mm/memory.c:print_vma_addr(): call up_read(&mm->mmap_sem) directly
[linux-2.6-block.git] / mm / sparse.c
CommitLineData
d41dee36
AW
1/*
2 * sparse memory mappings.
3 */
d41dee36 4#include <linux/mm.h>
5a0e3ad6 5#include <linux/slab.h>
d41dee36
AW
6#include <linux/mmzone.h>
7#include <linux/bootmem.h>
0b0acbec 8#include <linux/highmem.h>
b95f1b31 9#include <linux/export.h>
28ae55c9 10#include <linux/spinlock.h>
0b0acbec 11#include <linux/vmalloc.h>
0c0a4a51 12#include "internal.h"
d41dee36 13#include <asm/dma.h>
8f6aac41
CL
14#include <asm/pgalloc.h>
15#include <asm/pgtable.h>
d41dee36
AW
16
17/*
18 * Permanent SPARSEMEM data:
19 *
20 * 1) mem_section - memory sections, mem_map's for valid memory
21 */
3e347261 22#ifdef CONFIG_SPARSEMEM_EXTREME
802f192e 23struct mem_section *mem_section[NR_SECTION_ROOTS]
22fc6ecc 24 ____cacheline_internodealigned_in_smp;
3e347261
BP
25#else
26struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
22fc6ecc 27 ____cacheline_internodealigned_in_smp;
3e347261
BP
28#endif
29EXPORT_SYMBOL(mem_section);
30
89689ae7
CL
31#ifdef NODE_NOT_IN_PAGE_FLAGS
32/*
33 * If we did not store the node number in the page then we have to
34 * do a lookup in the section_to_node_table in order to find which
35 * node the page belongs to.
36 */
37#if MAX_NUMNODES <= 256
38static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
39#else
40static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41#endif
42
33dd4e0e 43int page_to_nid(const struct page *page)
89689ae7
CL
44{
45 return section_to_node_table[page_to_section(page)];
46}
47EXPORT_SYMBOL(page_to_nid);
85770ffe
AW
48
49static void set_section_nid(unsigned long section_nr, int nid)
50{
51 section_to_node_table[section_nr] = nid;
52}
53#else /* !NODE_NOT_IN_PAGE_FLAGS */
54static inline void set_section_nid(unsigned long section_nr, int nid)
55{
56}
89689ae7
CL
57#endif
58
3e347261 59#ifdef CONFIG_SPARSEMEM_EXTREME
577a32f6 60static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
28ae55c9
DH
61{
62 struct mem_section *section = NULL;
63 unsigned long array_size = SECTIONS_PER_ROOT *
64 sizeof(struct mem_section);
65
f52407ce
SL
66 if (slab_is_available()) {
67 if (node_state(nid, N_HIGH_MEMORY))
68 section = kmalloc_node(array_size, GFP_KERNEL, nid);
69 else
70 section = kmalloc(array_size, GFP_KERNEL);
71 } else
46a66eec 72 section = alloc_bootmem_node(NODE_DATA(nid), array_size);
28ae55c9
DH
73
74 if (section)
75 memset(section, 0, array_size);
76
77 return section;
3e347261 78}
802f192e 79
a3142c8e 80static int __meminit sparse_index_init(unsigned long section_nr, int nid)
802f192e 81{
34af946a 82 static DEFINE_SPINLOCK(index_init_lock);
28ae55c9
DH
83 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
84 struct mem_section *section;
85 int ret = 0;
802f192e
BP
86
87 if (mem_section[root])
28ae55c9 88 return -EEXIST;
3e347261 89
28ae55c9 90 section = sparse_index_alloc(nid);
af0cd5a7
WC
91 if (!section)
92 return -ENOMEM;
28ae55c9
DH
93 /*
94 * This lock keeps two different sections from
95 * reallocating for the same index
96 */
97 spin_lock(&index_init_lock);
3e347261 98
28ae55c9
DH
99 if (mem_section[root]) {
100 ret = -EEXIST;
101 goto out;
102 }
103
104 mem_section[root] = section;
105out:
106 spin_unlock(&index_init_lock);
107 return ret;
108}
109#else /* !SPARSEMEM_EXTREME */
110static inline int sparse_index_init(unsigned long section_nr, int nid)
111{
112 return 0;
802f192e 113}
28ae55c9
DH
114#endif
115
4ca644d9
DH
116/*
117 * Although written for the SPARSEMEM_EXTREME case, this happens
cd881a6b 118 * to also work for the flat array case because
4ca644d9
DH
119 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
120 */
121int __section_nr(struct mem_section* ms)
122{
123 unsigned long root_nr;
124 struct mem_section* root;
125
12783b00
MK
126 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
127 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
4ca644d9
DH
128 if (!root)
129 continue;
130
131 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
132 break;
133 }
134
135 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
136}
137
30c253e6
AW
138/*
139 * During early boot, before section_mem_map is used for an actual
140 * mem_map, we use section_mem_map to store the section's NUMA
141 * node. This keeps us from having to use another data structure. The
142 * node information is cleared just before we store the real mem_map.
143 */
144static inline unsigned long sparse_encode_early_nid(int nid)
145{
146 return (nid << SECTION_NID_SHIFT);
147}
148
149static inline int sparse_early_nid(struct mem_section *section)
150{
151 return (section->section_mem_map >> SECTION_NID_SHIFT);
152}
153
2dbb51c4
MG
154/* Validate the physical addressing limitations of the model */
155void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
156 unsigned long *end_pfn)
d41dee36 157{
2dbb51c4 158 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
d41dee36 159
bead9a3a
IM
160 /*
161 * Sanity checks - do not allow an architecture to pass
162 * in larger pfns than the maximum scope of sparsemem:
163 */
2dbb51c4
MG
164 if (*start_pfn > max_sparsemem_pfn) {
165 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
166 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
167 *start_pfn, *end_pfn, max_sparsemem_pfn);
168 WARN_ON_ONCE(1);
169 *start_pfn = max_sparsemem_pfn;
170 *end_pfn = max_sparsemem_pfn;
ef161a98 171 } else if (*end_pfn > max_sparsemem_pfn) {
2dbb51c4
MG
172 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
173 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
174 *start_pfn, *end_pfn, max_sparsemem_pfn);
175 WARN_ON_ONCE(1);
176 *end_pfn = max_sparsemem_pfn;
177 }
178}
179
180/* Record a memory area against a node. */
181void __init memory_present(int nid, unsigned long start, unsigned long end)
182{
183 unsigned long pfn;
bead9a3a 184
d41dee36 185 start &= PAGE_SECTION_MASK;
2dbb51c4 186 mminit_validate_memmodel_limits(&start, &end);
d41dee36
AW
187 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
188 unsigned long section = pfn_to_section_nr(pfn);
802f192e
BP
189 struct mem_section *ms;
190
191 sparse_index_init(section, nid);
85770ffe 192 set_section_nid(section, nid);
802f192e
BP
193
194 ms = __nr_to_section(section);
195 if (!ms->section_mem_map)
30c253e6
AW
196 ms->section_mem_map = sparse_encode_early_nid(nid) |
197 SECTION_MARKED_PRESENT;
d41dee36
AW
198 }
199}
200
201/*
202 * Only used by the i386 NUMA architecures, but relatively
203 * generic code.
204 */
205unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
206 unsigned long end_pfn)
207{
208 unsigned long pfn;
209 unsigned long nr_pages = 0;
210
2dbb51c4 211 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
d41dee36
AW
212 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
213 if (nid != early_pfn_to_nid(pfn))
214 continue;
215
540557b9 216 if (pfn_present(pfn))
d41dee36
AW
217 nr_pages += PAGES_PER_SECTION;
218 }
219
220 return nr_pages * sizeof(struct page);
221}
222
29751f69
AW
223/*
224 * Subtle, we encode the real pfn into the mem_map such that
225 * the identity pfn - section_mem_map will return the actual
226 * physical page frame number.
227 */
228static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
229{
230 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
231}
232
233/*
ea01ea93 234 * Decode mem_map from the coded memmap
29751f69 235 */
29751f69
AW
236struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
237{
ea01ea93
BP
238 /* mask off the extra low bits of information */
239 coded_mem_map &= SECTION_MAP_MASK;
29751f69
AW
240 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
241}
242
a3142c8e 243static int __meminit sparse_init_one_section(struct mem_section *ms,
5c0e3066
MG
244 unsigned long pnum, struct page *mem_map,
245 unsigned long *pageblock_bitmap)
29751f69 246{
540557b9 247 if (!present_section(ms))
29751f69
AW
248 return -EINVAL;
249
30c253e6 250 ms->section_mem_map &= ~SECTION_MAP_MASK;
540557b9
AW
251 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
252 SECTION_HAS_MEM_MAP;
5c0e3066 253 ms->pageblock_flags = pageblock_bitmap;
29751f69
AW
254
255 return 1;
256}
257
04753278 258unsigned long usemap_size(void)
5c0e3066
MG
259{
260 unsigned long size_bytes;
261 size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
262 size_bytes = roundup(size_bytes, sizeof(unsigned long));
263 return size_bytes;
264}
265
266#ifdef CONFIG_MEMORY_HOTPLUG
267static unsigned long *__kmalloc_section_usemap(void)
268{
269 return kmalloc(usemap_size(), GFP_KERNEL);
270}
271#endif /* CONFIG_MEMORY_HOTPLUG */
272
48c90682
YG
273#ifdef CONFIG_MEMORY_HOTREMOVE
274static unsigned long * __init
a4322e1b 275sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
238305bb 276 unsigned long size)
48c90682 277{
99ab7b19
YL
278 unsigned long goal, limit;
279 unsigned long *p;
280 int nid;
48c90682
YG
281 /*
282 * A page may contain usemaps for other sections preventing the
283 * page being freed and making a section unremovable while
284 * other sections referencing the usemap retmain active. Similarly,
285 * a pgdat can prevent a section being removed. If section A
286 * contains a pgdat and section B contains the usemap, both
287 * sections become inter-dependent. This allocates usemaps
288 * from the same section as the pgdat where possible to avoid
289 * this problem.
290 */
07b4e2bc 291 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
99ab7b19
YL
292 limit = goal + (1UL << PA_SECTION_SHIFT);
293 nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
294again:
295 p = ___alloc_bootmem_node_nopanic(NODE_DATA(nid), size,
296 SMP_CACHE_BYTES, goal, limit);
297 if (!p && limit) {
298 limit = 0;
299 goto again;
300 }
301 return p;
48c90682
YG
302}
303
304static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
305{
306 unsigned long usemap_snr, pgdat_snr;
307 static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
308 static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
309 struct pglist_data *pgdat = NODE_DATA(nid);
310 int usemap_nid;
311
312 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
313 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
314 if (usemap_snr == pgdat_snr)
315 return;
316
317 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
318 /* skip redundant message */
319 return;
320
321 old_usemap_snr = usemap_snr;
322 old_pgdat_snr = pgdat_snr;
323
324 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
325 if (usemap_nid != nid) {
326 printk(KERN_INFO
327 "node %d must be removed before remove section %ld\n",
328 nid, usemap_snr);
329 return;
330 }
331 /*
332 * There is a circular dependency.
333 * Some platforms allow un-removable section because they will just
334 * gather other removable sections for dynamic partitioning.
335 * Just notify un-removable section's number here.
336 */
337 printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr,
338 pgdat_snr, nid);
339 printk(KERN_CONT
340 " have a circular dependency on usemap and pgdat allocations\n");
341}
342#else
343static unsigned long * __init
a4322e1b 344sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
238305bb 345 unsigned long size)
48c90682 346{
238305bb 347 return alloc_bootmem_node_nopanic(pgdat, size);
48c90682
YG
348}
349
350static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
351{
352}
353#endif /* CONFIG_MEMORY_HOTREMOVE */
354
a4322e1b
YL
355static void __init sparse_early_usemaps_alloc_node(unsigned long**usemap_map,
356 unsigned long pnum_begin,
357 unsigned long pnum_end,
358 unsigned long usemap_count, int nodeid)
5c0e3066 359{
a4322e1b
YL
360 void *usemap;
361 unsigned long pnum;
362 int size = usemap_size();
5c0e3066 363
a4322e1b 364 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
238305bb 365 size * usemap_count);
f5bf18fa 366 if (!usemap) {
238305bb
JW
367 printk(KERN_WARNING "%s: allocation failed\n", __func__);
368 return;
48c90682
YG
369 }
370
f5bf18fa
NA
371 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
372 if (!present_section_nr(pnum))
373 continue;
374 usemap_map[pnum] = usemap;
375 usemap += size;
376 check_usemap_section_nr(nodeid, usemap_map[pnum]);
a4322e1b 377 }
5c0e3066
MG
378}
379
8f6aac41 380#ifndef CONFIG_SPARSEMEM_VMEMMAP
98f3cfc1 381struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
29751f69
AW
382{
383 struct page *map;
e48e67e0 384 unsigned long size;
29751f69
AW
385
386 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
387 if (map)
388 return map;
389
e48e67e0
YL
390 size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
391 map = __alloc_bootmem_node_high(NODE_DATA(nid), size,
392 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
8f6aac41
CL
393 return map;
394}
9bdac914
YL
395void __init sparse_mem_maps_populate_node(struct page **map_map,
396 unsigned long pnum_begin,
397 unsigned long pnum_end,
398 unsigned long map_count, int nodeid)
399{
400 void *map;
401 unsigned long pnum;
402 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
403
404 map = alloc_remap(nodeid, size * map_count);
405 if (map) {
406 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
407 if (!present_section_nr(pnum))
408 continue;
409 map_map[pnum] = map;
410 map += size;
411 }
412 return;
413 }
414
415 size = PAGE_ALIGN(size);
e48e67e0
YL
416 map = __alloc_bootmem_node_high(NODE_DATA(nodeid), size * map_count,
417 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
9bdac914
YL
418 if (map) {
419 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
420 if (!present_section_nr(pnum))
421 continue;
422 map_map[pnum] = map;
423 map += size;
424 }
425 return;
426 }
427
428 /* fallback */
429 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
430 struct mem_section *ms;
431
432 if (!present_section_nr(pnum))
433 continue;
434 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
435 if (map_map[pnum])
436 continue;
437 ms = __nr_to_section(pnum);
438 printk(KERN_ERR "%s: sparsemem memory map backing failed "
439 "some memory will not be available.\n", __func__);
440 ms->section_mem_map = 0;
441 }
442}
8f6aac41
CL
443#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
444
81d0d950 445#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
9bdac914
YL
446static void __init sparse_early_mem_maps_alloc_node(struct page **map_map,
447 unsigned long pnum_begin,
448 unsigned long pnum_end,
449 unsigned long map_count, int nodeid)
450{
451 sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
452 map_count, nodeid);
453}
81d0d950 454#else
9e5c6da7 455static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
8f6aac41
CL
456{
457 struct page *map;
458 struct mem_section *ms = __nr_to_section(pnum);
459 int nid = sparse_early_nid(ms);
460
98f3cfc1 461 map = sparse_mem_map_populate(pnum, nid);
29751f69
AW
462 if (map)
463 return map;
464
8f6aac41 465 printk(KERN_ERR "%s: sparsemem memory map backing failed "
d40cee24 466 "some memory will not be available.\n", __func__);
802f192e 467 ms->section_mem_map = 0;
29751f69
AW
468 return NULL;
469}
9bdac914 470#endif
29751f69 471
c2b91e2e
YL
472void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
473{
474}
a4322e1b 475
193faea9
SR
476/*
477 * Allocate the accumulated non-linear sections, allocate a mem_map
478 * for each and record the physical to section mapping.
479 */
480void __init sparse_init(void)
481{
482 unsigned long pnum;
483 struct page *map;
5c0e3066 484 unsigned long *usemap;
e123dd3f 485 unsigned long **usemap_map;
81d0d950 486 int size;
a4322e1b
YL
487 int nodeid_begin = 0;
488 unsigned long pnum_begin = 0;
489 unsigned long usemap_count;
81d0d950 490#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
9bdac914 491 unsigned long map_count;
81d0d950
YL
492 int size2;
493 struct page **map_map;
494#endif
e123dd3f
YL
495
496 /*
497 * map is using big page (aka 2M in x86 64 bit)
498 * usemap is less one page (aka 24 bytes)
499 * so alloc 2M (with 2M align) and 24 bytes in turn will
500 * make next 2M slip to one more 2M later.
501 * then in big system, the memory will have a lot of holes...
25985edc 502 * here try to allocate 2M pages continuously.
e123dd3f
YL
503 *
504 * powerpc need to call sparse_init_one_section right after each
505 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
506 */
507 size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
508 usemap_map = alloc_bootmem(size);
509 if (!usemap_map)
510 panic("can not allocate usemap_map\n");
193faea9
SR
511
512 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
a4322e1b
YL
513 struct mem_section *ms;
514
540557b9 515 if (!present_section_nr(pnum))
193faea9 516 continue;
a4322e1b
YL
517 ms = __nr_to_section(pnum);
518 nodeid_begin = sparse_early_nid(ms);
519 pnum_begin = pnum;
520 break;
521 }
522 usemap_count = 1;
523 for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
524 struct mem_section *ms;
525 int nodeid;
526
527 if (!present_section_nr(pnum))
528 continue;
529 ms = __nr_to_section(pnum);
530 nodeid = sparse_early_nid(ms);
531 if (nodeid == nodeid_begin) {
532 usemap_count++;
533 continue;
534 }
535 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
536 sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, pnum,
537 usemap_count, nodeid_begin);
538 /* new start, update count etc*/
539 nodeid_begin = nodeid;
540 pnum_begin = pnum;
541 usemap_count = 1;
e123dd3f 542 }
a4322e1b
YL
543 /* ok, last chunk */
544 sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, NR_MEM_SECTIONS,
545 usemap_count, nodeid_begin);
193faea9 546
9bdac914
YL
547#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
548 size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
549 map_map = alloc_bootmem(size2);
550 if (!map_map)
551 panic("can not allocate map_map\n");
552
553 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
554 struct mem_section *ms;
555
556 if (!present_section_nr(pnum))
557 continue;
558 ms = __nr_to_section(pnum);
559 nodeid_begin = sparse_early_nid(ms);
560 pnum_begin = pnum;
561 break;
562 }
563 map_count = 1;
564 for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
565 struct mem_section *ms;
566 int nodeid;
567
568 if (!present_section_nr(pnum))
569 continue;
570 ms = __nr_to_section(pnum);
571 nodeid = sparse_early_nid(ms);
572 if (nodeid == nodeid_begin) {
573 map_count++;
574 continue;
575 }
576 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
577 sparse_early_mem_maps_alloc_node(map_map, pnum_begin, pnum,
578 map_count, nodeid_begin);
579 /* new start, update count etc*/
580 nodeid_begin = nodeid;
581 pnum_begin = pnum;
582 map_count = 1;
583 }
584 /* ok, last chunk */
585 sparse_early_mem_maps_alloc_node(map_map, pnum_begin, NR_MEM_SECTIONS,
586 map_count, nodeid_begin);
587#endif
588
e123dd3f
YL
589 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
590 if (!present_section_nr(pnum))
193faea9 591 continue;
5c0e3066 592
e123dd3f 593 usemap = usemap_map[pnum];
5c0e3066
MG
594 if (!usemap)
595 continue;
596
9bdac914
YL
597#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
598 map = map_map[pnum];
599#else
e123dd3f 600 map = sparse_early_mem_map_alloc(pnum);
9bdac914 601#endif
e123dd3f
YL
602 if (!map)
603 continue;
604
5c0e3066
MG
605 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
606 usemap);
193faea9 607 }
e123dd3f 608
c2b91e2e
YL
609 vmemmap_populate_print_last();
610
9bdac914
YL
611#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
612 free_bootmem(__pa(map_map), size2);
613#endif
e123dd3f 614 free_bootmem(__pa(usemap_map), size);
193faea9
SR
615}
616
617#ifdef CONFIG_MEMORY_HOTPLUG
98f3cfc1
YG
618#ifdef CONFIG_SPARSEMEM_VMEMMAP
619static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
620 unsigned long nr_pages)
621{
622 /* This will make the necessary allocations eventually. */
623 return sparse_mem_map_populate(pnum, nid);
624}
625static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
626{
627 return; /* XXX: Not implemented yet */
628}
0c0a4a51
YG
629static void free_map_bootmem(struct page *page, unsigned long nr_pages)
630{
631}
98f3cfc1 632#else
0b0acbec
DH
633static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
634{
635 struct page *page, *ret;
636 unsigned long memmap_size = sizeof(struct page) * nr_pages;
637
f2d0aa5b 638 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
0b0acbec
DH
639 if (page)
640 goto got_map_page;
641
642 ret = vmalloc(memmap_size);
643 if (ret)
644 goto got_map_ptr;
645
646 return NULL;
647got_map_page:
648 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
649got_map_ptr:
650 memset(ret, 0, memmap_size);
651
652 return ret;
653}
654
98f3cfc1
YG
655static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
656 unsigned long nr_pages)
657{
658 return __kmalloc_section_memmap(nr_pages);
659}
660
0b0acbec
DH
661static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
662{
9e2779fa 663 if (is_vmalloc_addr(memmap))
0b0acbec
DH
664 vfree(memmap);
665 else
666 free_pages((unsigned long)memmap,
667 get_order(sizeof(struct page) * nr_pages));
668}
0c0a4a51
YG
669
670static void free_map_bootmem(struct page *page, unsigned long nr_pages)
671{
672 unsigned long maps_section_nr, removing_section_nr, i;
5f24ce5f 673 unsigned long magic;
0c0a4a51
YG
674
675 for (i = 0; i < nr_pages; i++, page++) {
5f24ce5f 676 magic = (unsigned long) page->lru.next;
0c0a4a51
YG
677
678 BUG_ON(magic == NODE_INFO);
679
680 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
681 removing_section_nr = page->private;
682
683 /*
684 * When this function is called, the removing section is
685 * logical offlined state. This means all pages are isolated
686 * from page allocator. If removing section's memmap is placed
687 * on the same section, it must not be freed.
688 * If it is freed, page allocator may allocate it which will
689 * be removed physically soon.
690 */
691 if (maps_section_nr != removing_section_nr)
692 put_page_bootmem(page);
693 }
694}
98f3cfc1 695#endif /* CONFIG_SPARSEMEM_VMEMMAP */
0b0acbec 696
ea01ea93
BP
697static void free_section_usemap(struct page *memmap, unsigned long *usemap)
698{
0c0a4a51
YG
699 struct page *usemap_page;
700 unsigned long nr_pages;
701
ea01ea93
BP
702 if (!usemap)
703 return;
704
0c0a4a51 705 usemap_page = virt_to_page(usemap);
ea01ea93
BP
706 /*
707 * Check to see if allocation came from hot-plug-add
708 */
0c0a4a51 709 if (PageSlab(usemap_page)) {
ea01ea93
BP
710 kfree(usemap);
711 if (memmap)
712 __kfree_section_memmap(memmap, PAGES_PER_SECTION);
713 return;
714 }
715
716 /*
0c0a4a51
YG
717 * The usemap came from bootmem. This is packed with other usemaps
718 * on the section which has pgdat at boot time. Just keep it as is now.
ea01ea93 719 */
0c0a4a51
YG
720
721 if (memmap) {
722 struct page *memmap_page;
723 memmap_page = virt_to_page(memmap);
724
725 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
726 >> PAGE_SHIFT;
727
728 free_map_bootmem(memmap_page, nr_pages);
729 }
ea01ea93
BP
730}
731
29751f69
AW
732/*
733 * returns the number of sections whose mem_maps were properly
734 * set. If this is <=0, then that means that the passed-in
735 * map was not consumed and must be freed.
736 */
31168481 737int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
0b0acbec 738 int nr_pages)
29751f69 739{
0b0acbec
DH
740 unsigned long section_nr = pfn_to_section_nr(start_pfn);
741 struct pglist_data *pgdat = zone->zone_pgdat;
742 struct mem_section *ms;
743 struct page *memmap;
5c0e3066 744 unsigned long *usemap;
0b0acbec
DH
745 unsigned long flags;
746 int ret;
29751f69 747
0b0acbec
DH
748 /*
749 * no locking for this, because it does its own
750 * plus, it does a kmalloc
751 */
bbd06825
WC
752 ret = sparse_index_init(section_nr, pgdat->node_id);
753 if (ret < 0 && ret != -EEXIST)
754 return ret;
98f3cfc1 755 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
bbd06825
WC
756 if (!memmap)
757 return -ENOMEM;
5c0e3066 758 usemap = __kmalloc_section_usemap();
bbd06825
WC
759 if (!usemap) {
760 __kfree_section_memmap(memmap, nr_pages);
761 return -ENOMEM;
762 }
0b0acbec
DH
763
764 pgdat_resize_lock(pgdat, &flags);
29751f69 765
0b0acbec
DH
766 ms = __pfn_to_section(start_pfn);
767 if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
768 ret = -EEXIST;
769 goto out;
770 }
5c0e3066 771
29751f69
AW
772 ms->section_mem_map |= SECTION_MARKED_PRESENT;
773
5c0e3066 774 ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
0b0acbec 775
0b0acbec
DH
776out:
777 pgdat_resize_unlock(pgdat, &flags);
bbd06825
WC
778 if (ret <= 0) {
779 kfree(usemap);
46a66eec 780 __kfree_section_memmap(memmap, nr_pages);
bbd06825 781 }
0b0acbec 782 return ret;
29751f69 783}
ea01ea93
BP
784
785void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
786{
787 struct page *memmap = NULL;
788 unsigned long *usemap = NULL;
789
790 if (ms->section_mem_map) {
791 usemap = ms->pageblock_flags;
792 memmap = sparse_decode_mem_map(ms->section_mem_map,
793 __section_nr(ms));
794 ms->section_mem_map = 0;
795 ms->pageblock_flags = NULL;
796 }
797
798 free_section_usemap(memmap, usemap);
799}
a3142c8e 800#endif