page))
424 ClearPageActive(page);
2329d375
JZ
425 __lru_cache_add(page);
426}
427EXPORT_SYMBOL(lru_cache_add_file);
1da177e4 428
f04e9ebb 429/**
c53954a0 430 * lru_cache_add - add a page to a page list
f04e9ebb 431 * @page: the page to be added to the LRU.
2329d375
JZ
432 *
433 * Queue the page for addition to the LRU via pagevec. The decision on whether
434 * to add the page to the [in]active [file|anon] list is deferred until the
435 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
436 * have the page added to the active list using mark_page_accessed().
f04e9ebb 437 */
c53954a0 438void lru_cache_add(struct page *page)
1da177e4 439{
309381fe
SL
440 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
441 VM_BUG_ON_PAGE(PageLRU(page), page);
c53954a0 442 __lru_cache_add(page);
1da177e4
LT
443}
444
00501b53
JW
445/**
446 * lru_cache_add_active_or_unevictable
447 * @page: the page to be added to LRU
448 * @vma: vma in which page is mapped for determining reclaimability
449 *
450 * Place @page on the active or unevictable LRU list, depending on its
451 * evictability. Note that if the page is not evictable, it goes
452 * directly back onto it's zone's unevictable list, it does NOT use a
453 * per cpu pagevec.
454 */
455void lru_cache_add_active_or_unevictable(struct page *page,
456 struct vm_area_struct *vma)
457{
458 VM_BUG_ON_PAGE(PageLRU(page), page);
459
9c4e6b1a 460 if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED))
00501b53 461 SetPageActive(page);
9c4e6b1a 462 else if (!TestSetPageMlocked(page)) {
00501b53
JW
463 /*
464 * We use the irq-unsafe __mod_zone_page_stat because this
465 * counter is not modified from interrupt context, and the pte
466 * lock is held(spinlock), which implies preemption disabled.
467 */
468 __mod_zone_page_state(page_zone(page), NR_MLOCK,
469 hpage_nr_pages(page));
470 count_vm_event(UNEVICTABLE_PGMLOCKED);
471 }
9c4e6b1a 472 lru_cache_add(page);
00501b53
JW
473}
474
31560180
MK
475/*
476 * If the page can not be invalidated, it is moved to the
477 * inactive list to speed up its reclaim. It is moved to the
478 * head of the list, rather than the tail, to give the flusher
479 * threads some time to write it out, as this is much more
480 * effective than the single-page writeout from reclaim.
278df9f4
MK
481 *
482 * If the page isn't page_mapped and dirty/writeback, the page
483 * could reclaim asap using PG_reclaim.
484 *
485 * 1. active, mapped page -> none
486 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
487 * 3. inactive, mapped page -> none
488 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
489 * 5. inactive, clean -> inactive, tail
490 * 6. Others -> none
491 *
492 * In 4, why it moves inactive's head, the VM expects the page would
493 * be write it out by flusher threads as this is much more effective
494 * than the single-page writeout from reclaim.
31560180 495 */
cc5993bd 496static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
fa9add64 497 void *arg)
31560180
MK
498{
499 int lru, file;
278df9f4 500 bool active;
31560180 501
278df9f4 502 if (!PageLRU(page))
31560180
MK
503 return;
504
bad49d9c
MK
505 if (PageUnevictable(page))
506 return;
507
31560180
MK
508 /* Some processes are using the page */
509 if (page_mapped(page))
510 return;
511
278df9f4 512 active = PageActive(page);
31560180
MK
513 file = page_is_file_cache(page);
514 lru = page_lru_base_type(page);
fa9add64
HD
515
516 del_page_from_lru_list(page, lruvec, lru + active);
31560180
MK
517 ClearPageActive(page);
518 ClearPageReferenced(page);
31560180 519
278df9f4
MK
520 if (PageWriteback(page) || PageDirty(page)) {
521 /*
522 * PG_reclaim could be raced with end_page_writeback
523 * It can make readahead confusing. But race window
524 * is _really_ small and it's non-critical problem.
525 */
e7a1aaf2 526 add_page_to_lru_list(page, lruvec, lru);
278df9f4
MK
527 SetPageReclaim(page);
528 } else {
529 /*
530 * The page's writeback ends up during pagevec
531 * We moves tha page into tail of inactive.
532 */
e7a1aaf2 533 add_page_to_lru_list_tail(page, lruvec, lru);
278df9f4
MK
534 __count_vm_event(PGROTATED);
535 }
536
537 if (active)
538 __count_vm_event(PGDEACTIVATE);
fa9add64 539 update_page_reclaim_stat(lruvec, file, 0);
31560180
MK
540}
541
9c276cc6
MK
542static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
543 void *arg)
544{
545 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
546 int file = page_is_file_cache(page);
547 int lru = page_lru_base_type(page);
548
549 del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE);
550 ClearPageActive(page);
551 ClearPageReferenced(page);
552 add_page_to_lru_list(page, lruvec, lru);
553
554 __count_vm_events(PGDEACTIVATE, hpage_nr_pages(page));
555 update_page_reclaim_stat(lruvec, file, 0);
556 }
557}
10853a03 558
f7ad2a6c 559static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec,
10853a03
MK
560 void *arg)
561{
f7ad2a6c 562 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
24c92eb7 563 !PageSwapCache(page) && !PageUnevictable(page)) {
f7ad2a6c 564 bool active = PageActive(page);
10853a03 565
f7ad2a6c
SL
566 del_page_from_lru_list(page, lruvec,
567 LRU_INACTIVE_ANON + active);
10853a03
MK
568 ClearPageActive(page);
569 ClearPageReferenced(page);
f7ad2a6c
SL
570 /*
571 * lazyfree pages are clean anonymous pages. They have
572 * SwapBacked flag cleared to distinguish normal anonymous
573 * pages
574 */
575 ClearPageSwapBacked(page);
576 add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE);
10853a03 577
f7ad2a6c 578 __count_vm_events(PGLAZYFREE, hpage_nr_pages(page));
2262185c 579 count_memcg_page_event(page, PGLAZYFREE);
f7ad2a6c 580 update_page_reclaim_stat(lruvec, 1, 0);
10853a03
MK
581 }
582}
583
902aaed0
HH
584/*
585 * Drain pages out of the cpu's pagevecs.
586 * Either "cpu" is the current CPU, and preemption has already been
587 * disabled; or "cpu" is being hot-unplugged, and is already dead.
588 */
f0cb3c76 589void lru_add_drain_cpu(int cpu)
1da177e4 590{
13f7f789 591 struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
1da177e4 592
13f7f789 593 if (pagevec_count(pvec))
a0b8cab3 594 __pagevec_lru_add(pvec);
902aaed0
HH
595
596 pvec = &per_cpu(lru_rotate_pvecs, cpu);
597 if (pagevec_count(pvec)) {
598 unsigned long flags;
599
600 /* No harm done if a racing interrupt already did this */
601 local_irq_save(flags);
602 pagevec_move_tail(pvec);
603 local_irq_restore(flags);
604 }
31560180 605
cc5993bd 606 pvec = &per_cpu(lru_deactivate_file_pvecs, cpu);
31560180 607 if (pagevec_count(pvec))
cc5993bd 608 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
eb709b0d 609
9c276cc6
MK
610 pvec = &per_cpu(lru_deactivate_pvecs, cpu);
611 if (pagevec_count(pvec))
612 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
613
f7ad2a6c 614 pvec = &per_cpu(lru_lazyfree_pvecs, cpu);
10853a03 615 if (pagevec_count(pvec))
f7ad2a6c 616 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
10853a03 617
eb709b0d 618 activate_page_drain(cpu);
31560180
MK
619}
620
621/**
cc5993bd 622 * deactivate_file_page - forcefully deactivate a file page
31560180
MK
623 * @page: page to deactivate
624 *
625 * This function hints the VM that @page is a good reclaim candidate,
626 * for example if its invalidation fails due to the page being dirty
627 * or under writeback.
628 */
cc5993bd 629void deactivate_file_page(struct page *page)
31560180 630{
821ed6bb 631 /*
cc5993bd
MK
632 * In a workload with many unevictable page such as mprotect,
633 * unevictable page deactivation for accelerating reclaim is pointless.
821ed6bb
MK
634 */
635 if (PageUnevictable(page))
636 return;
637
31560180 638 if (likely(get_page_unless_zero(page))) {
cc5993bd 639 struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs);
31560180 640
8f182270 641 if (!pagevec_add(pvec, page) || PageCompound(page))
cc5993bd
MK
642 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
643 put_cpu_var(lru_deactivate_file_pvecs);
31560180 644 }
80bfed90
AM
645}
646
9c276cc6
MK
647/*
648 * deactivate_page - deactivate a page
649 * @page: page to deactivate
650 *
651 * deactivate_page() moves @page to the inactive list if @page was on the active
652 * list and was not an unevictable page. This is done to accelerate the reclaim
653 * of @page.
654 */
655void deactivate_page(struct page *page)
656{
657 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
658 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
659
660 get_page(page);
661 if (!pagevec_add(pvec, page) || PageCompound(page))
662 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
663 put_cpu_var(lru_deactivate_pvecs);
664 }
665}
666
10853a03 667/**
f7ad2a6c 668 * mark_page_lazyfree - make an anon page lazyfree
10853a03
MK
669 * @page: page to deactivate
670 *
f7ad2a6c
SL
671 * mark_page_lazyfree() moves @page to the inactive file list.
672 * This is done to accelerate the reclaim of @page.
10853a03 673 */
f7ad2a6c 674void mark_page_lazyfree(struct page *page)
10853a03 675{
f7ad2a6c 676 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
24c92eb7 677 !PageSwapCache(page) && !PageUnevictable(page)) {
f7ad2a6c 678 struct pagevec *pvec = &get_cpu_var(lru_lazyfree_pvecs);
10853a03 679
09cbfeaf 680 get_page(page);
8f182270 681 if (!pagevec_add(pvec, page) || PageCompound(page))
f7ad2a6c
SL
682 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
683 put_cpu_var(lru_lazyfree_pvecs);
10853a03
MK
684 }
685}
686
80bfed90
AM
687void lru_add_drain(void)
688{
f0cb3c76 689 lru_add_drain_cpu(get_cpu());
80bfed90 690 put_cpu();
1da177e4
LT
691}
692
6ea183d6
MH
693#ifdef CONFIG_SMP
694
695static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
696
c4028958 697static void lru_add_drain_per_cpu(struct work_struct *dummy)
053837fc
NP
698{
699 lru_add_drain();
700}
701
9852a721
MH
702/*
703 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
704 * kworkers being shut down before our page_alloc_cpu_dead callback is
705 * executed on the offlined cpu.
706 * Calling this function with cpu hotplug locks held can actually lead
707 * to obscure indirect dependencies via WQ context.
708 */
709void lru_add_drain_all(void)
053837fc 710{
5fbc4616
CM
711 static DEFINE_MUTEX(lock);
712 static struct cpumask has_work;
713 int cpu;
714
ce612879
MH
715 /*
716 * Make sure nobody triggers this path before mm_percpu_wq is fully
717 * initialized.
718 */
719 if (WARN_ON(!mm_percpu_wq))
720 return;
721
5fbc4616 722 mutex_lock(&lock);
5fbc4616
CM
723 cpumask_clear(&has_work);
724
725 for_each_online_cpu(cpu) {
726 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
727
728 if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
729 pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
cc5993bd 730 pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) ||
9c276cc6 731 pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) ||
f7ad2a6c 732 pagevec_count(&per_cpu(lru_lazyfree_pvecs, cpu)) ||
5fbc4616
CM
733 need_activate_page_drain(cpu)) {
734 INIT_WORK(work, lru_add_drain_per_cpu);
ce612879 735 queue_work_on(cpu, mm_percpu_wq, work);
5fbc4616
CM
736 cpumask_set_cpu(cpu, &has_work);
737 }
738 }
739
740 for_each_cpu(cpu, &has_work)
741 flush_work(&per_cpu(lru_add_drain_work, cpu));
742
5fbc4616 743 mutex_unlock(&lock);
053837fc 744}
6ea183d6
MH
745#else
746void lru_add_drain_all(void)
747{
748 lru_add_drain();
749}
750#endif
053837fc 751
aabfb572 752/**
ea1754a0 753 * release_pages - batched put_page()
aabfb572
MH
754 * @pages: array of pages to release
755 * @nr: number of pages
1da177e4 756 *
aabfb572
MH
757 * Decrement the reference count on all the pages in @pages. If it
758 * fell to zero, remove the page from the LRU and free it.
1da177e4 759 */
c6f92f9f 760void release_pages(struct page **pages, int nr)
1da177e4
LT
761{
762 int i;
cc59850e 763 LIST_HEAD(pages_to_free);
599d0c95 764 struct pglist_data *locked_pgdat = NULL;
fa9add64 765 struct lruvec *lruvec;
902aaed0 766 unsigned long uninitialized_var(flags);
aabfb572 767 unsigned int uninitialized_var(lock_batch);
1da177e4 768
1da177e4
LT
769 for (i = 0; i < nr; i++) {
770 struct page *page = pages[i];
1da177e4 771
aabfb572
MH
772 /*
773 * Make sure the IRQ-safe lock-holding time does not get
774 * excessive with a continuous string of pages from the
599d0c95 775 * same pgdat. The lock is held only if pgdat != NULL.
aabfb572 776 */
599d0c95
MG
777 if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
778 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
779 locked_pgdat = NULL;
aabfb572
MH
780 }
781
6fcb52a5 782 if (is_huge_zero_page(page))
aa88b68c 783 continue;
aa88b68c 784
c5d6c45e 785 if (is_zone_device_page(page)) {
df6ad698
JG
786 if (locked_pgdat) {
787 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
788 flags);
789 locked_pgdat = NULL;
790 }
c5d6c45e
IW
791 /*
792 * ZONE_DEVICE pages that return 'false' from
793 * put_devmap_managed_page() do not require special
794 * processing, and instead, expect a call to
795 * put_page_testzero().
796 */
797 if (put_devmap_managed_page(page))
798 continue;
df6ad698
JG
799 }
800
ddc58f27 801 page = compound_head(page);
b5810039 802 if (!put_page_testzero(page))
1da177e4
LT
803 continue;
804
ddc58f27 805 if (PageCompound(page)) {
599d0c95
MG
806 if (locked_pgdat) {
807 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
808 locked_pgdat = NULL;
ddc58f27
KS
809 }
810 __put_compound_page(page);
811 continue;
812 }
813
46453a6e 814 if (PageLRU(page)) {
599d0c95 815 struct pglist_data *pgdat = page_pgdat(page);
894bc310 816
599d0c95
MG
817 if (pgdat != locked_pgdat) {
818 if (locked_pgdat)
819 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
902aaed0 820 flags);
aabfb572 821 lock_batch = 0;
599d0c95
MG
822 locked_pgdat = pgdat;
823 spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
46453a6e 824 }
fa9add64 825
599d0c95 826 lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
309381fe 827 VM_BUG_ON_PAGE(!PageLRU(page), page);
67453911 828 __ClearPageLRU(page);
fa9add64 829 del_page_from_lru_list(page, lruvec, page_off_lru(page));
46453a6e
NP
830 }
831
c53954a0 832 /* Clear Active bit in case of parallel mark_page_accessed */
e3741b50 833 __ClearPageActive(page);
62906027 834 __ClearPageWaiters(page);
c53954a0 835
cc59850e 836 list_add(&page->lru, &pages_to_free);
1da177e4 837 }
599d0c95
MG
838 if (locked_pgdat)
839 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
1da177e4 840
747db954 841 mem_cgroup_uncharge_list(&pages_to_free);
2d4894b5 842 free_unref_page_list(&pages_to_free);
1da177e4 843}
0be8557b 844EXPORT_SYMBOL(release_pages);
1da177e4
LT
845
846/*
847 * The pages which we're about to release may be in the deferred lru-addition
848 * queues. That would prevent them from really being freed right now. That's
849 * OK from a correctness point of view but is inefficient - those pages may be
850 * cache-warm and we want to give them back to the page allocator ASAP.
851 *
852 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
853 * and __pagevec_lru_add_active() call release_pages() directly to avoid
854 * mutual recursion.
855 */
856void __pagevec_release(struct pagevec *pvec)
857{
7f0b5fb9 858 if (!pvec->percpu_pvec_drained) {
d9ed0d08 859 lru_add_drain();
7f0b5fb9 860 pvec->percpu_pvec_drained = true;
d9ed0d08 861 }
c6f92f9f 862 release_pages(pvec->pages, pagevec_count(pvec));
1da177e4
LT
863 pagevec_reinit(pvec);
864}
7f285701
SF
865EXPORT_SYMBOL(__pagevec_release);
866
12d27107 867#ifdef CONFIG_TRANSPARENT_HUGEPAGE
71e3aac0 868/* used by __split_huge_page_refcount() */
fa9add64 869void lru_add_page_tail(struct page *page, struct page *page_tail,
5bc7b8ac 870 struct lruvec *lruvec, struct list_head *list)
71e3aac0 871{
71e3aac0 872 const int file = 0;
71e3aac0 873
309381fe
SL
874 VM_BUG_ON_PAGE(!PageHead(page), page);
875 VM_BUG_ON_PAGE(PageCompound(page_tail), page);
876 VM_BUG_ON_PAGE(PageLRU(page_tail), page);
35f3aa39 877 lockdep_assert_held(&lruvec_pgdat(lruvec)->lru_lock);
71e3aac0 878
5bc7b8ac
SL
879 if (!list)
880 SetPageLRU(page_tail);
71e3aac0 881
12d27107
HD
882 if (likely(PageLRU(page)))
883 list_add_tail(&page_tail->lru, &page->lru);
5bc7b8ac
SL
884 else if (list) {
885 /* page reclaim is reclaiming a huge page */
886 get_page(page_tail);
887 list_add_tail(&page_tail->lru, list);
888 } else {
12d27107
HD
889 /*
890 * Head page has not yet been counted, as an hpage,
891 * so we must account for each subpage individually.
892 *
e7a1aaf2
YZ
893 * Put page_tail on the list at the correct position
894 * so they all end up in order.
12d27107 895 */
e7a1aaf2
YZ
896 add_page_to_lru_list_tail(page_tail, lruvec,
897 page_lru(page_tail));
71e3aac0 898 }
7512102c
HD
899
900 if (!PageUnevictable(page))
e180cf80 901 update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
71e3aac0 902}
12d27107 903#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
71e3aac0 904
fa9add64
HD
905static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
906 void *arg)
3dd7ae8e 907{
9c4e6b1a
SB
908 enum lru_list lru;
909 int was_unevictable = TestClearPageUnevictable(page);
3dd7ae8e 910
309381fe 911 VM_BUG_ON_PAGE(PageLRU(page), page);
3dd7ae8e
SL
912
913 SetPageLRU(page);
9c4e6b1a
SB
914 /*
915 * Page becomes evictable in two ways:
dae966dc 916 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
9c4e6b1a
SB
917 * 2) Before acquiring LRU lock to put the page to correct LRU and then
918 * a) do PageLRU check with lock [check_move_unevictable_pages]
919 * b) do PageLRU check before lock [clear_page_mlock]
920 *
921 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
922 * following strict ordering:
923 *
924 * #0: __pagevec_lru_add_fn #1: clear_page_mlock
925 *
926 * SetPageLRU() TestClearPageMlocked()
927 * smp_mb() // explicit ordering // above provides strict
928 * // ordering
929 * PageMlocked() PageLRU()
930 *
931 *
932 * if '#1' does not observe setting of PG_lru by '#0' and fails
933 * isolation, the explicit barrier will make sure that page_evictable
934 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
935 * can be reordered after PageMlocked check and can make '#1' to fail
936 * the isolation of the page whose Mlocked bit is cleared (#0 is also
937 * looking at the same page) and the evictable page will be stranded
938 * in an unevictable LRU.
939 */
940 smp_mb();
941
942 if (page_evictable(page)) {
943 lru = page_lru(page);
944 update_page_reclaim_stat(lruvec, page_is_file_cache(page),
945 PageActive(page));
946 if (was_unevictable)
947 count_vm_event(UNEVICTABLE_PGRESCUED);
948 } else {
949 lru = LRU_UNEVICTABLE;
950 ClearPageActive(page);
951 SetPageUnevictable(page);
952 if (!was_unevictable)
953 count_vm_event(UNEVICTABLE_PGCULLED);
954 }
955
fa9add64 956 add_page_to_lru_list(page, lruvec, lru);
24b7e581 957 trace_mm_lru_insertion(page, lru);
3dd7ae8e
SL
958}
959
1da177e4
LT
960/*
961 * Add the passed pages to the LRU, then drop the caller's refcount
962 * on them. Reinitialises the caller's pagevec.
963 */
a0b8cab3 964void __pagevec_lru_add(struct pagevec *pvec)
1da177e4 965{
a0b8cab3 966 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
1da177e4 967}
5095ae83 968EXPORT_SYMBOL(__pagevec_lru_add);
1da177e4 969
0cd6144a
JW
970/**
971 * pagevec_lookup_entries - gang pagecache lookup
972 * @pvec: Where the resulting entries are placed
973 * @mapping: The address_space to search
974 * @start: The starting entry index
cb6f0f34 975 * @nr_entries: The maximum number of pages
0cd6144a
JW
976 * @indices: The cache indices corresponding to the entries in @pvec
977 *
978 * pagevec_lookup_entries() will search for and return a group of up
f144c390 979 * to @nr_pages pages and shadow entries in the mapping. All
0cd6144a
JW
980 * entries are placed in @pvec. pagevec_lookup_entries() takes a
981 * reference against actual pages in @pvec.
982 *
983 * The search returns a group of mapping-contiguous entries with
984 * ascending indexes. There may be holes in the indices due to
985 * not-present entries.
986 *
987 * pagevec_lookup_entries() returns the number of entries which were
988 * found.
989 */
990unsigned pagevec_lookup_entries(struct pagevec *pvec,
991 struct address_space *mapping,
e02a9f04 992 pgoff_t start, unsigned nr_entries,
0cd6144a
JW
993 pgoff_t *indices)
994{
e02a9f04 995 pvec->nr = find_get_entries(mapping, start, nr_entries,
0cd6144a
JW
996 pvec->pages, indices);
997 return pagevec_count(pvec);
998}
999
1000/**
1001 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1002 * @pvec: The pagevec to prune
1003 *
1004 * pagevec_lookup_entries() fills both pages and exceptional radix
1005 * tree entries into the pagevec. This function prunes all
1006 * exceptionals from @pvec without leaving holes, so that it can be
1007 * passed on to page-only pagevec operations.
1008 */
1009void pagevec_remove_exceptionals(struct pagevec *pvec)
1010{
1011 int i, j;
1012
1013 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1014 struct page *page = pvec->pages[i];
3159f943 1015 if (!xa_is_value(page))
0cd6144a
JW
1016 pvec->pages[j++] = page;
1017 }
1018 pvec->nr = j;
1019}
1020
1da177e4 1021/**
b947cee4 1022 * pagevec_lookup_range - gang pagecache lookup
1da177e4
LT
1023 * @pvec: Where the resulting pages are placed
1024 * @mapping: The address_space to search
1025 * @start: The starting page index
b947cee4 1026 * @end: The final page index
1da177e4 1027 *
e02a9f04 1028 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
b947cee4
JK
1029 * pages in the mapping starting from index @start and upto index @end
1030 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a
1da177e4
LT
1031 * reference against the pages in @pvec.
1032 *
1033 * The search returns a group of mapping-contiguous pages with ascending
d72dc8a2
JK
1034 * indexes. There may be holes in the indices due to not-present pages. We
1035 * also update @start to index the next page for the traversal.
1da177e4 1036 *
b947cee4 1037 * pagevec_lookup_range() returns the number of pages which were found. If this
e02a9f04 1038 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
b947cee4 1039 * reached.
1da177e4 1040 */
b947cee4 1041unsigned pagevec_lookup_range(struct pagevec *pvec,
397162ff 1042 struct address_space *mapping, pgoff_t *start, pgoff_t end)
1da177e4 1043{
397162ff 1044 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
b947cee4 1045 pvec->pages);
1da177e4
LT
1046 return pagevec_count(pvec);
1047}
b947cee4 1048EXPORT_SYMBOL(pagevec_lookup_range);
78539fdf 1049
72b045ae
JK
1050unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1051 struct address_space *mapping, pgoff_t *index, pgoff_t end,
10bbd235 1052 xa_mark_t tag)
1da177e4 1053{
72b045ae 1054 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
67fd707f 1055 PAGEVEC_SIZE, pvec->pages);
1da177e4
LT
1056 return pagevec_count(pvec);
1057}
72b045ae 1058EXPORT_SYMBOL(pagevec_lookup_range_tag);
1da177e4 1059
93d3b714
JK
1060unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec,
1061 struct address_space *mapping, pgoff_t *index, pgoff_t end,
10bbd235 1062 xa_mark_t tag, unsigned max_pages)
93d3b714
JK
1063{
1064 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1065 min_t(unsigned int, max_pages, PAGEVEC_SIZE), pvec->pages);
1066 return pagevec_count(pvec);
1067}
1068EXPORT_SYMBOL(pagevec_lookup_range_nr_tag);
1da177e4
LT
1069/*
1070 * Perform any setup for the swap system
1071 */
1072void __init swap_setup(void)
1073{
ca79b0c2 1074 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
e0bf68dd 1075
1da177e4
LT
1076 /* Use a smaller cluster for small-memory machines */
1077 if (megs < 16)
1078 page_cluster = 2;
1079 else
1080 page_cluster = 3;
1081 /*
1082 * Right now other parts of the system means that we
1083 * _really_ don't want to cluster much more
1084 */
1da177e4 1085}