convert ATM drivers to netdev_tx_t
[linux-block.git] / mm / sparse.c
CommitLineData
d41dee36
AW
1/*
2 * sparse memory mappings.
3 */
d41dee36
AW
4#include <linux/mm.h>
5#include <linux/mmzone.h>
6#include <linux/bootmem.h>
0b0acbec 7#include <linux/highmem.h>
d41dee36 8#include <linux/module.h>
28ae55c9 9#include <linux/spinlock.h>
0b0acbec 10#include <linux/vmalloc.h>
0c0a4a51 11#include "internal.h"
d41dee36 12#include <asm/dma.h>
8f6aac41
CL
13#include <asm/pgalloc.h>
14#include <asm/pgtable.h>
d41dee36
AW
15
16/*
17 * Permanent SPARSEMEM data:
18 *
19 * 1) mem_section - memory sections, mem_map's for valid memory
20 */
3e347261 21#ifdef CONFIG_SPARSEMEM_EXTREME
802f192e 22struct mem_section *mem_section[NR_SECTION_ROOTS]
22fc6ecc 23 ____cacheline_internodealigned_in_smp;
3e347261
BP
24#else
25struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
22fc6ecc 26 ____cacheline_internodealigned_in_smp;
3e347261
BP
27#endif
28EXPORT_SYMBOL(mem_section);
29
89689ae7
CL
30#ifdef NODE_NOT_IN_PAGE_FLAGS
31/*
32 * If we did not store the node number in the page then we have to
33 * do a lookup in the section_to_node_table in order to find which
34 * node the page belongs to.
35 */
36#if MAX_NUMNODES <= 256
37static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
38#else
39static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
40#endif
41
25ba77c1 42int page_to_nid(struct page *page)
89689ae7
CL
43{
44 return section_to_node_table[page_to_section(page)];
45}
46EXPORT_SYMBOL(page_to_nid);
85770ffe
AW
47
48static void set_section_nid(unsigned long section_nr, int nid)
49{
50 section_to_node_table[section_nr] = nid;
51}
52#else /* !NODE_NOT_IN_PAGE_FLAGS */
53static inline void set_section_nid(unsigned long section_nr, int nid)
54{
55}
89689ae7
CL
56#endif
57
3e347261 58#ifdef CONFIG_SPARSEMEM_EXTREME
577a32f6 59static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
28ae55c9
DH
60{
61 struct mem_section *section = NULL;
62 unsigned long array_size = SECTIONS_PER_ROOT *
63 sizeof(struct mem_section);
64
39d24e64 65 if (slab_is_available())
46a66eec
MK
66 section = kmalloc_node(array_size, GFP_KERNEL, nid);
67 else
68 section = alloc_bootmem_node(NODE_DATA(nid), array_size);
28ae55c9
DH
69
70 if (section)
71 memset(section, 0, array_size);
72
73 return section;
3e347261 74}
802f192e 75
a3142c8e 76static int __meminit sparse_index_init(unsigned long section_nr, int nid)
802f192e 77{
34af946a 78 static DEFINE_SPINLOCK(index_init_lock);
28ae55c9
DH
79 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
80 struct mem_section *section;
81 int ret = 0;
802f192e
BP
82
83 if (mem_section[root])
28ae55c9 84 return -EEXIST;
3e347261 85
28ae55c9 86 section = sparse_index_alloc(nid);
af0cd5a7
WC
87 if (!section)
88 return -ENOMEM;
28ae55c9
DH
89 /*
90 * This lock keeps two different sections from
91 * reallocating for the same index
92 */
93 spin_lock(&index_init_lock);
3e347261 94
28ae55c9
DH
95 if (mem_section[root]) {
96 ret = -EEXIST;
97 goto out;
98 }
99
100 mem_section[root] = section;
101out:
102 spin_unlock(&index_init_lock);
103 return ret;
104}
105#else /* !SPARSEMEM_EXTREME */
106static inline int sparse_index_init(unsigned long section_nr, int nid)
107{
108 return 0;
802f192e 109}
28ae55c9
DH
110#endif
111
4ca644d9
DH
112/*
113 * Although written for the SPARSEMEM_EXTREME case, this happens
cd881a6b 114 * to also work for the flat array case because
4ca644d9
DH
115 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
116 */
117int __section_nr(struct mem_section* ms)
118{
119 unsigned long root_nr;
120 struct mem_section* root;
121
12783b00
MK
122 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
123 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
4ca644d9
DH
124 if (!root)
125 continue;
126
127 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
128 break;
129 }
130
131 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
132}
133
30c253e6
AW
134/*
135 * During early boot, before section_mem_map is used for an actual
136 * mem_map, we use section_mem_map to store the section's NUMA
137 * node. This keeps us from having to use another data structure. The
138 * node information is cleared just before we store the real mem_map.
139 */
140static inline unsigned long sparse_encode_early_nid(int nid)
141{
142 return (nid << SECTION_NID_SHIFT);
143}
144
145static inline int sparse_early_nid(struct mem_section *section)
146{
147 return (section->section_mem_map >> SECTION_NID_SHIFT);
148}
149
2dbb51c4
MG
150/* Validate the physical addressing limitations of the model */
151void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
152 unsigned long *end_pfn)
d41dee36 153{
2dbb51c4 154 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
d41dee36 155
bead9a3a
IM
156 /*
157 * Sanity checks - do not allow an architecture to pass
158 * in larger pfns than the maximum scope of sparsemem:
159 */
2dbb51c4
MG
160 if (*start_pfn > max_sparsemem_pfn) {
161 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
162 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
163 *start_pfn, *end_pfn, max_sparsemem_pfn);
164 WARN_ON_ONCE(1);
165 *start_pfn = max_sparsemem_pfn;
166 *end_pfn = max_sparsemem_pfn;
ef161a98 167 } else if (*end_pfn > max_sparsemem_pfn) {
2dbb51c4
MG
168 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
169 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
170 *start_pfn, *end_pfn, max_sparsemem_pfn);
171 WARN_ON_ONCE(1);
172 *end_pfn = max_sparsemem_pfn;
173 }
174}
175
176/* Record a memory area against a node. */
177void __init memory_present(int nid, unsigned long start, unsigned long end)
178{
179 unsigned long pfn;
bead9a3a 180
d41dee36 181 start &= PAGE_SECTION_MASK;
2dbb51c4 182 mminit_validate_memmodel_limits(&start, &end);
d41dee36
AW
183 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
184 unsigned long section = pfn_to_section_nr(pfn);
802f192e
BP
185 struct mem_section *ms;
186
187 sparse_index_init(section, nid);
85770ffe 188 set_section_nid(section, nid);
802f192e
BP
189
190 ms = __nr_to_section(section);
191 if (!ms->section_mem_map)
30c253e6
AW
192 ms->section_mem_map = sparse_encode_early_nid(nid) |
193 SECTION_MARKED_PRESENT;
d41dee36
AW
194 }
195}
196
197/*
198 * Only used by the i386 NUMA architecures, but relatively
199 * generic code.
200 */
201unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
202 unsigned long end_pfn)
203{
204 unsigned long pfn;
205 unsigned long nr_pages = 0;
206
2dbb51c4 207 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
d41dee36
AW
208 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
209 if (nid != early_pfn_to_nid(pfn))
210 continue;
211
540557b9 212 if (pfn_present(pfn))
d41dee36
AW
213 nr_pages += PAGES_PER_SECTION;
214 }
215
216 return nr_pages * sizeof(struct page);
217}
218
29751f69
AW
219/*
220 * Subtle, we encode the real pfn into the mem_map such that
221 * the identity pfn - section_mem_map will return the actual
222 * physical page frame number.
223 */
224static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
225{
226 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
227}
228
229/*
ea01ea93 230 * Decode mem_map from the coded memmap
29751f69 231 */
29751f69
AW
232struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
233{
ea01ea93
BP
234 /* mask off the extra low bits of information */
235 coded_mem_map &= SECTION_MAP_MASK;
29751f69
AW
236 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
237}
238
a3142c8e 239static int __meminit sparse_init_one_section(struct mem_section *ms,
5c0e3066
MG
240 unsigned long pnum, struct page *mem_map,
241 unsigned long *pageblock_bitmap)
29751f69 242{
540557b9 243 if (!present_section(ms))
29751f69
AW
244 return -EINVAL;
245
30c253e6 246 ms->section_mem_map &= ~SECTION_MAP_MASK;
540557b9
AW
247 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
248 SECTION_HAS_MEM_MAP;
5c0e3066 249 ms->pageblock_flags = pageblock_bitmap;
29751f69
AW
250
251 return 1;
252}
253
04753278 254unsigned long usemap_size(void)
5c0e3066
MG
255{
256 unsigned long size_bytes;
257 size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
258 size_bytes = roundup(size_bytes, sizeof(unsigned long));
259 return size_bytes;
260}
261
262#ifdef CONFIG_MEMORY_HOTPLUG
263static unsigned long *__kmalloc_section_usemap(void)
264{
265 return kmalloc(usemap_size(), GFP_KERNEL);
266}
267#endif /* CONFIG_MEMORY_HOTPLUG */
268
48c90682
YG
269#ifdef CONFIG_MEMORY_HOTREMOVE
270static unsigned long * __init
271sparse_early_usemap_alloc_pgdat_section(struct pglist_data *pgdat)
272{
273 unsigned long section_nr;
274
275 /*
276 * A page may contain usemaps for other sections preventing the
277 * page being freed and making a section unremovable while
278 * other sections referencing the usemap retmain active. Similarly,
279 * a pgdat can prevent a section being removed. If section A
280 * contains a pgdat and section B contains the usemap, both
281 * sections become inter-dependent. This allocates usemaps
282 * from the same section as the pgdat where possible to avoid
283 * this problem.
284 */
285 section_nr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
286 return alloc_bootmem_section(usemap_size(), section_nr);
287}
288
289static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
290{
291 unsigned long usemap_snr, pgdat_snr;
292 static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
293 static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
294 struct pglist_data *pgdat = NODE_DATA(nid);
295 int usemap_nid;
296
297 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
298 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
299 if (usemap_snr == pgdat_snr)
300 return;
301
302 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
303 /* skip redundant message */
304 return;
305
306 old_usemap_snr = usemap_snr;
307 old_pgdat_snr = pgdat_snr;
308
309 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
310 if (usemap_nid != nid) {
311 printk(KERN_INFO
312 "node %d must be removed before remove section %ld\n",
313 nid, usemap_snr);
314 return;
315 }
316 /*
317 * There is a circular dependency.
318 * Some platforms allow un-removable section because they will just
319 * gather other removable sections for dynamic partitioning.
320 * Just notify un-removable section's number here.
321 */
322 printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr,
323 pgdat_snr, nid);
324 printk(KERN_CONT
325 " have a circular dependency on usemap and pgdat allocations\n");
326}
327#else
328static unsigned long * __init
329sparse_early_usemap_alloc_pgdat_section(struct pglist_data *pgdat)
330{
331 return NULL;
332}
333
334static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
335{
336}
337#endif /* CONFIG_MEMORY_HOTREMOVE */
338
a322f8ab 339static unsigned long *__init sparse_early_usemap_alloc(unsigned long pnum)
5c0e3066 340{
51674644 341 unsigned long *usemap;
5c0e3066
MG
342 struct mem_section *ms = __nr_to_section(pnum);
343 int nid = sparse_early_nid(ms);
344
48c90682 345 usemap = sparse_early_usemap_alloc_pgdat_section(NODE_DATA(nid));
5c0e3066
MG
346 if (usemap)
347 return usemap;
348
48c90682
YG
349 usemap = alloc_bootmem_node(NODE_DATA(nid), usemap_size());
350 if (usemap) {
351 check_usemap_section_nr(nid, usemap);
352 return usemap;
353 }
354
5c0e3066
MG
355 /* Stupid: suppress gcc warning for SPARSEMEM && !NUMA */
356 nid = 0;
357
d40cee24 358 printk(KERN_WARNING "%s: allocation failed\n", __func__);
5c0e3066
MG
359 return NULL;
360}
361
8f6aac41 362#ifndef CONFIG_SPARSEMEM_VMEMMAP
98f3cfc1 363struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
29751f69
AW
364{
365 struct page *map;
29751f69
AW
366
367 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
368 if (map)
369 return map;
370
9d99217a
YG
371 map = alloc_bootmem_pages_node(NODE_DATA(nid),
372 PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION));
8f6aac41
CL
373 return map;
374}
375#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
376
9e5c6da7 377static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
8f6aac41
CL
378{
379 struct page *map;
380 struct mem_section *ms = __nr_to_section(pnum);
381 int nid = sparse_early_nid(ms);
382
98f3cfc1 383 map = sparse_mem_map_populate(pnum, nid);
29751f69
AW
384 if (map)
385 return map;
386
8f6aac41 387 printk(KERN_ERR "%s: sparsemem memory map backing failed "
d40cee24 388 "some memory will not be available.\n", __func__);
802f192e 389 ms->section_mem_map = 0;
29751f69
AW
390 return NULL;
391}
392
c2b91e2e
YL
393void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
394{
395}
193faea9
SR
396/*
397 * Allocate the accumulated non-linear sections, allocate a mem_map
398 * for each and record the physical to section mapping.
399 */
400void __init sparse_init(void)
401{
402 unsigned long pnum;
403 struct page *map;
5c0e3066 404 unsigned long *usemap;
e123dd3f
YL
405 unsigned long **usemap_map;
406 int size;
407
408 /*
409 * map is using big page (aka 2M in x86 64 bit)
410 * usemap is less one page (aka 24 bytes)
411 * so alloc 2M (with 2M align) and 24 bytes in turn will
412 * make next 2M slip to one more 2M later.
413 * then in big system, the memory will have a lot of holes...
414 * here try to allocate 2M pages continously.
415 *
416 * powerpc need to call sparse_init_one_section right after each
417 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
418 */
419 size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
420 usemap_map = alloc_bootmem(size);
421 if (!usemap_map)
422 panic("can not allocate usemap_map\n");
193faea9
SR
423
424 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
540557b9 425 if (!present_section_nr(pnum))
193faea9 426 continue;
e123dd3f
YL
427 usemap_map[pnum] = sparse_early_usemap_alloc(pnum);
428 }
193faea9 429
e123dd3f
YL
430 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
431 if (!present_section_nr(pnum))
193faea9 432 continue;
5c0e3066 433
e123dd3f 434 usemap = usemap_map[pnum];
5c0e3066
MG
435 if (!usemap)
436 continue;
437
e123dd3f
YL
438 map = sparse_early_mem_map_alloc(pnum);
439 if (!map)
440 continue;
441
5c0e3066
MG
442 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
443 usemap);
193faea9 444 }
e123dd3f 445
c2b91e2e
YL
446 vmemmap_populate_print_last();
447
e123dd3f 448 free_bootmem(__pa(usemap_map), size);
193faea9
SR
449}
450
451#ifdef CONFIG_MEMORY_HOTPLUG
98f3cfc1
YG
452#ifdef CONFIG_SPARSEMEM_VMEMMAP
453static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
454 unsigned long nr_pages)
455{
456 /* This will make the necessary allocations eventually. */
457 return sparse_mem_map_populate(pnum, nid);
458}
459static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
460{
461 return; /* XXX: Not implemented yet */
462}
0c0a4a51
YG
463static void free_map_bootmem(struct page *page, unsigned long nr_pages)
464{
465}
98f3cfc1 466#else
0b0acbec
DH
467static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
468{
469 struct page *page, *ret;
470 unsigned long memmap_size = sizeof(struct page) * nr_pages;
471
f2d0aa5b 472 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
0b0acbec
DH
473 if (page)
474 goto got_map_page;
475
476 ret = vmalloc(memmap_size);
477 if (ret)
478 goto got_map_ptr;
479
480 return NULL;
481got_map_page:
482 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
483got_map_ptr:
484 memset(ret, 0, memmap_size);
485
486 return ret;
487}
488
98f3cfc1
YG
489static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
490 unsigned long nr_pages)
491{
492 return __kmalloc_section_memmap(nr_pages);
493}
494
0b0acbec
DH
495static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
496{
9e2779fa 497 if (is_vmalloc_addr(memmap))
0b0acbec
DH
498 vfree(memmap);
499 else
500 free_pages((unsigned long)memmap,
501 get_order(sizeof(struct page) * nr_pages));
502}
0c0a4a51
YG
503
504static void free_map_bootmem(struct page *page, unsigned long nr_pages)
505{
506 unsigned long maps_section_nr, removing_section_nr, i;
507 int magic;
508
509 for (i = 0; i < nr_pages; i++, page++) {
510 magic = atomic_read(&page->_mapcount);
511
512 BUG_ON(magic == NODE_INFO);
513
514 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
515 removing_section_nr = page->private;
516
517 /*
518 * When this function is called, the removing section is
519 * logical offlined state. This means all pages are isolated
520 * from page allocator. If removing section's memmap is placed
521 * on the same section, it must not be freed.
522 * If it is freed, page allocator may allocate it which will
523 * be removed physically soon.
524 */
525 if (maps_section_nr != removing_section_nr)
526 put_page_bootmem(page);
527 }
528}
98f3cfc1 529#endif /* CONFIG_SPARSEMEM_VMEMMAP */
0b0acbec 530
ea01ea93
BP
531static void free_section_usemap(struct page *memmap, unsigned long *usemap)
532{
0c0a4a51
YG
533 struct page *usemap_page;
534 unsigned long nr_pages;
535
ea01ea93
BP
536 if (!usemap)
537 return;
538
0c0a4a51 539 usemap_page = virt_to_page(usemap);
ea01ea93
BP
540 /*
541 * Check to see if allocation came from hot-plug-add
542 */
0c0a4a51 543 if (PageSlab(usemap_page)) {
ea01ea93
BP
544 kfree(usemap);
545 if (memmap)
546 __kfree_section_memmap(memmap, PAGES_PER_SECTION);
547 return;
548 }
549
550 /*
0c0a4a51
YG
551 * The usemap came from bootmem. This is packed with other usemaps
552 * on the section which has pgdat at boot time. Just keep it as is now.
ea01ea93 553 */
0c0a4a51
YG
554
555 if (memmap) {
556 struct page *memmap_page;
557 memmap_page = virt_to_page(memmap);
558
559 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
560 >> PAGE_SHIFT;
561
562 free_map_bootmem(memmap_page, nr_pages);
563 }
ea01ea93
BP
564}
565
29751f69
AW
566/*
567 * returns the number of sections whose mem_maps were properly
568 * set. If this is <=0, then that means that the passed-in
569 * map was not consumed and must be freed.
570 */
31168481 571int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
0b0acbec 572 int nr_pages)
29751f69 573{
0b0acbec
DH
574 unsigned long section_nr = pfn_to_section_nr(start_pfn);
575 struct pglist_data *pgdat = zone->zone_pgdat;
576 struct mem_section *ms;
577 struct page *memmap;
5c0e3066 578 unsigned long *usemap;
0b0acbec
DH
579 unsigned long flags;
580 int ret;
29751f69 581
0b0acbec
DH
582 /*
583 * no locking for this, because it does its own
584 * plus, it does a kmalloc
585 */
bbd06825
WC
586 ret = sparse_index_init(section_nr, pgdat->node_id);
587 if (ret < 0 && ret != -EEXIST)
588 return ret;
98f3cfc1 589 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
bbd06825
WC
590 if (!memmap)
591 return -ENOMEM;
5c0e3066 592 usemap = __kmalloc_section_usemap();
bbd06825
WC
593 if (!usemap) {
594 __kfree_section_memmap(memmap, nr_pages);
595 return -ENOMEM;
596 }
0b0acbec
DH
597
598 pgdat_resize_lock(pgdat, &flags);
29751f69 599
0b0acbec
DH
600 ms = __pfn_to_section(start_pfn);
601 if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
602 ret = -EEXIST;
603 goto out;
604 }
5c0e3066 605
29751f69
AW
606 ms->section_mem_map |= SECTION_MARKED_PRESENT;
607
5c0e3066 608 ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
0b0acbec 609
0b0acbec
DH
610out:
611 pgdat_resize_unlock(pgdat, &flags);
bbd06825
WC
612 if (ret <= 0) {
613 kfree(usemap);
46a66eec 614 __kfree_section_memmap(memmap, nr_pages);
bbd06825 615 }
0b0acbec 616 return ret;
29751f69 617}
ea01ea93
BP
618
619void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
620{
621 struct page *memmap = NULL;
622 unsigned long *usemap = NULL;
623
624 if (ms->section_mem_map) {
625 usemap = ms->pageblock_flags;
626 memmap = sparse_decode_mem_map(ms->section_mem_map,
627 __section_nr(ms));
628 ms->section_mem_map = 0;
629 ms->pageblock_flags = NULL;
630 }
631
632 free_section_usemap(memmap, usemap);
633}
a3142c8e 634#endif