Revert "vfs: Delete the associated dentry when deleting a file"
[linux-2.6-block.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
dc84207d 6 * The allocator synchronizes using per slab locks or atomic operations
881db7fb 7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
c7b23b68 14#include <linux/swap.h> /* mm_account_reclaimed_pages() */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
1b3865d0 18#include <linux/swab.h>
81819f0f
CL
19#include <linux/bitops.h>
20#include <linux/slab.h>
97d06609 21#include "slab.h"
7b3c3a50 22#include <linux/proc_fs.h>
81819f0f 23#include <linux/seq_file.h>
a79316c6 24#include <linux/kasan.h>
68ef169a 25#include <linux/kmsan.h>
81819f0f
CL
26#include <linux/cpu.h>
27#include <linux/cpuset.h>
28#include <linux/mempolicy.h>
29#include <linux/ctype.h>
5cf909c5 30#include <linux/stackdepot.h>
3ac7fe5a 31#include <linux/debugobjects.h>
81819f0f 32#include <linux/kallsyms.h>
b89fb5ef 33#include <linux/kfence.h>
b9049e23 34#include <linux/memory.h>
f8bd2258 35#include <linux/math64.h>
773ff60e 36#include <linux/fault-inject.h>
6011be59 37#include <linux/kmemleak.h>
bfa71457 38#include <linux/stacktrace.h>
4de900b4 39#include <linux/prefetch.h>
2633d7a0 40#include <linux/memcontrol.h>
2482ddec 41#include <linux/random.h>
1f9f78b1 42#include <kunit/test.h>
909c6475 43#include <kunit/test-bug.h>
553c0369 44#include <linux/sort.h>
81819f0f 45
64dd6849 46#include <linux/debugfs.h>
4a92379b
RK
47#include <trace/events/kmem.h>
48
072bb0aa
MG
49#include "internal.h"
50
81819f0f
CL
51/*
52 * Lock order:
18004c5d 53 * 1. slab_mutex (Global Mutex)
bd0e7491
VB
54 * 2. node->list_lock (Spinlock)
55 * 3. kmem_cache->cpu_slab->lock (Local lock)
41bec7c3 56 * 4. slab_lock(slab) (Only on some arches)
bd0e7491 57 * 5. object_map_lock (Only for debugging)
81819f0f 58 *
18004c5d 59 * slab_mutex
881db7fb 60 *
18004c5d 61 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb 62 * and to synchronize major metadata changes to slab cache structures.
bd0e7491
VB
63 * Also synchronizes memory hotplug callbacks.
64 *
65 * slab_lock
66 *
67 * The slab_lock is a wrapper around the page lock, thus it is a bit
68 * spinlock.
881db7fb 69 *
41bec7c3
VB
70 * The slab_lock is only used on arches that do not have the ability
71 * to do a cmpxchg_double. It only protects:
72 *
c2092c12
VB
73 * A. slab->freelist -> List of free objects in a slab
74 * B. slab->inuse -> Number of objects in use
75 * C. slab->objects -> Number of objects in slab
76 * D. slab->frozen -> frozen state
881db7fb 77 *
bd0e7491
VB
78 * Frozen slabs
79 *
31bda717
CZ
80 * If a slab is frozen then it is exempt from list management. It is
81 * the cpu slab which is actively allocated from by the processor that
82 * froze it and it is not on any list. The processor that froze the
c2092c12 83 * slab is the one who can perform list operations on the slab. Other
632b2ef0
LX
84 * processors may put objects onto the freelist but the processor that
85 * froze the slab is the only one that can retrieve the objects from the
c2092c12 86 * slab's freelist.
81819f0f 87 *
31bda717
CZ
88 * CPU partial slabs
89 *
90 * The partially empty slabs cached on the CPU partial list are used
91 * for performance reasons, which speeds up the allocation process.
92 * These slabs are not frozen, but are also exempt from list management,
93 * by clearing the PG_workingset flag when moving out of the node
94 * partial list. Please see __slab_free() for more details.
95 *
96 * To sum up, the current scheme is:
97 * - node partial slab: PG_Workingset && !frozen
98 * - cpu partial slab: !PG_Workingset && !frozen
99 * - cpu slab: !PG_Workingset && frozen
100 * - full slab: !PG_Workingset && !frozen
101 *
bd0e7491
VB
102 * list_lock
103 *
81819f0f
CL
104 * The list_lock protects the partial and full list on each node and
105 * the partial slab counter. If taken then no new slabs may be added or
106 * removed from the lists nor make the number of partial slabs be modified.
107 * (Note that the total number of slabs is an atomic value that may be
108 * modified without taking the list lock).
109 *
110 * The list_lock is a centralized lock and thus we avoid taking it as
111 * much as possible. As long as SLUB does not have to handle partial
112 * slabs, operations can continue without any centralized lock. F.e.
113 * allocating a long series of objects that fill up slabs does not require
114 * the list lock.
bd0e7491 115 *
41bec7c3
VB
116 * For debug caches, all allocations are forced to go through a list_lock
117 * protected region to serialize against concurrent validation.
118 *
bd0e7491
VB
119 * cpu_slab->lock local lock
120 *
121 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
122 * except the stat counters. This is a percpu structure manipulated only by
123 * the local cpu, so the lock protects against being preempted or interrupted
124 * by an irq. Fast path operations rely on lockless operations instead.
1f04b07d
TG
125 *
126 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption
127 * which means the lockless fastpath cannot be used as it might interfere with
128 * an in-progress slow path operations. In this case the local lock is always
129 * taken but it still utilizes the freelist for the common operations.
bd0e7491
VB
130 *
131 * lockless fastpaths
132 *
133 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
134 * are fully lockless when satisfied from the percpu slab (and when
135 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
136 * They also don't disable preemption or migration or irqs. They rely on
137 * the transaction id (tid) field to detect being preempted or moved to
138 * another cpu.
139 *
140 * irq, preemption, migration considerations
141 *
142 * Interrupts are disabled as part of list_lock or local_lock operations, or
143 * around the slab_lock operation, in order to make the slab allocator safe
144 * to use in the context of an irq.
145 *
146 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
147 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
148 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
149 * doesn't have to be revalidated in each section protected by the local lock.
81819f0f
CL
150 *
151 * SLUB assigns one slab for allocation to each processor.
152 * Allocations only occur from these slabs called cpu slabs.
153 *
672bba3a
CL
154 * Slabs with free elements are kept on a partial list and during regular
155 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 156 * freed then the slab will show up again on the partial lists.
672bba3a
CL
157 * We track full slabs for debugging purposes though because otherwise we
158 * cannot scan all objects.
81819f0f
CL
159 *
160 * Slabs are freed when they become empty. Teardown and setup is
161 * minimal so we rely on the page allocators per cpu caches for
162 * fast frees and allocs.
163 *
c2092c12 164 * slab->frozen The slab is frozen and exempt from list processing.
4b6f0750
CL
165 * This means that the slab is dedicated to a purpose
166 * such as satisfying allocations for a specific
167 * processor. Objects may be freed in the slab while
168 * it is frozen but slab_free will then skip the usual
169 * list operations. It is up to the processor holding
170 * the slab to integrate the slab into the slab lists
171 * when the slab is no longer needed.
172 *
173 * One use of this flag is to mark slabs that are
174 * used for allocations. Then such a slab becomes a cpu
175 * slab. The cpu slab may be equipped with an additional
dfb4f096 176 * freelist that allows lockless access to
894b8788
CL
177 * free objects in addition to the regular freelist
178 * that requires the slab lock.
81819f0f 179 *
aed68148 180 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
81819f0f 181 * options set. This moves slab handling out of
894b8788 182 * the fast path and disables lockless freelists.
81819f0f
CL
183 */
184
25c00c50
VB
185/*
186 * We could simply use migrate_disable()/enable() but as long as it's a
187 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
188 */
189#ifndef CONFIG_PREEMPT_RT
1f04b07d
TG
190#define slub_get_cpu_ptr(var) get_cpu_ptr(var)
191#define slub_put_cpu_ptr(var) put_cpu_ptr(var)
192#define USE_LOCKLESS_FAST_PATH() (true)
25c00c50
VB
193#else
194#define slub_get_cpu_ptr(var) \
195({ \
196 migrate_disable(); \
197 this_cpu_ptr(var); \
198})
199#define slub_put_cpu_ptr(var) \
200do { \
201 (void)(var); \
202 migrate_enable(); \
203} while (0)
1f04b07d 204#define USE_LOCKLESS_FAST_PATH() (false)
25c00c50
VB
205#endif
206
be784ba8
VB
207#ifndef CONFIG_SLUB_TINY
208#define __fastpath_inline __always_inline
209#else
210#define __fastpath_inline
211#endif
212
ca0cab65
VB
213#ifdef CONFIG_SLUB_DEBUG
214#ifdef CONFIG_SLUB_DEBUG_ON
215DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
216#else
217DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
218#endif
79270291 219#endif /* CONFIG_SLUB_DEBUG */
ca0cab65 220
6edf2576
FT
221/* Structure holding parameters for get_partial() call chain */
222struct partial_context {
6edf2576
FT
223 gfp_t flags;
224 unsigned int orig_size;
43c4c349 225 void *object;
6edf2576
FT
226};
227
59052e89
VB
228static inline bool kmem_cache_debug(struct kmem_cache *s)
229{
230 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
af537b0a 231}
5577bd8a 232
6edf2576
FT
233static inline bool slub_debug_orig_size(struct kmem_cache *s)
234{
235 return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
236 (s->flags & SLAB_KMALLOC));
237}
238
117d54df 239void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be 240{
59052e89 241 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
d86bd1be
JK
242 p += s->red_left_pad;
243
244 return p;
245}
246
345c905d
JK
247static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
248{
249#ifdef CONFIG_SLUB_CPU_PARTIAL
250 return !kmem_cache_debug(s);
251#else
252 return false;
253#endif
254}
255
81819f0f
CL
256/*
257 * Issues still to be resolved:
258 *
81819f0f
CL
259 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
260 *
81819f0f
CL
261 * - Variable sizing of the per node arrays
262 */
263
b789ef51
CL
264/* Enable to log cmpxchg failures */
265#undef SLUB_DEBUG_CMPXCHG
266
5a8a3c1f 267#ifndef CONFIG_SLUB_TINY
2086d26a 268/*
dc84207d 269 * Minimum number of partial slabs. These will be left on the partial
2086d26a
CL
270 * lists even if they are empty. kmem_cache_shrink may reclaim them.
271 */
76be8950 272#define MIN_PARTIAL 5
e95eed57 273
2086d26a
CL
274/*
275 * Maximum number of desirable partial slabs.
276 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 277 * sort the partial list by the number of objects in use.
2086d26a
CL
278 */
279#define MAX_PARTIAL 10
5a8a3c1f
VB
280#else
281#define MIN_PARTIAL 0
282#define MAX_PARTIAL 0
283#endif
2086d26a 284
becfda68 285#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 286 SLAB_POISON | SLAB_STORE_USER)
672bba3a 287
149daaf3
LA
288/*
289 * These debug flags cannot use CMPXCHG because there might be consistency
290 * issues when checking or reading debug information
291 */
292#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
293 SLAB_TRACE)
294
295
fa5ec8a1 296/*
3de47213 297 * Debugging flags that require metadata to be stored in the slab. These get
671776b3 298 * disabled when slab_debug=O is used and a cache's min order increases with
3de47213 299 * metadata.
fa5ec8a1 300 */
3de47213 301#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 302
210b5c06
CG
303#define OO_SHIFT 16
304#define OO_MASK ((1 << OO_SHIFT) - 1)
c2092c12 305#define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
210b5c06 306
81819f0f 307/* Internal SLUB flags */
d50112ed 308/* Poison object */
cc61eb85 309#define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
d50112ed 310/* Use cmpxchg_double */
6801be4f
PZ
311
312#ifdef system_has_freelist_aba
cc61eb85 313#define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
6801be4f 314#else
cc61eb85 315#define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED
6801be4f 316#endif
81819f0f 317
02cbc874
CL
318/*
319 * Tracking user of a slab.
320 */
d6543e39 321#define TRACK_ADDRS_COUNT 16
02cbc874 322struct track {
ce71e27c 323 unsigned long addr; /* Called from address */
5cf909c5
OG
324#ifdef CONFIG_STACKDEPOT
325 depot_stack_handle_t handle;
d6543e39 326#endif
02cbc874
CL
327 int cpu; /* Was running on cpu */
328 int pid; /* Pid context */
329 unsigned long when; /* When did the operation occur */
330};
331
332enum track_item { TRACK_ALLOC, TRACK_FREE };
333
b1a413a3 334#ifdef SLAB_SUPPORTS_SYSFS
81819f0f
CL
335static int sysfs_slab_add(struct kmem_cache *);
336static int sysfs_slab_alias(struct kmem_cache *, const char *);
81819f0f 337#else
0c710013
CL
338static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
339static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
340 { return 0; }
81819f0f
CL
341#endif
342
64dd6849
FM
343#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
344static void debugfs_slab_add(struct kmem_cache *);
345#else
346static inline void debugfs_slab_add(struct kmem_cache *s) { }
347#endif
348
7ef08ae8
VB
349enum stat_item {
350 ALLOC_FASTPATH, /* Allocation from cpu slab */
351 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
352 FREE_FASTPATH, /* Free to cpu slab */
353 FREE_SLOWPATH, /* Freeing not to cpu slab */
354 FREE_FROZEN, /* Freeing to frozen slab */
355 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
356 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
357 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */
358 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
359 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
360 ALLOC_NODE_MISMATCH, /* Switching cpu slab */
361 FREE_SLAB, /* Slab freed to the page allocator */
362 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
363 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
364 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
365 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
366 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
367 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
368 DEACTIVATE_BYPASS, /* Implicit deactivation */
369 ORDER_FALLBACK, /* Number of times fallback was necessary */
370 CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
371 CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */
372 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */
373 CPU_PARTIAL_FREE, /* Refill cpu partial on free */
374 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */
375 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */
376 NR_SLUB_STAT_ITEMS
377};
378
379#ifndef CONFIG_SLUB_TINY
380/*
381 * When changing the layout, make sure freelist and tid are still compatible
382 * with this_cpu_cmpxchg_double() alignment requirements.
383 */
384struct kmem_cache_cpu {
385 union {
386 struct {
387 void **freelist; /* Pointer to next available object */
388 unsigned long tid; /* Globally unique transaction id */
389 };
390 freelist_aba_t freelist_tid;
391 };
392 struct slab *slab; /* The slab from which we are allocating */
393#ifdef CONFIG_SLUB_CPU_PARTIAL
c94d2224 394 struct slab *partial; /* Partially allocated slabs */
7ef08ae8
VB
395#endif
396 local_lock_t lock; /* Protects the fields above */
397#ifdef CONFIG_SLUB_STATS
398 unsigned int stat[NR_SLUB_STAT_ITEMS];
399#endif
400};
401#endif /* CONFIG_SLUB_TINY */
402
4fdccdfb 403static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
404{
405#ifdef CONFIG_SLUB_STATS
88da03a6
CL
406 /*
407 * The rmw is racy on a preemptible kernel but this is acceptable, so
408 * avoid this_cpu_add()'s irq-disable overhead.
409 */
410 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
411#endif
412}
413
6f3dd2c3
VB
414static inline
415void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
416{
417#ifdef CONFIG_SLUB_STATS
418 raw_cpu_add(s->cpu_slab->stat[si], v);
419#endif
420}
421
b52ef56e
VB
422/*
423 * The slab lists for all objects.
424 */
425struct kmem_cache_node {
426 spinlock_t list_lock;
427 unsigned long nr_partial;
428 struct list_head partial;
429#ifdef CONFIG_SLUB_DEBUG
430 atomic_long_t nr_slabs;
431 atomic_long_t total_objects;
432 struct list_head full;
433#endif
434};
435
436static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
437{
438 return s->node[node];
439}
440
441/*
442 * Iterator over all nodes. The body will be executed for each node that has
443 * a kmem_cache_node structure allocated (which is true for all online nodes)
444 */
445#define for_each_kmem_cache_node(__s, __node, __n) \
446 for (__node = 0; __node < nr_node_ids; __node++) \
447 if ((__n = get_node(__s, __node)))
448
7e1fa93d
VB
449/*
450 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
451 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
452 * differ during memory hotplug/hotremove operations.
453 * Protected by slab_mutex.
454 */
455static nodemask_t slab_nodes;
456
0af8489b 457#ifndef CONFIG_SLUB_TINY
e45cc288
ML
458/*
459 * Workqueue used for flush_cpu_slab().
460 */
461static struct workqueue_struct *flushwq;
0af8489b 462#endif
e45cc288 463
81819f0f
CL
464/********************************************************************
465 * Core slab cache functions
466 *******************************************************************/
467
44f6a42d
JH
468/*
469 * freeptr_t represents a SLUB freelist pointer, which might be encoded
470 * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
471 */
472typedef struct { unsigned long v; } freeptr_t;
473
2482ddec
KC
474/*
475 * Returns freelist pointer (ptr). With hardening, this is obfuscated
476 * with an XOR of the address where the pointer is held and a per-cache
477 * random number.
478 */
44f6a42d
JH
479static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
480 void *ptr, unsigned long ptr_addr)
2482ddec 481{
b06952cd
VB
482 unsigned long encoded;
483
2482ddec 484#ifdef CONFIG_SLAB_FREELIST_HARDENED
b06952cd 485 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
44f6a42d 486#else
b06952cd 487 encoded = (unsigned long)ptr;
44f6a42d 488#endif
b06952cd 489 return (freeptr_t){.v = encoded};
44f6a42d
JH
490}
491
492static inline void *freelist_ptr_decode(const struct kmem_cache *s,
493 freeptr_t ptr, unsigned long ptr_addr)
494{
495 void *decoded;
496
497#ifdef CONFIG_SLAB_FREELIST_HARDENED
b06952cd 498 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
2482ddec 499#else
44f6a42d 500 decoded = (void *)ptr.v;
2482ddec 501#endif
44f6a42d 502 return decoded;
2482ddec
KC
503}
504
7656c72b
CL
505static inline void *get_freepointer(struct kmem_cache *s, void *object)
506{
1662b6c2
VB
507 unsigned long ptr_addr;
508 freeptr_t p;
509
aa1ef4d7 510 object = kasan_reset_tag(object);
1662b6c2
VB
511 ptr_addr = (unsigned long)object + s->offset;
512 p = *(freeptr_t *)(ptr_addr);
513 return freelist_ptr_decode(s, p, ptr_addr);
7656c72b
CL
514}
515
0af8489b 516#ifndef CONFIG_SLUB_TINY
0ad9500e
ED
517static void prefetch_freepointer(const struct kmem_cache *s, void *object)
518{
04b4b006 519 prefetchw(object + s->offset);
0ad9500e 520}
0af8489b 521#endif
0ad9500e 522
68ef169a
AP
523/*
524 * When running under KMSAN, get_freepointer_safe() may return an uninitialized
525 * pointer value in the case the current thread loses the race for the next
526 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
527 * slab_alloc_node() will fail, so the uninitialized value won't be used, but
528 * KMSAN will still check all arguments of cmpxchg because of imperfect
529 * handling of inline assembly.
530 * To work around this problem, we apply __no_kmsan_checks to ensure that
531 * get_freepointer_safe() returns initialized memory.
532 */
533__no_kmsan_checks
1393d9a1
CL
534static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
535{
2482ddec 536 unsigned long freepointer_addr;
44f6a42d 537 freeptr_t p;
1393d9a1 538
8e57f8ac 539 if (!debug_pagealloc_enabled_static())
922d566c
JK
540 return get_freepointer(s, object);
541
f70b0049 542 object = kasan_reset_tag(object);
2482ddec 543 freepointer_addr = (unsigned long)object + s->offset;
44f6a42d
JH
544 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
545 return freelist_ptr_decode(s, p, freepointer_addr);
1393d9a1
CL
546}
547
7656c72b
CL
548static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
549{
2482ddec
KC
550 unsigned long freeptr_addr = (unsigned long)object + s->offset;
551
ce6fa91b
AP
552#ifdef CONFIG_SLAB_FREELIST_HARDENED
553 BUG_ON(object == fp); /* naive detection of double free or corruption */
554#endif
555
aa1ef4d7 556 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
44f6a42d 557 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
7656c72b
CL
558}
559
8f828aa4
NB
560/*
561 * See comment in calculate_sizes().
562 */
563static inline bool freeptr_outside_object(struct kmem_cache *s)
564{
565 return s->offset >= s->inuse;
566}
567
568/*
569 * Return offset of the end of info block which is inuse + free pointer if
570 * not overlapping with object.
571 */
572static inline unsigned int get_info_end(struct kmem_cache *s)
573{
574 if (freeptr_outside_object(s))
575 return s->inuse + sizeof(void *);
576 else
577 return s->inuse;
578}
579
7656c72b 580/* Loop over all objects in a slab */
224a88be 581#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
582 for (__p = fixup_red_left(__s, __addr); \
583 __p < (__addr) + (__objects) * (__s)->size; \
584 __p += (__s)->size)
7656c72b 585
9736d2a9 586static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 587{
9736d2a9 588 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
589}
590
19af27af 591static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 592 unsigned int size)
834f3d11
CL
593{
594 struct kmem_cache_order_objects x = {
9736d2a9 595 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
596 };
597
598 return x;
599}
600
19af27af 601static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 602{
210b5c06 603 return x.x >> OO_SHIFT;
834f3d11
CL
604}
605
19af27af 606static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 607{
210b5c06 608 return x.x & OO_MASK;
834f3d11
CL
609}
610
b47291ef
VB
611#ifdef CONFIG_SLUB_CPU_PARTIAL
612static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
613{
bb192ed9 614 unsigned int nr_slabs;
b47291ef
VB
615
616 s->cpu_partial = nr_objects;
617
618 /*
619 * We take the number of objects but actually limit the number of
c2092c12
VB
620 * slabs on the per cpu partial list, in order to limit excessive
621 * growth of the list. For simplicity we assume that the slabs will
b47291ef
VB
622 * be half-full.
623 */
bb192ed9
VB
624 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
625 s->cpu_partial_slabs = nr_slabs;
b47291ef 626}
721a2f8b
XS
627
628static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
629{
630 return s->cpu_partial_slabs;
631}
b47291ef
VB
632#else
633static inline void
634slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
635{
636}
721a2f8b
XS
637
638static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
639{
640 return 0;
641}
b47291ef
VB
642#endif /* CONFIG_SLUB_CPU_PARTIAL */
643
881db7fb
CL
644/*
645 * Per slab locking using the pagelock
646 */
5875e598 647static __always_inline void slab_lock(struct slab *slab)
881db7fb 648{
5e0debe0 649 bit_spin_lock(PG_locked, &slab->__page_flags);
881db7fb
CL
650}
651
5875e598 652static __always_inline void slab_unlock(struct slab *slab)
881db7fb 653{
5e0debe0 654 bit_spin_unlock(PG_locked, &slab->__page_flags);
881db7fb
CL
655}
656
6801be4f
PZ
657static inline bool
658__update_freelist_fast(struct slab *slab,
659 void *freelist_old, unsigned long counters_old,
660 void *freelist_new, unsigned long counters_new)
661{
662#ifdef system_has_freelist_aba
663 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
664 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
665
666 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
667#else
668 return false;
669#endif
670}
671
672static inline bool
673__update_freelist_slow(struct slab *slab,
674 void *freelist_old, unsigned long counters_old,
675 void *freelist_new, unsigned long counters_new)
676{
677 bool ret = false;
678
679 slab_lock(slab);
680 if (slab->freelist == freelist_old &&
681 slab->counters == counters_old) {
682 slab->freelist = freelist_new;
683 slab->counters = counters_new;
684 ret = true;
685 }
686 slab_unlock(slab);
687
688 return ret;
689}
690
a2b4ae8b
VB
691/*
692 * Interrupts must be disabled (for the fallback code to work right), typically
5875e598
VB
693 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
694 * part of bit_spin_lock(), is sufficient because the policy is not to allow any
695 * allocation/ free operation in hardirq context. Therefore nothing can
696 * interrupt the operation.
a2b4ae8b 697 */
6801be4f 698static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
1d07171c
CL
699 void *freelist_old, unsigned long counters_old,
700 void *freelist_new, unsigned long counters_new,
701 const char *n)
702{
6801be4f
PZ
703 bool ret;
704
1f04b07d 705 if (USE_LOCKLESS_FAST_PATH())
a2b4ae8b 706 lockdep_assert_irqs_disabled();
6801be4f 707
1d07171c 708 if (s->flags & __CMPXCHG_DOUBLE) {
6801be4f
PZ
709 ret = __update_freelist_fast(slab, freelist_old, counters_old,
710 freelist_new, counters_new);
711 } else {
712 ret = __update_freelist_slow(slab, freelist_old, counters_old,
713 freelist_new, counters_new);
1d07171c 714 }
6801be4f
PZ
715 if (likely(ret))
716 return true;
1d07171c
CL
717
718 cpu_relax();
719 stat(s, CMPXCHG_DOUBLE_FAIL);
720
721#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 722 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
723#endif
724
6f6528a1 725 return false;
1d07171c
CL
726}
727
6801be4f 728static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
b789ef51
CL
729 void *freelist_old, unsigned long counters_old,
730 void *freelist_new, unsigned long counters_new,
731 const char *n)
732{
6801be4f
PZ
733 bool ret;
734
b789ef51 735 if (s->flags & __CMPXCHG_DOUBLE) {
6801be4f
PZ
736 ret = __update_freelist_fast(slab, freelist_old, counters_old,
737 freelist_new, counters_new);
738 } else {
1d07171c
CL
739 unsigned long flags;
740
741 local_irq_save(flags);
6801be4f
PZ
742 ret = __update_freelist_slow(slab, freelist_old, counters_old,
743 freelist_new, counters_new);
1d07171c 744 local_irq_restore(flags);
b789ef51 745 }
6801be4f
PZ
746 if (likely(ret))
747 return true;
b789ef51
CL
748
749 cpu_relax();
750 stat(s, CMPXCHG_DOUBLE_FAIL);
751
752#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 753 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
754#endif
755
6f6528a1 756 return false;
b789ef51
CL
757}
758
41ecc55b 759#ifdef CONFIG_SLUB_DEBUG
90e9f6a6 760static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
4ef3f5a3 761static DEFINE_SPINLOCK(object_map_lock);
90e9f6a6 762
b3fd64e1 763static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
bb192ed9 764 struct slab *slab)
b3fd64e1 765{
bb192ed9 766 void *addr = slab_address(slab);
b3fd64e1
VB
767 void *p;
768
bb192ed9 769 bitmap_zero(obj_map, slab->objects);
b3fd64e1 770
bb192ed9 771 for (p = slab->freelist; p; p = get_freepointer(s, p))
b3fd64e1
VB
772 set_bit(__obj_to_index(s, addr, p), obj_map);
773}
774
1f9f78b1
OG
775#if IS_ENABLED(CONFIG_KUNIT)
776static bool slab_add_kunit_errors(void)
777{
778 struct kunit_resource *resource;
779
909c6475 780 if (!kunit_get_current_test())
1f9f78b1
OG
781 return false;
782
783 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
784 if (!resource)
785 return false;
786
787 (*(int *)resource->data)++;
788 kunit_put_resource(resource);
789 return true;
790}
791#else
792static inline bool slab_add_kunit_errors(void) { return false; }
793#endif
794
870b1fbb 795static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
796{
797 if (s->flags & SLAB_RED_ZONE)
798 return s->size - s->red_left_pad;
799
800 return s->size;
801}
802
803static inline void *restore_red_left(struct kmem_cache *s, void *p)
804{
805 if (s->flags & SLAB_RED_ZONE)
806 p -= s->red_left_pad;
807
808 return p;
809}
810
41ecc55b
CL
811/*
812 * Debug settings:
813 */
89d3c87e 814#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 815static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 816#else
d50112ed 817static slab_flags_t slub_debug;
f0630fff 818#endif
41ecc55b 819
e17f1dfb 820static char *slub_debug_string;
fa5ec8a1 821static int disable_higher_order_debug;
41ecc55b 822
a79316c6
AR
823/*
824 * slub is about to manipulate internal object metadata. This memory lies
825 * outside the range of the allocated object, so accessing it would normally
826 * be reported by kasan as a bounds error. metadata_access_enable() is used
827 * to tell kasan that these accesses are OK.
828 */
829static inline void metadata_access_enable(void)
830{
831 kasan_disable_current();
832}
833
834static inline void metadata_access_disable(void)
835{
836 kasan_enable_current();
837}
838
81819f0f
CL
839/*
840 * Object debugging
841 */
d86bd1be
JK
842
843/* Verify that a pointer has an address that is valid within a slab page */
844static inline int check_valid_pointer(struct kmem_cache *s,
bb192ed9 845 struct slab *slab, void *object)
d86bd1be
JK
846{
847 void *base;
848
849 if (!object)
850 return 1;
851
bb192ed9 852 base = slab_address(slab);
338cfaad 853 object = kasan_reset_tag(object);
d86bd1be 854 object = restore_red_left(s, object);
bb192ed9 855 if (object < base || object >= base + slab->objects * s->size ||
d86bd1be
JK
856 (object - base) % s->size) {
857 return 0;
858 }
859
860 return 1;
861}
862
aa2efd5e
DT
863static void print_section(char *level, char *text, u8 *addr,
864 unsigned int length)
81819f0f 865{
a79316c6 866 metadata_access_enable();
340caf17
KYL
867 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
868 16, 1, kasan_reset_tag((void *)addr), length, 1);
a79316c6 869 metadata_access_disable();
81819f0f
CL
870}
871
81819f0f
CL
872static struct track *get_track(struct kmem_cache *s, void *object,
873 enum track_item alloc)
874{
875 struct track *p;
876
cbfc35a4 877 p = object + get_info_end(s);
81819f0f 878
aa1ef4d7 879 return kasan_reset_tag(p + alloc);
81819f0f
CL
880}
881
5cf909c5 882#ifdef CONFIG_STACKDEPOT
c4cf6785
SAS
883static noinline depot_stack_handle_t set_track_prepare(void)
884{
885 depot_stack_handle_t handle;
5cf909c5 886 unsigned long entries[TRACK_ADDRS_COUNT];
0cd1a029 887 unsigned int nr_entries;
ae14c63a 888
5cf909c5 889 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
c4cf6785
SAS
890 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
891
892 return handle;
893}
894#else
895static inline depot_stack_handle_t set_track_prepare(void)
896{
897 return 0;
898}
d6543e39 899#endif
5cf909c5 900
c4cf6785
SAS
901static void set_track_update(struct kmem_cache *s, void *object,
902 enum track_item alloc, unsigned long addr,
903 depot_stack_handle_t handle)
904{
905 struct track *p = get_track(s, object, alloc);
906
907#ifdef CONFIG_STACKDEPOT
908 p->handle = handle;
909#endif
0cd1a029
VB
910 p->addr = addr;
911 p->cpu = smp_processor_id();
912 p->pid = current->pid;
913 p->when = jiffies;
81819f0f
CL
914}
915
c4cf6785
SAS
916static __always_inline void set_track(struct kmem_cache *s, void *object,
917 enum track_item alloc, unsigned long addr)
918{
919 depot_stack_handle_t handle = set_track_prepare();
920
921 set_track_update(s, object, alloc, addr, handle);
922}
923
81819f0f
CL
924static void init_tracking(struct kmem_cache *s, void *object)
925{
0cd1a029
VB
926 struct track *p;
927
24922684
CL
928 if (!(s->flags & SLAB_STORE_USER))
929 return;
930
0cd1a029
VB
931 p = get_track(s, object, TRACK_ALLOC);
932 memset(p, 0, 2*sizeof(struct track));
81819f0f
CL
933}
934
86609d33 935static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f 936{
5cf909c5
OG
937 depot_stack_handle_t handle __maybe_unused;
938
81819f0f
CL
939 if (!t->addr)
940 return;
941
96b94abc 942 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 943 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
5cf909c5
OG
944#ifdef CONFIG_STACKDEPOT
945 handle = READ_ONCE(t->handle);
946 if (handle)
947 stack_depot_print(handle);
948 else
949 pr_err("object allocation/free stack trace missing\n");
d6543e39 950#endif
24922684
CL
951}
952
e42f174e 953void print_tracking(struct kmem_cache *s, void *object)
24922684 954{
86609d33 955 unsigned long pr_time = jiffies;
24922684
CL
956 if (!(s->flags & SLAB_STORE_USER))
957 return;
958
86609d33
CP
959 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
960 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
961}
962
fb012e27 963static void print_slab_info(const struct slab *slab)
24922684 964{
fb012e27 965 struct folio *folio = (struct folio *)slab_folio(slab);
24922684 966
fb012e27
MWO
967 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
968 slab, slab->objects, slab->inuse, slab->freelist,
969 folio_flags(folio, 0));
24922684
CL
970}
971
6edf2576
FT
972/*
973 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
974 * family will round up the real request size to these fixed ones, so
975 * there could be an extra area than what is requested. Save the original
976 * request size in the meta data area, for better debug and sanity check.
977 */
978static inline void set_orig_size(struct kmem_cache *s,
979 void *object, unsigned int orig_size)
980{
981 void *p = kasan_reset_tag(object);
2d552463 982 unsigned int kasan_meta_size;
6edf2576
FT
983
984 if (!slub_debug_orig_size(s))
985 return;
986
946fa0db 987 /*
2d552463
AK
988 * KASAN can save its free meta data inside of the object at offset 0.
989 * If this meta data size is larger than 'orig_size', it will overlap
990 * the data redzone in [orig_size+1, object_size]. Thus, we adjust
991 * 'orig_size' to be as at least as big as KASAN's meta data.
946fa0db 992 */
2d552463
AK
993 kasan_meta_size = kasan_metadata_size(s, true);
994 if (kasan_meta_size > orig_size)
995 orig_size = kasan_meta_size;
946fa0db 996
6edf2576
FT
997 p += get_info_end(s);
998 p += sizeof(struct track) * 2;
999
1000 *(unsigned int *)p = orig_size;
1001}
1002
1003static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
1004{
1005 void *p = kasan_reset_tag(object);
1006
1007 if (!slub_debug_orig_size(s))
1008 return s->object_size;
1009
1010 p += get_info_end(s);
1011 p += sizeof(struct track) * 2;
1012
1013 return *(unsigned int *)p;
1014}
1015
946fa0db
FT
1016void skip_orig_size_check(struct kmem_cache *s, const void *object)
1017{
1018 set_orig_size(s, (void *)object, s->object_size);
1019}
1020
24922684
CL
1021static void slab_bug(struct kmem_cache *s, char *fmt, ...)
1022{
ecc42fbe 1023 struct va_format vaf;
24922684 1024 va_list args;
24922684
CL
1025
1026 va_start(args, fmt);
ecc42fbe
FF
1027 vaf.fmt = fmt;
1028 vaf.va = &args;
f9f58285 1029 pr_err("=============================================================================\n");
ecc42fbe 1030 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 1031 pr_err("-----------------------------------------------------------------------------\n\n");
ecc42fbe 1032 va_end(args);
81819f0f
CL
1033}
1034
582d1212 1035__printf(2, 3)
24922684
CL
1036static void slab_fix(struct kmem_cache *s, char *fmt, ...)
1037{
ecc42fbe 1038 struct va_format vaf;
24922684 1039 va_list args;
24922684 1040
1f9f78b1
OG
1041 if (slab_add_kunit_errors())
1042 return;
1043
24922684 1044 va_start(args, fmt);
ecc42fbe
FF
1045 vaf.fmt = fmt;
1046 vaf.va = &args;
1047 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 1048 va_end(args);
24922684
CL
1049}
1050
bb192ed9 1051static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
81819f0f
CL
1052{
1053 unsigned int off; /* Offset of last byte */
bb192ed9 1054 u8 *addr = slab_address(slab);
24922684
CL
1055
1056 print_tracking(s, p);
1057
bb192ed9 1058 print_slab_info(slab);
24922684 1059
96b94abc 1060 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
f9f58285 1061 p, p - addr, get_freepointer(s, p));
24922684 1062
d86bd1be 1063 if (s->flags & SLAB_RED_ZONE)
8669dbab 1064 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
aa2efd5e 1065 s->red_left_pad);
d86bd1be 1066 else if (p > addr + 16)
aa2efd5e 1067 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 1068
8669dbab 1069 print_section(KERN_ERR, "Object ", p,
1b473f29 1070 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 1071 if (s->flags & SLAB_RED_ZONE)
8669dbab 1072 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 1073 s->inuse - s->object_size);
81819f0f 1074
cbfc35a4 1075 off = get_info_end(s);
81819f0f 1076
24922684 1077 if (s->flags & SLAB_STORE_USER)
81819f0f 1078 off += 2 * sizeof(struct track);
81819f0f 1079
6edf2576
FT
1080 if (slub_debug_orig_size(s))
1081 off += sizeof(unsigned int);
1082
5d1ba310 1083 off += kasan_metadata_size(s, false);
80a9201a 1084
d86bd1be 1085 if (off != size_from_object(s))
81819f0f 1086 /* Beginning of the filler is the free pointer */
8669dbab 1087 print_section(KERN_ERR, "Padding ", p + off,
aa2efd5e 1088 size_from_object(s) - off);
24922684
CL
1089
1090 dump_stack();
81819f0f
CL
1091}
1092
bb192ed9 1093static void object_err(struct kmem_cache *s, struct slab *slab,
81819f0f
CL
1094 u8 *object, char *reason)
1095{
1f9f78b1
OG
1096 if (slab_add_kunit_errors())
1097 return;
1098
3dc50637 1099 slab_bug(s, "%s", reason);
bb192ed9 1100 print_trailer(s, slab, object);
65ebdeef 1101 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
1102}
1103
bb192ed9 1104static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
ae16d059
VB
1105 void **freelist, void *nextfree)
1106{
1107 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
bb192ed9
VB
1108 !check_valid_pointer(s, slab, nextfree) && freelist) {
1109 object_err(s, slab, *freelist, "Freechain corrupt");
ae16d059
VB
1110 *freelist = NULL;
1111 slab_fix(s, "Isolate corrupted freechain");
1112 return true;
1113 }
1114
1115 return false;
1116}
1117
bb192ed9 1118static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
d0e0ac97 1119 const char *fmt, ...)
81819f0f
CL
1120{
1121 va_list args;
1122 char buf[100];
1123
1f9f78b1
OG
1124 if (slab_add_kunit_errors())
1125 return;
1126
24922684
CL
1127 va_start(args, fmt);
1128 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 1129 va_end(args);
3dc50637 1130 slab_bug(s, "%s", buf);
bb192ed9 1131 print_slab_info(slab);
81819f0f 1132 dump_stack();
65ebdeef 1133 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
1134}
1135
f7cb1933 1136static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f 1137{
aa1ef4d7 1138 u8 *p = kasan_reset_tag(object);
946fa0db 1139 unsigned int poison_size = s->object_size;
81819f0f 1140
946fa0db 1141 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
1142 memset(p - s->red_left_pad, val, s->red_left_pad);
1143
946fa0db
FT
1144 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1145 /*
1146 * Redzone the extra allocated space by kmalloc than
1147 * requested, and the poison size will be limited to
1148 * the original request size accordingly.
1149 */
1150 poison_size = get_orig_size(s, object);
1151 }
1152 }
1153
81819f0f 1154 if (s->flags & __OBJECT_POISON) {
946fa0db
FT
1155 memset(p, POISON_FREE, poison_size - 1);
1156 p[poison_size - 1] = POISON_END;
81819f0f
CL
1157 }
1158
1159 if (s->flags & SLAB_RED_ZONE)
946fa0db 1160 memset(p + poison_size, val, s->inuse - poison_size);
81819f0f
CL
1161}
1162
24922684
CL
1163static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1164 void *from, void *to)
1165{
582d1212 1166 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
24922684
CL
1167 memset(from, data, to - from);
1168}
1169
bb192ed9 1170static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
24922684 1171 u8 *object, char *what,
06428780 1172 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
1173{
1174 u8 *fault;
1175 u8 *end;
bb192ed9 1176 u8 *addr = slab_address(slab);
24922684 1177
a79316c6 1178 metadata_access_enable();
aa1ef4d7 1179 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
a79316c6 1180 metadata_access_disable();
24922684
CL
1181 if (!fault)
1182 return 1;
1183
1184 end = start + bytes;
1185 while (end > fault && end[-1] == value)
1186 end--;
1187
1f9f78b1
OG
1188 if (slab_add_kunit_errors())
1189 goto skip_bug_print;
1190
24922684 1191 slab_bug(s, "%s overwritten", what);
96b94abc 1192 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
e1b70dd1
MC
1193 fault, end - 1, fault - addr,
1194 fault[0], value);
bb192ed9 1195 print_trailer(s, slab, object);
65ebdeef 1196 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
24922684 1197
1f9f78b1 1198skip_bug_print:
24922684
CL
1199 restore_bytes(s, what, value, fault, end);
1200 return 0;
81819f0f
CL
1201}
1202
81819f0f
CL
1203/*
1204 * Object layout:
1205 *
1206 * object address
1207 * Bytes of the object to be managed.
1208 * If the freepointer may overlay the object then the free
cbfc35a4 1209 * pointer is at the middle of the object.
672bba3a 1210 *
81819f0f
CL
1211 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
1212 * 0xa5 (POISON_END)
1213 *
3b0efdfa 1214 * object + s->object_size
81819f0f 1215 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 1216 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 1217 * object_size == inuse.
672bba3a 1218 *
81819f0f
CL
1219 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1220 * 0xcc (RED_ACTIVE) for objects in use.
1221 *
1222 * object + s->inuse
672bba3a
CL
1223 * Meta data starts here.
1224 *
81819f0f
CL
1225 * A. Free pointer (if we cannot overwrite object on free)
1226 * B. Tracking data for SLAB_STORE_USER
6edf2576
FT
1227 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1228 * D. Padding to reach required alignment boundary or at minimum
6446faa2 1229 * one word if debugging is on to be able to detect writes
672bba3a
CL
1230 * before the word boundary.
1231 *
1232 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
1233 *
1234 * object + s->size
672bba3a 1235 * Nothing is used beyond s->size.
81819f0f 1236 *
3b0efdfa 1237 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 1238 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
1239 * may be used with merged slabcaches.
1240 */
1241
bb192ed9 1242static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
81819f0f 1243{
cbfc35a4 1244 unsigned long off = get_info_end(s); /* The end of info */
81819f0f 1245
6edf2576 1246 if (s->flags & SLAB_STORE_USER) {
81819f0f
CL
1247 /* We also have user information there */
1248 off += 2 * sizeof(struct track);
1249
6edf2576
FT
1250 if (s->flags & SLAB_KMALLOC)
1251 off += sizeof(unsigned int);
1252 }
1253
5d1ba310 1254 off += kasan_metadata_size(s, false);
80a9201a 1255
d86bd1be 1256 if (size_from_object(s) == off)
81819f0f
CL
1257 return 1;
1258
bb192ed9 1259 return check_bytes_and_report(s, slab, p, "Object padding",
d86bd1be 1260 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
1261}
1262
39b26464 1263/* Check the pad bytes at the end of a slab page */
a204e6d6 1264static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
81819f0f 1265{
24922684
CL
1266 u8 *start;
1267 u8 *fault;
1268 u8 *end;
5d682681 1269 u8 *pad;
24922684
CL
1270 int length;
1271 int remainder;
81819f0f
CL
1272
1273 if (!(s->flags & SLAB_POISON))
a204e6d6 1274 return;
81819f0f 1275
bb192ed9
VB
1276 start = slab_address(slab);
1277 length = slab_size(slab);
39b26464
CL
1278 end = start + length;
1279 remainder = length % s->size;
81819f0f 1280 if (!remainder)
a204e6d6 1281 return;
81819f0f 1282
5d682681 1283 pad = end - remainder;
a79316c6 1284 metadata_access_enable();
aa1ef4d7 1285 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
a79316c6 1286 metadata_access_disable();
24922684 1287 if (!fault)
a204e6d6 1288 return;
24922684
CL
1289 while (end > fault && end[-1] == POISON_INUSE)
1290 end--;
1291
bb192ed9 1292 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
e1b70dd1 1293 fault, end - 1, fault - start);
5d682681 1294 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 1295
5d682681 1296 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
81819f0f
CL
1297}
1298
bb192ed9 1299static int check_object(struct kmem_cache *s, struct slab *slab,
f7cb1933 1300 void *object, u8 val)
81819f0f
CL
1301{
1302 u8 *p = object;
3b0efdfa 1303 u8 *endobject = object + s->object_size;
2d552463 1304 unsigned int orig_size, kasan_meta_size;
81819f0f
CL
1305
1306 if (s->flags & SLAB_RED_ZONE) {
bb192ed9 1307 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
d86bd1be
JK
1308 object - s->red_left_pad, val, s->red_left_pad))
1309 return 0;
1310
bb192ed9 1311 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
3b0efdfa 1312 endobject, val, s->inuse - s->object_size))
81819f0f 1313 return 0;
946fa0db
FT
1314
1315 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1316 orig_size = get_orig_size(s, object);
1317
1318 if (s->object_size > orig_size &&
1319 !check_bytes_and_report(s, slab, object,
1320 "kmalloc Redzone", p + orig_size,
1321 val, s->object_size - orig_size)) {
1322 return 0;
1323 }
1324 }
81819f0f 1325 } else {
3b0efdfa 1326 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
bb192ed9 1327 check_bytes_and_report(s, slab, p, "Alignment padding",
d0e0ac97
CG
1328 endobject, POISON_INUSE,
1329 s->inuse - s->object_size);
3adbefee 1330 }
81819f0f
CL
1331 }
1332
1333 if (s->flags & SLAB_POISON) {
2d552463
AK
1334 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1335 /*
1336 * KASAN can save its free meta data inside of the
1337 * object at offset 0. Thus, skip checking the part of
1338 * the redzone that overlaps with the meta data.
1339 */
1340 kasan_meta_size = kasan_metadata_size(s, true);
1341 if (kasan_meta_size < s->object_size - 1 &&
1342 !check_bytes_and_report(s, slab, p, "Poison",
1343 p + kasan_meta_size, POISON_FREE,
1344 s->object_size - kasan_meta_size - 1))
1345 return 0;
1346 if (kasan_meta_size < s->object_size &&
1347 !check_bytes_and_report(s, slab, p, "End Poison",
1348 p + s->object_size - 1, POISON_END, 1))
1349 return 0;
1350 }
81819f0f
CL
1351 /*
1352 * check_pad_bytes cleans up on its own.
1353 */
bb192ed9 1354 check_pad_bytes(s, slab, p);
81819f0f
CL
1355 }
1356
cbfc35a4 1357 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
81819f0f
CL
1358 /*
1359 * Object and freepointer overlap. Cannot check
1360 * freepointer while object is allocated.
1361 */
1362 return 1;
1363
1364 /* Check free pointer validity */
bb192ed9
VB
1365 if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1366 object_err(s, slab, p, "Freepointer corrupt");
81819f0f 1367 /*
9f6c708e 1368 * No choice but to zap it and thus lose the remainder
81819f0f 1369 * of the free objects in this slab. May cause
672bba3a 1370 * another error because the object count is now wrong.
81819f0f 1371 */
a973e9dd 1372 set_freepointer(s, p, NULL);
81819f0f
CL
1373 return 0;
1374 }
1375 return 1;
1376}
1377
bb192ed9 1378static int check_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 1379{
39b26464
CL
1380 int maxobj;
1381
bb192ed9
VB
1382 if (!folio_test_slab(slab_folio(slab))) {
1383 slab_err(s, slab, "Not a valid slab page");
81819f0f
CL
1384 return 0;
1385 }
39b26464 1386
bb192ed9
VB
1387 maxobj = order_objects(slab_order(slab), s->size);
1388 if (slab->objects > maxobj) {
1389 slab_err(s, slab, "objects %u > max %u",
1390 slab->objects, maxobj);
39b26464
CL
1391 return 0;
1392 }
bb192ed9
VB
1393 if (slab->inuse > slab->objects) {
1394 slab_err(s, slab, "inuse %u > max %u",
1395 slab->inuse, slab->objects);
81819f0f
CL
1396 return 0;
1397 }
1398 /* Slab_pad_check fixes things up after itself */
bb192ed9 1399 slab_pad_check(s, slab);
81819f0f
CL
1400 return 1;
1401}
1402
1403/*
c2092c12 1404 * Determine if a certain object in a slab is on the freelist. Must hold the
672bba3a 1405 * slab lock to guarantee that the chains are in a consistent state.
81819f0f 1406 */
bb192ed9 1407static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
81819f0f
CL
1408{
1409 int nr = 0;
881db7fb 1410 void *fp;
81819f0f 1411 void *object = NULL;
f6edde9c 1412 int max_objects;
81819f0f 1413
bb192ed9
VB
1414 fp = slab->freelist;
1415 while (fp && nr <= slab->objects) {
81819f0f
CL
1416 if (fp == search)
1417 return 1;
bb192ed9 1418 if (!check_valid_pointer(s, slab, fp)) {
81819f0f 1419 if (object) {
bb192ed9 1420 object_err(s, slab, object,
81819f0f 1421 "Freechain corrupt");
a973e9dd 1422 set_freepointer(s, object, NULL);
81819f0f 1423 } else {
bb192ed9
VB
1424 slab_err(s, slab, "Freepointer corrupt");
1425 slab->freelist = NULL;
1426 slab->inuse = slab->objects;
24922684 1427 slab_fix(s, "Freelist cleared");
81819f0f
CL
1428 return 0;
1429 }
1430 break;
1431 }
1432 object = fp;
1433 fp = get_freepointer(s, object);
1434 nr++;
1435 }
1436
bb192ed9 1437 max_objects = order_objects(slab_order(slab), s->size);
210b5c06
CG
1438 if (max_objects > MAX_OBJS_PER_PAGE)
1439 max_objects = MAX_OBJS_PER_PAGE;
224a88be 1440
bb192ed9
VB
1441 if (slab->objects != max_objects) {
1442 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1443 slab->objects, max_objects);
1444 slab->objects = max_objects;
582d1212 1445 slab_fix(s, "Number of objects adjusted");
224a88be 1446 }
bb192ed9
VB
1447 if (slab->inuse != slab->objects - nr) {
1448 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1449 slab->inuse, slab->objects - nr);
1450 slab->inuse = slab->objects - nr;
582d1212 1451 slab_fix(s, "Object count adjusted");
81819f0f
CL
1452 }
1453 return search == NULL;
1454}
1455
bb192ed9 1456static void trace(struct kmem_cache *s, struct slab *slab, void *object,
0121c619 1457 int alloc)
3ec09742
CL
1458{
1459 if (s->flags & SLAB_TRACE) {
f9f58285 1460 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1461 s->name,
1462 alloc ? "alloc" : "free",
bb192ed9
VB
1463 object, slab->inuse,
1464 slab->freelist);
3ec09742
CL
1465
1466 if (!alloc)
aa2efd5e 1467 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1468 s->object_size);
3ec09742
CL
1469
1470 dump_stack();
1471 }
1472}
1473
643b1138 1474/*
672bba3a 1475 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1476 */
5cc6eee8 1477static void add_full(struct kmem_cache *s,
bb192ed9 1478 struct kmem_cache_node *n, struct slab *slab)
643b1138 1479{
5cc6eee8
CL
1480 if (!(s->flags & SLAB_STORE_USER))
1481 return;
1482
255d0884 1483 lockdep_assert_held(&n->list_lock);
bb192ed9 1484 list_add(&slab->slab_list, &n->full);
643b1138
CL
1485}
1486
bb192ed9 1487static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
643b1138 1488{
643b1138
CL
1489 if (!(s->flags & SLAB_STORE_USER))
1490 return;
1491
255d0884 1492 lockdep_assert_held(&n->list_lock);
bb192ed9 1493 list_del(&slab->slab_list);
643b1138
CL
1494}
1495
26c02cf0
AB
1496static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1497{
1498 return atomic_long_read(&n->nr_slabs);
1499}
1500
205ab99d 1501static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1502{
1503 struct kmem_cache_node *n = get_node(s, node);
1504
3dd549a5
CZ
1505 atomic_long_inc(&n->nr_slabs);
1506 atomic_long_add(objects, &n->total_objects);
0f389ec6 1507}
205ab99d 1508static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1509{
1510 struct kmem_cache_node *n = get_node(s, node);
1511
1512 atomic_long_dec(&n->nr_slabs);
205ab99d 1513 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1514}
1515
1516/* Object debug checks for alloc/free paths */
c0f81a94 1517static void setup_object_debug(struct kmem_cache *s, void *object)
3ec09742 1518{
8fc8d666 1519 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
3ec09742
CL
1520 return;
1521
f7cb1933 1522 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1523 init_tracking(s, object);
1524}
1525
a50b854e 1526static
bb192ed9 1527void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
a7101224 1528{
8fc8d666 1529 if (!kmem_cache_debug_flags(s, SLAB_POISON))
a7101224
AK
1530 return;
1531
1532 metadata_access_enable();
bb192ed9 1533 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
a7101224
AK
1534 metadata_access_disable();
1535}
1536
becfda68 1537static inline int alloc_consistency_checks(struct kmem_cache *s,
bb192ed9 1538 struct slab *slab, void *object)
81819f0f 1539{
bb192ed9 1540 if (!check_slab(s, slab))
becfda68 1541 return 0;
81819f0f 1542
bb192ed9
VB
1543 if (!check_valid_pointer(s, slab, object)) {
1544 object_err(s, slab, object, "Freelist Pointer check fails");
becfda68 1545 return 0;
81819f0f
CL
1546 }
1547
bb192ed9 1548 if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
becfda68
LA
1549 return 0;
1550
1551 return 1;
1552}
1553
fa9b88e4 1554static noinline bool alloc_debug_processing(struct kmem_cache *s,
6edf2576 1555 struct slab *slab, void *object, int orig_size)
becfda68
LA
1556{
1557 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
bb192ed9 1558 if (!alloc_consistency_checks(s, slab, object))
becfda68
LA
1559 goto bad;
1560 }
81819f0f 1561
c7323a5a 1562 /* Success. Perform special debug activities for allocs */
bb192ed9 1563 trace(s, slab, object, 1);
6edf2576 1564 set_orig_size(s, object, orig_size);
f7cb1933 1565 init_object(s, object, SLUB_RED_ACTIVE);
fa9b88e4 1566 return true;
3ec09742 1567
81819f0f 1568bad:
bb192ed9 1569 if (folio_test_slab(slab_folio(slab))) {
81819f0f
CL
1570 /*
1571 * If this is a slab page then lets do the best we can
1572 * to avoid issues in the future. Marking all objects
672bba3a 1573 * as used avoids touching the remaining objects.
81819f0f 1574 */
24922684 1575 slab_fix(s, "Marking all objects used");
bb192ed9
VB
1576 slab->inuse = slab->objects;
1577 slab->freelist = NULL;
81819f0f 1578 }
fa9b88e4 1579 return false;
81819f0f
CL
1580}
1581
becfda68 1582static inline int free_consistency_checks(struct kmem_cache *s,
bb192ed9 1583 struct slab *slab, void *object, unsigned long addr)
81819f0f 1584{
bb192ed9
VB
1585 if (!check_valid_pointer(s, slab, object)) {
1586 slab_err(s, slab, "Invalid object pointer 0x%p", object);
becfda68 1587 return 0;
81819f0f
CL
1588 }
1589
bb192ed9
VB
1590 if (on_freelist(s, slab, object)) {
1591 object_err(s, slab, object, "Object already free");
becfda68 1592 return 0;
81819f0f
CL
1593 }
1594
bb192ed9 1595 if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
becfda68 1596 return 0;
81819f0f 1597
bb192ed9
VB
1598 if (unlikely(s != slab->slab_cache)) {
1599 if (!folio_test_slab(slab_folio(slab))) {
1600 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
756a025f 1601 object);
bb192ed9 1602 } else if (!slab->slab_cache) {
f9f58285
FF
1603 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1604 object);
70d71228 1605 dump_stack();
06428780 1606 } else
bb192ed9 1607 object_err(s, slab, object,
24922684 1608 "page slab pointer corrupt.");
becfda68
LA
1609 return 0;
1610 }
1611 return 1;
1612}
1613
e17f1dfb 1614/*
671776b3 1615 * Parse a block of slab_debug options. Blocks are delimited by ';'
e17f1dfb
VB
1616 *
1617 * @str: start of block
1618 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1619 * @slabs: return start of list of slabs, or NULL when there's no list
1620 * @init: assume this is initial parsing and not per-kmem-create parsing
1621 *
1622 * returns the start of next block if there's any, or NULL
1623 */
1624static char *
1625parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
41ecc55b 1626{
e17f1dfb 1627 bool higher_order_disable = false;
f0630fff 1628
e17f1dfb
VB
1629 /* Skip any completely empty blocks */
1630 while (*str && *str == ';')
1631 str++;
1632
1633 if (*str == ',') {
f0630fff
CL
1634 /*
1635 * No options but restriction on slabs. This means full
1636 * debugging for slabs matching a pattern.
1637 */
e17f1dfb 1638 *flags = DEBUG_DEFAULT_FLAGS;
f0630fff 1639 goto check_slabs;
e17f1dfb
VB
1640 }
1641 *flags = 0;
f0630fff 1642
e17f1dfb
VB
1643 /* Determine which debug features should be switched on */
1644 for (; *str && *str != ',' && *str != ';'; str++) {
f0630fff 1645 switch (tolower(*str)) {
e17f1dfb
VB
1646 case '-':
1647 *flags = 0;
1648 break;
f0630fff 1649 case 'f':
e17f1dfb 1650 *flags |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1651 break;
1652 case 'z':
e17f1dfb 1653 *flags |= SLAB_RED_ZONE;
f0630fff
CL
1654 break;
1655 case 'p':
e17f1dfb 1656 *flags |= SLAB_POISON;
f0630fff
CL
1657 break;
1658 case 'u':
e17f1dfb 1659 *flags |= SLAB_STORE_USER;
f0630fff
CL
1660 break;
1661 case 't':
e17f1dfb 1662 *flags |= SLAB_TRACE;
f0630fff 1663 break;
4c13dd3b 1664 case 'a':
e17f1dfb 1665 *flags |= SLAB_FAILSLAB;
4c13dd3b 1666 break;
08303a73
CA
1667 case 'o':
1668 /*
1669 * Avoid enabling debugging on caches if its minimum
1670 * order would increase as a result.
1671 */
e17f1dfb 1672 higher_order_disable = true;
08303a73 1673 break;
f0630fff 1674 default:
e17f1dfb 1675 if (init)
671776b3 1676 pr_err("slab_debug option '%c' unknown. skipped\n", *str);
f0630fff 1677 }
41ecc55b 1678 }
f0630fff 1679check_slabs:
41ecc55b 1680 if (*str == ',')
e17f1dfb
VB
1681 *slabs = ++str;
1682 else
1683 *slabs = NULL;
1684
1685 /* Skip over the slab list */
1686 while (*str && *str != ';')
1687 str++;
1688
1689 /* Skip any completely empty blocks */
1690 while (*str && *str == ';')
1691 str++;
1692
1693 if (init && higher_order_disable)
1694 disable_higher_order_debug = 1;
1695
1696 if (*str)
1697 return str;
1698 else
1699 return NULL;
1700}
1701
1702static int __init setup_slub_debug(char *str)
1703{
1704 slab_flags_t flags;
a7f1d485 1705 slab_flags_t global_flags;
e17f1dfb
VB
1706 char *saved_str;
1707 char *slab_list;
1708 bool global_slub_debug_changed = false;
1709 bool slab_list_specified = false;
1710
a7f1d485 1711 global_flags = DEBUG_DEFAULT_FLAGS;
e17f1dfb
VB
1712 if (*str++ != '=' || !*str)
1713 /*
1714 * No options specified. Switch on full debugging.
1715 */
1716 goto out;
1717
1718 saved_str = str;
1719 while (str) {
1720 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1721
1722 if (!slab_list) {
a7f1d485 1723 global_flags = flags;
e17f1dfb
VB
1724 global_slub_debug_changed = true;
1725 } else {
1726 slab_list_specified = true;
5cf909c5 1727 if (flags & SLAB_STORE_USER)
1c0310ad 1728 stack_depot_request_early_init();
e17f1dfb
VB
1729 }
1730 }
1731
1732 /*
1733 * For backwards compatibility, a single list of flags with list of
a7f1d485 1734 * slabs means debugging is only changed for those slabs, so the global
671776b3 1735 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
a7f1d485 1736 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
e17f1dfb
VB
1737 * long as there is no option specifying flags without a slab list.
1738 */
1739 if (slab_list_specified) {
1740 if (!global_slub_debug_changed)
a7f1d485 1741 global_flags = slub_debug;
e17f1dfb
VB
1742 slub_debug_string = saved_str;
1743 }
f0630fff 1744out:
a7f1d485 1745 slub_debug = global_flags;
5cf909c5 1746 if (slub_debug & SLAB_STORE_USER)
1c0310ad 1747 stack_depot_request_early_init();
ca0cab65
VB
1748 if (slub_debug != 0 || slub_debug_string)
1749 static_branch_enable(&slub_debug_enabled);
02ac47d0
SB
1750 else
1751 static_branch_disable(&slub_debug_enabled);
6471384a
AP
1752 if ((static_branch_unlikely(&init_on_alloc) ||
1753 static_branch_unlikely(&init_on_free)) &&
1754 (slub_debug & SLAB_POISON))
1755 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
41ecc55b
CL
1756 return 1;
1757}
1758
671776b3
XS
1759__setup("slab_debug", setup_slub_debug);
1760__setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
41ecc55b 1761
c5fd3ca0
AT
1762/*
1763 * kmem_cache_flags - apply debugging options to the cache
c5fd3ca0
AT
1764 * @flags: flags to set
1765 * @name: name of the cache
c5fd3ca0
AT
1766 *
1767 * Debug option(s) are applied to @flags. In addition to the debug
1768 * option(s), if a slab name (or multiple) is specified i.e.
671776b3 1769 * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
c5fd3ca0
AT
1770 * then only the select slabs will receive the debug option(s).
1771 */
303cd693 1772slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
41ecc55b 1773{
c5fd3ca0
AT
1774 char *iter;
1775 size_t len;
e17f1dfb
VB
1776 char *next_block;
1777 slab_flags_t block_flags;
ca220593
JB
1778 slab_flags_t slub_debug_local = slub_debug;
1779
a285909f
HY
1780 if (flags & SLAB_NO_USER_FLAGS)
1781 return flags;
1782
ca220593
JB
1783 /*
1784 * If the slab cache is for debugging (e.g. kmemleak) then
1785 * don't store user (stack trace) information by default,
1786 * but let the user enable it via the command line below.
1787 */
1788 if (flags & SLAB_NOLEAKTRACE)
1789 slub_debug_local &= ~SLAB_STORE_USER;
c5fd3ca0 1790
c5fd3ca0 1791 len = strlen(name);
e17f1dfb
VB
1792 next_block = slub_debug_string;
1793 /* Go through all blocks of debug options, see if any matches our slab's name */
1794 while (next_block) {
1795 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1796 if (!iter)
1797 continue;
1798 /* Found a block that has a slab list, search it */
1799 while (*iter) {
1800 char *end, *glob;
1801 size_t cmplen;
1802
1803 end = strchrnul(iter, ',');
1804 if (next_block && next_block < end)
1805 end = next_block - 1;
1806
1807 glob = strnchr(iter, end - iter, '*');
1808 if (glob)
1809 cmplen = glob - iter;
1810 else
1811 cmplen = max_t(size_t, len, (end - iter));
c5fd3ca0 1812
e17f1dfb
VB
1813 if (!strncmp(name, iter, cmplen)) {
1814 flags |= block_flags;
1815 return flags;
1816 }
c5fd3ca0 1817
e17f1dfb
VB
1818 if (!*end || *end == ';')
1819 break;
1820 iter = end + 1;
c5fd3ca0 1821 }
c5fd3ca0 1822 }
ba0268a8 1823
ca220593 1824 return flags | slub_debug_local;
41ecc55b 1825}
b4a64718 1826#else /* !CONFIG_SLUB_DEBUG */
c0f81a94 1827static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
a50b854e 1828static inline
bb192ed9 1829void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
41ecc55b 1830
fa9b88e4
VB
1831static inline bool alloc_debug_processing(struct kmem_cache *s,
1832 struct slab *slab, void *object, int orig_size) { return true; }
41ecc55b 1833
fa9b88e4
VB
1834static inline bool free_debug_processing(struct kmem_cache *s,
1835 struct slab *slab, void *head, void *tail, int *bulk_cnt,
1836 unsigned long addr, depot_stack_handle_t handle) { return true; }
41ecc55b 1837
a204e6d6 1838static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
bb192ed9 1839static inline int check_object(struct kmem_cache *s, struct slab *slab,
f7cb1933 1840 void *object, u8 val) { return 1; }
fa9b88e4 1841static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
c7323a5a
VB
1842static inline void set_track(struct kmem_cache *s, void *object,
1843 enum track_item alloc, unsigned long addr) {}
5cc6eee8 1844static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
bb192ed9 1845 struct slab *slab) {}
c65c1877 1846static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
bb192ed9 1847 struct slab *slab) {}
303cd693 1848slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
ba0268a8
CL
1849{
1850 return flags;
1851}
41ecc55b 1852#define slub_debug 0
0f389ec6 1853
fdaa45e9
IM
1854#define disable_higher_order_debug 0
1855
26c02cf0
AB
1856static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1857 { return 0; }
205ab99d
CL
1858static inline void inc_slabs_node(struct kmem_cache *s, int node,
1859 int objects) {}
1860static inline void dec_slabs_node(struct kmem_cache *s, int node,
1861 int objects) {}
7d550c56 1862
0af8489b 1863#ifndef CONFIG_SLUB_TINY
bb192ed9 1864static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
dc07a728 1865 void **freelist, void *nextfree)
52f23478
DZ
1866{
1867 return false;
1868}
0af8489b 1869#endif
02e72cc6
AR
1870#endif /* CONFIG_SLUB_DEBUG */
1871
21c690a3
SB
1872#ifdef CONFIG_SLAB_OBJ_EXT
1873
239d6c96
SB
1874#ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
1875
1876static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
0bedcc66 1877{
239d6c96
SB
1878 struct slabobj_ext *slab_exts;
1879 struct slab *obj_exts_slab;
1880
1881 obj_exts_slab = virt_to_slab(obj_exts);
1882 slab_exts = slab_obj_exts(obj_exts_slab);
1883 if (slab_exts) {
1884 unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
1885 obj_exts_slab, obj_exts);
1886 /* codetag should be NULL */
1887 WARN_ON(slab_exts[offs].ref.ct);
1888 set_codetag_empty(&slab_exts[offs].ref);
1889 }
0bedcc66
VB
1890}
1891
09c46563 1892static inline void mark_failed_objexts_alloc(struct slab *slab)
0bedcc66 1893{
09c46563 1894 slab->obj_exts = OBJEXTS_ALLOC_FAIL;
0bedcc66
VB
1895}
1896
09c46563
SB
1897static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1898 struct slabobj_ext *vec, unsigned int objects)
0bedcc66
VB
1899{
1900 /*
09c46563
SB
1901 * If vector previously failed to allocate then we have live
1902 * objects with no tag reference. Mark all references in this
1903 * vector as empty to avoid warnings later on.
0bedcc66 1904 */
09c46563
SB
1905 if (obj_exts & OBJEXTS_ALLOC_FAIL) {
1906 unsigned int i;
1907
1908 for (i = 0; i < objects; i++)
1909 set_codetag_empty(&vec[i].ref);
1910 }
0bedcc66
VB
1911}
1912
239d6c96
SB
1913#else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1914
1915static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
09c46563
SB
1916static inline void mark_failed_objexts_alloc(struct slab *slab) {}
1917static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1918 struct slabobj_ext *vec, unsigned int objects) {}
239d6c96
SB
1919
1920#endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1921
0bedcc66 1922/*
21c690a3
SB
1923 * The allocated objcg pointers array is not accounted directly.
1924 * Moreover, it should not come from DMA buffer and is not readily
1925 * reclaimable. So those GFP bits should be masked off.
0bedcc66 1926 */
21c690a3
SB
1927#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \
1928 __GFP_ACCOUNT | __GFP_NOFAIL)
1929
e6100a45
VB
1930int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
1931 gfp_t gfp, bool new_slab)
21c690a3
SB
1932{
1933 unsigned int objects = objs_per_slab(s, slab);
09c46563
SB
1934 unsigned long new_exts;
1935 unsigned long old_exts;
1936 struct slabobj_ext *vec;
21c690a3
SB
1937
1938 gfp &= ~OBJCGS_CLEAR_MASK;
768c33be
SB
1939 /* Prevent recursive extension vector allocation */
1940 gfp |= __GFP_NO_OBJ_EXT;
21c690a3
SB
1941 vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
1942 slab_nid(slab));
09c46563
SB
1943 if (!vec) {
1944 /* Mark vectors which failed to allocate */
1945 if (new_slab)
1946 mark_failed_objexts_alloc(slab);
1947
21c690a3 1948 return -ENOMEM;
09c46563 1949 }
21c690a3 1950
09c46563 1951 new_exts = (unsigned long)vec;
21c690a3 1952#ifdef CONFIG_MEMCG
09c46563 1953 new_exts |= MEMCG_DATA_OBJEXTS;
21c690a3 1954#endif
09c46563
SB
1955 old_exts = slab->obj_exts;
1956 handle_failed_objexts_alloc(old_exts, vec, objects);
21c690a3
SB
1957 if (new_slab) {
1958 /*
1959 * If the slab is brand new and nobody can yet access its
1960 * obj_exts, no synchronization is required and obj_exts can
1961 * be simply assigned.
1962 */
09c46563
SB
1963 slab->obj_exts = new_exts;
1964 } else if (cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
21c690a3
SB
1965 /*
1966 * If the slab is already in use, somebody can allocate and
1967 * assign slabobj_exts in parallel. In this case the existing
1968 * objcg vector should be reused.
1969 */
239d6c96 1970 mark_objexts_empty(vec);
21c690a3
SB
1971 kfree(vec);
1972 return 0;
1973 }
1974
1975 kmemleak_not_leak(vec);
1976 return 0;
1977}
1978
1979static inline void free_slab_obj_exts(struct slab *slab)
0bedcc66 1980{
21c690a3
SB
1981 struct slabobj_ext *obj_exts;
1982
1983 obj_exts = slab_obj_exts(slab);
1984 if (!obj_exts)
1985 return;
1986
0bedcc66 1987 /*
239d6c96
SB
1988 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
1989 * corresponding extension will be NULL. alloc_tag_sub() will throw a
1990 * warning if slab has extensions but the extension of an object is
1991 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
1992 * the extension for obj_exts is expected to be NULL.
0bedcc66 1993 */
239d6c96 1994 mark_objexts_empty(obj_exts);
21c690a3
SB
1995 kfree(obj_exts);
1996 slab->obj_exts = 0;
1997}
4b873696
SB
1998
1999static inline bool need_slab_obj_ext(void)
2000{
2001 if (mem_alloc_profiling_enabled())
0bedcc66
VB
2002 return true;
2003
4b873696
SB
2004 /*
2005 * CONFIG_MEMCG_KMEM creates vector of obj_cgroup objects conditionally
2006 * inside memcg_slab_post_alloc_hook. No other users for now.
2007 */
2008 return false;
2009}
0bedcc66 2010
4b873696
SB
2011static inline struct slabobj_ext *
2012prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2013{
2014 struct slab *slab;
0bedcc66 2015
4b873696
SB
2016 if (!p)
2017 return NULL;
0bedcc66 2018
3b89ec41 2019 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
4b873696 2020 return NULL;
0bedcc66 2021
4b873696
SB
2022 if (flags & __GFP_NO_OBJ_EXT)
2023 return NULL;
2024
2025 slab = virt_to_slab(p);
2026 if (!slab_obj_exts(slab) &&
2027 WARN(alloc_slab_obj_exts(slab, s, flags, false),
2028 "%s, %s: Failed to create slab extension vector!\n",
2029 __func__, s->name))
2030 return NULL;
2031
2032 return slab_obj_exts(slab) + obj_to_index(s, slab, p);
0bedcc66
VB
2033}
2034
4b873696
SB
2035static inline void
2036alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2037 int objects)
3450a0e5 2038{
4b873696
SB
2039#ifdef CONFIG_MEM_ALLOC_PROFILING
2040 struct slabobj_ext *obj_exts;
2041 int i;
3450a0e5 2042
4b873696
SB
2043 if (!mem_alloc_profiling_enabled())
2044 return;
3450a0e5 2045
4b873696
SB
2046 obj_exts = slab_obj_exts(slab);
2047 if (!obj_exts)
2048 return;
2049
2050 for (i = 0; i < objects; i++) {
2051 unsigned int off = obj_to_index(s, slab, p[i]);
2052
2053 alloc_tag_sub(&obj_exts[off].ref, s->size);
2054 }
2055#endif
3450a0e5
VB
2056}
2057
21c690a3 2058#else /* CONFIG_SLAB_OBJ_EXT */
4b873696 2059
21c690a3
SB
2060static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2061 gfp_t gfp, bool new_slab)
0bedcc66 2062{
21c690a3
SB
2063 return 0;
2064}
0bedcc66 2065
21c690a3 2066static inline void free_slab_obj_exts(struct slab *slab)
0bedcc66 2067{
0bedcc66 2068}
0bedcc66 2069
4b873696
SB
2070static inline bool need_slab_obj_ext(void)
2071{
2072 return false;
2073}
0bedcc66 2074
4b873696
SB
2075static inline struct slabobj_ext *
2076prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2077{
2078 return NULL;
2079}
0bedcc66 2080
4b873696
SB
2081static inline void
2082alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2083 int objects)
2084{
0bedcc66
VB
2085}
2086
21c690a3 2087#endif /* CONFIG_SLAB_OBJ_EXT */
0bedcc66 2088
21c690a3 2089#ifdef CONFIG_MEMCG_KMEM
0bedcc66 2090
9f9796b4
VB
2091static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
2092
3450a0e5 2093static __fastpath_inline
9f9796b4 2094bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
3450a0e5
VB
2095 gfp_t flags, size_t size, void **p)
2096{
9f9796b4 2097 if (likely(!memcg_kmem_online()))
3450a0e5 2098 return true;
3450a0e5 2099
3450a0e5
VB
2100 if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
2101 return true;
0bedcc66 2102
9f9796b4
VB
2103 if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
2104 return true;
0bedcc66 2105
9f9796b4
VB
2106 if (likely(size == 1)) {
2107 memcg_alloc_abort_single(s, *p);
2108 *p = NULL;
2109 } else {
2110 kmem_cache_free_bulk(s, size, p);
0bedcc66 2111 }
3450a0e5 2112
9f9796b4 2113 return false;
0bedcc66 2114}
ecf9a253
VB
2115
2116static __fastpath_inline
2117void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2118 int objects)
2119{
21c690a3 2120 struct slabobj_ext *obj_exts;
ecf9a253
VB
2121
2122 if (!memcg_kmem_online())
2123 return;
2124
21c690a3
SB
2125 obj_exts = slab_obj_exts(slab);
2126 if (likely(!obj_exts))
ecf9a253
VB
2127 return;
2128
21c690a3 2129 __memcg_slab_free_hook(s, slab, p, objects, obj_exts);
520a688a 2130}
0bedcc66 2131#else /* CONFIG_MEMCG_KMEM */
9f9796b4
VB
2132static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
2133 struct list_lru *lru,
0bedcc66
VB
2134 gfp_t flags, size_t size,
2135 void **p)
2136{
9f9796b4 2137 return true;
0bedcc66
VB
2138}
2139
2140static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2141 void **p, int objects)
2142{
2143}
2144#endif /* CONFIG_MEMCG_KMEM */
2145
02e72cc6
AR
2146/*
2147 * Hooks for other subsystems that check memory allocations. In a typical
2148 * production configuration these hooks all should produce no code at all.
284f17ac
VB
2149 *
2150 * Returns true if freeing of the object can proceed, false if its reuse
782f8906 2151 * was delayed by KASAN quarantine, or it was returned to KFENCE.
02e72cc6 2152 */
284f17ac
VB
2153static __always_inline
2154bool slab_free_hook(struct kmem_cache *s, void *x, bool init)
d56791b3
RB
2155{
2156 kmemleak_free_recursive(x, s->flags);
68ef169a 2157 kmsan_slab_free(s, x);
7d550c56 2158
84048039 2159 debug_check_no_locks_freed(x, s->object_size);
02e72cc6 2160
02e72cc6
AR
2161 if (!(s->flags & SLAB_DEBUG_OBJECTS))
2162 debug_check_no_obj_freed(x, s->object_size);
0316bec2 2163
cfbe1636
ME
2164 /* Use KCSAN to help debug racy use-after-free. */
2165 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
2166 __kcsan_check_access(x, s->object_size,
2167 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2168
782f8906
VB
2169 if (kfence_free(x))
2170 return false;
2171
d57a964e
AK
2172 /*
2173 * As memory initialization might be integrated into KASAN,
2174 * kasan_slab_free and initialization memset's must be
2175 * kept together to avoid discrepancies in behavior.
2176 *
2177 * The initialization memset's clear the object and the metadata,
2178 * but don't touch the SLAB redzone.
8f828aa4
NB
2179 *
2180 * The object's freepointer is also avoided if stored outside the
2181 * object.
d57a964e 2182 */
ecf9a253 2183 if (unlikely(init)) {
d57a964e 2184 int rsize;
8f828aa4 2185 unsigned int inuse;
d57a964e 2186
8f828aa4 2187 inuse = get_info_end(s);
d57a964e
AK
2188 if (!kasan_has_integrated_init())
2189 memset(kasan_reset_tag(x), 0, s->object_size);
2190 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
8f828aa4
NB
2191 memset((char *)kasan_reset_tag(x) + inuse, 0,
2192 s->size - inuse - rsize);
d57a964e
AK
2193 }
2194 /* KASAN might put x into memory quarantine, delaying its reuse. */
284f17ac 2195 return !kasan_slab_free(s, x, init);
02e72cc6 2196}
205ab99d 2197
9ea9cd8e
KO
2198static __fastpath_inline
2199bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
2200 int *cnt)
81084651 2201{
6471384a
AP
2202
2203 void *object;
2204 void *next = *head;
284f17ac 2205 void *old_tail = *tail;
782f8906 2206 bool init;
6471384a 2207
b89fb5ef 2208 if (is_kfence_address(next)) {
d57a964e 2209 slab_free_hook(s, next, false);
782f8906 2210 return false;
b89fb5ef
AP
2211 }
2212
aea4df4c
LA
2213 /* Head and tail of the reconstructed freelist */
2214 *head = NULL;
2215 *tail = NULL;
1b7e816f 2216
782f8906
VB
2217 init = slab_want_init_on_free(s);
2218
aea4df4c
LA
2219 do {
2220 object = next;
2221 next = get_freepointer(s, object);
2222
c3895391 2223 /* If object's reuse doesn't have to be delayed */
782f8906 2224 if (likely(slab_free_hook(s, object, init))) {
c3895391
AK
2225 /* Move object to the new freelist */
2226 set_freepointer(s, object, *head);
2227 *head = object;
2228 if (!*tail)
2229 *tail = object;
899447f6
ML
2230 } else {
2231 /*
2232 * Adjust the reconstructed freelist depth
2233 * accordingly if object's reuse is delayed.
2234 */
2235 --(*cnt);
c3895391
AK
2236 }
2237 } while (object != old_tail);
2238
c3895391 2239 return *head != NULL;
81084651
JDB
2240}
2241
c0f81a94 2242static void *setup_object(struct kmem_cache *s, void *object)
588f8ba9 2243{
c0f81a94 2244 setup_object_debug(s, object);
4d176711 2245 object = kasan_init_slab_obj(s, object);
588f8ba9 2246 if (unlikely(s->ctor)) {
1ce9a052 2247 kasan_unpoison_new_object(s, object);
588f8ba9 2248 s->ctor(object);
1ce9a052 2249 kasan_poison_new_object(s, object);
588f8ba9 2250 }
4d176711 2251 return object;
588f8ba9
TG
2252}
2253
81819f0f
CL
2254/*
2255 * Slab allocation and freeing
2256 */
a485e1da
XS
2257static inline struct slab *alloc_slab_page(gfp_t flags, int node,
2258 struct kmem_cache_order_objects oo)
65c3376a 2259{
45387b8c
VB
2260 struct folio *folio;
2261 struct slab *slab;
19af27af 2262 unsigned int order = oo_order(oo);
65c3376a 2263
8014c46a 2264 folio = (struct folio *)alloc_pages_node(node, flags, order);
45387b8c
VB
2265 if (!folio)
2266 return NULL;
2267
2268 slab = folio_slab(folio);
2269 __folio_set_slab(folio);
8b881763
VB
2270 /* Make the flag visible before any changes to folio->mapping */
2271 smp_wmb();
02d65d6f 2272 if (folio_is_pfmemalloc(folio))
45387b8c
VB
2273 slab_set_pfmemalloc(slab);
2274
2275 return slab;
65c3376a
CL
2276}
2277
210e7a43
TG
2278#ifdef CONFIG_SLAB_FREELIST_RANDOM
2279/* Pre-initialize the random sequence cache */
2280static int init_cache_random_seq(struct kmem_cache *s)
2281{
19af27af 2282 unsigned int count = oo_objects(s->oo);
210e7a43 2283 int err;
210e7a43 2284
a810007a
SR
2285 /* Bailout if already initialised */
2286 if (s->random_seq)
2287 return 0;
2288
210e7a43
TG
2289 err = cache_random_seq_create(s, count, GFP_KERNEL);
2290 if (err) {
2291 pr_err("SLUB: Unable to initialize free list for %s\n",
2292 s->name);
2293 return err;
2294 }
2295
2296 /* Transform to an offset on the set of pages */
2297 if (s->random_seq) {
19af27af
AD
2298 unsigned int i;
2299
210e7a43
TG
2300 for (i = 0; i < count; i++)
2301 s->random_seq[i] *= s->size;
2302 }
2303 return 0;
2304}
2305
2306/* Initialize each random sequence freelist per cache */
2307static void __init init_freelist_randomization(void)
2308{
2309 struct kmem_cache *s;
2310
2311 mutex_lock(&slab_mutex);
2312
2313 list_for_each_entry(s, &slab_caches, list)
2314 init_cache_random_seq(s);
2315
2316 mutex_unlock(&slab_mutex);
2317}
2318
2319/* Get the next entry on the pre-computed freelist randomized */
c63349fc 2320static void *next_freelist_entry(struct kmem_cache *s,
210e7a43
TG
2321 unsigned long *pos, void *start,
2322 unsigned long page_limit,
2323 unsigned long freelist_count)
2324{
2325 unsigned int idx;
2326
2327 /*
2328 * If the target page allocation failed, the number of objects on the
2329 * page might be smaller than the usual size defined by the cache.
2330 */
2331 do {
2332 idx = s->random_seq[*pos];
2333 *pos += 1;
2334 if (*pos >= freelist_count)
2335 *pos = 0;
2336 } while (unlikely(idx >= page_limit));
2337
2338 return (char *)start + idx;
2339}
2340
2341/* Shuffle the single linked freelist based on a random pre-computed sequence */
bb192ed9 2342static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
210e7a43
TG
2343{
2344 void *start;
2345 void *cur;
2346 void *next;
2347 unsigned long idx, pos, page_limit, freelist_count;
2348
bb192ed9 2349 if (slab->objects < 2 || !s->random_seq)
210e7a43
TG
2350 return false;
2351
2352 freelist_count = oo_objects(s->oo);
8032bf12 2353 pos = get_random_u32_below(freelist_count);
210e7a43 2354
bb192ed9
VB
2355 page_limit = slab->objects * s->size;
2356 start = fixup_red_left(s, slab_address(slab));
210e7a43
TG
2357
2358 /* First entry is used as the base of the freelist */
c63349fc 2359 cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
c0f81a94 2360 cur = setup_object(s, cur);
bb192ed9 2361 slab->freelist = cur;
210e7a43 2362
bb192ed9 2363 for (idx = 1; idx < slab->objects; idx++) {
c63349fc 2364 next = next_freelist_entry(s, &pos, start, page_limit,
210e7a43 2365 freelist_count);
c0f81a94 2366 next = setup_object(s, next);
210e7a43
TG
2367 set_freepointer(s, cur, next);
2368 cur = next;
2369 }
210e7a43
TG
2370 set_freepointer(s, cur, NULL);
2371
2372 return true;
2373}
2374#else
2375static inline int init_cache_random_seq(struct kmem_cache *s)
2376{
2377 return 0;
2378}
2379static inline void init_freelist_randomization(void) { }
bb192ed9 2380static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
210e7a43
TG
2381{
2382 return false;
2383}
2384#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2385
0bedcc66
VB
2386static __always_inline void account_slab(struct slab *slab, int order,
2387 struct kmem_cache *s, gfp_t gfp)
2388{
2389 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
21c690a3 2390 alloc_slab_obj_exts(slab, s, gfp, true);
0bedcc66
VB
2391
2392 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2393 PAGE_SIZE << order);
2394}
2395
2396static __always_inline void unaccount_slab(struct slab *slab, int order,
2397 struct kmem_cache *s)
2398{
4b873696 2399 if (memcg_kmem_online() || need_slab_obj_ext())
21c690a3 2400 free_slab_obj_exts(slab);
0bedcc66
VB
2401
2402 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2403 -(PAGE_SIZE << order));
2404}
2405
bb192ed9 2406static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
81819f0f 2407{
bb192ed9 2408 struct slab *slab;
834f3d11 2409 struct kmem_cache_order_objects oo = s->oo;
ba52270d 2410 gfp_t alloc_gfp;
4d176711 2411 void *start, *p, *next;
a50b854e 2412 int idx;
210e7a43 2413 bool shuffle;
81819f0f 2414
7e0528da
CL
2415 flags &= gfp_allowed_mask;
2416
b7a49f0d 2417 flags |= s->allocflags;
e12ba74d 2418
ba52270d
PE
2419 /*
2420 * Let the initial higher-order allocation fail under memory pressure
2421 * so we fall-back to the minimum order allocation.
2422 */
2423 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 2424 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
27c08f75 2425 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
ba52270d 2426
a485e1da 2427 slab = alloc_slab_page(alloc_gfp, node, oo);
bb192ed9 2428 if (unlikely(!slab)) {
65c3376a 2429 oo = s->min;
80c3a998 2430 alloc_gfp = flags;
65c3376a
CL
2431 /*
2432 * Allocation may have failed due to fragmentation.
2433 * Try a lower order alloc if possible
2434 */
a485e1da 2435 slab = alloc_slab_page(alloc_gfp, node, oo);
bb192ed9 2436 if (unlikely(!slab))
c7323a5a 2437 return NULL;
588f8ba9 2438 stat(s, ORDER_FALLBACK);
65c3376a 2439 }
5a896d9e 2440
bb192ed9 2441 slab->objects = oo_objects(oo);
c7323a5a
VB
2442 slab->inuse = 0;
2443 slab->frozen = 0;
81819f0f 2444
bb192ed9 2445 account_slab(slab, oo_order(oo), s, flags);
1f3147b4 2446
bb192ed9 2447 slab->slab_cache = s;
81819f0f 2448
6e48a966 2449 kasan_poison_slab(slab);
81819f0f 2450
bb192ed9 2451 start = slab_address(slab);
81819f0f 2452
bb192ed9 2453 setup_slab_debug(s, slab, start);
0316bec2 2454
bb192ed9 2455 shuffle = shuffle_freelist(s, slab);
210e7a43
TG
2456
2457 if (!shuffle) {
4d176711 2458 start = fixup_red_left(s, start);
c0f81a94 2459 start = setup_object(s, start);
bb192ed9
VB
2460 slab->freelist = start;
2461 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
18e50661 2462 next = p + s->size;
c0f81a94 2463 next = setup_object(s, next);
18e50661
AK
2464 set_freepointer(s, p, next);
2465 p = next;
2466 }
2467 set_freepointer(s, p, NULL);
81819f0f 2468 }
81819f0f 2469
bb192ed9 2470 return slab;
81819f0f
CL
2471}
2472
bb192ed9 2473static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
588f8ba9 2474{
44405099
LL
2475 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2476 flags = kmalloc_fix_flags(flags);
588f8ba9 2477
53a0de06
VB
2478 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2479
588f8ba9
TG
2480 return allocate_slab(s,
2481 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2482}
2483
4020b4a2 2484static void __free_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 2485{
4020b4a2
VB
2486 struct folio *folio = slab_folio(slab);
2487 int order = folio_order(folio);
834f3d11 2488 int pages = 1 << order;
81819f0f 2489
4020b4a2 2490 __slab_clear_pfmemalloc(slab);
4020b4a2 2491 folio->mapping = NULL;
8b881763
VB
2492 /* Make the mapping reset visible before clearing the flag */
2493 smp_wmb();
2494 __folio_clear_slab(folio);
c7b23b68 2495 mm_account_reclaimed_pages(pages);
4020b4a2 2496 unaccount_slab(slab, order, s);
c034c6a4 2497 __free_pages(&folio->page, order);
81819f0f
CL
2498}
2499
2500static void rcu_free_slab(struct rcu_head *h)
2501{
bb192ed9 2502 struct slab *slab = container_of(h, struct slab, rcu_head);
da9a638c 2503
bb192ed9 2504 __free_slab(slab->slab_cache, slab);
81819f0f
CL
2505}
2506
bb192ed9 2507static void free_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 2508{
bc29d5bd
VB
2509 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2510 void *p;
2511
2512 slab_pad_check(s, slab);
2513 for_each_object(p, s, slab_address(slab), slab->objects)
2514 check_object(s, slab, p, SLUB_RED_INACTIVE);
2515 }
2516
2517 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
bb192ed9 2518 call_rcu(&slab->rcu_head, rcu_free_slab);
bc29d5bd 2519 else
bb192ed9 2520 __free_slab(s, slab);
81819f0f
CL
2521}
2522
bb192ed9 2523static void discard_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 2524{
bb192ed9
VB
2525 dec_slabs_node(s, slab_nid(slab), slab->objects);
2526 free_slab(s, slab);
81819f0f
CL
2527}
2528
8a399e2f
CZ
2529/*
2530 * SLUB reuses PG_workingset bit to keep track of whether it's on
2531 * the per-node partial list.
2532 */
2533static inline bool slab_test_node_partial(const struct slab *slab)
2534{
2535 return folio_test_workingset((struct folio *)slab_folio(slab));
2536}
2537
2538static inline void slab_set_node_partial(struct slab *slab)
2539{
2540 set_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2541}
2542
2543static inline void slab_clear_node_partial(struct slab *slab)
2544{
2545 clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2546}
2547
81819f0f 2548/*
5cc6eee8 2549 * Management of partially allocated slabs.
81819f0f 2550 */
1e4dd946 2551static inline void
bb192ed9 2552__add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
81819f0f 2553{
e95eed57 2554 n->nr_partial++;
136333d1 2555 if (tail == DEACTIVATE_TO_TAIL)
bb192ed9 2556 list_add_tail(&slab->slab_list, &n->partial);
7c2e132c 2557 else
bb192ed9 2558 list_add(&slab->slab_list, &n->partial);
8a399e2f 2559 slab_set_node_partial(slab);
81819f0f
CL
2560}
2561
1e4dd946 2562static inline void add_partial(struct kmem_cache_node *n,
bb192ed9 2563 struct slab *slab, int tail)
62e346a8 2564{
c65c1877 2565 lockdep_assert_held(&n->list_lock);
bb192ed9 2566 __add_partial(n, slab, tail);
1e4dd946 2567}
c65c1877 2568
1e4dd946 2569static inline void remove_partial(struct kmem_cache_node *n,
bb192ed9 2570 struct slab *slab)
1e4dd946
SR
2571{
2572 lockdep_assert_held(&n->list_lock);
bb192ed9 2573 list_del(&slab->slab_list);
8a399e2f 2574 slab_clear_node_partial(slab);
52b4b950 2575 n->nr_partial--;
1e4dd946
SR
2576}
2577
c7323a5a 2578/*
8cd3fa42 2579 * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
c7323a5a
VB
2580 * slab from the n->partial list. Remove only a single object from the slab, do
2581 * the alloc_debug_processing() checks and leave the slab on the list, or move
2582 * it to full list if it was the last free object.
2583 */
2584static void *alloc_single_from_partial(struct kmem_cache *s,
6edf2576 2585 struct kmem_cache_node *n, struct slab *slab, int orig_size)
c7323a5a
VB
2586{
2587 void *object;
2588
2589 lockdep_assert_held(&n->list_lock);
2590
2591 object = slab->freelist;
2592 slab->freelist = get_freepointer(s, object);
2593 slab->inuse++;
2594
6edf2576 2595 if (!alloc_debug_processing(s, slab, object, orig_size)) {
c7323a5a
VB
2596 remove_partial(n, slab);
2597 return NULL;
2598 }
2599
2600 if (slab->inuse == slab->objects) {
2601 remove_partial(n, slab);
2602 add_full(s, n, slab);
2603 }
2604
2605 return object;
2606}
2607
2608/*
2609 * Called only for kmem_cache_debug() caches to allocate from a freshly
2610 * allocated slab. Allocate a single object instead of whole freelist
2611 * and put the slab to the partial (or full) list.
2612 */
2613static void *alloc_single_from_new_slab(struct kmem_cache *s,
6edf2576 2614 struct slab *slab, int orig_size)
c7323a5a
VB
2615{
2616 int nid = slab_nid(slab);
2617 struct kmem_cache_node *n = get_node(s, nid);
2618 unsigned long flags;
2619 void *object;
2620
2621
2622 object = slab->freelist;
2623 slab->freelist = get_freepointer(s, object);
2624 slab->inuse = 1;
2625
6edf2576 2626 if (!alloc_debug_processing(s, slab, object, orig_size))
c7323a5a
VB
2627 /*
2628 * It's not really expected that this would fail on a
2629 * freshly allocated slab, but a concurrent memory
2630 * corruption in theory could cause that.
2631 */
2632 return NULL;
2633
2634 spin_lock_irqsave(&n->list_lock, flags);
2635
2636 if (slab->inuse == slab->objects)
2637 add_full(s, n, slab);
2638 else
2639 add_partial(n, slab, DEACTIVATE_TO_HEAD);
2640
2641 inc_slabs_node(s, nid, slab->objects);
2642 spin_unlock_irqrestore(&n->list_lock, flags);
2643
2644 return object;
2645}
2646
e0a043aa 2647#ifdef CONFIG_SLUB_CPU_PARTIAL
bb192ed9 2648static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
e0a043aa 2649#else
bb192ed9 2650static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
e0a043aa
VB
2651 int drain) { }
2652#endif
01b34d16 2653static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
49e22585 2654
81819f0f 2655/*
672bba3a 2656 * Try to allocate a partial slab from a specific node.
81819f0f 2657 */
43c4c349
CZ
2658static struct slab *get_partial_node(struct kmem_cache *s,
2659 struct kmem_cache_node *n,
2660 struct partial_context *pc)
81819f0f 2661{
43c4c349 2662 struct slab *slab, *slab2, *partial = NULL;
4b1f449d 2663 unsigned long flags;
bb192ed9 2664 unsigned int partial_slabs = 0;
81819f0f
CL
2665
2666 /*
2667 * Racy check. If we mistakenly see no partial slabs then we
2668 * just allocate an empty slab. If we mistakenly try to get a
70b6d25e 2669 * partial slab and there is none available then get_partial()
672bba3a 2670 * will return NULL.
81819f0f
CL
2671 */
2672 if (!n || !n->nr_partial)
2673 return NULL;
2674
4b1f449d 2675 spin_lock_irqsave(&n->list_lock, flags);
bb192ed9 2676 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
6edf2576 2677 if (!pfmemalloc_match(slab, pc->flags))
8ba00bb6
JK
2678 continue;
2679
0af8489b 2680 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
8cd3fa42 2681 void *object = alloc_single_from_partial(s, n, slab,
6edf2576 2682 pc->orig_size);
43c4c349
CZ
2683 if (object) {
2684 partial = slab;
2685 pc->object = object;
c7323a5a 2686 break;
43c4c349 2687 }
c7323a5a
VB
2688 continue;
2689 }
2690
8cd3fa42 2691 remove_partial(n, slab);
49e22585 2692
43c4c349
CZ
2693 if (!partial) {
2694 partial = slab;
49e22585 2695 stat(s, ALLOC_FROM_PARTIAL);
ff99b18f
XS
2696
2697 if ((slub_get_cpu_partial(s) == 0)) {
2698 break;
2699 }
49e22585 2700 } else {
bb192ed9 2701 put_cpu_partial(s, slab, 0);
8028dcea 2702 stat(s, CPU_PARTIAL_NODE);
49e22585 2703
ff99b18f
XS
2704 if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
2705 break;
2706 }
2707 }
497b66f2 2708 }
4b1f449d 2709 spin_unlock_irqrestore(&n->list_lock, flags);
43c4c349 2710 return partial;
81819f0f
CL
2711}
2712
2713/*
c2092c12 2714 * Get a slab from somewhere. Search in increasing NUMA distances.
81819f0f 2715 */
43c4c349
CZ
2716static struct slab *get_any_partial(struct kmem_cache *s,
2717 struct partial_context *pc)
81819f0f
CL
2718{
2719#ifdef CONFIG_NUMA
2720 struct zonelist *zonelist;
dd1a239f 2721 struct zoneref *z;
54a6eb5c 2722 struct zone *zone;
6edf2576 2723 enum zone_type highest_zoneidx = gfp_zone(pc->flags);
43c4c349 2724 struct slab *slab;
cc9a6c87 2725 unsigned int cpuset_mems_cookie;
81819f0f
CL
2726
2727 /*
672bba3a
CL
2728 * The defrag ratio allows a configuration of the tradeoffs between
2729 * inter node defragmentation and node local allocations. A lower
2730 * defrag_ratio increases the tendency to do local allocations
2731 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 2732 *
672bba3a
CL
2733 * If the defrag_ratio is set to 0 then kmalloc() always
2734 * returns node local objects. If the ratio is higher then kmalloc()
2735 * may return off node objects because partial slabs are obtained
2736 * from other nodes and filled up.
81819f0f 2737 *
43efd3ea
LP
2738 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2739 * (which makes defrag_ratio = 1000) then every (well almost)
2740 * allocation will first attempt to defrag slab caches on other nodes.
2741 * This means scanning over all nodes to look for partial slabs which
2742 * may be expensive if we do it every time we are trying to find a slab
672bba3a 2743 * with available objects.
81819f0f 2744 */
9824601e
CL
2745 if (!s->remote_node_defrag_ratio ||
2746 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
2747 return NULL;
2748
cc9a6c87 2749 do {
d26914d1 2750 cpuset_mems_cookie = read_mems_allowed_begin();
6edf2576 2751 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
97a225e6 2752 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
cc9a6c87
MG
2753 struct kmem_cache_node *n;
2754
2755 n = get_node(s, zone_to_nid(zone));
2756
6edf2576 2757 if (n && cpuset_zone_allowed(zone, pc->flags) &&
cc9a6c87 2758 n->nr_partial > s->min_partial) {
43c4c349
CZ
2759 slab = get_partial_node(s, n, pc);
2760 if (slab) {
cc9a6c87 2761 /*
d26914d1
MG
2762 * Don't check read_mems_allowed_retry()
2763 * here - if mems_allowed was updated in
2764 * parallel, that was a harmless race
2765 * between allocation and the cpuset
2766 * update
cc9a6c87 2767 */
43c4c349 2768 return slab;
cc9a6c87 2769 }
c0ff7453 2770 }
81819f0f 2771 }
d26914d1 2772 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 2773#endif /* CONFIG_NUMA */
81819f0f
CL
2774 return NULL;
2775}
2776
2777/*
c2092c12 2778 * Get a partial slab, lock it and return it.
81819f0f 2779 */
43c4c349
CZ
2780static struct slab *get_partial(struct kmem_cache *s, int node,
2781 struct partial_context *pc)
81819f0f 2782{
43c4c349 2783 struct slab *slab;
a561ce00
JK
2784 int searchnode = node;
2785
2786 if (node == NUMA_NO_NODE)
2787 searchnode = numa_mem_id();
81819f0f 2788
43c4c349 2789 slab = get_partial_node(s, get_node(s, searchnode), pc);
9198ffbd 2790 if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
43c4c349 2791 return slab;
81819f0f 2792
6edf2576 2793 return get_any_partial(s, pc);
81819f0f
CL
2794}
2795
0af8489b
VB
2796#ifndef CONFIG_SLUB_TINY
2797
923717cb 2798#ifdef CONFIG_PREEMPTION
8a5ec0ba 2799/*
0d645ed1 2800 * Calculate the next globally unique transaction for disambiguation
8a5ec0ba
CL
2801 * during cmpxchg. The transactions start with the cpu number and are then
2802 * incremented by CONFIG_NR_CPUS.
2803 */
2804#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2805#else
2806/*
2807 * No preemption supported therefore also no need to check for
2808 * different cpus.
2809 */
2810#define TID_STEP 1
0af8489b 2811#endif /* CONFIG_PREEMPTION */
8a5ec0ba
CL
2812
2813static inline unsigned long next_tid(unsigned long tid)
2814{
2815 return tid + TID_STEP;
2816}
2817
9d5f0be0 2818#ifdef SLUB_DEBUG_CMPXCHG
8a5ec0ba
CL
2819static inline unsigned int tid_to_cpu(unsigned long tid)
2820{
2821 return tid % TID_STEP;
2822}
2823
2824static inline unsigned long tid_to_event(unsigned long tid)
2825{
2826 return tid / TID_STEP;
2827}
9d5f0be0 2828#endif
8a5ec0ba
CL
2829
2830static inline unsigned int init_tid(int cpu)
2831{
2832 return cpu;
2833}
2834
2835static inline void note_cmpxchg_failure(const char *n,
2836 const struct kmem_cache *s, unsigned long tid)
2837{
2838#ifdef SLUB_DEBUG_CMPXCHG
2839 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2840
f9f58285 2841 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba 2842
923717cb 2843#ifdef CONFIG_PREEMPTION
8a5ec0ba 2844 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2845 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2846 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2847 else
2848#endif
2849 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2850 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2851 tid_to_event(tid), tid_to_event(actual_tid));
2852 else
f9f58285 2853 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2854 actual_tid, tid, next_tid(tid));
2855#endif
4fdccdfb 2856 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2857}
2858
788e1aad 2859static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2860{
8a5ec0ba 2861 int cpu;
bd0e7491 2862 struct kmem_cache_cpu *c;
8a5ec0ba 2863
bd0e7491
VB
2864 for_each_possible_cpu(cpu) {
2865 c = per_cpu_ptr(s->cpu_slab, cpu);
2866 local_lock_init(&c->lock);
2867 c->tid = init_tid(cpu);
2868 }
8a5ec0ba 2869}
2cfb7455 2870
81819f0f 2871/*
c2092c12 2872 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
a019d201
VB
2873 * unfreezes the slabs and puts it on the proper list.
2874 * Assumes the slab has been already safely taken away from kmem_cache_cpu
2875 * by the caller.
81819f0f 2876 */
bb192ed9 2877static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
a019d201 2878 void *freelist)
81819f0f 2879{
bb192ed9 2880 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
6d3a16d0 2881 int free_delta = 0;
d930ff03 2882 void *nextfree, *freelist_iter, *freelist_tail;
136333d1 2883 int tail = DEACTIVATE_TO_HEAD;
3406e91b 2884 unsigned long flags = 0;
bb192ed9
VB
2885 struct slab new;
2886 struct slab old;
2cfb7455 2887
844776cb 2888 if (READ_ONCE(slab->freelist)) {
84e554e6 2889 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2890 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2891 }
2892
894b8788 2893 /*
d930ff03
VB
2894 * Stage one: Count the objects on cpu's freelist as free_delta and
2895 * remember the last object in freelist_tail for later splicing.
2cfb7455 2896 */
d930ff03
VB
2897 freelist_tail = NULL;
2898 freelist_iter = freelist;
2899 while (freelist_iter) {
2900 nextfree = get_freepointer(s, freelist_iter);
2cfb7455 2901
52f23478
DZ
2902 /*
2903 * If 'nextfree' is invalid, it is possible that the object at
d930ff03
VB
2904 * 'freelist_iter' is already corrupted. So isolate all objects
2905 * starting at 'freelist_iter' by skipping them.
52f23478 2906 */
bb192ed9 2907 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
52f23478
DZ
2908 break;
2909
d930ff03
VB
2910 freelist_tail = freelist_iter;
2911 free_delta++;
2cfb7455 2912
d930ff03 2913 freelist_iter = nextfree;
2cfb7455
CL
2914 }
2915
894b8788 2916 /*
c2092c12
VB
2917 * Stage two: Unfreeze the slab while splicing the per-cpu
2918 * freelist to the head of slab's freelist.
894b8788 2919 */
00eb60c2
CZ
2920 do {
2921 old.freelist = READ_ONCE(slab->freelist);
2922 old.counters = READ_ONCE(slab->counters);
2923 VM_BUG_ON(!old.frozen);
2924
2925 /* Determine target state of the slab */
2926 new.counters = old.counters;
2927 new.frozen = 0;
2928 if (freelist_tail) {
2929 new.inuse -= free_delta;
2930 set_freepointer(s, freelist_tail, old.freelist);
2931 new.freelist = freelist;
2932 } else {
2933 new.freelist = old.freelist;
2934 }
2935 } while (!slab_update_freelist(s, slab,
2936 old.freelist, old.counters,
2937 new.freelist, new.counters,
2938 "unfreezing slab"));
2cfb7455 2939
00eb60c2
CZ
2940 /*
2941 * Stage three: Manipulate the slab list based on the updated state.
2942 */
6d3a16d0 2943 if (!new.inuse && n->nr_partial >= s->min_partial) {
00eb60c2
CZ
2944 stat(s, DEACTIVATE_EMPTY);
2945 discard_slab(s, slab);
2946 stat(s, FREE_SLAB);
6d3a16d0 2947 } else if (new.freelist) {
6d3a16d0 2948 spin_lock_irqsave(&n->list_lock, flags);
6d3a16d0
HY
2949 add_partial(n, slab, tail);
2950 spin_unlock_irqrestore(&n->list_lock, flags);
88349a28 2951 stat(s, tail);
00eb60c2 2952 } else {
6d3a16d0 2953 stat(s, DEACTIVATE_FULL);
894b8788 2954 }
81819f0f
CL
2955}
2956
345c905d 2957#ifdef CONFIG_SLUB_CPU_PARTIAL
21316fdc 2958static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
fc1455f4 2959{
43d77867 2960 struct kmem_cache_node *n = NULL, *n2 = NULL;
bb192ed9 2961 struct slab *slab, *slab_to_discard = NULL;
7cf9f3ba 2962 unsigned long flags = 0;
49e22585 2963
bb192ed9 2964 while (partial_slab) {
bb192ed9
VB
2965 slab = partial_slab;
2966 partial_slab = slab->next;
43d77867 2967
bb192ed9 2968 n2 = get_node(s, slab_nid(slab));
43d77867
JK
2969 if (n != n2) {
2970 if (n)
7cf9f3ba 2971 spin_unlock_irqrestore(&n->list_lock, flags);
43d77867
JK
2972
2973 n = n2;
7cf9f3ba 2974 spin_lock_irqsave(&n->list_lock, flags);
43d77867 2975 }
49e22585 2976
8cd3fa42 2977 if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
bb192ed9
VB
2978 slab->next = slab_to_discard;
2979 slab_to_discard = slab;
43d77867 2980 } else {
bb192ed9 2981 add_partial(n, slab, DEACTIVATE_TO_TAIL);
43d77867 2982 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2983 }
2984 }
2985
2986 if (n)
7cf9f3ba 2987 spin_unlock_irqrestore(&n->list_lock, flags);
8de06a6f 2988
bb192ed9
VB
2989 while (slab_to_discard) {
2990 slab = slab_to_discard;
2991 slab_to_discard = slab_to_discard->next;
9ada1934
SL
2992
2993 stat(s, DEACTIVATE_EMPTY);
bb192ed9 2994 discard_slab(s, slab);
9ada1934
SL
2995 stat(s, FREE_SLAB);
2996 }
fc1455f4 2997}
f3ab8b6b 2998
fc1455f4 2999/*
21316fdc 3000 * Put all the cpu partial slabs to the node partial list.
fc1455f4 3001 */
21316fdc 3002static void put_partials(struct kmem_cache *s)
fc1455f4 3003{
bb192ed9 3004 struct slab *partial_slab;
fc1455f4
VB
3005 unsigned long flags;
3006
bd0e7491 3007 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 3008 partial_slab = this_cpu_read(s->cpu_slab->partial);
fc1455f4 3009 this_cpu_write(s->cpu_slab->partial, NULL);
bd0e7491 3010 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
fc1455f4 3011
bb192ed9 3012 if (partial_slab)
21316fdc 3013 __put_partials(s, partial_slab);
fc1455f4
VB
3014}
3015
21316fdc
CZ
3016static void put_partials_cpu(struct kmem_cache *s,
3017 struct kmem_cache_cpu *c)
fc1455f4 3018{
bb192ed9 3019 struct slab *partial_slab;
fc1455f4 3020
bb192ed9 3021 partial_slab = slub_percpu_partial(c);
fc1455f4
VB
3022 c->partial = NULL;
3023
bb192ed9 3024 if (partial_slab)
21316fdc 3025 __put_partials(s, partial_slab);
49e22585
CL
3026}
3027
3028/*
31bda717 3029 * Put a slab into a partial slab slot if available.
49e22585
CL
3030 *
3031 * If we did not find a slot then simply move all the partials to the
3032 * per node partial list.
3033 */
bb192ed9 3034static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
49e22585 3035{
bb192ed9 3036 struct slab *oldslab;
21316fdc 3037 struct slab *slab_to_put = NULL;
e0a043aa 3038 unsigned long flags;
bb192ed9 3039 int slabs = 0;
49e22585 3040
bd0e7491 3041 local_lock_irqsave(&s->cpu_slab->lock, flags);
49e22585 3042
bb192ed9 3043 oldslab = this_cpu_read(s->cpu_slab->partial);
e0a043aa 3044
bb192ed9
VB
3045 if (oldslab) {
3046 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
e0a043aa
VB
3047 /*
3048 * Partial array is full. Move the existing set to the
3049 * per node partial list. Postpone the actual unfreezing
3050 * outside of the critical section.
3051 */
21316fdc 3052 slab_to_put = oldslab;
bb192ed9 3053 oldslab = NULL;
e0a043aa 3054 } else {
bb192ed9 3055 slabs = oldslab->slabs;
49e22585 3056 }
e0a043aa 3057 }
49e22585 3058
bb192ed9 3059 slabs++;
49e22585 3060
bb192ed9
VB
3061 slab->slabs = slabs;
3062 slab->next = oldslab;
49e22585 3063
bb192ed9 3064 this_cpu_write(s->cpu_slab->partial, slab);
e0a043aa 3065
bd0e7491 3066 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
e0a043aa 3067
21316fdc
CZ
3068 if (slab_to_put) {
3069 __put_partials(s, slab_to_put);
e0a043aa
VB
3070 stat(s, CPU_PARTIAL_DRAIN);
3071 }
49e22585
CL
3072}
3073
e0a043aa
VB
3074#else /* CONFIG_SLUB_CPU_PARTIAL */
3075
21316fdc
CZ
3076static inline void put_partials(struct kmem_cache *s) { }
3077static inline void put_partials_cpu(struct kmem_cache *s,
3078 struct kmem_cache_cpu *c) { }
e0a043aa
VB
3079
3080#endif /* CONFIG_SLUB_CPU_PARTIAL */
3081
dfb4f096 3082static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 3083{
5a836bf6 3084 unsigned long flags;
bb192ed9 3085 struct slab *slab;
5a836bf6
SAS
3086 void *freelist;
3087
bd0e7491 3088 local_lock_irqsave(&s->cpu_slab->lock, flags);
5a836bf6 3089
bb192ed9 3090 slab = c->slab;
5a836bf6 3091 freelist = c->freelist;
c17dda40 3092
bb192ed9 3093 c->slab = NULL;
a019d201 3094 c->freelist = NULL;
c17dda40 3095 c->tid = next_tid(c->tid);
a019d201 3096
bd0e7491 3097 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
a019d201 3098
bb192ed9
VB
3099 if (slab) {
3100 deactivate_slab(s, slab, freelist);
5a836bf6
SAS
3101 stat(s, CPUSLAB_FLUSH);
3102 }
81819f0f
CL
3103}
3104
0c710013 3105static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 3106{
9dfc6e68 3107 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
08beb547 3108 void *freelist = c->freelist;
bb192ed9 3109 struct slab *slab = c->slab;
81819f0f 3110
bb192ed9 3111 c->slab = NULL;
08beb547
VB
3112 c->freelist = NULL;
3113 c->tid = next_tid(c->tid);
3114
bb192ed9
VB
3115 if (slab) {
3116 deactivate_slab(s, slab, freelist);
08beb547
VB
3117 stat(s, CPUSLAB_FLUSH);
3118 }
49e22585 3119
21316fdc 3120 put_partials_cpu(s, c);
81819f0f
CL
3121}
3122
5a836bf6
SAS
3123struct slub_flush_work {
3124 struct work_struct work;
3125 struct kmem_cache *s;
3126 bool skip;
3127};
3128
fc1455f4
VB
3129/*
3130 * Flush cpu slab.
3131 *
5a836bf6 3132 * Called from CPU work handler with migration disabled.
fc1455f4 3133 */
5a836bf6 3134static void flush_cpu_slab(struct work_struct *w)
81819f0f 3135{
5a836bf6
SAS
3136 struct kmem_cache *s;
3137 struct kmem_cache_cpu *c;
3138 struct slub_flush_work *sfw;
3139
3140 sfw = container_of(w, struct slub_flush_work, work);
3141
3142 s = sfw->s;
3143 c = this_cpu_ptr(s->cpu_slab);
fc1455f4 3144
bb192ed9 3145 if (c->slab)
fc1455f4 3146 flush_slab(s, c);
81819f0f 3147
21316fdc 3148 put_partials(s);
81819f0f
CL
3149}
3150
5a836bf6 3151static bool has_cpu_slab(int cpu, struct kmem_cache *s)
a8364d55 3152{
a8364d55
GBY
3153 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3154
bb192ed9 3155 return c->slab || slub_percpu_partial(c);
a8364d55
GBY
3156}
3157
5a836bf6
SAS
3158static DEFINE_MUTEX(flush_lock);
3159static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
3160
3161static void flush_all_cpus_locked(struct kmem_cache *s)
3162{
3163 struct slub_flush_work *sfw;
3164 unsigned int cpu;
3165
3166 lockdep_assert_cpus_held();
3167 mutex_lock(&flush_lock);
3168
3169 for_each_online_cpu(cpu) {
3170 sfw = &per_cpu(slub_flush, cpu);
3171 if (!has_cpu_slab(cpu, s)) {
3172 sfw->skip = true;
3173 continue;
3174 }
3175 INIT_WORK(&sfw->work, flush_cpu_slab);
3176 sfw->skip = false;
3177 sfw->s = s;
e45cc288 3178 queue_work_on(cpu, flushwq, &sfw->work);
5a836bf6
SAS
3179 }
3180
3181 for_each_online_cpu(cpu) {
3182 sfw = &per_cpu(slub_flush, cpu);
3183 if (sfw->skip)
3184 continue;
3185 flush_work(&sfw->work);
3186 }
3187
3188 mutex_unlock(&flush_lock);
3189}
3190
81819f0f
CL
3191static void flush_all(struct kmem_cache *s)
3192{
5a836bf6
SAS
3193 cpus_read_lock();
3194 flush_all_cpus_locked(s);
3195 cpus_read_unlock();
81819f0f
CL
3196}
3197
a96a87bf
SAS
3198/*
3199 * Use the cpu notifier to insure that the cpu slabs are flushed when
3200 * necessary.
3201 */
3202static int slub_cpu_dead(unsigned int cpu)
3203{
3204 struct kmem_cache *s;
a96a87bf
SAS
3205
3206 mutex_lock(&slab_mutex);
0e7ac738 3207 list_for_each_entry(s, &slab_caches, list)
a96a87bf 3208 __flush_cpu_slab(s, cpu);
a96a87bf
SAS
3209 mutex_unlock(&slab_mutex);
3210 return 0;
3211}
3212
0af8489b
VB
3213#else /* CONFIG_SLUB_TINY */
3214static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
3215static inline void flush_all(struct kmem_cache *s) { }
3216static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
3217static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
3218#endif /* CONFIG_SLUB_TINY */
3219
dfb4f096
CL
3220/*
3221 * Check if the objects in a per cpu structure fit numa
3222 * locality expectations.
3223 */
bb192ed9 3224static inline int node_match(struct slab *slab, int node)
dfb4f096
CL
3225{
3226#ifdef CONFIG_NUMA
bb192ed9 3227 if (node != NUMA_NO_NODE && slab_nid(slab) != node)
dfb4f096
CL
3228 return 0;
3229#endif
3230 return 1;
3231}
3232
9a02d699 3233#ifdef CONFIG_SLUB_DEBUG
bb192ed9 3234static int count_free(struct slab *slab)
781b2ba6 3235{
bb192ed9 3236 return slab->objects - slab->inuse;
781b2ba6
PE
3237}
3238
9a02d699
DR
3239static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
3240{
3241 return atomic_long_read(&n->total_objects);
3242}
a579b056
VB
3243
3244/* Supports checking bulk free of a constructed freelist */
fa9b88e4
VB
3245static inline bool free_debug_processing(struct kmem_cache *s,
3246 struct slab *slab, void *head, void *tail, int *bulk_cnt,
3247 unsigned long addr, depot_stack_handle_t handle)
a579b056 3248{
fa9b88e4 3249 bool checks_ok = false;
a579b056
VB
3250 void *object = head;
3251 int cnt = 0;
a579b056
VB
3252
3253 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3254 if (!check_slab(s, slab))
3255 goto out;
3256 }
3257
fa9b88e4 3258 if (slab->inuse < *bulk_cnt) {
c7323a5a 3259 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
fa9b88e4 3260 slab->inuse, *bulk_cnt);
c7323a5a
VB
3261 goto out;
3262 }
3263
a579b056 3264next_object:
c7323a5a 3265
fa9b88e4 3266 if (++cnt > *bulk_cnt)
c7323a5a 3267 goto out_cnt;
a579b056
VB
3268
3269 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3270 if (!free_consistency_checks(s, slab, object, addr))
3271 goto out;
3272 }
3273
3274 if (s->flags & SLAB_STORE_USER)
3275 set_track_update(s, object, TRACK_FREE, addr, handle);
3276 trace(s, slab, object, 0);
3277 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
3278 init_object(s, object, SLUB_RED_INACTIVE);
3279
3280 /* Reached end of constructed freelist yet? */
3281 if (object != tail) {
3282 object = get_freepointer(s, object);
3283 goto next_object;
3284 }
c7323a5a 3285 checks_ok = true;
a579b056 3286
c7323a5a 3287out_cnt:
fa9b88e4 3288 if (cnt != *bulk_cnt) {
c7323a5a 3289 slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
fa9b88e4
VB
3290 *bulk_cnt, cnt);
3291 *bulk_cnt = cnt;
c7323a5a
VB
3292 }
3293
fa9b88e4 3294out:
c7323a5a
VB
3295
3296 if (!checks_ok)
a579b056 3297 slab_fix(s, "Object at 0x%p not freed", object);
c7323a5a 3298
fa9b88e4 3299 return checks_ok;
a579b056 3300}
9a02d699
DR
3301#endif /* CONFIG_SLUB_DEBUG */
3302
b1a413a3 3303#if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
781b2ba6 3304static unsigned long count_partial(struct kmem_cache_node *n,
bb192ed9 3305 int (*get_count)(struct slab *))
781b2ba6
PE
3306{
3307 unsigned long flags;
3308 unsigned long x = 0;
bb192ed9 3309 struct slab *slab;
781b2ba6
PE
3310
3311 spin_lock_irqsave(&n->list_lock, flags);
bb192ed9
VB
3312 list_for_each_entry(slab, &n->partial, slab_list)
3313 x += get_count(slab);
781b2ba6
PE
3314 spin_unlock_irqrestore(&n->list_lock, flags);
3315 return x;
3316}
b1a413a3 3317#endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
26c02cf0 3318
56d5a2b9 3319#ifdef CONFIG_SLUB_DEBUG
046f4c69
JW
3320#define MAX_PARTIAL_TO_SCAN 10000
3321
3322static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
3323{
3324 unsigned long flags;
3325 unsigned long x = 0;
3326 struct slab *slab;
3327
3328 spin_lock_irqsave(&n->list_lock, flags);
3329 if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
3330 list_for_each_entry(slab, &n->partial, slab_list)
3331 x += slab->objects - slab->inuse;
3332 } else {
3333 /*
3334 * For a long list, approximate the total count of objects in
3335 * it to meet the limit on the number of slabs to scan.
3336 * Scan from both the list's head and tail for better accuracy.
3337 */
3338 unsigned long scanned = 0;
3339
3340 list_for_each_entry(slab, &n->partial, slab_list) {
3341 x += slab->objects - slab->inuse;
3342 if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
3343 break;
3344 }
3345 list_for_each_entry_reverse(slab, &n->partial, slab_list) {
3346 x += slab->objects - slab->inuse;
3347 if (++scanned == MAX_PARTIAL_TO_SCAN)
3348 break;
3349 }
3350 x = mult_frac(x, n->nr_partial, scanned);
3351 x = min(x, node_nr_objs(n));
3352 }
3353 spin_unlock_irqrestore(&n->list_lock, flags);
3354 return x;
3355}
3356
781b2ba6
PE
3357static noinline void
3358slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
3359{
9a02d699
DR
3360 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
3361 DEFAULT_RATELIMIT_BURST);
781b2ba6 3362 int node;
fa45dc25 3363 struct kmem_cache_node *n;
781b2ba6 3364
9a02d699
DR
3365 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3366 return;
3367
5b3810e5
VB
3368 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
3369 nid, gfpflags, &gfpflags);
19af27af 3370 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
3371 s->name, s->object_size, s->size, oo_order(s->oo),
3372 oo_order(s->min));
781b2ba6 3373
3b0efdfa 3374 if (oo_order(s->min) > get_order(s->object_size))
671776b3 3375 pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n",
f9f58285 3376 s->name);
fa5ec8a1 3377
fa45dc25 3378 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
3379 unsigned long nr_slabs;
3380 unsigned long nr_objs;
3381 unsigned long nr_free;
3382
b3d8a8e8 3383 nr_free = count_partial_free_approx(n);
26c02cf0
AB
3384 nr_slabs = node_nr_slabs(n);
3385 nr_objs = node_nr_objs(n);
781b2ba6 3386
f9f58285 3387 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
3388 node, nr_slabs, nr_objs, nr_free);
3389 }
3390}
56d5a2b9
VB
3391#else /* CONFIG_SLUB_DEBUG */
3392static inline void
3393slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3394#endif
781b2ba6 3395
01b34d16 3396static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
072bb0aa 3397{
01b34d16 3398 if (unlikely(slab_test_pfmemalloc(slab)))
0b303fb4
VB
3399 return gfp_pfmemalloc_allowed(gfpflags);
3400
3401 return true;
3402}
3403
0af8489b 3404#ifndef CONFIG_SLUB_TINY
6801be4f
PZ
3405static inline bool
3406__update_cpu_freelist_fast(struct kmem_cache *s,
3407 void *freelist_old, void *freelist_new,
3408 unsigned long tid)
3409{
3410 freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3411 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3412
3413 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3414 &old.full, new.full);
3415}
3416
213eeb9f 3417/*
c2092c12
VB
3418 * Check the slab->freelist and either transfer the freelist to the
3419 * per cpu freelist or deactivate the slab.
213eeb9f 3420 *
c2092c12 3421 * The slab is still frozen if the return value is not NULL.
213eeb9f 3422 *
c2092c12 3423 * If this function returns NULL then the slab has been unfrozen.
213eeb9f 3424 */
bb192ed9 3425static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
213eeb9f 3426{
bb192ed9 3427 struct slab new;
213eeb9f
CL
3428 unsigned long counters;
3429 void *freelist;
3430
bd0e7491
VB
3431 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3432
213eeb9f 3433 do {
bb192ed9
VB
3434 freelist = slab->freelist;
3435 counters = slab->counters;
6faa6833 3436
213eeb9f 3437 new.counters = counters;
213eeb9f 3438
bb192ed9 3439 new.inuse = slab->objects;
213eeb9f
CL
3440 new.frozen = freelist != NULL;
3441
6801be4f 3442 } while (!__slab_update_freelist(s, slab,
213eeb9f
CL
3443 freelist, counters,
3444 NULL, new.counters,
3445 "get_freelist"));
3446
3447 return freelist;
3448}
3449
213094b5
CZ
3450/*
3451 * Freeze the partial slab and return the pointer to the freelist.
3452 */
3453static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
3454{
3455 struct slab new;
3456 unsigned long counters;
3457 void *freelist;
3458
3459 do {
3460 freelist = slab->freelist;
3461 counters = slab->counters;
3462
3463 new.counters = counters;
3464 VM_BUG_ON(new.frozen);
3465
3466 new.inuse = slab->objects;
3467 new.frozen = 1;
3468
3469 } while (!slab_update_freelist(s, slab,
3470 freelist, counters,
3471 NULL, new.counters,
3472 "freeze_slab"));
3473
3474 return freelist;
3475}
3476
81819f0f 3477/*
894b8788
CL
3478 * Slow path. The lockless freelist is empty or we need to perform
3479 * debugging duties.
3480 *
894b8788
CL
3481 * Processing is still very fast if new objects have been freed to the
3482 * regular freelist. In that case we simply take over the regular freelist
3483 * as the lockless freelist and zap the regular freelist.
81819f0f 3484 *
894b8788
CL
3485 * If that is not working then we fall back to the partial lists. We take the
3486 * first element of the freelist as the object to allocate now and move the
3487 * rest of the freelist to the lockless freelist.
81819f0f 3488 *
894b8788 3489 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
3490 * we need to allocate a new slab. This is the slowest path since it involves
3491 * a call to the page allocator and the setup of a new slab.
a380a3c7 3492 *
e500059b 3493 * Version of __slab_alloc to use when we know that preemption is
a380a3c7 3494 * already disabled (which is the case for bulk allocation).
81819f0f 3495 */
a380a3c7 3496static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
6edf2576 3497 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
81819f0f 3498{
6faa6833 3499 void *freelist;
bb192ed9 3500 struct slab *slab;
e500059b 3501 unsigned long flags;
6edf2576 3502 struct partial_context pc;
9198ffbd 3503 bool try_thisnode = true;
81819f0f 3504
9f986d99
AW
3505 stat(s, ALLOC_SLOWPATH);
3506
c2092c12 3507reread_slab:
0b303fb4 3508
bb192ed9
VB
3509 slab = READ_ONCE(c->slab);
3510 if (!slab) {
0715e6c5
VB
3511 /*
3512 * if the node is not online or has no normal memory, just
3513 * ignore the node constraint
3514 */
3515 if (unlikely(node != NUMA_NO_NODE &&
7e1fa93d 3516 !node_isset(node, slab_nodes)))
0715e6c5 3517 node = NUMA_NO_NODE;
81819f0f 3518 goto new_slab;
0715e6c5 3519 }
6faa6833 3520
bb192ed9 3521 if (unlikely(!node_match(slab, node))) {
0715e6c5
VB
3522 /*
3523 * same as above but node_match() being false already
3524 * implies node != NUMA_NO_NODE
3525 */
7e1fa93d 3526 if (!node_isset(node, slab_nodes)) {
0715e6c5 3527 node = NUMA_NO_NODE;
0715e6c5 3528 } else {
a561ce00 3529 stat(s, ALLOC_NODE_MISMATCH);
0b303fb4 3530 goto deactivate_slab;
a561ce00 3531 }
fc59c053 3532 }
6446faa2 3533
072bb0aa
MG
3534 /*
3535 * By rights, we should be searching for a slab page that was
3536 * PFMEMALLOC but right now, we are losing the pfmemalloc
3537 * information when the page leaves the per-cpu allocator
3538 */
bb192ed9 3539 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
0b303fb4 3540 goto deactivate_slab;
072bb0aa 3541
c2092c12 3542 /* must check again c->slab in case we got preempted and it changed */
bd0e7491 3543 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 3544 if (unlikely(slab != c->slab)) {
bd0e7491 3545 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
c2092c12 3546 goto reread_slab;
0b303fb4 3547 }
6faa6833
CL
3548 freelist = c->freelist;
3549 if (freelist)
73736e03 3550 goto load_freelist;
03e404af 3551
bb192ed9 3552 freelist = get_freelist(s, slab);
6446faa2 3553
6faa6833 3554 if (!freelist) {
bb192ed9 3555 c->slab = NULL;
eeaa345e 3556 c->tid = next_tid(c->tid);
bd0e7491 3557 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
03e404af 3558 stat(s, DEACTIVATE_BYPASS);
fc59c053 3559 goto new_slab;
03e404af 3560 }
6446faa2 3561
84e554e6 3562 stat(s, ALLOC_REFILL);
6446faa2 3563
894b8788 3564load_freelist:
0b303fb4 3565
bd0e7491 3566 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
0b303fb4 3567
507effea
CL
3568 /*
3569 * freelist is pointing to the list of objects to be used.
c2092c12
VB
3570 * slab is pointing to the slab from which the objects are obtained.
3571 * That slab must be frozen for per cpu allocations to work.
507effea 3572 */
bb192ed9 3573 VM_BUG_ON(!c->slab->frozen);
6faa6833 3574 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 3575 c->tid = next_tid(c->tid);
bd0e7491 3576 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
6faa6833 3577 return freelist;
81819f0f 3578
0b303fb4
VB
3579deactivate_slab:
3580
bd0e7491 3581 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 3582 if (slab != c->slab) {
bd0e7491 3583 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
c2092c12 3584 goto reread_slab;
0b303fb4 3585 }
a019d201 3586 freelist = c->freelist;
bb192ed9 3587 c->slab = NULL;
a019d201 3588 c->freelist = NULL;
eeaa345e 3589 c->tid = next_tid(c->tid);
bd0e7491 3590 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
bb192ed9 3591 deactivate_slab(s, slab, freelist);
0b303fb4 3592
81819f0f 3593new_slab:
2cfb7455 3594
8cd3fa42
CZ
3595#ifdef CONFIG_SLUB_CPU_PARTIAL
3596 while (slub_percpu_partial(c)) {
bd0e7491 3597 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 3598 if (unlikely(c->slab)) {
bd0e7491 3599 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
c2092c12 3600 goto reread_slab;
fa417ab7 3601 }
4b1f449d 3602 if (unlikely(!slub_percpu_partial(c))) {
bd0e7491 3603 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
25c00c50
VB
3604 /* we were preempted and partial list got empty */
3605 goto new_objects;
4b1f449d 3606 }
fa417ab7 3607
8cd3fa42 3608 slab = slub_percpu_partial(c);
bb192ed9 3609 slub_set_percpu_partial(c, slab);
8cd3fa42 3610
90b1e566
CZ
3611 if (likely(node_match(slab, node) &&
3612 pfmemalloc_match(slab, gfpflags))) {
3613 c->slab = slab;
3614 freelist = get_freelist(s, slab);
3615 VM_BUG_ON(!freelist);
3616 stat(s, CPU_PARTIAL_ALLOC);
3617 goto load_freelist;
8cd3fa42
CZ
3618 }
3619
90b1e566
CZ
3620 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3621
3622 slab->next = NULL;
3623 __put_partials(s, slab);
81819f0f 3624 }
8cd3fa42 3625#endif
81819f0f 3626
fa417ab7
VB
3627new_objects:
3628
6edf2576 3629 pc.flags = gfpflags;
9198ffbd
CJ
3630 /*
3631 * When a preferred node is indicated but no __GFP_THISNODE
3632 *
3633 * 1) try to get a partial slab from target node only by having
3634 * __GFP_THISNODE in pc.flags for get_partial()
3635 * 2) if 1) failed, try to allocate a new slab from target node with
3636 * GPF_NOWAIT | __GFP_THISNODE opportunistically
3637 * 3) if 2) failed, retry with original gfpflags which will allow
3638 * get_partial() try partial lists of other nodes before potentially
3639 * allocating new page from other nodes
3640 */
3641 if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3642 && try_thisnode))
3643 pc.flags = GFP_NOWAIT | __GFP_THISNODE;
3644
6edf2576 3645 pc.orig_size = orig_size;
43c4c349
CZ
3646 slab = get_partial(s, node, &pc);
3647 if (slab) {
24c6a097 3648 if (kmem_cache_debug(s)) {
8cd3fa42 3649 freelist = pc.object;
24c6a097
CZ
3650 /*
3651 * For debug caches here we had to go through
3652 * alloc_single_from_partial() so just store the
3653 * tracking info and return the object.
3654 */
3655 if (s->flags & SLAB_STORE_USER)
3656 set_track(s, freelist, TRACK_ALLOC, addr);
3657
3658 return freelist;
3659 }
3660
8cd3fa42 3661 freelist = freeze_slab(s, slab);
24c6a097
CZ
3662 goto retry_load_slab;
3663 }
2a904905 3664
25c00c50 3665 slub_put_cpu_ptr(s->cpu_slab);
9198ffbd 3666 slab = new_slab(s, pc.flags, node);
25c00c50 3667 c = slub_get_cpu_ptr(s->cpu_slab);
01ad8a7b 3668
bb192ed9 3669 if (unlikely(!slab)) {
9198ffbd
CJ
3670 if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3671 && try_thisnode) {
3672 try_thisnode = false;
3673 goto new_objects;
3674 }
9a02d699 3675 slab_out_of_memory(s, gfpflags, node);
f4697436 3676 return NULL;
81819f0f 3677 }
2cfb7455 3678
c7323a5a
VB
3679 stat(s, ALLOC_SLAB);
3680
3681 if (kmem_cache_debug(s)) {
6edf2576 3682 freelist = alloc_single_from_new_slab(s, slab, orig_size);
c7323a5a
VB
3683
3684 if (unlikely(!freelist))
3685 goto new_objects;
3686
3687 if (s->flags & SLAB_STORE_USER)
3688 set_track(s, freelist, TRACK_ALLOC, addr);
3689
3690 return freelist;
3691 }
3692
53a0de06 3693 /*
c2092c12 3694 * No other reference to the slab yet so we can
53a0de06
VB
3695 * muck around with it freely without cmpxchg
3696 */
bb192ed9
VB
3697 freelist = slab->freelist;
3698 slab->freelist = NULL;
c7323a5a
VB
3699 slab->inuse = slab->objects;
3700 slab->frozen = 1;
53a0de06 3701
c7323a5a 3702 inc_slabs_node(s, slab_nid(slab), slab->objects);
53a0de06 3703
c7323a5a 3704 if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
1572df7c
VB
3705 /*
3706 * For !pfmemalloc_match() case we don't load freelist so that
3707 * we don't make further mismatched allocations easier.
3708 */
c7323a5a
VB
3709 deactivate_slab(s, slab, get_freepointer(s, freelist));
3710 return freelist;
3711 }
1572df7c 3712
c2092c12 3713retry_load_slab:
cfdf836e 3714
bd0e7491 3715 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 3716 if (unlikely(c->slab)) {
cfdf836e 3717 void *flush_freelist = c->freelist;
bb192ed9 3718 struct slab *flush_slab = c->slab;
cfdf836e 3719
bb192ed9 3720 c->slab = NULL;
cfdf836e
VB
3721 c->freelist = NULL;
3722 c->tid = next_tid(c->tid);
3723
bd0e7491 3724 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
cfdf836e 3725
bb192ed9 3726 deactivate_slab(s, flush_slab, flush_freelist);
cfdf836e
VB
3727
3728 stat(s, CPUSLAB_FLUSH);
3729
c2092c12 3730 goto retry_load_slab;
cfdf836e 3731 }
bb192ed9 3732 c->slab = slab;
3f2b77e3 3733
1572df7c 3734 goto load_freelist;
894b8788
CL
3735}
3736
a380a3c7 3737/*
e500059b
VB
3738 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3739 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3740 * pointer.
a380a3c7
CL
3741 */
3742static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
6edf2576 3743 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
a380a3c7
CL
3744{
3745 void *p;
a380a3c7 3746
e500059b 3747#ifdef CONFIG_PREEMPT_COUNT
a380a3c7
CL
3748 /*
3749 * We may have been preempted and rescheduled on a different
e500059b 3750 * cpu before disabling preemption. Need to reload cpu area
a380a3c7
CL
3751 * pointer.
3752 */
25c00c50 3753 c = slub_get_cpu_ptr(s->cpu_slab);
a380a3c7
CL
3754#endif
3755
6edf2576 3756 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
e500059b 3757#ifdef CONFIG_PREEMPT_COUNT
25c00c50 3758 slub_put_cpu_ptr(s->cpu_slab);
e500059b 3759#endif
a380a3c7
CL
3760 return p;
3761}
3762
56d5a2b9 3763static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
b89fb5ef 3764 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
894b8788 3765{
dfb4f096 3766 struct kmem_cache_cpu *c;
bb192ed9 3767 struct slab *slab;
8a5ec0ba 3768 unsigned long tid;
56d5a2b9 3769 void *object;
b89fb5ef 3770
8a5ec0ba 3771redo:
8a5ec0ba
CL
3772 /*
3773 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3774 * enabled. We may switch back and forth between cpus while
3775 * reading from one cpu area. That does not matter as long
3776 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 3777 *
9b4bc85a
VB
3778 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3779 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3780 * the tid. If we are preempted and switched to another cpu between the
3781 * two reads, it's OK as the two are still associated with the same cpu
3782 * and cmpxchg later will validate the cpu.
8a5ec0ba 3783 */
9b4bc85a
VB
3784 c = raw_cpu_ptr(s->cpu_slab);
3785 tid = READ_ONCE(c->tid);
9aabf810
JK
3786
3787 /*
3788 * Irqless object alloc/free algorithm used here depends on sequence
3789 * of fetching cpu_slab's data. tid should be fetched before anything
c2092c12 3790 * on c to guarantee that object and slab associated with previous tid
9aabf810 3791 * won't be used with current tid. If we fetch tid first, object and
c2092c12 3792 * slab could be one associated with next tid and our alloc/free
9aabf810
JK
3793 * request will be failed. In this case, we will retry. So, no problem.
3794 */
3795 barrier();
8a5ec0ba 3796
8a5ec0ba
CL
3797 /*
3798 * The transaction ids are globally unique per cpu and per operation on
3799 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3800 * occurs on the right processor and that there was no operation on the
3801 * linked list in between.
3802 */
8a5ec0ba 3803
9dfc6e68 3804 object = c->freelist;
bb192ed9 3805 slab = c->slab;
1f04b07d
TG
3806
3807 if (!USE_LOCKLESS_FAST_PATH() ||
bb192ed9 3808 unlikely(!object || !slab || !node_match(slab, node))) {
6edf2576 3809 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
8eae1492 3810 } else {
0ad9500e
ED
3811 void *next_object = get_freepointer_safe(s, object);
3812
8a5ec0ba 3813 /*
25985edc 3814 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
3815 * operation and if we are on the right processor.
3816 *
d0e0ac97
CG
3817 * The cmpxchg does the following atomically (without lock
3818 * semantics!)
8a5ec0ba
CL
3819 * 1. Relocate first pointer to the current per cpu area.
3820 * 2. Verify that tid and freelist have not been changed
3821 * 3. If they were not changed replace tid and freelist
3822 *
d0e0ac97
CG
3823 * Since this is without lock semantics the protection is only
3824 * against code executing on this cpu *not* from access by
3825 * other cpus.
8a5ec0ba 3826 */
6801be4f 3827 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
8a5ec0ba
CL
3828 note_cmpxchg_failure("slab_alloc", s, tid);
3829 goto redo;
3830 }
0ad9500e 3831 prefetch_freepointer(s, next_object);
84e554e6 3832 stat(s, ALLOC_FASTPATH);
894b8788 3833 }
0f181f9f 3834
56d5a2b9
VB
3835 return object;
3836}
0af8489b
VB
3837#else /* CONFIG_SLUB_TINY */
3838static void *__slab_alloc_node(struct kmem_cache *s,
3839 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3840{
3841 struct partial_context pc;
3842 struct slab *slab;
3843 void *object;
3844
3845 pc.flags = gfpflags;
0af8489b 3846 pc.orig_size = orig_size;
43c4c349 3847 slab = get_partial(s, node, &pc);
0af8489b 3848
43c4c349
CZ
3849 if (slab)
3850 return pc.object;
0af8489b
VB
3851
3852 slab = new_slab(s, gfpflags, node);
3853 if (unlikely(!slab)) {
3854 slab_out_of_memory(s, gfpflags, node);
3855 return NULL;
3856 }
3857
3858 object = alloc_single_from_new_slab(s, slab, orig_size);
3859
3860 return object;
3861}
3862#endif /* CONFIG_SLUB_TINY */
56d5a2b9
VB
3863
3864/*
3865 * If the object has been wiped upon free, make sure it's fully initialized by
3866 * zeroing out freelist pointer.
3867 */
3868static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3869 void *obj)
3870{
8f828aa4
NB
3871 if (unlikely(slab_want_init_on_free(s)) && obj &&
3872 !freeptr_outside_object(s))
56d5a2b9
VB
3873 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3874 0, sizeof(void *));
3875}
3876
6011be59
VB
3877noinline int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
3878{
3879 if (__should_failslab(s, gfpflags))
3880 return -ENOMEM;
3881 return 0;
3882}
3883ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
3884
3450a0e5 3885static __fastpath_inline
9f9796b4 3886struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
6011be59
VB
3887{
3888 flags &= gfp_allowed_mask;
3889
3890 might_alloc(flags);
3891
3450a0e5 3892 if (unlikely(should_failslab(s, flags)))
6011be59
VB
3893 return NULL;
3894
6011be59
VB
3895 return s;
3896}
3897
3450a0e5 3898static __fastpath_inline
9f9796b4 3899bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
3450a0e5
VB
3900 gfp_t flags, size_t size, void **p, bool init,
3901 unsigned int orig_size)
6011be59
VB
3902{
3903 unsigned int zero_size = s->object_size;
4b873696 3904 struct slabobj_ext *obj_exts;
6011be59
VB
3905 bool kasan_init = init;
3906 size_t i;
3450a0e5 3907 gfp_t init_flags = flags & gfp_allowed_mask;
6011be59
VB
3908
3909 /*
3910 * For kmalloc object, the allocated memory size(object_size) is likely
3911 * larger than the requested size(orig_size). If redzone check is
3912 * enabled for the extra space, don't zero it, as it will be redzoned
3913 * soon. The redzone operation for this extra space could be seen as a
3914 * replacement of current poisoning under certain debug option, and
3915 * won't break other sanity checks.
3916 */
3917 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
3918 (s->flags & SLAB_KMALLOC))
3919 zero_size = orig_size;
3920
3921 /*
671776b3 3922 * When slab_debug is enabled, avoid memory initialization integrated
6011be59
VB
3923 * into KASAN and instead zero out the memory via the memset below with
3924 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
3925 * cause false-positive reports. This does not lead to a performance
671776b3 3926 * penalty on production builds, as slab_debug is not intended to be
6011be59
VB
3927 * enabled there.
3928 */
3929 if (__slub_debug_enabled())
3930 kasan_init = false;
3931
3932 /*
3933 * As memory initialization might be integrated into KASAN,
3934 * kasan_slab_alloc and initialization memset must be
3935 * kept together to avoid discrepancies in behavior.
3936 *
3937 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
3938 */
3939 for (i = 0; i < size; i++) {
3450a0e5 3940 p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
6011be59
VB
3941 if (p[i] && init && (!kasan_init ||
3942 !kasan_has_integrated_init()))
3943 memset(p[i], 0, zero_size);
3944 kmemleak_alloc_recursive(p[i], s->object_size, 1,
3450a0e5
VB
3945 s->flags, init_flags);
3946 kmsan_slab_alloc(s, p[i], init_flags);
4b873696
SB
3947 if (need_slab_obj_ext()) {
3948 obj_exts = prepare_slab_obj_exts_hook(s, flags, p[i]);
3949#ifdef CONFIG_MEM_ALLOC_PROFILING
3950 /*
3951 * Currently obj_exts is used only for allocation profiling.
3952 * If other users appear then mem_alloc_profiling_enabled()
3953 * check should be added before alloc_tag_add().
3954 */
3955 if (likely(obj_exts))
3956 alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
3957#endif
3958 }
6011be59
VB
3959 }
3960
9f9796b4 3961 return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
6011be59
VB
3962}
3963
56d5a2b9
VB
3964/*
3965 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3966 * have the fastpath folded into their functions. So no function call
3967 * overhead for requests that can be satisfied on the fastpath.
3968 *
3969 * The fastpath works by first checking if the lockless freelist can be used.
3970 * If not then __slab_alloc is called for slow processing.
3971 *
3972 * Otherwise we can simply pick the next object from the lockless free list.
3973 */
be784ba8 3974static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
56d5a2b9
VB
3975 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3976{
3977 void *object;
56d5a2b9
VB
3978 bool init = false;
3979
9f9796b4 3980 s = slab_pre_alloc_hook(s, gfpflags);
3450a0e5 3981 if (unlikely(!s))
56d5a2b9
VB
3982 return NULL;
3983
3984 object = kfence_alloc(s, orig_size, gfpflags);
3985 if (unlikely(object))
3986 goto out;
3987
3988 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
3989
ce5716c6 3990 maybe_wipe_obj_freeptr(s, object);
da844b78 3991 init = slab_want_init_on_alloc(gfpflags, s);
d07dbea4 3992
b89fb5ef 3993out:
9ce67395
FT
3994 /*
3995 * When init equals 'true', like for kzalloc() family, only
3996 * @orig_size bytes might be zeroed instead of s->object_size
9f9796b4
VB
3997 * In case this fails due to memcg_slab_post_alloc_hook(),
3998 * object is set to NULL
9ce67395 3999 */
9f9796b4 4000 slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
5a896d9e 4001
894b8788 4002 return object;
81819f0f
CL
4003}
4004
7bd230a2 4005void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
2b847c3c 4006{
49378a05
VB
4007 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
4008 s->object_size);
5b882be4 4009
2c1d697f 4010 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
5b882be4
EGM
4011
4012 return ret;
2b847c3c 4013}
7bd230a2 4014EXPORT_SYMBOL(kmem_cache_alloc_noprof);
2b847c3c 4015
7bd230a2 4016void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
88f2ef73 4017 gfp_t gfpflags)
81819f0f 4018{
49378a05
VB
4019 void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
4020 s->object_size);
5b882be4 4021
2c1d697f 4022 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
5b882be4
EGM
4023
4024 return ret;
81819f0f 4025}
7bd230a2 4026EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
88f2ef73 4027
0445ee00
VB
4028/**
4029 * kmem_cache_alloc_node - Allocate an object on the specified node
4030 * @s: The cache to allocate from.
4031 * @gfpflags: See kmalloc().
4032 * @node: node number of the target node.
4033 *
4034 * Identical to kmem_cache_alloc but it will allocate memory on the given
4035 * node, which can improve the performance for cpu bound structures.
4036 *
4037 * Fallback to other node is possible if __GFP_THISNODE is not set.
4038 *
4039 * Return: pointer to the new object or %NULL in case of error
4040 */
7bd230a2 4041void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
81819f0f 4042{
88f2ef73 4043 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
5b882be4 4044
2c1d697f 4045 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
5b882be4
EGM
4046
4047 return ret;
81819f0f 4048}
7bd230a2 4049EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
81819f0f 4050
4862caa5
VB
4051/*
4052 * To avoid unnecessary overhead, we pass through large allocation requests
4053 * directly to the page allocator. We use __GFP_COMP, because we will need to
4054 * know the allocation order to free the pages properly in kfree.
4055 */
4056static void *__kmalloc_large_node(size_t size, gfp_t flags, int node)
88f2ef73 4057{
fb46e22a 4058 struct folio *folio;
4862caa5
VB
4059 void *ptr = NULL;
4060 unsigned int order = get_order(size);
4061
4062 if (unlikely(flags & GFP_SLAB_BUG_MASK))
4063 flags = kmalloc_fix_flags(flags);
4064
4065 flags |= __GFP_COMP;
7bd230a2 4066 folio = (struct folio *)alloc_pages_node_noprof(node, flags, order);
fb46e22a
LT
4067 if (folio) {
4068 ptr = folio_address(folio);
4069 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4862caa5
VB
4070 PAGE_SIZE << order);
4071 }
4072
4073 ptr = kasan_kmalloc_large(ptr, size, flags);
4074 /* As ptr might get tagged, call kmemleak hook after KASAN. */
4075 kmemleak_alloc(ptr, size, 1, flags);
4076 kmsan_kmalloc_large(ptr, size, flags);
4077
4078 return ptr;
88f2ef73 4079}
81819f0f 4080
7bd230a2 4081void *kmalloc_large_noprof(size_t size, gfp_t flags)
88f2ef73 4082{
4862caa5
VB
4083 void *ret = __kmalloc_large_node(size, flags, NUMA_NO_NODE);
4084
4085 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4086 flags, NUMA_NO_NODE);
4087 return ret;
88f2ef73 4088}
7bd230a2 4089EXPORT_SYMBOL(kmalloc_large_noprof);
88f2ef73 4090
7bd230a2 4091void *kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
4a92379b 4092{
4862caa5
VB
4093 void *ret = __kmalloc_large_node(size, flags, node);
4094
4095 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4096 flags, node);
4097 return ret;
4a92379b 4098}
7bd230a2 4099EXPORT_SYMBOL(kmalloc_large_node_noprof);
5b882be4 4100
4862caa5
VB
4101static __always_inline
4102void *__do_kmalloc_node(size_t size, gfp_t flags, int node,
4103 unsigned long caller)
81819f0f 4104{
4862caa5
VB
4105 struct kmem_cache *s;
4106 void *ret;
5b882be4 4107
4862caa5
VB
4108 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4109 ret = __kmalloc_large_node(size, flags, node);
4110 trace_kmalloc(caller, ret, size,
4111 PAGE_SIZE << get_order(size), flags, node);
4112 return ret;
4113 }
5b882be4 4114
4862caa5
VB
4115 if (unlikely(!size))
4116 return ZERO_SIZE_PTR;
4117
4118 s = kmalloc_slab(size, flags, caller);
4119
4120 ret = slab_alloc_node(s, NULL, flags, node, caller, size);
4121 ret = kasan_kmalloc(s, ret, size, flags);
4122 trace_kmalloc(caller, ret, size, s->size, flags, node);
5b882be4 4123 return ret;
81819f0f 4124}
4862caa5 4125
7bd230a2 4126void *__kmalloc_node_noprof(size_t size, gfp_t flags, int node)
4862caa5
VB
4127{
4128 return __do_kmalloc_node(size, flags, node, _RET_IP_);
4129}
7bd230a2 4130EXPORT_SYMBOL(__kmalloc_node_noprof);
4862caa5 4131
7bd230a2 4132void *__kmalloc_noprof(size_t size, gfp_t flags)
4862caa5
VB
4133{
4134 return __do_kmalloc_node(size, flags, NUMA_NO_NODE, _RET_IP_);
4135}
7bd230a2 4136EXPORT_SYMBOL(__kmalloc_noprof);
4862caa5 4137
7bd230a2
SB
4138void *kmalloc_node_track_caller_noprof(size_t size, gfp_t flags,
4139 int node, unsigned long caller)
4862caa5
VB
4140{
4141 return __do_kmalloc_node(size, flags, node, caller);
4142}
7bd230a2 4143EXPORT_SYMBOL(kmalloc_node_track_caller_noprof);
4862caa5 4144
7bd230a2 4145void *kmalloc_trace_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
4862caa5
VB
4146{
4147 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
4148 _RET_IP_, size);
4149
4150 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
4151
4152 ret = kasan_kmalloc(s, ret, size, gfpflags);
4153 return ret;
4154}
7bd230a2 4155EXPORT_SYMBOL(kmalloc_trace_noprof);
4862caa5 4156
7bd230a2 4157void *kmalloc_node_trace_noprof(struct kmem_cache *s, gfp_t gfpflags,
4862caa5
VB
4158 int node, size_t size)
4159{
4160 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4161
4162 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
4163
4164 ret = kasan_kmalloc(s, ret, size, gfpflags);
4165 return ret;
4166}
7bd230a2 4167EXPORT_SYMBOL(kmalloc_node_trace_noprof);
81819f0f 4168
fa9b88e4
VB
4169static noinline void free_to_partial_list(
4170 struct kmem_cache *s, struct slab *slab,
4171 void *head, void *tail, int bulk_cnt,
4172 unsigned long addr)
4173{
4174 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
4175 struct slab *slab_free = NULL;
4176 int cnt = bulk_cnt;
4177 unsigned long flags;
4178 depot_stack_handle_t handle = 0;
4179
4180 if (s->flags & SLAB_STORE_USER)
4181 handle = set_track_prepare();
4182
4183 spin_lock_irqsave(&n->list_lock, flags);
4184
4185 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
4186 void *prior = slab->freelist;
4187
4188 /* Perform the actual freeing while we still hold the locks */
4189 slab->inuse -= cnt;
4190 set_freepointer(s, tail, prior);
4191 slab->freelist = head;
4192
4193 /*
4194 * If the slab is empty, and node's partial list is full,
4195 * it should be discarded anyway no matter it's on full or
4196 * partial list.
4197 */
4198 if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
4199 slab_free = slab;
4200
4201 if (!prior) {
4202 /* was on full list */
4203 remove_full(s, n, slab);
4204 if (!slab_free) {
4205 add_partial(n, slab, DEACTIVATE_TO_TAIL);
4206 stat(s, FREE_ADD_PARTIAL);
4207 }
4208 } else if (slab_free) {
4209 remove_partial(n, slab);
4210 stat(s, FREE_REMOVE_PARTIAL);
4211 }
4212 }
4213
4214 if (slab_free) {
4215 /*
4216 * Update the counters while still holding n->list_lock to
4217 * prevent spurious validation warnings
4218 */
4219 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
4220 }
4221
4222 spin_unlock_irqrestore(&n->list_lock, flags);
4223
4224 if (slab_free) {
4225 stat(s, FREE_SLAB);
4226 free_slab(s, slab_free);
4227 }
4228}
4229
81819f0f 4230/*
94e4d712 4231 * Slow path handling. This may still be called frequently since objects
894b8788 4232 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 4233 *
894b8788 4234 * So we still attempt to reduce cache line usage. Just take the slab
c2092c12 4235 * lock and free the item. If there is no additional partial slab
894b8788 4236 * handling required then we can return immediately.
81819f0f 4237 */
bb192ed9 4238static void __slab_free(struct kmem_cache *s, struct slab *slab,
81084651
JDB
4239 void *head, void *tail, int cnt,
4240 unsigned long addr)
4241
81819f0f
CL
4242{
4243 void *prior;
2cfb7455 4244 int was_frozen;
bb192ed9 4245 struct slab new;
2cfb7455
CL
4246 unsigned long counters;
4247 struct kmem_cache_node *n = NULL;
3f649ab7 4248 unsigned long flags;
422e7d54 4249 bool on_node_partial;
81819f0f 4250
8a5ec0ba 4251 stat(s, FREE_SLOWPATH);
81819f0f 4252
0af8489b 4253 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
fa9b88e4 4254 free_to_partial_list(s, slab, head, tail, cnt, addr);
80f08c19 4255 return;
c7323a5a 4256 }
6446faa2 4257
2cfb7455 4258 do {
837d678d
JK
4259 if (unlikely(n)) {
4260 spin_unlock_irqrestore(&n->list_lock, flags);
4261 n = NULL;
4262 }
bb192ed9
VB
4263 prior = slab->freelist;
4264 counters = slab->counters;
81084651 4265 set_freepointer(s, tail, prior);
2cfb7455
CL
4266 new.counters = counters;
4267 was_frozen = new.frozen;
81084651 4268 new.inuse -= cnt;
837d678d 4269 if ((!new.inuse || !prior) && !was_frozen) {
8cd3fa42
CZ
4270 /* Needs to be taken off a list */
4271 if (!kmem_cache_has_cpu_partial(s) || prior) {
49e22585 4272
bb192ed9 4273 n = get_node(s, slab_nid(slab));
49e22585
CL
4274 /*
4275 * Speculatively acquire the list_lock.
4276 * If the cmpxchg does not succeed then we may
4277 * drop the list_lock without any processing.
4278 *
4279 * Otherwise the list_lock will synchronize with
4280 * other processors updating the list of slabs.
4281 */
4282 spin_lock_irqsave(&n->list_lock, flags);
4283
422e7d54 4284 on_node_partial = slab_test_node_partial(slab);
49e22585 4285 }
2cfb7455 4286 }
81819f0f 4287
6801be4f 4288 } while (!slab_update_freelist(s, slab,
2cfb7455 4289 prior, counters,
81084651 4290 head, new.counters,
2cfb7455 4291 "__slab_free"));
81819f0f 4292
2cfb7455 4293 if (likely(!n)) {
49e22585 4294
c270cf30
AW
4295 if (likely(was_frozen)) {
4296 /*
4297 * The list lock was not taken therefore no list
4298 * activity can be necessary.
4299 */
4300 stat(s, FREE_FROZEN);
8cd3fa42 4301 } else if (kmem_cache_has_cpu_partial(s) && !prior) {
c270cf30 4302 /*
8cd3fa42 4303 * If we started with a full slab then put it onto the
c270cf30
AW
4304 * per cpu partial list.
4305 */
bb192ed9 4306 put_cpu_partial(s, slab, 1);
8028dcea
AS
4307 stat(s, CPU_PARTIAL_FREE);
4308 }
c270cf30 4309
b455def2
L
4310 return;
4311 }
81819f0f 4312
422e7d54
CZ
4313 /*
4314 * This slab was partially empty but not on the per-node partial list,
4315 * in which case we shouldn't manipulate its list, just return.
4316 */
4317 if (prior && !on_node_partial) {
4318 spin_unlock_irqrestore(&n->list_lock, flags);
4319 return;
4320 }
4321
8a5b20ae 4322 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
4323 goto slab_empty;
4324
81819f0f 4325 /*
837d678d
JK
4326 * Objects left in the slab. If it was not on the partial list before
4327 * then add it.
81819f0f 4328 */
345c905d 4329 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
bb192ed9 4330 add_partial(n, slab, DEACTIVATE_TO_TAIL);
837d678d 4331 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 4332 }
80f08c19 4333 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
4334 return;
4335
4336slab_empty:
a973e9dd 4337 if (prior) {
81819f0f 4338 /*
6fbabb20 4339 * Slab on the partial list.
81819f0f 4340 */
bb192ed9 4341 remove_partial(n, slab);
84e554e6 4342 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 4343 }
2cfb7455 4344
80f08c19 4345 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 4346 stat(s, FREE_SLAB);
bb192ed9 4347 discard_slab(s, slab);
81819f0f
CL
4348}
4349
0af8489b 4350#ifndef CONFIG_SLUB_TINY
894b8788
CL
4351/*
4352 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
4353 * can perform fastpath freeing without additional function calls.
4354 *
4355 * The fastpath is only possible if we are freeing to the current cpu slab
4356 * of this processor. This typically the case if we have just allocated
4357 * the item before.
4358 *
4359 * If fastpath is not possible then fall back to __slab_free where we deal
4360 * with all sorts of special processing.
81084651
JDB
4361 *
4362 * Bulk free of a freelist with several objects (all pointing to the
c2092c12 4363 * same slab) possible by specifying head and tail ptr, plus objects
81084651 4364 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 4365 */
80a9201a 4366static __always_inline void do_slab_free(struct kmem_cache *s,
bb192ed9 4367 struct slab *slab, void *head, void *tail,
80a9201a 4368 int cnt, unsigned long addr)
894b8788 4369{
dfb4f096 4370 struct kmem_cache_cpu *c;
8a5ec0ba 4371 unsigned long tid;
1f04b07d 4372 void **freelist;
964d4bd3 4373
8a5ec0ba
CL
4374redo:
4375 /*
4376 * Determine the currently cpus per cpu slab.
4377 * The cpu may change afterward. However that does not matter since
4378 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 4379 * during the cmpxchg then the free will succeed.
8a5ec0ba 4380 */
9b4bc85a
VB
4381 c = raw_cpu_ptr(s->cpu_slab);
4382 tid = READ_ONCE(c->tid);
c016b0bd 4383
b062539c 4384 /* Same with comment on barrier() in __slab_alloc_node() */
9aabf810 4385 barrier();
c016b0bd 4386
1f04b07d 4387 if (unlikely(slab != c->slab)) {
284f17ac 4388 __slab_free(s, slab, head, tail, cnt, addr);
1f04b07d
TG
4389 return;
4390 }
4391
4392 if (USE_LOCKLESS_FAST_PATH()) {
4393 freelist = READ_ONCE(c->freelist);
5076190d 4394
284f17ac 4395 set_freepointer(s, tail, freelist);
8a5ec0ba 4396
6801be4f 4397 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
8a5ec0ba
CL
4398 note_cmpxchg_failure("slab_free", s, tid);
4399 goto redo;
4400 }
1f04b07d
TG
4401 } else {
4402 /* Update the free list under the local lock */
bd0e7491
VB
4403 local_lock(&s->cpu_slab->lock);
4404 c = this_cpu_ptr(s->cpu_slab);
bb192ed9 4405 if (unlikely(slab != c->slab)) {
bd0e7491
VB
4406 local_unlock(&s->cpu_slab->lock);
4407 goto redo;
4408 }
4409 tid = c->tid;
4410 freelist = c->freelist;
4411
284f17ac 4412 set_freepointer(s, tail, freelist);
bd0e7491
VB
4413 c->freelist = head;
4414 c->tid = next_tid(tid);
4415
4416 local_unlock(&s->cpu_slab->lock);
1f04b07d 4417 }
6f3dd2c3 4418 stat_add(s, FREE_FASTPATH, cnt);
894b8788 4419}
0af8489b
VB
4420#else /* CONFIG_SLUB_TINY */
4421static void do_slab_free(struct kmem_cache *s,
4422 struct slab *slab, void *head, void *tail,
4423 int cnt, unsigned long addr)
4424{
284f17ac 4425 __slab_free(s, slab, head, tail, cnt, addr);
0af8489b
VB
4426}
4427#endif /* CONFIG_SLUB_TINY */
894b8788 4428
284f17ac
VB
4429static __fastpath_inline
4430void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
4431 unsigned long addr)
4432{
284f17ac 4433 memcg_slab_free_hook(s, slab, &object, 1);
4b873696 4434 alloc_tagging_slab_free_hook(s, slab, &object, 1);
284f17ac 4435
782f8906 4436 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s))))
284f17ac
VB
4437 do_slab_free(s, slab, object, object, 1, addr);
4438}
4439
9f9796b4
VB
4440#ifdef CONFIG_MEMCG_KMEM
4441/* Do not inline the rare memcg charging failed path into the allocation path */
4442static noinline
4443void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
4444{
4445 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s))))
4446 do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
4447}
4448#endif
4449
284f17ac
VB
4450static __fastpath_inline
4451void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
4452 void *tail, void **p, int cnt, unsigned long addr)
80a9201a 4453{
b77d5b1b 4454 memcg_slab_free_hook(s, slab, p, cnt);
4b873696 4455 alloc_tagging_slab_free_hook(s, slab, p, cnt);
80a9201a 4456 /*
c3895391
AK
4457 * With KASAN enabled slab_free_freelist_hook modifies the freelist
4458 * to remove objects, whose reuse must be delayed.
80a9201a 4459 */
ecf9a253 4460 if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
bb192ed9 4461 do_slab_free(s, slab, head, tail, cnt, addr);
80a9201a
AP
4462}
4463
2bd926b4 4464#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
4465void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
4466{
284f17ac 4467 do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
80a9201a
AP
4468}
4469#endif
4470
0bedcc66 4471static inline struct kmem_cache *virt_to_cache(const void *obj)
ed4cd17e 4472{
0bedcc66
VB
4473 struct slab *slab;
4474
4475 slab = virt_to_slab(obj);
4476 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
4477 return NULL;
4478 return slab->slab_cache;
ed4cd17e
HY
4479}
4480
0bedcc66
VB
4481static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
4482{
4483 struct kmem_cache *cachep;
4484
4485 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
4486 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
4487 return s;
4488
4489 cachep = virt_to_cache(x);
4490 if (WARN(cachep && cachep != s,
4491 "%s: Wrong slab cache. %s but object is from %s\n",
4492 __func__, s->name, cachep->name))
4493 print_tracking(cachep, x);
4494 return cachep;
4495}
4496
0445ee00
VB
4497/**
4498 * kmem_cache_free - Deallocate an object
4499 * @s: The cache the allocation was from.
4500 * @x: The previously allocated object.
4501 *
4502 * Free an object which was previously allocated from this
4503 * cache.
4504 */
81819f0f
CL
4505void kmem_cache_free(struct kmem_cache *s, void *x)
4506{
b9ce5ef4
GC
4507 s = cache_from_obj(s, x);
4508 if (!s)
79576102 4509 return;
2c1d697f 4510 trace_kmem_cache_free(_RET_IP_, x, s);
284f17ac 4511 slab_free(s, virt_to_slab(x), x, _RET_IP_);
81819f0f
CL
4512}
4513EXPORT_SYMBOL(kmem_cache_free);
4514
b774d3e3
VB
4515static void free_large_kmalloc(struct folio *folio, void *object)
4516{
4517 unsigned int order = folio_order(folio);
4518
4519 if (WARN_ON_ONCE(order == 0))
4520 pr_warn_once("object pointer: 0x%p\n", object);
4521
4522 kmemleak_free(object);
4523 kasan_kfree_large(object);
4524 kmsan_kfree_large(object);
4525
fb46e22a 4526 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
b774d3e3 4527 -(PAGE_SIZE << order));
fb46e22a 4528 folio_put(folio);
b774d3e3
VB
4529}
4530
4531/**
4532 * kfree - free previously allocated memory
4533 * @object: pointer returned by kmalloc() or kmem_cache_alloc()
4534 *
4535 * If @object is NULL, no operation is performed.
4536 */
4537void kfree(const void *object)
4538{
4539 struct folio *folio;
4540 struct slab *slab;
4541 struct kmem_cache *s;
4542 void *x = (void *)object;
4543
4544 trace_kfree(_RET_IP_, object);
4545
4546 if (unlikely(ZERO_OR_NULL_PTR(object)))
4547 return;
4548
4549 folio = virt_to_folio(object);
4550 if (unlikely(!folio_test_slab(folio))) {
4551 free_large_kmalloc(folio, (void *)object);
4552 return;
4553 }
4554
4555 slab = folio_slab(folio);
4556 s = slab->slab_cache;
284f17ac 4557 slab_free(s, slab, x, _RET_IP_);
b774d3e3
VB
4558}
4559EXPORT_SYMBOL(kfree);
4560
d0ecd894 4561struct detached_freelist {
cc465c3b 4562 struct slab *slab;
d0ecd894
JDB
4563 void *tail;
4564 void *freelist;
4565 int cnt;
376bf125 4566 struct kmem_cache *s;
d0ecd894 4567};
fbd02630 4568
d0ecd894
JDB
4569/*
4570 * This function progressively scans the array with free objects (with
4571 * a limited look ahead) and extract objects belonging to the same
cc465c3b
MWO
4572 * slab. It builds a detached freelist directly within the given
4573 * slab/objects. This can happen without any need for
d0ecd894
JDB
4574 * synchronization, because the objects are owned by running process.
4575 * The freelist is build up as a single linked list in the objects.
4576 * The idea is, that this detached freelist can then be bulk
4577 * transferred to the real freelist(s), but only requiring a single
4578 * synchronization primitive. Look ahead in the array is limited due
4579 * to performance reasons.
4580 */
376bf125
JDB
4581static inline
4582int build_detached_freelist(struct kmem_cache *s, size_t size,
4583 void **p, struct detached_freelist *df)
d0ecd894 4584{
d0ecd894
JDB
4585 int lookahead = 3;
4586 void *object;
cc465c3b 4587 struct folio *folio;
b77d5b1b 4588 size_t same;
fbd02630 4589
b77d5b1b 4590 object = p[--size];
cc465c3b 4591 folio = virt_to_folio(object);
ca257195
JDB
4592 if (!s) {
4593 /* Handle kalloc'ed objects */
cc465c3b 4594 if (unlikely(!folio_test_slab(folio))) {
d835eef4 4595 free_large_kmalloc(folio, object);
b77d5b1b 4596 df->slab = NULL;
ca257195
JDB
4597 return size;
4598 }
4599 /* Derive kmem_cache from object */
b77d5b1b
MS
4600 df->slab = folio_slab(folio);
4601 df->s = df->slab->slab_cache;
ca257195 4602 } else {
b77d5b1b 4603 df->slab = folio_slab(folio);
ca257195
JDB
4604 df->s = cache_from_obj(s, object); /* Support for memcg */
4605 }
376bf125 4606
d0ecd894 4607 /* Start new detached freelist */
d0ecd894
JDB
4608 df->tail = object;
4609 df->freelist = object;
d0ecd894
JDB
4610 df->cnt = 1;
4611
b77d5b1b
MS
4612 if (is_kfence_address(object))
4613 return size;
4614
4615 set_freepointer(df->s, object, NULL);
4616
4617 same = size;
d0ecd894
JDB
4618 while (size) {
4619 object = p[--size];
cc465c3b
MWO
4620 /* df->slab is always set at this point */
4621 if (df->slab == virt_to_slab(object)) {
d0ecd894 4622 /* Opportunity build freelist */
376bf125 4623 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
4624 df->freelist = object;
4625 df->cnt++;
b77d5b1b
MS
4626 same--;
4627 if (size != same)
4628 swap(p[size], p[same]);
d0ecd894 4629 continue;
fbd02630 4630 }
d0ecd894
JDB
4631
4632 /* Limit look ahead search */
4633 if (!--lookahead)
4634 break;
fbd02630 4635 }
d0ecd894 4636
b77d5b1b 4637 return same;
d0ecd894
JDB
4638}
4639
520a688a
VB
4640/*
4641 * Internal bulk free of objects that were not initialised by the post alloc
4642 * hooks and thus should not be processed by the free hooks
4643 */
4644static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4645{
4646 if (!size)
4647 return;
4648
4649 do {
4650 struct detached_freelist df;
4651
4652 size = build_detached_freelist(s, size, p, &df);
4653 if (!df.slab)
4654 continue;
4655
4656 do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
4657 _RET_IP_);
4658 } while (likely(size));
4659}
4660
d0ecd894 4661/* Note that interrupts must be enabled when calling this function. */
376bf125 4662void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894 4663{
2055e67b 4664 if (!size)
d0ecd894
JDB
4665 return;
4666
4667 do {
4668 struct detached_freelist df;
4669
4670 size = build_detached_freelist(s, size, p, &df);
cc465c3b 4671 if (!df.slab)
d0ecd894
JDB
4672 continue;
4673
284f17ac
VB
4674 slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
4675 df.cnt, _RET_IP_);
d0ecd894 4676 } while (likely(size));
484748f0
CL
4677}
4678EXPORT_SYMBOL(kmem_cache_free_bulk);
4679
0af8489b 4680#ifndef CONFIG_SLUB_TINY
520a688a
VB
4681static inline
4682int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4683 void **p)
484748f0 4684{
994eb764 4685 struct kmem_cache_cpu *c;
f5451547 4686 unsigned long irqflags;
994eb764
JDB
4687 int i;
4688
994eb764
JDB
4689 /*
4690 * Drain objects in the per cpu slab, while disabling local
4691 * IRQs, which protects against PREEMPT and interrupts
4692 * handlers invoking normal fastpath.
4693 */
25c00c50 4694 c = slub_get_cpu_ptr(s->cpu_slab);
f5451547 4695 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
994eb764
JDB
4696
4697 for (i = 0; i < size; i++) {
b89fb5ef 4698 void *object = kfence_alloc(s, s->object_size, flags);
994eb764 4699
b89fb5ef
AP
4700 if (unlikely(object)) {
4701 p[i] = object;
4702 continue;
4703 }
4704
4705 object = c->freelist;
ebe909e0 4706 if (unlikely(!object)) {
fd4d9c7d
JH
4707 /*
4708 * We may have removed an object from c->freelist using
4709 * the fastpath in the previous iteration; in that case,
4710 * c->tid has not been bumped yet.
4711 * Since ___slab_alloc() may reenable interrupts while
4712 * allocating memory, we should bump c->tid now.
4713 */
4714 c->tid = next_tid(c->tid);
4715
f5451547 4716 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
e500059b 4717
ebe909e0
JDB
4718 /*
4719 * Invoking slow path likely have side-effect
4720 * of re-populating per CPU c->freelist
4721 */
87098373 4722 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
6edf2576 4723 _RET_IP_, c, s->object_size);
87098373
CL
4724 if (unlikely(!p[i]))
4725 goto error;
4726
ebe909e0 4727 c = this_cpu_ptr(s->cpu_slab);
0f181f9f
AP
4728 maybe_wipe_obj_freeptr(s, p[i]);
4729
f5451547 4730 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
e500059b 4731
ebe909e0
JDB
4732 continue; /* goto for-loop */
4733 }
994eb764
JDB
4734 c->freelist = get_freepointer(s, object);
4735 p[i] = object;
0f181f9f 4736 maybe_wipe_obj_freeptr(s, p[i]);
6f3dd2c3 4737 stat(s, ALLOC_FASTPATH);
994eb764
JDB
4738 }
4739 c->tid = next_tid(c->tid);
f5451547 4740 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
25c00c50 4741 slub_put_cpu_ptr(s->cpu_slab);
994eb764 4742
865762a8 4743 return i;
56d5a2b9 4744
87098373 4745error:
25c00c50 4746 slub_put_cpu_ptr(s->cpu_slab);
520a688a 4747 __kmem_cache_free_bulk(s, i, p);
865762a8 4748 return 0;
56d5a2b9
VB
4749
4750}
0af8489b
VB
4751#else /* CONFIG_SLUB_TINY */
4752static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
520a688a 4753 size_t size, void **p)
0af8489b
VB
4754{
4755 int i;
4756
4757 for (i = 0; i < size; i++) {
4758 void *object = kfence_alloc(s, s->object_size, flags);
4759
4760 if (unlikely(object)) {
4761 p[i] = object;
4762 continue;
4763 }
4764
4765 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
4766 _RET_IP_, s->object_size);
4767 if (unlikely(!p[i]))
4768 goto error;
4769
4770 maybe_wipe_obj_freeptr(s, p[i]);
4771 }
4772
4773 return i;
4774
4775error:
520a688a 4776 __kmem_cache_free_bulk(s, i, p);
0af8489b
VB
4777 return 0;
4778}
4779#endif /* CONFIG_SLUB_TINY */
56d5a2b9
VB
4780
4781/* Note that interrupts must be enabled when calling this function. */
7bd230a2
SB
4782int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
4783 void **p)
56d5a2b9
VB
4784{
4785 int i;
56d5a2b9
VB
4786
4787 if (!size)
4788 return 0;
4789
9f9796b4 4790 s = slab_pre_alloc_hook(s, flags);
56d5a2b9
VB
4791 if (unlikely(!s))
4792 return 0;
4793
520a688a 4794 i = __kmem_cache_alloc_bulk(s, flags, size, p);
9f9796b4
VB
4795 if (unlikely(i == 0))
4796 return 0;
56d5a2b9
VB
4797
4798 /*
4799 * memcg and kmem_cache debug support and memory initialization.
4800 * Done outside of the IRQ disabled fastpath loop.
4801 */
9f9796b4
VB
4802 if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
4803 slab_want_init_on_alloc(flags, s), s->object_size))) {
4804 return 0;
520a688a 4805 }
56d5a2b9 4806 return i;
484748f0 4807}
7bd230a2 4808EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
484748f0
CL
4809
4810
81819f0f 4811/*
672bba3a
CL
4812 * Object placement in a slab is made very easy because we always start at
4813 * offset 0. If we tune the size of the object to the alignment then we can
4814 * get the required alignment by putting one properly sized object after
4815 * another.
81819f0f
CL
4816 *
4817 * Notice that the allocation order determines the sizes of the per cpu
4818 * caches. Each processor has always one slab available for allocations.
4819 * Increasing the allocation order reduces the number of times that slabs
672bba3a 4820 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 4821 * locking overhead.
81819f0f
CL
4822 */
4823
4824/*
f0953a1b 4825 * Minimum / Maximum order of slab pages. This influences locking overhead
81819f0f
CL
4826 * and slab fragmentation. A higher order reduces the number of partial slabs
4827 * and increases the number of allocations possible without having to
4828 * take the list_lock.
4829 */
19af27af 4830static unsigned int slub_min_order;
90ce872c
VB
4831static unsigned int slub_max_order =
4832 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
19af27af 4833static unsigned int slub_min_objects;
81819f0f 4834
81819f0f
CL
4835/*
4836 * Calculate the order of allocation given an slab object size.
4837 *
672bba3a
CL
4838 * The order of allocation has significant impact on performance and other
4839 * system components. Generally order 0 allocations should be preferred since
4840 * order 0 does not cause fragmentation in the page allocator. Larger objects
4841 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 4842 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
4843 * would be wasted.
4844 *
4845 * In order to reach satisfactory performance we must ensure that a minimum
4846 * number of objects is in one slab. Otherwise we may generate too much
4847 * activity on the partial lists which requires taking the list_lock. This is
4848 * less a concern for large slabs though which are rarely used.
81819f0f 4849 *
671776b3
XS
4850 * slab_max_order specifies the order where we begin to stop considering the
4851 * number of objects in a slab as critical. If we reach slab_max_order then
672bba3a
CL
4852 * we try to keep the page order as low as possible. So we accept more waste
4853 * of space in favor of a small page order.
81819f0f 4854 *
672bba3a
CL
4855 * Higher order allocations also allow the placement of more objects in a
4856 * slab and thereby reduce object handling overhead. If the user has
dc84207d 4857 * requested a higher minimum order then we start with that one instead of
672bba3a 4858 * the smallest order which will fit the object.
81819f0f 4859 */
d122019b 4860static inline unsigned int calc_slab_order(unsigned int size,
90f055df 4861 unsigned int min_order, unsigned int max_order,
9736d2a9 4862 unsigned int fract_leftover)
81819f0f 4863{
19af27af 4864 unsigned int order;
81819f0f 4865
90f055df 4866 for (order = min_order; order <= max_order; order++) {
81819f0f 4867
19af27af
AD
4868 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
4869 unsigned int rem;
81819f0f 4870
9736d2a9 4871 rem = slab_size % size;
81819f0f 4872
5e6d444e 4873 if (rem <= slab_size / fract_leftover)
81819f0f 4874 break;
81819f0f 4875 }
672bba3a 4876
81819f0f
CL
4877 return order;
4878}
4879
9736d2a9 4880static inline int calculate_order(unsigned int size)
5e6d444e 4881{
19af27af
AD
4882 unsigned int order;
4883 unsigned int min_objects;
4884 unsigned int max_objects;
90f055df 4885 unsigned int min_order;
5e6d444e 4886
5e6d444e 4887 min_objects = slub_min_objects;
3286222f
VB
4888 if (!min_objects) {
4889 /*
4890 * Some architectures will only update present cpus when
4891 * onlining them, so don't trust the number if it's just 1. But
4892 * we also don't want to use nr_cpu_ids always, as on some other
4893 * architectures, there can be many possible cpus, but never
4894 * onlined. Here we compromise between trying to avoid too high
4895 * order on systems that appear larger than they are, and too
4896 * low order on systems that appear smaller than they are.
4897 */
90f055df 4898 unsigned int nr_cpus = num_present_cpus();
3286222f
VB
4899 if (nr_cpus <= 1)
4900 nr_cpus = nr_cpu_ids;
4901 min_objects = 4 * (fls(nr_cpus) + 1);
4902 }
90f055df
VB
4903 /* min_objects can't be 0 because get_order(0) is undefined */
4904 max_objects = max(order_objects(slub_max_order, size), 1U);
e8120ff1
ZY
4905 min_objects = min(min_objects, max_objects);
4906
90f055df
VB
4907 min_order = max_t(unsigned int, slub_min_order,
4908 get_order(min_objects * size));
4909 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
4910 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
4911
0fe2735d
VB
4912 /*
4913 * Attempt to find best configuration for a slab. This works by first
4914 * attempting to generate a layout with the best possible configuration
4915 * and backing off gradually.
4916 *
4917 * We start with accepting at most 1/16 waste and try to find the
671776b3
XS
4918 * smallest order from min_objects-derived/slab_min_order up to
4919 * slab_max_order that will satisfy the constraint. Note that increasing
0fe2735d
VB
4920 * the order can only result in same or less fractional waste, not more.
4921 *
4922 * If that fails, we increase the acceptable fraction of waste and try
5886fc82
VB
4923 * again. The last iteration with fraction of 1/2 would effectively
4924 * accept any waste and give us the order determined by min_objects, as
671776b3 4925 * long as at least single object fits within slab_max_order.
0fe2735d 4926 */
5886fc82 4927 for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
90f055df 4928 order = calc_slab_order(size, min_order, slub_max_order,
0fe2735d
VB
4929 fraction);
4930 if (order <= slub_max_order)
4931 return order;
5e6d444e
CL
4932 }
4933
5e6d444e 4934 /*
671776b3 4935 * Doh this slab cannot be placed using slab_max_order.
5e6d444e 4936 */
c7355d75 4937 order = get_order(size);
5e0a760b 4938 if (order <= MAX_PAGE_ORDER)
5e6d444e
CL
4939 return order;
4940 return -ENOSYS;
4941}
4942
5595cffc 4943static void
4053497d 4944init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
4945{
4946 n->nr_partial = 0;
81819f0f
CL
4947 spin_lock_init(&n->list_lock);
4948 INIT_LIST_HEAD(&n->partial);
8ab1372f 4949#ifdef CONFIG_SLUB_DEBUG
0f389ec6 4950 atomic_long_set(&n->nr_slabs, 0);
02b71b70 4951 atomic_long_set(&n->total_objects, 0);
643b1138 4952 INIT_LIST_HEAD(&n->full);
8ab1372f 4953#endif
81819f0f
CL
4954}
4955
0af8489b 4956#ifndef CONFIG_SLUB_TINY
55136592 4957static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 4958{
6c182dc0 4959 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
a0dc161a
BH
4960 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
4961 sizeof(struct kmem_cache_cpu));
4c93c355 4962
8a5ec0ba 4963 /*
d4d84fef
CM
4964 * Must align to double word boundary for the double cmpxchg
4965 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 4966 */
d4d84fef
CM
4967 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
4968 2 * sizeof(void *));
8a5ec0ba
CL
4969
4970 if (!s->cpu_slab)
4971 return 0;
4972
4973 init_kmem_cache_cpus(s);
4c93c355 4974
8a5ec0ba 4975 return 1;
4c93c355 4976}
0af8489b
VB
4977#else
4978static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4979{
4980 return 1;
4981}
4982#endif /* CONFIG_SLUB_TINY */
4c93c355 4983
51df1142
CL
4984static struct kmem_cache *kmem_cache_node;
4985
81819f0f
CL
4986/*
4987 * No kmalloc_node yet so do it by hand. We know that this is the first
4988 * slab on the node for this slabcache. There are no concurrent accesses
4989 * possible.
4990 *
721ae22a
ZYW
4991 * Note that this function only works on the kmem_cache_node
4992 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 4993 * memory on a fresh node that has no slab structures yet.
81819f0f 4994 */
55136592 4995static void early_kmem_cache_node_alloc(int node)
81819f0f 4996{
bb192ed9 4997 struct slab *slab;
81819f0f
CL
4998 struct kmem_cache_node *n;
4999
51df1142 5000 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 5001
bb192ed9 5002 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f 5003
bb192ed9
VB
5004 BUG_ON(!slab);
5005 if (slab_nid(slab) != node) {
f9f58285
FF
5006 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
5007 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
5008 }
5009
bb192ed9 5010 n = slab->freelist;
81819f0f 5011 BUG_ON(!n);
8ab1372f 5012#ifdef CONFIG_SLUB_DEBUG
f7cb1933 5013 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
8ab1372f 5014#endif
da844b78 5015 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
bb192ed9
VB
5016 slab->freelist = get_freepointer(kmem_cache_node, n);
5017 slab->inuse = 1;
12b22386 5018 kmem_cache_node->node[node] = n;
4053497d 5019 init_kmem_cache_node(n);
bb192ed9 5020 inc_slabs_node(kmem_cache_node, node, slab->objects);
6446faa2 5021
67b6c900 5022 /*
1e4dd946
SR
5023 * No locks need to be taken here as it has just been
5024 * initialized and there is no concurrent access.
67b6c900 5025 */
bb192ed9 5026 __add_partial(n, slab, DEACTIVATE_TO_HEAD);
81819f0f
CL
5027}
5028
5029static void free_kmem_cache_nodes(struct kmem_cache *s)
5030{
5031 int node;
fa45dc25 5032 struct kmem_cache_node *n;
81819f0f 5033
fa45dc25 5034 for_each_kmem_cache_node(s, node, n) {
81819f0f 5035 s->node[node] = NULL;
ea37df54 5036 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
5037 }
5038}
5039
52b4b950
DS
5040void __kmem_cache_release(struct kmem_cache *s)
5041{
210e7a43 5042 cache_random_seq_destroy(s);
0af8489b 5043#ifndef CONFIG_SLUB_TINY
52b4b950 5044 free_percpu(s->cpu_slab);
0af8489b 5045#endif
52b4b950
DS
5046 free_kmem_cache_nodes(s);
5047}
5048
55136592 5049static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
5050{
5051 int node;
81819f0f 5052
7e1fa93d 5053 for_each_node_mask(node, slab_nodes) {
81819f0f
CL
5054 struct kmem_cache_node *n;
5055
73367bd8 5056 if (slab_state == DOWN) {
55136592 5057 early_kmem_cache_node_alloc(node);
73367bd8
AD
5058 continue;
5059 }
51df1142 5060 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 5061 GFP_KERNEL, node);
81819f0f 5062
73367bd8
AD
5063 if (!n) {
5064 free_kmem_cache_nodes(s);
5065 return 0;
81819f0f 5066 }
73367bd8 5067
4053497d 5068 init_kmem_cache_node(n);
ea37df54 5069 s->node[node] = n;
81819f0f
CL
5070 }
5071 return 1;
5072}
81819f0f 5073
e6d0e1dc
WY
5074static void set_cpu_partial(struct kmem_cache *s)
5075{
5076#ifdef CONFIG_SLUB_CPU_PARTIAL
b47291ef
VB
5077 unsigned int nr_objects;
5078
e6d0e1dc
WY
5079 /*
5080 * cpu_partial determined the maximum number of objects kept in the
5081 * per cpu partial lists of a processor.
5082 *
5083 * Per cpu partial lists mainly contain slabs that just have one
5084 * object freed. If they are used for allocation then they can be
5085 * filled up again with minimal effort. The slab will never hit the
5086 * per node partial lists and therefore no locking will be required.
5087 *
b47291ef
VB
5088 * For backwards compatibility reasons, this is determined as number
5089 * of objects, even though we now limit maximum number of pages, see
5090 * slub_set_cpu_partial()
e6d0e1dc
WY
5091 */
5092 if (!kmem_cache_has_cpu_partial(s))
b47291ef 5093 nr_objects = 0;
e6d0e1dc 5094 else if (s->size >= PAGE_SIZE)
b47291ef 5095 nr_objects = 6;
e6d0e1dc 5096 else if (s->size >= 1024)
23e98ad1 5097 nr_objects = 24;
e6d0e1dc 5098 else if (s->size >= 256)
23e98ad1 5099 nr_objects = 52;
e6d0e1dc 5100 else
23e98ad1 5101 nr_objects = 120;
b47291ef
VB
5102
5103 slub_set_cpu_partial(s, nr_objects);
e6d0e1dc
WY
5104#endif
5105}
5106
81819f0f
CL
5107/*
5108 * calculate_sizes() determines the order and the distribution of data within
5109 * a slab object.
5110 */
ae44d81d 5111static int calculate_sizes(struct kmem_cache *s)
81819f0f 5112{
d50112ed 5113 slab_flags_t flags = s->flags;
be4a7988 5114 unsigned int size = s->object_size;
19af27af 5115 unsigned int order;
81819f0f 5116
d8b42bf5
CL
5117 /*
5118 * Round up object size to the next word boundary. We can only
5119 * place the free pointer at word boundaries and this determines
5120 * the possible location of the free pointer.
5121 */
5122 size = ALIGN(size, sizeof(void *));
5123
5124#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
5125 /*
5126 * Determine if we can poison the object itself. If the user of
5127 * the slab may touch the object after free or before allocation
5128 * then we should never poison the object itself.
5129 */
5f0d5a3a 5130 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 5131 !s->ctor)
81819f0f
CL
5132 s->flags |= __OBJECT_POISON;
5133 else
5134 s->flags &= ~__OBJECT_POISON;
5135
81819f0f
CL
5136
5137 /*
672bba3a 5138 * If we are Redzoning then check if there is some space between the
81819f0f 5139 * end of the object and the free pointer. If not then add an
672bba3a 5140 * additional word to have some bytes to store Redzone information.
81819f0f 5141 */
3b0efdfa 5142 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 5143 size += sizeof(void *);
41ecc55b 5144#endif
81819f0f
CL
5145
5146 /*
672bba3a 5147 * With that we have determined the number of bytes in actual use
e41a49fa 5148 * by the object and redzoning.
81819f0f
CL
5149 */
5150 s->inuse = size;
5151
946fa0db
FT
5152 if (slub_debug_orig_size(s) ||
5153 (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
74c1d3e0
KC
5154 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
5155 s->ctor) {
81819f0f
CL
5156 /*
5157 * Relocate free pointer after the object if it is not
5158 * permitted to overwrite the first word of the object on
5159 * kmem_cache_free.
5160 *
5161 * This is the case if we do RCU, have a constructor or
74c1d3e0
KC
5162 * destructor, are poisoning the objects, or are
5163 * redzoning an object smaller than sizeof(void *).
cbfc35a4
WL
5164 *
5165 * The assumption that s->offset >= s->inuse means free
5166 * pointer is outside of the object is used in the
5167 * freeptr_outside_object() function. If that is no
5168 * longer true, the function needs to be modified.
81819f0f
CL
5169 */
5170 s->offset = size;
5171 size += sizeof(void *);
e41a49fa 5172 } else {
3202fa62
KC
5173 /*
5174 * Store freelist pointer near middle of object to keep
5175 * it away from the edges of the object to avoid small
5176 * sized over/underflows from neighboring allocations.
5177 */
e41a49fa 5178 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
81819f0f
CL
5179 }
5180
c12b3c62 5181#ifdef CONFIG_SLUB_DEBUG
6edf2576 5182 if (flags & SLAB_STORE_USER) {
81819f0f
CL
5183 /*
5184 * Need to store information about allocs and frees after
5185 * the object.
5186 */
5187 size += 2 * sizeof(struct track);
6edf2576
FT
5188
5189 /* Save the original kmalloc request size */
5190 if (flags & SLAB_KMALLOC)
5191 size += sizeof(unsigned int);
5192 }
80a9201a 5193#endif
81819f0f 5194
80a9201a
AP
5195 kasan_cache_create(s, &size, &s->flags);
5196#ifdef CONFIG_SLUB_DEBUG
d86bd1be 5197 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
5198 /*
5199 * Add some empty padding so that we can catch
5200 * overwrites from earlier objects rather than let
5201 * tracking information or the free pointer be
0211a9c8 5202 * corrupted if a user writes before the start
81819f0f
CL
5203 * of the object.
5204 */
5205 size += sizeof(void *);
d86bd1be
JK
5206
5207 s->red_left_pad = sizeof(void *);
5208 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
5209 size += s->red_left_pad;
5210 }
41ecc55b 5211#endif
672bba3a 5212
81819f0f
CL
5213 /*
5214 * SLUB stores one object immediately after another beginning from
5215 * offset 0. In order to align the objects we have to simply size
5216 * each object to conform to the alignment.
5217 */
45906855 5218 size = ALIGN(size, s->align);
81819f0f 5219 s->size = size;
4138fdfc 5220 s->reciprocal_size = reciprocal_value(size);
ae44d81d 5221 order = calculate_order(size);
81819f0f 5222
19af27af 5223 if ((int)order < 0)
81819f0f
CL
5224 return 0;
5225
5b15f3fb 5226 s->allocflags = __GFP_COMP;
b7a49f0d
CL
5227
5228 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 5229 s->allocflags |= GFP_DMA;
b7a49f0d 5230
6d6ea1e9
NB
5231 if (s->flags & SLAB_CACHE_DMA32)
5232 s->allocflags |= GFP_DMA32;
5233
b7a49f0d
CL
5234 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5235 s->allocflags |= __GFP_RECLAIMABLE;
5236
81819f0f
CL
5237 /*
5238 * Determine the number of objects per slab
5239 */
9736d2a9
MW
5240 s->oo = oo_make(order, size);
5241 s->min = oo_make(get_order(size), size);
81819f0f 5242
834f3d11 5243 return !!oo_objects(s->oo);
81819f0f
CL
5244}
5245
d50112ed 5246static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 5247{
303cd693 5248 s->flags = kmem_cache_flags(flags, s->name);
2482ddec
KC
5249#ifdef CONFIG_SLAB_FREELIST_HARDENED
5250 s->random = get_random_long();
5251#endif
81819f0f 5252
ae44d81d 5253 if (!calculate_sizes(s))
81819f0f 5254 goto error;
3de47213
DR
5255 if (disable_higher_order_debug) {
5256 /*
5257 * Disable debugging flags that store metadata if the min slab
5258 * order increased.
5259 */
3b0efdfa 5260 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
5261 s->flags &= ~DEBUG_METADATA_FLAGS;
5262 s->offset = 0;
ae44d81d 5263 if (!calculate_sizes(s))
3de47213
DR
5264 goto error;
5265 }
5266 }
81819f0f 5267
6801be4f
PZ
5268#ifdef system_has_freelist_aba
5269 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
b789ef51
CL
5270 /* Enable fast mode */
5271 s->flags |= __CMPXCHG_DOUBLE;
6801be4f 5272 }
b789ef51
CL
5273#endif
5274
3b89d7d8 5275 /*
c2092c12 5276 * The larger the object size is, the more slabs we want on the partial
3b89d7d8
DR
5277 * list to avoid pounding the page allocator excessively.
5278 */
5182f3c9
HY
5279 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
5280 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
49e22585 5281
e6d0e1dc 5282 set_cpu_partial(s);
49e22585 5283
81819f0f 5284#ifdef CONFIG_NUMA
e2cb96b7 5285 s->remote_node_defrag_ratio = 1000;
81819f0f 5286#endif
210e7a43
TG
5287
5288 /* Initialize the pre-computed randomized freelist if slab is up */
5289 if (slab_state >= UP) {
5290 if (init_cache_random_seq(s))
5291 goto error;
5292 }
5293
55136592 5294 if (!init_kmem_cache_nodes(s))
dfb4f096 5295 goto error;
81819f0f 5296
55136592 5297 if (alloc_kmem_cache_cpus(s))
278b1bb1 5298 return 0;
ff12059e 5299
81819f0f 5300error:
9037c576 5301 __kmem_cache_release(s);
278b1bb1 5302 return -EINVAL;
81819f0f 5303}
81819f0f 5304
bb192ed9 5305static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
55860d96 5306 const char *text)
33b12c38
CL
5307{
5308#ifdef CONFIG_SLUB_DEBUG
bb192ed9 5309 void *addr = slab_address(slab);
33b12c38 5310 void *p;
aa456c7a 5311
bb192ed9 5312 slab_err(s, slab, text, s->name);
33b12c38 5313
4ef3f5a3
VB
5314 spin_lock(&object_map_lock);
5315 __fill_map(object_map, s, slab);
5316
bb192ed9 5317 for_each_object(p, s, addr, slab->objects) {
33b12c38 5318
4ef3f5a3 5319 if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
96b94abc 5320 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
5321 print_tracking(s, p);
5322 }
5323 }
4ef3f5a3 5324 spin_unlock(&object_map_lock);
33b12c38
CL
5325#endif
5326}
5327
81819f0f 5328/*
599870b1 5329 * Attempt to free all partial slabs on a node.
52b4b950
DS
5330 * This is called from __kmem_cache_shutdown(). We must take list_lock
5331 * because sysfs file might still access partial list after the shutdowning.
81819f0f 5332 */
599870b1 5333static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 5334{
60398923 5335 LIST_HEAD(discard);
bb192ed9 5336 struct slab *slab, *h;
81819f0f 5337
52b4b950
DS
5338 BUG_ON(irqs_disabled());
5339 spin_lock_irq(&n->list_lock);
bb192ed9
VB
5340 list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
5341 if (!slab->inuse) {
5342 remove_partial(n, slab);
5343 list_add(&slab->slab_list, &discard);
33b12c38 5344 } else {
bb192ed9 5345 list_slab_objects(s, slab,
55860d96 5346 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 5347 }
33b12c38 5348 }
52b4b950 5349 spin_unlock_irq(&n->list_lock);
60398923 5350
bb192ed9
VB
5351 list_for_each_entry_safe(slab, h, &discard, slab_list)
5352 discard_slab(s, slab);
81819f0f
CL
5353}
5354
f9e13c0a
SB
5355bool __kmem_cache_empty(struct kmem_cache *s)
5356{
5357 int node;
5358 struct kmem_cache_node *n;
5359
5360 for_each_kmem_cache_node(s, node, n)
4f174a8b 5361 if (n->nr_partial || node_nr_slabs(n))
f9e13c0a
SB
5362 return false;
5363 return true;
5364}
5365
81819f0f 5366/*
672bba3a 5367 * Release all resources used by a slab cache.
81819f0f 5368 */
52b4b950 5369int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
5370{
5371 int node;
fa45dc25 5372 struct kmem_cache_node *n;
81819f0f 5373
5a836bf6 5374 flush_all_cpus_locked(s);
81819f0f 5375 /* Attempt to free all objects */
fa45dc25 5376 for_each_kmem_cache_node(s, node, n) {
599870b1 5377 free_partial(s, n);
4f174a8b 5378 if (n->nr_partial || node_nr_slabs(n))
81819f0f
CL
5379 return 1;
5380 }
81819f0f
CL
5381 return 0;
5382}
5383
5bb1bb35 5384#ifdef CONFIG_PRINTK
2dfe63e6 5385void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
8e7f37f2
PM
5386{
5387 void *base;
5388 int __maybe_unused i;
5389 unsigned int objnr;
5390 void *objp;
5391 void *objp0;
7213230a 5392 struct kmem_cache *s = slab->slab_cache;
8e7f37f2
PM
5393 struct track __maybe_unused *trackp;
5394
5395 kpp->kp_ptr = object;
7213230a 5396 kpp->kp_slab = slab;
8e7f37f2 5397 kpp->kp_slab_cache = s;
7213230a 5398 base = slab_address(slab);
8e7f37f2
PM
5399 objp0 = kasan_reset_tag(object);
5400#ifdef CONFIG_SLUB_DEBUG
5401 objp = restore_red_left(s, objp0);
5402#else
5403 objp = objp0;
5404#endif
40f3bf0c 5405 objnr = obj_to_index(s, slab, objp);
8e7f37f2
PM
5406 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
5407 objp = base + s->size * objnr;
5408 kpp->kp_objp = objp;
7213230a
MWO
5409 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
5410 || (objp - base) % s->size) ||
8e7f37f2
PM
5411 !(s->flags & SLAB_STORE_USER))
5412 return;
5413#ifdef CONFIG_SLUB_DEBUG
0cbc124b 5414 objp = fixup_red_left(s, objp);
8e7f37f2
PM
5415 trackp = get_track(s, objp, TRACK_ALLOC);
5416 kpp->kp_ret = (void *)trackp->addr;
5cf909c5
OG
5417#ifdef CONFIG_STACKDEPOT
5418 {
5419 depot_stack_handle_t handle;
5420 unsigned long *entries;
5421 unsigned int nr_entries;
78869146 5422
5cf909c5
OG
5423 handle = READ_ONCE(trackp->handle);
5424 if (handle) {
5425 nr_entries = stack_depot_fetch(handle, &entries);
5426 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5427 kpp->kp_stack[i] = (void *)entries[i];
5428 }
78869146 5429
5cf909c5
OG
5430 trackp = get_track(s, objp, TRACK_FREE);
5431 handle = READ_ONCE(trackp->handle);
5432 if (handle) {
5433 nr_entries = stack_depot_fetch(handle, &entries);
5434 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5435 kpp->kp_free_stack[i] = (void *)entries[i];
5436 }
e548eaa1 5437 }
8e7f37f2
PM
5438#endif
5439#endif
5440}
5bb1bb35 5441#endif
8e7f37f2 5442
81819f0f
CL
5443/********************************************************************
5444 * Kmalloc subsystem
5445 *******************************************************************/
5446
81819f0f
CL
5447static int __init setup_slub_min_order(char *str)
5448{
19af27af 5449 get_option(&str, (int *)&slub_min_order);
81819f0f 5450
e519ce7a
FT
5451 if (slub_min_order > slub_max_order)
5452 slub_max_order = slub_min_order;
5453
81819f0f
CL
5454 return 1;
5455}
5456
671776b3
XS
5457__setup("slab_min_order=", setup_slub_min_order);
5458__setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
5459
81819f0f
CL
5460
5461static int __init setup_slub_max_order(char *str)
5462{
19af27af 5463 get_option(&str, (int *)&slub_max_order);
5e0a760b 5464 slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
81819f0f 5465
e519ce7a
FT
5466 if (slub_min_order > slub_max_order)
5467 slub_min_order = slub_max_order;
5468
81819f0f
CL
5469 return 1;
5470}
5471
671776b3
XS
5472__setup("slab_max_order=", setup_slub_max_order);
5473__setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
81819f0f
CL
5474
5475static int __init setup_slub_min_objects(char *str)
5476{
19af27af 5477 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
5478
5479 return 1;
5480}
5481
671776b3
XS
5482__setup("slab_min_objects=", setup_slub_min_objects);
5483__setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
81819f0f 5484
ed18adc1
KC
5485#ifdef CONFIG_HARDENED_USERCOPY
5486/*
afcc90f8
KC
5487 * Rejects incorrectly sized objects and objects that are to be copied
5488 * to/from userspace but do not fall entirely within the containing slab
5489 * cache's usercopy region.
ed18adc1
KC
5490 *
5491 * Returns NULL if check passes, otherwise const char * to name of cache
5492 * to indicate an error.
5493 */
0b3eb091
MWO
5494void __check_heap_object(const void *ptr, unsigned long n,
5495 const struct slab *slab, bool to_user)
ed18adc1
KC
5496{
5497 struct kmem_cache *s;
44065b2e 5498 unsigned int offset;
b89fb5ef 5499 bool is_kfence = is_kfence_address(ptr);
ed18adc1 5500
96fedce2
AK
5501 ptr = kasan_reset_tag(ptr);
5502
ed18adc1 5503 /* Find object and usable object size. */
0b3eb091 5504 s = slab->slab_cache;
ed18adc1
KC
5505
5506 /* Reject impossible pointers. */
0b3eb091 5507 if (ptr < slab_address(slab))
f4e6e289
KC
5508 usercopy_abort("SLUB object not in SLUB page?!", NULL,
5509 to_user, 0, n);
ed18adc1
KC
5510
5511 /* Find offset within object. */
b89fb5ef
AP
5512 if (is_kfence)
5513 offset = ptr - kfence_object_start(ptr);
5514 else
0b3eb091 5515 offset = (ptr - slab_address(slab)) % s->size;
ed18adc1
KC
5516
5517 /* Adjust for redzone and reject if within the redzone. */
b89fb5ef 5518 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
ed18adc1 5519 if (offset < s->red_left_pad)
f4e6e289
KC
5520 usercopy_abort("SLUB object in left red zone",
5521 s->name, to_user, offset, n);
ed18adc1
KC
5522 offset -= s->red_left_pad;
5523 }
5524
afcc90f8
KC
5525 /* Allow address range falling entirely within usercopy region. */
5526 if (offset >= s->useroffset &&
5527 offset - s->useroffset <= s->usersize &&
5528 n <= s->useroffset - offset + s->usersize)
f4e6e289 5529 return;
ed18adc1 5530
f4e6e289 5531 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
5532}
5533#endif /* CONFIG_HARDENED_USERCOPY */
5534
832f37f5
VD
5535#define SHRINK_PROMOTE_MAX 32
5536
2086d26a 5537/*
832f37f5
VD
5538 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
5539 * up most to the head of the partial lists. New allocations will then
5540 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
5541 *
5542 * The slabs with the least items are placed last. This results in them
5543 * being allocated from last increasing the chance that the last objects
5544 * are freed in them.
2086d26a 5545 */
5a836bf6 5546static int __kmem_cache_do_shrink(struct kmem_cache *s)
2086d26a
CL
5547{
5548 int node;
5549 int i;
5550 struct kmem_cache_node *n;
bb192ed9
VB
5551 struct slab *slab;
5552 struct slab *t;
832f37f5
VD
5553 struct list_head discard;
5554 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 5555 unsigned long flags;
ce3712d7 5556 int ret = 0;
2086d26a 5557
fa45dc25 5558 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
5559 INIT_LIST_HEAD(&discard);
5560 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
5561 INIT_LIST_HEAD(promote + i);
2086d26a
CL
5562
5563 spin_lock_irqsave(&n->list_lock, flags);
5564
5565 /*
832f37f5 5566 * Build lists of slabs to discard or promote.
2086d26a 5567 *
672bba3a 5568 * Note that concurrent frees may occur while we hold the
c2092c12 5569 * list_lock. slab->inuse here is the upper limit.
2086d26a 5570 */
bb192ed9
VB
5571 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
5572 int free = slab->objects - slab->inuse;
832f37f5 5573
c2092c12 5574 /* Do not reread slab->inuse */
832f37f5
VD
5575 barrier();
5576
5577 /* We do not keep full slabs on the list */
5578 BUG_ON(free <= 0);
5579
bb192ed9
VB
5580 if (free == slab->objects) {
5581 list_move(&slab->slab_list, &discard);
8a399e2f 5582 slab_clear_node_partial(slab);
69cb8e6b 5583 n->nr_partial--;
c7323a5a 5584 dec_slabs_node(s, node, slab->objects);
832f37f5 5585 } else if (free <= SHRINK_PROMOTE_MAX)
bb192ed9 5586 list_move(&slab->slab_list, promote + free - 1);
2086d26a
CL
5587 }
5588
2086d26a 5589 /*
832f37f5
VD
5590 * Promote the slabs filled up most to the head of the
5591 * partial list.
2086d26a 5592 */
832f37f5
VD
5593 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
5594 list_splice(promote + i, &n->partial);
2086d26a 5595
2086d26a 5596 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
5597
5598 /* Release empty slabs */
bb192ed9 5599 list_for_each_entry_safe(slab, t, &discard, slab_list)
c7323a5a 5600 free_slab(s, slab);
ce3712d7 5601
4f174a8b 5602 if (node_nr_slabs(n))
ce3712d7 5603 ret = 1;
2086d26a
CL
5604 }
5605
ce3712d7 5606 return ret;
2086d26a 5607}
2086d26a 5608
5a836bf6
SAS
5609int __kmem_cache_shrink(struct kmem_cache *s)
5610{
5611 flush_all(s);
5612 return __kmem_cache_do_shrink(s);
5613}
5614
b9049e23
YG
5615static int slab_mem_going_offline_callback(void *arg)
5616{
5617 struct kmem_cache *s;
5618
18004c5d 5619 mutex_lock(&slab_mutex);
5a836bf6
SAS
5620 list_for_each_entry(s, &slab_caches, list) {
5621 flush_all_cpus_locked(s);
5622 __kmem_cache_do_shrink(s);
5623 }
18004c5d 5624 mutex_unlock(&slab_mutex);
b9049e23
YG
5625
5626 return 0;
5627}
5628
5629static void slab_mem_offline_callback(void *arg)
5630{
b9049e23
YG
5631 struct memory_notify *marg = arg;
5632 int offline_node;
5633
b9d5ab25 5634 offline_node = marg->status_change_nid_normal;
b9049e23
YG
5635
5636 /*
5637 * If the node still has available memory. we need kmem_cache_node
5638 * for it yet.
5639 */
5640 if (offline_node < 0)
5641 return;
5642
18004c5d 5643 mutex_lock(&slab_mutex);
7e1fa93d 5644 node_clear(offline_node, slab_nodes);
666716fd
VB
5645 /*
5646 * We no longer free kmem_cache_node structures here, as it would be
5647 * racy with all get_node() users, and infeasible to protect them with
5648 * slab_mutex.
5649 */
18004c5d 5650 mutex_unlock(&slab_mutex);
b9049e23
YG
5651}
5652
5653static int slab_mem_going_online_callback(void *arg)
5654{
5655 struct kmem_cache_node *n;
5656 struct kmem_cache *s;
5657 struct memory_notify *marg = arg;
b9d5ab25 5658 int nid = marg->status_change_nid_normal;
b9049e23
YG
5659 int ret = 0;
5660
5661 /*
5662 * If the node's memory is already available, then kmem_cache_node is
5663 * already created. Nothing to do.
5664 */
5665 if (nid < 0)
5666 return 0;
5667
5668 /*
0121c619 5669 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
5670 * allocate a kmem_cache_node structure in order to bring the node
5671 * online.
5672 */
18004c5d 5673 mutex_lock(&slab_mutex);
b9049e23 5674 list_for_each_entry(s, &slab_caches, list) {
666716fd
VB
5675 /*
5676 * The structure may already exist if the node was previously
5677 * onlined and offlined.
5678 */
5679 if (get_node(s, nid))
5680 continue;
b9049e23
YG
5681 /*
5682 * XXX: kmem_cache_alloc_node will fallback to other nodes
5683 * since memory is not yet available from the node that
5684 * is brought up.
5685 */
8de66a0c 5686 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
5687 if (!n) {
5688 ret = -ENOMEM;
5689 goto out;
5690 }
4053497d 5691 init_kmem_cache_node(n);
b9049e23
YG
5692 s->node[nid] = n;
5693 }
7e1fa93d
VB
5694 /*
5695 * Any cache created after this point will also have kmem_cache_node
5696 * initialized for the new node.
5697 */
5698 node_set(nid, slab_nodes);
b9049e23 5699out:
18004c5d 5700 mutex_unlock(&slab_mutex);
b9049e23
YG
5701 return ret;
5702}
5703
5704static int slab_memory_callback(struct notifier_block *self,
5705 unsigned long action, void *arg)
5706{
5707 int ret = 0;
5708
5709 switch (action) {
5710 case MEM_GOING_ONLINE:
5711 ret = slab_mem_going_online_callback(arg);
5712 break;
5713 case MEM_GOING_OFFLINE:
5714 ret = slab_mem_going_offline_callback(arg);
5715 break;
5716 case MEM_OFFLINE:
5717 case MEM_CANCEL_ONLINE:
5718 slab_mem_offline_callback(arg);
5719 break;
5720 case MEM_ONLINE:
5721 case MEM_CANCEL_OFFLINE:
5722 break;
5723 }
dc19f9db
KH
5724 if (ret)
5725 ret = notifier_from_errno(ret);
5726 else
5727 ret = NOTIFY_OK;
b9049e23
YG
5728 return ret;
5729}
5730
81819f0f
CL
5731/********************************************************************
5732 * Basic setup of slabs
5733 *******************************************************************/
5734
51df1142
CL
5735/*
5736 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
5737 * the page allocator. Allocate them properly then fix up the pointers
5738 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
5739 */
5740
dffb4d60 5741static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
5742{
5743 int node;
dffb4d60 5744 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 5745 struct kmem_cache_node *n;
51df1142 5746
dffb4d60 5747 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 5748
7d557b3c
GC
5749 /*
5750 * This runs very early, and only the boot processor is supposed to be
5751 * up. Even if it weren't true, IRQs are not up so we couldn't fire
5752 * IPIs around.
5753 */
5754 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 5755 for_each_kmem_cache_node(s, node, n) {
bb192ed9 5756 struct slab *p;
51df1142 5757
916ac052 5758 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 5759 p->slab_cache = s;
51df1142 5760
607bf324 5761#ifdef CONFIG_SLUB_DEBUG
916ac052 5762 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 5763 p->slab_cache = s;
51df1142 5764#endif
51df1142 5765 }
dffb4d60
CL
5766 list_add(&s->list, &slab_caches);
5767 return s;
51df1142
CL
5768}
5769
81819f0f
CL
5770void __init kmem_cache_init(void)
5771{
dffb4d60
CL
5772 static __initdata struct kmem_cache boot_kmem_cache,
5773 boot_kmem_cache_node;
7e1fa93d 5774 int node;
51df1142 5775
fc8d8620
SG
5776 if (debug_guardpage_minorder())
5777 slub_max_order = 0;
5778
79270291
SB
5779 /* Print slub debugging pointers without hashing */
5780 if (__slub_debug_enabled())
5781 no_hash_pointers_enable(NULL);
5782
dffb4d60
CL
5783 kmem_cache_node = &boot_kmem_cache_node;
5784 kmem_cache = &boot_kmem_cache;
51df1142 5785
7e1fa93d
VB
5786 /*
5787 * Initialize the nodemask for which we will allocate per node
5788 * structures. Here we don't need taking slab_mutex yet.
5789 */
5790 for_each_node_state(node, N_NORMAL_MEMORY)
5791 node_set(node, slab_nodes);
5792
dffb4d60 5793 create_boot_cache(kmem_cache_node, "kmem_cache_node",
45012241
SB
5794 sizeof(struct kmem_cache_node),
5795 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
b9049e23 5796
946d5f9c 5797 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
5798
5799 /* Able to allocate the per node structures */
5800 slab_state = PARTIAL;
5801
dffb4d60
CL
5802 create_boot_cache(kmem_cache, "kmem_cache",
5803 offsetof(struct kmem_cache, node) +
5804 nr_node_ids * sizeof(struct kmem_cache_node *),
45012241 5805 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
8a13a4cc 5806
dffb4d60 5807 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 5808 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
5809
5810 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 5811 setup_kmalloc_cache_index_table();
66b3dc1f 5812 create_kmalloc_caches();
81819f0f 5813
210e7a43
TG
5814 /* Setup random freelists for each cache */
5815 init_freelist_randomization();
5816
a96a87bf
SAS
5817 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5818 slub_cpu_dead);
81819f0f 5819
b9726c26 5820 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 5821 cache_line_size(),
81819f0f
CL
5822 slub_min_order, slub_max_order, slub_min_objects,
5823 nr_cpu_ids, nr_node_ids);
5824}
5825
7e85ee0c
PE
5826void __init kmem_cache_init_late(void)
5827{
0af8489b 5828#ifndef CONFIG_SLUB_TINY
e45cc288
ML
5829 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5830 WARN_ON(!flushwq);
0af8489b 5831#endif
7e85ee0c
PE
5832}
5833
2633d7a0 5834struct kmem_cache *
f4957d5b 5835__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 5836 slab_flags_t flags, void (*ctor)(void *))
81819f0f 5837{
10befea9 5838 struct kmem_cache *s;
81819f0f 5839
a44cb944 5840 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 5841 if (s) {
efb93527
XS
5842 if (sysfs_slab_alias(s, name))
5843 return NULL;
5844
81819f0f 5845 s->refcount++;
84d0ddd6 5846
81819f0f
CL
5847 /*
5848 * Adjust the object sizes so that we clear
5849 * the complete object on kzalloc.
5850 */
1b473f29 5851 s->object_size = max(s->object_size, size);
52ee6d74 5852 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
a0e1d1be 5853 }
6446faa2 5854
cbb79694
CL
5855 return s;
5856}
84c1cf62 5857
d50112ed 5858int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 5859{
aac3a166
PE
5860 int err;
5861
5862 err = kmem_cache_open(s, flags);
5863 if (err)
5864 return err;
20cea968 5865
45530c44
CL
5866 /* Mutex is not taken during early boot */
5867 if (slab_state <= UP)
5868 return 0;
5869
aac3a166 5870 err = sysfs_slab_add(s);
67823a54 5871 if (err) {
52b4b950 5872 __kmem_cache_release(s);
67823a54
ML
5873 return err;
5874 }
20cea968 5875
64dd6849
FM
5876 if (s->flags & SLAB_STORE_USER)
5877 debugfs_slab_add(s);
5878
67823a54 5879 return 0;
81819f0f 5880}
81819f0f 5881
b1a413a3 5882#ifdef SLAB_SUPPORTS_SYSFS
bb192ed9 5883static int count_inuse(struct slab *slab)
205ab99d 5884{
bb192ed9 5885 return slab->inuse;
205ab99d
CL
5886}
5887
bb192ed9 5888static int count_total(struct slab *slab)
205ab99d 5889{
bb192ed9 5890 return slab->objects;
205ab99d 5891}
ab4d5ed5 5892#endif
205ab99d 5893
ab4d5ed5 5894#ifdef CONFIG_SLUB_DEBUG
bb192ed9 5895static void validate_slab(struct kmem_cache *s, struct slab *slab,
0a19e7dd 5896 unsigned long *obj_map)
53e15af0
CL
5897{
5898 void *p;
bb192ed9 5899 void *addr = slab_address(slab);
53e15af0 5900
bb192ed9 5901 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
41bec7c3 5902 return;
53e15af0
CL
5903
5904 /* Now we know that a valid freelist exists */
bb192ed9
VB
5905 __fill_map(obj_map, s, slab);
5906 for_each_object(p, s, addr, slab->objects) {
0a19e7dd 5907 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
dd98afd4 5908 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
53e15af0 5909
bb192ed9 5910 if (!check_object(s, slab, p, val))
dd98afd4
YZ
5911 break;
5912 }
53e15af0
CL
5913}
5914
434e245d 5915static int validate_slab_node(struct kmem_cache *s,
0a19e7dd 5916 struct kmem_cache_node *n, unsigned long *obj_map)
53e15af0
CL
5917{
5918 unsigned long count = 0;
bb192ed9 5919 struct slab *slab;
53e15af0
CL
5920 unsigned long flags;
5921
5922 spin_lock_irqsave(&n->list_lock, flags);
5923
bb192ed9
VB
5924 list_for_each_entry(slab, &n->partial, slab_list) {
5925 validate_slab(s, slab, obj_map);
53e15af0
CL
5926 count++;
5927 }
1f9f78b1 5928 if (count != n->nr_partial) {
f9f58285
FF
5929 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5930 s->name, count, n->nr_partial);
1f9f78b1
OG
5931 slab_add_kunit_errors();
5932 }
53e15af0
CL
5933
5934 if (!(s->flags & SLAB_STORE_USER))
5935 goto out;
5936
bb192ed9
VB
5937 list_for_each_entry(slab, &n->full, slab_list) {
5938 validate_slab(s, slab, obj_map);
53e15af0
CL
5939 count++;
5940 }
8040cbf5 5941 if (count != node_nr_slabs(n)) {
f9f58285 5942 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
8040cbf5 5943 s->name, count, node_nr_slabs(n));
1f9f78b1
OG
5944 slab_add_kunit_errors();
5945 }
53e15af0
CL
5946
5947out:
5948 spin_unlock_irqrestore(&n->list_lock, flags);
5949 return count;
5950}
5951
1f9f78b1 5952long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
5953{
5954 int node;
5955 unsigned long count = 0;
fa45dc25 5956 struct kmem_cache_node *n;
0a19e7dd
VB
5957 unsigned long *obj_map;
5958
5959 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5960 if (!obj_map)
5961 return -ENOMEM;
53e15af0
CL
5962
5963 flush_all(s);
fa45dc25 5964 for_each_kmem_cache_node(s, node, n)
0a19e7dd
VB
5965 count += validate_slab_node(s, n, obj_map);
5966
5967 bitmap_free(obj_map);
90e9f6a6 5968
53e15af0
CL
5969 return count;
5970}
1f9f78b1
OG
5971EXPORT_SYMBOL(validate_slab_cache);
5972
64dd6849 5973#ifdef CONFIG_DEBUG_FS
88a420e4 5974/*
672bba3a 5975 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
5976 * and freed.
5977 */
5978
5979struct location {
8ea9fb92 5980 depot_stack_handle_t handle;
88a420e4 5981 unsigned long count;
ce71e27c 5982 unsigned long addr;
6edf2576 5983 unsigned long waste;
45edfa58
CL
5984 long long sum_time;
5985 long min_time;
5986 long max_time;
5987 long min_pid;
5988 long max_pid;
174596a0 5989 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 5990 nodemask_t nodes;
88a420e4
CL
5991};
5992
5993struct loc_track {
5994 unsigned long max;
5995 unsigned long count;
5996 struct location *loc;
005a79e5 5997 loff_t idx;
88a420e4
CL
5998};
5999
64dd6849
FM
6000static struct dentry *slab_debugfs_root;
6001
88a420e4
CL
6002static void free_loc_track(struct loc_track *t)
6003{
6004 if (t->max)
6005 free_pages((unsigned long)t->loc,
6006 get_order(sizeof(struct location) * t->max));
6007}
6008
68dff6a9 6009static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
6010{
6011 struct location *l;
6012 int order;
6013
88a420e4
CL
6014 order = get_order(sizeof(struct location) * max);
6015
68dff6a9 6016 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
6017 if (!l)
6018 return 0;
6019
6020 if (t->count) {
6021 memcpy(l, t->loc, sizeof(struct location) * t->count);
6022 free_loc_track(t);
6023 }
6024 t->max = max;
6025 t->loc = l;
6026 return 1;
6027}
6028
6029static int add_location(struct loc_track *t, struct kmem_cache *s,
6edf2576
FT
6030 const struct track *track,
6031 unsigned int orig_size)
88a420e4
CL
6032{
6033 long start, end, pos;
6034 struct location *l;
6edf2576 6035 unsigned long caddr, chandle, cwaste;
45edfa58 6036 unsigned long age = jiffies - track->when;
8ea9fb92 6037 depot_stack_handle_t handle = 0;
6edf2576 6038 unsigned int waste = s->object_size - orig_size;
88a420e4 6039
8ea9fb92
OG
6040#ifdef CONFIG_STACKDEPOT
6041 handle = READ_ONCE(track->handle);
6042#endif
88a420e4
CL
6043 start = -1;
6044 end = t->count;
6045
6046 for ( ; ; ) {
6047 pos = start + (end - start + 1) / 2;
6048
6049 /*
6050 * There is nothing at "end". If we end up there
6051 * we need to add something to before end.
6052 */
6053 if (pos == end)
6054 break;
6055
6edf2576
FT
6056 l = &t->loc[pos];
6057 caddr = l->addr;
6058 chandle = l->handle;
6059 cwaste = l->waste;
6060 if ((track->addr == caddr) && (handle == chandle) &&
6061 (waste == cwaste)) {
45edfa58 6062
45edfa58
CL
6063 l->count++;
6064 if (track->when) {
6065 l->sum_time += age;
6066 if (age < l->min_time)
6067 l->min_time = age;
6068 if (age > l->max_time)
6069 l->max_time = age;
6070
6071 if (track->pid < l->min_pid)
6072 l->min_pid = track->pid;
6073 if (track->pid > l->max_pid)
6074 l->max_pid = track->pid;
6075
174596a0
RR
6076 cpumask_set_cpu(track->cpu,
6077 to_cpumask(l->cpus));
45edfa58
CL
6078 }
6079 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
6080 return 1;
6081 }
6082
45edfa58 6083 if (track->addr < caddr)
88a420e4 6084 end = pos;
8ea9fb92
OG
6085 else if (track->addr == caddr && handle < chandle)
6086 end = pos;
6edf2576
FT
6087 else if (track->addr == caddr && handle == chandle &&
6088 waste < cwaste)
6089 end = pos;
88a420e4
CL
6090 else
6091 start = pos;
6092 }
6093
6094 /*
672bba3a 6095 * Not found. Insert new tracking element.
88a420e4 6096 */
68dff6a9 6097 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
6098 return 0;
6099
6100 l = t->loc + pos;
6101 if (pos < t->count)
6102 memmove(l + 1, l,
6103 (t->count - pos) * sizeof(struct location));
6104 t->count++;
6105 l->count = 1;
45edfa58
CL
6106 l->addr = track->addr;
6107 l->sum_time = age;
6108 l->min_time = age;
6109 l->max_time = age;
6110 l->min_pid = track->pid;
6111 l->max_pid = track->pid;
8ea9fb92 6112 l->handle = handle;
6edf2576 6113 l->waste = waste;
174596a0
RR
6114 cpumask_clear(to_cpumask(l->cpus));
6115 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
6116 nodes_clear(l->nodes);
6117 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
6118 return 1;
6119}
6120
6121static void process_slab(struct loc_track *t, struct kmem_cache *s,
bb192ed9 6122 struct slab *slab, enum track_item alloc,
b3fd64e1 6123 unsigned long *obj_map)
88a420e4 6124{
bb192ed9 6125 void *addr = slab_address(slab);
6edf2576 6126 bool is_alloc = (alloc == TRACK_ALLOC);
88a420e4
CL
6127 void *p;
6128
bb192ed9 6129 __fill_map(obj_map, s, slab);
b3fd64e1 6130
bb192ed9 6131 for_each_object(p, s, addr, slab->objects)
b3fd64e1 6132 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
6edf2576
FT
6133 add_location(t, s, get_track(s, p, alloc),
6134 is_alloc ? get_orig_size(s, p) :
6135 s->object_size);
88a420e4 6136}
64dd6849 6137#endif /* CONFIG_DEBUG_FS */
6dfd1b65 6138#endif /* CONFIG_SLUB_DEBUG */
88a420e4 6139
b1a413a3 6140#ifdef SLAB_SUPPORTS_SYSFS
81819f0f 6141enum slab_stat_type {
205ab99d
CL
6142 SL_ALL, /* All slabs */
6143 SL_PARTIAL, /* Only partially allocated slabs */
6144 SL_CPU, /* Only slabs used for cpu caches */
6145 SL_OBJECTS, /* Determine allocated objects not slabs */
6146 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
6147};
6148
205ab99d 6149#define SO_ALL (1 << SL_ALL)
81819f0f
CL
6150#define SO_PARTIAL (1 << SL_PARTIAL)
6151#define SO_CPU (1 << SL_CPU)
6152#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 6153#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 6154
62e5c4b4 6155static ssize_t show_slab_objects(struct kmem_cache *s,
bf16d19a 6156 char *buf, unsigned long flags)
81819f0f
CL
6157{
6158 unsigned long total = 0;
81819f0f
CL
6159 int node;
6160 int x;
6161 unsigned long *nodes;
bf16d19a 6162 int len = 0;
81819f0f 6163
6396bb22 6164 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
6165 if (!nodes)
6166 return -ENOMEM;
81819f0f 6167
205ab99d
CL
6168 if (flags & SO_CPU) {
6169 int cpu;
81819f0f 6170
205ab99d 6171 for_each_possible_cpu(cpu) {
d0e0ac97
CG
6172 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
6173 cpu);
ec3ab083 6174 int node;
bb192ed9 6175 struct slab *slab;
dfb4f096 6176
bb192ed9
VB
6177 slab = READ_ONCE(c->slab);
6178 if (!slab)
ec3ab083 6179 continue;
205ab99d 6180
bb192ed9 6181 node = slab_nid(slab);
ec3ab083 6182 if (flags & SO_TOTAL)
bb192ed9 6183 x = slab->objects;
ec3ab083 6184 else if (flags & SO_OBJECTS)
bb192ed9 6185 x = slab->inuse;
ec3ab083
CL
6186 else
6187 x = 1;
49e22585 6188
ec3ab083
CL
6189 total += x;
6190 nodes[node] += x;
6191
9c01e9af 6192#ifdef CONFIG_SLUB_CPU_PARTIAL
bb192ed9
VB
6193 slab = slub_percpu_partial_read_once(c);
6194 if (slab) {
6195 node = slab_nid(slab);
8afb1474
LZ
6196 if (flags & SO_TOTAL)
6197 WARN_ON_ONCE(1);
6198 else if (flags & SO_OBJECTS)
6199 WARN_ON_ONCE(1);
6200 else
87654cf7 6201 x = data_race(slab->slabs);
bc6697d8
ED
6202 total += x;
6203 nodes[node] += x;
49e22585 6204 }
9c01e9af 6205#endif
81819f0f
CL
6206 }
6207 }
6208
e4f8e513
QC
6209 /*
6210 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
6211 * already held which will conflict with an existing lock order:
6212 *
6213 * mem_hotplug_lock->slab_mutex->kernfs_mutex
6214 *
6215 * We don't really need mem_hotplug_lock (to hold off
6216 * slab_mem_going_offline_callback) here because slab's memory hot
6217 * unplug code doesn't destroy the kmem_cache->node[] data.
6218 */
6219
ab4d5ed5 6220#ifdef CONFIG_SLUB_DEBUG
205ab99d 6221 if (flags & SO_ALL) {
fa45dc25
CL
6222 struct kmem_cache_node *n;
6223
6224 for_each_kmem_cache_node(s, node, n) {
205ab99d 6225
d0e0ac97 6226 if (flags & SO_TOTAL)
8040cbf5 6227 x = node_nr_objs(n);
d0e0ac97 6228 else if (flags & SO_OBJECTS)
8040cbf5 6229 x = node_nr_objs(n) - count_partial(n, count_free);
81819f0f 6230 else
8040cbf5 6231 x = node_nr_slabs(n);
81819f0f
CL
6232 total += x;
6233 nodes[node] += x;
6234 }
6235
ab4d5ed5
CL
6236 } else
6237#endif
6238 if (flags & SO_PARTIAL) {
fa45dc25 6239 struct kmem_cache_node *n;
81819f0f 6240
fa45dc25 6241 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
6242 if (flags & SO_TOTAL)
6243 x = count_partial(n, count_total);
6244 else if (flags & SO_OBJECTS)
6245 x = count_partial(n, count_inuse);
81819f0f 6246 else
205ab99d 6247 x = n->nr_partial;
81819f0f
CL
6248 total += x;
6249 nodes[node] += x;
6250 }
6251 }
bf16d19a
JP
6252
6253 len += sysfs_emit_at(buf, len, "%lu", total);
81819f0f 6254#ifdef CONFIG_NUMA
bf16d19a 6255 for (node = 0; node < nr_node_ids; node++) {
81819f0f 6256 if (nodes[node])
bf16d19a
JP
6257 len += sysfs_emit_at(buf, len, " N%d=%lu",
6258 node, nodes[node]);
6259 }
81819f0f 6260#endif
bf16d19a 6261 len += sysfs_emit_at(buf, len, "\n");
81819f0f 6262 kfree(nodes);
bf16d19a
JP
6263
6264 return len;
81819f0f
CL
6265}
6266
81819f0f 6267#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 6268#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
6269
6270struct slab_attribute {
6271 struct attribute attr;
6272 ssize_t (*show)(struct kmem_cache *s, char *buf);
6273 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
6274};
6275
6276#define SLAB_ATTR_RO(_name) \
d1d28bd9 6277 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
81819f0f
CL
6278
6279#define SLAB_ATTR(_name) \
d1d28bd9 6280 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
81819f0f 6281
81819f0f
CL
6282static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
6283{
bf16d19a 6284 return sysfs_emit(buf, "%u\n", s->size);
81819f0f
CL
6285}
6286SLAB_ATTR_RO(slab_size);
6287
6288static ssize_t align_show(struct kmem_cache *s, char *buf)
6289{
bf16d19a 6290 return sysfs_emit(buf, "%u\n", s->align);
81819f0f
CL
6291}
6292SLAB_ATTR_RO(align);
6293
6294static ssize_t object_size_show(struct kmem_cache *s, char *buf)
6295{
bf16d19a 6296 return sysfs_emit(buf, "%u\n", s->object_size);
81819f0f
CL
6297}
6298SLAB_ATTR_RO(object_size);
6299
6300static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
6301{
bf16d19a 6302 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
6303}
6304SLAB_ATTR_RO(objs_per_slab);
6305
6306static ssize_t order_show(struct kmem_cache *s, char *buf)
6307{
bf16d19a 6308 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
81819f0f 6309}
32a6f409 6310SLAB_ATTR_RO(order);
81819f0f 6311
73d342b1
DR
6312static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
6313{
bf16d19a 6314 return sysfs_emit(buf, "%lu\n", s->min_partial);
73d342b1
DR
6315}
6316
6317static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
6318 size_t length)
6319{
6320 unsigned long min;
6321 int err;
6322
3dbb95f7 6323 err = kstrtoul(buf, 10, &min);
73d342b1
DR
6324 if (err)
6325 return err;
6326
5182f3c9 6327 s->min_partial = min;
73d342b1
DR
6328 return length;
6329}
6330SLAB_ATTR(min_partial);
6331
49e22585
CL
6332static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
6333{
b47291ef
VB
6334 unsigned int nr_partial = 0;
6335#ifdef CONFIG_SLUB_CPU_PARTIAL
6336 nr_partial = s->cpu_partial;
6337#endif
6338
6339 return sysfs_emit(buf, "%u\n", nr_partial);
49e22585
CL
6340}
6341
6342static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
6343 size_t length)
6344{
e5d9998f 6345 unsigned int objects;
49e22585
CL
6346 int err;
6347
e5d9998f 6348 err = kstrtouint(buf, 10, &objects);
49e22585
CL
6349 if (err)
6350 return err;
345c905d 6351 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 6352 return -EINVAL;
49e22585 6353
e6d0e1dc 6354 slub_set_cpu_partial(s, objects);
49e22585
CL
6355 flush_all(s);
6356 return length;
6357}
6358SLAB_ATTR(cpu_partial);
6359
81819f0f
CL
6360static ssize_t ctor_show(struct kmem_cache *s, char *buf)
6361{
62c70bce
JP
6362 if (!s->ctor)
6363 return 0;
bf16d19a 6364 return sysfs_emit(buf, "%pS\n", s->ctor);
81819f0f
CL
6365}
6366SLAB_ATTR_RO(ctor);
6367
81819f0f
CL
6368static ssize_t aliases_show(struct kmem_cache *s, char *buf)
6369{
bf16d19a 6370 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
6371}
6372SLAB_ATTR_RO(aliases);
6373
81819f0f
CL
6374static ssize_t partial_show(struct kmem_cache *s, char *buf)
6375{
d9acf4b7 6376 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
6377}
6378SLAB_ATTR_RO(partial);
6379
6380static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
6381{
d9acf4b7 6382 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
6383}
6384SLAB_ATTR_RO(cpu_slabs);
6385
205ab99d
CL
6386static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
6387{
6388 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
6389}
6390SLAB_ATTR_RO(objects_partial);
6391
49e22585
CL
6392static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
6393{
6394 int objects = 0;
bb192ed9 6395 int slabs = 0;
9c01e9af 6396 int cpu __maybe_unused;
bf16d19a 6397 int len = 0;
49e22585 6398
9c01e9af 6399#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585 6400 for_each_online_cpu(cpu) {
bb192ed9 6401 struct slab *slab;
a93cf07b 6402
bb192ed9 6403 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585 6404
bb192ed9 6405 if (slab)
87654cf7 6406 slabs += data_race(slab->slabs);
49e22585 6407 }
9c01e9af 6408#endif
49e22585 6409
c2092c12 6410 /* Approximate half-full slabs, see slub_set_cpu_partial() */
bb192ed9
VB
6411 objects = (slabs * oo_objects(s->oo)) / 2;
6412 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
49e22585 6413
c6c17c4d 6414#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585 6415 for_each_online_cpu(cpu) {
bb192ed9 6416 struct slab *slab;
a93cf07b 6417
bb192ed9
VB
6418 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6419 if (slab) {
87654cf7 6420 slabs = data_race(slab->slabs);
bb192ed9 6421 objects = (slabs * oo_objects(s->oo)) / 2;
bf16d19a 6422 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
bb192ed9 6423 cpu, objects, slabs);
b47291ef 6424 }
49e22585
CL
6425 }
6426#endif
bf16d19a
JP
6427 len += sysfs_emit_at(buf, len, "\n");
6428
6429 return len;
49e22585
CL
6430}
6431SLAB_ATTR_RO(slabs_cpu_partial);
6432
a5a84755
CL
6433static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
6434{
bf16d19a 6435 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
a5a84755 6436}
8f58119a 6437SLAB_ATTR_RO(reclaim_account);
a5a84755
CL
6438
6439static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
6440{
bf16d19a 6441 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
a5a84755
CL
6442}
6443SLAB_ATTR_RO(hwcache_align);
6444
6445#ifdef CONFIG_ZONE_DMA
6446static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
6447{
bf16d19a 6448 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
a5a84755
CL
6449}
6450SLAB_ATTR_RO(cache_dma);
6451#endif
6452
346907ce 6453#ifdef CONFIG_HARDENED_USERCOPY
8eb8284b
DW
6454static ssize_t usersize_show(struct kmem_cache *s, char *buf)
6455{
bf16d19a 6456 return sysfs_emit(buf, "%u\n", s->usersize);
8eb8284b
DW
6457}
6458SLAB_ATTR_RO(usersize);
346907ce 6459#endif
8eb8284b 6460
a5a84755
CL
6461static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
6462{
bf16d19a 6463 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
6464}
6465SLAB_ATTR_RO(destroy_by_rcu);
6466
ab4d5ed5 6467#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
6468static ssize_t slabs_show(struct kmem_cache *s, char *buf)
6469{
6470 return show_slab_objects(s, buf, SO_ALL);
6471}
6472SLAB_ATTR_RO(slabs);
6473
205ab99d
CL
6474static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
6475{
6476 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
6477}
6478SLAB_ATTR_RO(total_objects);
6479
81bd3179
XS
6480static ssize_t objects_show(struct kmem_cache *s, char *buf)
6481{
6482 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
6483}
6484SLAB_ATTR_RO(objects);
6485
81819f0f
CL
6486static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
6487{
bf16d19a 6488 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f 6489}
060807f8 6490SLAB_ATTR_RO(sanity_checks);
81819f0f
CL
6491
6492static ssize_t trace_show(struct kmem_cache *s, char *buf)
6493{
bf16d19a 6494 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
81819f0f 6495}
060807f8 6496SLAB_ATTR_RO(trace);
81819f0f 6497
81819f0f
CL
6498static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
6499{
bf16d19a 6500 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
81819f0f
CL
6501}
6502
ad38b5b1 6503SLAB_ATTR_RO(red_zone);
81819f0f
CL
6504
6505static ssize_t poison_show(struct kmem_cache *s, char *buf)
6506{
bf16d19a 6507 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
81819f0f
CL
6508}
6509
ad38b5b1 6510SLAB_ATTR_RO(poison);
81819f0f
CL
6511
6512static ssize_t store_user_show(struct kmem_cache *s, char *buf)
6513{
bf16d19a 6514 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
81819f0f
CL
6515}
6516
ad38b5b1 6517SLAB_ATTR_RO(store_user);
81819f0f 6518
53e15af0
CL
6519static ssize_t validate_show(struct kmem_cache *s, char *buf)
6520{
6521 return 0;
6522}
6523
6524static ssize_t validate_store(struct kmem_cache *s,
6525 const char *buf, size_t length)
6526{
434e245d
CL
6527 int ret = -EINVAL;
6528
c7323a5a 6529 if (buf[0] == '1' && kmem_cache_debug(s)) {
434e245d
CL
6530 ret = validate_slab_cache(s);
6531 if (ret >= 0)
6532 ret = length;
6533 }
6534 return ret;
53e15af0
CL
6535}
6536SLAB_ATTR(validate);
a5a84755 6537
a5a84755
CL
6538#endif /* CONFIG_SLUB_DEBUG */
6539
6540#ifdef CONFIG_FAILSLAB
6541static ssize_t failslab_show(struct kmem_cache *s, char *buf)
6542{
bf16d19a 6543 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
a5a84755 6544}
7c82b3b3
AA
6545
6546static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
6547 size_t length)
6548{
6549 if (s->refcount > 1)
6550 return -EINVAL;
6551
6552 if (buf[0] == '1')
6553 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
6554 else
6555 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
6556
6557 return length;
6558}
6559SLAB_ATTR(failslab);
ab4d5ed5 6560#endif
53e15af0 6561
2086d26a
CL
6562static ssize_t shrink_show(struct kmem_cache *s, char *buf)
6563{
6564 return 0;
6565}
6566
6567static ssize_t shrink_store(struct kmem_cache *s,
6568 const char *buf, size_t length)
6569{
832f37f5 6570 if (buf[0] == '1')
10befea9 6571 kmem_cache_shrink(s);
832f37f5 6572 else
2086d26a
CL
6573 return -EINVAL;
6574 return length;
6575}
6576SLAB_ATTR(shrink);
6577
81819f0f 6578#ifdef CONFIG_NUMA
9824601e 6579static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 6580{
bf16d19a 6581 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
6582}
6583
9824601e 6584static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
6585 const char *buf, size_t length)
6586{
eb7235eb 6587 unsigned int ratio;
0121c619
CL
6588 int err;
6589
eb7235eb 6590 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
6591 if (err)
6592 return err;
eb7235eb
AD
6593 if (ratio > 100)
6594 return -ERANGE;
0121c619 6595
eb7235eb 6596 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 6597
81819f0f
CL
6598 return length;
6599}
9824601e 6600SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
6601#endif
6602
8ff12cfc 6603#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
6604static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
6605{
6606 unsigned long sum = 0;
6607 int cpu;
bf16d19a 6608 int len = 0;
6da2ec56 6609 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
6610
6611 if (!data)
6612 return -ENOMEM;
6613
6614 for_each_online_cpu(cpu) {
9dfc6e68 6615 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
6616
6617 data[cpu] = x;
6618 sum += x;
6619 }
6620
bf16d19a 6621 len += sysfs_emit_at(buf, len, "%lu", sum);
8ff12cfc 6622
50ef37b9 6623#ifdef CONFIG_SMP
8ff12cfc 6624 for_each_online_cpu(cpu) {
bf16d19a
JP
6625 if (data[cpu])
6626 len += sysfs_emit_at(buf, len, " C%d=%u",
6627 cpu, data[cpu]);
8ff12cfc 6628 }
50ef37b9 6629#endif
8ff12cfc 6630 kfree(data);
bf16d19a
JP
6631 len += sysfs_emit_at(buf, len, "\n");
6632
6633 return len;
8ff12cfc
CL
6634}
6635
78eb00cc
DR
6636static void clear_stat(struct kmem_cache *s, enum stat_item si)
6637{
6638 int cpu;
6639
6640 for_each_online_cpu(cpu)
9dfc6e68 6641 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
6642}
6643
8ff12cfc
CL
6644#define STAT_ATTR(si, text) \
6645static ssize_t text##_show(struct kmem_cache *s, char *buf) \
6646{ \
6647 return show_stat(s, buf, si); \
6648} \
78eb00cc
DR
6649static ssize_t text##_store(struct kmem_cache *s, \
6650 const char *buf, size_t length) \
6651{ \
6652 if (buf[0] != '0') \
6653 return -EINVAL; \
6654 clear_stat(s, si); \
6655 return length; \
6656} \
6657SLAB_ATTR(text); \
8ff12cfc
CL
6658
6659STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
6660STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
6661STAT_ATTR(FREE_FASTPATH, free_fastpath);
6662STAT_ATTR(FREE_SLOWPATH, free_slowpath);
6663STAT_ATTR(FREE_FROZEN, free_frozen);
6664STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
6665STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
6666STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
6667STAT_ATTR(ALLOC_SLAB, alloc_slab);
6668STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 6669STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
6670STAT_ATTR(FREE_SLAB, free_slab);
6671STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
6672STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
6673STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
6674STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
6675STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
6676STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 6677STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 6678STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
6679STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
6680STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
6681STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
6682STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
6683STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
6684STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 6685#endif /* CONFIG_SLUB_STATS */
8ff12cfc 6686
b84e04f1
IK
6687#ifdef CONFIG_KFENCE
6688static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
6689{
6690 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
6691}
6692
6693static ssize_t skip_kfence_store(struct kmem_cache *s,
6694 const char *buf, size_t length)
6695{
6696 int ret = length;
6697
6698 if (buf[0] == '0')
6699 s->flags &= ~SLAB_SKIP_KFENCE;
6700 else if (buf[0] == '1')
6701 s->flags |= SLAB_SKIP_KFENCE;
6702 else
6703 ret = -EINVAL;
6704
6705 return ret;
6706}
6707SLAB_ATTR(skip_kfence);
6708#endif
6709
06428780 6710static struct attribute *slab_attrs[] = {
81819f0f
CL
6711 &slab_size_attr.attr,
6712 &object_size_attr.attr,
6713 &objs_per_slab_attr.attr,
6714 &order_attr.attr,
73d342b1 6715 &min_partial_attr.attr,
49e22585 6716 &cpu_partial_attr.attr,
205ab99d 6717 &objects_partial_attr.attr,
81819f0f
CL
6718 &partial_attr.attr,
6719 &cpu_slabs_attr.attr,
6720 &ctor_attr.attr,
81819f0f
CL
6721 &aliases_attr.attr,
6722 &align_attr.attr,
81819f0f
CL
6723 &hwcache_align_attr.attr,
6724 &reclaim_account_attr.attr,
6725 &destroy_by_rcu_attr.attr,
a5a84755 6726 &shrink_attr.attr,
49e22585 6727 &slabs_cpu_partial_attr.attr,
ab4d5ed5 6728#ifdef CONFIG_SLUB_DEBUG
a5a84755 6729 &total_objects_attr.attr,
81bd3179 6730 &objects_attr.attr,
a5a84755
CL
6731 &slabs_attr.attr,
6732 &sanity_checks_attr.attr,
6733 &trace_attr.attr,
81819f0f
CL
6734 &red_zone_attr.attr,
6735 &poison_attr.attr,
6736 &store_user_attr.attr,
53e15af0 6737 &validate_attr.attr,
ab4d5ed5 6738#endif
81819f0f
CL
6739#ifdef CONFIG_ZONE_DMA
6740 &cache_dma_attr.attr,
6741#endif
6742#ifdef CONFIG_NUMA
9824601e 6743 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
6744#endif
6745#ifdef CONFIG_SLUB_STATS
6746 &alloc_fastpath_attr.attr,
6747 &alloc_slowpath_attr.attr,
6748 &free_fastpath_attr.attr,
6749 &free_slowpath_attr.attr,
6750 &free_frozen_attr.attr,
6751 &free_add_partial_attr.attr,
6752 &free_remove_partial_attr.attr,
6753 &alloc_from_partial_attr.attr,
6754 &alloc_slab_attr.attr,
6755 &alloc_refill_attr.attr,
e36a2652 6756 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
6757 &free_slab_attr.attr,
6758 &cpuslab_flush_attr.attr,
6759 &deactivate_full_attr.attr,
6760 &deactivate_empty_attr.attr,
6761 &deactivate_to_head_attr.attr,
6762 &deactivate_to_tail_attr.attr,
6763 &deactivate_remote_frees_attr.attr,
03e404af 6764 &deactivate_bypass_attr.attr,
65c3376a 6765 &order_fallback_attr.attr,
b789ef51
CL
6766 &cmpxchg_double_fail_attr.attr,
6767 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
6768 &cpu_partial_alloc_attr.attr,
6769 &cpu_partial_free_attr.attr,
8028dcea
AS
6770 &cpu_partial_node_attr.attr,
6771 &cpu_partial_drain_attr.attr,
81819f0f 6772#endif
4c13dd3b
DM
6773#ifdef CONFIG_FAILSLAB
6774 &failslab_attr.attr,
6775#endif
346907ce 6776#ifdef CONFIG_HARDENED_USERCOPY
8eb8284b 6777 &usersize_attr.attr,
346907ce 6778#endif
b84e04f1
IK
6779#ifdef CONFIG_KFENCE
6780 &skip_kfence_attr.attr,
6781#endif
4c13dd3b 6782
81819f0f
CL
6783 NULL
6784};
6785
1fdaaa23 6786static const struct attribute_group slab_attr_group = {
81819f0f
CL
6787 .attrs = slab_attrs,
6788};
6789
6790static ssize_t slab_attr_show(struct kobject *kobj,
6791 struct attribute *attr,
6792 char *buf)
6793{
6794 struct slab_attribute *attribute;
6795 struct kmem_cache *s;
81819f0f
CL
6796
6797 attribute = to_slab_attr(attr);
6798 s = to_slab(kobj);
6799
6800 if (!attribute->show)
6801 return -EIO;
6802
2bfbb027 6803 return attribute->show(s, buf);
81819f0f
CL
6804}
6805
6806static ssize_t slab_attr_store(struct kobject *kobj,
6807 struct attribute *attr,
6808 const char *buf, size_t len)
6809{
6810 struct slab_attribute *attribute;
6811 struct kmem_cache *s;
81819f0f
CL
6812
6813 attribute = to_slab_attr(attr);
6814 s = to_slab(kobj);
6815
6816 if (!attribute->store)
6817 return -EIO;
6818
2bfbb027 6819 return attribute->store(s, buf, len);
81819f0f
CL
6820}
6821
41a21285
CL
6822static void kmem_cache_release(struct kobject *k)
6823{
6824 slab_kmem_cache_release(to_slab(k));
6825}
6826
52cf25d0 6827static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
6828 .show = slab_attr_show,
6829 .store = slab_attr_store,
6830};
6831
9ebe720e 6832static const struct kobj_type slab_ktype = {
81819f0f 6833 .sysfs_ops = &slab_sysfs_ops,
41a21285 6834 .release = kmem_cache_release,
81819f0f
CL
6835};
6836
27c3a314 6837static struct kset *slab_kset;
81819f0f 6838
9a41707b
VD
6839static inline struct kset *cache_kset(struct kmem_cache *s)
6840{
9a41707b
VD
6841 return slab_kset;
6842}
6843
d65360f2 6844#define ID_STR_LENGTH 32
81819f0f
CL
6845
6846/* Create a unique string id for a slab cache:
6446faa2
CL
6847 *
6848 * Format :[flags-]size
81819f0f
CL
6849 */
6850static char *create_unique_id(struct kmem_cache *s)
6851{
6852 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
6853 char *p = name;
6854
7e9c323c
CY
6855 if (!name)
6856 return ERR_PTR(-ENOMEM);
81819f0f
CL
6857
6858 *p++ = ':';
6859 /*
6860 * First flags affecting slabcache operations. We will only
6861 * get here for aliasable slabs so we do not need to support
6862 * too many flags. The flags here must cover all flags that
6863 * are matched during merging to guarantee that the id is
6864 * unique.
6865 */
6866 if (s->flags & SLAB_CACHE_DMA)
6867 *p++ = 'd';
6d6ea1e9
NB
6868 if (s->flags & SLAB_CACHE_DMA32)
6869 *p++ = 'D';
81819f0f
CL
6870 if (s->flags & SLAB_RECLAIM_ACCOUNT)
6871 *p++ = 'a';
becfda68 6872 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 6873 *p++ = 'F';
230e9fc2
VD
6874 if (s->flags & SLAB_ACCOUNT)
6875 *p++ = 'A';
81819f0f
CL
6876 if (p != name + 1)
6877 *p++ = '-';
d65360f2 6878 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
2633d7a0 6879
d65360f2
CY
6880 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
6881 kfree(name);
6882 return ERR_PTR(-EINVAL);
6883 }
68ef169a 6884 kmsan_unpoison_memory(name, p - name);
81819f0f
CL
6885 return name;
6886}
6887
6888static int sysfs_slab_add(struct kmem_cache *s)
6889{
6890 int err;
6891 const char *name;
1663f26d 6892 struct kset *kset = cache_kset(s);
45530c44 6893 int unmergeable = slab_unmergeable(s);
81819f0f 6894
11066386
MC
6895 if (!unmergeable && disable_higher_order_debug &&
6896 (slub_debug & DEBUG_METADATA_FLAGS))
6897 unmergeable = 1;
6898
81819f0f
CL
6899 if (unmergeable) {
6900 /*
6901 * Slabcache can never be merged so we can use the name proper.
6902 * This is typically the case for debug situations. In that
6903 * case we can catch duplicate names easily.
6904 */
27c3a314 6905 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
6906 name = s->name;
6907 } else {
6908 /*
6909 * Create a unique name for the slab as a target
6910 * for the symlinks.
6911 */
6912 name = create_unique_id(s);
7e9c323c
CY
6913 if (IS_ERR(name))
6914 return PTR_ERR(name);
81819f0f
CL
6915 }
6916
1663f26d 6917 s->kobj.kset = kset;
26e4f205 6918 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
757fed1d 6919 if (err)
80da026a 6920 goto out;
81819f0f
CL
6921
6922 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
6923 if (err)
6924 goto out_del_kobj;
9a41707b 6925
81819f0f
CL
6926 if (!unmergeable) {
6927 /* Setup first alias */
6928 sysfs_slab_alias(s, s->name);
81819f0f 6929 }
54b6a731
DJ
6930out:
6931 if (!unmergeable)
6932 kfree(name);
6933 return err;
6934out_del_kobj:
6935 kobject_del(&s->kobj);
54b6a731 6936 goto out;
81819f0f
CL
6937}
6938
d50d82fa
MP
6939void sysfs_slab_unlink(struct kmem_cache *s)
6940{
011568eb 6941 kobject_del(&s->kobj);
d50d82fa
MP
6942}
6943
bf5eb3de
TH
6944void sysfs_slab_release(struct kmem_cache *s)
6945{
011568eb 6946 kobject_put(&s->kobj);
81819f0f
CL
6947}
6948
6949/*
6950 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 6951 * available lest we lose that information.
81819f0f
CL
6952 */
6953struct saved_alias {
6954 struct kmem_cache *s;
6955 const char *name;
6956 struct saved_alias *next;
6957};
6958
5af328a5 6959static struct saved_alias *alias_list;
81819f0f
CL
6960
6961static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
6962{
6963 struct saved_alias *al;
6964
97d06609 6965 if (slab_state == FULL) {
81819f0f
CL
6966 /*
6967 * If we have a leftover link then remove it.
6968 */
27c3a314
GKH
6969 sysfs_remove_link(&slab_kset->kobj, name);
6970 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
6971 }
6972
6973 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6974 if (!al)
6975 return -ENOMEM;
6976
6977 al->s = s;
6978 al->name = name;
6979 al->next = alias_list;
6980 alias_list = al;
68ef169a 6981 kmsan_unpoison_memory(al, sizeof(*al));
81819f0f
CL
6982 return 0;
6983}
6984
6985static int __init slab_sysfs_init(void)
6986{
5b95a4ac 6987 struct kmem_cache *s;
81819f0f
CL
6988 int err;
6989
18004c5d 6990 mutex_lock(&slab_mutex);
2bce6485 6991
d7660ce5 6992 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
27c3a314 6993 if (!slab_kset) {
18004c5d 6994 mutex_unlock(&slab_mutex);
f9f58285 6995 pr_err("Cannot register slab subsystem.\n");
35973232 6996 return -ENOMEM;
81819f0f
CL
6997 }
6998
97d06609 6999 slab_state = FULL;
26a7bd03 7000
5b95a4ac 7001 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 7002 err = sysfs_slab_add(s);
5d540fb7 7003 if (err)
f9f58285
FF
7004 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
7005 s->name);
26a7bd03 7006 }
81819f0f
CL
7007
7008 while (alias_list) {
7009 struct saved_alias *al = alias_list;
7010
7011 alias_list = alias_list->next;
7012 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 7013 if (err)
f9f58285
FF
7014 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
7015 al->name);
81819f0f
CL
7016 kfree(al);
7017 }
7018
18004c5d 7019 mutex_unlock(&slab_mutex);
81819f0f
CL
7020 return 0;
7021}
1a5ad30b 7022late_initcall(slab_sysfs_init);
b1a413a3 7023#endif /* SLAB_SUPPORTS_SYSFS */
57ed3eda 7024
64dd6849
FM
7025#if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
7026static int slab_debugfs_show(struct seq_file *seq, void *v)
7027{
64dd6849 7028 struct loc_track *t = seq->private;
005a79e5
GS
7029 struct location *l;
7030 unsigned long idx;
64dd6849 7031
005a79e5 7032 idx = (unsigned long) t->idx;
64dd6849
FM
7033 if (idx < t->count) {
7034 l = &t->loc[idx];
7035
7036 seq_printf(seq, "%7ld ", l->count);
7037
7038 if (l->addr)
7039 seq_printf(seq, "%pS", (void *)l->addr);
7040 else
7041 seq_puts(seq, "<not-available>");
7042
6edf2576
FT
7043 if (l->waste)
7044 seq_printf(seq, " waste=%lu/%lu",
7045 l->count * l->waste, l->waste);
7046
64dd6849
FM
7047 if (l->sum_time != l->min_time) {
7048 seq_printf(seq, " age=%ld/%llu/%ld",
7049 l->min_time, div_u64(l->sum_time, l->count),
7050 l->max_time);
7051 } else
7052 seq_printf(seq, " age=%ld", l->min_time);
7053
7054 if (l->min_pid != l->max_pid)
7055 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
7056 else
7057 seq_printf(seq, " pid=%ld",
7058 l->min_pid);
7059
7060 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
7061 seq_printf(seq, " cpus=%*pbl",
7062 cpumask_pr_args(to_cpumask(l->cpus)));
7063
7064 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
7065 seq_printf(seq, " nodes=%*pbl",
7066 nodemask_pr_args(&l->nodes));
7067
8ea9fb92
OG
7068#ifdef CONFIG_STACKDEPOT
7069 {
7070 depot_stack_handle_t handle;
7071 unsigned long *entries;
7072 unsigned int nr_entries, j;
7073
7074 handle = READ_ONCE(l->handle);
7075 if (handle) {
7076 nr_entries = stack_depot_fetch(handle, &entries);
7077 seq_puts(seq, "\n");
7078 for (j = 0; j < nr_entries; j++)
7079 seq_printf(seq, " %pS\n", (void *)entries[j]);
7080 }
7081 }
7082#endif
64dd6849
FM
7083 seq_puts(seq, "\n");
7084 }
7085
7086 if (!idx && !t->count)
7087 seq_puts(seq, "No data\n");
7088
7089 return 0;
7090}
7091
7092static void slab_debugfs_stop(struct seq_file *seq, void *v)
7093{
7094}
7095
7096static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
7097{
7098 struct loc_track *t = seq->private;
7099
005a79e5 7100 t->idx = ++(*ppos);
64dd6849 7101 if (*ppos <= t->count)
005a79e5 7102 return ppos;
64dd6849
FM
7103
7104 return NULL;
7105}
7106
553c0369
OG
7107static int cmp_loc_by_count(const void *a, const void *b, const void *data)
7108{
7109 struct location *loc1 = (struct location *)a;
7110 struct location *loc2 = (struct location *)b;
7111
7112 if (loc1->count > loc2->count)
7113 return -1;
7114 else
7115 return 1;
7116}
7117
64dd6849
FM
7118static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
7119{
005a79e5
GS
7120 struct loc_track *t = seq->private;
7121
7122 t->idx = *ppos;
64dd6849
FM
7123 return ppos;
7124}
7125
7126static const struct seq_operations slab_debugfs_sops = {
7127 .start = slab_debugfs_start,
7128 .next = slab_debugfs_next,
7129 .stop = slab_debugfs_stop,
7130 .show = slab_debugfs_show,
7131};
7132
7133static int slab_debug_trace_open(struct inode *inode, struct file *filep)
7134{
7135
7136 struct kmem_cache_node *n;
7137 enum track_item alloc;
7138 int node;
7139 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
7140 sizeof(struct loc_track));
7141 struct kmem_cache *s = file_inode(filep)->i_private;
b3fd64e1
VB
7142 unsigned long *obj_map;
7143
2127d225
ML
7144 if (!t)
7145 return -ENOMEM;
7146
b3fd64e1 7147 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
2127d225
ML
7148 if (!obj_map) {
7149 seq_release_private(inode, filep);
b3fd64e1 7150 return -ENOMEM;
2127d225 7151 }
64dd6849
FM
7152
7153 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
7154 alloc = TRACK_ALLOC;
7155 else
7156 alloc = TRACK_FREE;
7157
b3fd64e1
VB
7158 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
7159 bitmap_free(obj_map);
2127d225 7160 seq_release_private(inode, filep);
64dd6849 7161 return -ENOMEM;
b3fd64e1 7162 }
64dd6849 7163
64dd6849
FM
7164 for_each_kmem_cache_node(s, node, n) {
7165 unsigned long flags;
bb192ed9 7166 struct slab *slab;
64dd6849 7167
8040cbf5 7168 if (!node_nr_slabs(n))
64dd6849
FM
7169 continue;
7170
7171 spin_lock_irqsave(&n->list_lock, flags);
bb192ed9
VB
7172 list_for_each_entry(slab, &n->partial, slab_list)
7173 process_slab(t, s, slab, alloc, obj_map);
7174 list_for_each_entry(slab, &n->full, slab_list)
7175 process_slab(t, s, slab, alloc, obj_map);
64dd6849
FM
7176 spin_unlock_irqrestore(&n->list_lock, flags);
7177 }
7178
553c0369
OG
7179 /* Sort locations by count */
7180 sort_r(t->loc, t->count, sizeof(struct location),
7181 cmp_loc_by_count, NULL, NULL);
7182
b3fd64e1 7183 bitmap_free(obj_map);
64dd6849
FM
7184 return 0;
7185}
7186
7187static int slab_debug_trace_release(struct inode *inode, struct file *file)
7188{
7189 struct seq_file *seq = file->private_data;
7190 struct loc_track *t = seq->private;
7191
7192 free_loc_track(t);
7193 return seq_release_private(inode, file);
7194}
7195
7196static const struct file_operations slab_debugfs_fops = {
7197 .open = slab_debug_trace_open,
7198 .read = seq_read,
7199 .llseek = seq_lseek,
7200 .release = slab_debug_trace_release,
7201};
7202
7203static void debugfs_slab_add(struct kmem_cache *s)
7204{
7205 struct dentry *slab_cache_dir;
7206
7207 if (unlikely(!slab_debugfs_root))
7208 return;
7209
7210 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
7211
7212 debugfs_create_file("alloc_traces", 0400,
7213 slab_cache_dir, s, &slab_debugfs_fops);
7214
7215 debugfs_create_file("free_traces", 0400,
7216 slab_cache_dir, s, &slab_debugfs_fops);
7217}
7218
7219void debugfs_slab_release(struct kmem_cache *s)
7220{
aa4a8605 7221 debugfs_lookup_and_remove(s->name, slab_debugfs_root);
64dd6849
FM
7222}
7223
7224static int __init slab_debugfs_init(void)
7225{
7226 struct kmem_cache *s;
7227
7228 slab_debugfs_root = debugfs_create_dir("slab", NULL);
7229
7230 list_for_each_entry(s, &slab_caches, list)
7231 if (s->flags & SLAB_STORE_USER)
7232 debugfs_slab_add(s);
7233
7234 return 0;
7235
7236}
7237__initcall(slab_debugfs_init);
7238#endif
57ed3eda
PE
7239/*
7240 * The /proc/slabinfo ABI
7241 */
5b365771 7242#ifdef CONFIG_SLUB_DEBUG
0d7561c6 7243void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 7244{
57ed3eda 7245 unsigned long nr_slabs = 0;
205ab99d
CL
7246 unsigned long nr_objs = 0;
7247 unsigned long nr_free = 0;
57ed3eda 7248 int node;
fa45dc25 7249 struct kmem_cache_node *n;
57ed3eda 7250
fa45dc25 7251 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
7252 nr_slabs += node_nr_slabs(n);
7253 nr_objs += node_nr_objs(n);
046f4c69 7254 nr_free += count_partial_free_approx(n);
57ed3eda
PE
7255 }
7256
0d7561c6
GC
7257 sinfo->active_objs = nr_objs - nr_free;
7258 sinfo->num_objs = nr_objs;
7259 sinfo->active_slabs = nr_slabs;
7260 sinfo->num_slabs = nr_slabs;
7261 sinfo->objects_per_slab = oo_objects(s->oo);
7262 sinfo->cache_order = oo_order(s->oo);
57ed3eda 7263}
5b365771 7264#endif /* CONFIG_SLUB_DEBUG */