memcg: support hierarchical memory.numa_stats
[linux-2.6-block.git] / mm / sparse.c
CommitLineData
d41dee36
AW
1/*
2 * sparse memory mappings.
3 */
d41dee36 4#include <linux/mm.h>
5a0e3ad6 5#include <linux/slab.h>
d41dee36
AW
6#include <linux/mmzone.h>
7#include <linux/bootmem.h>
0b0acbec 8#include <linux/highmem.h>
b95f1b31 9#include <linux/export.h>
28ae55c9 10#include <linux/spinlock.h>
0b0acbec 11#include <linux/vmalloc.h>
0c0a4a51 12#include "internal.h"
d41dee36 13#include <asm/dma.h>
8f6aac41
CL
14#include <asm/pgalloc.h>
15#include <asm/pgtable.h>
d41dee36
AW
16
17/*
18 * Permanent SPARSEMEM data:
19 *
20 * 1) mem_section - memory sections, mem_map's for valid memory
21 */
3e347261 22#ifdef CONFIG_SPARSEMEM_EXTREME
802f192e 23struct mem_section *mem_section[NR_SECTION_ROOTS]
22fc6ecc 24 ____cacheline_internodealigned_in_smp;
3e347261
BP
25#else
26struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
22fc6ecc 27 ____cacheline_internodealigned_in_smp;
3e347261
BP
28#endif
29EXPORT_SYMBOL(mem_section);
30
89689ae7
CL
31#ifdef NODE_NOT_IN_PAGE_FLAGS
32/*
33 * If we did not store the node number in the page then we have to
34 * do a lookup in the section_to_node_table in order to find which
35 * node the page belongs to.
36 */
37#if MAX_NUMNODES <= 256
38static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
39#else
40static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41#endif
42
33dd4e0e 43int page_to_nid(const struct page *page)
89689ae7
CL
44{
45 return section_to_node_table[page_to_section(page)];
46}
47EXPORT_SYMBOL(page_to_nid);
85770ffe
AW
48
49static void set_section_nid(unsigned long section_nr, int nid)
50{
51 section_to_node_table[section_nr] = nid;
52}
53#else /* !NODE_NOT_IN_PAGE_FLAGS */
54static inline void set_section_nid(unsigned long section_nr, int nid)
55{
56}
89689ae7
CL
57#endif
58
3e347261 59#ifdef CONFIG_SPARSEMEM_EXTREME
577a32f6 60static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
28ae55c9
DH
61{
62 struct mem_section *section = NULL;
63 unsigned long array_size = SECTIONS_PER_ROOT *
64 sizeof(struct mem_section);
65
f52407ce
SL
66 if (slab_is_available()) {
67 if (node_state(nid, N_HIGH_MEMORY))
5b760e64 68 section = kzalloc_node(array_size, GFP_KERNEL, nid);
f52407ce 69 else
5b760e64
GS
70 section = kzalloc(array_size, GFP_KERNEL);
71 } else {
46a66eec 72 section = alloc_bootmem_node(NODE_DATA(nid), array_size);
5b760e64 73 }
28ae55c9
DH
74
75 return section;
3e347261 76}
802f192e 77
a3142c8e 78static int __meminit sparse_index_init(unsigned long section_nr, int nid)
802f192e 79{
28ae55c9
DH
80 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
81 struct mem_section *section;
802f192e
BP
82
83 if (mem_section[root])
28ae55c9 84 return -EEXIST;
3e347261 85
28ae55c9 86 section = sparse_index_alloc(nid);
af0cd5a7
WC
87 if (!section)
88 return -ENOMEM;
28ae55c9
DH
89
90 mem_section[root] = section;
c1c95183 91
9d1936cf 92 return 0;
28ae55c9
DH
93}
94#else /* !SPARSEMEM_EXTREME */
95static inline int sparse_index_init(unsigned long section_nr, int nid)
96{
97 return 0;
802f192e 98}
28ae55c9
DH
99#endif
100
4ca644d9
DH
101/*
102 * Although written for the SPARSEMEM_EXTREME case, this happens
cd881a6b 103 * to also work for the flat array case because
4ca644d9
DH
104 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
105 */
106int __section_nr(struct mem_section* ms)
107{
108 unsigned long root_nr;
109 struct mem_section* root;
110
12783b00
MK
111 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
112 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
4ca644d9
DH
113 if (!root)
114 continue;
115
116 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
117 break;
118 }
119
db36a461
GS
120 VM_BUG_ON(root_nr == NR_SECTION_ROOTS);
121
4ca644d9
DH
122 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
123}
124
30c253e6
AW
125/*
126 * During early boot, before section_mem_map is used for an actual
127 * mem_map, we use section_mem_map to store the section's NUMA
128 * node. This keeps us from having to use another data structure. The
129 * node information is cleared just before we store the real mem_map.
130 */
131static inline unsigned long sparse_encode_early_nid(int nid)
132{
133 return (nid << SECTION_NID_SHIFT);
134}
135
136static inline int sparse_early_nid(struct mem_section *section)
137{
138 return (section->section_mem_map >> SECTION_NID_SHIFT);
139}
140
2dbb51c4
MG
141/* Validate the physical addressing limitations of the model */
142void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
143 unsigned long *end_pfn)
d41dee36 144{
2dbb51c4 145 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
d41dee36 146
bead9a3a
IM
147 /*
148 * Sanity checks - do not allow an architecture to pass
149 * in larger pfns than the maximum scope of sparsemem:
150 */
2dbb51c4
MG
151 if (*start_pfn > max_sparsemem_pfn) {
152 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
153 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
154 *start_pfn, *end_pfn, max_sparsemem_pfn);
155 WARN_ON_ONCE(1);
156 *start_pfn = max_sparsemem_pfn;
157 *end_pfn = max_sparsemem_pfn;
ef161a98 158 } else if (*end_pfn > max_sparsemem_pfn) {
2dbb51c4
MG
159 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
160 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
161 *start_pfn, *end_pfn, max_sparsemem_pfn);
162 WARN_ON_ONCE(1);
163 *end_pfn = max_sparsemem_pfn;
164 }
165}
166
167/* Record a memory area against a node. */
168void __init memory_present(int nid, unsigned long start, unsigned long end)
169{
170 unsigned long pfn;
bead9a3a 171
d41dee36 172 start &= PAGE_SECTION_MASK;
2dbb51c4 173 mminit_validate_memmodel_limits(&start, &end);
d41dee36
AW
174 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
175 unsigned long section = pfn_to_section_nr(pfn);
802f192e
BP
176 struct mem_section *ms;
177
178 sparse_index_init(section, nid);
85770ffe 179 set_section_nid(section, nid);
802f192e
BP
180
181 ms = __nr_to_section(section);
182 if (!ms->section_mem_map)
30c253e6
AW
183 ms->section_mem_map = sparse_encode_early_nid(nid) |
184 SECTION_MARKED_PRESENT;
d41dee36
AW
185 }
186}
187
188/*
189 * Only used by the i386 NUMA architecures, but relatively
190 * generic code.
191 */
192unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
193 unsigned long end_pfn)
194{
195 unsigned long pfn;
196 unsigned long nr_pages = 0;
197
2dbb51c4 198 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
d41dee36
AW
199 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
200 if (nid != early_pfn_to_nid(pfn))
201 continue;
202
540557b9 203 if (pfn_present(pfn))
d41dee36
AW
204 nr_pages += PAGES_PER_SECTION;
205 }
206
207 return nr_pages * sizeof(struct page);
208}
209
29751f69
AW
210/*
211 * Subtle, we encode the real pfn into the mem_map such that
212 * the identity pfn - section_mem_map will return the actual
213 * physical page frame number.
214 */
215static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
216{
217 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
218}
219
220/*
ea01ea93 221 * Decode mem_map from the coded memmap
29751f69 222 */
29751f69
AW
223struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
224{
ea01ea93
BP
225 /* mask off the extra low bits of information */
226 coded_mem_map &= SECTION_MAP_MASK;
29751f69
AW
227 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
228}
229
a3142c8e 230static int __meminit sparse_init_one_section(struct mem_section *ms,
5c0e3066
MG
231 unsigned long pnum, struct page *mem_map,
232 unsigned long *pageblock_bitmap)
29751f69 233{
540557b9 234 if (!present_section(ms))
29751f69
AW
235 return -EINVAL;
236
30c253e6 237 ms->section_mem_map &= ~SECTION_MAP_MASK;
540557b9
AW
238 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
239 SECTION_HAS_MEM_MAP;
5c0e3066 240 ms->pageblock_flags = pageblock_bitmap;
29751f69
AW
241
242 return 1;
243}
244
04753278 245unsigned long usemap_size(void)
5c0e3066
MG
246{
247 unsigned long size_bytes;
248 size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
249 size_bytes = roundup(size_bytes, sizeof(unsigned long));
250 return size_bytes;
251}
252
253#ifdef CONFIG_MEMORY_HOTPLUG
254static unsigned long *__kmalloc_section_usemap(void)
255{
256 return kmalloc(usemap_size(), GFP_KERNEL);
257}
258#endif /* CONFIG_MEMORY_HOTPLUG */
259
48c90682
YG
260#ifdef CONFIG_MEMORY_HOTREMOVE
261static unsigned long * __init
a4322e1b 262sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
238305bb 263 unsigned long size)
48c90682 264{
99ab7b19
YL
265 unsigned long goal, limit;
266 unsigned long *p;
267 int nid;
48c90682
YG
268 /*
269 * A page may contain usemaps for other sections preventing the
270 * page being freed and making a section unremovable while
271 * other sections referencing the usemap retmain active. Similarly,
272 * a pgdat can prevent a section being removed. If section A
273 * contains a pgdat and section B contains the usemap, both
274 * sections become inter-dependent. This allocates usemaps
275 * from the same section as the pgdat where possible to avoid
276 * this problem.
277 */
07b4e2bc 278 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
99ab7b19
YL
279 limit = goal + (1UL << PA_SECTION_SHIFT);
280 nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
281again:
282 p = ___alloc_bootmem_node_nopanic(NODE_DATA(nid), size,
283 SMP_CACHE_BYTES, goal, limit);
284 if (!p && limit) {
285 limit = 0;
286 goto again;
287 }
288 return p;
48c90682
YG
289}
290
291static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
292{
293 unsigned long usemap_snr, pgdat_snr;
294 static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
295 static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
296 struct pglist_data *pgdat = NODE_DATA(nid);
297 int usemap_nid;
298
299 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
300 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
301 if (usemap_snr == pgdat_snr)
302 return;
303
304 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
305 /* skip redundant message */
306 return;
307
308 old_usemap_snr = usemap_snr;
309 old_pgdat_snr = pgdat_snr;
310
311 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
312 if (usemap_nid != nid) {
313 printk(KERN_INFO
314 "node %d must be removed before remove section %ld\n",
315 nid, usemap_snr);
316 return;
317 }
318 /*
319 * There is a circular dependency.
320 * Some platforms allow un-removable section because they will just
321 * gather other removable sections for dynamic partitioning.
322 * Just notify un-removable section's number here.
323 */
324 printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr,
325 pgdat_snr, nid);
326 printk(KERN_CONT
327 " have a circular dependency on usemap and pgdat allocations\n");
328}
329#else
330static unsigned long * __init
a4322e1b 331sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
238305bb 332 unsigned long size)
48c90682 333{
238305bb 334 return alloc_bootmem_node_nopanic(pgdat, size);
48c90682
YG
335}
336
337static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
338{
339}
340#endif /* CONFIG_MEMORY_HOTREMOVE */
341
18732093 342static void __init sparse_early_usemaps_alloc_node(void *data,
a4322e1b
YL
343 unsigned long pnum_begin,
344 unsigned long pnum_end,
345 unsigned long usemap_count, int nodeid)
5c0e3066 346{
a4322e1b
YL
347 void *usemap;
348 unsigned long pnum;
18732093 349 unsigned long **usemap_map = (unsigned long **)data;
a4322e1b 350 int size = usemap_size();
5c0e3066 351
a4322e1b 352 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
238305bb 353 size * usemap_count);
f5bf18fa 354 if (!usemap) {
238305bb
JW
355 printk(KERN_WARNING "%s: allocation failed\n", __func__);
356 return;
48c90682
YG
357 }
358
f5bf18fa
NA
359 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
360 if (!present_section_nr(pnum))
361 continue;
362 usemap_map[pnum] = usemap;
363 usemap += size;
364 check_usemap_section_nr(nodeid, usemap_map[pnum]);
a4322e1b 365 }
5c0e3066
MG
366}
367
8f6aac41 368#ifndef CONFIG_SPARSEMEM_VMEMMAP
98f3cfc1 369struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
29751f69
AW
370{
371 struct page *map;
e48e67e0 372 unsigned long size;
29751f69
AW
373
374 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
375 if (map)
376 return map;
377
e48e67e0
YL
378 size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
379 map = __alloc_bootmem_node_high(NODE_DATA(nid), size,
380 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
8f6aac41
CL
381 return map;
382}
9bdac914
YL
383void __init sparse_mem_maps_populate_node(struct page **map_map,
384 unsigned long pnum_begin,
385 unsigned long pnum_end,
386 unsigned long map_count, int nodeid)
387{
388 void *map;
389 unsigned long pnum;
390 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
391
392 map = alloc_remap(nodeid, size * map_count);
393 if (map) {
394 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
395 if (!present_section_nr(pnum))
396 continue;
397 map_map[pnum] = map;
398 map += size;
399 }
400 return;
401 }
402
403 size = PAGE_ALIGN(size);
e48e67e0
YL
404 map = __alloc_bootmem_node_high(NODE_DATA(nodeid), size * map_count,
405 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
9bdac914
YL
406 if (map) {
407 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
408 if (!present_section_nr(pnum))
409 continue;
410 map_map[pnum] = map;
411 map += size;
412 }
413 return;
414 }
415
416 /* fallback */
417 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
418 struct mem_section *ms;
419
420 if (!present_section_nr(pnum))
421 continue;
422 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
423 if (map_map[pnum])
424 continue;
425 ms = __nr_to_section(pnum);
426 printk(KERN_ERR "%s: sparsemem memory map backing failed "
427 "some memory will not be available.\n", __func__);
428 ms->section_mem_map = 0;
429 }
430}
8f6aac41
CL
431#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
432
81d0d950 433#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
18732093 434static void __init sparse_early_mem_maps_alloc_node(void *data,
9bdac914
YL
435 unsigned long pnum_begin,
436 unsigned long pnum_end,
437 unsigned long map_count, int nodeid)
438{
18732093 439 struct page **map_map = (struct page **)data;
9bdac914
YL
440 sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
441 map_count, nodeid);
442}
81d0d950 443#else
9e5c6da7 444static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
8f6aac41
CL
445{
446 struct page *map;
447 struct mem_section *ms = __nr_to_section(pnum);
448 int nid = sparse_early_nid(ms);
449
98f3cfc1 450 map = sparse_mem_map_populate(pnum, nid);
29751f69
AW
451 if (map)
452 return map;
453
8f6aac41 454 printk(KERN_ERR "%s: sparsemem memory map backing failed "
d40cee24 455 "some memory will not be available.\n", __func__);
802f192e 456 ms->section_mem_map = 0;
29751f69
AW
457 return NULL;
458}
9bdac914 459#endif
29751f69 460
c2b91e2e
YL
461void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
462{
463}
a4322e1b 464
18732093
WL
465/**
466 * alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
467 * @map: usemap_map for pageblock flags or mmap_map for vmemmap
468 */
469static void __init alloc_usemap_and_memmap(void (*alloc_func)
470 (void *, unsigned long, unsigned long,
471 unsigned long, int), void *data)
472{
473 unsigned long pnum;
474 unsigned long map_count;
475 int nodeid_begin = 0;
476 unsigned long pnum_begin = 0;
477
478 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
479 struct mem_section *ms;
480
481 if (!present_section_nr(pnum))
482 continue;
483 ms = __nr_to_section(pnum);
484 nodeid_begin = sparse_early_nid(ms);
485 pnum_begin = pnum;
486 break;
487 }
488 map_count = 1;
489 for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
490 struct mem_section *ms;
491 int nodeid;
492
493 if (!present_section_nr(pnum))
494 continue;
495 ms = __nr_to_section(pnum);
496 nodeid = sparse_early_nid(ms);
497 if (nodeid == nodeid_begin) {
498 map_count++;
499 continue;
500 }
501 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
502 alloc_func(data, pnum_begin, pnum,
503 map_count, nodeid_begin);
504 /* new start, update count etc*/
505 nodeid_begin = nodeid;
506 pnum_begin = pnum;
507 map_count = 1;
508 }
509 /* ok, last chunk */
510 alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
511 map_count, nodeid_begin);
512}
513
193faea9
SR
514/*
515 * Allocate the accumulated non-linear sections, allocate a mem_map
516 * for each and record the physical to section mapping.
517 */
518void __init sparse_init(void)
519{
520 unsigned long pnum;
521 struct page *map;
5c0e3066 522 unsigned long *usemap;
e123dd3f 523 unsigned long **usemap_map;
81d0d950 524 int size;
81d0d950 525#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
81d0d950
YL
526 int size2;
527 struct page **map_map;
528#endif
e123dd3f 529
55878e88
CS
530 /* see include/linux/mmzone.h 'struct mem_section' definition */
531 BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
532
ca57df79
XQ
533 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
534 set_pageblock_order();
535
e123dd3f
YL
536 /*
537 * map is using big page (aka 2M in x86 64 bit)
538 * usemap is less one page (aka 24 bytes)
539 * so alloc 2M (with 2M align) and 24 bytes in turn will
540 * make next 2M slip to one more 2M later.
541 * then in big system, the memory will have a lot of holes...
25985edc 542 * here try to allocate 2M pages continuously.
e123dd3f
YL
543 *
544 * powerpc need to call sparse_init_one_section right after each
545 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
546 */
547 size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
548 usemap_map = alloc_bootmem(size);
549 if (!usemap_map)
550 panic("can not allocate usemap_map\n");
18732093
WL
551 alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
552 (void *)usemap_map);
193faea9 553
9bdac914
YL
554#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
555 size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
556 map_map = alloc_bootmem(size2);
557 if (!map_map)
558 panic("can not allocate map_map\n");
18732093
WL
559 alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
560 (void *)map_map);
9bdac914
YL
561#endif
562
e123dd3f
YL
563 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
564 if (!present_section_nr(pnum))
193faea9 565 continue;
5c0e3066 566
e123dd3f 567 usemap = usemap_map[pnum];
5c0e3066
MG
568 if (!usemap)
569 continue;
570
9bdac914
YL
571#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
572 map = map_map[pnum];
573#else
e123dd3f 574 map = sparse_early_mem_map_alloc(pnum);
9bdac914 575#endif
e123dd3f
YL
576 if (!map)
577 continue;
578
5c0e3066
MG
579 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
580 usemap);
193faea9 581 }
e123dd3f 582
c2b91e2e
YL
583 vmemmap_populate_print_last();
584
9bdac914
YL
585#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
586 free_bootmem(__pa(map_map), size2);
587#endif
e123dd3f 588 free_bootmem(__pa(usemap_map), size);
193faea9
SR
589}
590
591#ifdef CONFIG_MEMORY_HOTPLUG
98f3cfc1
YG
592#ifdef CONFIG_SPARSEMEM_VMEMMAP
593static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
594 unsigned long nr_pages)
595{
596 /* This will make the necessary allocations eventually. */
597 return sparse_mem_map_populate(pnum, nid);
598}
599static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
600{
0aad818b
JW
601 unsigned long start = (unsigned long)memmap;
602 unsigned long end = (unsigned long)(memmap + nr_pages);
603
604 vmemmap_free(start, end);
98f3cfc1 605}
4edd7cef 606#ifdef CONFIG_MEMORY_HOTREMOVE
ae64ffca 607static void free_map_bootmem(struct page *memmap, unsigned long nr_pages)
0c0a4a51 608{
0aad818b
JW
609 unsigned long start = (unsigned long)memmap;
610 unsigned long end = (unsigned long)(memmap + nr_pages);
611
612 vmemmap_free(start, end);
0c0a4a51 613}
4edd7cef 614#endif /* CONFIG_MEMORY_HOTREMOVE */
98f3cfc1 615#else
0b0acbec
DH
616static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
617{
618 struct page *page, *ret;
619 unsigned long memmap_size = sizeof(struct page) * nr_pages;
620
f2d0aa5b 621 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
0b0acbec
DH
622 if (page)
623 goto got_map_page;
624
625 ret = vmalloc(memmap_size);
626 if (ret)
627 goto got_map_ptr;
628
629 return NULL;
630got_map_page:
631 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
632got_map_ptr:
0b0acbec
DH
633
634 return ret;
635}
636
98f3cfc1
YG
637static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
638 unsigned long nr_pages)
639{
640 return __kmalloc_section_memmap(nr_pages);
641}
642
0b0acbec
DH
643static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
644{
9e2779fa 645 if (is_vmalloc_addr(memmap))
0b0acbec
DH
646 vfree(memmap);
647 else
648 free_pages((unsigned long)memmap,
649 get_order(sizeof(struct page) * nr_pages));
650}
0c0a4a51 651
4edd7cef 652#ifdef CONFIG_MEMORY_HOTREMOVE
ae64ffca 653static void free_map_bootmem(struct page *memmap, unsigned long nr_pages)
0c0a4a51
YG
654{
655 unsigned long maps_section_nr, removing_section_nr, i;
5f24ce5f 656 unsigned long magic;
ae64ffca 657 struct page *page = virt_to_page(memmap);
0c0a4a51
YG
658
659 for (i = 0; i < nr_pages; i++, page++) {
5f24ce5f 660 magic = (unsigned long) page->lru.next;
0c0a4a51
YG
661
662 BUG_ON(magic == NODE_INFO);
663
664 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
665 removing_section_nr = page->private;
666
667 /*
668 * When this function is called, the removing section is
669 * logical offlined state. This means all pages are isolated
670 * from page allocator. If removing section's memmap is placed
671 * on the same section, it must not be freed.
672 * If it is freed, page allocator may allocate it which will
673 * be removed physically soon.
674 */
675 if (maps_section_nr != removing_section_nr)
676 put_page_bootmem(page);
677 }
678}
4edd7cef 679#endif /* CONFIG_MEMORY_HOTREMOVE */
98f3cfc1 680#endif /* CONFIG_SPARSEMEM_VMEMMAP */
0b0acbec 681
29751f69
AW
682/*
683 * returns the number of sections whose mem_maps were properly
684 * set. If this is <=0, then that means that the passed-in
685 * map was not consumed and must be freed.
686 */
31168481 687int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
0b0acbec 688 int nr_pages)
29751f69 689{
0b0acbec
DH
690 unsigned long section_nr = pfn_to_section_nr(start_pfn);
691 struct pglist_data *pgdat = zone->zone_pgdat;
692 struct mem_section *ms;
693 struct page *memmap;
5c0e3066 694 unsigned long *usemap;
0b0acbec
DH
695 unsigned long flags;
696 int ret;
29751f69 697
0b0acbec
DH
698 /*
699 * no locking for this, because it does its own
700 * plus, it does a kmalloc
701 */
bbd06825
WC
702 ret = sparse_index_init(section_nr, pgdat->node_id);
703 if (ret < 0 && ret != -EEXIST)
704 return ret;
98f3cfc1 705 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
bbd06825
WC
706 if (!memmap)
707 return -ENOMEM;
5c0e3066 708 usemap = __kmalloc_section_usemap();
bbd06825
WC
709 if (!usemap) {
710 __kfree_section_memmap(memmap, nr_pages);
711 return -ENOMEM;
712 }
0b0acbec
DH
713
714 pgdat_resize_lock(pgdat, &flags);
29751f69 715
0b0acbec
DH
716 ms = __pfn_to_section(start_pfn);
717 if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
718 ret = -EEXIST;
719 goto out;
720 }
5c0e3066 721
3ac19f8e
WC
722 memset(memmap, 0, sizeof(struct page) * nr_pages);
723
29751f69
AW
724 ms->section_mem_map |= SECTION_MARKED_PRESENT;
725
5c0e3066 726 ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
0b0acbec 727
0b0acbec
DH
728out:
729 pgdat_resize_unlock(pgdat, &flags);
bbd06825
WC
730 if (ret <= 0) {
731 kfree(usemap);
46a66eec 732 __kfree_section_memmap(memmap, nr_pages);
bbd06825 733 }
0b0acbec 734 return ret;
29751f69 735}
ea01ea93 736
f3deb687 737#ifdef CONFIG_MEMORY_HOTREMOVE
95a4774d
WC
738#ifdef CONFIG_MEMORY_FAILURE
739static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
740{
741 int i;
742
743 if (!memmap)
744 return;
745
746 for (i = 0; i < PAGES_PER_SECTION; i++) {
747 if (PageHWPoison(&memmap[i])) {
293c07e3 748 atomic_long_sub(1, &num_poisoned_pages);
95a4774d
WC
749 ClearPageHWPoison(&memmap[i]);
750 }
751 }
752}
753#else
754static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
755{
756}
757#endif
758
4edd7cef
DR
759static void free_section_usemap(struct page *memmap, unsigned long *usemap)
760{
761 struct page *usemap_page;
762 unsigned long nr_pages;
763
764 if (!usemap)
765 return;
766
767 usemap_page = virt_to_page(usemap);
768 /*
769 * Check to see if allocation came from hot-plug-add
770 */
771 if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
772 kfree(usemap);
773 if (memmap)
774 __kfree_section_memmap(memmap, PAGES_PER_SECTION);
775 return;
776 }
777
778 /*
779 * The usemap came from bootmem. This is packed with other usemaps
780 * on the section which has pgdat at boot time. Just keep it as is now.
781 */
782
783 if (memmap) {
784 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
785 >> PAGE_SHIFT;
786
787 free_map_bootmem(memmap, nr_pages);
788 }
789}
790
ea01ea93
BP
791void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
792{
793 struct page *memmap = NULL;
cd099682
TC
794 unsigned long *usemap = NULL, flags;
795 struct pglist_data *pgdat = zone->zone_pgdat;
ea01ea93 796
cd099682 797 pgdat_resize_lock(pgdat, &flags);
ea01ea93
BP
798 if (ms->section_mem_map) {
799 usemap = ms->pageblock_flags;
800 memmap = sparse_decode_mem_map(ms->section_mem_map,
801 __section_nr(ms));
802 ms->section_mem_map = 0;
803 ms->pageblock_flags = NULL;
804 }
cd099682 805 pgdat_resize_unlock(pgdat, &flags);
ea01ea93 806
95a4774d 807 clear_hwpoisoned_pages(memmap, PAGES_PER_SECTION);
ea01ea93
BP
808 free_section_usemap(memmap, usemap);
809}
4edd7cef
DR
810#endif /* CONFIG_MEMORY_HOTREMOVE */
811#endif /* CONFIG_MEMORY_HOTPLUG */