SLUB: this_cpu: Remove slub kmem_cache fields
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
9 */
10
11#include <linux/mm.h>
1eb5ac64 12#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
13#include <linux/module.h>
14#include <linux/bit_spinlock.h>
15#include <linux/interrupt.h>
16#include <linux/bitops.h>
17#include <linux/slab.h>
7b3c3a50 18#include <linux/proc_fs.h>
81819f0f 19#include <linux/seq_file.h>
02af61bb 20#include <linux/kmemtrace.h>
5a896d9e 21#include <linux/kmemcheck.h>
81819f0f
CL
22#include <linux/cpu.h>
23#include <linux/cpuset.h>
24#include <linux/mempolicy.h>
25#include <linux/ctype.h>
3ac7fe5a 26#include <linux/debugobjects.h>
81819f0f 27#include <linux/kallsyms.h>
b9049e23 28#include <linux/memory.h>
f8bd2258 29#include <linux/math64.h>
773ff60e 30#include <linux/fault-inject.h>
81819f0f
CL
31
32/*
33 * Lock order:
34 * 1. slab_lock(page)
35 * 2. slab->list_lock
36 *
37 * The slab_lock protects operations on the object of a particular
38 * slab and its metadata in the page struct. If the slab lock
39 * has been taken then no allocations nor frees can be performed
40 * on the objects in the slab nor can the slab be added or removed
41 * from the partial or full lists since this would mean modifying
42 * the page_struct of the slab.
43 *
44 * The list_lock protects the partial and full list on each node and
45 * the partial slab counter. If taken then no new slabs may be added or
46 * removed from the lists nor make the number of partial slabs be modified.
47 * (Note that the total number of slabs is an atomic value that may be
48 * modified without taking the list lock).
49 *
50 * The list_lock is a centralized lock and thus we avoid taking it as
51 * much as possible. As long as SLUB does not have to handle partial
52 * slabs, operations can continue without any centralized lock. F.e.
53 * allocating a long series of objects that fill up slabs does not require
54 * the list lock.
55 *
56 * The lock order is sometimes inverted when we are trying to get a slab
57 * off a list. We take the list_lock and then look for a page on the list
58 * to use. While we do that objects in the slabs may be freed. We can
59 * only operate on the slab if we have also taken the slab_lock. So we use
60 * a slab_trylock() on the slab. If trylock was successful then no frees
61 * can occur anymore and we can use the slab for allocations etc. If the
62 * slab_trylock() does not succeed then frees are in progress in the slab and
63 * we must stay away from it for a while since we may cause a bouncing
64 * cacheline if we try to acquire the lock. So go onto the next slab.
65 * If all pages are busy then we may allocate a new slab instead of reusing
66 * a partial slab. A new slab has noone operating on it and thus there is
67 * no danger of cacheline contention.
68 *
69 * Interrupts are disabled during allocation and deallocation in order to
70 * make the slab allocator safe to use in the context of an irq. In addition
71 * interrupts are disabled to ensure that the processor does not change
72 * while handling per_cpu slabs, due to kernel preemption.
73 *
74 * SLUB assigns one slab for allocation to each processor.
75 * Allocations only occur from these slabs called cpu slabs.
76 *
672bba3a
CL
77 * Slabs with free elements are kept on a partial list and during regular
78 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 79 * freed then the slab will show up again on the partial lists.
672bba3a
CL
80 * We track full slabs for debugging purposes though because otherwise we
81 * cannot scan all objects.
81819f0f
CL
82 *
83 * Slabs are freed when they become empty. Teardown and setup is
84 * minimal so we rely on the page allocators per cpu caches for
85 * fast frees and allocs.
86 *
87 * Overloading of page flags that are otherwise used for LRU management.
88 *
4b6f0750
CL
89 * PageActive The slab is frozen and exempt from list processing.
90 * This means that the slab is dedicated to a purpose
91 * such as satisfying allocations for a specific
92 * processor. Objects may be freed in the slab while
93 * it is frozen but slab_free will then skip the usual
94 * list operations. It is up to the processor holding
95 * the slab to integrate the slab into the slab lists
96 * when the slab is no longer needed.
97 *
98 * One use of this flag is to mark slabs that are
99 * used for allocations. Then such a slab becomes a cpu
100 * slab. The cpu slab may be equipped with an additional
dfb4f096 101 * freelist that allows lockless access to
894b8788
CL
102 * free objects in addition to the regular freelist
103 * that requires the slab lock.
81819f0f
CL
104 *
105 * PageError Slab requires special handling due to debug
106 * options set. This moves slab handling out of
894b8788 107 * the fast path and disables lockless freelists.
81819f0f
CL
108 */
109
5577bd8a 110#ifdef CONFIG_SLUB_DEBUG
8a38082d 111#define SLABDEBUG 1
5577bd8a
CL
112#else
113#define SLABDEBUG 0
114#endif
115
81819f0f
CL
116/*
117 * Issues still to be resolved:
118 *
81819f0f
CL
119 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
120 *
81819f0f
CL
121 * - Variable sizing of the per node arrays
122 */
123
124/* Enable to test recovery from slab corruption on boot */
125#undef SLUB_RESILIENCY_TEST
126
2086d26a
CL
127/*
128 * Mininum number of partial slabs. These will be left on the partial
129 * lists even if they are empty. kmem_cache_shrink may reclaim them.
130 */
76be8950 131#define MIN_PARTIAL 5
e95eed57 132
2086d26a
CL
133/*
134 * Maximum number of desirable partial slabs.
135 * The existence of more partial slabs makes kmem_cache_shrink
136 * sort the partial list by the number of objects in the.
137 */
138#define MAX_PARTIAL 10
139
81819f0f
CL
140#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
141 SLAB_POISON | SLAB_STORE_USER)
672bba3a 142
fa5ec8a1 143/*
3de47213
DR
144 * Debugging flags that require metadata to be stored in the slab. These get
145 * disabled when slub_debug=O is used and a cache's min order increases with
146 * metadata.
fa5ec8a1 147 */
3de47213 148#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 149
81819f0f
CL
150/*
151 * Set of flags that will prevent slab merging
152 */
153#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
06f22f13 154 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE)
81819f0f
CL
155
156#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 157 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f
CL
158
159#ifndef ARCH_KMALLOC_MINALIGN
47bfdc0d 160#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
161#endif
162
163#ifndef ARCH_SLAB_MINALIGN
47bfdc0d 164#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
165#endif
166
210b5c06
CG
167#define OO_SHIFT 16
168#define OO_MASK ((1 << OO_SHIFT) - 1)
169#define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
170
81819f0f 171/* Internal SLUB flags */
1ceef402
CL
172#define __OBJECT_POISON 0x80000000 /* Poison object */
173#define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
81819f0f
CL
174
175static int kmem_size = sizeof(struct kmem_cache);
176
177#ifdef CONFIG_SMP
178static struct notifier_block slab_notifier;
179#endif
180
181static enum {
182 DOWN, /* No slab functionality available */
183 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
672bba3a 184 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
185 SYSFS /* Sysfs up */
186} slab_state = DOWN;
187
188/* A list of all slab caches on the system */
189static DECLARE_RWSEM(slub_lock);
5af328a5 190static LIST_HEAD(slab_caches);
81819f0f 191
02cbc874
CL
192/*
193 * Tracking user of a slab.
194 */
195struct track {
ce71e27c 196 unsigned long addr; /* Called from address */
02cbc874
CL
197 int cpu; /* Was running on cpu */
198 int pid; /* Pid context */
199 unsigned long when; /* When did the operation occur */
200};
201
202enum track_item { TRACK_ALLOC, TRACK_FREE };
203
f6acb635 204#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
205static int sysfs_slab_add(struct kmem_cache *);
206static int sysfs_slab_alias(struct kmem_cache *, const char *);
207static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 208
81819f0f 209#else
0c710013
CL
210static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
211static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
212 { return 0; }
151c602f
CL
213static inline void sysfs_slab_remove(struct kmem_cache *s)
214{
215 kfree(s);
216}
8ff12cfc 217
81819f0f
CL
218#endif
219
8ff12cfc
CL
220static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
221{
222#ifdef CONFIG_SLUB_STATS
223 c->stat[si]++;
224#endif
225}
226
81819f0f
CL
227/********************************************************************
228 * Core slab cache functions
229 *******************************************************************/
230
231int slab_is_available(void)
232{
233 return slab_state >= UP;
234}
235
236static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
237{
238#ifdef CONFIG_NUMA
239 return s->node[node];
240#else
241 return &s->local_node;
242#endif
243}
244
6446faa2 245/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
246static inline int check_valid_pointer(struct kmem_cache *s,
247 struct page *page, const void *object)
248{
249 void *base;
250
a973e9dd 251 if (!object)
02cbc874
CL
252 return 1;
253
a973e9dd 254 base = page_address(page);
39b26464 255 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
256 (object - base) % s->size) {
257 return 0;
258 }
259
260 return 1;
261}
262
7656c72b
CL
263static inline void *get_freepointer(struct kmem_cache *s, void *object)
264{
265 return *(void **)(object + s->offset);
266}
267
268static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
269{
270 *(void **)(object + s->offset) = fp;
271}
272
273/* Loop over all objects in a slab */
224a88be
CL
274#define for_each_object(__p, __s, __addr, __objects) \
275 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
276 __p += (__s)->size)
277
278/* Scan freelist */
279#define for_each_free_object(__p, __s, __free) \
a973e9dd 280 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
7656c72b
CL
281
282/* Determine object index from a given position */
283static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
284{
285 return (p - addr) / s->size;
286}
287
834f3d11
CL
288static inline struct kmem_cache_order_objects oo_make(int order,
289 unsigned long size)
290{
291 struct kmem_cache_order_objects x = {
210b5c06 292 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
834f3d11
CL
293 };
294
295 return x;
296}
297
298static inline int oo_order(struct kmem_cache_order_objects x)
299{
210b5c06 300 return x.x >> OO_SHIFT;
834f3d11
CL
301}
302
303static inline int oo_objects(struct kmem_cache_order_objects x)
304{
210b5c06 305 return x.x & OO_MASK;
834f3d11
CL
306}
307
41ecc55b
CL
308#ifdef CONFIG_SLUB_DEBUG
309/*
310 * Debug settings:
311 */
f0630fff
CL
312#ifdef CONFIG_SLUB_DEBUG_ON
313static int slub_debug = DEBUG_DEFAULT_FLAGS;
314#else
41ecc55b 315static int slub_debug;
f0630fff 316#endif
41ecc55b
CL
317
318static char *slub_debug_slabs;
fa5ec8a1 319static int disable_higher_order_debug;
41ecc55b 320
81819f0f
CL
321/*
322 * Object debugging
323 */
324static void print_section(char *text, u8 *addr, unsigned int length)
325{
326 int i, offset;
327 int newline = 1;
328 char ascii[17];
329
330 ascii[16] = 0;
331
332 for (i = 0; i < length; i++) {
333 if (newline) {
24922684 334 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
335 newline = 0;
336 }
06428780 337 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
338 offset = i % 16;
339 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
340 if (offset == 15) {
06428780 341 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
342 newline = 1;
343 }
344 }
345 if (!newline) {
346 i %= 16;
347 while (i < 16) {
06428780 348 printk(KERN_CONT " ");
81819f0f
CL
349 ascii[i] = ' ';
350 i++;
351 }
06428780 352 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
353 }
354}
355
81819f0f
CL
356static struct track *get_track(struct kmem_cache *s, void *object,
357 enum track_item alloc)
358{
359 struct track *p;
360
361 if (s->offset)
362 p = object + s->offset + sizeof(void *);
363 else
364 p = object + s->inuse;
365
366 return p + alloc;
367}
368
369static void set_track(struct kmem_cache *s, void *object,
ce71e27c 370 enum track_item alloc, unsigned long addr)
81819f0f 371{
1a00df4a 372 struct track *p = get_track(s, object, alloc);
81819f0f 373
81819f0f
CL
374 if (addr) {
375 p->addr = addr;
376 p->cpu = smp_processor_id();
88e4ccf2 377 p->pid = current->pid;
81819f0f
CL
378 p->when = jiffies;
379 } else
380 memset(p, 0, sizeof(struct track));
381}
382
81819f0f
CL
383static void init_tracking(struct kmem_cache *s, void *object)
384{
24922684
CL
385 if (!(s->flags & SLAB_STORE_USER))
386 return;
387
ce71e27c
EGM
388 set_track(s, object, TRACK_FREE, 0UL);
389 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
390}
391
392static void print_track(const char *s, struct track *t)
393{
394 if (!t->addr)
395 return;
396
7daf705f 397 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 398 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
24922684
CL
399}
400
401static void print_tracking(struct kmem_cache *s, void *object)
402{
403 if (!(s->flags & SLAB_STORE_USER))
404 return;
405
406 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
407 print_track("Freed", get_track(s, object, TRACK_FREE));
408}
409
410static void print_page_info(struct page *page)
411{
39b26464
CL
412 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
413 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
414
415}
416
417static void slab_bug(struct kmem_cache *s, char *fmt, ...)
418{
419 va_list args;
420 char buf[100];
421
422 va_start(args, fmt);
423 vsnprintf(buf, sizeof(buf), fmt, args);
424 va_end(args);
425 printk(KERN_ERR "========================================"
426 "=====================================\n");
427 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
428 printk(KERN_ERR "----------------------------------------"
429 "-------------------------------------\n\n");
81819f0f
CL
430}
431
24922684
CL
432static void slab_fix(struct kmem_cache *s, char *fmt, ...)
433{
434 va_list args;
435 char buf[100];
436
437 va_start(args, fmt);
438 vsnprintf(buf, sizeof(buf), fmt, args);
439 va_end(args);
440 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
441}
442
443static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
444{
445 unsigned int off; /* Offset of last byte */
a973e9dd 446 u8 *addr = page_address(page);
24922684
CL
447
448 print_tracking(s, p);
449
450 print_page_info(page);
451
452 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
453 p, p - addr, get_freepointer(s, p));
454
455 if (p > addr + 16)
456 print_section("Bytes b4", p - 16, 16);
457
0ebd652b 458 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
81819f0f
CL
459
460 if (s->flags & SLAB_RED_ZONE)
461 print_section("Redzone", p + s->objsize,
462 s->inuse - s->objsize);
463
81819f0f
CL
464 if (s->offset)
465 off = s->offset + sizeof(void *);
466 else
467 off = s->inuse;
468
24922684 469 if (s->flags & SLAB_STORE_USER)
81819f0f 470 off += 2 * sizeof(struct track);
81819f0f
CL
471
472 if (off != s->size)
473 /* Beginning of the filler is the free pointer */
24922684
CL
474 print_section("Padding", p + off, s->size - off);
475
476 dump_stack();
81819f0f
CL
477}
478
479static void object_err(struct kmem_cache *s, struct page *page,
480 u8 *object, char *reason)
481{
3dc50637 482 slab_bug(s, "%s", reason);
24922684 483 print_trailer(s, page, object);
81819f0f
CL
484}
485
24922684 486static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
487{
488 va_list args;
489 char buf[100];
490
24922684
CL
491 va_start(args, fmt);
492 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 493 va_end(args);
3dc50637 494 slab_bug(s, "%s", buf);
24922684 495 print_page_info(page);
81819f0f
CL
496 dump_stack();
497}
498
499static void init_object(struct kmem_cache *s, void *object, int active)
500{
501 u8 *p = object;
502
503 if (s->flags & __OBJECT_POISON) {
504 memset(p, POISON_FREE, s->objsize - 1);
06428780 505 p[s->objsize - 1] = POISON_END;
81819f0f
CL
506 }
507
508 if (s->flags & SLAB_RED_ZONE)
509 memset(p + s->objsize,
510 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
511 s->inuse - s->objsize);
512}
513
24922684 514static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
515{
516 while (bytes) {
517 if (*start != (u8)value)
24922684 518 return start;
81819f0f
CL
519 start++;
520 bytes--;
521 }
24922684
CL
522 return NULL;
523}
524
525static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
526 void *from, void *to)
527{
528 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
529 memset(from, data, to - from);
530}
531
532static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
533 u8 *object, char *what,
06428780 534 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
535{
536 u8 *fault;
537 u8 *end;
538
539 fault = check_bytes(start, value, bytes);
540 if (!fault)
541 return 1;
542
543 end = start + bytes;
544 while (end > fault && end[-1] == value)
545 end--;
546
547 slab_bug(s, "%s overwritten", what);
548 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
549 fault, end - 1, fault[0], value);
550 print_trailer(s, page, object);
551
552 restore_bytes(s, what, value, fault, end);
553 return 0;
81819f0f
CL
554}
555
81819f0f
CL
556/*
557 * Object layout:
558 *
559 * object address
560 * Bytes of the object to be managed.
561 * If the freepointer may overlay the object then the free
562 * pointer is the first word of the object.
672bba3a 563 *
81819f0f
CL
564 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
565 * 0xa5 (POISON_END)
566 *
567 * object + s->objsize
568 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
569 * Padding is extended by another word if Redzoning is enabled and
570 * objsize == inuse.
571 *
81819f0f
CL
572 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
573 * 0xcc (RED_ACTIVE) for objects in use.
574 *
575 * object + s->inuse
672bba3a
CL
576 * Meta data starts here.
577 *
81819f0f
CL
578 * A. Free pointer (if we cannot overwrite object on free)
579 * B. Tracking data for SLAB_STORE_USER
672bba3a 580 * C. Padding to reach required alignment boundary or at mininum
6446faa2 581 * one word if debugging is on to be able to detect writes
672bba3a
CL
582 * before the word boundary.
583 *
584 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
585 *
586 * object + s->size
672bba3a 587 * Nothing is used beyond s->size.
81819f0f 588 *
672bba3a
CL
589 * If slabcaches are merged then the objsize and inuse boundaries are mostly
590 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
591 * may be used with merged slabcaches.
592 */
593
81819f0f
CL
594static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
595{
596 unsigned long off = s->inuse; /* The end of info */
597
598 if (s->offset)
599 /* Freepointer is placed after the object. */
600 off += sizeof(void *);
601
602 if (s->flags & SLAB_STORE_USER)
603 /* We also have user information there */
604 off += 2 * sizeof(struct track);
605
606 if (s->size == off)
607 return 1;
608
24922684
CL
609 return check_bytes_and_report(s, page, p, "Object padding",
610 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
611}
612
39b26464 613/* Check the pad bytes at the end of a slab page */
81819f0f
CL
614static int slab_pad_check(struct kmem_cache *s, struct page *page)
615{
24922684
CL
616 u8 *start;
617 u8 *fault;
618 u8 *end;
619 int length;
620 int remainder;
81819f0f
CL
621
622 if (!(s->flags & SLAB_POISON))
623 return 1;
624
a973e9dd 625 start = page_address(page);
834f3d11 626 length = (PAGE_SIZE << compound_order(page));
39b26464
CL
627 end = start + length;
628 remainder = length % s->size;
81819f0f
CL
629 if (!remainder)
630 return 1;
631
39b26464 632 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
633 if (!fault)
634 return 1;
635 while (end > fault && end[-1] == POISON_INUSE)
636 end--;
637
638 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 639 print_section("Padding", end - remainder, remainder);
24922684 640
8a3d271d 641 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 642 return 0;
81819f0f
CL
643}
644
645static int check_object(struct kmem_cache *s, struct page *page,
646 void *object, int active)
647{
648 u8 *p = object;
649 u8 *endobject = object + s->objsize;
650
651 if (s->flags & SLAB_RED_ZONE) {
652 unsigned int red =
653 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
654
24922684
CL
655 if (!check_bytes_and_report(s, page, object, "Redzone",
656 endobject, red, s->inuse - s->objsize))
81819f0f 657 return 0;
81819f0f 658 } else {
3adbefee
IM
659 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
660 check_bytes_and_report(s, page, p, "Alignment padding",
661 endobject, POISON_INUSE, s->inuse - s->objsize);
662 }
81819f0f
CL
663 }
664
665 if (s->flags & SLAB_POISON) {
666 if (!active && (s->flags & __OBJECT_POISON) &&
24922684
CL
667 (!check_bytes_and_report(s, page, p, "Poison", p,
668 POISON_FREE, s->objsize - 1) ||
669 !check_bytes_and_report(s, page, p, "Poison",
06428780 670 p + s->objsize - 1, POISON_END, 1)))
81819f0f 671 return 0;
81819f0f
CL
672 /*
673 * check_pad_bytes cleans up on its own.
674 */
675 check_pad_bytes(s, page, p);
676 }
677
678 if (!s->offset && active)
679 /*
680 * Object and freepointer overlap. Cannot check
681 * freepointer while object is allocated.
682 */
683 return 1;
684
685 /* Check free pointer validity */
686 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
687 object_err(s, page, p, "Freepointer corrupt");
688 /*
9f6c708e 689 * No choice but to zap it and thus lose the remainder
81819f0f 690 * of the free objects in this slab. May cause
672bba3a 691 * another error because the object count is now wrong.
81819f0f 692 */
a973e9dd 693 set_freepointer(s, p, NULL);
81819f0f
CL
694 return 0;
695 }
696 return 1;
697}
698
699static int check_slab(struct kmem_cache *s, struct page *page)
700{
39b26464
CL
701 int maxobj;
702
81819f0f
CL
703 VM_BUG_ON(!irqs_disabled());
704
705 if (!PageSlab(page)) {
24922684 706 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
707 return 0;
708 }
39b26464
CL
709
710 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
711 if (page->objects > maxobj) {
712 slab_err(s, page, "objects %u > max %u",
713 s->name, page->objects, maxobj);
714 return 0;
715 }
716 if (page->inuse > page->objects) {
24922684 717 slab_err(s, page, "inuse %u > max %u",
39b26464 718 s->name, page->inuse, page->objects);
81819f0f
CL
719 return 0;
720 }
721 /* Slab_pad_check fixes things up after itself */
722 slab_pad_check(s, page);
723 return 1;
724}
725
726/*
672bba3a
CL
727 * Determine if a certain object on a page is on the freelist. Must hold the
728 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
729 */
730static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
731{
732 int nr = 0;
733 void *fp = page->freelist;
734 void *object = NULL;
224a88be 735 unsigned long max_objects;
81819f0f 736
39b26464 737 while (fp && nr <= page->objects) {
81819f0f
CL
738 if (fp == search)
739 return 1;
740 if (!check_valid_pointer(s, page, fp)) {
741 if (object) {
742 object_err(s, page, object,
743 "Freechain corrupt");
a973e9dd 744 set_freepointer(s, object, NULL);
81819f0f
CL
745 break;
746 } else {
24922684 747 slab_err(s, page, "Freepointer corrupt");
a973e9dd 748 page->freelist = NULL;
39b26464 749 page->inuse = page->objects;
24922684 750 slab_fix(s, "Freelist cleared");
81819f0f
CL
751 return 0;
752 }
753 break;
754 }
755 object = fp;
756 fp = get_freepointer(s, object);
757 nr++;
758 }
759
224a88be 760 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
210b5c06
CG
761 if (max_objects > MAX_OBJS_PER_PAGE)
762 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
763
764 if (page->objects != max_objects) {
765 slab_err(s, page, "Wrong number of objects. Found %d but "
766 "should be %d", page->objects, max_objects);
767 page->objects = max_objects;
768 slab_fix(s, "Number of objects adjusted.");
769 }
39b26464 770 if (page->inuse != page->objects - nr) {
70d71228 771 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
772 "counted were %d", page->inuse, page->objects - nr);
773 page->inuse = page->objects - nr;
24922684 774 slab_fix(s, "Object count adjusted.");
81819f0f
CL
775 }
776 return search == NULL;
777}
778
0121c619
CL
779static void trace(struct kmem_cache *s, struct page *page, void *object,
780 int alloc)
3ec09742
CL
781{
782 if (s->flags & SLAB_TRACE) {
783 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
784 s->name,
785 alloc ? "alloc" : "free",
786 object, page->inuse,
787 page->freelist);
788
789 if (!alloc)
790 print_section("Object", (void *)object, s->objsize);
791
792 dump_stack();
793 }
794}
795
643b1138 796/*
672bba3a 797 * Tracking of fully allocated slabs for debugging purposes.
643b1138 798 */
e95eed57 799static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 800{
643b1138
CL
801 spin_lock(&n->list_lock);
802 list_add(&page->lru, &n->full);
803 spin_unlock(&n->list_lock);
804}
805
806static void remove_full(struct kmem_cache *s, struct page *page)
807{
808 struct kmem_cache_node *n;
809
810 if (!(s->flags & SLAB_STORE_USER))
811 return;
812
813 n = get_node(s, page_to_nid(page));
814
815 spin_lock(&n->list_lock);
816 list_del(&page->lru);
817 spin_unlock(&n->list_lock);
818}
819
0f389ec6
CL
820/* Tracking of the number of slabs for debugging purposes */
821static inline unsigned long slabs_node(struct kmem_cache *s, int node)
822{
823 struct kmem_cache_node *n = get_node(s, node);
824
825 return atomic_long_read(&n->nr_slabs);
826}
827
26c02cf0
AB
828static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
829{
830 return atomic_long_read(&n->nr_slabs);
831}
832
205ab99d 833static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
834{
835 struct kmem_cache_node *n = get_node(s, node);
836
837 /*
838 * May be called early in order to allocate a slab for the
839 * kmem_cache_node structure. Solve the chicken-egg
840 * dilemma by deferring the increment of the count during
841 * bootstrap (see early_kmem_cache_node_alloc).
842 */
205ab99d 843 if (!NUMA_BUILD || n) {
0f389ec6 844 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
845 atomic_long_add(objects, &n->total_objects);
846 }
0f389ec6 847}
205ab99d 848static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
849{
850 struct kmem_cache_node *n = get_node(s, node);
851
852 atomic_long_dec(&n->nr_slabs);
205ab99d 853 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
854}
855
856/* Object debug checks for alloc/free paths */
3ec09742
CL
857static void setup_object_debug(struct kmem_cache *s, struct page *page,
858 void *object)
859{
860 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
861 return;
862
863 init_object(s, object, 0);
864 init_tracking(s, object);
865}
866
867static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 868 void *object, unsigned long addr)
81819f0f
CL
869{
870 if (!check_slab(s, page))
871 goto bad;
872
d692ef6d 873 if (!on_freelist(s, page, object)) {
24922684 874 object_err(s, page, object, "Object already allocated");
70d71228 875 goto bad;
81819f0f
CL
876 }
877
878 if (!check_valid_pointer(s, page, object)) {
879 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 880 goto bad;
81819f0f
CL
881 }
882
d692ef6d 883 if (!check_object(s, page, object, 0))
81819f0f 884 goto bad;
81819f0f 885
3ec09742
CL
886 /* Success perform special debug activities for allocs */
887 if (s->flags & SLAB_STORE_USER)
888 set_track(s, object, TRACK_ALLOC, addr);
889 trace(s, page, object, 1);
890 init_object(s, object, 1);
81819f0f 891 return 1;
3ec09742 892
81819f0f
CL
893bad:
894 if (PageSlab(page)) {
895 /*
896 * If this is a slab page then lets do the best we can
897 * to avoid issues in the future. Marking all objects
672bba3a 898 * as used avoids touching the remaining objects.
81819f0f 899 */
24922684 900 slab_fix(s, "Marking all objects used");
39b26464 901 page->inuse = page->objects;
a973e9dd 902 page->freelist = NULL;
81819f0f
CL
903 }
904 return 0;
905}
906
3ec09742 907static int free_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 908 void *object, unsigned long addr)
81819f0f
CL
909{
910 if (!check_slab(s, page))
911 goto fail;
912
913 if (!check_valid_pointer(s, page, object)) {
70d71228 914 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
915 goto fail;
916 }
917
918 if (on_freelist(s, page, object)) {
24922684 919 object_err(s, page, object, "Object already free");
81819f0f
CL
920 goto fail;
921 }
922
923 if (!check_object(s, page, object, 1))
924 return 0;
925
926 if (unlikely(s != page->slab)) {
3adbefee 927 if (!PageSlab(page)) {
70d71228
CL
928 slab_err(s, page, "Attempt to free object(0x%p) "
929 "outside of slab", object);
3adbefee 930 } else if (!page->slab) {
81819f0f 931 printk(KERN_ERR
70d71228 932 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 933 object);
70d71228 934 dump_stack();
06428780 935 } else
24922684
CL
936 object_err(s, page, object,
937 "page slab pointer corrupt.");
81819f0f
CL
938 goto fail;
939 }
3ec09742
CL
940
941 /* Special debug activities for freeing objects */
8a38082d 942 if (!PageSlubFrozen(page) && !page->freelist)
3ec09742
CL
943 remove_full(s, page);
944 if (s->flags & SLAB_STORE_USER)
945 set_track(s, object, TRACK_FREE, addr);
946 trace(s, page, object, 0);
947 init_object(s, object, 0);
81819f0f 948 return 1;
3ec09742 949
81819f0f 950fail:
24922684 951 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
952 return 0;
953}
954
41ecc55b
CL
955static int __init setup_slub_debug(char *str)
956{
f0630fff
CL
957 slub_debug = DEBUG_DEFAULT_FLAGS;
958 if (*str++ != '=' || !*str)
959 /*
960 * No options specified. Switch on full debugging.
961 */
962 goto out;
963
964 if (*str == ',')
965 /*
966 * No options but restriction on slabs. This means full
967 * debugging for slabs matching a pattern.
968 */
969 goto check_slabs;
970
fa5ec8a1
DR
971 if (tolower(*str) == 'o') {
972 /*
973 * Avoid enabling debugging on caches if its minimum order
974 * would increase as a result.
975 */
976 disable_higher_order_debug = 1;
977 goto out;
978 }
979
f0630fff
CL
980 slub_debug = 0;
981 if (*str == '-')
982 /*
983 * Switch off all debugging measures.
984 */
985 goto out;
986
987 /*
988 * Determine which debug features should be switched on
989 */
06428780 990 for (; *str && *str != ','; str++) {
f0630fff
CL
991 switch (tolower(*str)) {
992 case 'f':
993 slub_debug |= SLAB_DEBUG_FREE;
994 break;
995 case 'z':
996 slub_debug |= SLAB_RED_ZONE;
997 break;
998 case 'p':
999 slub_debug |= SLAB_POISON;
1000 break;
1001 case 'u':
1002 slub_debug |= SLAB_STORE_USER;
1003 break;
1004 case 't':
1005 slub_debug |= SLAB_TRACE;
1006 break;
1007 default:
1008 printk(KERN_ERR "slub_debug option '%c' "
06428780 1009 "unknown. skipped\n", *str);
f0630fff 1010 }
41ecc55b
CL
1011 }
1012
f0630fff 1013check_slabs:
41ecc55b
CL
1014 if (*str == ',')
1015 slub_debug_slabs = str + 1;
f0630fff 1016out:
41ecc55b
CL
1017 return 1;
1018}
1019
1020__setup("slub_debug", setup_slub_debug);
1021
ba0268a8
CL
1022static unsigned long kmem_cache_flags(unsigned long objsize,
1023 unsigned long flags, const char *name,
51cc5068 1024 void (*ctor)(void *))
41ecc55b
CL
1025{
1026 /*
e153362a 1027 * Enable debugging if selected on the kernel commandline.
41ecc55b 1028 */
e153362a 1029 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1030 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1031 flags |= slub_debug;
ba0268a8
CL
1032
1033 return flags;
41ecc55b
CL
1034}
1035#else
3ec09742
CL
1036static inline void setup_object_debug(struct kmem_cache *s,
1037 struct page *page, void *object) {}
41ecc55b 1038
3ec09742 1039static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1040 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1041
3ec09742 1042static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1043 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1044
41ecc55b
CL
1045static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1046 { return 1; }
1047static inline int check_object(struct kmem_cache *s, struct page *page,
1048 void *object, int active) { return 1; }
3ec09742 1049static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1050static inline unsigned long kmem_cache_flags(unsigned long objsize,
1051 unsigned long flags, const char *name,
51cc5068 1052 void (*ctor)(void *))
ba0268a8
CL
1053{
1054 return flags;
1055}
41ecc55b 1056#define slub_debug 0
0f389ec6 1057
fdaa45e9
IM
1058#define disable_higher_order_debug 0
1059
0f389ec6
CL
1060static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1061 { return 0; }
26c02cf0
AB
1062static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1063 { return 0; }
205ab99d
CL
1064static inline void inc_slabs_node(struct kmem_cache *s, int node,
1065 int objects) {}
1066static inline void dec_slabs_node(struct kmem_cache *s, int node,
1067 int objects) {}
41ecc55b 1068#endif
205ab99d 1069
81819f0f
CL
1070/*
1071 * Slab allocation and freeing
1072 */
65c3376a
CL
1073static inline struct page *alloc_slab_page(gfp_t flags, int node,
1074 struct kmem_cache_order_objects oo)
1075{
1076 int order = oo_order(oo);
1077
b1eeab67
VN
1078 flags |= __GFP_NOTRACK;
1079
65c3376a
CL
1080 if (node == -1)
1081 return alloc_pages(flags, order);
1082 else
1083 return alloc_pages_node(node, flags, order);
1084}
1085
81819f0f
CL
1086static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1087{
06428780 1088 struct page *page;
834f3d11 1089 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1090 gfp_t alloc_gfp;
81819f0f 1091
b7a49f0d 1092 flags |= s->allocflags;
e12ba74d 1093
ba52270d
PE
1094 /*
1095 * Let the initial higher-order allocation fail under memory pressure
1096 * so we fall-back to the minimum order allocation.
1097 */
1098 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1099
1100 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1101 if (unlikely(!page)) {
1102 oo = s->min;
1103 /*
1104 * Allocation may have failed due to fragmentation.
1105 * Try a lower order alloc if possible
1106 */
1107 page = alloc_slab_page(flags, node, oo);
1108 if (!page)
1109 return NULL;
81819f0f 1110
9dfc6e68 1111 stat(this_cpu_ptr(s->cpu_slab), ORDER_FALLBACK);
65c3376a 1112 }
5a896d9e
VN
1113
1114 if (kmemcheck_enabled
5086c389 1115 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1116 int pages = 1 << oo_order(oo);
1117
1118 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1119
1120 /*
1121 * Objects from caches that have a constructor don't get
1122 * cleared when they're allocated, so we need to do it here.
1123 */
1124 if (s->ctor)
1125 kmemcheck_mark_uninitialized_pages(page, pages);
1126 else
1127 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1128 }
1129
834f3d11 1130 page->objects = oo_objects(oo);
81819f0f
CL
1131 mod_zone_page_state(page_zone(page),
1132 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1133 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1134 1 << oo_order(oo));
81819f0f
CL
1135
1136 return page;
1137}
1138
1139static void setup_object(struct kmem_cache *s, struct page *page,
1140 void *object)
1141{
3ec09742 1142 setup_object_debug(s, page, object);
4f104934 1143 if (unlikely(s->ctor))
51cc5068 1144 s->ctor(object);
81819f0f
CL
1145}
1146
1147static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1148{
1149 struct page *page;
81819f0f 1150 void *start;
81819f0f
CL
1151 void *last;
1152 void *p;
1153
6cb06229 1154 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1155
6cb06229
CL
1156 page = allocate_slab(s,
1157 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1158 if (!page)
1159 goto out;
1160
205ab99d 1161 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1162 page->slab = s;
1163 page->flags |= 1 << PG_slab;
1164 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1165 SLAB_STORE_USER | SLAB_TRACE))
8a38082d 1166 __SetPageSlubDebug(page);
81819f0f
CL
1167
1168 start = page_address(page);
81819f0f
CL
1169
1170 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1171 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1172
1173 last = start;
224a88be 1174 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1175 setup_object(s, page, last);
1176 set_freepointer(s, last, p);
1177 last = p;
1178 }
1179 setup_object(s, page, last);
a973e9dd 1180 set_freepointer(s, last, NULL);
81819f0f
CL
1181
1182 page->freelist = start;
1183 page->inuse = 0;
1184out:
81819f0f
CL
1185 return page;
1186}
1187
1188static void __free_slab(struct kmem_cache *s, struct page *page)
1189{
834f3d11
CL
1190 int order = compound_order(page);
1191 int pages = 1 << order;
81819f0f 1192
8a38082d 1193 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
81819f0f
CL
1194 void *p;
1195
1196 slab_pad_check(s, page);
224a88be
CL
1197 for_each_object(p, s, page_address(page),
1198 page->objects)
81819f0f 1199 check_object(s, page, p, 0);
8a38082d 1200 __ClearPageSlubDebug(page);
81819f0f
CL
1201 }
1202
b1eeab67 1203 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1204
81819f0f
CL
1205 mod_zone_page_state(page_zone(page),
1206 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1207 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1208 -pages);
81819f0f 1209
49bd5221
CL
1210 __ClearPageSlab(page);
1211 reset_page_mapcount(page);
1eb5ac64
NP
1212 if (current->reclaim_state)
1213 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1214 __free_pages(page, order);
81819f0f
CL
1215}
1216
1217static void rcu_free_slab(struct rcu_head *h)
1218{
1219 struct page *page;
1220
1221 page = container_of((struct list_head *)h, struct page, lru);
1222 __free_slab(page->slab, page);
1223}
1224
1225static void free_slab(struct kmem_cache *s, struct page *page)
1226{
1227 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1228 /*
1229 * RCU free overloads the RCU head over the LRU
1230 */
1231 struct rcu_head *head = (void *)&page->lru;
1232
1233 call_rcu(head, rcu_free_slab);
1234 } else
1235 __free_slab(s, page);
1236}
1237
1238static void discard_slab(struct kmem_cache *s, struct page *page)
1239{
205ab99d 1240 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1241 free_slab(s, page);
1242}
1243
1244/*
1245 * Per slab locking using the pagelock
1246 */
1247static __always_inline void slab_lock(struct page *page)
1248{
1249 bit_spin_lock(PG_locked, &page->flags);
1250}
1251
1252static __always_inline void slab_unlock(struct page *page)
1253{
a76d3546 1254 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1255}
1256
1257static __always_inline int slab_trylock(struct page *page)
1258{
1259 int rc = 1;
1260
1261 rc = bit_spin_trylock(PG_locked, &page->flags);
1262 return rc;
1263}
1264
1265/*
1266 * Management of partially allocated slabs
1267 */
7c2e132c
CL
1268static void add_partial(struct kmem_cache_node *n,
1269 struct page *page, int tail)
81819f0f 1270{
e95eed57
CL
1271 spin_lock(&n->list_lock);
1272 n->nr_partial++;
7c2e132c
CL
1273 if (tail)
1274 list_add_tail(&page->lru, &n->partial);
1275 else
1276 list_add(&page->lru, &n->partial);
81819f0f
CL
1277 spin_unlock(&n->list_lock);
1278}
1279
0121c619 1280static void remove_partial(struct kmem_cache *s, struct page *page)
81819f0f
CL
1281{
1282 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1283
1284 spin_lock(&n->list_lock);
1285 list_del(&page->lru);
1286 n->nr_partial--;
1287 spin_unlock(&n->list_lock);
1288}
1289
1290/*
672bba3a 1291 * Lock slab and remove from the partial list.
81819f0f 1292 *
672bba3a 1293 * Must hold list_lock.
81819f0f 1294 */
0121c619
CL
1295static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1296 struct page *page)
81819f0f
CL
1297{
1298 if (slab_trylock(page)) {
1299 list_del(&page->lru);
1300 n->nr_partial--;
8a38082d 1301 __SetPageSlubFrozen(page);
81819f0f
CL
1302 return 1;
1303 }
1304 return 0;
1305}
1306
1307/*
672bba3a 1308 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1309 */
1310static struct page *get_partial_node(struct kmem_cache_node *n)
1311{
1312 struct page *page;
1313
1314 /*
1315 * Racy check. If we mistakenly see no partial slabs then we
1316 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1317 * partial slab and there is none available then get_partials()
1318 * will return NULL.
81819f0f
CL
1319 */
1320 if (!n || !n->nr_partial)
1321 return NULL;
1322
1323 spin_lock(&n->list_lock);
1324 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1325 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1326 goto out;
1327 page = NULL;
1328out:
1329 spin_unlock(&n->list_lock);
1330 return page;
1331}
1332
1333/*
672bba3a 1334 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1335 */
1336static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1337{
1338#ifdef CONFIG_NUMA
1339 struct zonelist *zonelist;
dd1a239f 1340 struct zoneref *z;
54a6eb5c
MG
1341 struct zone *zone;
1342 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1343 struct page *page;
1344
1345 /*
672bba3a
CL
1346 * The defrag ratio allows a configuration of the tradeoffs between
1347 * inter node defragmentation and node local allocations. A lower
1348 * defrag_ratio increases the tendency to do local allocations
1349 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1350 *
672bba3a
CL
1351 * If the defrag_ratio is set to 0 then kmalloc() always
1352 * returns node local objects. If the ratio is higher then kmalloc()
1353 * may return off node objects because partial slabs are obtained
1354 * from other nodes and filled up.
81819f0f 1355 *
6446faa2 1356 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1357 * defrag_ratio = 1000) then every (well almost) allocation will
1358 * first attempt to defrag slab caches on other nodes. This means
1359 * scanning over all nodes to look for partial slabs which may be
1360 * expensive if we do it every time we are trying to find a slab
1361 * with available objects.
81819f0f 1362 */
9824601e
CL
1363 if (!s->remote_node_defrag_ratio ||
1364 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1365 return NULL;
1366
0e88460d 1367 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1368 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1369 struct kmem_cache_node *n;
1370
54a6eb5c 1371 n = get_node(s, zone_to_nid(zone));
81819f0f 1372
54a6eb5c 1373 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1374 n->nr_partial > s->min_partial) {
81819f0f
CL
1375 page = get_partial_node(n);
1376 if (page)
1377 return page;
1378 }
1379 }
1380#endif
1381 return NULL;
1382}
1383
1384/*
1385 * Get a partial page, lock it and return it.
1386 */
1387static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1388{
1389 struct page *page;
1390 int searchnode = (node == -1) ? numa_node_id() : node;
1391
1392 page = get_partial_node(get_node(s, searchnode));
1393 if (page || (flags & __GFP_THISNODE))
1394 return page;
1395
1396 return get_any_partial(s, flags);
1397}
1398
1399/*
1400 * Move a page back to the lists.
1401 *
1402 * Must be called with the slab lock held.
1403 *
1404 * On exit the slab lock will have been dropped.
1405 */
7c2e132c 1406static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
81819f0f 1407{
e95eed57 1408 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
9dfc6e68 1409 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
e95eed57 1410
8a38082d 1411 __ClearPageSlubFrozen(page);
81819f0f 1412 if (page->inuse) {
e95eed57 1413
a973e9dd 1414 if (page->freelist) {
7c2e132c 1415 add_partial(n, page, tail);
8ff12cfc
CL
1416 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1417 } else {
1418 stat(c, DEACTIVATE_FULL);
8a38082d
AW
1419 if (SLABDEBUG && PageSlubDebug(page) &&
1420 (s->flags & SLAB_STORE_USER))
8ff12cfc
CL
1421 add_full(n, page);
1422 }
81819f0f
CL
1423 slab_unlock(page);
1424 } else {
8ff12cfc 1425 stat(c, DEACTIVATE_EMPTY);
3b89d7d8 1426 if (n->nr_partial < s->min_partial) {
e95eed57 1427 /*
672bba3a
CL
1428 * Adding an empty slab to the partial slabs in order
1429 * to avoid page allocator overhead. This slab needs
1430 * to come after the other slabs with objects in
6446faa2
CL
1431 * so that the others get filled first. That way the
1432 * size of the partial list stays small.
1433 *
0121c619
CL
1434 * kmem_cache_shrink can reclaim any empty slabs from
1435 * the partial list.
e95eed57 1436 */
7c2e132c 1437 add_partial(n, page, 1);
e95eed57
CL
1438 slab_unlock(page);
1439 } else {
1440 slab_unlock(page);
9dfc6e68 1441 stat(__this_cpu_ptr(s->cpu_slab), FREE_SLAB);
e95eed57
CL
1442 discard_slab(s, page);
1443 }
81819f0f
CL
1444 }
1445}
1446
1447/*
1448 * Remove the cpu slab
1449 */
dfb4f096 1450static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1451{
dfb4f096 1452 struct page *page = c->page;
7c2e132c 1453 int tail = 1;
8ff12cfc 1454
b773ad73 1455 if (page->freelist)
8ff12cfc 1456 stat(c, DEACTIVATE_REMOTE_FREES);
894b8788 1457 /*
6446faa2 1458 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1459 * because both freelists are empty. So this is unlikely
1460 * to occur.
1461 */
a973e9dd 1462 while (unlikely(c->freelist)) {
894b8788
CL
1463 void **object;
1464
7c2e132c
CL
1465 tail = 0; /* Hot objects. Put the slab first */
1466
894b8788 1467 /* Retrieve object from cpu_freelist */
dfb4f096 1468 object = c->freelist;
ff12059e 1469 c->freelist = get_freepointer(s, c->freelist);
894b8788
CL
1470
1471 /* And put onto the regular freelist */
ff12059e 1472 set_freepointer(s, object, page->freelist);
894b8788
CL
1473 page->freelist = object;
1474 page->inuse--;
1475 }
dfb4f096 1476 c->page = NULL;
7c2e132c 1477 unfreeze_slab(s, page, tail);
81819f0f
CL
1478}
1479
dfb4f096 1480static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1481{
8ff12cfc 1482 stat(c, CPUSLAB_FLUSH);
dfb4f096
CL
1483 slab_lock(c->page);
1484 deactivate_slab(s, c);
81819f0f
CL
1485}
1486
1487/*
1488 * Flush cpu slab.
6446faa2 1489 *
81819f0f
CL
1490 * Called from IPI handler with interrupts disabled.
1491 */
0c710013 1492static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1493{
9dfc6e68 1494 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 1495
dfb4f096
CL
1496 if (likely(c && c->page))
1497 flush_slab(s, c);
81819f0f
CL
1498}
1499
1500static void flush_cpu_slab(void *d)
1501{
1502 struct kmem_cache *s = d;
81819f0f 1503
dfb4f096 1504 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1505}
1506
1507static void flush_all(struct kmem_cache *s)
1508{
15c8b6c1 1509 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
1510}
1511
dfb4f096
CL
1512/*
1513 * Check if the objects in a per cpu structure fit numa
1514 * locality expectations.
1515 */
1516static inline int node_match(struct kmem_cache_cpu *c, int node)
1517{
1518#ifdef CONFIG_NUMA
1519 if (node != -1 && c->node != node)
1520 return 0;
1521#endif
1522 return 1;
1523}
1524
781b2ba6
PE
1525static int count_free(struct page *page)
1526{
1527 return page->objects - page->inuse;
1528}
1529
1530static unsigned long count_partial(struct kmem_cache_node *n,
1531 int (*get_count)(struct page *))
1532{
1533 unsigned long flags;
1534 unsigned long x = 0;
1535 struct page *page;
1536
1537 spin_lock_irqsave(&n->list_lock, flags);
1538 list_for_each_entry(page, &n->partial, lru)
1539 x += get_count(page);
1540 spin_unlock_irqrestore(&n->list_lock, flags);
1541 return x;
1542}
1543
26c02cf0
AB
1544static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1545{
1546#ifdef CONFIG_SLUB_DEBUG
1547 return atomic_long_read(&n->total_objects);
1548#else
1549 return 0;
1550#endif
1551}
1552
781b2ba6
PE
1553static noinline void
1554slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1555{
1556 int node;
1557
1558 printk(KERN_WARNING
1559 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1560 nid, gfpflags);
1561 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1562 "default order: %d, min order: %d\n", s->name, s->objsize,
1563 s->size, oo_order(s->oo), oo_order(s->min));
1564
fa5ec8a1
DR
1565 if (oo_order(s->min) > get_order(s->objsize))
1566 printk(KERN_WARNING " %s debugging increased min order, use "
1567 "slub_debug=O to disable.\n", s->name);
1568
781b2ba6
PE
1569 for_each_online_node(node) {
1570 struct kmem_cache_node *n = get_node(s, node);
1571 unsigned long nr_slabs;
1572 unsigned long nr_objs;
1573 unsigned long nr_free;
1574
1575 if (!n)
1576 continue;
1577
26c02cf0
AB
1578 nr_free = count_partial(n, count_free);
1579 nr_slabs = node_nr_slabs(n);
1580 nr_objs = node_nr_objs(n);
781b2ba6
PE
1581
1582 printk(KERN_WARNING
1583 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1584 node, nr_slabs, nr_objs, nr_free);
1585 }
1586}
1587
81819f0f 1588/*
894b8788
CL
1589 * Slow path. The lockless freelist is empty or we need to perform
1590 * debugging duties.
1591 *
1592 * Interrupts are disabled.
81819f0f 1593 *
894b8788
CL
1594 * Processing is still very fast if new objects have been freed to the
1595 * regular freelist. In that case we simply take over the regular freelist
1596 * as the lockless freelist and zap the regular freelist.
81819f0f 1597 *
894b8788
CL
1598 * If that is not working then we fall back to the partial lists. We take the
1599 * first element of the freelist as the object to allocate now and move the
1600 * rest of the freelist to the lockless freelist.
81819f0f 1601 *
894b8788 1602 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1603 * we need to allocate a new slab. This is the slowest path since it involves
1604 * a call to the page allocator and the setup of a new slab.
81819f0f 1605 */
ce71e27c
EGM
1606static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1607 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 1608{
81819f0f 1609 void **object;
dfb4f096 1610 struct page *new;
81819f0f 1611
e72e9c23
LT
1612 /* We handle __GFP_ZERO in the caller */
1613 gfpflags &= ~__GFP_ZERO;
1614
dfb4f096 1615 if (!c->page)
81819f0f
CL
1616 goto new_slab;
1617
dfb4f096
CL
1618 slab_lock(c->page);
1619 if (unlikely(!node_match(c, node)))
81819f0f 1620 goto another_slab;
6446faa2 1621
8ff12cfc 1622 stat(c, ALLOC_REFILL);
6446faa2 1623
894b8788 1624load_freelist:
dfb4f096 1625 object = c->page->freelist;
a973e9dd 1626 if (unlikely(!object))
81819f0f 1627 goto another_slab;
8a38082d 1628 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
81819f0f
CL
1629 goto debug;
1630
ff12059e 1631 c->freelist = get_freepointer(s, object);
39b26464 1632 c->page->inuse = c->page->objects;
a973e9dd 1633 c->page->freelist = NULL;
dfb4f096 1634 c->node = page_to_nid(c->page);
1f84260c 1635unlock_out:
dfb4f096 1636 slab_unlock(c->page);
8ff12cfc 1637 stat(c, ALLOC_SLOWPATH);
81819f0f
CL
1638 return object;
1639
1640another_slab:
dfb4f096 1641 deactivate_slab(s, c);
81819f0f
CL
1642
1643new_slab:
dfb4f096
CL
1644 new = get_partial(s, gfpflags, node);
1645 if (new) {
1646 c->page = new;
8ff12cfc 1647 stat(c, ALLOC_FROM_PARTIAL);
894b8788 1648 goto load_freelist;
81819f0f
CL
1649 }
1650
b811c202
CL
1651 if (gfpflags & __GFP_WAIT)
1652 local_irq_enable();
1653
dfb4f096 1654 new = new_slab(s, gfpflags, node);
b811c202
CL
1655
1656 if (gfpflags & __GFP_WAIT)
1657 local_irq_disable();
1658
dfb4f096 1659 if (new) {
9dfc6e68 1660 c = __this_cpu_ptr(s->cpu_slab);
8ff12cfc 1661 stat(c, ALLOC_SLAB);
05aa3450 1662 if (c->page)
dfb4f096 1663 flush_slab(s, c);
dfb4f096 1664 slab_lock(new);
8a38082d 1665 __SetPageSlubFrozen(new);
dfb4f096 1666 c->page = new;
4b6f0750 1667 goto load_freelist;
81819f0f 1668 }
95f85989
PE
1669 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1670 slab_out_of_memory(s, gfpflags, node);
71c7a06f 1671 return NULL;
81819f0f 1672debug:
dfb4f096 1673 if (!alloc_debug_processing(s, c->page, object, addr))
81819f0f 1674 goto another_slab;
894b8788 1675
dfb4f096 1676 c->page->inuse++;
ff12059e 1677 c->page->freelist = get_freepointer(s, object);
ee3c72a1 1678 c->node = -1;
1f84260c 1679 goto unlock_out;
894b8788
CL
1680}
1681
1682/*
1683 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1684 * have the fastpath folded into their functions. So no function call
1685 * overhead for requests that can be satisfied on the fastpath.
1686 *
1687 * The fastpath works by first checking if the lockless freelist can be used.
1688 * If not then __slab_alloc is called for slow processing.
1689 *
1690 * Otherwise we can simply pick the next object from the lockless free list.
1691 */
06428780 1692static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 1693 gfp_t gfpflags, int node, unsigned long addr)
894b8788 1694{
894b8788 1695 void **object;
dfb4f096 1696 struct kmem_cache_cpu *c;
1f84260c
CL
1697 unsigned long flags;
1698
dcce284a 1699 gfpflags &= gfp_allowed_mask;
7e85ee0c 1700
cf40bd16 1701 lockdep_trace_alloc(gfpflags);
89124d70 1702 might_sleep_if(gfpflags & __GFP_WAIT);
3c506efd 1703
773ff60e
AM
1704 if (should_failslab(s->objsize, gfpflags))
1705 return NULL;
1f84260c 1706
894b8788 1707 local_irq_save(flags);
9dfc6e68
CL
1708 c = __this_cpu_ptr(s->cpu_slab);
1709 object = c->freelist;
9dfc6e68 1710 if (unlikely(!object || !node_match(c, node)))
894b8788 1711
dfb4f096 1712 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1713
1714 else {
ff12059e 1715 c->freelist = get_freepointer(s, object);
8ff12cfc 1716 stat(c, ALLOC_FASTPATH);
894b8788
CL
1717 }
1718 local_irq_restore(flags);
d07dbea4 1719
74e2134f 1720 if (unlikely(gfpflags & __GFP_ZERO) && object)
ff12059e 1721 memset(object, 0, s->objsize);
d07dbea4 1722
ff12059e
CL
1723 kmemcheck_slab_alloc(s, gfpflags, object, s->objsize);
1724 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, gfpflags);
5a896d9e 1725
894b8788 1726 return object;
81819f0f
CL
1727}
1728
1729void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1730{
5b882be4
EGM
1731 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1732
ca2b84cb 1733 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
1734
1735 return ret;
81819f0f
CL
1736}
1737EXPORT_SYMBOL(kmem_cache_alloc);
1738
0f24f128 1739#ifdef CONFIG_TRACING
5b882be4
EGM
1740void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1741{
1742 return slab_alloc(s, gfpflags, -1, _RET_IP_);
1743}
1744EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1745#endif
1746
81819f0f
CL
1747#ifdef CONFIG_NUMA
1748void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1749{
5b882be4
EGM
1750 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1751
ca2b84cb
EGM
1752 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1753 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
1754
1755 return ret;
81819f0f
CL
1756}
1757EXPORT_SYMBOL(kmem_cache_alloc_node);
1758#endif
1759
0f24f128 1760#ifdef CONFIG_TRACING
5b882be4
EGM
1761void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1762 gfp_t gfpflags,
1763 int node)
1764{
1765 return slab_alloc(s, gfpflags, node, _RET_IP_);
1766}
1767EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1768#endif
1769
81819f0f 1770/*
894b8788
CL
1771 * Slow patch handling. This may still be called frequently since objects
1772 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1773 *
894b8788
CL
1774 * So we still attempt to reduce cache line usage. Just take the slab
1775 * lock and free the item. If there is no additional partial page
1776 * handling required then we can return immediately.
81819f0f 1777 */
894b8788 1778static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 1779 void *x, unsigned long addr)
81819f0f
CL
1780{
1781 void *prior;
1782 void **object = (void *)x;
8ff12cfc 1783 struct kmem_cache_cpu *c;
81819f0f 1784
9dfc6e68 1785 c = __this_cpu_ptr(s->cpu_slab);
8ff12cfc 1786 stat(c, FREE_SLOWPATH);
81819f0f
CL
1787 slab_lock(page);
1788
8a38082d 1789 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
81819f0f 1790 goto debug;
6446faa2 1791
81819f0f 1792checks_ok:
ff12059e
CL
1793 prior = page->freelist;
1794 set_freepointer(s, object, prior);
81819f0f
CL
1795 page->freelist = object;
1796 page->inuse--;
1797
8a38082d 1798 if (unlikely(PageSlubFrozen(page))) {
8ff12cfc 1799 stat(c, FREE_FROZEN);
81819f0f 1800 goto out_unlock;
8ff12cfc 1801 }
81819f0f
CL
1802
1803 if (unlikely(!page->inuse))
1804 goto slab_empty;
1805
1806 /*
6446faa2 1807 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
1808 * then add it.
1809 */
a973e9dd 1810 if (unlikely(!prior)) {
7c2e132c 1811 add_partial(get_node(s, page_to_nid(page)), page, 1);
8ff12cfc
CL
1812 stat(c, FREE_ADD_PARTIAL);
1813 }
81819f0f
CL
1814
1815out_unlock:
1816 slab_unlock(page);
81819f0f
CL
1817 return;
1818
1819slab_empty:
a973e9dd 1820 if (prior) {
81819f0f 1821 /*
672bba3a 1822 * Slab still on the partial list.
81819f0f
CL
1823 */
1824 remove_partial(s, page);
8ff12cfc
CL
1825 stat(c, FREE_REMOVE_PARTIAL);
1826 }
81819f0f 1827 slab_unlock(page);
8ff12cfc 1828 stat(c, FREE_SLAB);
81819f0f 1829 discard_slab(s, page);
81819f0f
CL
1830 return;
1831
1832debug:
3ec09742 1833 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 1834 goto out_unlock;
77c5e2d0 1835 goto checks_ok;
81819f0f
CL
1836}
1837
894b8788
CL
1838/*
1839 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1840 * can perform fastpath freeing without additional function calls.
1841 *
1842 * The fastpath is only possible if we are freeing to the current cpu slab
1843 * of this processor. This typically the case if we have just allocated
1844 * the item before.
1845 *
1846 * If fastpath is not possible then fall back to __slab_free where we deal
1847 * with all sorts of special processing.
1848 */
06428780 1849static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 1850 struct page *page, void *x, unsigned long addr)
894b8788
CL
1851{
1852 void **object = (void *)x;
dfb4f096 1853 struct kmem_cache_cpu *c;
1f84260c
CL
1854 unsigned long flags;
1855
06f22f13 1856 kmemleak_free_recursive(x, s->flags);
894b8788 1857 local_irq_save(flags);
9dfc6e68 1858 c = __this_cpu_ptr(s->cpu_slab);
ff12059e
CL
1859 kmemcheck_slab_free(s, object, s->objsize);
1860 debug_check_no_locks_freed(object, s->objsize);
3ac7fe5a 1861 if (!(s->flags & SLAB_DEBUG_OBJECTS))
ff12059e 1862 debug_check_no_obj_freed(object, s->objsize);
ee3c72a1 1863 if (likely(page == c->page && c->node >= 0)) {
ff12059e 1864 set_freepointer(s, object, c->freelist);
dfb4f096 1865 c->freelist = object;
8ff12cfc 1866 stat(c, FREE_FASTPATH);
894b8788 1867 } else
ff12059e 1868 __slab_free(s, page, x, addr);
894b8788
CL
1869
1870 local_irq_restore(flags);
1871}
1872
81819f0f
CL
1873void kmem_cache_free(struct kmem_cache *s, void *x)
1874{
77c5e2d0 1875 struct page *page;
81819f0f 1876
b49af68f 1877 page = virt_to_head_page(x);
81819f0f 1878
ce71e27c 1879 slab_free(s, page, x, _RET_IP_);
5b882be4 1880
ca2b84cb 1881 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
1882}
1883EXPORT_SYMBOL(kmem_cache_free);
1884
e9beef18 1885/* Figure out on which slab page the object resides */
81819f0f
CL
1886static struct page *get_object_page(const void *x)
1887{
b49af68f 1888 struct page *page = virt_to_head_page(x);
81819f0f
CL
1889
1890 if (!PageSlab(page))
1891 return NULL;
1892
1893 return page;
1894}
1895
1896/*
672bba3a
CL
1897 * Object placement in a slab is made very easy because we always start at
1898 * offset 0. If we tune the size of the object to the alignment then we can
1899 * get the required alignment by putting one properly sized object after
1900 * another.
81819f0f
CL
1901 *
1902 * Notice that the allocation order determines the sizes of the per cpu
1903 * caches. Each processor has always one slab available for allocations.
1904 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1905 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1906 * locking overhead.
81819f0f
CL
1907 */
1908
1909/*
1910 * Mininum / Maximum order of slab pages. This influences locking overhead
1911 * and slab fragmentation. A higher order reduces the number of partial slabs
1912 * and increases the number of allocations possible without having to
1913 * take the list_lock.
1914 */
1915static int slub_min_order;
114e9e89 1916static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 1917static int slub_min_objects;
81819f0f
CL
1918
1919/*
1920 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1921 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1922 */
1923static int slub_nomerge;
1924
81819f0f
CL
1925/*
1926 * Calculate the order of allocation given an slab object size.
1927 *
672bba3a
CL
1928 * The order of allocation has significant impact on performance and other
1929 * system components. Generally order 0 allocations should be preferred since
1930 * order 0 does not cause fragmentation in the page allocator. Larger objects
1931 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 1932 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
1933 * would be wasted.
1934 *
1935 * In order to reach satisfactory performance we must ensure that a minimum
1936 * number of objects is in one slab. Otherwise we may generate too much
1937 * activity on the partial lists which requires taking the list_lock. This is
1938 * less a concern for large slabs though which are rarely used.
81819f0f 1939 *
672bba3a
CL
1940 * slub_max_order specifies the order where we begin to stop considering the
1941 * number of objects in a slab as critical. If we reach slub_max_order then
1942 * we try to keep the page order as low as possible. So we accept more waste
1943 * of space in favor of a small page order.
81819f0f 1944 *
672bba3a
CL
1945 * Higher order allocations also allow the placement of more objects in a
1946 * slab and thereby reduce object handling overhead. If the user has
1947 * requested a higher mininum order then we start with that one instead of
1948 * the smallest order which will fit the object.
81819f0f 1949 */
5e6d444e
CL
1950static inline int slab_order(int size, int min_objects,
1951 int max_order, int fract_leftover)
81819f0f
CL
1952{
1953 int order;
1954 int rem;
6300ea75 1955 int min_order = slub_min_order;
81819f0f 1956
210b5c06
CG
1957 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1958 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 1959
6300ea75 1960 for (order = max(min_order,
5e6d444e
CL
1961 fls(min_objects * size - 1) - PAGE_SHIFT);
1962 order <= max_order; order++) {
81819f0f 1963
5e6d444e 1964 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 1965
5e6d444e 1966 if (slab_size < min_objects * size)
81819f0f
CL
1967 continue;
1968
1969 rem = slab_size % size;
1970
5e6d444e 1971 if (rem <= slab_size / fract_leftover)
81819f0f
CL
1972 break;
1973
1974 }
672bba3a 1975
81819f0f
CL
1976 return order;
1977}
1978
5e6d444e
CL
1979static inline int calculate_order(int size)
1980{
1981 int order;
1982 int min_objects;
1983 int fraction;
e8120ff1 1984 int max_objects;
5e6d444e
CL
1985
1986 /*
1987 * Attempt to find best configuration for a slab. This
1988 * works by first attempting to generate a layout with
1989 * the best configuration and backing off gradually.
1990 *
1991 * First we reduce the acceptable waste in a slab. Then
1992 * we reduce the minimum objects required in a slab.
1993 */
1994 min_objects = slub_min_objects;
9b2cd506
CL
1995 if (!min_objects)
1996 min_objects = 4 * (fls(nr_cpu_ids) + 1);
e8120ff1
ZY
1997 max_objects = (PAGE_SIZE << slub_max_order)/size;
1998 min_objects = min(min_objects, max_objects);
1999
5e6d444e 2000 while (min_objects > 1) {
c124f5b5 2001 fraction = 16;
5e6d444e
CL
2002 while (fraction >= 4) {
2003 order = slab_order(size, min_objects,
2004 slub_max_order, fraction);
2005 if (order <= slub_max_order)
2006 return order;
2007 fraction /= 2;
2008 }
5086c389 2009 min_objects--;
5e6d444e
CL
2010 }
2011
2012 /*
2013 * We were unable to place multiple objects in a slab. Now
2014 * lets see if we can place a single object there.
2015 */
2016 order = slab_order(size, 1, slub_max_order, 1);
2017 if (order <= slub_max_order)
2018 return order;
2019
2020 /*
2021 * Doh this slab cannot be placed using slub_max_order.
2022 */
2023 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 2024 if (order < MAX_ORDER)
5e6d444e
CL
2025 return order;
2026 return -ENOSYS;
2027}
2028
81819f0f 2029/*
672bba3a 2030 * Figure out what the alignment of the objects will be.
81819f0f
CL
2031 */
2032static unsigned long calculate_alignment(unsigned long flags,
2033 unsigned long align, unsigned long size)
2034{
2035 /*
6446faa2
CL
2036 * If the user wants hardware cache aligned objects then follow that
2037 * suggestion if the object is sufficiently large.
81819f0f 2038 *
6446faa2
CL
2039 * The hardware cache alignment cannot override the specified
2040 * alignment though. If that is greater then use it.
81819f0f 2041 */
b6210386
NP
2042 if (flags & SLAB_HWCACHE_ALIGN) {
2043 unsigned long ralign = cache_line_size();
2044 while (size <= ralign / 2)
2045 ralign /= 2;
2046 align = max(align, ralign);
2047 }
81819f0f
CL
2048
2049 if (align < ARCH_SLAB_MINALIGN)
b6210386 2050 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2051
2052 return ALIGN(align, sizeof(void *));
2053}
2054
5595cffc
PE
2055static void
2056init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2057{
2058 n->nr_partial = 0;
81819f0f
CL
2059 spin_lock_init(&n->list_lock);
2060 INIT_LIST_HEAD(&n->partial);
8ab1372f 2061#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2062 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2063 atomic_long_set(&n->total_objects, 0);
643b1138 2064 INIT_LIST_HEAD(&n->full);
8ab1372f 2065#endif
81819f0f
CL
2066}
2067
9dfc6e68 2068static DEFINE_PER_CPU(struct kmem_cache_cpu, kmalloc_percpu[SLUB_PAGE_SHIFT]);
4c93c355 2069
9dfc6e68 2070static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
4c93c355 2071{
756dee75 2072 if (s < kmalloc_caches + KMALLOC_CACHES && s >= kmalloc_caches)
9dfc6e68
CL
2073 /*
2074 * Boot time creation of the kmalloc array. Use static per cpu data
2075 * since the per cpu allocator is not available yet.
2076 */
2077 s->cpu_slab = per_cpu_var(kmalloc_percpu) + (s - kmalloc_caches);
2078 else
2079 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
4c93c355 2080
9dfc6e68
CL
2081 if (!s->cpu_slab)
2082 return 0;
4c93c355 2083
4c93c355
CL
2084 return 1;
2085}
4c93c355 2086
81819f0f
CL
2087#ifdef CONFIG_NUMA
2088/*
2089 * No kmalloc_node yet so do it by hand. We know that this is the first
2090 * slab on the node for this slabcache. There are no concurrent accesses
2091 * possible.
2092 *
2093 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2094 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2095 * memory on a fresh node that has no slab structures yet.
81819f0f 2096 */
0094de92 2097static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
81819f0f
CL
2098{
2099 struct page *page;
2100 struct kmem_cache_node *n;
ba84c73c 2101 unsigned long flags;
81819f0f
CL
2102
2103 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2104
a2f92ee7 2105 page = new_slab(kmalloc_caches, gfpflags, node);
81819f0f
CL
2106
2107 BUG_ON(!page);
a2f92ee7
CL
2108 if (page_to_nid(page) != node) {
2109 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2110 "node %d\n", node);
2111 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2112 "in order to be able to continue\n");
2113 }
2114
81819f0f
CL
2115 n = page->freelist;
2116 BUG_ON(!n);
2117 page->freelist = get_freepointer(kmalloc_caches, n);
2118 page->inuse++;
2119 kmalloc_caches->node[node] = n;
8ab1372f 2120#ifdef CONFIG_SLUB_DEBUG
d45f39cb
CL
2121 init_object(kmalloc_caches, n, 1);
2122 init_tracking(kmalloc_caches, n);
8ab1372f 2123#endif
5595cffc 2124 init_kmem_cache_node(n, kmalloc_caches);
205ab99d 2125 inc_slabs_node(kmalloc_caches, node, page->objects);
6446faa2 2126
ba84c73c 2127 /*
2128 * lockdep requires consistent irq usage for each lock
2129 * so even though there cannot be a race this early in
2130 * the boot sequence, we still disable irqs.
2131 */
2132 local_irq_save(flags);
7c2e132c 2133 add_partial(n, page, 0);
ba84c73c 2134 local_irq_restore(flags);
81819f0f
CL
2135}
2136
2137static void free_kmem_cache_nodes(struct kmem_cache *s)
2138{
2139 int node;
2140
f64dc58c 2141 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2142 struct kmem_cache_node *n = s->node[node];
2143 if (n && n != &s->local_node)
2144 kmem_cache_free(kmalloc_caches, n);
2145 s->node[node] = NULL;
2146 }
2147}
2148
2149static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2150{
2151 int node;
2152 int local_node;
2153
2154 if (slab_state >= UP)
2155 local_node = page_to_nid(virt_to_page(s));
2156 else
2157 local_node = 0;
2158
f64dc58c 2159 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2160 struct kmem_cache_node *n;
2161
2162 if (local_node == node)
2163 n = &s->local_node;
2164 else {
2165 if (slab_state == DOWN) {
0094de92 2166 early_kmem_cache_node_alloc(gfpflags, node);
81819f0f
CL
2167 continue;
2168 }
2169 n = kmem_cache_alloc_node(kmalloc_caches,
2170 gfpflags, node);
2171
2172 if (!n) {
2173 free_kmem_cache_nodes(s);
2174 return 0;
2175 }
2176
2177 }
2178 s->node[node] = n;
5595cffc 2179 init_kmem_cache_node(n, s);
81819f0f
CL
2180 }
2181 return 1;
2182}
2183#else
2184static void free_kmem_cache_nodes(struct kmem_cache *s)
2185{
2186}
2187
2188static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2189{
5595cffc 2190 init_kmem_cache_node(&s->local_node, s);
81819f0f
CL
2191 return 1;
2192}
2193#endif
2194
c0bdb232 2195static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2196{
2197 if (min < MIN_PARTIAL)
2198 min = MIN_PARTIAL;
2199 else if (min > MAX_PARTIAL)
2200 min = MAX_PARTIAL;
2201 s->min_partial = min;
2202}
2203
81819f0f
CL
2204/*
2205 * calculate_sizes() determines the order and the distribution of data within
2206 * a slab object.
2207 */
06b285dc 2208static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2209{
2210 unsigned long flags = s->flags;
2211 unsigned long size = s->objsize;
2212 unsigned long align = s->align;
834f3d11 2213 int order;
81819f0f 2214
d8b42bf5
CL
2215 /*
2216 * Round up object size to the next word boundary. We can only
2217 * place the free pointer at word boundaries and this determines
2218 * the possible location of the free pointer.
2219 */
2220 size = ALIGN(size, sizeof(void *));
2221
2222#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2223 /*
2224 * Determine if we can poison the object itself. If the user of
2225 * the slab may touch the object after free or before allocation
2226 * then we should never poison the object itself.
2227 */
2228 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2229 !s->ctor)
81819f0f
CL
2230 s->flags |= __OBJECT_POISON;
2231 else
2232 s->flags &= ~__OBJECT_POISON;
2233
81819f0f
CL
2234
2235 /*
672bba3a 2236 * If we are Redzoning then check if there is some space between the
81819f0f 2237 * end of the object and the free pointer. If not then add an
672bba3a 2238 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2239 */
2240 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2241 size += sizeof(void *);
41ecc55b 2242#endif
81819f0f
CL
2243
2244 /*
672bba3a
CL
2245 * With that we have determined the number of bytes in actual use
2246 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2247 */
2248 s->inuse = size;
2249
2250 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2251 s->ctor)) {
81819f0f
CL
2252 /*
2253 * Relocate free pointer after the object if it is not
2254 * permitted to overwrite the first word of the object on
2255 * kmem_cache_free.
2256 *
2257 * This is the case if we do RCU, have a constructor or
2258 * destructor or are poisoning the objects.
2259 */
2260 s->offset = size;
2261 size += sizeof(void *);
2262 }
2263
c12b3c62 2264#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2265 if (flags & SLAB_STORE_USER)
2266 /*
2267 * Need to store information about allocs and frees after
2268 * the object.
2269 */
2270 size += 2 * sizeof(struct track);
2271
be7b3fbc 2272 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2273 /*
2274 * Add some empty padding so that we can catch
2275 * overwrites from earlier objects rather than let
2276 * tracking information or the free pointer be
0211a9c8 2277 * corrupted if a user writes before the start
81819f0f
CL
2278 * of the object.
2279 */
2280 size += sizeof(void *);
41ecc55b 2281#endif
672bba3a 2282
81819f0f
CL
2283 /*
2284 * Determine the alignment based on various parameters that the
65c02d4c
CL
2285 * user specified and the dynamic determination of cache line size
2286 * on bootup.
81819f0f
CL
2287 */
2288 align = calculate_alignment(flags, align, s->objsize);
dcb0ce1b 2289 s->align = align;
81819f0f
CL
2290
2291 /*
2292 * SLUB stores one object immediately after another beginning from
2293 * offset 0. In order to align the objects we have to simply size
2294 * each object to conform to the alignment.
2295 */
2296 size = ALIGN(size, align);
2297 s->size = size;
06b285dc
CL
2298 if (forced_order >= 0)
2299 order = forced_order;
2300 else
2301 order = calculate_order(size);
81819f0f 2302
834f3d11 2303 if (order < 0)
81819f0f
CL
2304 return 0;
2305
b7a49f0d 2306 s->allocflags = 0;
834f3d11 2307 if (order)
b7a49f0d
CL
2308 s->allocflags |= __GFP_COMP;
2309
2310 if (s->flags & SLAB_CACHE_DMA)
2311 s->allocflags |= SLUB_DMA;
2312
2313 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2314 s->allocflags |= __GFP_RECLAIMABLE;
2315
81819f0f
CL
2316 /*
2317 * Determine the number of objects per slab
2318 */
834f3d11 2319 s->oo = oo_make(order, size);
65c3376a 2320 s->min = oo_make(get_order(size), size);
205ab99d
CL
2321 if (oo_objects(s->oo) > oo_objects(s->max))
2322 s->max = s->oo;
81819f0f 2323
834f3d11 2324 return !!oo_objects(s->oo);
81819f0f
CL
2325
2326}
2327
81819f0f
CL
2328static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2329 const char *name, size_t size,
2330 size_t align, unsigned long flags,
51cc5068 2331 void (*ctor)(void *))
81819f0f
CL
2332{
2333 memset(s, 0, kmem_size);
2334 s->name = name;
2335 s->ctor = ctor;
81819f0f 2336 s->objsize = size;
81819f0f 2337 s->align = align;
ba0268a8 2338 s->flags = kmem_cache_flags(size, flags, name, ctor);
81819f0f 2339
06b285dc 2340 if (!calculate_sizes(s, -1))
81819f0f 2341 goto error;
3de47213
DR
2342 if (disable_higher_order_debug) {
2343 /*
2344 * Disable debugging flags that store metadata if the min slab
2345 * order increased.
2346 */
2347 if (get_order(s->size) > get_order(s->objsize)) {
2348 s->flags &= ~DEBUG_METADATA_FLAGS;
2349 s->offset = 0;
2350 if (!calculate_sizes(s, -1))
2351 goto error;
2352 }
2353 }
81819f0f 2354
3b89d7d8
DR
2355 /*
2356 * The larger the object size is, the more pages we want on the partial
2357 * list to avoid pounding the page allocator excessively.
2358 */
c0bdb232 2359 set_min_partial(s, ilog2(s->size));
81819f0f
CL
2360 s->refcount = 1;
2361#ifdef CONFIG_NUMA
e2cb96b7 2362 s->remote_node_defrag_ratio = 1000;
81819f0f 2363#endif
dfb4f096
CL
2364 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2365 goto error;
81819f0f 2366
dfb4f096 2367 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
81819f0f 2368 return 1;
ff12059e 2369
4c93c355 2370 free_kmem_cache_nodes(s);
81819f0f
CL
2371error:
2372 if (flags & SLAB_PANIC)
2373 panic("Cannot create slab %s size=%lu realsize=%u "
2374 "order=%u offset=%u flags=%lx\n",
834f3d11 2375 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2376 s->offset, flags);
2377 return 0;
2378}
81819f0f
CL
2379
2380/*
2381 * Check if a given pointer is valid
2382 */
2383int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2384{
06428780 2385 struct page *page;
81819f0f
CL
2386
2387 page = get_object_page(object);
2388
2389 if (!page || s != page->slab)
2390 /* No slab or wrong slab */
2391 return 0;
2392
abcd08a6 2393 if (!check_valid_pointer(s, page, object))
81819f0f
CL
2394 return 0;
2395
2396 /*
2397 * We could also check if the object is on the slabs freelist.
2398 * But this would be too expensive and it seems that the main
6446faa2 2399 * purpose of kmem_ptr_valid() is to check if the object belongs
81819f0f
CL
2400 * to a certain slab.
2401 */
2402 return 1;
2403}
2404EXPORT_SYMBOL(kmem_ptr_validate);
2405
2406/*
2407 * Determine the size of a slab object
2408 */
2409unsigned int kmem_cache_size(struct kmem_cache *s)
2410{
2411 return s->objsize;
2412}
2413EXPORT_SYMBOL(kmem_cache_size);
2414
2415const char *kmem_cache_name(struct kmem_cache *s)
2416{
2417 return s->name;
2418}
2419EXPORT_SYMBOL(kmem_cache_name);
2420
33b12c38
CL
2421static void list_slab_objects(struct kmem_cache *s, struct page *page,
2422 const char *text)
2423{
2424#ifdef CONFIG_SLUB_DEBUG
2425 void *addr = page_address(page);
2426 void *p;
2427 DECLARE_BITMAP(map, page->objects);
2428
2429 bitmap_zero(map, page->objects);
2430 slab_err(s, page, "%s", text);
2431 slab_lock(page);
2432 for_each_free_object(p, s, page->freelist)
2433 set_bit(slab_index(p, s, addr), map);
2434
2435 for_each_object(p, s, addr, page->objects) {
2436
2437 if (!test_bit(slab_index(p, s, addr), map)) {
2438 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2439 p, p - addr);
2440 print_tracking(s, p);
2441 }
2442 }
2443 slab_unlock(page);
2444#endif
2445}
2446
81819f0f 2447/*
599870b1 2448 * Attempt to free all partial slabs on a node.
81819f0f 2449 */
599870b1 2450static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2451{
81819f0f
CL
2452 unsigned long flags;
2453 struct page *page, *h;
2454
2455 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2456 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f
CL
2457 if (!page->inuse) {
2458 list_del(&page->lru);
2459 discard_slab(s, page);
599870b1 2460 n->nr_partial--;
33b12c38
CL
2461 } else {
2462 list_slab_objects(s, page,
2463 "Objects remaining on kmem_cache_close()");
599870b1 2464 }
33b12c38 2465 }
81819f0f 2466 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2467}
2468
2469/*
672bba3a 2470 * Release all resources used by a slab cache.
81819f0f 2471 */
0c710013 2472static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2473{
2474 int node;
2475
2476 flush_all(s);
9dfc6e68 2477 free_percpu(s->cpu_slab);
81819f0f 2478 /* Attempt to free all objects */
f64dc58c 2479 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2480 struct kmem_cache_node *n = get_node(s, node);
2481
599870b1
CL
2482 free_partial(s, n);
2483 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2484 return 1;
2485 }
2486 free_kmem_cache_nodes(s);
2487 return 0;
2488}
2489
2490/*
2491 * Close a cache and release the kmem_cache structure
2492 * (must be used for caches created using kmem_cache_create)
2493 */
2494void kmem_cache_destroy(struct kmem_cache *s)
2495{
2496 down_write(&slub_lock);
2497 s->refcount--;
2498 if (!s->refcount) {
2499 list_del(&s->list);
a0e1d1be 2500 up_write(&slub_lock);
d629d819
PE
2501 if (kmem_cache_close(s)) {
2502 printk(KERN_ERR "SLUB %s: %s called for cache that "
2503 "still has objects.\n", s->name, __func__);
2504 dump_stack();
2505 }
d76b1590
ED
2506 if (s->flags & SLAB_DESTROY_BY_RCU)
2507 rcu_barrier();
81819f0f 2508 sysfs_slab_remove(s);
a0e1d1be
CL
2509 } else
2510 up_write(&slub_lock);
81819f0f
CL
2511}
2512EXPORT_SYMBOL(kmem_cache_destroy);
2513
2514/********************************************************************
2515 * Kmalloc subsystem
2516 *******************************************************************/
2517
756dee75 2518struct kmem_cache kmalloc_caches[KMALLOC_CACHES] __cacheline_aligned;
81819f0f
CL
2519EXPORT_SYMBOL(kmalloc_caches);
2520
81819f0f
CL
2521static int __init setup_slub_min_order(char *str)
2522{
06428780 2523 get_option(&str, &slub_min_order);
81819f0f
CL
2524
2525 return 1;
2526}
2527
2528__setup("slub_min_order=", setup_slub_min_order);
2529
2530static int __init setup_slub_max_order(char *str)
2531{
06428780 2532 get_option(&str, &slub_max_order);
818cf590 2533 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
2534
2535 return 1;
2536}
2537
2538__setup("slub_max_order=", setup_slub_max_order);
2539
2540static int __init setup_slub_min_objects(char *str)
2541{
06428780 2542 get_option(&str, &slub_min_objects);
81819f0f
CL
2543
2544 return 1;
2545}
2546
2547__setup("slub_min_objects=", setup_slub_min_objects);
2548
2549static int __init setup_slub_nomerge(char *str)
2550{
2551 slub_nomerge = 1;
2552 return 1;
2553}
2554
2555__setup("slub_nomerge", setup_slub_nomerge);
2556
81819f0f
CL
2557static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2558 const char *name, int size, gfp_t gfp_flags)
2559{
2560 unsigned int flags = 0;
2561
2562 if (gfp_flags & SLUB_DMA)
2563 flags = SLAB_CACHE_DMA;
2564
83b519e8
PE
2565 /*
2566 * This function is called with IRQs disabled during early-boot on
2567 * single CPU so there's no need to take slub_lock here.
2568 */
81819f0f 2569 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 2570 flags, NULL))
81819f0f
CL
2571 goto panic;
2572
2573 list_add(&s->list, &slab_caches);
83b519e8 2574
81819f0f
CL
2575 if (sysfs_slab_add(s))
2576 goto panic;
2577 return s;
2578
2579panic:
2580 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2581}
2582
2e443fd0 2583#ifdef CONFIG_ZONE_DMA
ffadd4d0 2584static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
1ceef402
CL
2585
2586static void sysfs_add_func(struct work_struct *w)
2587{
2588 struct kmem_cache *s;
2589
2590 down_write(&slub_lock);
2591 list_for_each_entry(s, &slab_caches, list) {
2592 if (s->flags & __SYSFS_ADD_DEFERRED) {
2593 s->flags &= ~__SYSFS_ADD_DEFERRED;
2594 sysfs_slab_add(s);
2595 }
2596 }
2597 up_write(&slub_lock);
2598}
2599
2600static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2601
2e443fd0
CL
2602static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2603{
2604 struct kmem_cache *s;
2e443fd0
CL
2605 char *text;
2606 size_t realsize;
964cf35c 2607 unsigned long slabflags;
756dee75 2608 int i;
2e443fd0
CL
2609
2610 s = kmalloc_caches_dma[index];
2611 if (s)
2612 return s;
2613
2614 /* Dynamically create dma cache */
1ceef402
CL
2615 if (flags & __GFP_WAIT)
2616 down_write(&slub_lock);
2617 else {
2618 if (!down_write_trylock(&slub_lock))
2619 goto out;
2620 }
2621
2622 if (kmalloc_caches_dma[index])
2623 goto unlock_out;
2e443fd0 2624
7b55f620 2625 realsize = kmalloc_caches[index].objsize;
3adbefee
IM
2626 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2627 (unsigned int)realsize);
9dfc6e68 2628
756dee75
CL
2629 s = NULL;
2630 for (i = 0; i < KMALLOC_CACHES; i++)
2631 if (!kmalloc_caches[i].size)
2632 break;
9dfc6e68 2633
756dee75
CL
2634 BUG_ON(i >= KMALLOC_CACHES);
2635 s = kmalloc_caches + i;
1ceef402 2636
964cf35c
NP
2637 /*
2638 * Must defer sysfs creation to a workqueue because we don't know
2639 * what context we are called from. Before sysfs comes up, we don't
2640 * need to do anything because our sysfs initcall will start by
2641 * adding all existing slabs to sysfs.
2642 */
5caf5c7d 2643 slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
964cf35c
NP
2644 if (slab_state >= SYSFS)
2645 slabflags |= __SYSFS_ADD_DEFERRED;
2646
1ceef402 2647 if (!s || !text || !kmem_cache_open(s, flags, text,
964cf35c 2648 realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
756dee75 2649 s->size = 0;
1ceef402
CL
2650 kfree(text);
2651 goto unlock_out;
dfce8648 2652 }
1ceef402
CL
2653
2654 list_add(&s->list, &slab_caches);
2655 kmalloc_caches_dma[index] = s;
2656
964cf35c
NP
2657 if (slab_state >= SYSFS)
2658 schedule_work(&sysfs_add_work);
1ceef402
CL
2659
2660unlock_out:
dfce8648 2661 up_write(&slub_lock);
1ceef402 2662out:
dfce8648 2663 return kmalloc_caches_dma[index];
2e443fd0
CL
2664}
2665#endif
2666
f1b26339
CL
2667/*
2668 * Conversion table for small slabs sizes / 8 to the index in the
2669 * kmalloc array. This is necessary for slabs < 192 since we have non power
2670 * of two cache sizes there. The size of larger slabs can be determined using
2671 * fls.
2672 */
2673static s8 size_index[24] = {
2674 3, /* 8 */
2675 4, /* 16 */
2676 5, /* 24 */
2677 5, /* 32 */
2678 6, /* 40 */
2679 6, /* 48 */
2680 6, /* 56 */
2681 6, /* 64 */
2682 1, /* 72 */
2683 1, /* 80 */
2684 1, /* 88 */
2685 1, /* 96 */
2686 7, /* 104 */
2687 7, /* 112 */
2688 7, /* 120 */
2689 7, /* 128 */
2690 2, /* 136 */
2691 2, /* 144 */
2692 2, /* 152 */
2693 2, /* 160 */
2694 2, /* 168 */
2695 2, /* 176 */
2696 2, /* 184 */
2697 2 /* 192 */
2698};
2699
acdfcd04
AK
2700static inline int size_index_elem(size_t bytes)
2701{
2702 return (bytes - 1) / 8;
2703}
2704
81819f0f
CL
2705static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2706{
f1b26339 2707 int index;
81819f0f 2708
f1b26339
CL
2709 if (size <= 192) {
2710 if (!size)
2711 return ZERO_SIZE_PTR;
81819f0f 2712
acdfcd04 2713 index = size_index[size_index_elem(size)];
aadb4bc4 2714 } else
f1b26339 2715 index = fls(size - 1);
81819f0f
CL
2716
2717#ifdef CONFIG_ZONE_DMA
f1b26339 2718 if (unlikely((flags & SLUB_DMA)))
2e443fd0 2719 return dma_kmalloc_cache(index, flags);
f1b26339 2720
81819f0f
CL
2721#endif
2722 return &kmalloc_caches[index];
2723}
2724
2725void *__kmalloc(size_t size, gfp_t flags)
2726{
aadb4bc4 2727 struct kmem_cache *s;
5b882be4 2728 void *ret;
81819f0f 2729
ffadd4d0 2730 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 2731 return kmalloc_large(size, flags);
aadb4bc4
CL
2732
2733 s = get_slab(size, flags);
2734
2735 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2736 return s;
2737
5b882be4
EGM
2738 ret = slab_alloc(s, flags, -1, _RET_IP_);
2739
ca2b84cb 2740 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
2741
2742 return ret;
81819f0f
CL
2743}
2744EXPORT_SYMBOL(__kmalloc);
2745
f619cfe1
CL
2746static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2747{
b1eeab67 2748 struct page *page;
e4f7c0b4 2749 void *ptr = NULL;
f619cfe1 2750
b1eeab67
VN
2751 flags |= __GFP_COMP | __GFP_NOTRACK;
2752 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 2753 if (page)
e4f7c0b4
CM
2754 ptr = page_address(page);
2755
2756 kmemleak_alloc(ptr, size, 1, flags);
2757 return ptr;
f619cfe1
CL
2758}
2759
81819f0f
CL
2760#ifdef CONFIG_NUMA
2761void *__kmalloc_node(size_t size, gfp_t flags, int node)
2762{
aadb4bc4 2763 struct kmem_cache *s;
5b882be4 2764 void *ret;
81819f0f 2765
057685cf 2766 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
2767 ret = kmalloc_large_node(size, flags, node);
2768
ca2b84cb
EGM
2769 trace_kmalloc_node(_RET_IP_, ret,
2770 size, PAGE_SIZE << get_order(size),
2771 flags, node);
5b882be4
EGM
2772
2773 return ret;
2774 }
aadb4bc4
CL
2775
2776 s = get_slab(size, flags);
2777
2778 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2779 return s;
2780
5b882be4
EGM
2781 ret = slab_alloc(s, flags, node, _RET_IP_);
2782
ca2b84cb 2783 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
2784
2785 return ret;
81819f0f
CL
2786}
2787EXPORT_SYMBOL(__kmalloc_node);
2788#endif
2789
2790size_t ksize(const void *object)
2791{
272c1d21 2792 struct page *page;
81819f0f
CL
2793 struct kmem_cache *s;
2794
ef8b4520 2795 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2796 return 0;
2797
294a80a8 2798 page = virt_to_head_page(object);
294a80a8 2799
76994412
PE
2800 if (unlikely(!PageSlab(page))) {
2801 WARN_ON(!PageCompound(page));
294a80a8 2802 return PAGE_SIZE << compound_order(page);
76994412 2803 }
81819f0f 2804 s = page->slab;
81819f0f 2805
ae20bfda 2806#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2807 /*
2808 * Debugging requires use of the padding between object
2809 * and whatever may come after it.
2810 */
2811 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2812 return s->objsize;
2813
ae20bfda 2814#endif
81819f0f
CL
2815 /*
2816 * If we have the need to store the freelist pointer
2817 * back there or track user information then we can
2818 * only use the space before that information.
2819 */
2820 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2821 return s->inuse;
81819f0f
CL
2822 /*
2823 * Else we can use all the padding etc for the allocation
2824 */
2825 return s->size;
2826}
b1aabecd 2827EXPORT_SYMBOL(ksize);
81819f0f
CL
2828
2829void kfree(const void *x)
2830{
81819f0f 2831 struct page *page;
5bb983b0 2832 void *object = (void *)x;
81819f0f 2833
2121db74
PE
2834 trace_kfree(_RET_IP_, x);
2835
2408c550 2836 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2837 return;
2838
b49af68f 2839 page = virt_to_head_page(x);
aadb4bc4 2840 if (unlikely(!PageSlab(page))) {
0937502a 2841 BUG_ON(!PageCompound(page));
e4f7c0b4 2842 kmemleak_free(x);
aadb4bc4
CL
2843 put_page(page);
2844 return;
2845 }
ce71e27c 2846 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
2847}
2848EXPORT_SYMBOL(kfree);
2849
2086d26a 2850/*
672bba3a
CL
2851 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2852 * the remaining slabs by the number of items in use. The slabs with the
2853 * most items in use come first. New allocations will then fill those up
2854 * and thus they can be removed from the partial lists.
2855 *
2856 * The slabs with the least items are placed last. This results in them
2857 * being allocated from last increasing the chance that the last objects
2858 * are freed in them.
2086d26a
CL
2859 */
2860int kmem_cache_shrink(struct kmem_cache *s)
2861{
2862 int node;
2863 int i;
2864 struct kmem_cache_node *n;
2865 struct page *page;
2866 struct page *t;
205ab99d 2867 int objects = oo_objects(s->max);
2086d26a 2868 struct list_head *slabs_by_inuse =
834f3d11 2869 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
2870 unsigned long flags;
2871
2872 if (!slabs_by_inuse)
2873 return -ENOMEM;
2874
2875 flush_all(s);
f64dc58c 2876 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
2877 n = get_node(s, node);
2878
2879 if (!n->nr_partial)
2880 continue;
2881
834f3d11 2882 for (i = 0; i < objects; i++)
2086d26a
CL
2883 INIT_LIST_HEAD(slabs_by_inuse + i);
2884
2885 spin_lock_irqsave(&n->list_lock, flags);
2886
2887 /*
672bba3a 2888 * Build lists indexed by the items in use in each slab.
2086d26a 2889 *
672bba3a
CL
2890 * Note that concurrent frees may occur while we hold the
2891 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2892 */
2893 list_for_each_entry_safe(page, t, &n->partial, lru) {
2894 if (!page->inuse && slab_trylock(page)) {
2895 /*
2896 * Must hold slab lock here because slab_free
2897 * may have freed the last object and be
2898 * waiting to release the slab.
2899 */
2900 list_del(&page->lru);
2901 n->nr_partial--;
2902 slab_unlock(page);
2903 discard_slab(s, page);
2904 } else {
fcda3d89
CL
2905 list_move(&page->lru,
2906 slabs_by_inuse + page->inuse);
2086d26a
CL
2907 }
2908 }
2909
2086d26a 2910 /*
672bba3a
CL
2911 * Rebuild the partial list with the slabs filled up most
2912 * first and the least used slabs at the end.
2086d26a 2913 */
834f3d11 2914 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
2915 list_splice(slabs_by_inuse + i, n->partial.prev);
2916
2086d26a
CL
2917 spin_unlock_irqrestore(&n->list_lock, flags);
2918 }
2919
2920 kfree(slabs_by_inuse);
2921 return 0;
2922}
2923EXPORT_SYMBOL(kmem_cache_shrink);
2924
b9049e23
YG
2925#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2926static int slab_mem_going_offline_callback(void *arg)
2927{
2928 struct kmem_cache *s;
2929
2930 down_read(&slub_lock);
2931 list_for_each_entry(s, &slab_caches, list)
2932 kmem_cache_shrink(s);
2933 up_read(&slub_lock);
2934
2935 return 0;
2936}
2937
2938static void slab_mem_offline_callback(void *arg)
2939{
2940 struct kmem_cache_node *n;
2941 struct kmem_cache *s;
2942 struct memory_notify *marg = arg;
2943 int offline_node;
2944
2945 offline_node = marg->status_change_nid;
2946
2947 /*
2948 * If the node still has available memory. we need kmem_cache_node
2949 * for it yet.
2950 */
2951 if (offline_node < 0)
2952 return;
2953
2954 down_read(&slub_lock);
2955 list_for_each_entry(s, &slab_caches, list) {
2956 n = get_node(s, offline_node);
2957 if (n) {
2958 /*
2959 * if n->nr_slabs > 0, slabs still exist on the node
2960 * that is going down. We were unable to free them,
2961 * and offline_pages() function shoudn't call this
2962 * callback. So, we must fail.
2963 */
0f389ec6 2964 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
2965
2966 s->node[offline_node] = NULL;
2967 kmem_cache_free(kmalloc_caches, n);
2968 }
2969 }
2970 up_read(&slub_lock);
2971}
2972
2973static int slab_mem_going_online_callback(void *arg)
2974{
2975 struct kmem_cache_node *n;
2976 struct kmem_cache *s;
2977 struct memory_notify *marg = arg;
2978 int nid = marg->status_change_nid;
2979 int ret = 0;
2980
2981 /*
2982 * If the node's memory is already available, then kmem_cache_node is
2983 * already created. Nothing to do.
2984 */
2985 if (nid < 0)
2986 return 0;
2987
2988 /*
0121c619 2989 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
2990 * allocate a kmem_cache_node structure in order to bring the node
2991 * online.
2992 */
2993 down_read(&slub_lock);
2994 list_for_each_entry(s, &slab_caches, list) {
2995 /*
2996 * XXX: kmem_cache_alloc_node will fallback to other nodes
2997 * since memory is not yet available from the node that
2998 * is brought up.
2999 */
3000 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
3001 if (!n) {
3002 ret = -ENOMEM;
3003 goto out;
3004 }
5595cffc 3005 init_kmem_cache_node(n, s);
b9049e23
YG
3006 s->node[nid] = n;
3007 }
3008out:
3009 up_read(&slub_lock);
3010 return ret;
3011}
3012
3013static int slab_memory_callback(struct notifier_block *self,
3014 unsigned long action, void *arg)
3015{
3016 int ret = 0;
3017
3018 switch (action) {
3019 case MEM_GOING_ONLINE:
3020 ret = slab_mem_going_online_callback(arg);
3021 break;
3022 case MEM_GOING_OFFLINE:
3023 ret = slab_mem_going_offline_callback(arg);
3024 break;
3025 case MEM_OFFLINE:
3026 case MEM_CANCEL_ONLINE:
3027 slab_mem_offline_callback(arg);
3028 break;
3029 case MEM_ONLINE:
3030 case MEM_CANCEL_OFFLINE:
3031 break;
3032 }
dc19f9db
KH
3033 if (ret)
3034 ret = notifier_from_errno(ret);
3035 else
3036 ret = NOTIFY_OK;
b9049e23
YG
3037 return ret;
3038}
3039
3040#endif /* CONFIG_MEMORY_HOTPLUG */
3041
81819f0f
CL
3042/********************************************************************
3043 * Basic setup of slabs
3044 *******************************************************************/
3045
3046void __init kmem_cache_init(void)
3047{
3048 int i;
4b356be0 3049 int caches = 0;
81819f0f
CL
3050
3051#ifdef CONFIG_NUMA
3052 /*
3053 * Must first have the slab cache available for the allocations of the
672bba3a 3054 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3055 * kmem_cache_open for slab_state == DOWN.
3056 */
3057 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
83b519e8 3058 sizeof(struct kmem_cache_node), GFP_NOWAIT);
8ffa6875 3059 kmalloc_caches[0].refcount = -1;
4b356be0 3060 caches++;
b9049e23 3061
0c40ba4f 3062 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3063#endif
3064
3065 /* Able to allocate the per node structures */
3066 slab_state = PARTIAL;
3067
3068 /* Caches that are not of the two-to-the-power-of size */
acdfcd04 3069 if (KMALLOC_MIN_SIZE <= 32) {
4b356be0 3070 create_kmalloc_cache(&kmalloc_caches[1],
83b519e8 3071 "kmalloc-96", 96, GFP_NOWAIT);
4b356be0 3072 caches++;
acdfcd04
AK
3073 }
3074 if (KMALLOC_MIN_SIZE <= 64) {
4b356be0 3075 create_kmalloc_cache(&kmalloc_caches[2],
83b519e8 3076 "kmalloc-192", 192, GFP_NOWAIT);
4b356be0
CL
3077 caches++;
3078 }
81819f0f 3079
ffadd4d0 3080 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
81819f0f 3081 create_kmalloc_cache(&kmalloc_caches[i],
83b519e8 3082 "kmalloc", 1 << i, GFP_NOWAIT);
4b356be0
CL
3083 caches++;
3084 }
81819f0f 3085
f1b26339
CL
3086
3087 /*
3088 * Patch up the size_index table if we have strange large alignment
3089 * requirements for the kmalloc array. This is only the case for
6446faa2 3090 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3091 *
3092 * Largest permitted alignment is 256 bytes due to the way we
3093 * handle the index determination for the smaller caches.
3094 *
3095 * Make sure that nothing crazy happens if someone starts tinkering
3096 * around with ARCH_KMALLOC_MINALIGN
3097 */
3098 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3099 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3100
acdfcd04
AK
3101 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3102 int elem = size_index_elem(i);
3103 if (elem >= ARRAY_SIZE(size_index))
3104 break;
3105 size_index[elem] = KMALLOC_SHIFT_LOW;
3106 }
f1b26339 3107
acdfcd04
AK
3108 if (KMALLOC_MIN_SIZE == 64) {
3109 /*
3110 * The 96 byte size cache is not used if the alignment
3111 * is 64 byte.
3112 */
3113 for (i = 64 + 8; i <= 96; i += 8)
3114 size_index[size_index_elem(i)] = 7;
3115 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3116 /*
3117 * The 192 byte sized cache is not used if the alignment
3118 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3119 * instead.
3120 */
3121 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3122 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3123 }
3124
81819f0f
CL
3125 slab_state = UP;
3126
3127 /* Provide the correct kmalloc names now that the caches are up */
ffadd4d0 3128 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
81819f0f 3129 kmalloc_caches[i]. name =
83b519e8 3130 kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
81819f0f
CL
3131
3132#ifdef CONFIG_SMP
3133 register_cpu_notifier(&slab_notifier);
9dfc6e68
CL
3134#endif
3135#ifdef CONFIG_NUMA
3136 kmem_size = offsetof(struct kmem_cache, node) +
3137 nr_node_ids * sizeof(struct kmem_cache_node *);
4c93c355
CL
3138#else
3139 kmem_size = sizeof(struct kmem_cache);
81819f0f
CL
3140#endif
3141
3adbefee
IM
3142 printk(KERN_INFO
3143 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3144 " CPUs=%d, Nodes=%d\n",
3145 caches, cache_line_size(),
81819f0f
CL
3146 slub_min_order, slub_max_order, slub_min_objects,
3147 nr_cpu_ids, nr_node_ids);
3148}
3149
7e85ee0c
PE
3150void __init kmem_cache_init_late(void)
3151{
7e85ee0c
PE
3152}
3153
81819f0f
CL
3154/*
3155 * Find a mergeable slab cache
3156 */
3157static int slab_unmergeable(struct kmem_cache *s)
3158{
3159 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3160 return 1;
3161
c59def9f 3162 if (s->ctor)
81819f0f
CL
3163 return 1;
3164
8ffa6875
CL
3165 /*
3166 * We may have set a slab to be unmergeable during bootstrap.
3167 */
3168 if (s->refcount < 0)
3169 return 1;
3170
81819f0f
CL
3171 return 0;
3172}
3173
3174static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3175 size_t align, unsigned long flags, const char *name,
51cc5068 3176 void (*ctor)(void *))
81819f0f 3177{
5b95a4ac 3178 struct kmem_cache *s;
81819f0f
CL
3179
3180 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3181 return NULL;
3182
c59def9f 3183 if (ctor)
81819f0f
CL
3184 return NULL;
3185
3186 size = ALIGN(size, sizeof(void *));
3187 align = calculate_alignment(flags, align, size);
3188 size = ALIGN(size, align);
ba0268a8 3189 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3190
5b95a4ac 3191 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3192 if (slab_unmergeable(s))
3193 continue;
3194
3195 if (size > s->size)
3196 continue;
3197
ba0268a8 3198 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3199 continue;
3200 /*
3201 * Check if alignment is compatible.
3202 * Courtesy of Adrian Drzewiecki
3203 */
06428780 3204 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3205 continue;
3206
3207 if (s->size - size >= sizeof(void *))
3208 continue;
3209
3210 return s;
3211 }
3212 return NULL;
3213}
3214
3215struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3216 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3217{
3218 struct kmem_cache *s;
3219
fe1ff49d
BH
3220 if (WARN_ON(!name))
3221 return NULL;
3222
81819f0f 3223 down_write(&slub_lock);
ba0268a8 3224 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3225 if (s) {
3226 s->refcount++;
3227 /*
3228 * Adjust the object sizes so that we clear
3229 * the complete object on kzalloc.
3230 */
3231 s->objsize = max(s->objsize, (int)size);
3232 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
a0e1d1be 3233 up_write(&slub_lock);
6446faa2 3234
7b8f3b66
DR
3235 if (sysfs_slab_alias(s, name)) {
3236 down_write(&slub_lock);
3237 s->refcount--;
3238 up_write(&slub_lock);
81819f0f 3239 goto err;
7b8f3b66 3240 }
a0e1d1be
CL
3241 return s;
3242 }
6446faa2 3243
a0e1d1be
CL
3244 s = kmalloc(kmem_size, GFP_KERNEL);
3245 if (s) {
3246 if (kmem_cache_open(s, GFP_KERNEL, name,
c59def9f 3247 size, align, flags, ctor)) {
81819f0f 3248 list_add(&s->list, &slab_caches);
a0e1d1be 3249 up_write(&slub_lock);
7b8f3b66
DR
3250 if (sysfs_slab_add(s)) {
3251 down_write(&slub_lock);
3252 list_del(&s->list);
3253 up_write(&slub_lock);
3254 kfree(s);
a0e1d1be 3255 goto err;
7b8f3b66 3256 }
a0e1d1be
CL
3257 return s;
3258 }
3259 kfree(s);
81819f0f
CL
3260 }
3261 up_write(&slub_lock);
81819f0f
CL
3262
3263err:
81819f0f
CL
3264 if (flags & SLAB_PANIC)
3265 panic("Cannot create slabcache %s\n", name);
3266 else
3267 s = NULL;
3268 return s;
3269}
3270EXPORT_SYMBOL(kmem_cache_create);
3271
81819f0f 3272#ifdef CONFIG_SMP
81819f0f 3273/*
672bba3a
CL
3274 * Use the cpu notifier to insure that the cpu slabs are flushed when
3275 * necessary.
81819f0f
CL
3276 */
3277static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3278 unsigned long action, void *hcpu)
3279{
3280 long cpu = (long)hcpu;
5b95a4ac
CL
3281 struct kmem_cache *s;
3282 unsigned long flags;
81819f0f
CL
3283
3284 switch (action) {
3285 case CPU_UP_CANCELED:
8bb78442 3286 case CPU_UP_CANCELED_FROZEN:
81819f0f 3287 case CPU_DEAD:
8bb78442 3288 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3289 down_read(&slub_lock);
3290 list_for_each_entry(s, &slab_caches, list) {
3291 local_irq_save(flags);
3292 __flush_cpu_slab(s, cpu);
3293 local_irq_restore(flags);
3294 }
3295 up_read(&slub_lock);
81819f0f
CL
3296 break;
3297 default:
3298 break;
3299 }
3300 return NOTIFY_OK;
3301}
3302
06428780 3303static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3304 .notifier_call = slab_cpuup_callback
06428780 3305};
81819f0f
CL
3306
3307#endif
3308
ce71e27c 3309void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3310{
aadb4bc4 3311 struct kmem_cache *s;
94b528d0 3312 void *ret;
aadb4bc4 3313
ffadd4d0 3314 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3315 return kmalloc_large(size, gfpflags);
3316
aadb4bc4 3317 s = get_slab(size, gfpflags);
81819f0f 3318
2408c550 3319 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3320 return s;
81819f0f 3321
94b528d0
EGM
3322 ret = slab_alloc(s, gfpflags, -1, caller);
3323
3324 /* Honor the call site pointer we recieved. */
ca2b84cb 3325 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3326
3327 return ret;
81819f0f
CL
3328}
3329
3330void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3331 int node, unsigned long caller)
81819f0f 3332{
aadb4bc4 3333 struct kmem_cache *s;
94b528d0 3334 void *ret;
aadb4bc4 3335
ffadd4d0 3336 if (unlikely(size > SLUB_MAX_SIZE))
f619cfe1 3337 return kmalloc_large_node(size, gfpflags, node);
eada35ef 3338
aadb4bc4 3339 s = get_slab(size, gfpflags);
81819f0f 3340
2408c550 3341 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3342 return s;
81819f0f 3343
94b528d0
EGM
3344 ret = slab_alloc(s, gfpflags, node, caller);
3345
3346 /* Honor the call site pointer we recieved. */
ca2b84cb 3347 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3348
3349 return ret;
81819f0f
CL
3350}
3351
f6acb635 3352#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
3353static int count_inuse(struct page *page)
3354{
3355 return page->inuse;
3356}
3357
3358static int count_total(struct page *page)
3359{
3360 return page->objects;
3361}
3362
434e245d
CL
3363static int validate_slab(struct kmem_cache *s, struct page *page,
3364 unsigned long *map)
53e15af0
CL
3365{
3366 void *p;
a973e9dd 3367 void *addr = page_address(page);
53e15af0
CL
3368
3369 if (!check_slab(s, page) ||
3370 !on_freelist(s, page, NULL))
3371 return 0;
3372
3373 /* Now we know that a valid freelist exists */
39b26464 3374 bitmap_zero(map, page->objects);
53e15af0 3375
7656c72b
CL
3376 for_each_free_object(p, s, page->freelist) {
3377 set_bit(slab_index(p, s, addr), map);
53e15af0
CL
3378 if (!check_object(s, page, p, 0))
3379 return 0;
3380 }
3381
224a88be 3382 for_each_object(p, s, addr, page->objects)
7656c72b 3383 if (!test_bit(slab_index(p, s, addr), map))
53e15af0
CL
3384 if (!check_object(s, page, p, 1))
3385 return 0;
3386 return 1;
3387}
3388
434e245d
CL
3389static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3390 unsigned long *map)
53e15af0
CL
3391{
3392 if (slab_trylock(page)) {
434e245d 3393 validate_slab(s, page, map);
53e15af0
CL
3394 slab_unlock(page);
3395 } else
3396 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3397 s->name, page);
3398
3399 if (s->flags & DEBUG_DEFAULT_FLAGS) {
8a38082d
AW
3400 if (!PageSlubDebug(page))
3401 printk(KERN_ERR "SLUB %s: SlubDebug not set "
53e15af0
CL
3402 "on slab 0x%p\n", s->name, page);
3403 } else {
8a38082d
AW
3404 if (PageSlubDebug(page))
3405 printk(KERN_ERR "SLUB %s: SlubDebug set on "
53e15af0
CL
3406 "slab 0x%p\n", s->name, page);
3407 }
3408}
3409
434e245d
CL
3410static int validate_slab_node(struct kmem_cache *s,
3411 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3412{
3413 unsigned long count = 0;
3414 struct page *page;
3415 unsigned long flags;
3416
3417 spin_lock_irqsave(&n->list_lock, flags);
3418
3419 list_for_each_entry(page, &n->partial, lru) {
434e245d 3420 validate_slab_slab(s, page, map);
53e15af0
CL
3421 count++;
3422 }
3423 if (count != n->nr_partial)
3424 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3425 "counter=%ld\n", s->name, count, n->nr_partial);
3426
3427 if (!(s->flags & SLAB_STORE_USER))
3428 goto out;
3429
3430 list_for_each_entry(page, &n->full, lru) {
434e245d 3431 validate_slab_slab(s, page, map);
53e15af0
CL
3432 count++;
3433 }
3434 if (count != atomic_long_read(&n->nr_slabs))
3435 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3436 "counter=%ld\n", s->name, count,
3437 atomic_long_read(&n->nr_slabs));
3438
3439out:
3440 spin_unlock_irqrestore(&n->list_lock, flags);
3441 return count;
3442}
3443
434e245d 3444static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3445{
3446 int node;
3447 unsigned long count = 0;
205ab99d 3448 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3449 sizeof(unsigned long), GFP_KERNEL);
3450
3451 if (!map)
3452 return -ENOMEM;
53e15af0
CL
3453
3454 flush_all(s);
f64dc58c 3455 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3456 struct kmem_cache_node *n = get_node(s, node);
3457
434e245d 3458 count += validate_slab_node(s, n, map);
53e15af0 3459 }
434e245d 3460 kfree(map);
53e15af0
CL
3461 return count;
3462}
3463
b3459709
CL
3464#ifdef SLUB_RESILIENCY_TEST
3465static void resiliency_test(void)
3466{
3467 u8 *p;
3468
3469 printk(KERN_ERR "SLUB resiliency testing\n");
3470 printk(KERN_ERR "-----------------------\n");
3471 printk(KERN_ERR "A. Corruption after allocation\n");
3472
3473 p = kzalloc(16, GFP_KERNEL);
3474 p[16] = 0x12;
3475 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3476 " 0x12->0x%p\n\n", p + 16);
3477
3478 validate_slab_cache(kmalloc_caches + 4);
3479
3480 /* Hmmm... The next two are dangerous */
3481 p = kzalloc(32, GFP_KERNEL);
3482 p[32 + sizeof(void *)] = 0x34;
3483 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3adbefee
IM
3484 " 0x34 -> -0x%p\n", p);
3485 printk(KERN_ERR
3486 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3487
3488 validate_slab_cache(kmalloc_caches + 5);
3489 p = kzalloc(64, GFP_KERNEL);
3490 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3491 *p = 0x56;
3492 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3493 p);
3adbefee
IM
3494 printk(KERN_ERR
3495 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3496 validate_slab_cache(kmalloc_caches + 6);
3497
3498 printk(KERN_ERR "\nB. Corruption after free\n");
3499 p = kzalloc(128, GFP_KERNEL);
3500 kfree(p);
3501 *p = 0x78;
3502 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3503 validate_slab_cache(kmalloc_caches + 7);
3504
3505 p = kzalloc(256, GFP_KERNEL);
3506 kfree(p);
3507 p[50] = 0x9a;
3adbefee
IM
3508 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3509 p);
b3459709
CL
3510 validate_slab_cache(kmalloc_caches + 8);
3511
3512 p = kzalloc(512, GFP_KERNEL);
3513 kfree(p);
3514 p[512] = 0xab;
3515 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3516 validate_slab_cache(kmalloc_caches + 9);
3517}
3518#else
3519static void resiliency_test(void) {};
3520#endif
3521
88a420e4 3522/*
672bba3a 3523 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3524 * and freed.
3525 */
3526
3527struct location {
3528 unsigned long count;
ce71e27c 3529 unsigned long addr;
45edfa58
CL
3530 long long sum_time;
3531 long min_time;
3532 long max_time;
3533 long min_pid;
3534 long max_pid;
174596a0 3535 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3536 nodemask_t nodes;
88a420e4
CL
3537};
3538
3539struct loc_track {
3540 unsigned long max;
3541 unsigned long count;
3542 struct location *loc;
3543};
3544
3545static void free_loc_track(struct loc_track *t)
3546{
3547 if (t->max)
3548 free_pages((unsigned long)t->loc,
3549 get_order(sizeof(struct location) * t->max));
3550}
3551
68dff6a9 3552static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3553{
3554 struct location *l;
3555 int order;
3556
88a420e4
CL
3557 order = get_order(sizeof(struct location) * max);
3558
68dff6a9 3559 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3560 if (!l)
3561 return 0;
3562
3563 if (t->count) {
3564 memcpy(l, t->loc, sizeof(struct location) * t->count);
3565 free_loc_track(t);
3566 }
3567 t->max = max;
3568 t->loc = l;
3569 return 1;
3570}
3571
3572static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3573 const struct track *track)
88a420e4
CL
3574{
3575 long start, end, pos;
3576 struct location *l;
ce71e27c 3577 unsigned long caddr;
45edfa58 3578 unsigned long age = jiffies - track->when;
88a420e4
CL
3579
3580 start = -1;
3581 end = t->count;
3582
3583 for ( ; ; ) {
3584 pos = start + (end - start + 1) / 2;
3585
3586 /*
3587 * There is nothing at "end". If we end up there
3588 * we need to add something to before end.
3589 */
3590 if (pos == end)
3591 break;
3592
3593 caddr = t->loc[pos].addr;
45edfa58
CL
3594 if (track->addr == caddr) {
3595
3596 l = &t->loc[pos];
3597 l->count++;
3598 if (track->when) {
3599 l->sum_time += age;
3600 if (age < l->min_time)
3601 l->min_time = age;
3602 if (age > l->max_time)
3603 l->max_time = age;
3604
3605 if (track->pid < l->min_pid)
3606 l->min_pid = track->pid;
3607 if (track->pid > l->max_pid)
3608 l->max_pid = track->pid;
3609
174596a0
RR
3610 cpumask_set_cpu(track->cpu,
3611 to_cpumask(l->cpus));
45edfa58
CL
3612 }
3613 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3614 return 1;
3615 }
3616
45edfa58 3617 if (track->addr < caddr)
88a420e4
CL
3618 end = pos;
3619 else
3620 start = pos;
3621 }
3622
3623 /*
672bba3a 3624 * Not found. Insert new tracking element.
88a420e4 3625 */
68dff6a9 3626 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3627 return 0;
3628
3629 l = t->loc + pos;
3630 if (pos < t->count)
3631 memmove(l + 1, l,
3632 (t->count - pos) * sizeof(struct location));
3633 t->count++;
3634 l->count = 1;
45edfa58
CL
3635 l->addr = track->addr;
3636 l->sum_time = age;
3637 l->min_time = age;
3638 l->max_time = age;
3639 l->min_pid = track->pid;
3640 l->max_pid = track->pid;
174596a0
RR
3641 cpumask_clear(to_cpumask(l->cpus));
3642 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
3643 nodes_clear(l->nodes);
3644 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3645 return 1;
3646}
3647
3648static void process_slab(struct loc_track *t, struct kmem_cache *s,
3649 struct page *page, enum track_item alloc)
3650{
a973e9dd 3651 void *addr = page_address(page);
39b26464 3652 DECLARE_BITMAP(map, page->objects);
88a420e4
CL
3653 void *p;
3654
39b26464 3655 bitmap_zero(map, page->objects);
7656c72b
CL
3656 for_each_free_object(p, s, page->freelist)
3657 set_bit(slab_index(p, s, addr), map);
88a420e4 3658
224a88be 3659 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3660 if (!test_bit(slab_index(p, s, addr), map))
3661 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3662}
3663
3664static int list_locations(struct kmem_cache *s, char *buf,
3665 enum track_item alloc)
3666{
e374d483 3667 int len = 0;
88a420e4 3668 unsigned long i;
68dff6a9 3669 struct loc_track t = { 0, 0, NULL };
88a420e4
CL
3670 int node;
3671
68dff6a9 3672 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
ea3061d2 3673 GFP_TEMPORARY))
68dff6a9 3674 return sprintf(buf, "Out of memory\n");
88a420e4
CL
3675
3676 /* Push back cpu slabs */
3677 flush_all(s);
3678
f64dc58c 3679 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3680 struct kmem_cache_node *n = get_node(s, node);
3681 unsigned long flags;
3682 struct page *page;
3683
9e86943b 3684 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3685 continue;
3686
3687 spin_lock_irqsave(&n->list_lock, flags);
3688 list_for_each_entry(page, &n->partial, lru)
3689 process_slab(&t, s, page, alloc);
3690 list_for_each_entry(page, &n->full, lru)
3691 process_slab(&t, s, page, alloc);
3692 spin_unlock_irqrestore(&n->list_lock, flags);
3693 }
3694
3695 for (i = 0; i < t.count; i++) {
45edfa58 3696 struct location *l = &t.loc[i];
88a420e4 3697
9c246247 3698 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 3699 break;
e374d483 3700 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3701
3702 if (l->addr)
e374d483 3703 len += sprint_symbol(buf + len, (unsigned long)l->addr);
88a420e4 3704 else
e374d483 3705 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3706
3707 if (l->sum_time != l->min_time) {
e374d483 3708 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
3709 l->min_time,
3710 (long)div_u64(l->sum_time, l->count),
3711 l->max_time);
45edfa58 3712 } else
e374d483 3713 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3714 l->min_time);
3715
3716 if (l->min_pid != l->max_pid)
e374d483 3717 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3718 l->min_pid, l->max_pid);
3719 else
e374d483 3720 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3721 l->min_pid);
3722
174596a0
RR
3723 if (num_online_cpus() > 1 &&
3724 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
3725 len < PAGE_SIZE - 60) {
3726 len += sprintf(buf + len, " cpus=");
3727 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 3728 to_cpumask(l->cpus));
45edfa58
CL
3729 }
3730
62bc62a8 3731 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3732 len < PAGE_SIZE - 60) {
3733 len += sprintf(buf + len, " nodes=");
3734 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3735 l->nodes);
3736 }
3737
e374d483 3738 len += sprintf(buf + len, "\n");
88a420e4
CL
3739 }
3740
3741 free_loc_track(&t);
3742 if (!t.count)
e374d483
HH
3743 len += sprintf(buf, "No data\n");
3744 return len;
88a420e4
CL
3745}
3746
81819f0f 3747enum slab_stat_type {
205ab99d
CL
3748 SL_ALL, /* All slabs */
3749 SL_PARTIAL, /* Only partially allocated slabs */
3750 SL_CPU, /* Only slabs used for cpu caches */
3751 SL_OBJECTS, /* Determine allocated objects not slabs */
3752 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
3753};
3754
205ab99d 3755#define SO_ALL (1 << SL_ALL)
81819f0f
CL
3756#define SO_PARTIAL (1 << SL_PARTIAL)
3757#define SO_CPU (1 << SL_CPU)
3758#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 3759#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 3760
62e5c4b4
CG
3761static ssize_t show_slab_objects(struct kmem_cache *s,
3762 char *buf, unsigned long flags)
81819f0f
CL
3763{
3764 unsigned long total = 0;
81819f0f
CL
3765 int node;
3766 int x;
3767 unsigned long *nodes;
3768 unsigned long *per_cpu;
3769
3770 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
3771 if (!nodes)
3772 return -ENOMEM;
81819f0f
CL
3773 per_cpu = nodes + nr_node_ids;
3774
205ab99d
CL
3775 if (flags & SO_CPU) {
3776 int cpu;
81819f0f 3777
205ab99d 3778 for_each_possible_cpu(cpu) {
9dfc6e68 3779 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
dfb4f096 3780
205ab99d
CL
3781 if (!c || c->node < 0)
3782 continue;
3783
3784 if (c->page) {
3785 if (flags & SO_TOTAL)
3786 x = c->page->objects;
3787 else if (flags & SO_OBJECTS)
3788 x = c->page->inuse;
81819f0f
CL
3789 else
3790 x = 1;
205ab99d 3791
81819f0f 3792 total += x;
205ab99d 3793 nodes[c->node] += x;
81819f0f 3794 }
205ab99d 3795 per_cpu[c->node]++;
81819f0f
CL
3796 }
3797 }
3798
205ab99d
CL
3799 if (flags & SO_ALL) {
3800 for_each_node_state(node, N_NORMAL_MEMORY) {
3801 struct kmem_cache_node *n = get_node(s, node);
3802
3803 if (flags & SO_TOTAL)
3804 x = atomic_long_read(&n->total_objects);
3805 else if (flags & SO_OBJECTS)
3806 x = atomic_long_read(&n->total_objects) -
3807 count_partial(n, count_free);
81819f0f 3808
81819f0f 3809 else
205ab99d 3810 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
3811 total += x;
3812 nodes[node] += x;
3813 }
3814
205ab99d
CL
3815 } else if (flags & SO_PARTIAL) {
3816 for_each_node_state(node, N_NORMAL_MEMORY) {
3817 struct kmem_cache_node *n = get_node(s, node);
81819f0f 3818
205ab99d
CL
3819 if (flags & SO_TOTAL)
3820 x = count_partial(n, count_total);
3821 else if (flags & SO_OBJECTS)
3822 x = count_partial(n, count_inuse);
81819f0f 3823 else
205ab99d 3824 x = n->nr_partial;
81819f0f
CL
3825 total += x;
3826 nodes[node] += x;
3827 }
3828 }
81819f0f
CL
3829 x = sprintf(buf, "%lu", total);
3830#ifdef CONFIG_NUMA
f64dc58c 3831 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
3832 if (nodes[node])
3833 x += sprintf(buf + x, " N%d=%lu",
3834 node, nodes[node]);
3835#endif
3836 kfree(nodes);
3837 return x + sprintf(buf + x, "\n");
3838}
3839
3840static int any_slab_objects(struct kmem_cache *s)
3841{
3842 int node;
81819f0f 3843
dfb4f096 3844 for_each_online_node(node) {
81819f0f
CL
3845 struct kmem_cache_node *n = get_node(s, node);
3846
dfb4f096
CL
3847 if (!n)
3848 continue;
3849
4ea33e2d 3850 if (atomic_long_read(&n->total_objects))
81819f0f
CL
3851 return 1;
3852 }
3853 return 0;
3854}
3855
3856#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3857#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3858
3859struct slab_attribute {
3860 struct attribute attr;
3861 ssize_t (*show)(struct kmem_cache *s, char *buf);
3862 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3863};
3864
3865#define SLAB_ATTR_RO(_name) \
3866 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3867
3868#define SLAB_ATTR(_name) \
3869 static struct slab_attribute _name##_attr = \
3870 __ATTR(_name, 0644, _name##_show, _name##_store)
3871
81819f0f
CL
3872static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3873{
3874 return sprintf(buf, "%d\n", s->size);
3875}
3876SLAB_ATTR_RO(slab_size);
3877
3878static ssize_t align_show(struct kmem_cache *s, char *buf)
3879{
3880 return sprintf(buf, "%d\n", s->align);
3881}
3882SLAB_ATTR_RO(align);
3883
3884static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3885{
3886 return sprintf(buf, "%d\n", s->objsize);
3887}
3888SLAB_ATTR_RO(object_size);
3889
3890static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3891{
834f3d11 3892 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
3893}
3894SLAB_ATTR_RO(objs_per_slab);
3895
06b285dc
CL
3896static ssize_t order_store(struct kmem_cache *s,
3897 const char *buf, size_t length)
3898{
0121c619
CL
3899 unsigned long order;
3900 int err;
3901
3902 err = strict_strtoul(buf, 10, &order);
3903 if (err)
3904 return err;
06b285dc
CL
3905
3906 if (order > slub_max_order || order < slub_min_order)
3907 return -EINVAL;
3908
3909 calculate_sizes(s, order);
3910 return length;
3911}
3912
81819f0f
CL
3913static ssize_t order_show(struct kmem_cache *s, char *buf)
3914{
834f3d11 3915 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 3916}
06b285dc 3917SLAB_ATTR(order);
81819f0f 3918
73d342b1
DR
3919static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3920{
3921 return sprintf(buf, "%lu\n", s->min_partial);
3922}
3923
3924static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3925 size_t length)
3926{
3927 unsigned long min;
3928 int err;
3929
3930 err = strict_strtoul(buf, 10, &min);
3931 if (err)
3932 return err;
3933
c0bdb232 3934 set_min_partial(s, min);
73d342b1
DR
3935 return length;
3936}
3937SLAB_ATTR(min_partial);
3938
81819f0f
CL
3939static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3940{
3941 if (s->ctor) {
3942 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3943
3944 return n + sprintf(buf + n, "\n");
3945 }
3946 return 0;
3947}
3948SLAB_ATTR_RO(ctor);
3949
81819f0f
CL
3950static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3951{
3952 return sprintf(buf, "%d\n", s->refcount - 1);
3953}
3954SLAB_ATTR_RO(aliases);
3955
3956static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3957{
205ab99d 3958 return show_slab_objects(s, buf, SO_ALL);
81819f0f
CL
3959}
3960SLAB_ATTR_RO(slabs);
3961
3962static ssize_t partial_show(struct kmem_cache *s, char *buf)
3963{
d9acf4b7 3964 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
3965}
3966SLAB_ATTR_RO(partial);
3967
3968static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3969{
d9acf4b7 3970 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
3971}
3972SLAB_ATTR_RO(cpu_slabs);
3973
3974static ssize_t objects_show(struct kmem_cache *s, char *buf)
3975{
205ab99d 3976 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
3977}
3978SLAB_ATTR_RO(objects);
3979
205ab99d
CL
3980static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3981{
3982 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3983}
3984SLAB_ATTR_RO(objects_partial);
3985
3986static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3987{
3988 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3989}
3990SLAB_ATTR_RO(total_objects);
3991
81819f0f
CL
3992static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3993{
3994 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3995}
3996
3997static ssize_t sanity_checks_store(struct kmem_cache *s,
3998 const char *buf, size_t length)
3999{
4000 s->flags &= ~SLAB_DEBUG_FREE;
4001 if (buf[0] == '1')
4002 s->flags |= SLAB_DEBUG_FREE;
4003 return length;
4004}
4005SLAB_ATTR(sanity_checks);
4006
4007static ssize_t trace_show(struct kmem_cache *s, char *buf)
4008{
4009 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4010}
4011
4012static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4013 size_t length)
4014{
4015 s->flags &= ~SLAB_TRACE;
4016 if (buf[0] == '1')
4017 s->flags |= SLAB_TRACE;
4018 return length;
4019}
4020SLAB_ATTR(trace);
4021
4022static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4023{
4024 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4025}
4026
4027static ssize_t reclaim_account_store(struct kmem_cache *s,
4028 const char *buf, size_t length)
4029{
4030 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4031 if (buf[0] == '1')
4032 s->flags |= SLAB_RECLAIM_ACCOUNT;
4033 return length;
4034}
4035SLAB_ATTR(reclaim_account);
4036
4037static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4038{
5af60839 4039 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
4040}
4041SLAB_ATTR_RO(hwcache_align);
4042
4043#ifdef CONFIG_ZONE_DMA
4044static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4045{
4046 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4047}
4048SLAB_ATTR_RO(cache_dma);
4049#endif
4050
4051static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4052{
4053 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4054}
4055SLAB_ATTR_RO(destroy_by_rcu);
4056
4057static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4058{
4059 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4060}
4061
4062static ssize_t red_zone_store(struct kmem_cache *s,
4063 const char *buf, size_t length)
4064{
4065 if (any_slab_objects(s))
4066 return -EBUSY;
4067
4068 s->flags &= ~SLAB_RED_ZONE;
4069 if (buf[0] == '1')
4070 s->flags |= SLAB_RED_ZONE;
06b285dc 4071 calculate_sizes(s, -1);
81819f0f
CL
4072 return length;
4073}
4074SLAB_ATTR(red_zone);
4075
4076static ssize_t poison_show(struct kmem_cache *s, char *buf)
4077{
4078 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4079}
4080
4081static ssize_t poison_store(struct kmem_cache *s,
4082 const char *buf, size_t length)
4083{
4084 if (any_slab_objects(s))
4085 return -EBUSY;
4086
4087 s->flags &= ~SLAB_POISON;
4088 if (buf[0] == '1')
4089 s->flags |= SLAB_POISON;
06b285dc 4090 calculate_sizes(s, -1);
81819f0f
CL
4091 return length;
4092}
4093SLAB_ATTR(poison);
4094
4095static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4096{
4097 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4098}
4099
4100static ssize_t store_user_store(struct kmem_cache *s,
4101 const char *buf, size_t length)
4102{
4103 if (any_slab_objects(s))
4104 return -EBUSY;
4105
4106 s->flags &= ~SLAB_STORE_USER;
4107 if (buf[0] == '1')
4108 s->flags |= SLAB_STORE_USER;
06b285dc 4109 calculate_sizes(s, -1);
81819f0f
CL
4110 return length;
4111}
4112SLAB_ATTR(store_user);
4113
53e15af0
CL
4114static ssize_t validate_show(struct kmem_cache *s, char *buf)
4115{
4116 return 0;
4117}
4118
4119static ssize_t validate_store(struct kmem_cache *s,
4120 const char *buf, size_t length)
4121{
434e245d
CL
4122 int ret = -EINVAL;
4123
4124 if (buf[0] == '1') {
4125 ret = validate_slab_cache(s);
4126 if (ret >= 0)
4127 ret = length;
4128 }
4129 return ret;
53e15af0
CL
4130}
4131SLAB_ATTR(validate);
4132
2086d26a
CL
4133static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4134{
4135 return 0;
4136}
4137
4138static ssize_t shrink_store(struct kmem_cache *s,
4139 const char *buf, size_t length)
4140{
4141 if (buf[0] == '1') {
4142 int rc = kmem_cache_shrink(s);
4143
4144 if (rc)
4145 return rc;
4146 } else
4147 return -EINVAL;
4148 return length;
4149}
4150SLAB_ATTR(shrink);
4151
88a420e4
CL
4152static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4153{
4154 if (!(s->flags & SLAB_STORE_USER))
4155 return -ENOSYS;
4156 return list_locations(s, buf, TRACK_ALLOC);
4157}
4158SLAB_ATTR_RO(alloc_calls);
4159
4160static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4161{
4162 if (!(s->flags & SLAB_STORE_USER))
4163 return -ENOSYS;
4164 return list_locations(s, buf, TRACK_FREE);
4165}
4166SLAB_ATTR_RO(free_calls);
4167
81819f0f 4168#ifdef CONFIG_NUMA
9824601e 4169static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4170{
9824601e 4171 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4172}
4173
9824601e 4174static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4175 const char *buf, size_t length)
4176{
0121c619
CL
4177 unsigned long ratio;
4178 int err;
4179
4180 err = strict_strtoul(buf, 10, &ratio);
4181 if (err)
4182 return err;
4183
e2cb96b7 4184 if (ratio <= 100)
0121c619 4185 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4186
81819f0f
CL
4187 return length;
4188}
9824601e 4189SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4190#endif
4191
8ff12cfc 4192#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4193static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4194{
4195 unsigned long sum = 0;
4196 int cpu;
4197 int len;
4198 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4199
4200 if (!data)
4201 return -ENOMEM;
4202
4203 for_each_online_cpu(cpu) {
9dfc6e68 4204 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4205
4206 data[cpu] = x;
4207 sum += x;
4208 }
4209
4210 len = sprintf(buf, "%lu", sum);
4211
50ef37b9 4212#ifdef CONFIG_SMP
8ff12cfc
CL
4213 for_each_online_cpu(cpu) {
4214 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4215 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4216 }
50ef37b9 4217#endif
8ff12cfc
CL
4218 kfree(data);
4219 return len + sprintf(buf + len, "\n");
4220}
4221
78eb00cc
DR
4222static void clear_stat(struct kmem_cache *s, enum stat_item si)
4223{
4224 int cpu;
4225
4226 for_each_online_cpu(cpu)
9dfc6e68 4227 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4228}
4229
8ff12cfc
CL
4230#define STAT_ATTR(si, text) \
4231static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4232{ \
4233 return show_stat(s, buf, si); \
4234} \
78eb00cc
DR
4235static ssize_t text##_store(struct kmem_cache *s, \
4236 const char *buf, size_t length) \
4237{ \
4238 if (buf[0] != '0') \
4239 return -EINVAL; \
4240 clear_stat(s, si); \
4241 return length; \
4242} \
4243SLAB_ATTR(text); \
8ff12cfc
CL
4244
4245STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4246STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4247STAT_ATTR(FREE_FASTPATH, free_fastpath);
4248STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4249STAT_ATTR(FREE_FROZEN, free_frozen);
4250STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4251STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4252STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4253STAT_ATTR(ALLOC_SLAB, alloc_slab);
4254STAT_ATTR(ALLOC_REFILL, alloc_refill);
4255STAT_ATTR(FREE_SLAB, free_slab);
4256STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4257STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4258STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4259STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4260STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4261STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
65c3376a 4262STAT_ATTR(ORDER_FALLBACK, order_fallback);
8ff12cfc
CL
4263#endif
4264
06428780 4265static struct attribute *slab_attrs[] = {
81819f0f
CL
4266 &slab_size_attr.attr,
4267 &object_size_attr.attr,
4268 &objs_per_slab_attr.attr,
4269 &order_attr.attr,
73d342b1 4270 &min_partial_attr.attr,
81819f0f 4271 &objects_attr.attr,
205ab99d
CL
4272 &objects_partial_attr.attr,
4273 &total_objects_attr.attr,
81819f0f
CL
4274 &slabs_attr.attr,
4275 &partial_attr.attr,
4276 &cpu_slabs_attr.attr,
4277 &ctor_attr.attr,
81819f0f
CL
4278 &aliases_attr.attr,
4279 &align_attr.attr,
4280 &sanity_checks_attr.attr,
4281 &trace_attr.attr,
4282 &hwcache_align_attr.attr,
4283 &reclaim_account_attr.attr,
4284 &destroy_by_rcu_attr.attr,
4285 &red_zone_attr.attr,
4286 &poison_attr.attr,
4287 &store_user_attr.attr,
53e15af0 4288 &validate_attr.attr,
2086d26a 4289 &shrink_attr.attr,
88a420e4
CL
4290 &alloc_calls_attr.attr,
4291 &free_calls_attr.attr,
81819f0f
CL
4292#ifdef CONFIG_ZONE_DMA
4293 &cache_dma_attr.attr,
4294#endif
4295#ifdef CONFIG_NUMA
9824601e 4296 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4297#endif
4298#ifdef CONFIG_SLUB_STATS
4299 &alloc_fastpath_attr.attr,
4300 &alloc_slowpath_attr.attr,
4301 &free_fastpath_attr.attr,
4302 &free_slowpath_attr.attr,
4303 &free_frozen_attr.attr,
4304 &free_add_partial_attr.attr,
4305 &free_remove_partial_attr.attr,
4306 &alloc_from_partial_attr.attr,
4307 &alloc_slab_attr.attr,
4308 &alloc_refill_attr.attr,
4309 &free_slab_attr.attr,
4310 &cpuslab_flush_attr.attr,
4311 &deactivate_full_attr.attr,
4312 &deactivate_empty_attr.attr,
4313 &deactivate_to_head_attr.attr,
4314 &deactivate_to_tail_attr.attr,
4315 &deactivate_remote_frees_attr.attr,
65c3376a 4316 &order_fallback_attr.attr,
81819f0f
CL
4317#endif
4318 NULL
4319};
4320
4321static struct attribute_group slab_attr_group = {
4322 .attrs = slab_attrs,
4323};
4324
4325static ssize_t slab_attr_show(struct kobject *kobj,
4326 struct attribute *attr,
4327 char *buf)
4328{
4329 struct slab_attribute *attribute;
4330 struct kmem_cache *s;
4331 int err;
4332
4333 attribute = to_slab_attr(attr);
4334 s = to_slab(kobj);
4335
4336 if (!attribute->show)
4337 return -EIO;
4338
4339 err = attribute->show(s, buf);
4340
4341 return err;
4342}
4343
4344static ssize_t slab_attr_store(struct kobject *kobj,
4345 struct attribute *attr,
4346 const char *buf, size_t len)
4347{
4348 struct slab_attribute *attribute;
4349 struct kmem_cache *s;
4350 int err;
4351
4352 attribute = to_slab_attr(attr);
4353 s = to_slab(kobj);
4354
4355 if (!attribute->store)
4356 return -EIO;
4357
4358 err = attribute->store(s, buf, len);
4359
4360 return err;
4361}
4362
151c602f
CL
4363static void kmem_cache_release(struct kobject *kobj)
4364{
4365 struct kmem_cache *s = to_slab(kobj);
4366
4367 kfree(s);
4368}
4369
81819f0f
CL
4370static struct sysfs_ops slab_sysfs_ops = {
4371 .show = slab_attr_show,
4372 .store = slab_attr_store,
4373};
4374
4375static struct kobj_type slab_ktype = {
4376 .sysfs_ops = &slab_sysfs_ops,
151c602f 4377 .release = kmem_cache_release
81819f0f
CL
4378};
4379
4380static int uevent_filter(struct kset *kset, struct kobject *kobj)
4381{
4382 struct kobj_type *ktype = get_ktype(kobj);
4383
4384 if (ktype == &slab_ktype)
4385 return 1;
4386 return 0;
4387}
4388
4389static struct kset_uevent_ops slab_uevent_ops = {
4390 .filter = uevent_filter,
4391};
4392
27c3a314 4393static struct kset *slab_kset;
81819f0f
CL
4394
4395#define ID_STR_LENGTH 64
4396
4397/* Create a unique string id for a slab cache:
6446faa2
CL
4398 *
4399 * Format :[flags-]size
81819f0f
CL
4400 */
4401static char *create_unique_id(struct kmem_cache *s)
4402{
4403 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4404 char *p = name;
4405
4406 BUG_ON(!name);
4407
4408 *p++ = ':';
4409 /*
4410 * First flags affecting slabcache operations. We will only
4411 * get here for aliasable slabs so we do not need to support
4412 * too many flags. The flags here must cover all flags that
4413 * are matched during merging to guarantee that the id is
4414 * unique.
4415 */
4416 if (s->flags & SLAB_CACHE_DMA)
4417 *p++ = 'd';
4418 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4419 *p++ = 'a';
4420 if (s->flags & SLAB_DEBUG_FREE)
4421 *p++ = 'F';
5a896d9e
VN
4422 if (!(s->flags & SLAB_NOTRACK))
4423 *p++ = 't';
81819f0f
CL
4424 if (p != name + 1)
4425 *p++ = '-';
4426 p += sprintf(p, "%07d", s->size);
4427 BUG_ON(p > name + ID_STR_LENGTH - 1);
4428 return name;
4429}
4430
4431static int sysfs_slab_add(struct kmem_cache *s)
4432{
4433 int err;
4434 const char *name;
4435 int unmergeable;
4436
4437 if (slab_state < SYSFS)
4438 /* Defer until later */
4439 return 0;
4440
4441 unmergeable = slab_unmergeable(s);
4442 if (unmergeable) {
4443 /*
4444 * Slabcache can never be merged so we can use the name proper.
4445 * This is typically the case for debug situations. In that
4446 * case we can catch duplicate names easily.
4447 */
27c3a314 4448 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4449 name = s->name;
4450 } else {
4451 /*
4452 * Create a unique name for the slab as a target
4453 * for the symlinks.
4454 */
4455 name = create_unique_id(s);
4456 }
4457
27c3a314 4458 s->kobj.kset = slab_kset;
1eada11c
GKH
4459 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4460 if (err) {
4461 kobject_put(&s->kobj);
81819f0f 4462 return err;
1eada11c 4463 }
81819f0f
CL
4464
4465 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
4466 if (err) {
4467 kobject_del(&s->kobj);
4468 kobject_put(&s->kobj);
81819f0f 4469 return err;
5788d8ad 4470 }
81819f0f
CL
4471 kobject_uevent(&s->kobj, KOBJ_ADD);
4472 if (!unmergeable) {
4473 /* Setup first alias */
4474 sysfs_slab_alias(s, s->name);
4475 kfree(name);
4476 }
4477 return 0;
4478}
4479
4480static void sysfs_slab_remove(struct kmem_cache *s)
4481{
4482 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4483 kobject_del(&s->kobj);
151c602f 4484 kobject_put(&s->kobj);
81819f0f
CL
4485}
4486
4487/*
4488 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 4489 * available lest we lose that information.
81819f0f
CL
4490 */
4491struct saved_alias {
4492 struct kmem_cache *s;
4493 const char *name;
4494 struct saved_alias *next;
4495};
4496
5af328a5 4497static struct saved_alias *alias_list;
81819f0f
CL
4498
4499static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4500{
4501 struct saved_alias *al;
4502
4503 if (slab_state == SYSFS) {
4504 /*
4505 * If we have a leftover link then remove it.
4506 */
27c3a314
GKH
4507 sysfs_remove_link(&slab_kset->kobj, name);
4508 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4509 }
4510
4511 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4512 if (!al)
4513 return -ENOMEM;
4514
4515 al->s = s;
4516 al->name = name;
4517 al->next = alias_list;
4518 alias_list = al;
4519 return 0;
4520}
4521
4522static int __init slab_sysfs_init(void)
4523{
5b95a4ac 4524 struct kmem_cache *s;
81819f0f
CL
4525 int err;
4526
0ff21e46 4527 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4528 if (!slab_kset) {
81819f0f
CL
4529 printk(KERN_ERR "Cannot register slab subsystem.\n");
4530 return -ENOSYS;
4531 }
4532
26a7bd03
CL
4533 slab_state = SYSFS;
4534
5b95a4ac 4535 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4536 err = sysfs_slab_add(s);
5d540fb7
CL
4537 if (err)
4538 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4539 " to sysfs\n", s->name);
26a7bd03 4540 }
81819f0f
CL
4541
4542 while (alias_list) {
4543 struct saved_alias *al = alias_list;
4544
4545 alias_list = alias_list->next;
4546 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4547 if (err)
4548 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4549 " %s to sysfs\n", s->name);
81819f0f
CL
4550 kfree(al);
4551 }
4552
4553 resiliency_test();
4554 return 0;
4555}
4556
4557__initcall(slab_sysfs_init);
81819f0f 4558#endif
57ed3eda
PE
4559
4560/*
4561 * The /proc/slabinfo ABI
4562 */
158a9624 4563#ifdef CONFIG_SLABINFO
57ed3eda
PE
4564static void print_slabinfo_header(struct seq_file *m)
4565{
4566 seq_puts(m, "slabinfo - version: 2.1\n");
4567 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4568 "<objperslab> <pagesperslab>");
4569 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4570 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4571 seq_putc(m, '\n');
4572}
4573
4574static void *s_start(struct seq_file *m, loff_t *pos)
4575{
4576 loff_t n = *pos;
4577
4578 down_read(&slub_lock);
4579 if (!n)
4580 print_slabinfo_header(m);
4581
4582 return seq_list_start(&slab_caches, *pos);
4583}
4584
4585static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4586{
4587 return seq_list_next(p, &slab_caches, pos);
4588}
4589
4590static void s_stop(struct seq_file *m, void *p)
4591{
4592 up_read(&slub_lock);
4593}
4594
4595static int s_show(struct seq_file *m, void *p)
4596{
4597 unsigned long nr_partials = 0;
4598 unsigned long nr_slabs = 0;
4599 unsigned long nr_inuse = 0;
205ab99d
CL
4600 unsigned long nr_objs = 0;
4601 unsigned long nr_free = 0;
57ed3eda
PE
4602 struct kmem_cache *s;
4603 int node;
4604
4605 s = list_entry(p, struct kmem_cache, list);
4606
4607 for_each_online_node(node) {
4608 struct kmem_cache_node *n = get_node(s, node);
4609
4610 if (!n)
4611 continue;
4612
4613 nr_partials += n->nr_partial;
4614 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
4615 nr_objs += atomic_long_read(&n->total_objects);
4616 nr_free += count_partial(n, count_free);
57ed3eda
PE
4617 }
4618
205ab99d 4619 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
4620
4621 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
4622 nr_objs, s->size, oo_objects(s->oo),
4623 (1 << oo_order(s->oo)));
57ed3eda
PE
4624 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4625 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4626 0UL);
4627 seq_putc(m, '\n');
4628 return 0;
4629}
4630
7b3c3a50 4631static const struct seq_operations slabinfo_op = {
57ed3eda
PE
4632 .start = s_start,
4633 .next = s_next,
4634 .stop = s_stop,
4635 .show = s_show,
4636};
4637
7b3c3a50
AD
4638static int slabinfo_open(struct inode *inode, struct file *file)
4639{
4640 return seq_open(file, &slabinfo_op);
4641}
4642
4643static const struct file_operations proc_slabinfo_operations = {
4644 .open = slabinfo_open,
4645 .read = seq_read,
4646 .llseek = seq_lseek,
4647 .release = seq_release,
4648};
4649
4650static int __init slab_proc_init(void)
4651{
cf5d1131 4652 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
4653 return 0;
4654}
4655module_init(slab_proc_init);
158a9624 4656#endif /* CONFIG_SLABINFO */