mm/sparse: optimize sparse_index_alloc
[linux-2.6-block.git] / mm / sparse.c
CommitLineData
d41dee36
AW
1/*
2 * sparse memory mappings.
3 */
d41dee36 4#include <linux/mm.h>
5a0e3ad6 5#include <linux/slab.h>
d41dee36
AW
6#include <linux/mmzone.h>
7#include <linux/bootmem.h>
0b0acbec 8#include <linux/highmem.h>
b95f1b31 9#include <linux/export.h>
28ae55c9 10#include <linux/spinlock.h>
0b0acbec 11#include <linux/vmalloc.h>
0c0a4a51 12#include "internal.h"
d41dee36 13#include <asm/dma.h>
8f6aac41
CL
14#include <asm/pgalloc.h>
15#include <asm/pgtable.h>
d41dee36
AW
16
17/*
18 * Permanent SPARSEMEM data:
19 *
20 * 1) mem_section - memory sections, mem_map's for valid memory
21 */
3e347261 22#ifdef CONFIG_SPARSEMEM_EXTREME
802f192e 23struct mem_section *mem_section[NR_SECTION_ROOTS]
22fc6ecc 24 ____cacheline_internodealigned_in_smp;
3e347261
BP
25#else
26struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
22fc6ecc 27 ____cacheline_internodealigned_in_smp;
3e347261
BP
28#endif
29EXPORT_SYMBOL(mem_section);
30
89689ae7
CL
31#ifdef NODE_NOT_IN_PAGE_FLAGS
32/*
33 * If we did not store the node number in the page then we have to
34 * do a lookup in the section_to_node_table in order to find which
35 * node the page belongs to.
36 */
37#if MAX_NUMNODES <= 256
38static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
39#else
40static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41#endif
42
33dd4e0e 43int page_to_nid(const struct page *page)
89689ae7
CL
44{
45 return section_to_node_table[page_to_section(page)];
46}
47EXPORT_SYMBOL(page_to_nid);
85770ffe
AW
48
49static void set_section_nid(unsigned long section_nr, int nid)
50{
51 section_to_node_table[section_nr] = nid;
52}
53#else /* !NODE_NOT_IN_PAGE_FLAGS */
54static inline void set_section_nid(unsigned long section_nr, int nid)
55{
56}
89689ae7
CL
57#endif
58
3e347261 59#ifdef CONFIG_SPARSEMEM_EXTREME
577a32f6 60static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
28ae55c9
DH
61{
62 struct mem_section *section = NULL;
63 unsigned long array_size = SECTIONS_PER_ROOT *
64 sizeof(struct mem_section);
65
f52407ce
SL
66 if (slab_is_available()) {
67 if (node_state(nid, N_HIGH_MEMORY))
5b760e64 68 section = kzalloc_node(array_size, GFP_KERNEL, nid);
f52407ce 69 else
5b760e64
GS
70 section = kzalloc(array_size, GFP_KERNEL);
71 } else {
46a66eec 72 section = alloc_bootmem_node(NODE_DATA(nid), array_size);
5b760e64 73 }
28ae55c9
DH
74
75 return section;
3e347261 76}
802f192e 77
a3142c8e 78static int __meminit sparse_index_init(unsigned long section_nr, int nid)
802f192e 79{
34af946a 80 static DEFINE_SPINLOCK(index_init_lock);
28ae55c9
DH
81 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
82 struct mem_section *section;
83 int ret = 0;
802f192e
BP
84
85 if (mem_section[root])
28ae55c9 86 return -EEXIST;
3e347261 87
28ae55c9 88 section = sparse_index_alloc(nid);
af0cd5a7
WC
89 if (!section)
90 return -ENOMEM;
28ae55c9
DH
91 /*
92 * This lock keeps two different sections from
93 * reallocating for the same index
94 */
95 spin_lock(&index_init_lock);
3e347261 96
28ae55c9
DH
97 if (mem_section[root]) {
98 ret = -EEXIST;
99 goto out;
100 }
101
102 mem_section[root] = section;
103out:
104 spin_unlock(&index_init_lock);
105 return ret;
106}
107#else /* !SPARSEMEM_EXTREME */
108static inline int sparse_index_init(unsigned long section_nr, int nid)
109{
110 return 0;
802f192e 111}
28ae55c9
DH
112#endif
113
4ca644d9
DH
114/*
115 * Although written for the SPARSEMEM_EXTREME case, this happens
cd881a6b 116 * to also work for the flat array case because
4ca644d9
DH
117 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
118 */
119int __section_nr(struct mem_section* ms)
120{
121 unsigned long root_nr;
122 struct mem_section* root;
123
12783b00
MK
124 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
125 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
4ca644d9
DH
126 if (!root)
127 continue;
128
129 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
130 break;
131 }
132
133 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
134}
135
30c253e6
AW
136/*
137 * During early boot, before section_mem_map is used for an actual
138 * mem_map, we use section_mem_map to store the section's NUMA
139 * node. This keeps us from having to use another data structure. The
140 * node information is cleared just before we store the real mem_map.
141 */
142static inline unsigned long sparse_encode_early_nid(int nid)
143{
144 return (nid << SECTION_NID_SHIFT);
145}
146
147static inline int sparse_early_nid(struct mem_section *section)
148{
149 return (section->section_mem_map >> SECTION_NID_SHIFT);
150}
151
2dbb51c4
MG
152/* Validate the physical addressing limitations of the model */
153void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
154 unsigned long *end_pfn)
d41dee36 155{
2dbb51c4 156 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
d41dee36 157
bead9a3a
IM
158 /*
159 * Sanity checks - do not allow an architecture to pass
160 * in larger pfns than the maximum scope of sparsemem:
161 */
2dbb51c4
MG
162 if (*start_pfn > max_sparsemem_pfn) {
163 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
164 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
165 *start_pfn, *end_pfn, max_sparsemem_pfn);
166 WARN_ON_ONCE(1);
167 *start_pfn = max_sparsemem_pfn;
168 *end_pfn = max_sparsemem_pfn;
ef161a98 169 } else if (*end_pfn > max_sparsemem_pfn) {
2dbb51c4
MG
170 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
171 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
172 *start_pfn, *end_pfn, max_sparsemem_pfn);
173 WARN_ON_ONCE(1);
174 *end_pfn = max_sparsemem_pfn;
175 }
176}
177
178/* Record a memory area against a node. */
179void __init memory_present(int nid, unsigned long start, unsigned long end)
180{
181 unsigned long pfn;
bead9a3a 182
d41dee36 183 start &= PAGE_SECTION_MASK;
2dbb51c4 184 mminit_validate_memmodel_limits(&start, &end);
d41dee36
AW
185 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
186 unsigned long section = pfn_to_section_nr(pfn);
802f192e
BP
187 struct mem_section *ms;
188
189 sparse_index_init(section, nid);
85770ffe 190 set_section_nid(section, nid);
802f192e
BP
191
192 ms = __nr_to_section(section);
193 if (!ms->section_mem_map)
30c253e6
AW
194 ms->section_mem_map = sparse_encode_early_nid(nid) |
195 SECTION_MARKED_PRESENT;
d41dee36
AW
196 }
197}
198
199/*
200 * Only used by the i386 NUMA architecures, but relatively
201 * generic code.
202 */
203unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
204 unsigned long end_pfn)
205{
206 unsigned long pfn;
207 unsigned long nr_pages = 0;
208
2dbb51c4 209 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
d41dee36
AW
210 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
211 if (nid != early_pfn_to_nid(pfn))
212 continue;
213
540557b9 214 if (pfn_present(pfn))
d41dee36
AW
215 nr_pages += PAGES_PER_SECTION;
216 }
217
218 return nr_pages * sizeof(struct page);
219}
220
29751f69
AW
221/*
222 * Subtle, we encode the real pfn into the mem_map such that
223 * the identity pfn - section_mem_map will return the actual
224 * physical page frame number.
225 */
226static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
227{
228 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
229}
230
231/*
ea01ea93 232 * Decode mem_map from the coded memmap
29751f69 233 */
29751f69
AW
234struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
235{
ea01ea93
BP
236 /* mask off the extra low bits of information */
237 coded_mem_map &= SECTION_MAP_MASK;
29751f69
AW
238 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
239}
240
a3142c8e 241static int __meminit sparse_init_one_section(struct mem_section *ms,
5c0e3066
MG
242 unsigned long pnum, struct page *mem_map,
243 unsigned long *pageblock_bitmap)
29751f69 244{
540557b9 245 if (!present_section(ms))
29751f69
AW
246 return -EINVAL;
247
30c253e6 248 ms->section_mem_map &= ~SECTION_MAP_MASK;
540557b9
AW
249 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
250 SECTION_HAS_MEM_MAP;
5c0e3066 251 ms->pageblock_flags = pageblock_bitmap;
29751f69
AW
252
253 return 1;
254}
255
04753278 256unsigned long usemap_size(void)
5c0e3066
MG
257{
258 unsigned long size_bytes;
259 size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
260 size_bytes = roundup(size_bytes, sizeof(unsigned long));
261 return size_bytes;
262}
263
264#ifdef CONFIG_MEMORY_HOTPLUG
265static unsigned long *__kmalloc_section_usemap(void)
266{
267 return kmalloc(usemap_size(), GFP_KERNEL);
268}
269#endif /* CONFIG_MEMORY_HOTPLUG */
270
48c90682
YG
271#ifdef CONFIG_MEMORY_HOTREMOVE
272static unsigned long * __init
a4322e1b 273sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
238305bb 274 unsigned long size)
48c90682 275{
99ab7b19
YL
276 unsigned long goal, limit;
277 unsigned long *p;
278 int nid;
48c90682
YG
279 /*
280 * A page may contain usemaps for other sections preventing the
281 * page being freed and making a section unremovable while
282 * other sections referencing the usemap retmain active. Similarly,
283 * a pgdat can prevent a section being removed. If section A
284 * contains a pgdat and section B contains the usemap, both
285 * sections become inter-dependent. This allocates usemaps
286 * from the same section as the pgdat where possible to avoid
287 * this problem.
288 */
07b4e2bc 289 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
99ab7b19
YL
290 limit = goal + (1UL << PA_SECTION_SHIFT);
291 nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
292again:
293 p = ___alloc_bootmem_node_nopanic(NODE_DATA(nid), size,
294 SMP_CACHE_BYTES, goal, limit);
295 if (!p && limit) {
296 limit = 0;
297 goto again;
298 }
299 return p;
48c90682
YG
300}
301
302static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
303{
304 unsigned long usemap_snr, pgdat_snr;
305 static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
306 static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
307 struct pglist_data *pgdat = NODE_DATA(nid);
308 int usemap_nid;
309
310 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
311 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
312 if (usemap_snr == pgdat_snr)
313 return;
314
315 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
316 /* skip redundant message */
317 return;
318
319 old_usemap_snr = usemap_snr;
320 old_pgdat_snr = pgdat_snr;
321
322 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
323 if (usemap_nid != nid) {
324 printk(KERN_INFO
325 "node %d must be removed before remove section %ld\n",
326 nid, usemap_snr);
327 return;
328 }
329 /*
330 * There is a circular dependency.
331 * Some platforms allow un-removable section because they will just
332 * gather other removable sections for dynamic partitioning.
333 * Just notify un-removable section's number here.
334 */
335 printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr,
336 pgdat_snr, nid);
337 printk(KERN_CONT
338 " have a circular dependency on usemap and pgdat allocations\n");
339}
340#else
341static unsigned long * __init
a4322e1b 342sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
238305bb 343 unsigned long size)
48c90682 344{
238305bb 345 return alloc_bootmem_node_nopanic(pgdat, size);
48c90682
YG
346}
347
348static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
349{
350}
351#endif /* CONFIG_MEMORY_HOTREMOVE */
352
a4322e1b
YL
353static void __init sparse_early_usemaps_alloc_node(unsigned long**usemap_map,
354 unsigned long pnum_begin,
355 unsigned long pnum_end,
356 unsigned long usemap_count, int nodeid)
5c0e3066 357{
a4322e1b
YL
358 void *usemap;
359 unsigned long pnum;
360 int size = usemap_size();
5c0e3066 361
a4322e1b 362 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
238305bb 363 size * usemap_count);
f5bf18fa 364 if (!usemap) {
238305bb
JW
365 printk(KERN_WARNING "%s: allocation failed\n", __func__);
366 return;
48c90682
YG
367 }
368
f5bf18fa
NA
369 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
370 if (!present_section_nr(pnum))
371 continue;
372 usemap_map[pnum] = usemap;
373 usemap += size;
374 check_usemap_section_nr(nodeid, usemap_map[pnum]);
a4322e1b 375 }
5c0e3066
MG
376}
377
8f6aac41 378#ifndef CONFIG_SPARSEMEM_VMEMMAP
98f3cfc1 379struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
29751f69
AW
380{
381 struct page *map;
e48e67e0 382 unsigned long size;
29751f69
AW
383
384 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
385 if (map)
386 return map;
387
e48e67e0
YL
388 size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
389 map = __alloc_bootmem_node_high(NODE_DATA(nid), size,
390 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
8f6aac41
CL
391 return map;
392}
9bdac914
YL
393void __init sparse_mem_maps_populate_node(struct page **map_map,
394 unsigned long pnum_begin,
395 unsigned long pnum_end,
396 unsigned long map_count, int nodeid)
397{
398 void *map;
399 unsigned long pnum;
400 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
401
402 map = alloc_remap(nodeid, size * map_count);
403 if (map) {
404 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
405 if (!present_section_nr(pnum))
406 continue;
407 map_map[pnum] = map;
408 map += size;
409 }
410 return;
411 }
412
413 size = PAGE_ALIGN(size);
e48e67e0
YL
414 map = __alloc_bootmem_node_high(NODE_DATA(nodeid), size * map_count,
415 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
9bdac914
YL
416 if (map) {
417 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
418 if (!present_section_nr(pnum))
419 continue;
420 map_map[pnum] = map;
421 map += size;
422 }
423 return;
424 }
425
426 /* fallback */
427 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
428 struct mem_section *ms;
429
430 if (!present_section_nr(pnum))
431 continue;
432 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
433 if (map_map[pnum])
434 continue;
435 ms = __nr_to_section(pnum);
436 printk(KERN_ERR "%s: sparsemem memory map backing failed "
437 "some memory will not be available.\n", __func__);
438 ms->section_mem_map = 0;
439 }
440}
8f6aac41
CL
441#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
442
81d0d950 443#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
9bdac914
YL
444static void __init sparse_early_mem_maps_alloc_node(struct page **map_map,
445 unsigned long pnum_begin,
446 unsigned long pnum_end,
447 unsigned long map_count, int nodeid)
448{
449 sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
450 map_count, nodeid);
451}
81d0d950 452#else
9e5c6da7 453static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
8f6aac41
CL
454{
455 struct page *map;
456 struct mem_section *ms = __nr_to_section(pnum);
457 int nid = sparse_early_nid(ms);
458
98f3cfc1 459 map = sparse_mem_map_populate(pnum, nid);
29751f69
AW
460 if (map)
461 return map;
462
8f6aac41 463 printk(KERN_ERR "%s: sparsemem memory map backing failed "
d40cee24 464 "some memory will not be available.\n", __func__);
802f192e 465 ms->section_mem_map = 0;
29751f69
AW
466 return NULL;
467}
9bdac914 468#endif
29751f69 469
c2b91e2e
YL
470void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
471{
472}
a4322e1b 473
193faea9
SR
474/*
475 * Allocate the accumulated non-linear sections, allocate a mem_map
476 * for each and record the physical to section mapping.
477 */
478void __init sparse_init(void)
479{
480 unsigned long pnum;
481 struct page *map;
5c0e3066 482 unsigned long *usemap;
e123dd3f 483 unsigned long **usemap_map;
81d0d950 484 int size;
a4322e1b
YL
485 int nodeid_begin = 0;
486 unsigned long pnum_begin = 0;
487 unsigned long usemap_count;
81d0d950 488#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
9bdac914 489 unsigned long map_count;
81d0d950
YL
490 int size2;
491 struct page **map_map;
492#endif
e123dd3f 493
ca57df79
XQ
494 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
495 set_pageblock_order();
496
e123dd3f
YL
497 /*
498 * map is using big page (aka 2M in x86 64 bit)
499 * usemap is less one page (aka 24 bytes)
500 * so alloc 2M (with 2M align) and 24 bytes in turn will
501 * make next 2M slip to one more 2M later.
502 * then in big system, the memory will have a lot of holes...
25985edc 503 * here try to allocate 2M pages continuously.
e123dd3f
YL
504 *
505 * powerpc need to call sparse_init_one_section right after each
506 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
507 */
508 size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
509 usemap_map = alloc_bootmem(size);
510 if (!usemap_map)
511 panic("can not allocate usemap_map\n");
193faea9
SR
512
513 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
a4322e1b
YL
514 struct mem_section *ms;
515
540557b9 516 if (!present_section_nr(pnum))
193faea9 517 continue;
a4322e1b
YL
518 ms = __nr_to_section(pnum);
519 nodeid_begin = sparse_early_nid(ms);
520 pnum_begin = pnum;
521 break;
522 }
523 usemap_count = 1;
524 for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
525 struct mem_section *ms;
526 int nodeid;
527
528 if (!present_section_nr(pnum))
529 continue;
530 ms = __nr_to_section(pnum);
531 nodeid = sparse_early_nid(ms);
532 if (nodeid == nodeid_begin) {
533 usemap_count++;
534 continue;
535 }
536 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
537 sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, pnum,
538 usemap_count, nodeid_begin);
539 /* new start, update count etc*/
540 nodeid_begin = nodeid;
541 pnum_begin = pnum;
542 usemap_count = 1;
e123dd3f 543 }
a4322e1b
YL
544 /* ok, last chunk */
545 sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, NR_MEM_SECTIONS,
546 usemap_count, nodeid_begin);
193faea9 547
9bdac914
YL
548#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
549 size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
550 map_map = alloc_bootmem(size2);
551 if (!map_map)
552 panic("can not allocate map_map\n");
553
554 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
555 struct mem_section *ms;
556
557 if (!present_section_nr(pnum))
558 continue;
559 ms = __nr_to_section(pnum);
560 nodeid_begin = sparse_early_nid(ms);
561 pnum_begin = pnum;
562 break;
563 }
564 map_count = 1;
565 for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
566 struct mem_section *ms;
567 int nodeid;
568
569 if (!present_section_nr(pnum))
570 continue;
571 ms = __nr_to_section(pnum);
572 nodeid = sparse_early_nid(ms);
573 if (nodeid == nodeid_begin) {
574 map_count++;
575 continue;
576 }
577 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
578 sparse_early_mem_maps_alloc_node(map_map, pnum_begin, pnum,
579 map_count, nodeid_begin);
580 /* new start, update count etc*/
581 nodeid_begin = nodeid;
582 pnum_begin = pnum;
583 map_count = 1;
584 }
585 /* ok, last chunk */
586 sparse_early_mem_maps_alloc_node(map_map, pnum_begin, NR_MEM_SECTIONS,
587 map_count, nodeid_begin);
588#endif
589
e123dd3f
YL
590 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
591 if (!present_section_nr(pnum))
193faea9 592 continue;
5c0e3066 593
e123dd3f 594 usemap = usemap_map[pnum];
5c0e3066
MG
595 if (!usemap)
596 continue;
597
9bdac914
YL
598#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
599 map = map_map[pnum];
600#else
e123dd3f 601 map = sparse_early_mem_map_alloc(pnum);
9bdac914 602#endif
e123dd3f
YL
603 if (!map)
604 continue;
605
5c0e3066
MG
606 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
607 usemap);
193faea9 608 }
e123dd3f 609
c2b91e2e
YL
610 vmemmap_populate_print_last();
611
9bdac914
YL
612#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
613 free_bootmem(__pa(map_map), size2);
614#endif
e123dd3f 615 free_bootmem(__pa(usemap_map), size);
193faea9
SR
616}
617
618#ifdef CONFIG_MEMORY_HOTPLUG
98f3cfc1
YG
619#ifdef CONFIG_SPARSEMEM_VMEMMAP
620static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
621 unsigned long nr_pages)
622{
623 /* This will make the necessary allocations eventually. */
624 return sparse_mem_map_populate(pnum, nid);
625}
626static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
627{
628 return; /* XXX: Not implemented yet */
629}
0c0a4a51
YG
630static void free_map_bootmem(struct page *page, unsigned long nr_pages)
631{
632}
98f3cfc1 633#else
0b0acbec
DH
634static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
635{
636 struct page *page, *ret;
637 unsigned long memmap_size = sizeof(struct page) * nr_pages;
638
f2d0aa5b 639 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
0b0acbec
DH
640 if (page)
641 goto got_map_page;
642
643 ret = vmalloc(memmap_size);
644 if (ret)
645 goto got_map_ptr;
646
647 return NULL;
648got_map_page:
649 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
650got_map_ptr:
651 memset(ret, 0, memmap_size);
652
653 return ret;
654}
655
98f3cfc1
YG
656static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
657 unsigned long nr_pages)
658{
659 return __kmalloc_section_memmap(nr_pages);
660}
661
0b0acbec
DH
662static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
663{
9e2779fa 664 if (is_vmalloc_addr(memmap))
0b0acbec
DH
665 vfree(memmap);
666 else
667 free_pages((unsigned long)memmap,
668 get_order(sizeof(struct page) * nr_pages));
669}
0c0a4a51
YG
670
671static void free_map_bootmem(struct page *page, unsigned long nr_pages)
672{
673 unsigned long maps_section_nr, removing_section_nr, i;
5f24ce5f 674 unsigned long magic;
0c0a4a51
YG
675
676 for (i = 0; i < nr_pages; i++, page++) {
5f24ce5f 677 magic = (unsigned long) page->lru.next;
0c0a4a51
YG
678
679 BUG_ON(magic == NODE_INFO);
680
681 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
682 removing_section_nr = page->private;
683
684 /*
685 * When this function is called, the removing section is
686 * logical offlined state. This means all pages are isolated
687 * from page allocator. If removing section's memmap is placed
688 * on the same section, it must not be freed.
689 * If it is freed, page allocator may allocate it which will
690 * be removed physically soon.
691 */
692 if (maps_section_nr != removing_section_nr)
693 put_page_bootmem(page);
694 }
695}
98f3cfc1 696#endif /* CONFIG_SPARSEMEM_VMEMMAP */
0b0acbec 697
ea01ea93
BP
698static void free_section_usemap(struct page *memmap, unsigned long *usemap)
699{
0c0a4a51
YG
700 struct page *usemap_page;
701 unsigned long nr_pages;
702
ea01ea93
BP
703 if (!usemap)
704 return;
705
0c0a4a51 706 usemap_page = virt_to_page(usemap);
ea01ea93
BP
707 /*
708 * Check to see if allocation came from hot-plug-add
709 */
0c0a4a51 710 if (PageSlab(usemap_page)) {
ea01ea93
BP
711 kfree(usemap);
712 if (memmap)
713 __kfree_section_memmap(memmap, PAGES_PER_SECTION);
714 return;
715 }
716
717 /*
0c0a4a51
YG
718 * The usemap came from bootmem. This is packed with other usemaps
719 * on the section which has pgdat at boot time. Just keep it as is now.
ea01ea93 720 */
0c0a4a51
YG
721
722 if (memmap) {
723 struct page *memmap_page;
724 memmap_page = virt_to_page(memmap);
725
726 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
727 >> PAGE_SHIFT;
728
729 free_map_bootmem(memmap_page, nr_pages);
730 }
ea01ea93
BP
731}
732
29751f69
AW
733/*
734 * returns the number of sections whose mem_maps were properly
735 * set. If this is <=0, then that means that the passed-in
736 * map was not consumed and must be freed.
737 */
31168481 738int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
0b0acbec 739 int nr_pages)
29751f69 740{
0b0acbec
DH
741 unsigned long section_nr = pfn_to_section_nr(start_pfn);
742 struct pglist_data *pgdat = zone->zone_pgdat;
743 struct mem_section *ms;
744 struct page *memmap;
5c0e3066 745 unsigned long *usemap;
0b0acbec
DH
746 unsigned long flags;
747 int ret;
29751f69 748
0b0acbec
DH
749 /*
750 * no locking for this, because it does its own
751 * plus, it does a kmalloc
752 */
bbd06825
WC
753 ret = sparse_index_init(section_nr, pgdat->node_id);
754 if (ret < 0 && ret != -EEXIST)
755 return ret;
98f3cfc1 756 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
bbd06825
WC
757 if (!memmap)
758 return -ENOMEM;
5c0e3066 759 usemap = __kmalloc_section_usemap();
bbd06825
WC
760 if (!usemap) {
761 __kfree_section_memmap(memmap, nr_pages);
762 return -ENOMEM;
763 }
0b0acbec
DH
764
765 pgdat_resize_lock(pgdat, &flags);
29751f69 766
0b0acbec
DH
767 ms = __pfn_to_section(start_pfn);
768 if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
769 ret = -EEXIST;
770 goto out;
771 }
5c0e3066 772
29751f69
AW
773 ms->section_mem_map |= SECTION_MARKED_PRESENT;
774
5c0e3066 775 ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
0b0acbec 776
0b0acbec
DH
777out:
778 pgdat_resize_unlock(pgdat, &flags);
bbd06825
WC
779 if (ret <= 0) {
780 kfree(usemap);
46a66eec 781 __kfree_section_memmap(memmap, nr_pages);
bbd06825 782 }
0b0acbec 783 return ret;
29751f69 784}
ea01ea93
BP
785
786void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
787{
788 struct page *memmap = NULL;
789 unsigned long *usemap = NULL;
790
791 if (ms->section_mem_map) {
792 usemap = ms->pageblock_flags;
793 memmap = sparse_decode_mem_map(ms->section_mem_map,
794 __section_nr(ms));
795 ms->section_mem_map = 0;
796 ms->pageblock_flags = NULL;
797 }
798
799 free_section_usemap(memmap, usemap);
800}
a3142c8e 801#endif