slab: use print_hex_dump
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
7b3c3a50 19#include <linux/proc_fs.h>
81819f0f 20#include <linux/seq_file.h>
5a896d9e 21#include <linux/kmemcheck.h>
81819f0f
CL
22#include <linux/cpu.h>
23#include <linux/cpuset.h>
24#include <linux/mempolicy.h>
25#include <linux/ctype.h>
3ac7fe5a 26#include <linux/debugobjects.h>
81819f0f 27#include <linux/kallsyms.h>
b9049e23 28#include <linux/memory.h>
f8bd2258 29#include <linux/math64.h>
773ff60e 30#include <linux/fault-inject.h>
bfa71457 31#include <linux/stacktrace.h>
81819f0f 32
4a92379b
RK
33#include <trace/events/kmem.h>
34
81819f0f
CL
35/*
36 * Lock order:
881db7fb
CL
37 * 1. slub_lock (Global Semaphore)
38 * 2. node->list_lock
39 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 40 *
881db7fb
CL
41 * slub_lock
42 *
43 * The role of the slub_lock is to protect the list of all the slabs
44 * and to synchronize major metadata changes to slab cache structures.
45 *
46 * The slab_lock is only used for debugging and on arches that do not
47 * have the ability to do a cmpxchg_double. It only protects the second
48 * double word in the page struct. Meaning
49 * A. page->freelist -> List of object free in a page
50 * B. page->counters -> Counters of objects
51 * C. page->frozen -> frozen state
52 *
53 * If a slab is frozen then it is exempt from list management. It is not
54 * on any list. The processor that froze the slab is the one who can
55 * perform list operations on the page. Other processors may put objects
56 * onto the freelist but the processor that froze the slab is the only
57 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
58 *
59 * The list_lock protects the partial and full list on each node and
60 * the partial slab counter. If taken then no new slabs may be added or
61 * removed from the lists nor make the number of partial slabs be modified.
62 * (Note that the total number of slabs is an atomic value that may be
63 * modified without taking the list lock).
64 *
65 * The list_lock is a centralized lock and thus we avoid taking it as
66 * much as possible. As long as SLUB does not have to handle partial
67 * slabs, operations can continue without any centralized lock. F.e.
68 * allocating a long series of objects that fill up slabs does not require
69 * the list lock.
81819f0f
CL
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
672bba3a
CL
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 80 * freed then the slab will show up again on the partial lists.
672bba3a
CL
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
81819f0f
CL
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
4b6f0750
CL
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
98 *
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
dfb4f096 102 * freelist that allows lockless access to
894b8788
CL
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
81819f0f
CL
105 *
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
894b8788 108 * the fast path and disables lockless freelists.
81819f0f
CL
109 */
110
af537b0a
CL
111#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
113
114static inline int kmem_cache_debug(struct kmem_cache *s)
115{
5577bd8a 116#ifdef CONFIG_SLUB_DEBUG
af537b0a 117 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 118#else
af537b0a 119 return 0;
5577bd8a 120#endif
af537b0a 121}
5577bd8a 122
81819f0f
CL
123/*
124 * Issues still to be resolved:
125 *
81819f0f
CL
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127 *
81819f0f
CL
128 * - Variable sizing of the per node arrays
129 */
130
131/* Enable to test recovery from slab corruption on boot */
132#undef SLUB_RESILIENCY_TEST
133
b789ef51
CL
134/* Enable to log cmpxchg failures */
135#undef SLUB_DEBUG_CMPXCHG
136
2086d26a
CL
137/*
138 * Mininum number of partial slabs. These will be left on the partial
139 * lists even if they are empty. kmem_cache_shrink may reclaim them.
140 */
76be8950 141#define MIN_PARTIAL 5
e95eed57 142
2086d26a
CL
143/*
144 * Maximum number of desirable partial slabs.
145 * The existence of more partial slabs makes kmem_cache_shrink
146 * sort the partial list by the number of objects in the.
147 */
148#define MAX_PARTIAL 10
149
81819f0f
CL
150#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
151 SLAB_POISON | SLAB_STORE_USER)
672bba3a 152
fa5ec8a1 153/*
3de47213
DR
154 * Debugging flags that require metadata to be stored in the slab. These get
155 * disabled when slub_debug=O is used and a cache's min order increases with
156 * metadata.
fa5ec8a1 157 */
3de47213 158#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 159
81819f0f
CL
160/*
161 * Set of flags that will prevent slab merging
162 */
163#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
164 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
165 SLAB_FAILSLAB)
81819f0f
CL
166
167#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 168 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 169
210b5c06
CG
170#define OO_SHIFT 16
171#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 172#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 173
81819f0f 174/* Internal SLUB flags */
f90ec390 175#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 176#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f
CL
177
178static int kmem_size = sizeof(struct kmem_cache);
179
180#ifdef CONFIG_SMP
181static struct notifier_block slab_notifier;
182#endif
183
184static enum {
185 DOWN, /* No slab functionality available */
51df1142 186 PARTIAL, /* Kmem_cache_node works */
672bba3a 187 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
188 SYSFS /* Sysfs up */
189} slab_state = DOWN;
190
191/* A list of all slab caches on the system */
192static DECLARE_RWSEM(slub_lock);
5af328a5 193static LIST_HEAD(slab_caches);
81819f0f 194
02cbc874
CL
195/*
196 * Tracking user of a slab.
197 */
d6543e39 198#define TRACK_ADDRS_COUNT 16
02cbc874 199struct track {
ce71e27c 200 unsigned long addr; /* Called from address */
d6543e39
BG
201#ifdef CONFIG_STACKTRACE
202 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
203#endif
02cbc874
CL
204 int cpu; /* Was running on cpu */
205 int pid; /* Pid context */
206 unsigned long when; /* When did the operation occur */
207};
208
209enum track_item { TRACK_ALLOC, TRACK_FREE };
210
ab4d5ed5 211#ifdef CONFIG_SYSFS
81819f0f
CL
212static int sysfs_slab_add(struct kmem_cache *);
213static int sysfs_slab_alias(struct kmem_cache *, const char *);
214static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 215
81819f0f 216#else
0c710013
CL
217static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
218static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
219 { return 0; }
151c602f
CL
220static inline void sysfs_slab_remove(struct kmem_cache *s)
221{
84c1cf62 222 kfree(s->name);
151c602f
CL
223 kfree(s);
224}
8ff12cfc 225
81819f0f
CL
226#endif
227
4fdccdfb 228static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
229{
230#ifdef CONFIG_SLUB_STATS
84e554e6 231 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
232#endif
233}
234
81819f0f
CL
235/********************************************************************
236 * Core slab cache functions
237 *******************************************************************/
238
239int slab_is_available(void)
240{
241 return slab_state >= UP;
242}
243
244static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
245{
81819f0f 246 return s->node[node];
81819f0f
CL
247}
248
6446faa2 249/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
250static inline int check_valid_pointer(struct kmem_cache *s,
251 struct page *page, const void *object)
252{
253 void *base;
254
a973e9dd 255 if (!object)
02cbc874
CL
256 return 1;
257
a973e9dd 258 base = page_address(page);
39b26464 259 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
260 (object - base) % s->size) {
261 return 0;
262 }
263
264 return 1;
265}
266
7656c72b
CL
267static inline void *get_freepointer(struct kmem_cache *s, void *object)
268{
269 return *(void **)(object + s->offset);
270}
271
1393d9a1
CL
272static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
273{
274 void *p;
275
276#ifdef CONFIG_DEBUG_PAGEALLOC
277 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
278#else
279 p = get_freepointer(s, object);
280#endif
281 return p;
282}
283
7656c72b
CL
284static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
285{
286 *(void **)(object + s->offset) = fp;
287}
288
289/* Loop over all objects in a slab */
224a88be
CL
290#define for_each_object(__p, __s, __addr, __objects) \
291 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
292 __p += (__s)->size)
293
7656c72b
CL
294/* Determine object index from a given position */
295static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
296{
297 return (p - addr) / s->size;
298}
299
d71f606f
MK
300static inline size_t slab_ksize(const struct kmem_cache *s)
301{
302#ifdef CONFIG_SLUB_DEBUG
303 /*
304 * Debugging requires use of the padding between object
305 * and whatever may come after it.
306 */
307 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
308 return s->objsize;
309
310#endif
311 /*
312 * If we have the need to store the freelist pointer
313 * back there or track user information then we can
314 * only use the space before that information.
315 */
316 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
317 return s->inuse;
318 /*
319 * Else we can use all the padding etc for the allocation
320 */
321 return s->size;
322}
323
ab9a0f19
LJ
324static inline int order_objects(int order, unsigned long size, int reserved)
325{
326 return ((PAGE_SIZE << order) - reserved) / size;
327}
328
834f3d11 329static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 330 unsigned long size, int reserved)
834f3d11
CL
331{
332 struct kmem_cache_order_objects x = {
ab9a0f19 333 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
334 };
335
336 return x;
337}
338
339static inline int oo_order(struct kmem_cache_order_objects x)
340{
210b5c06 341 return x.x >> OO_SHIFT;
834f3d11
CL
342}
343
344static inline int oo_objects(struct kmem_cache_order_objects x)
345{
210b5c06 346 return x.x & OO_MASK;
834f3d11
CL
347}
348
881db7fb
CL
349/*
350 * Per slab locking using the pagelock
351 */
352static __always_inline void slab_lock(struct page *page)
353{
354 bit_spin_lock(PG_locked, &page->flags);
355}
356
357static __always_inline void slab_unlock(struct page *page)
358{
359 __bit_spin_unlock(PG_locked, &page->flags);
360}
361
1d07171c
CL
362/* Interrupts must be disabled (for the fallback code to work right) */
363static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
364 void *freelist_old, unsigned long counters_old,
365 void *freelist_new, unsigned long counters_new,
366 const char *n)
367{
368 VM_BUG_ON(!irqs_disabled());
369#ifdef CONFIG_CMPXCHG_DOUBLE
370 if (s->flags & __CMPXCHG_DOUBLE) {
371 if (cmpxchg_double(&page->freelist,
372 freelist_old, counters_old,
373 freelist_new, counters_new))
374 return 1;
375 } else
376#endif
377 {
378 slab_lock(page);
379 if (page->freelist == freelist_old && page->counters == counters_old) {
380 page->freelist = freelist_new;
381 page->counters = counters_new;
382 slab_unlock(page);
383 return 1;
384 }
385 slab_unlock(page);
386 }
387
388 cpu_relax();
389 stat(s, CMPXCHG_DOUBLE_FAIL);
390
391#ifdef SLUB_DEBUG_CMPXCHG
392 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
393#endif
394
395 return 0;
396}
397
b789ef51
CL
398static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
399 void *freelist_old, unsigned long counters_old,
400 void *freelist_new, unsigned long counters_new,
401 const char *n)
402{
403#ifdef CONFIG_CMPXCHG_DOUBLE
404 if (s->flags & __CMPXCHG_DOUBLE) {
405 if (cmpxchg_double(&page->freelist,
406 freelist_old, counters_old,
407 freelist_new, counters_new))
408 return 1;
409 } else
410#endif
411 {
1d07171c
CL
412 unsigned long flags;
413
414 local_irq_save(flags);
881db7fb 415 slab_lock(page);
b789ef51
CL
416 if (page->freelist == freelist_old && page->counters == counters_old) {
417 page->freelist = freelist_new;
418 page->counters = counters_new;
881db7fb 419 slab_unlock(page);
1d07171c 420 local_irq_restore(flags);
b789ef51
CL
421 return 1;
422 }
881db7fb 423 slab_unlock(page);
1d07171c 424 local_irq_restore(flags);
b789ef51
CL
425 }
426
427 cpu_relax();
428 stat(s, CMPXCHG_DOUBLE_FAIL);
429
430#ifdef SLUB_DEBUG_CMPXCHG
431 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
432#endif
433
434 return 0;
435}
436
41ecc55b 437#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
438/*
439 * Determine a map of object in use on a page.
440 *
881db7fb 441 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
442 * not vanish from under us.
443 */
444static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
445{
446 void *p;
447 void *addr = page_address(page);
448
449 for (p = page->freelist; p; p = get_freepointer(s, p))
450 set_bit(slab_index(p, s, addr), map);
451}
452
41ecc55b
CL
453/*
454 * Debug settings:
455 */
f0630fff
CL
456#ifdef CONFIG_SLUB_DEBUG_ON
457static int slub_debug = DEBUG_DEFAULT_FLAGS;
458#else
41ecc55b 459static int slub_debug;
f0630fff 460#endif
41ecc55b
CL
461
462static char *slub_debug_slabs;
fa5ec8a1 463static int disable_higher_order_debug;
41ecc55b 464
81819f0f
CL
465/*
466 * Object debugging
467 */
468static void print_section(char *text, u8 *addr, unsigned int length)
469{
470 int i, offset;
471 int newline = 1;
472 char ascii[17];
473
474 ascii[16] = 0;
475
476 for (i = 0; i < length; i++) {
477 if (newline) {
24922684 478 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
479 newline = 0;
480 }
06428780 481 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
482 offset = i % 16;
483 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
484 if (offset == 15) {
06428780 485 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
486 newline = 1;
487 }
488 }
489 if (!newline) {
490 i %= 16;
491 while (i < 16) {
06428780 492 printk(KERN_CONT " ");
81819f0f
CL
493 ascii[i] = ' ';
494 i++;
495 }
06428780 496 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
497 }
498}
499
81819f0f
CL
500static struct track *get_track(struct kmem_cache *s, void *object,
501 enum track_item alloc)
502{
503 struct track *p;
504
505 if (s->offset)
506 p = object + s->offset + sizeof(void *);
507 else
508 p = object + s->inuse;
509
510 return p + alloc;
511}
512
513static void set_track(struct kmem_cache *s, void *object,
ce71e27c 514 enum track_item alloc, unsigned long addr)
81819f0f 515{
1a00df4a 516 struct track *p = get_track(s, object, alloc);
81819f0f 517
81819f0f 518 if (addr) {
d6543e39
BG
519#ifdef CONFIG_STACKTRACE
520 struct stack_trace trace;
521 int i;
522
523 trace.nr_entries = 0;
524 trace.max_entries = TRACK_ADDRS_COUNT;
525 trace.entries = p->addrs;
526 trace.skip = 3;
527 save_stack_trace(&trace);
528
529 /* See rant in lockdep.c */
530 if (trace.nr_entries != 0 &&
531 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
532 trace.nr_entries--;
533
534 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
535 p->addrs[i] = 0;
536#endif
81819f0f
CL
537 p->addr = addr;
538 p->cpu = smp_processor_id();
88e4ccf2 539 p->pid = current->pid;
81819f0f
CL
540 p->when = jiffies;
541 } else
542 memset(p, 0, sizeof(struct track));
543}
544
81819f0f
CL
545static void init_tracking(struct kmem_cache *s, void *object)
546{
24922684
CL
547 if (!(s->flags & SLAB_STORE_USER))
548 return;
549
ce71e27c
EGM
550 set_track(s, object, TRACK_FREE, 0UL);
551 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
552}
553
554static void print_track(const char *s, struct track *t)
555{
556 if (!t->addr)
557 return;
558
7daf705f 559 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 560 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
561#ifdef CONFIG_STACKTRACE
562 {
563 int i;
564 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
565 if (t->addrs[i])
566 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
567 else
568 break;
569 }
570#endif
24922684
CL
571}
572
573static void print_tracking(struct kmem_cache *s, void *object)
574{
575 if (!(s->flags & SLAB_STORE_USER))
576 return;
577
578 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
579 print_track("Freed", get_track(s, object, TRACK_FREE));
580}
581
582static void print_page_info(struct page *page)
583{
39b26464
CL
584 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
585 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
586
587}
588
589static void slab_bug(struct kmem_cache *s, char *fmt, ...)
590{
591 va_list args;
592 char buf[100];
593
594 va_start(args, fmt);
595 vsnprintf(buf, sizeof(buf), fmt, args);
596 va_end(args);
597 printk(KERN_ERR "========================================"
598 "=====================================\n");
599 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
600 printk(KERN_ERR "----------------------------------------"
601 "-------------------------------------\n\n");
81819f0f
CL
602}
603
24922684
CL
604static void slab_fix(struct kmem_cache *s, char *fmt, ...)
605{
606 va_list args;
607 char buf[100];
608
609 va_start(args, fmt);
610 vsnprintf(buf, sizeof(buf), fmt, args);
611 va_end(args);
612 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
613}
614
615static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
616{
617 unsigned int off; /* Offset of last byte */
a973e9dd 618 u8 *addr = page_address(page);
24922684
CL
619
620 print_tracking(s, p);
621
622 print_page_info(page);
623
624 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
625 p, p - addr, get_freepointer(s, p));
626
627 if (p > addr + 16)
628 print_section("Bytes b4", p - 16, 16);
629
0ebd652b 630 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
81819f0f
CL
631
632 if (s->flags & SLAB_RED_ZONE)
633 print_section("Redzone", p + s->objsize,
634 s->inuse - s->objsize);
635
81819f0f
CL
636 if (s->offset)
637 off = s->offset + sizeof(void *);
638 else
639 off = s->inuse;
640
24922684 641 if (s->flags & SLAB_STORE_USER)
81819f0f 642 off += 2 * sizeof(struct track);
81819f0f
CL
643
644 if (off != s->size)
645 /* Beginning of the filler is the free pointer */
24922684
CL
646 print_section("Padding", p + off, s->size - off);
647
648 dump_stack();
81819f0f
CL
649}
650
651static void object_err(struct kmem_cache *s, struct page *page,
652 u8 *object, char *reason)
653{
3dc50637 654 slab_bug(s, "%s", reason);
24922684 655 print_trailer(s, page, object);
81819f0f
CL
656}
657
24922684 658static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
659{
660 va_list args;
661 char buf[100];
662
24922684
CL
663 va_start(args, fmt);
664 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 665 va_end(args);
3dc50637 666 slab_bug(s, "%s", buf);
24922684 667 print_page_info(page);
81819f0f
CL
668 dump_stack();
669}
670
f7cb1933 671static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
672{
673 u8 *p = object;
674
675 if (s->flags & __OBJECT_POISON) {
676 memset(p, POISON_FREE, s->objsize - 1);
06428780 677 p[s->objsize - 1] = POISON_END;
81819f0f
CL
678 }
679
680 if (s->flags & SLAB_RED_ZONE)
f7cb1933 681 memset(p + s->objsize, val, s->inuse - s->objsize);
81819f0f
CL
682}
683
c4089f98 684static u8 *check_bytes8(u8 *start, u8 value, unsigned int bytes)
81819f0f
CL
685{
686 while (bytes) {
c4089f98 687 if (*start != value)
24922684 688 return start;
81819f0f
CL
689 start++;
690 bytes--;
691 }
24922684
CL
692 return NULL;
693}
694
c4089f98
MS
695static u8 *check_bytes(u8 *start, u8 value, unsigned int bytes)
696{
697 u64 value64;
698 unsigned int words, prefix;
699
700 if (bytes <= 16)
701 return check_bytes8(start, value, bytes);
702
703 value64 = value | value << 8 | value << 16 | value << 24;
704 value64 = value64 | value64 << 32;
705 prefix = 8 - ((unsigned long)start) % 8;
706
707 if (prefix) {
708 u8 *r = check_bytes8(start, value, prefix);
709 if (r)
710 return r;
711 start += prefix;
712 bytes -= prefix;
713 }
714
715 words = bytes / 8;
716
717 while (words) {
718 if (*(u64 *)start != value64)
719 return check_bytes8(start, value, 8);
720 start += 8;
721 words--;
722 }
723
724 return check_bytes8(start, value, bytes % 8);
725}
726
24922684
CL
727static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
728 void *from, void *to)
729{
730 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
731 memset(from, data, to - from);
732}
733
734static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
735 u8 *object, char *what,
06428780 736 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
737{
738 u8 *fault;
739 u8 *end;
740
741 fault = check_bytes(start, value, bytes);
742 if (!fault)
743 return 1;
744
745 end = start + bytes;
746 while (end > fault && end[-1] == value)
747 end--;
748
749 slab_bug(s, "%s overwritten", what);
750 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
751 fault, end - 1, fault[0], value);
752 print_trailer(s, page, object);
753
754 restore_bytes(s, what, value, fault, end);
755 return 0;
81819f0f
CL
756}
757
81819f0f
CL
758/*
759 * Object layout:
760 *
761 * object address
762 * Bytes of the object to be managed.
763 * If the freepointer may overlay the object then the free
764 * pointer is the first word of the object.
672bba3a 765 *
81819f0f
CL
766 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
767 * 0xa5 (POISON_END)
768 *
769 * object + s->objsize
770 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
771 * Padding is extended by another word if Redzoning is enabled and
772 * objsize == inuse.
773 *
81819f0f
CL
774 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
775 * 0xcc (RED_ACTIVE) for objects in use.
776 *
777 * object + s->inuse
672bba3a
CL
778 * Meta data starts here.
779 *
81819f0f
CL
780 * A. Free pointer (if we cannot overwrite object on free)
781 * B. Tracking data for SLAB_STORE_USER
672bba3a 782 * C. Padding to reach required alignment boundary or at mininum
6446faa2 783 * one word if debugging is on to be able to detect writes
672bba3a
CL
784 * before the word boundary.
785 *
786 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
787 *
788 * object + s->size
672bba3a 789 * Nothing is used beyond s->size.
81819f0f 790 *
672bba3a
CL
791 * If slabcaches are merged then the objsize and inuse boundaries are mostly
792 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
793 * may be used with merged slabcaches.
794 */
795
81819f0f
CL
796static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
797{
798 unsigned long off = s->inuse; /* The end of info */
799
800 if (s->offset)
801 /* Freepointer is placed after the object. */
802 off += sizeof(void *);
803
804 if (s->flags & SLAB_STORE_USER)
805 /* We also have user information there */
806 off += 2 * sizeof(struct track);
807
808 if (s->size == off)
809 return 1;
810
24922684
CL
811 return check_bytes_and_report(s, page, p, "Object padding",
812 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
813}
814
39b26464 815/* Check the pad bytes at the end of a slab page */
81819f0f
CL
816static int slab_pad_check(struct kmem_cache *s, struct page *page)
817{
24922684
CL
818 u8 *start;
819 u8 *fault;
820 u8 *end;
821 int length;
822 int remainder;
81819f0f
CL
823
824 if (!(s->flags & SLAB_POISON))
825 return 1;
826
a973e9dd 827 start = page_address(page);
ab9a0f19 828 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
829 end = start + length;
830 remainder = length % s->size;
81819f0f
CL
831 if (!remainder)
832 return 1;
833
39b26464 834 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
835 if (!fault)
836 return 1;
837 while (end > fault && end[-1] == POISON_INUSE)
838 end--;
839
840 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 841 print_section("Padding", end - remainder, remainder);
24922684 842
8a3d271d 843 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 844 return 0;
81819f0f
CL
845}
846
847static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 848 void *object, u8 val)
81819f0f
CL
849{
850 u8 *p = object;
851 u8 *endobject = object + s->objsize;
852
853 if (s->flags & SLAB_RED_ZONE) {
24922684 854 if (!check_bytes_and_report(s, page, object, "Redzone",
f7cb1933 855 endobject, val, s->inuse - s->objsize))
81819f0f 856 return 0;
81819f0f 857 } else {
3adbefee
IM
858 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
859 check_bytes_and_report(s, page, p, "Alignment padding",
860 endobject, POISON_INUSE, s->inuse - s->objsize);
861 }
81819f0f
CL
862 }
863
864 if (s->flags & SLAB_POISON) {
f7cb1933 865 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684
CL
866 (!check_bytes_and_report(s, page, p, "Poison", p,
867 POISON_FREE, s->objsize - 1) ||
868 !check_bytes_and_report(s, page, p, "Poison",
06428780 869 p + s->objsize - 1, POISON_END, 1)))
81819f0f 870 return 0;
81819f0f
CL
871 /*
872 * check_pad_bytes cleans up on its own.
873 */
874 check_pad_bytes(s, page, p);
875 }
876
f7cb1933 877 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
878 /*
879 * Object and freepointer overlap. Cannot check
880 * freepointer while object is allocated.
881 */
882 return 1;
883
884 /* Check free pointer validity */
885 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
886 object_err(s, page, p, "Freepointer corrupt");
887 /*
9f6c708e 888 * No choice but to zap it and thus lose the remainder
81819f0f 889 * of the free objects in this slab. May cause
672bba3a 890 * another error because the object count is now wrong.
81819f0f 891 */
a973e9dd 892 set_freepointer(s, p, NULL);
81819f0f
CL
893 return 0;
894 }
895 return 1;
896}
897
898static int check_slab(struct kmem_cache *s, struct page *page)
899{
39b26464
CL
900 int maxobj;
901
81819f0f
CL
902 VM_BUG_ON(!irqs_disabled());
903
904 if (!PageSlab(page)) {
24922684 905 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
906 return 0;
907 }
39b26464 908
ab9a0f19 909 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
910 if (page->objects > maxobj) {
911 slab_err(s, page, "objects %u > max %u",
912 s->name, page->objects, maxobj);
913 return 0;
914 }
915 if (page->inuse > page->objects) {
24922684 916 slab_err(s, page, "inuse %u > max %u",
39b26464 917 s->name, page->inuse, page->objects);
81819f0f
CL
918 return 0;
919 }
920 /* Slab_pad_check fixes things up after itself */
921 slab_pad_check(s, page);
922 return 1;
923}
924
925/*
672bba3a
CL
926 * Determine if a certain object on a page is on the freelist. Must hold the
927 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
928 */
929static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
930{
931 int nr = 0;
881db7fb 932 void *fp;
81819f0f 933 void *object = NULL;
224a88be 934 unsigned long max_objects;
81819f0f 935
881db7fb 936 fp = page->freelist;
39b26464 937 while (fp && nr <= page->objects) {
81819f0f
CL
938 if (fp == search)
939 return 1;
940 if (!check_valid_pointer(s, page, fp)) {
941 if (object) {
942 object_err(s, page, object,
943 "Freechain corrupt");
a973e9dd 944 set_freepointer(s, object, NULL);
81819f0f
CL
945 break;
946 } else {
24922684 947 slab_err(s, page, "Freepointer corrupt");
a973e9dd 948 page->freelist = NULL;
39b26464 949 page->inuse = page->objects;
24922684 950 slab_fix(s, "Freelist cleared");
81819f0f
CL
951 return 0;
952 }
953 break;
954 }
955 object = fp;
956 fp = get_freepointer(s, object);
957 nr++;
958 }
959
ab9a0f19 960 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
961 if (max_objects > MAX_OBJS_PER_PAGE)
962 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
963
964 if (page->objects != max_objects) {
965 slab_err(s, page, "Wrong number of objects. Found %d but "
966 "should be %d", page->objects, max_objects);
967 page->objects = max_objects;
968 slab_fix(s, "Number of objects adjusted.");
969 }
39b26464 970 if (page->inuse != page->objects - nr) {
70d71228 971 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
972 "counted were %d", page->inuse, page->objects - nr);
973 page->inuse = page->objects - nr;
24922684 974 slab_fix(s, "Object count adjusted.");
81819f0f
CL
975 }
976 return search == NULL;
977}
978
0121c619
CL
979static void trace(struct kmem_cache *s, struct page *page, void *object,
980 int alloc)
3ec09742
CL
981{
982 if (s->flags & SLAB_TRACE) {
983 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
984 s->name,
985 alloc ? "alloc" : "free",
986 object, page->inuse,
987 page->freelist);
988
989 if (!alloc)
990 print_section("Object", (void *)object, s->objsize);
991
992 dump_stack();
993 }
994}
995
c016b0bd
CL
996/*
997 * Hooks for other subsystems that check memory allocations. In a typical
998 * production configuration these hooks all should produce no code at all.
999 */
1000static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1001{
c1d50836 1002 flags &= gfp_allowed_mask;
c016b0bd
CL
1003 lockdep_trace_alloc(flags);
1004 might_sleep_if(flags & __GFP_WAIT);
1005
1006 return should_failslab(s->objsize, flags, s->flags);
1007}
1008
1009static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
1010{
c1d50836 1011 flags &= gfp_allowed_mask;
b3d41885 1012 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
c016b0bd
CL
1013 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
1014}
1015
1016static inline void slab_free_hook(struct kmem_cache *s, void *x)
1017{
1018 kmemleak_free_recursive(x, s->flags);
c016b0bd 1019
d3f661d6
CL
1020 /*
1021 * Trouble is that we may no longer disable interupts in the fast path
1022 * So in order to make the debug calls that expect irqs to be
1023 * disabled we need to disable interrupts temporarily.
1024 */
1025#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1026 {
1027 unsigned long flags;
1028
1029 local_irq_save(flags);
1030 kmemcheck_slab_free(s, x, s->objsize);
1031 debug_check_no_locks_freed(x, s->objsize);
d3f661d6
CL
1032 local_irq_restore(flags);
1033 }
1034#endif
f9b615de
TG
1035 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1036 debug_check_no_obj_freed(x, s->objsize);
c016b0bd
CL
1037}
1038
643b1138 1039/*
672bba3a 1040 * Tracking of fully allocated slabs for debugging purposes.
5cc6eee8
CL
1041 *
1042 * list_lock must be held.
643b1138 1043 */
5cc6eee8
CL
1044static void add_full(struct kmem_cache *s,
1045 struct kmem_cache_node *n, struct page *page)
643b1138 1046{
5cc6eee8
CL
1047 if (!(s->flags & SLAB_STORE_USER))
1048 return;
1049
643b1138 1050 list_add(&page->lru, &n->full);
643b1138
CL
1051}
1052
5cc6eee8
CL
1053/*
1054 * list_lock must be held.
1055 */
643b1138
CL
1056static void remove_full(struct kmem_cache *s, struct page *page)
1057{
643b1138
CL
1058 if (!(s->flags & SLAB_STORE_USER))
1059 return;
1060
643b1138 1061 list_del(&page->lru);
643b1138
CL
1062}
1063
0f389ec6
CL
1064/* Tracking of the number of slabs for debugging purposes */
1065static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1066{
1067 struct kmem_cache_node *n = get_node(s, node);
1068
1069 return atomic_long_read(&n->nr_slabs);
1070}
1071
26c02cf0
AB
1072static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1073{
1074 return atomic_long_read(&n->nr_slabs);
1075}
1076
205ab99d 1077static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1078{
1079 struct kmem_cache_node *n = get_node(s, node);
1080
1081 /*
1082 * May be called early in order to allocate a slab for the
1083 * kmem_cache_node structure. Solve the chicken-egg
1084 * dilemma by deferring the increment of the count during
1085 * bootstrap (see early_kmem_cache_node_alloc).
1086 */
7340cc84 1087 if (n) {
0f389ec6 1088 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1089 atomic_long_add(objects, &n->total_objects);
1090 }
0f389ec6 1091}
205ab99d 1092static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1093{
1094 struct kmem_cache_node *n = get_node(s, node);
1095
1096 atomic_long_dec(&n->nr_slabs);
205ab99d 1097 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1098}
1099
1100/* Object debug checks for alloc/free paths */
3ec09742
CL
1101static void setup_object_debug(struct kmem_cache *s, struct page *page,
1102 void *object)
1103{
1104 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1105 return;
1106
f7cb1933 1107 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1108 init_tracking(s, object);
1109}
1110
1537066c 1111static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 1112 void *object, unsigned long addr)
81819f0f
CL
1113{
1114 if (!check_slab(s, page))
1115 goto bad;
1116
81819f0f
CL
1117 if (!check_valid_pointer(s, page, object)) {
1118 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1119 goto bad;
81819f0f
CL
1120 }
1121
f7cb1933 1122 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1123 goto bad;
81819f0f 1124
3ec09742
CL
1125 /* Success perform special debug activities for allocs */
1126 if (s->flags & SLAB_STORE_USER)
1127 set_track(s, object, TRACK_ALLOC, addr);
1128 trace(s, page, object, 1);
f7cb1933 1129 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1130 return 1;
3ec09742 1131
81819f0f
CL
1132bad:
1133 if (PageSlab(page)) {
1134 /*
1135 * If this is a slab page then lets do the best we can
1136 * to avoid issues in the future. Marking all objects
672bba3a 1137 * as used avoids touching the remaining objects.
81819f0f 1138 */
24922684 1139 slab_fix(s, "Marking all objects used");
39b26464 1140 page->inuse = page->objects;
a973e9dd 1141 page->freelist = NULL;
81819f0f
CL
1142 }
1143 return 0;
1144}
1145
1537066c
CL
1146static noinline int free_debug_processing(struct kmem_cache *s,
1147 struct page *page, void *object, unsigned long addr)
81819f0f 1148{
5c2e4bbb
CL
1149 unsigned long flags;
1150 int rc = 0;
1151
1152 local_irq_save(flags);
881db7fb
CL
1153 slab_lock(page);
1154
81819f0f
CL
1155 if (!check_slab(s, page))
1156 goto fail;
1157
1158 if (!check_valid_pointer(s, page, object)) {
70d71228 1159 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1160 goto fail;
1161 }
1162
1163 if (on_freelist(s, page, object)) {
24922684 1164 object_err(s, page, object, "Object already free");
81819f0f
CL
1165 goto fail;
1166 }
1167
f7cb1933 1168 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1169 goto out;
81819f0f
CL
1170
1171 if (unlikely(s != page->slab)) {
3adbefee 1172 if (!PageSlab(page)) {
70d71228
CL
1173 slab_err(s, page, "Attempt to free object(0x%p) "
1174 "outside of slab", object);
3adbefee 1175 } else if (!page->slab) {
81819f0f 1176 printk(KERN_ERR
70d71228 1177 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1178 object);
70d71228 1179 dump_stack();
06428780 1180 } else
24922684
CL
1181 object_err(s, page, object,
1182 "page slab pointer corrupt.");
81819f0f
CL
1183 goto fail;
1184 }
3ec09742 1185
3ec09742
CL
1186 if (s->flags & SLAB_STORE_USER)
1187 set_track(s, object, TRACK_FREE, addr);
1188 trace(s, page, object, 0);
f7cb1933 1189 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb
CL
1190 rc = 1;
1191out:
881db7fb 1192 slab_unlock(page);
5c2e4bbb
CL
1193 local_irq_restore(flags);
1194 return rc;
3ec09742 1195
81819f0f 1196fail:
24922684 1197 slab_fix(s, "Object at 0x%p not freed", object);
5c2e4bbb 1198 goto out;
81819f0f
CL
1199}
1200
41ecc55b
CL
1201static int __init setup_slub_debug(char *str)
1202{
f0630fff
CL
1203 slub_debug = DEBUG_DEFAULT_FLAGS;
1204 if (*str++ != '=' || !*str)
1205 /*
1206 * No options specified. Switch on full debugging.
1207 */
1208 goto out;
1209
1210 if (*str == ',')
1211 /*
1212 * No options but restriction on slabs. This means full
1213 * debugging for slabs matching a pattern.
1214 */
1215 goto check_slabs;
1216
fa5ec8a1
DR
1217 if (tolower(*str) == 'o') {
1218 /*
1219 * Avoid enabling debugging on caches if its minimum order
1220 * would increase as a result.
1221 */
1222 disable_higher_order_debug = 1;
1223 goto out;
1224 }
1225
f0630fff
CL
1226 slub_debug = 0;
1227 if (*str == '-')
1228 /*
1229 * Switch off all debugging measures.
1230 */
1231 goto out;
1232
1233 /*
1234 * Determine which debug features should be switched on
1235 */
06428780 1236 for (; *str && *str != ','; str++) {
f0630fff
CL
1237 switch (tolower(*str)) {
1238 case 'f':
1239 slub_debug |= SLAB_DEBUG_FREE;
1240 break;
1241 case 'z':
1242 slub_debug |= SLAB_RED_ZONE;
1243 break;
1244 case 'p':
1245 slub_debug |= SLAB_POISON;
1246 break;
1247 case 'u':
1248 slub_debug |= SLAB_STORE_USER;
1249 break;
1250 case 't':
1251 slub_debug |= SLAB_TRACE;
1252 break;
4c13dd3b
DM
1253 case 'a':
1254 slub_debug |= SLAB_FAILSLAB;
1255 break;
f0630fff
CL
1256 default:
1257 printk(KERN_ERR "slub_debug option '%c' "
06428780 1258 "unknown. skipped\n", *str);
f0630fff 1259 }
41ecc55b
CL
1260 }
1261
f0630fff 1262check_slabs:
41ecc55b
CL
1263 if (*str == ',')
1264 slub_debug_slabs = str + 1;
f0630fff 1265out:
41ecc55b
CL
1266 return 1;
1267}
1268
1269__setup("slub_debug", setup_slub_debug);
1270
ba0268a8
CL
1271static unsigned long kmem_cache_flags(unsigned long objsize,
1272 unsigned long flags, const char *name,
51cc5068 1273 void (*ctor)(void *))
41ecc55b
CL
1274{
1275 /*
e153362a 1276 * Enable debugging if selected on the kernel commandline.
41ecc55b 1277 */
e153362a 1278 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1279 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1280 flags |= slub_debug;
ba0268a8
CL
1281
1282 return flags;
41ecc55b
CL
1283}
1284#else
3ec09742
CL
1285static inline void setup_object_debug(struct kmem_cache *s,
1286 struct page *page, void *object) {}
41ecc55b 1287
3ec09742 1288static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1289 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1290
3ec09742 1291static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1292 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1293
41ecc55b
CL
1294static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1295 { return 1; }
1296static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1297 void *object, u8 val) { return 1; }
5cc6eee8
CL
1298static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1299 struct page *page) {}
2cfb7455 1300static inline void remove_full(struct kmem_cache *s, struct page *page) {}
ba0268a8
CL
1301static inline unsigned long kmem_cache_flags(unsigned long objsize,
1302 unsigned long flags, const char *name,
51cc5068 1303 void (*ctor)(void *))
ba0268a8
CL
1304{
1305 return flags;
1306}
41ecc55b 1307#define slub_debug 0
0f389ec6 1308
fdaa45e9
IM
1309#define disable_higher_order_debug 0
1310
0f389ec6
CL
1311static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1312 { return 0; }
26c02cf0
AB
1313static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1314 { return 0; }
205ab99d
CL
1315static inline void inc_slabs_node(struct kmem_cache *s, int node,
1316 int objects) {}
1317static inline void dec_slabs_node(struct kmem_cache *s, int node,
1318 int objects) {}
7d550c56
CL
1319
1320static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1321 { return 0; }
1322
1323static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1324 void *object) {}
1325
1326static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1327
ab4d5ed5 1328#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1329
81819f0f
CL
1330/*
1331 * Slab allocation and freeing
1332 */
65c3376a
CL
1333static inline struct page *alloc_slab_page(gfp_t flags, int node,
1334 struct kmem_cache_order_objects oo)
1335{
1336 int order = oo_order(oo);
1337
b1eeab67
VN
1338 flags |= __GFP_NOTRACK;
1339
2154a336 1340 if (node == NUMA_NO_NODE)
65c3376a
CL
1341 return alloc_pages(flags, order);
1342 else
6b65aaf3 1343 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1344}
1345
81819f0f
CL
1346static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1347{
06428780 1348 struct page *page;
834f3d11 1349 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1350 gfp_t alloc_gfp;
81819f0f 1351
7e0528da
CL
1352 flags &= gfp_allowed_mask;
1353
1354 if (flags & __GFP_WAIT)
1355 local_irq_enable();
1356
b7a49f0d 1357 flags |= s->allocflags;
e12ba74d 1358
ba52270d
PE
1359 /*
1360 * Let the initial higher-order allocation fail under memory pressure
1361 * so we fall-back to the minimum order allocation.
1362 */
1363 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1364
1365 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1366 if (unlikely(!page)) {
1367 oo = s->min;
1368 /*
1369 * Allocation may have failed due to fragmentation.
1370 * Try a lower order alloc if possible
1371 */
1372 page = alloc_slab_page(flags, node, oo);
81819f0f 1373
7e0528da
CL
1374 if (page)
1375 stat(s, ORDER_FALLBACK);
65c3376a 1376 }
5a896d9e 1377
7e0528da
CL
1378 if (flags & __GFP_WAIT)
1379 local_irq_disable();
1380
1381 if (!page)
1382 return NULL;
1383
5a896d9e 1384 if (kmemcheck_enabled
5086c389 1385 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1386 int pages = 1 << oo_order(oo);
1387
1388 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1389
1390 /*
1391 * Objects from caches that have a constructor don't get
1392 * cleared when they're allocated, so we need to do it here.
1393 */
1394 if (s->ctor)
1395 kmemcheck_mark_uninitialized_pages(page, pages);
1396 else
1397 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1398 }
1399
834f3d11 1400 page->objects = oo_objects(oo);
81819f0f
CL
1401 mod_zone_page_state(page_zone(page),
1402 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1403 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1404 1 << oo_order(oo));
81819f0f
CL
1405
1406 return page;
1407}
1408
1409static void setup_object(struct kmem_cache *s, struct page *page,
1410 void *object)
1411{
3ec09742 1412 setup_object_debug(s, page, object);
4f104934 1413 if (unlikely(s->ctor))
51cc5068 1414 s->ctor(object);
81819f0f
CL
1415}
1416
1417static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1418{
1419 struct page *page;
81819f0f 1420 void *start;
81819f0f
CL
1421 void *last;
1422 void *p;
1423
6cb06229 1424 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1425
6cb06229
CL
1426 page = allocate_slab(s,
1427 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1428 if (!page)
1429 goto out;
1430
205ab99d 1431 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1432 page->slab = s;
1433 page->flags |= 1 << PG_slab;
81819f0f
CL
1434
1435 start = page_address(page);
81819f0f
CL
1436
1437 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1438 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1439
1440 last = start;
224a88be 1441 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1442 setup_object(s, page, last);
1443 set_freepointer(s, last, p);
1444 last = p;
1445 }
1446 setup_object(s, page, last);
a973e9dd 1447 set_freepointer(s, last, NULL);
81819f0f
CL
1448
1449 page->freelist = start;
1450 page->inuse = 0;
8cb0a506 1451 page->frozen = 1;
81819f0f 1452out:
81819f0f
CL
1453 return page;
1454}
1455
1456static void __free_slab(struct kmem_cache *s, struct page *page)
1457{
834f3d11
CL
1458 int order = compound_order(page);
1459 int pages = 1 << order;
81819f0f 1460
af537b0a 1461 if (kmem_cache_debug(s)) {
81819f0f
CL
1462 void *p;
1463
1464 slab_pad_check(s, page);
224a88be
CL
1465 for_each_object(p, s, page_address(page),
1466 page->objects)
f7cb1933 1467 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1468 }
1469
b1eeab67 1470 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1471
81819f0f
CL
1472 mod_zone_page_state(page_zone(page),
1473 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1474 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1475 -pages);
81819f0f 1476
49bd5221
CL
1477 __ClearPageSlab(page);
1478 reset_page_mapcount(page);
1eb5ac64
NP
1479 if (current->reclaim_state)
1480 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1481 __free_pages(page, order);
81819f0f
CL
1482}
1483
da9a638c
LJ
1484#define need_reserve_slab_rcu \
1485 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1486
81819f0f
CL
1487static void rcu_free_slab(struct rcu_head *h)
1488{
1489 struct page *page;
1490
da9a638c
LJ
1491 if (need_reserve_slab_rcu)
1492 page = virt_to_head_page(h);
1493 else
1494 page = container_of((struct list_head *)h, struct page, lru);
1495
81819f0f
CL
1496 __free_slab(page->slab, page);
1497}
1498
1499static void free_slab(struct kmem_cache *s, struct page *page)
1500{
1501 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1502 struct rcu_head *head;
1503
1504 if (need_reserve_slab_rcu) {
1505 int order = compound_order(page);
1506 int offset = (PAGE_SIZE << order) - s->reserved;
1507
1508 VM_BUG_ON(s->reserved != sizeof(*head));
1509 head = page_address(page) + offset;
1510 } else {
1511 /*
1512 * RCU free overloads the RCU head over the LRU
1513 */
1514 head = (void *)&page->lru;
1515 }
81819f0f
CL
1516
1517 call_rcu(head, rcu_free_slab);
1518 } else
1519 __free_slab(s, page);
1520}
1521
1522static void discard_slab(struct kmem_cache *s, struct page *page)
1523{
205ab99d 1524 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1525 free_slab(s, page);
1526}
1527
1528/*
5cc6eee8
CL
1529 * Management of partially allocated slabs.
1530 *
1531 * list_lock must be held.
81819f0f 1532 */
5cc6eee8 1533static inline void add_partial(struct kmem_cache_node *n,
7c2e132c 1534 struct page *page, int tail)
81819f0f 1535{
e95eed57 1536 n->nr_partial++;
7c2e132c
CL
1537 if (tail)
1538 list_add_tail(&page->lru, &n->partial);
1539 else
1540 list_add(&page->lru, &n->partial);
81819f0f
CL
1541}
1542
5cc6eee8
CL
1543/*
1544 * list_lock must be held.
1545 */
1546static inline void remove_partial(struct kmem_cache_node *n,
62e346a8
CL
1547 struct page *page)
1548{
1549 list_del(&page->lru);
1550 n->nr_partial--;
1551}
1552
81819f0f 1553/*
5cc6eee8
CL
1554 * Lock slab, remove from the partial list and put the object into the
1555 * per cpu freelist.
81819f0f 1556 *
672bba3a 1557 * Must hold list_lock.
81819f0f 1558 */
881db7fb 1559static inline int acquire_slab(struct kmem_cache *s,
61728d1e 1560 struct kmem_cache_node *n, struct page *page)
81819f0f 1561{
2cfb7455
CL
1562 void *freelist;
1563 unsigned long counters;
1564 struct page new;
1565
2cfb7455
CL
1566 /*
1567 * Zap the freelist and set the frozen bit.
1568 * The old freelist is the list of objects for the
1569 * per cpu allocation list.
1570 */
1571 do {
1572 freelist = page->freelist;
1573 counters = page->counters;
1574 new.counters = counters;
1575 new.inuse = page->objects;
1576
1577 VM_BUG_ON(new.frozen);
1578 new.frozen = 1;
1579
1d07171c 1580 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1581 freelist, counters,
1582 NULL, new.counters,
1583 "lock and freeze"));
1584
1585 remove_partial(n, page);
1586
1587 if (freelist) {
1588 /* Populate the per cpu freelist */
1589 this_cpu_write(s->cpu_slab->freelist, freelist);
1590 this_cpu_write(s->cpu_slab->page, page);
1591 this_cpu_write(s->cpu_slab->node, page_to_nid(page));
81819f0f 1592 return 1;
2cfb7455
CL
1593 } else {
1594 /*
1595 * Slab page came from the wrong list. No object to allocate
1596 * from. Put it onto the correct list and continue partial
1597 * scan.
1598 */
1599 printk(KERN_ERR "SLUB: %s : Page without available objects on"
1600 " partial list\n", s->name);
2cfb7455 1601 return 0;
81819f0f 1602 }
81819f0f
CL
1603}
1604
1605/*
672bba3a 1606 * Try to allocate a partial slab from a specific node.
81819f0f 1607 */
61728d1e
CL
1608static struct page *get_partial_node(struct kmem_cache *s,
1609 struct kmem_cache_node *n)
81819f0f
CL
1610{
1611 struct page *page;
1612
1613 /*
1614 * Racy check. If we mistakenly see no partial slabs then we
1615 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1616 * partial slab and there is none available then get_partials()
1617 * will return NULL.
81819f0f
CL
1618 */
1619 if (!n || !n->nr_partial)
1620 return NULL;
1621
1622 spin_lock(&n->list_lock);
1623 list_for_each_entry(page, &n->partial, lru)
881db7fb 1624 if (acquire_slab(s, n, page))
81819f0f
CL
1625 goto out;
1626 page = NULL;
1627out:
1628 spin_unlock(&n->list_lock);
1629 return page;
1630}
1631
1632/*
672bba3a 1633 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1634 */
1635static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1636{
1637#ifdef CONFIG_NUMA
1638 struct zonelist *zonelist;
dd1a239f 1639 struct zoneref *z;
54a6eb5c
MG
1640 struct zone *zone;
1641 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1642 struct page *page;
1643
1644 /*
672bba3a
CL
1645 * The defrag ratio allows a configuration of the tradeoffs between
1646 * inter node defragmentation and node local allocations. A lower
1647 * defrag_ratio increases the tendency to do local allocations
1648 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1649 *
672bba3a
CL
1650 * If the defrag_ratio is set to 0 then kmalloc() always
1651 * returns node local objects. If the ratio is higher then kmalloc()
1652 * may return off node objects because partial slabs are obtained
1653 * from other nodes and filled up.
81819f0f 1654 *
6446faa2 1655 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1656 * defrag_ratio = 1000) then every (well almost) allocation will
1657 * first attempt to defrag slab caches on other nodes. This means
1658 * scanning over all nodes to look for partial slabs which may be
1659 * expensive if we do it every time we are trying to find a slab
1660 * with available objects.
81819f0f 1661 */
9824601e
CL
1662 if (!s->remote_node_defrag_ratio ||
1663 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1664 return NULL;
1665
c0ff7453 1666 get_mems_allowed();
0e88460d 1667 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1668 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1669 struct kmem_cache_node *n;
1670
54a6eb5c 1671 n = get_node(s, zone_to_nid(zone));
81819f0f 1672
54a6eb5c 1673 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1674 n->nr_partial > s->min_partial) {
61728d1e 1675 page = get_partial_node(s, n);
c0ff7453
MX
1676 if (page) {
1677 put_mems_allowed();
81819f0f 1678 return page;
c0ff7453 1679 }
81819f0f
CL
1680 }
1681 }
c0ff7453 1682 put_mems_allowed();
81819f0f
CL
1683#endif
1684 return NULL;
1685}
1686
1687/*
1688 * Get a partial page, lock it and return it.
1689 */
1690static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1691{
1692 struct page *page;
2154a336 1693 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f 1694
61728d1e 1695 page = get_partial_node(s, get_node(s, searchnode));
33de04ec 1696 if (page || node != NUMA_NO_NODE)
81819f0f
CL
1697 return page;
1698
1699 return get_any_partial(s, flags);
1700}
1701
8a5ec0ba
CL
1702#ifdef CONFIG_PREEMPT
1703/*
1704 * Calculate the next globally unique transaction for disambiguiation
1705 * during cmpxchg. The transactions start with the cpu number and are then
1706 * incremented by CONFIG_NR_CPUS.
1707 */
1708#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1709#else
1710/*
1711 * No preemption supported therefore also no need to check for
1712 * different cpus.
1713 */
1714#define TID_STEP 1
1715#endif
1716
1717static inline unsigned long next_tid(unsigned long tid)
1718{
1719 return tid + TID_STEP;
1720}
1721
1722static inline unsigned int tid_to_cpu(unsigned long tid)
1723{
1724 return tid % TID_STEP;
1725}
1726
1727static inline unsigned long tid_to_event(unsigned long tid)
1728{
1729 return tid / TID_STEP;
1730}
1731
1732static inline unsigned int init_tid(int cpu)
1733{
1734 return cpu;
1735}
1736
1737static inline void note_cmpxchg_failure(const char *n,
1738 const struct kmem_cache *s, unsigned long tid)
1739{
1740#ifdef SLUB_DEBUG_CMPXCHG
1741 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1742
1743 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1744
1745#ifdef CONFIG_PREEMPT
1746 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1747 printk("due to cpu change %d -> %d\n",
1748 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1749 else
1750#endif
1751 if (tid_to_event(tid) != tid_to_event(actual_tid))
1752 printk("due to cpu running other code. Event %ld->%ld\n",
1753 tid_to_event(tid), tid_to_event(actual_tid));
1754 else
1755 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1756 actual_tid, tid, next_tid(tid));
1757#endif
4fdccdfb 1758 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1759}
1760
8a5ec0ba
CL
1761void init_kmem_cache_cpus(struct kmem_cache *s)
1762{
8a5ec0ba
CL
1763 int cpu;
1764
1765 for_each_possible_cpu(cpu)
1766 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1767}
2cfb7455
CL
1768/*
1769 * Remove the cpu slab
1770 */
1771
81819f0f
CL
1772/*
1773 * Remove the cpu slab
1774 */
dfb4f096 1775static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1776{
2cfb7455 1777 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
dfb4f096 1778 struct page *page = c->page;
2cfb7455
CL
1779 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1780 int lock = 0;
1781 enum slab_modes l = M_NONE, m = M_NONE;
1782 void *freelist;
1783 void *nextfree;
1784 int tail = 0;
1785 struct page new;
1786 struct page old;
1787
1788 if (page->freelist) {
84e554e6 1789 stat(s, DEACTIVATE_REMOTE_FREES);
2cfb7455
CL
1790 tail = 1;
1791 }
1792
1793 c->tid = next_tid(c->tid);
1794 c->page = NULL;
1795 freelist = c->freelist;
1796 c->freelist = NULL;
1797
894b8788 1798 /*
2cfb7455
CL
1799 * Stage one: Free all available per cpu objects back
1800 * to the page freelist while it is still frozen. Leave the
1801 * last one.
1802 *
1803 * There is no need to take the list->lock because the page
1804 * is still frozen.
1805 */
1806 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1807 void *prior;
1808 unsigned long counters;
1809
1810 do {
1811 prior = page->freelist;
1812 counters = page->counters;
1813 set_freepointer(s, freelist, prior);
1814 new.counters = counters;
1815 new.inuse--;
1816 VM_BUG_ON(!new.frozen);
1817
1d07171c 1818 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1819 prior, counters,
1820 freelist, new.counters,
1821 "drain percpu freelist"));
1822
1823 freelist = nextfree;
1824 }
1825
894b8788 1826 /*
2cfb7455
CL
1827 * Stage two: Ensure that the page is unfrozen while the
1828 * list presence reflects the actual number of objects
1829 * during unfreeze.
1830 *
1831 * We setup the list membership and then perform a cmpxchg
1832 * with the count. If there is a mismatch then the page
1833 * is not unfrozen but the page is on the wrong list.
1834 *
1835 * Then we restart the process which may have to remove
1836 * the page from the list that we just put it on again
1837 * because the number of objects in the slab may have
1838 * changed.
894b8788 1839 */
2cfb7455 1840redo:
894b8788 1841
2cfb7455
CL
1842 old.freelist = page->freelist;
1843 old.counters = page->counters;
1844 VM_BUG_ON(!old.frozen);
7c2e132c 1845
2cfb7455
CL
1846 /* Determine target state of the slab */
1847 new.counters = old.counters;
1848 if (freelist) {
1849 new.inuse--;
1850 set_freepointer(s, freelist, old.freelist);
1851 new.freelist = freelist;
1852 } else
1853 new.freelist = old.freelist;
1854
1855 new.frozen = 0;
1856
1857 if (!new.inuse && n->nr_partial < s->min_partial)
1858 m = M_FREE;
1859 else if (new.freelist) {
1860 m = M_PARTIAL;
1861 if (!lock) {
1862 lock = 1;
1863 /*
1864 * Taking the spinlock removes the possiblity
1865 * that acquire_slab() will see a slab page that
1866 * is frozen
1867 */
1868 spin_lock(&n->list_lock);
1869 }
1870 } else {
1871 m = M_FULL;
1872 if (kmem_cache_debug(s) && !lock) {
1873 lock = 1;
1874 /*
1875 * This also ensures that the scanning of full
1876 * slabs from diagnostic functions will not see
1877 * any frozen slabs.
1878 */
1879 spin_lock(&n->list_lock);
1880 }
1881 }
1882
1883 if (l != m) {
1884
1885 if (l == M_PARTIAL)
1886
1887 remove_partial(n, page);
1888
1889 else if (l == M_FULL)
894b8788 1890
2cfb7455
CL
1891 remove_full(s, page);
1892
1893 if (m == M_PARTIAL) {
1894
1895 add_partial(n, page, tail);
1896 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1897
1898 } else if (m == M_FULL) {
894b8788 1899
2cfb7455
CL
1900 stat(s, DEACTIVATE_FULL);
1901 add_full(s, n, page);
1902
1903 }
1904 }
1905
1906 l = m;
1d07171c 1907 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1908 old.freelist, old.counters,
1909 new.freelist, new.counters,
1910 "unfreezing slab"))
1911 goto redo;
1912
2cfb7455
CL
1913 if (lock)
1914 spin_unlock(&n->list_lock);
1915
1916 if (m == M_FREE) {
1917 stat(s, DEACTIVATE_EMPTY);
1918 discard_slab(s, page);
1919 stat(s, FREE_SLAB);
894b8788 1920 }
81819f0f
CL
1921}
1922
dfb4f096 1923static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1924{
84e554e6 1925 stat(s, CPUSLAB_FLUSH);
dfb4f096 1926 deactivate_slab(s, c);
81819f0f
CL
1927}
1928
1929/*
1930 * Flush cpu slab.
6446faa2 1931 *
81819f0f
CL
1932 * Called from IPI handler with interrupts disabled.
1933 */
0c710013 1934static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1935{
9dfc6e68 1936 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 1937
dfb4f096
CL
1938 if (likely(c && c->page))
1939 flush_slab(s, c);
81819f0f
CL
1940}
1941
1942static void flush_cpu_slab(void *d)
1943{
1944 struct kmem_cache *s = d;
81819f0f 1945
dfb4f096 1946 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1947}
1948
1949static void flush_all(struct kmem_cache *s)
1950{
15c8b6c1 1951 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
1952}
1953
dfb4f096
CL
1954/*
1955 * Check if the objects in a per cpu structure fit numa
1956 * locality expectations.
1957 */
1958static inline int node_match(struct kmem_cache_cpu *c, int node)
1959{
1960#ifdef CONFIG_NUMA
2154a336 1961 if (node != NUMA_NO_NODE && c->node != node)
dfb4f096
CL
1962 return 0;
1963#endif
1964 return 1;
1965}
1966
781b2ba6
PE
1967static int count_free(struct page *page)
1968{
1969 return page->objects - page->inuse;
1970}
1971
1972static unsigned long count_partial(struct kmem_cache_node *n,
1973 int (*get_count)(struct page *))
1974{
1975 unsigned long flags;
1976 unsigned long x = 0;
1977 struct page *page;
1978
1979 spin_lock_irqsave(&n->list_lock, flags);
1980 list_for_each_entry(page, &n->partial, lru)
1981 x += get_count(page);
1982 spin_unlock_irqrestore(&n->list_lock, flags);
1983 return x;
1984}
1985
26c02cf0
AB
1986static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1987{
1988#ifdef CONFIG_SLUB_DEBUG
1989 return atomic_long_read(&n->total_objects);
1990#else
1991 return 0;
1992#endif
1993}
1994
781b2ba6
PE
1995static noinline void
1996slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1997{
1998 int node;
1999
2000 printk(KERN_WARNING
2001 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2002 nid, gfpflags);
2003 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2004 "default order: %d, min order: %d\n", s->name, s->objsize,
2005 s->size, oo_order(s->oo), oo_order(s->min));
2006
fa5ec8a1
DR
2007 if (oo_order(s->min) > get_order(s->objsize))
2008 printk(KERN_WARNING " %s debugging increased min order, use "
2009 "slub_debug=O to disable.\n", s->name);
2010
781b2ba6
PE
2011 for_each_online_node(node) {
2012 struct kmem_cache_node *n = get_node(s, node);
2013 unsigned long nr_slabs;
2014 unsigned long nr_objs;
2015 unsigned long nr_free;
2016
2017 if (!n)
2018 continue;
2019
26c02cf0
AB
2020 nr_free = count_partial(n, count_free);
2021 nr_slabs = node_nr_slabs(n);
2022 nr_objs = node_nr_objs(n);
781b2ba6
PE
2023
2024 printk(KERN_WARNING
2025 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2026 node, nr_slabs, nr_objs, nr_free);
2027 }
2028}
2029
81819f0f 2030/*
894b8788
CL
2031 * Slow path. The lockless freelist is empty or we need to perform
2032 * debugging duties.
2033 *
2034 * Interrupts are disabled.
81819f0f 2035 *
894b8788
CL
2036 * Processing is still very fast if new objects have been freed to the
2037 * regular freelist. In that case we simply take over the regular freelist
2038 * as the lockless freelist and zap the regular freelist.
81819f0f 2039 *
894b8788
CL
2040 * If that is not working then we fall back to the partial lists. We take the
2041 * first element of the freelist as the object to allocate now and move the
2042 * rest of the freelist to the lockless freelist.
81819f0f 2043 *
894b8788 2044 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2045 * we need to allocate a new slab. This is the slowest path since it involves
2046 * a call to the page allocator and the setup of a new slab.
81819f0f 2047 */
ce71e27c
EGM
2048static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2049 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2050{
81819f0f 2051 void **object;
01ad8a7b 2052 struct page *page;
8a5ec0ba 2053 unsigned long flags;
2cfb7455
CL
2054 struct page new;
2055 unsigned long counters;
8a5ec0ba
CL
2056
2057 local_irq_save(flags);
2058#ifdef CONFIG_PREEMPT
2059 /*
2060 * We may have been preempted and rescheduled on a different
2061 * cpu before disabling interrupts. Need to reload cpu area
2062 * pointer.
2063 */
2064 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2065#endif
81819f0f 2066
e72e9c23
LT
2067 /* We handle __GFP_ZERO in the caller */
2068 gfpflags &= ~__GFP_ZERO;
2069
01ad8a7b
CL
2070 page = c->page;
2071 if (!page)
81819f0f
CL
2072 goto new_slab;
2073
fc59c053 2074 if (unlikely(!node_match(c, node))) {
e36a2652 2075 stat(s, ALLOC_NODE_MISMATCH);
fc59c053
CL
2076 deactivate_slab(s, c);
2077 goto new_slab;
2078 }
6446faa2 2079
2cfb7455
CL
2080 stat(s, ALLOC_SLOWPATH);
2081
2082 do {
2083 object = page->freelist;
2084 counters = page->counters;
2085 new.counters = counters;
2cfb7455
CL
2086 VM_BUG_ON(!new.frozen);
2087
03e404af
CL
2088 /*
2089 * If there is no object left then we use this loop to
2090 * deactivate the slab which is simple since no objects
2091 * are left in the slab and therefore we do not need to
2092 * put the page back onto the partial list.
2093 *
2094 * If there are objects left then we retrieve them
2095 * and use them to refill the per cpu queue.
2096 */
2097
2098 new.inuse = page->objects;
2099 new.frozen = object != NULL;
2100
1d07171c 2101 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2102 object, counters,
2103 NULL, new.counters,
2104 "__slab_alloc"));
6446faa2 2105
03e404af
CL
2106 if (unlikely(!object)) {
2107 c->page = NULL;
2108 stat(s, DEACTIVATE_BYPASS);
fc59c053 2109 goto new_slab;
03e404af 2110 }
6446faa2 2111
84e554e6 2112 stat(s, ALLOC_REFILL);
6446faa2 2113
894b8788 2114load_freelist:
4eade540 2115 VM_BUG_ON(!page->frozen);
ff12059e 2116 c->freelist = get_freepointer(s, object);
8a5ec0ba
CL
2117 c->tid = next_tid(c->tid);
2118 local_irq_restore(flags);
81819f0f
CL
2119 return object;
2120
81819f0f 2121new_slab:
01ad8a7b
CL
2122 page = get_partial(s, gfpflags, node);
2123 if (page) {
84e554e6 2124 stat(s, ALLOC_FROM_PARTIAL);
2cfb7455
CL
2125 object = c->freelist;
2126
2127 if (kmem_cache_debug(s))
2128 goto debug;
894b8788 2129 goto load_freelist;
81819f0f
CL
2130 }
2131
01ad8a7b 2132 page = new_slab(s, gfpflags, node);
b811c202 2133
01ad8a7b 2134 if (page) {
9dfc6e68 2135 c = __this_cpu_ptr(s->cpu_slab);
05aa3450 2136 if (c->page)
dfb4f096 2137 flush_slab(s, c);
01ad8a7b 2138
2cfb7455
CL
2139 /*
2140 * No other reference to the page yet so we can
2141 * muck around with it freely without cmpxchg
2142 */
2143 object = page->freelist;
2144 page->freelist = NULL;
2145 page->inuse = page->objects;
2146
2147 stat(s, ALLOC_SLAB);
bd07d87f
DR
2148 c->node = page_to_nid(page);
2149 c->page = page;
9e577e8b
CL
2150
2151 if (kmem_cache_debug(s))
2152 goto debug;
4b6f0750 2153 goto load_freelist;
81819f0f 2154 }
95f85989
PE
2155 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2156 slab_out_of_memory(s, gfpflags, node);
2fd66c51 2157 local_irq_restore(flags);
71c7a06f 2158 return NULL;
2cfb7455 2159
81819f0f 2160debug:
2cfb7455
CL
2161 if (!object || !alloc_debug_processing(s, page, object, addr))
2162 goto new_slab;
894b8788 2163
2cfb7455 2164 c->freelist = get_freepointer(s, object);
442b06bc
CL
2165 deactivate_slab(s, c);
2166 c->page = NULL;
15b7c514 2167 c->node = NUMA_NO_NODE;
a71ae47a
CL
2168 local_irq_restore(flags);
2169 return object;
894b8788
CL
2170}
2171
2172/*
2173 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2174 * have the fastpath folded into their functions. So no function call
2175 * overhead for requests that can be satisfied on the fastpath.
2176 *
2177 * The fastpath works by first checking if the lockless freelist can be used.
2178 * If not then __slab_alloc is called for slow processing.
2179 *
2180 * Otherwise we can simply pick the next object from the lockless free list.
2181 */
06428780 2182static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 2183 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2184{
894b8788 2185 void **object;
dfb4f096 2186 struct kmem_cache_cpu *c;
8a5ec0ba 2187 unsigned long tid;
1f84260c 2188
c016b0bd 2189 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2190 return NULL;
1f84260c 2191
8a5ec0ba 2192redo:
8a5ec0ba
CL
2193
2194 /*
2195 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2196 * enabled. We may switch back and forth between cpus while
2197 * reading from one cpu area. That does not matter as long
2198 * as we end up on the original cpu again when doing the cmpxchg.
2199 */
9dfc6e68 2200 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2201
8a5ec0ba
CL
2202 /*
2203 * The transaction ids are globally unique per cpu and per operation on
2204 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2205 * occurs on the right processor and that there was no operation on the
2206 * linked list in between.
2207 */
2208 tid = c->tid;
2209 barrier();
8a5ec0ba 2210
9dfc6e68 2211 object = c->freelist;
9dfc6e68 2212 if (unlikely(!object || !node_match(c, node)))
894b8788 2213
dfb4f096 2214 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
2215
2216 else {
8a5ec0ba 2217 /*
25985edc 2218 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2219 * operation and if we are on the right processor.
2220 *
2221 * The cmpxchg does the following atomically (without lock semantics!)
2222 * 1. Relocate first pointer to the current per cpu area.
2223 * 2. Verify that tid and freelist have not been changed
2224 * 3. If they were not changed replace tid and freelist
2225 *
2226 * Since this is without lock semantics the protection is only against
2227 * code executing on this cpu *not* from access by other cpus.
2228 */
30106b8c 2229 if (unlikely(!irqsafe_cpu_cmpxchg_double(
8a5ec0ba
CL
2230 s->cpu_slab->freelist, s->cpu_slab->tid,
2231 object, tid,
1393d9a1 2232 get_freepointer_safe(s, object), next_tid(tid)))) {
8a5ec0ba
CL
2233
2234 note_cmpxchg_failure("slab_alloc", s, tid);
2235 goto redo;
2236 }
84e554e6 2237 stat(s, ALLOC_FASTPATH);
894b8788 2238 }
8a5ec0ba 2239
74e2134f 2240 if (unlikely(gfpflags & __GFP_ZERO) && object)
ff12059e 2241 memset(object, 0, s->objsize);
d07dbea4 2242
c016b0bd 2243 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2244
894b8788 2245 return object;
81819f0f
CL
2246}
2247
2248void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2249{
2154a336 2250 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2251
ca2b84cb 2252 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
2253
2254 return ret;
81819f0f
CL
2255}
2256EXPORT_SYMBOL(kmem_cache_alloc);
2257
0f24f128 2258#ifdef CONFIG_TRACING
4a92379b
RK
2259void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2260{
2261 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2262 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2263 return ret;
2264}
2265EXPORT_SYMBOL(kmem_cache_alloc_trace);
2266
2267void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 2268{
4a92379b
RK
2269 void *ret = kmalloc_order(size, flags, order);
2270 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2271 return ret;
5b882be4 2272}
4a92379b 2273EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
2274#endif
2275
81819f0f
CL
2276#ifdef CONFIG_NUMA
2277void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2278{
5b882be4
EGM
2279 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2280
ca2b84cb
EGM
2281 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2282 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
2283
2284 return ret;
81819f0f
CL
2285}
2286EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2287
0f24f128 2288#ifdef CONFIG_TRACING
4a92379b 2289void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2290 gfp_t gfpflags,
4a92379b 2291 int node, size_t size)
5b882be4 2292{
4a92379b
RK
2293 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2294
2295 trace_kmalloc_node(_RET_IP_, ret,
2296 size, s->size, gfpflags, node);
2297 return ret;
5b882be4 2298}
4a92379b 2299EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2300#endif
5d1f57e4 2301#endif
5b882be4 2302
81819f0f 2303/*
894b8788
CL
2304 * Slow patch handling. This may still be called frequently since objects
2305 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2306 *
894b8788
CL
2307 * So we still attempt to reduce cache line usage. Just take the slab
2308 * lock and free the item. If there is no additional partial page
2309 * handling required then we can return immediately.
81819f0f 2310 */
894b8788 2311static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2312 void *x, unsigned long addr)
81819f0f
CL
2313{
2314 void *prior;
2315 void **object = (void *)x;
2cfb7455
CL
2316 int was_frozen;
2317 int inuse;
2318 struct page new;
2319 unsigned long counters;
2320 struct kmem_cache_node *n = NULL;
61728d1e 2321 unsigned long uninitialized_var(flags);
81819f0f 2322
8a5ec0ba 2323 stat(s, FREE_SLOWPATH);
81819f0f 2324
8dc16c6c 2325 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
80f08c19 2326 return;
6446faa2 2327
2cfb7455
CL
2328 do {
2329 prior = page->freelist;
2330 counters = page->counters;
2331 set_freepointer(s, object, prior);
2332 new.counters = counters;
2333 was_frozen = new.frozen;
2334 new.inuse--;
2335 if ((!new.inuse || !prior) && !was_frozen && !n) {
2336 n = get_node(s, page_to_nid(page));
2337 /*
2338 * Speculatively acquire the list_lock.
2339 * If the cmpxchg does not succeed then we may
2340 * drop the list_lock without any processing.
2341 *
2342 * Otherwise the list_lock will synchronize with
2343 * other processors updating the list of slabs.
2344 */
80f08c19 2345 spin_lock_irqsave(&n->list_lock, flags);
2cfb7455
CL
2346 }
2347 inuse = new.inuse;
81819f0f 2348
2cfb7455
CL
2349 } while (!cmpxchg_double_slab(s, page,
2350 prior, counters,
2351 object, new.counters,
2352 "__slab_free"));
81819f0f 2353
2cfb7455
CL
2354 if (likely(!n)) {
2355 /*
2356 * The list lock was not taken therefore no list
2357 * activity can be necessary.
2358 */
2359 if (was_frozen)
2360 stat(s, FREE_FROZEN);
80f08c19 2361 return;
2cfb7455 2362 }
81819f0f
CL
2363
2364 /*
2cfb7455
CL
2365 * was_frozen may have been set after we acquired the list_lock in
2366 * an earlier loop. So we need to check it here again.
81819f0f 2367 */
2cfb7455
CL
2368 if (was_frozen)
2369 stat(s, FREE_FROZEN);
2370 else {
2371 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2372 goto slab_empty;
81819f0f 2373
2cfb7455
CL
2374 /*
2375 * Objects left in the slab. If it was not on the partial list before
2376 * then add it.
2377 */
2378 if (unlikely(!prior)) {
2379 remove_full(s, page);
2380 add_partial(n, page, 0);
2381 stat(s, FREE_ADD_PARTIAL);
2382 }
8ff12cfc 2383 }
80f08c19 2384 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2385 return;
2386
2387slab_empty:
a973e9dd 2388 if (prior) {
81819f0f 2389 /*
672bba3a 2390 * Slab still on the partial list.
81819f0f 2391 */
5cc6eee8 2392 remove_partial(n, page);
84e554e6 2393 stat(s, FREE_REMOVE_PARTIAL);
8ff12cfc 2394 }
2cfb7455 2395
80f08c19 2396 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2397 stat(s, FREE_SLAB);
81819f0f 2398 discard_slab(s, page);
81819f0f
CL
2399}
2400
894b8788
CL
2401/*
2402 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2403 * can perform fastpath freeing without additional function calls.
2404 *
2405 * The fastpath is only possible if we are freeing to the current cpu slab
2406 * of this processor. This typically the case if we have just allocated
2407 * the item before.
2408 *
2409 * If fastpath is not possible then fall back to __slab_free where we deal
2410 * with all sorts of special processing.
2411 */
06428780 2412static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2413 struct page *page, void *x, unsigned long addr)
894b8788
CL
2414{
2415 void **object = (void *)x;
dfb4f096 2416 struct kmem_cache_cpu *c;
8a5ec0ba 2417 unsigned long tid;
1f84260c 2418
c016b0bd
CL
2419 slab_free_hook(s, x);
2420
8a5ec0ba 2421redo:
a24c5a0e 2422
8a5ec0ba
CL
2423 /*
2424 * Determine the currently cpus per cpu slab.
2425 * The cpu may change afterward. However that does not matter since
2426 * data is retrieved via this pointer. If we are on the same cpu
2427 * during the cmpxchg then the free will succedd.
2428 */
9dfc6e68 2429 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2430
8a5ec0ba
CL
2431 tid = c->tid;
2432 barrier();
c016b0bd 2433
442b06bc 2434 if (likely(page == c->page)) {
ff12059e 2435 set_freepointer(s, object, c->freelist);
8a5ec0ba 2436
30106b8c 2437 if (unlikely(!irqsafe_cpu_cmpxchg_double(
8a5ec0ba
CL
2438 s->cpu_slab->freelist, s->cpu_slab->tid,
2439 c->freelist, tid,
2440 object, next_tid(tid)))) {
2441
2442 note_cmpxchg_failure("slab_free", s, tid);
2443 goto redo;
2444 }
84e554e6 2445 stat(s, FREE_FASTPATH);
894b8788 2446 } else
ff12059e 2447 __slab_free(s, page, x, addr);
894b8788 2448
894b8788
CL
2449}
2450
81819f0f
CL
2451void kmem_cache_free(struct kmem_cache *s, void *x)
2452{
77c5e2d0 2453 struct page *page;
81819f0f 2454
b49af68f 2455 page = virt_to_head_page(x);
81819f0f 2456
ce71e27c 2457 slab_free(s, page, x, _RET_IP_);
5b882be4 2458
ca2b84cb 2459 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2460}
2461EXPORT_SYMBOL(kmem_cache_free);
2462
81819f0f 2463/*
672bba3a
CL
2464 * Object placement in a slab is made very easy because we always start at
2465 * offset 0. If we tune the size of the object to the alignment then we can
2466 * get the required alignment by putting one properly sized object after
2467 * another.
81819f0f
CL
2468 *
2469 * Notice that the allocation order determines the sizes of the per cpu
2470 * caches. Each processor has always one slab available for allocations.
2471 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2472 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2473 * locking overhead.
81819f0f
CL
2474 */
2475
2476/*
2477 * Mininum / Maximum order of slab pages. This influences locking overhead
2478 * and slab fragmentation. A higher order reduces the number of partial slabs
2479 * and increases the number of allocations possible without having to
2480 * take the list_lock.
2481 */
2482static int slub_min_order;
114e9e89 2483static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2484static int slub_min_objects;
81819f0f
CL
2485
2486/*
2487 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2488 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2489 */
2490static int slub_nomerge;
2491
81819f0f
CL
2492/*
2493 * Calculate the order of allocation given an slab object size.
2494 *
672bba3a
CL
2495 * The order of allocation has significant impact on performance and other
2496 * system components. Generally order 0 allocations should be preferred since
2497 * order 0 does not cause fragmentation in the page allocator. Larger objects
2498 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2499 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2500 * would be wasted.
2501 *
2502 * In order to reach satisfactory performance we must ensure that a minimum
2503 * number of objects is in one slab. Otherwise we may generate too much
2504 * activity on the partial lists which requires taking the list_lock. This is
2505 * less a concern for large slabs though which are rarely used.
81819f0f 2506 *
672bba3a
CL
2507 * slub_max_order specifies the order where we begin to stop considering the
2508 * number of objects in a slab as critical. If we reach slub_max_order then
2509 * we try to keep the page order as low as possible. So we accept more waste
2510 * of space in favor of a small page order.
81819f0f 2511 *
672bba3a
CL
2512 * Higher order allocations also allow the placement of more objects in a
2513 * slab and thereby reduce object handling overhead. If the user has
2514 * requested a higher mininum order then we start with that one instead of
2515 * the smallest order which will fit the object.
81819f0f 2516 */
5e6d444e 2517static inline int slab_order(int size, int min_objects,
ab9a0f19 2518 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2519{
2520 int order;
2521 int rem;
6300ea75 2522 int min_order = slub_min_order;
81819f0f 2523
ab9a0f19 2524 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2525 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2526
6300ea75 2527 for (order = max(min_order,
5e6d444e
CL
2528 fls(min_objects * size - 1) - PAGE_SHIFT);
2529 order <= max_order; order++) {
81819f0f 2530
5e6d444e 2531 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2532
ab9a0f19 2533 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2534 continue;
2535
ab9a0f19 2536 rem = (slab_size - reserved) % size;
81819f0f 2537
5e6d444e 2538 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2539 break;
2540
2541 }
672bba3a 2542
81819f0f
CL
2543 return order;
2544}
2545
ab9a0f19 2546static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2547{
2548 int order;
2549 int min_objects;
2550 int fraction;
e8120ff1 2551 int max_objects;
5e6d444e
CL
2552
2553 /*
2554 * Attempt to find best configuration for a slab. This
2555 * works by first attempting to generate a layout with
2556 * the best configuration and backing off gradually.
2557 *
2558 * First we reduce the acceptable waste in a slab. Then
2559 * we reduce the minimum objects required in a slab.
2560 */
2561 min_objects = slub_min_objects;
9b2cd506
CL
2562 if (!min_objects)
2563 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2564 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2565 min_objects = min(min_objects, max_objects);
2566
5e6d444e 2567 while (min_objects > 1) {
c124f5b5 2568 fraction = 16;
5e6d444e
CL
2569 while (fraction >= 4) {
2570 order = slab_order(size, min_objects,
ab9a0f19 2571 slub_max_order, fraction, reserved);
5e6d444e
CL
2572 if (order <= slub_max_order)
2573 return order;
2574 fraction /= 2;
2575 }
5086c389 2576 min_objects--;
5e6d444e
CL
2577 }
2578
2579 /*
2580 * We were unable to place multiple objects in a slab. Now
2581 * lets see if we can place a single object there.
2582 */
ab9a0f19 2583 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2584 if (order <= slub_max_order)
2585 return order;
2586
2587 /*
2588 * Doh this slab cannot be placed using slub_max_order.
2589 */
ab9a0f19 2590 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2591 if (order < MAX_ORDER)
5e6d444e
CL
2592 return order;
2593 return -ENOSYS;
2594}
2595
81819f0f 2596/*
672bba3a 2597 * Figure out what the alignment of the objects will be.
81819f0f
CL
2598 */
2599static unsigned long calculate_alignment(unsigned long flags,
2600 unsigned long align, unsigned long size)
2601{
2602 /*
6446faa2
CL
2603 * If the user wants hardware cache aligned objects then follow that
2604 * suggestion if the object is sufficiently large.
81819f0f 2605 *
6446faa2
CL
2606 * The hardware cache alignment cannot override the specified
2607 * alignment though. If that is greater then use it.
81819f0f 2608 */
b6210386
NP
2609 if (flags & SLAB_HWCACHE_ALIGN) {
2610 unsigned long ralign = cache_line_size();
2611 while (size <= ralign / 2)
2612 ralign /= 2;
2613 align = max(align, ralign);
2614 }
81819f0f
CL
2615
2616 if (align < ARCH_SLAB_MINALIGN)
b6210386 2617 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2618
2619 return ALIGN(align, sizeof(void *));
2620}
2621
5595cffc
PE
2622static void
2623init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2624{
2625 n->nr_partial = 0;
81819f0f
CL
2626 spin_lock_init(&n->list_lock);
2627 INIT_LIST_HEAD(&n->partial);
8ab1372f 2628#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2629 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2630 atomic_long_set(&n->total_objects, 0);
643b1138 2631 INIT_LIST_HEAD(&n->full);
8ab1372f 2632#endif
81819f0f
CL
2633}
2634
55136592 2635static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2636{
6c182dc0
CL
2637 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2638 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2639
8a5ec0ba 2640 /*
d4d84fef
CM
2641 * Must align to double word boundary for the double cmpxchg
2642 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2643 */
d4d84fef
CM
2644 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2645 2 * sizeof(void *));
8a5ec0ba
CL
2646
2647 if (!s->cpu_slab)
2648 return 0;
2649
2650 init_kmem_cache_cpus(s);
4c93c355 2651
8a5ec0ba 2652 return 1;
4c93c355 2653}
4c93c355 2654
51df1142
CL
2655static struct kmem_cache *kmem_cache_node;
2656
81819f0f
CL
2657/*
2658 * No kmalloc_node yet so do it by hand. We know that this is the first
2659 * slab on the node for this slabcache. There are no concurrent accesses
2660 * possible.
2661 *
2662 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2663 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2664 * memory on a fresh node that has no slab structures yet.
81819f0f 2665 */
55136592 2666static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2667{
2668 struct page *page;
2669 struct kmem_cache_node *n;
2670
51df1142 2671 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2672
51df1142 2673 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2674
2675 BUG_ON(!page);
a2f92ee7
CL
2676 if (page_to_nid(page) != node) {
2677 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2678 "node %d\n", node);
2679 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2680 "in order to be able to continue\n");
2681 }
2682
81819f0f
CL
2683 n = page->freelist;
2684 BUG_ON(!n);
51df1142 2685 page->freelist = get_freepointer(kmem_cache_node, n);
81819f0f 2686 page->inuse++;
8cb0a506 2687 page->frozen = 0;
51df1142 2688 kmem_cache_node->node[node] = n;
8ab1372f 2689#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2690 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2691 init_tracking(kmem_cache_node, n);
8ab1372f 2692#endif
51df1142
CL
2693 init_kmem_cache_node(n, kmem_cache_node);
2694 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2695
7c2e132c 2696 add_partial(n, page, 0);
81819f0f
CL
2697}
2698
2699static void free_kmem_cache_nodes(struct kmem_cache *s)
2700{
2701 int node;
2702
f64dc58c 2703 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2704 struct kmem_cache_node *n = s->node[node];
51df1142 2705
73367bd8 2706 if (n)
51df1142
CL
2707 kmem_cache_free(kmem_cache_node, n);
2708
81819f0f
CL
2709 s->node[node] = NULL;
2710 }
2711}
2712
55136592 2713static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2714{
2715 int node;
81819f0f 2716
f64dc58c 2717 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2718 struct kmem_cache_node *n;
2719
73367bd8 2720 if (slab_state == DOWN) {
55136592 2721 early_kmem_cache_node_alloc(node);
73367bd8
AD
2722 continue;
2723 }
51df1142 2724 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2725 GFP_KERNEL, node);
81819f0f 2726
73367bd8
AD
2727 if (!n) {
2728 free_kmem_cache_nodes(s);
2729 return 0;
81819f0f 2730 }
73367bd8 2731
81819f0f 2732 s->node[node] = n;
5595cffc 2733 init_kmem_cache_node(n, s);
81819f0f
CL
2734 }
2735 return 1;
2736}
81819f0f 2737
c0bdb232 2738static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2739{
2740 if (min < MIN_PARTIAL)
2741 min = MIN_PARTIAL;
2742 else if (min > MAX_PARTIAL)
2743 min = MAX_PARTIAL;
2744 s->min_partial = min;
2745}
2746
81819f0f
CL
2747/*
2748 * calculate_sizes() determines the order and the distribution of data within
2749 * a slab object.
2750 */
06b285dc 2751static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2752{
2753 unsigned long flags = s->flags;
2754 unsigned long size = s->objsize;
2755 unsigned long align = s->align;
834f3d11 2756 int order;
81819f0f 2757
d8b42bf5
CL
2758 /*
2759 * Round up object size to the next word boundary. We can only
2760 * place the free pointer at word boundaries and this determines
2761 * the possible location of the free pointer.
2762 */
2763 size = ALIGN(size, sizeof(void *));
2764
2765#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2766 /*
2767 * Determine if we can poison the object itself. If the user of
2768 * the slab may touch the object after free or before allocation
2769 * then we should never poison the object itself.
2770 */
2771 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2772 !s->ctor)
81819f0f
CL
2773 s->flags |= __OBJECT_POISON;
2774 else
2775 s->flags &= ~__OBJECT_POISON;
2776
81819f0f
CL
2777
2778 /*
672bba3a 2779 * If we are Redzoning then check if there is some space between the
81819f0f 2780 * end of the object and the free pointer. If not then add an
672bba3a 2781 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2782 */
2783 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2784 size += sizeof(void *);
41ecc55b 2785#endif
81819f0f
CL
2786
2787 /*
672bba3a
CL
2788 * With that we have determined the number of bytes in actual use
2789 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2790 */
2791 s->inuse = size;
2792
2793 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2794 s->ctor)) {
81819f0f
CL
2795 /*
2796 * Relocate free pointer after the object if it is not
2797 * permitted to overwrite the first word of the object on
2798 * kmem_cache_free.
2799 *
2800 * This is the case if we do RCU, have a constructor or
2801 * destructor or are poisoning the objects.
2802 */
2803 s->offset = size;
2804 size += sizeof(void *);
2805 }
2806
c12b3c62 2807#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2808 if (flags & SLAB_STORE_USER)
2809 /*
2810 * Need to store information about allocs and frees after
2811 * the object.
2812 */
2813 size += 2 * sizeof(struct track);
2814
be7b3fbc 2815 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2816 /*
2817 * Add some empty padding so that we can catch
2818 * overwrites from earlier objects rather than let
2819 * tracking information or the free pointer be
0211a9c8 2820 * corrupted if a user writes before the start
81819f0f
CL
2821 * of the object.
2822 */
2823 size += sizeof(void *);
41ecc55b 2824#endif
672bba3a 2825
81819f0f
CL
2826 /*
2827 * Determine the alignment based on various parameters that the
65c02d4c
CL
2828 * user specified and the dynamic determination of cache line size
2829 * on bootup.
81819f0f
CL
2830 */
2831 align = calculate_alignment(flags, align, s->objsize);
dcb0ce1b 2832 s->align = align;
81819f0f
CL
2833
2834 /*
2835 * SLUB stores one object immediately after another beginning from
2836 * offset 0. In order to align the objects we have to simply size
2837 * each object to conform to the alignment.
2838 */
2839 size = ALIGN(size, align);
2840 s->size = size;
06b285dc
CL
2841 if (forced_order >= 0)
2842 order = forced_order;
2843 else
ab9a0f19 2844 order = calculate_order(size, s->reserved);
81819f0f 2845
834f3d11 2846 if (order < 0)
81819f0f
CL
2847 return 0;
2848
b7a49f0d 2849 s->allocflags = 0;
834f3d11 2850 if (order)
b7a49f0d
CL
2851 s->allocflags |= __GFP_COMP;
2852
2853 if (s->flags & SLAB_CACHE_DMA)
2854 s->allocflags |= SLUB_DMA;
2855
2856 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2857 s->allocflags |= __GFP_RECLAIMABLE;
2858
81819f0f
CL
2859 /*
2860 * Determine the number of objects per slab
2861 */
ab9a0f19
LJ
2862 s->oo = oo_make(order, size, s->reserved);
2863 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
2864 if (oo_objects(s->oo) > oo_objects(s->max))
2865 s->max = s->oo;
81819f0f 2866
834f3d11 2867 return !!oo_objects(s->oo);
81819f0f
CL
2868
2869}
2870
55136592 2871static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
2872 const char *name, size_t size,
2873 size_t align, unsigned long flags,
51cc5068 2874 void (*ctor)(void *))
81819f0f
CL
2875{
2876 memset(s, 0, kmem_size);
2877 s->name = name;
2878 s->ctor = ctor;
81819f0f 2879 s->objsize = size;
81819f0f 2880 s->align = align;
ba0268a8 2881 s->flags = kmem_cache_flags(size, flags, name, ctor);
ab9a0f19 2882 s->reserved = 0;
81819f0f 2883
da9a638c
LJ
2884 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
2885 s->reserved = sizeof(struct rcu_head);
81819f0f 2886
06b285dc 2887 if (!calculate_sizes(s, -1))
81819f0f 2888 goto error;
3de47213
DR
2889 if (disable_higher_order_debug) {
2890 /*
2891 * Disable debugging flags that store metadata if the min slab
2892 * order increased.
2893 */
2894 if (get_order(s->size) > get_order(s->objsize)) {
2895 s->flags &= ~DEBUG_METADATA_FLAGS;
2896 s->offset = 0;
2897 if (!calculate_sizes(s, -1))
2898 goto error;
2899 }
2900 }
81819f0f 2901
b789ef51
CL
2902#ifdef CONFIG_CMPXCHG_DOUBLE
2903 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
2904 /* Enable fast mode */
2905 s->flags |= __CMPXCHG_DOUBLE;
2906#endif
2907
3b89d7d8
DR
2908 /*
2909 * The larger the object size is, the more pages we want on the partial
2910 * list to avoid pounding the page allocator excessively.
2911 */
c0bdb232 2912 set_min_partial(s, ilog2(s->size));
81819f0f
CL
2913 s->refcount = 1;
2914#ifdef CONFIG_NUMA
e2cb96b7 2915 s->remote_node_defrag_ratio = 1000;
81819f0f 2916#endif
55136592 2917 if (!init_kmem_cache_nodes(s))
dfb4f096 2918 goto error;
81819f0f 2919
55136592 2920 if (alloc_kmem_cache_cpus(s))
81819f0f 2921 return 1;
ff12059e 2922
4c93c355 2923 free_kmem_cache_nodes(s);
81819f0f
CL
2924error:
2925 if (flags & SLAB_PANIC)
2926 panic("Cannot create slab %s size=%lu realsize=%u "
2927 "order=%u offset=%u flags=%lx\n",
834f3d11 2928 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2929 s->offset, flags);
2930 return 0;
2931}
81819f0f 2932
81819f0f
CL
2933/*
2934 * Determine the size of a slab object
2935 */
2936unsigned int kmem_cache_size(struct kmem_cache *s)
2937{
2938 return s->objsize;
2939}
2940EXPORT_SYMBOL(kmem_cache_size);
2941
33b12c38
CL
2942static void list_slab_objects(struct kmem_cache *s, struct page *page,
2943 const char *text)
2944{
2945#ifdef CONFIG_SLUB_DEBUG
2946 void *addr = page_address(page);
2947 void *p;
a5dd5c11
NK
2948 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2949 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
2950 if (!map)
2951 return;
33b12c38
CL
2952 slab_err(s, page, "%s", text);
2953 slab_lock(page);
33b12c38 2954
5f80b13a 2955 get_map(s, page, map);
33b12c38
CL
2956 for_each_object(p, s, addr, page->objects) {
2957
2958 if (!test_bit(slab_index(p, s, addr), map)) {
2959 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2960 p, p - addr);
2961 print_tracking(s, p);
2962 }
2963 }
2964 slab_unlock(page);
bbd7d57b 2965 kfree(map);
33b12c38
CL
2966#endif
2967}
2968
81819f0f 2969/*
599870b1 2970 * Attempt to free all partial slabs on a node.
81819f0f 2971 */
599870b1 2972static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2973{
81819f0f
CL
2974 unsigned long flags;
2975 struct page *page, *h;
2976
2977 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2978 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 2979 if (!page->inuse) {
5cc6eee8 2980 remove_partial(n, page);
81819f0f 2981 discard_slab(s, page);
33b12c38
CL
2982 } else {
2983 list_slab_objects(s, page,
2984 "Objects remaining on kmem_cache_close()");
599870b1 2985 }
33b12c38 2986 }
81819f0f 2987 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2988}
2989
2990/*
672bba3a 2991 * Release all resources used by a slab cache.
81819f0f 2992 */
0c710013 2993static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2994{
2995 int node;
2996
2997 flush_all(s);
9dfc6e68 2998 free_percpu(s->cpu_slab);
81819f0f 2999 /* Attempt to free all objects */
f64dc58c 3000 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3001 struct kmem_cache_node *n = get_node(s, node);
3002
599870b1
CL
3003 free_partial(s, n);
3004 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3005 return 1;
3006 }
3007 free_kmem_cache_nodes(s);
3008 return 0;
3009}
3010
3011/*
3012 * Close a cache and release the kmem_cache structure
3013 * (must be used for caches created using kmem_cache_create)
3014 */
3015void kmem_cache_destroy(struct kmem_cache *s)
3016{
3017 down_write(&slub_lock);
3018 s->refcount--;
3019 if (!s->refcount) {
3020 list_del(&s->list);
d629d819
PE
3021 if (kmem_cache_close(s)) {
3022 printk(KERN_ERR "SLUB %s: %s called for cache that "
3023 "still has objects.\n", s->name, __func__);
3024 dump_stack();
3025 }
d76b1590
ED
3026 if (s->flags & SLAB_DESTROY_BY_RCU)
3027 rcu_barrier();
81819f0f 3028 sysfs_slab_remove(s);
2bce6485
CL
3029 }
3030 up_write(&slub_lock);
81819f0f
CL
3031}
3032EXPORT_SYMBOL(kmem_cache_destroy);
3033
3034/********************************************************************
3035 * Kmalloc subsystem
3036 *******************************************************************/
3037
51df1142 3038struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
3039EXPORT_SYMBOL(kmalloc_caches);
3040
51df1142
CL
3041static struct kmem_cache *kmem_cache;
3042
55136592 3043#ifdef CONFIG_ZONE_DMA
51df1142 3044static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
3045#endif
3046
81819f0f
CL
3047static int __init setup_slub_min_order(char *str)
3048{
06428780 3049 get_option(&str, &slub_min_order);
81819f0f
CL
3050
3051 return 1;
3052}
3053
3054__setup("slub_min_order=", setup_slub_min_order);
3055
3056static int __init setup_slub_max_order(char *str)
3057{
06428780 3058 get_option(&str, &slub_max_order);
818cf590 3059 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3060
3061 return 1;
3062}
3063
3064__setup("slub_max_order=", setup_slub_max_order);
3065
3066static int __init setup_slub_min_objects(char *str)
3067{
06428780 3068 get_option(&str, &slub_min_objects);
81819f0f
CL
3069
3070 return 1;
3071}
3072
3073__setup("slub_min_objects=", setup_slub_min_objects);
3074
3075static int __init setup_slub_nomerge(char *str)
3076{
3077 slub_nomerge = 1;
3078 return 1;
3079}
3080
3081__setup("slub_nomerge", setup_slub_nomerge);
3082
51df1142
CL
3083static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3084 int size, unsigned int flags)
81819f0f 3085{
51df1142
CL
3086 struct kmem_cache *s;
3087
3088 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3089
83b519e8
PE
3090 /*
3091 * This function is called with IRQs disabled during early-boot on
3092 * single CPU so there's no need to take slub_lock here.
3093 */
55136592 3094 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 3095 flags, NULL))
81819f0f
CL
3096 goto panic;
3097
3098 list_add(&s->list, &slab_caches);
51df1142 3099 return s;
81819f0f
CL
3100
3101panic:
3102 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 3103 return NULL;
81819f0f
CL
3104}
3105
f1b26339
CL
3106/*
3107 * Conversion table for small slabs sizes / 8 to the index in the
3108 * kmalloc array. This is necessary for slabs < 192 since we have non power
3109 * of two cache sizes there. The size of larger slabs can be determined using
3110 * fls.
3111 */
3112static s8 size_index[24] = {
3113 3, /* 8 */
3114 4, /* 16 */
3115 5, /* 24 */
3116 5, /* 32 */
3117 6, /* 40 */
3118 6, /* 48 */
3119 6, /* 56 */
3120 6, /* 64 */
3121 1, /* 72 */
3122 1, /* 80 */
3123 1, /* 88 */
3124 1, /* 96 */
3125 7, /* 104 */
3126 7, /* 112 */
3127 7, /* 120 */
3128 7, /* 128 */
3129 2, /* 136 */
3130 2, /* 144 */
3131 2, /* 152 */
3132 2, /* 160 */
3133 2, /* 168 */
3134 2, /* 176 */
3135 2, /* 184 */
3136 2 /* 192 */
3137};
3138
acdfcd04
AK
3139static inline int size_index_elem(size_t bytes)
3140{
3141 return (bytes - 1) / 8;
3142}
3143
81819f0f
CL
3144static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3145{
f1b26339 3146 int index;
81819f0f 3147
f1b26339
CL
3148 if (size <= 192) {
3149 if (!size)
3150 return ZERO_SIZE_PTR;
81819f0f 3151
acdfcd04 3152 index = size_index[size_index_elem(size)];
aadb4bc4 3153 } else
f1b26339 3154 index = fls(size - 1);
81819f0f
CL
3155
3156#ifdef CONFIG_ZONE_DMA
f1b26339 3157 if (unlikely((flags & SLUB_DMA)))
51df1142 3158 return kmalloc_dma_caches[index];
f1b26339 3159
81819f0f 3160#endif
51df1142 3161 return kmalloc_caches[index];
81819f0f
CL
3162}
3163
3164void *__kmalloc(size_t size, gfp_t flags)
3165{
aadb4bc4 3166 struct kmem_cache *s;
5b882be4 3167 void *ret;
81819f0f 3168
ffadd4d0 3169 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 3170 return kmalloc_large(size, flags);
aadb4bc4
CL
3171
3172 s = get_slab(size, flags);
3173
3174 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3175 return s;
3176
2154a336 3177 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 3178
ca2b84cb 3179 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3180
3181 return ret;
81819f0f
CL
3182}
3183EXPORT_SYMBOL(__kmalloc);
3184
5d1f57e4 3185#ifdef CONFIG_NUMA
f619cfe1
CL
3186static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3187{
b1eeab67 3188 struct page *page;
e4f7c0b4 3189 void *ptr = NULL;
f619cfe1 3190
b1eeab67
VN
3191 flags |= __GFP_COMP | __GFP_NOTRACK;
3192 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3193 if (page)
e4f7c0b4
CM
3194 ptr = page_address(page);
3195
3196 kmemleak_alloc(ptr, size, 1, flags);
3197 return ptr;
f619cfe1
CL
3198}
3199
81819f0f
CL
3200void *__kmalloc_node(size_t size, gfp_t flags, int node)
3201{
aadb4bc4 3202 struct kmem_cache *s;
5b882be4 3203 void *ret;
81819f0f 3204
057685cf 3205 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
3206 ret = kmalloc_large_node(size, flags, node);
3207
ca2b84cb
EGM
3208 trace_kmalloc_node(_RET_IP_, ret,
3209 size, PAGE_SIZE << get_order(size),
3210 flags, node);
5b882be4
EGM
3211
3212 return ret;
3213 }
aadb4bc4
CL
3214
3215 s = get_slab(size, flags);
3216
3217 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3218 return s;
3219
5b882be4
EGM
3220 ret = slab_alloc(s, flags, node, _RET_IP_);
3221
ca2b84cb 3222 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3223
3224 return ret;
81819f0f
CL
3225}
3226EXPORT_SYMBOL(__kmalloc_node);
3227#endif
3228
3229size_t ksize(const void *object)
3230{
272c1d21 3231 struct page *page;
81819f0f 3232
ef8b4520 3233 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3234 return 0;
3235
294a80a8 3236 page = virt_to_head_page(object);
294a80a8 3237
76994412
PE
3238 if (unlikely(!PageSlab(page))) {
3239 WARN_ON(!PageCompound(page));
294a80a8 3240 return PAGE_SIZE << compound_order(page);
76994412 3241 }
81819f0f 3242
b3d41885 3243 return slab_ksize(page->slab);
81819f0f 3244}
b1aabecd 3245EXPORT_SYMBOL(ksize);
81819f0f 3246
d18a90dd
BG
3247#ifdef CONFIG_SLUB_DEBUG
3248bool verify_mem_not_deleted(const void *x)
3249{
3250 struct page *page;
3251 void *object = (void *)x;
3252 unsigned long flags;
3253 bool rv;
3254
3255 if (unlikely(ZERO_OR_NULL_PTR(x)))
3256 return false;
3257
3258 local_irq_save(flags);
3259
3260 page = virt_to_head_page(x);
3261 if (unlikely(!PageSlab(page))) {
3262 /* maybe it was from stack? */
3263 rv = true;
3264 goto out_unlock;
3265 }
3266
3267 slab_lock(page);
3268 if (on_freelist(page->slab, page, object)) {
3269 object_err(page->slab, page, object, "Object is on free-list");
3270 rv = false;
3271 } else {
3272 rv = true;
3273 }
3274 slab_unlock(page);
3275
3276out_unlock:
3277 local_irq_restore(flags);
3278 return rv;
3279}
3280EXPORT_SYMBOL(verify_mem_not_deleted);
3281#endif
3282
81819f0f
CL
3283void kfree(const void *x)
3284{
81819f0f 3285 struct page *page;
5bb983b0 3286 void *object = (void *)x;
81819f0f 3287
2121db74
PE
3288 trace_kfree(_RET_IP_, x);
3289
2408c550 3290 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3291 return;
3292
b49af68f 3293 page = virt_to_head_page(x);
aadb4bc4 3294 if (unlikely(!PageSlab(page))) {
0937502a 3295 BUG_ON(!PageCompound(page));
e4f7c0b4 3296 kmemleak_free(x);
aadb4bc4
CL
3297 put_page(page);
3298 return;
3299 }
ce71e27c 3300 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
3301}
3302EXPORT_SYMBOL(kfree);
3303
2086d26a 3304/*
672bba3a
CL
3305 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3306 * the remaining slabs by the number of items in use. The slabs with the
3307 * most items in use come first. New allocations will then fill those up
3308 * and thus they can be removed from the partial lists.
3309 *
3310 * The slabs with the least items are placed last. This results in them
3311 * being allocated from last increasing the chance that the last objects
3312 * are freed in them.
2086d26a
CL
3313 */
3314int kmem_cache_shrink(struct kmem_cache *s)
3315{
3316 int node;
3317 int i;
3318 struct kmem_cache_node *n;
3319 struct page *page;
3320 struct page *t;
205ab99d 3321 int objects = oo_objects(s->max);
2086d26a 3322 struct list_head *slabs_by_inuse =
834f3d11 3323 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3324 unsigned long flags;
3325
3326 if (!slabs_by_inuse)
3327 return -ENOMEM;
3328
3329 flush_all(s);
f64dc58c 3330 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3331 n = get_node(s, node);
3332
3333 if (!n->nr_partial)
3334 continue;
3335
834f3d11 3336 for (i = 0; i < objects; i++)
2086d26a
CL
3337 INIT_LIST_HEAD(slabs_by_inuse + i);
3338
3339 spin_lock_irqsave(&n->list_lock, flags);
3340
3341 /*
672bba3a 3342 * Build lists indexed by the items in use in each slab.
2086d26a 3343 *
672bba3a
CL
3344 * Note that concurrent frees may occur while we hold the
3345 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3346 */
3347 list_for_each_entry_safe(page, t, &n->partial, lru) {
881db7fb 3348 if (!page->inuse) {
5cc6eee8 3349 remove_partial(n, page);
2086d26a
CL
3350 discard_slab(s, page);
3351 } else {
fcda3d89
CL
3352 list_move(&page->lru,
3353 slabs_by_inuse + page->inuse);
2086d26a
CL
3354 }
3355 }
3356
2086d26a 3357 /*
672bba3a
CL
3358 * Rebuild the partial list with the slabs filled up most
3359 * first and the least used slabs at the end.
2086d26a 3360 */
834f3d11 3361 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
3362 list_splice(slabs_by_inuse + i, n->partial.prev);
3363
2086d26a
CL
3364 spin_unlock_irqrestore(&n->list_lock, flags);
3365 }
3366
3367 kfree(slabs_by_inuse);
3368 return 0;
3369}
3370EXPORT_SYMBOL(kmem_cache_shrink);
3371
92a5bbc1 3372#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
3373static int slab_mem_going_offline_callback(void *arg)
3374{
3375 struct kmem_cache *s;
3376
3377 down_read(&slub_lock);
3378 list_for_each_entry(s, &slab_caches, list)
3379 kmem_cache_shrink(s);
3380 up_read(&slub_lock);
3381
3382 return 0;
3383}
3384
3385static void slab_mem_offline_callback(void *arg)
3386{
3387 struct kmem_cache_node *n;
3388 struct kmem_cache *s;
3389 struct memory_notify *marg = arg;
3390 int offline_node;
3391
3392 offline_node = marg->status_change_nid;
3393
3394 /*
3395 * If the node still has available memory. we need kmem_cache_node
3396 * for it yet.
3397 */
3398 if (offline_node < 0)
3399 return;
3400
3401 down_read(&slub_lock);
3402 list_for_each_entry(s, &slab_caches, list) {
3403 n = get_node(s, offline_node);
3404 if (n) {
3405 /*
3406 * if n->nr_slabs > 0, slabs still exist on the node
3407 * that is going down. We were unable to free them,
c9404c9c 3408 * and offline_pages() function shouldn't call this
b9049e23
YG
3409 * callback. So, we must fail.
3410 */
0f389ec6 3411 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3412
3413 s->node[offline_node] = NULL;
8de66a0c 3414 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3415 }
3416 }
3417 up_read(&slub_lock);
3418}
3419
3420static int slab_mem_going_online_callback(void *arg)
3421{
3422 struct kmem_cache_node *n;
3423 struct kmem_cache *s;
3424 struct memory_notify *marg = arg;
3425 int nid = marg->status_change_nid;
3426 int ret = 0;
3427
3428 /*
3429 * If the node's memory is already available, then kmem_cache_node is
3430 * already created. Nothing to do.
3431 */
3432 if (nid < 0)
3433 return 0;
3434
3435 /*
0121c619 3436 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3437 * allocate a kmem_cache_node structure in order to bring the node
3438 * online.
3439 */
3440 down_read(&slub_lock);
3441 list_for_each_entry(s, &slab_caches, list) {
3442 /*
3443 * XXX: kmem_cache_alloc_node will fallback to other nodes
3444 * since memory is not yet available from the node that
3445 * is brought up.
3446 */
8de66a0c 3447 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3448 if (!n) {
3449 ret = -ENOMEM;
3450 goto out;
3451 }
5595cffc 3452 init_kmem_cache_node(n, s);
b9049e23
YG
3453 s->node[nid] = n;
3454 }
3455out:
3456 up_read(&slub_lock);
3457 return ret;
3458}
3459
3460static int slab_memory_callback(struct notifier_block *self,
3461 unsigned long action, void *arg)
3462{
3463 int ret = 0;
3464
3465 switch (action) {
3466 case MEM_GOING_ONLINE:
3467 ret = slab_mem_going_online_callback(arg);
3468 break;
3469 case MEM_GOING_OFFLINE:
3470 ret = slab_mem_going_offline_callback(arg);
3471 break;
3472 case MEM_OFFLINE:
3473 case MEM_CANCEL_ONLINE:
3474 slab_mem_offline_callback(arg);
3475 break;
3476 case MEM_ONLINE:
3477 case MEM_CANCEL_OFFLINE:
3478 break;
3479 }
dc19f9db
KH
3480 if (ret)
3481 ret = notifier_from_errno(ret);
3482 else
3483 ret = NOTIFY_OK;
b9049e23
YG
3484 return ret;
3485}
3486
3487#endif /* CONFIG_MEMORY_HOTPLUG */
3488
81819f0f
CL
3489/********************************************************************
3490 * Basic setup of slabs
3491 *******************************************************************/
3492
51df1142
CL
3493/*
3494 * Used for early kmem_cache structures that were allocated using
3495 * the page allocator
3496 */
3497
3498static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3499{
3500 int node;
3501
3502 list_add(&s->list, &slab_caches);
3503 s->refcount = -1;
3504
3505 for_each_node_state(node, N_NORMAL_MEMORY) {
3506 struct kmem_cache_node *n = get_node(s, node);
3507 struct page *p;
3508
3509 if (n) {
3510 list_for_each_entry(p, &n->partial, lru)
3511 p->slab = s;
3512
607bf324 3513#ifdef CONFIG_SLUB_DEBUG
51df1142
CL
3514 list_for_each_entry(p, &n->full, lru)
3515 p->slab = s;
3516#endif
3517 }
3518 }
3519}
3520
81819f0f
CL
3521void __init kmem_cache_init(void)
3522{
3523 int i;
4b356be0 3524 int caches = 0;
51df1142
CL
3525 struct kmem_cache *temp_kmem_cache;
3526 int order;
51df1142
CL
3527 struct kmem_cache *temp_kmem_cache_node;
3528 unsigned long kmalloc_size;
3529
3530 kmem_size = offsetof(struct kmem_cache, node) +
3531 nr_node_ids * sizeof(struct kmem_cache_node *);
3532
3533 /* Allocate two kmem_caches from the page allocator */
3534 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3535 order = get_order(2 * kmalloc_size);
3536 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3537
81819f0f
CL
3538 /*
3539 * Must first have the slab cache available for the allocations of the
672bba3a 3540 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3541 * kmem_cache_open for slab_state == DOWN.
3542 */
51df1142
CL
3543 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3544
3545 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3546 sizeof(struct kmem_cache_node),
3547 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3548
0c40ba4f 3549 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3550
3551 /* Able to allocate the per node structures */
3552 slab_state = PARTIAL;
3553
51df1142
CL
3554 temp_kmem_cache = kmem_cache;
3555 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3556 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3557 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3558 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3559
51df1142
CL
3560 /*
3561 * Allocate kmem_cache_node properly from the kmem_cache slab.
3562 * kmem_cache_node is separately allocated so no need to
3563 * update any list pointers.
3564 */
3565 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3566
51df1142
CL
3567 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3568 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3569
3570 kmem_cache_bootstrap_fixup(kmem_cache_node);
3571
3572 caches++;
51df1142
CL
3573 kmem_cache_bootstrap_fixup(kmem_cache);
3574 caches++;
3575 /* Free temporary boot structure */
3576 free_pages((unsigned long)temp_kmem_cache, order);
3577
3578 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3579
3580 /*
3581 * Patch up the size_index table if we have strange large alignment
3582 * requirements for the kmalloc array. This is only the case for
6446faa2 3583 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3584 *
3585 * Largest permitted alignment is 256 bytes due to the way we
3586 * handle the index determination for the smaller caches.
3587 *
3588 * Make sure that nothing crazy happens if someone starts tinkering
3589 * around with ARCH_KMALLOC_MINALIGN
3590 */
3591 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3592 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3593
acdfcd04
AK
3594 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3595 int elem = size_index_elem(i);
3596 if (elem >= ARRAY_SIZE(size_index))
3597 break;
3598 size_index[elem] = KMALLOC_SHIFT_LOW;
3599 }
f1b26339 3600
acdfcd04
AK
3601 if (KMALLOC_MIN_SIZE == 64) {
3602 /*
3603 * The 96 byte size cache is not used if the alignment
3604 * is 64 byte.
3605 */
3606 for (i = 64 + 8; i <= 96; i += 8)
3607 size_index[size_index_elem(i)] = 7;
3608 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3609 /*
3610 * The 192 byte sized cache is not used if the alignment
3611 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3612 * instead.
3613 */
3614 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3615 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3616 }
3617
51df1142
CL
3618 /* Caches that are not of the two-to-the-power-of size */
3619 if (KMALLOC_MIN_SIZE <= 32) {
3620 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3621 caches++;
3622 }
3623
3624 if (KMALLOC_MIN_SIZE <= 64) {
3625 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3626 caches++;
3627 }
3628
3629 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3630 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3631 caches++;
3632 }
3633
81819f0f
CL
3634 slab_state = UP;
3635
3636 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3637 if (KMALLOC_MIN_SIZE <= 32) {
3638 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3639 BUG_ON(!kmalloc_caches[1]->name);
3640 }
3641
3642 if (KMALLOC_MIN_SIZE <= 64) {
3643 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3644 BUG_ON(!kmalloc_caches[2]->name);
3645 }
3646
d7278bd7
CL
3647 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3648 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3649
3650 BUG_ON(!s);
51df1142 3651 kmalloc_caches[i]->name = s;
d7278bd7 3652 }
81819f0f
CL
3653
3654#ifdef CONFIG_SMP
3655 register_cpu_notifier(&slab_notifier);
9dfc6e68 3656#endif
81819f0f 3657
55136592 3658#ifdef CONFIG_ZONE_DMA
51df1142
CL
3659 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3660 struct kmem_cache *s = kmalloc_caches[i];
55136592 3661
51df1142 3662 if (s && s->size) {
55136592
CL
3663 char *name = kasprintf(GFP_NOWAIT,
3664 "dma-kmalloc-%d", s->objsize);
3665
3666 BUG_ON(!name);
51df1142
CL
3667 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3668 s->objsize, SLAB_CACHE_DMA);
55136592
CL
3669 }
3670 }
3671#endif
3adbefee
IM
3672 printk(KERN_INFO
3673 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3674 " CPUs=%d, Nodes=%d\n",
3675 caches, cache_line_size(),
81819f0f
CL
3676 slub_min_order, slub_max_order, slub_min_objects,
3677 nr_cpu_ids, nr_node_ids);
3678}
3679
7e85ee0c
PE
3680void __init kmem_cache_init_late(void)
3681{
7e85ee0c
PE
3682}
3683
81819f0f
CL
3684/*
3685 * Find a mergeable slab cache
3686 */
3687static int slab_unmergeable(struct kmem_cache *s)
3688{
3689 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3690 return 1;
3691
c59def9f 3692 if (s->ctor)
81819f0f
CL
3693 return 1;
3694
8ffa6875
CL
3695 /*
3696 * We may have set a slab to be unmergeable during bootstrap.
3697 */
3698 if (s->refcount < 0)
3699 return 1;
3700
81819f0f
CL
3701 return 0;
3702}
3703
3704static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3705 size_t align, unsigned long flags, const char *name,
51cc5068 3706 void (*ctor)(void *))
81819f0f 3707{
5b95a4ac 3708 struct kmem_cache *s;
81819f0f
CL
3709
3710 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3711 return NULL;
3712
c59def9f 3713 if (ctor)
81819f0f
CL
3714 return NULL;
3715
3716 size = ALIGN(size, sizeof(void *));
3717 align = calculate_alignment(flags, align, size);
3718 size = ALIGN(size, align);
ba0268a8 3719 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3720
5b95a4ac 3721 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3722 if (slab_unmergeable(s))
3723 continue;
3724
3725 if (size > s->size)
3726 continue;
3727
ba0268a8 3728 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3729 continue;
3730 /*
3731 * Check if alignment is compatible.
3732 * Courtesy of Adrian Drzewiecki
3733 */
06428780 3734 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3735 continue;
3736
3737 if (s->size - size >= sizeof(void *))
3738 continue;
3739
3740 return s;
3741 }
3742 return NULL;
3743}
3744
3745struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3746 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3747{
3748 struct kmem_cache *s;
84c1cf62 3749 char *n;
81819f0f 3750
fe1ff49d
BH
3751 if (WARN_ON(!name))
3752 return NULL;
3753
81819f0f 3754 down_write(&slub_lock);
ba0268a8 3755 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3756 if (s) {
3757 s->refcount++;
3758 /*
3759 * Adjust the object sizes so that we clear
3760 * the complete object on kzalloc.
3761 */
3762 s->objsize = max(s->objsize, (int)size);
3763 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3764
7b8f3b66 3765 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3766 s->refcount--;
81819f0f 3767 goto err;
7b8f3b66 3768 }
2bce6485 3769 up_write(&slub_lock);
a0e1d1be
CL
3770 return s;
3771 }
6446faa2 3772
84c1cf62
PE
3773 n = kstrdup(name, GFP_KERNEL);
3774 if (!n)
3775 goto err;
3776
a0e1d1be
CL
3777 s = kmalloc(kmem_size, GFP_KERNEL);
3778 if (s) {
84c1cf62 3779 if (kmem_cache_open(s, n,
c59def9f 3780 size, align, flags, ctor)) {
81819f0f 3781 list_add(&s->list, &slab_caches);
7b8f3b66 3782 if (sysfs_slab_add(s)) {
7b8f3b66 3783 list_del(&s->list);
84c1cf62 3784 kfree(n);
7b8f3b66 3785 kfree(s);
a0e1d1be 3786 goto err;
7b8f3b66 3787 }
2bce6485 3788 up_write(&slub_lock);
a0e1d1be
CL
3789 return s;
3790 }
84c1cf62 3791 kfree(n);
a0e1d1be 3792 kfree(s);
81819f0f 3793 }
68cee4f1 3794err:
81819f0f 3795 up_write(&slub_lock);
81819f0f 3796
81819f0f
CL
3797 if (flags & SLAB_PANIC)
3798 panic("Cannot create slabcache %s\n", name);
3799 else
3800 s = NULL;
3801 return s;
3802}
3803EXPORT_SYMBOL(kmem_cache_create);
3804
81819f0f 3805#ifdef CONFIG_SMP
81819f0f 3806/*
672bba3a
CL
3807 * Use the cpu notifier to insure that the cpu slabs are flushed when
3808 * necessary.
81819f0f
CL
3809 */
3810static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3811 unsigned long action, void *hcpu)
3812{
3813 long cpu = (long)hcpu;
5b95a4ac
CL
3814 struct kmem_cache *s;
3815 unsigned long flags;
81819f0f
CL
3816
3817 switch (action) {
3818 case CPU_UP_CANCELED:
8bb78442 3819 case CPU_UP_CANCELED_FROZEN:
81819f0f 3820 case CPU_DEAD:
8bb78442 3821 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3822 down_read(&slub_lock);
3823 list_for_each_entry(s, &slab_caches, list) {
3824 local_irq_save(flags);
3825 __flush_cpu_slab(s, cpu);
3826 local_irq_restore(flags);
3827 }
3828 up_read(&slub_lock);
81819f0f
CL
3829 break;
3830 default:
3831 break;
3832 }
3833 return NOTIFY_OK;
3834}
3835
06428780 3836static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3837 .notifier_call = slab_cpuup_callback
06428780 3838};
81819f0f
CL
3839
3840#endif
3841
ce71e27c 3842void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3843{
aadb4bc4 3844 struct kmem_cache *s;
94b528d0 3845 void *ret;
aadb4bc4 3846
ffadd4d0 3847 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3848 return kmalloc_large(size, gfpflags);
3849
aadb4bc4 3850 s = get_slab(size, gfpflags);
81819f0f 3851
2408c550 3852 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3853 return s;
81819f0f 3854
2154a336 3855 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0 3856
25985edc 3857 /* Honor the call site pointer we received. */
ca2b84cb 3858 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3859
3860 return ret;
81819f0f
CL
3861}
3862
5d1f57e4 3863#ifdef CONFIG_NUMA
81819f0f 3864void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3865 int node, unsigned long caller)
81819f0f 3866{
aadb4bc4 3867 struct kmem_cache *s;
94b528d0 3868 void *ret;
aadb4bc4 3869
d3e14aa3
XF
3870 if (unlikely(size > SLUB_MAX_SIZE)) {
3871 ret = kmalloc_large_node(size, gfpflags, node);
3872
3873 trace_kmalloc_node(caller, ret,
3874 size, PAGE_SIZE << get_order(size),
3875 gfpflags, node);
3876
3877 return ret;
3878 }
eada35ef 3879
aadb4bc4 3880 s = get_slab(size, gfpflags);
81819f0f 3881
2408c550 3882 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3883 return s;
81819f0f 3884
94b528d0
EGM
3885 ret = slab_alloc(s, gfpflags, node, caller);
3886
25985edc 3887 /* Honor the call site pointer we received. */
ca2b84cb 3888 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3889
3890 return ret;
81819f0f 3891}
5d1f57e4 3892#endif
81819f0f 3893
ab4d5ed5 3894#ifdef CONFIG_SYSFS
205ab99d
CL
3895static int count_inuse(struct page *page)
3896{
3897 return page->inuse;
3898}
3899
3900static int count_total(struct page *page)
3901{
3902 return page->objects;
3903}
ab4d5ed5 3904#endif
205ab99d 3905
ab4d5ed5 3906#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3907static int validate_slab(struct kmem_cache *s, struct page *page,
3908 unsigned long *map)
53e15af0
CL
3909{
3910 void *p;
a973e9dd 3911 void *addr = page_address(page);
53e15af0
CL
3912
3913 if (!check_slab(s, page) ||
3914 !on_freelist(s, page, NULL))
3915 return 0;
3916
3917 /* Now we know that a valid freelist exists */
39b26464 3918 bitmap_zero(map, page->objects);
53e15af0 3919
5f80b13a
CL
3920 get_map(s, page, map);
3921 for_each_object(p, s, addr, page->objects) {
3922 if (test_bit(slab_index(p, s, addr), map))
3923 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3924 return 0;
53e15af0
CL
3925 }
3926
224a88be 3927 for_each_object(p, s, addr, page->objects)
7656c72b 3928 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3929 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3930 return 0;
3931 return 1;
3932}
3933
434e245d
CL
3934static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3935 unsigned long *map)
53e15af0 3936{
881db7fb
CL
3937 slab_lock(page);
3938 validate_slab(s, page, map);
3939 slab_unlock(page);
53e15af0
CL
3940}
3941
434e245d
CL
3942static int validate_slab_node(struct kmem_cache *s,
3943 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3944{
3945 unsigned long count = 0;
3946 struct page *page;
3947 unsigned long flags;
3948
3949 spin_lock_irqsave(&n->list_lock, flags);
3950
3951 list_for_each_entry(page, &n->partial, lru) {
434e245d 3952 validate_slab_slab(s, page, map);
53e15af0
CL
3953 count++;
3954 }
3955 if (count != n->nr_partial)
3956 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3957 "counter=%ld\n", s->name, count, n->nr_partial);
3958
3959 if (!(s->flags & SLAB_STORE_USER))
3960 goto out;
3961
3962 list_for_each_entry(page, &n->full, lru) {
434e245d 3963 validate_slab_slab(s, page, map);
53e15af0
CL
3964 count++;
3965 }
3966 if (count != atomic_long_read(&n->nr_slabs))
3967 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3968 "counter=%ld\n", s->name, count,
3969 atomic_long_read(&n->nr_slabs));
3970
3971out:
3972 spin_unlock_irqrestore(&n->list_lock, flags);
3973 return count;
3974}
3975
434e245d 3976static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3977{
3978 int node;
3979 unsigned long count = 0;
205ab99d 3980 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3981 sizeof(unsigned long), GFP_KERNEL);
3982
3983 if (!map)
3984 return -ENOMEM;
53e15af0
CL
3985
3986 flush_all(s);
f64dc58c 3987 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3988 struct kmem_cache_node *n = get_node(s, node);
3989
434e245d 3990 count += validate_slab_node(s, n, map);
53e15af0 3991 }
434e245d 3992 kfree(map);
53e15af0
CL
3993 return count;
3994}
88a420e4 3995/*
672bba3a 3996 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3997 * and freed.
3998 */
3999
4000struct location {
4001 unsigned long count;
ce71e27c 4002 unsigned long addr;
45edfa58
CL
4003 long long sum_time;
4004 long min_time;
4005 long max_time;
4006 long min_pid;
4007 long max_pid;
174596a0 4008 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4009 nodemask_t nodes;
88a420e4
CL
4010};
4011
4012struct loc_track {
4013 unsigned long max;
4014 unsigned long count;
4015 struct location *loc;
4016};
4017
4018static void free_loc_track(struct loc_track *t)
4019{
4020 if (t->max)
4021 free_pages((unsigned long)t->loc,
4022 get_order(sizeof(struct location) * t->max));
4023}
4024
68dff6a9 4025static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4026{
4027 struct location *l;
4028 int order;
4029
88a420e4
CL
4030 order = get_order(sizeof(struct location) * max);
4031
68dff6a9 4032 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4033 if (!l)
4034 return 0;
4035
4036 if (t->count) {
4037 memcpy(l, t->loc, sizeof(struct location) * t->count);
4038 free_loc_track(t);
4039 }
4040 t->max = max;
4041 t->loc = l;
4042 return 1;
4043}
4044
4045static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4046 const struct track *track)
88a420e4
CL
4047{
4048 long start, end, pos;
4049 struct location *l;
ce71e27c 4050 unsigned long caddr;
45edfa58 4051 unsigned long age = jiffies - track->when;
88a420e4
CL
4052
4053 start = -1;
4054 end = t->count;
4055
4056 for ( ; ; ) {
4057 pos = start + (end - start + 1) / 2;
4058
4059 /*
4060 * There is nothing at "end". If we end up there
4061 * we need to add something to before end.
4062 */
4063 if (pos == end)
4064 break;
4065
4066 caddr = t->loc[pos].addr;
45edfa58
CL
4067 if (track->addr == caddr) {
4068
4069 l = &t->loc[pos];
4070 l->count++;
4071 if (track->when) {
4072 l->sum_time += age;
4073 if (age < l->min_time)
4074 l->min_time = age;
4075 if (age > l->max_time)
4076 l->max_time = age;
4077
4078 if (track->pid < l->min_pid)
4079 l->min_pid = track->pid;
4080 if (track->pid > l->max_pid)
4081 l->max_pid = track->pid;
4082
174596a0
RR
4083 cpumask_set_cpu(track->cpu,
4084 to_cpumask(l->cpus));
45edfa58
CL
4085 }
4086 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4087 return 1;
4088 }
4089
45edfa58 4090 if (track->addr < caddr)
88a420e4
CL
4091 end = pos;
4092 else
4093 start = pos;
4094 }
4095
4096 /*
672bba3a 4097 * Not found. Insert new tracking element.
88a420e4 4098 */
68dff6a9 4099 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4100 return 0;
4101
4102 l = t->loc + pos;
4103 if (pos < t->count)
4104 memmove(l + 1, l,
4105 (t->count - pos) * sizeof(struct location));
4106 t->count++;
4107 l->count = 1;
45edfa58
CL
4108 l->addr = track->addr;
4109 l->sum_time = age;
4110 l->min_time = age;
4111 l->max_time = age;
4112 l->min_pid = track->pid;
4113 l->max_pid = track->pid;
174596a0
RR
4114 cpumask_clear(to_cpumask(l->cpus));
4115 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4116 nodes_clear(l->nodes);
4117 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4118 return 1;
4119}
4120
4121static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4122 struct page *page, enum track_item alloc,
a5dd5c11 4123 unsigned long *map)
88a420e4 4124{
a973e9dd 4125 void *addr = page_address(page);
88a420e4
CL
4126 void *p;
4127
39b26464 4128 bitmap_zero(map, page->objects);
5f80b13a 4129 get_map(s, page, map);
88a420e4 4130
224a88be 4131 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4132 if (!test_bit(slab_index(p, s, addr), map))
4133 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4134}
4135
4136static int list_locations(struct kmem_cache *s, char *buf,
4137 enum track_item alloc)
4138{
e374d483 4139 int len = 0;
88a420e4 4140 unsigned long i;
68dff6a9 4141 struct loc_track t = { 0, 0, NULL };
88a420e4 4142 int node;
bbd7d57b
ED
4143 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4144 sizeof(unsigned long), GFP_KERNEL);
88a420e4 4145
bbd7d57b
ED
4146 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4147 GFP_TEMPORARY)) {
4148 kfree(map);
68dff6a9 4149 return sprintf(buf, "Out of memory\n");
bbd7d57b 4150 }
88a420e4
CL
4151 /* Push back cpu slabs */
4152 flush_all(s);
4153
f64dc58c 4154 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
4155 struct kmem_cache_node *n = get_node(s, node);
4156 unsigned long flags;
4157 struct page *page;
4158
9e86943b 4159 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4160 continue;
4161
4162 spin_lock_irqsave(&n->list_lock, flags);
4163 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4164 process_slab(&t, s, page, alloc, map);
88a420e4 4165 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4166 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4167 spin_unlock_irqrestore(&n->list_lock, flags);
4168 }
4169
4170 for (i = 0; i < t.count; i++) {
45edfa58 4171 struct location *l = &t.loc[i];
88a420e4 4172
9c246247 4173 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4174 break;
e374d483 4175 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4176
4177 if (l->addr)
62c70bce 4178 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4179 else
e374d483 4180 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4181
4182 if (l->sum_time != l->min_time) {
e374d483 4183 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4184 l->min_time,
4185 (long)div_u64(l->sum_time, l->count),
4186 l->max_time);
45edfa58 4187 } else
e374d483 4188 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4189 l->min_time);
4190
4191 if (l->min_pid != l->max_pid)
e374d483 4192 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4193 l->min_pid, l->max_pid);
4194 else
e374d483 4195 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4196 l->min_pid);
4197
174596a0
RR
4198 if (num_online_cpus() > 1 &&
4199 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4200 len < PAGE_SIZE - 60) {
4201 len += sprintf(buf + len, " cpus=");
4202 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 4203 to_cpumask(l->cpus));
45edfa58
CL
4204 }
4205
62bc62a8 4206 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4207 len < PAGE_SIZE - 60) {
4208 len += sprintf(buf + len, " nodes=");
4209 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
4210 l->nodes);
4211 }
4212
e374d483 4213 len += sprintf(buf + len, "\n");
88a420e4
CL
4214 }
4215
4216 free_loc_track(&t);
bbd7d57b 4217 kfree(map);
88a420e4 4218 if (!t.count)
e374d483
HH
4219 len += sprintf(buf, "No data\n");
4220 return len;
88a420e4 4221}
ab4d5ed5 4222#endif
88a420e4 4223
a5a84755
CL
4224#ifdef SLUB_RESILIENCY_TEST
4225static void resiliency_test(void)
4226{
4227 u8 *p;
4228
4229 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4230
4231 printk(KERN_ERR "SLUB resiliency testing\n");
4232 printk(KERN_ERR "-----------------------\n");
4233 printk(KERN_ERR "A. Corruption after allocation\n");
4234
4235 p = kzalloc(16, GFP_KERNEL);
4236 p[16] = 0x12;
4237 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4238 " 0x12->0x%p\n\n", p + 16);
4239
4240 validate_slab_cache(kmalloc_caches[4]);
4241
4242 /* Hmmm... The next two are dangerous */
4243 p = kzalloc(32, GFP_KERNEL);
4244 p[32 + sizeof(void *)] = 0x34;
4245 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4246 " 0x34 -> -0x%p\n", p);
4247 printk(KERN_ERR
4248 "If allocated object is overwritten then not detectable\n\n");
4249
4250 validate_slab_cache(kmalloc_caches[5]);
4251 p = kzalloc(64, GFP_KERNEL);
4252 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4253 *p = 0x56;
4254 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4255 p);
4256 printk(KERN_ERR
4257 "If allocated object is overwritten then not detectable\n\n");
4258 validate_slab_cache(kmalloc_caches[6]);
4259
4260 printk(KERN_ERR "\nB. Corruption after free\n");
4261 p = kzalloc(128, GFP_KERNEL);
4262 kfree(p);
4263 *p = 0x78;
4264 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4265 validate_slab_cache(kmalloc_caches[7]);
4266
4267 p = kzalloc(256, GFP_KERNEL);
4268 kfree(p);
4269 p[50] = 0x9a;
4270 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4271 p);
4272 validate_slab_cache(kmalloc_caches[8]);
4273
4274 p = kzalloc(512, GFP_KERNEL);
4275 kfree(p);
4276 p[512] = 0xab;
4277 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4278 validate_slab_cache(kmalloc_caches[9]);
4279}
4280#else
4281#ifdef CONFIG_SYSFS
4282static void resiliency_test(void) {};
4283#endif
4284#endif
4285
ab4d5ed5 4286#ifdef CONFIG_SYSFS
81819f0f 4287enum slab_stat_type {
205ab99d
CL
4288 SL_ALL, /* All slabs */
4289 SL_PARTIAL, /* Only partially allocated slabs */
4290 SL_CPU, /* Only slabs used for cpu caches */
4291 SL_OBJECTS, /* Determine allocated objects not slabs */
4292 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4293};
4294
205ab99d 4295#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4296#define SO_PARTIAL (1 << SL_PARTIAL)
4297#define SO_CPU (1 << SL_CPU)
4298#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4299#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4300
62e5c4b4
CG
4301static ssize_t show_slab_objects(struct kmem_cache *s,
4302 char *buf, unsigned long flags)
81819f0f
CL
4303{
4304 unsigned long total = 0;
81819f0f
CL
4305 int node;
4306 int x;
4307 unsigned long *nodes;
4308 unsigned long *per_cpu;
4309
4310 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4311 if (!nodes)
4312 return -ENOMEM;
81819f0f
CL
4313 per_cpu = nodes + nr_node_ids;
4314
205ab99d
CL
4315 if (flags & SO_CPU) {
4316 int cpu;
81819f0f 4317
205ab99d 4318 for_each_possible_cpu(cpu) {
9dfc6e68 4319 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
dfb4f096 4320
205ab99d
CL
4321 if (!c || c->node < 0)
4322 continue;
4323
4324 if (c->page) {
4325 if (flags & SO_TOTAL)
4326 x = c->page->objects;
4327 else if (flags & SO_OBJECTS)
4328 x = c->page->inuse;
81819f0f
CL
4329 else
4330 x = 1;
205ab99d 4331
81819f0f 4332 total += x;
205ab99d 4333 nodes[c->node] += x;
81819f0f 4334 }
205ab99d 4335 per_cpu[c->node]++;
81819f0f
CL
4336 }
4337 }
4338
04d94879 4339 lock_memory_hotplug();
ab4d5ed5 4340#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4341 if (flags & SO_ALL) {
4342 for_each_node_state(node, N_NORMAL_MEMORY) {
4343 struct kmem_cache_node *n = get_node(s, node);
4344
4345 if (flags & SO_TOTAL)
4346 x = atomic_long_read(&n->total_objects);
4347 else if (flags & SO_OBJECTS)
4348 x = atomic_long_read(&n->total_objects) -
4349 count_partial(n, count_free);
81819f0f 4350
81819f0f 4351 else
205ab99d 4352 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4353 total += x;
4354 nodes[node] += x;
4355 }
4356
ab4d5ed5
CL
4357 } else
4358#endif
4359 if (flags & SO_PARTIAL) {
205ab99d
CL
4360 for_each_node_state(node, N_NORMAL_MEMORY) {
4361 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4362
205ab99d
CL
4363 if (flags & SO_TOTAL)
4364 x = count_partial(n, count_total);
4365 else if (flags & SO_OBJECTS)
4366 x = count_partial(n, count_inuse);
81819f0f 4367 else
205ab99d 4368 x = n->nr_partial;
81819f0f
CL
4369 total += x;
4370 nodes[node] += x;
4371 }
4372 }
81819f0f
CL
4373 x = sprintf(buf, "%lu", total);
4374#ifdef CONFIG_NUMA
f64dc58c 4375 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4376 if (nodes[node])
4377 x += sprintf(buf + x, " N%d=%lu",
4378 node, nodes[node]);
4379#endif
04d94879 4380 unlock_memory_hotplug();
81819f0f
CL
4381 kfree(nodes);
4382 return x + sprintf(buf + x, "\n");
4383}
4384
ab4d5ed5 4385#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4386static int any_slab_objects(struct kmem_cache *s)
4387{
4388 int node;
81819f0f 4389
dfb4f096 4390 for_each_online_node(node) {
81819f0f
CL
4391 struct kmem_cache_node *n = get_node(s, node);
4392
dfb4f096
CL
4393 if (!n)
4394 continue;
4395
4ea33e2d 4396 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4397 return 1;
4398 }
4399 return 0;
4400}
ab4d5ed5 4401#endif
81819f0f
CL
4402
4403#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4404#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4405
4406struct slab_attribute {
4407 struct attribute attr;
4408 ssize_t (*show)(struct kmem_cache *s, char *buf);
4409 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4410};
4411
4412#define SLAB_ATTR_RO(_name) \
4413 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4414
4415#define SLAB_ATTR(_name) \
4416 static struct slab_attribute _name##_attr = \
4417 __ATTR(_name, 0644, _name##_show, _name##_store)
4418
81819f0f
CL
4419static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4420{
4421 return sprintf(buf, "%d\n", s->size);
4422}
4423SLAB_ATTR_RO(slab_size);
4424
4425static ssize_t align_show(struct kmem_cache *s, char *buf)
4426{
4427 return sprintf(buf, "%d\n", s->align);
4428}
4429SLAB_ATTR_RO(align);
4430
4431static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4432{
4433 return sprintf(buf, "%d\n", s->objsize);
4434}
4435SLAB_ATTR_RO(object_size);
4436
4437static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4438{
834f3d11 4439 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4440}
4441SLAB_ATTR_RO(objs_per_slab);
4442
06b285dc
CL
4443static ssize_t order_store(struct kmem_cache *s,
4444 const char *buf, size_t length)
4445{
0121c619
CL
4446 unsigned long order;
4447 int err;
4448
4449 err = strict_strtoul(buf, 10, &order);
4450 if (err)
4451 return err;
06b285dc
CL
4452
4453 if (order > slub_max_order || order < slub_min_order)
4454 return -EINVAL;
4455
4456 calculate_sizes(s, order);
4457 return length;
4458}
4459
81819f0f
CL
4460static ssize_t order_show(struct kmem_cache *s, char *buf)
4461{
834f3d11 4462 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4463}
06b285dc 4464SLAB_ATTR(order);
81819f0f 4465
73d342b1
DR
4466static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4467{
4468 return sprintf(buf, "%lu\n", s->min_partial);
4469}
4470
4471static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4472 size_t length)
4473{
4474 unsigned long min;
4475 int err;
4476
4477 err = strict_strtoul(buf, 10, &min);
4478 if (err)
4479 return err;
4480
c0bdb232 4481 set_min_partial(s, min);
73d342b1
DR
4482 return length;
4483}
4484SLAB_ATTR(min_partial);
4485
81819f0f
CL
4486static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4487{
62c70bce
JP
4488 if (!s->ctor)
4489 return 0;
4490 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4491}
4492SLAB_ATTR_RO(ctor);
4493
81819f0f
CL
4494static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4495{
4496 return sprintf(buf, "%d\n", s->refcount - 1);
4497}
4498SLAB_ATTR_RO(aliases);
4499
81819f0f
CL
4500static ssize_t partial_show(struct kmem_cache *s, char *buf)
4501{
d9acf4b7 4502 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4503}
4504SLAB_ATTR_RO(partial);
4505
4506static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4507{
d9acf4b7 4508 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4509}
4510SLAB_ATTR_RO(cpu_slabs);
4511
4512static ssize_t objects_show(struct kmem_cache *s, char *buf)
4513{
205ab99d 4514 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4515}
4516SLAB_ATTR_RO(objects);
4517
205ab99d
CL
4518static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4519{
4520 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4521}
4522SLAB_ATTR_RO(objects_partial);
4523
a5a84755
CL
4524static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4525{
4526 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4527}
4528
4529static ssize_t reclaim_account_store(struct kmem_cache *s,
4530 const char *buf, size_t length)
4531{
4532 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4533 if (buf[0] == '1')
4534 s->flags |= SLAB_RECLAIM_ACCOUNT;
4535 return length;
4536}
4537SLAB_ATTR(reclaim_account);
4538
4539static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4540{
4541 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4542}
4543SLAB_ATTR_RO(hwcache_align);
4544
4545#ifdef CONFIG_ZONE_DMA
4546static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4547{
4548 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4549}
4550SLAB_ATTR_RO(cache_dma);
4551#endif
4552
4553static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4554{
4555 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4556}
4557SLAB_ATTR_RO(destroy_by_rcu);
4558
ab9a0f19
LJ
4559static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4560{
4561 return sprintf(buf, "%d\n", s->reserved);
4562}
4563SLAB_ATTR_RO(reserved);
4564
ab4d5ed5 4565#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4566static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4567{
4568 return show_slab_objects(s, buf, SO_ALL);
4569}
4570SLAB_ATTR_RO(slabs);
4571
205ab99d
CL
4572static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4573{
4574 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4575}
4576SLAB_ATTR_RO(total_objects);
4577
81819f0f
CL
4578static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4579{
4580 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4581}
4582
4583static ssize_t sanity_checks_store(struct kmem_cache *s,
4584 const char *buf, size_t length)
4585{
4586 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4587 if (buf[0] == '1') {
4588 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4589 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4590 }
81819f0f
CL
4591 return length;
4592}
4593SLAB_ATTR(sanity_checks);
4594
4595static ssize_t trace_show(struct kmem_cache *s, char *buf)
4596{
4597 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4598}
4599
4600static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4601 size_t length)
4602{
4603 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4604 if (buf[0] == '1') {
4605 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4606 s->flags |= SLAB_TRACE;
b789ef51 4607 }
81819f0f
CL
4608 return length;
4609}
4610SLAB_ATTR(trace);
4611
81819f0f
CL
4612static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4613{
4614 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4615}
4616
4617static ssize_t red_zone_store(struct kmem_cache *s,
4618 const char *buf, size_t length)
4619{
4620 if (any_slab_objects(s))
4621 return -EBUSY;
4622
4623 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4624 if (buf[0] == '1') {
4625 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4626 s->flags |= SLAB_RED_ZONE;
b789ef51 4627 }
06b285dc 4628 calculate_sizes(s, -1);
81819f0f
CL
4629 return length;
4630}
4631SLAB_ATTR(red_zone);
4632
4633static ssize_t poison_show(struct kmem_cache *s, char *buf)
4634{
4635 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4636}
4637
4638static ssize_t poison_store(struct kmem_cache *s,
4639 const char *buf, size_t length)
4640{
4641 if (any_slab_objects(s))
4642 return -EBUSY;
4643
4644 s->flags &= ~SLAB_POISON;
b789ef51
CL
4645 if (buf[0] == '1') {
4646 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4647 s->flags |= SLAB_POISON;
b789ef51 4648 }
06b285dc 4649 calculate_sizes(s, -1);
81819f0f
CL
4650 return length;
4651}
4652SLAB_ATTR(poison);
4653
4654static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4655{
4656 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4657}
4658
4659static ssize_t store_user_store(struct kmem_cache *s,
4660 const char *buf, size_t length)
4661{
4662 if (any_slab_objects(s))
4663 return -EBUSY;
4664
4665 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4666 if (buf[0] == '1') {
4667 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4668 s->flags |= SLAB_STORE_USER;
b789ef51 4669 }
06b285dc 4670 calculate_sizes(s, -1);
81819f0f
CL
4671 return length;
4672}
4673SLAB_ATTR(store_user);
4674
53e15af0
CL
4675static ssize_t validate_show(struct kmem_cache *s, char *buf)
4676{
4677 return 0;
4678}
4679
4680static ssize_t validate_store(struct kmem_cache *s,
4681 const char *buf, size_t length)
4682{
434e245d
CL
4683 int ret = -EINVAL;
4684
4685 if (buf[0] == '1') {
4686 ret = validate_slab_cache(s);
4687 if (ret >= 0)
4688 ret = length;
4689 }
4690 return ret;
53e15af0
CL
4691}
4692SLAB_ATTR(validate);
a5a84755
CL
4693
4694static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4695{
4696 if (!(s->flags & SLAB_STORE_USER))
4697 return -ENOSYS;
4698 return list_locations(s, buf, TRACK_ALLOC);
4699}
4700SLAB_ATTR_RO(alloc_calls);
4701
4702static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4703{
4704 if (!(s->flags & SLAB_STORE_USER))
4705 return -ENOSYS;
4706 return list_locations(s, buf, TRACK_FREE);
4707}
4708SLAB_ATTR_RO(free_calls);
4709#endif /* CONFIG_SLUB_DEBUG */
4710
4711#ifdef CONFIG_FAILSLAB
4712static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4713{
4714 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4715}
4716
4717static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4718 size_t length)
4719{
4720 s->flags &= ~SLAB_FAILSLAB;
4721 if (buf[0] == '1')
4722 s->flags |= SLAB_FAILSLAB;
4723 return length;
4724}
4725SLAB_ATTR(failslab);
ab4d5ed5 4726#endif
53e15af0 4727
2086d26a
CL
4728static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4729{
4730 return 0;
4731}
4732
4733static ssize_t shrink_store(struct kmem_cache *s,
4734 const char *buf, size_t length)
4735{
4736 if (buf[0] == '1') {
4737 int rc = kmem_cache_shrink(s);
4738
4739 if (rc)
4740 return rc;
4741 } else
4742 return -EINVAL;
4743 return length;
4744}
4745SLAB_ATTR(shrink);
4746
81819f0f 4747#ifdef CONFIG_NUMA
9824601e 4748static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4749{
9824601e 4750 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4751}
4752
9824601e 4753static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4754 const char *buf, size_t length)
4755{
0121c619
CL
4756 unsigned long ratio;
4757 int err;
4758
4759 err = strict_strtoul(buf, 10, &ratio);
4760 if (err)
4761 return err;
4762
e2cb96b7 4763 if (ratio <= 100)
0121c619 4764 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4765
81819f0f
CL
4766 return length;
4767}
9824601e 4768SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4769#endif
4770
8ff12cfc 4771#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4772static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4773{
4774 unsigned long sum = 0;
4775 int cpu;
4776 int len;
4777 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4778
4779 if (!data)
4780 return -ENOMEM;
4781
4782 for_each_online_cpu(cpu) {
9dfc6e68 4783 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4784
4785 data[cpu] = x;
4786 sum += x;
4787 }
4788
4789 len = sprintf(buf, "%lu", sum);
4790
50ef37b9 4791#ifdef CONFIG_SMP
8ff12cfc
CL
4792 for_each_online_cpu(cpu) {
4793 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4794 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4795 }
50ef37b9 4796#endif
8ff12cfc
CL
4797 kfree(data);
4798 return len + sprintf(buf + len, "\n");
4799}
4800
78eb00cc
DR
4801static void clear_stat(struct kmem_cache *s, enum stat_item si)
4802{
4803 int cpu;
4804
4805 for_each_online_cpu(cpu)
9dfc6e68 4806 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4807}
4808
8ff12cfc
CL
4809#define STAT_ATTR(si, text) \
4810static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4811{ \
4812 return show_stat(s, buf, si); \
4813} \
78eb00cc
DR
4814static ssize_t text##_store(struct kmem_cache *s, \
4815 const char *buf, size_t length) \
4816{ \
4817 if (buf[0] != '0') \
4818 return -EINVAL; \
4819 clear_stat(s, si); \
4820 return length; \
4821} \
4822SLAB_ATTR(text); \
8ff12cfc
CL
4823
4824STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4825STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4826STAT_ATTR(FREE_FASTPATH, free_fastpath);
4827STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4828STAT_ATTR(FREE_FROZEN, free_frozen);
4829STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4830STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4831STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4832STAT_ATTR(ALLOC_SLAB, alloc_slab);
4833STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 4834STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
4835STAT_ATTR(FREE_SLAB, free_slab);
4836STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4837STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4838STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4839STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4840STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4841STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 4842STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 4843STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
4844STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4845STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
8ff12cfc
CL
4846#endif
4847
06428780 4848static struct attribute *slab_attrs[] = {
81819f0f
CL
4849 &slab_size_attr.attr,
4850 &object_size_attr.attr,
4851 &objs_per_slab_attr.attr,
4852 &order_attr.attr,
73d342b1 4853 &min_partial_attr.attr,
81819f0f 4854 &objects_attr.attr,
205ab99d 4855 &objects_partial_attr.attr,
81819f0f
CL
4856 &partial_attr.attr,
4857 &cpu_slabs_attr.attr,
4858 &ctor_attr.attr,
81819f0f
CL
4859 &aliases_attr.attr,
4860 &align_attr.attr,
81819f0f
CL
4861 &hwcache_align_attr.attr,
4862 &reclaim_account_attr.attr,
4863 &destroy_by_rcu_attr.attr,
a5a84755 4864 &shrink_attr.attr,
ab9a0f19 4865 &reserved_attr.attr,
ab4d5ed5 4866#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4867 &total_objects_attr.attr,
4868 &slabs_attr.attr,
4869 &sanity_checks_attr.attr,
4870 &trace_attr.attr,
81819f0f
CL
4871 &red_zone_attr.attr,
4872 &poison_attr.attr,
4873 &store_user_attr.attr,
53e15af0 4874 &validate_attr.attr,
88a420e4
CL
4875 &alloc_calls_attr.attr,
4876 &free_calls_attr.attr,
ab4d5ed5 4877#endif
81819f0f
CL
4878#ifdef CONFIG_ZONE_DMA
4879 &cache_dma_attr.attr,
4880#endif
4881#ifdef CONFIG_NUMA
9824601e 4882 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4883#endif
4884#ifdef CONFIG_SLUB_STATS
4885 &alloc_fastpath_attr.attr,
4886 &alloc_slowpath_attr.attr,
4887 &free_fastpath_attr.attr,
4888 &free_slowpath_attr.attr,
4889 &free_frozen_attr.attr,
4890 &free_add_partial_attr.attr,
4891 &free_remove_partial_attr.attr,
4892 &alloc_from_partial_attr.attr,
4893 &alloc_slab_attr.attr,
4894 &alloc_refill_attr.attr,
e36a2652 4895 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
4896 &free_slab_attr.attr,
4897 &cpuslab_flush_attr.attr,
4898 &deactivate_full_attr.attr,
4899 &deactivate_empty_attr.attr,
4900 &deactivate_to_head_attr.attr,
4901 &deactivate_to_tail_attr.attr,
4902 &deactivate_remote_frees_attr.attr,
03e404af 4903 &deactivate_bypass_attr.attr,
65c3376a 4904 &order_fallback_attr.attr,
b789ef51
CL
4905 &cmpxchg_double_fail_attr.attr,
4906 &cmpxchg_double_cpu_fail_attr.attr,
81819f0f 4907#endif
4c13dd3b
DM
4908#ifdef CONFIG_FAILSLAB
4909 &failslab_attr.attr,
4910#endif
4911
81819f0f
CL
4912 NULL
4913};
4914
4915static struct attribute_group slab_attr_group = {
4916 .attrs = slab_attrs,
4917};
4918
4919static ssize_t slab_attr_show(struct kobject *kobj,
4920 struct attribute *attr,
4921 char *buf)
4922{
4923 struct slab_attribute *attribute;
4924 struct kmem_cache *s;
4925 int err;
4926
4927 attribute = to_slab_attr(attr);
4928 s = to_slab(kobj);
4929
4930 if (!attribute->show)
4931 return -EIO;
4932
4933 err = attribute->show(s, buf);
4934
4935 return err;
4936}
4937
4938static ssize_t slab_attr_store(struct kobject *kobj,
4939 struct attribute *attr,
4940 const char *buf, size_t len)
4941{
4942 struct slab_attribute *attribute;
4943 struct kmem_cache *s;
4944 int err;
4945
4946 attribute = to_slab_attr(attr);
4947 s = to_slab(kobj);
4948
4949 if (!attribute->store)
4950 return -EIO;
4951
4952 err = attribute->store(s, buf, len);
4953
4954 return err;
4955}
4956
151c602f
CL
4957static void kmem_cache_release(struct kobject *kobj)
4958{
4959 struct kmem_cache *s = to_slab(kobj);
4960
84c1cf62 4961 kfree(s->name);
151c602f
CL
4962 kfree(s);
4963}
4964
52cf25d0 4965static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
4966 .show = slab_attr_show,
4967 .store = slab_attr_store,
4968};
4969
4970static struct kobj_type slab_ktype = {
4971 .sysfs_ops = &slab_sysfs_ops,
151c602f 4972 .release = kmem_cache_release
81819f0f
CL
4973};
4974
4975static int uevent_filter(struct kset *kset, struct kobject *kobj)
4976{
4977 struct kobj_type *ktype = get_ktype(kobj);
4978
4979 if (ktype == &slab_ktype)
4980 return 1;
4981 return 0;
4982}
4983
9cd43611 4984static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
4985 .filter = uevent_filter,
4986};
4987
27c3a314 4988static struct kset *slab_kset;
81819f0f
CL
4989
4990#define ID_STR_LENGTH 64
4991
4992/* Create a unique string id for a slab cache:
6446faa2
CL
4993 *
4994 * Format :[flags-]size
81819f0f
CL
4995 */
4996static char *create_unique_id(struct kmem_cache *s)
4997{
4998 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4999 char *p = name;
5000
5001 BUG_ON(!name);
5002
5003 *p++ = ':';
5004 /*
5005 * First flags affecting slabcache operations. We will only
5006 * get here for aliasable slabs so we do not need to support
5007 * too many flags. The flags here must cover all flags that
5008 * are matched during merging to guarantee that the id is
5009 * unique.
5010 */
5011 if (s->flags & SLAB_CACHE_DMA)
5012 *p++ = 'd';
5013 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5014 *p++ = 'a';
5015 if (s->flags & SLAB_DEBUG_FREE)
5016 *p++ = 'F';
5a896d9e
VN
5017 if (!(s->flags & SLAB_NOTRACK))
5018 *p++ = 't';
81819f0f
CL
5019 if (p != name + 1)
5020 *p++ = '-';
5021 p += sprintf(p, "%07d", s->size);
5022 BUG_ON(p > name + ID_STR_LENGTH - 1);
5023 return name;
5024}
5025
5026static int sysfs_slab_add(struct kmem_cache *s)
5027{
5028 int err;
5029 const char *name;
5030 int unmergeable;
5031
5032 if (slab_state < SYSFS)
5033 /* Defer until later */
5034 return 0;
5035
5036 unmergeable = slab_unmergeable(s);
5037 if (unmergeable) {
5038 /*
5039 * Slabcache can never be merged so we can use the name proper.
5040 * This is typically the case for debug situations. In that
5041 * case we can catch duplicate names easily.
5042 */
27c3a314 5043 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5044 name = s->name;
5045 } else {
5046 /*
5047 * Create a unique name for the slab as a target
5048 * for the symlinks.
5049 */
5050 name = create_unique_id(s);
5051 }
5052
27c3a314 5053 s->kobj.kset = slab_kset;
1eada11c
GKH
5054 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5055 if (err) {
5056 kobject_put(&s->kobj);
81819f0f 5057 return err;
1eada11c 5058 }
81819f0f
CL
5059
5060 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
5061 if (err) {
5062 kobject_del(&s->kobj);
5063 kobject_put(&s->kobj);
81819f0f 5064 return err;
5788d8ad 5065 }
81819f0f
CL
5066 kobject_uevent(&s->kobj, KOBJ_ADD);
5067 if (!unmergeable) {
5068 /* Setup first alias */
5069 sysfs_slab_alias(s, s->name);
5070 kfree(name);
5071 }
5072 return 0;
5073}
5074
5075static void sysfs_slab_remove(struct kmem_cache *s)
5076{
2bce6485
CL
5077 if (slab_state < SYSFS)
5078 /*
5079 * Sysfs has not been setup yet so no need to remove the
5080 * cache from sysfs.
5081 */
5082 return;
5083
81819f0f
CL
5084 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5085 kobject_del(&s->kobj);
151c602f 5086 kobject_put(&s->kobj);
81819f0f
CL
5087}
5088
5089/*
5090 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5091 * available lest we lose that information.
81819f0f
CL
5092 */
5093struct saved_alias {
5094 struct kmem_cache *s;
5095 const char *name;
5096 struct saved_alias *next;
5097};
5098
5af328a5 5099static struct saved_alias *alias_list;
81819f0f
CL
5100
5101static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5102{
5103 struct saved_alias *al;
5104
5105 if (slab_state == SYSFS) {
5106 /*
5107 * If we have a leftover link then remove it.
5108 */
27c3a314
GKH
5109 sysfs_remove_link(&slab_kset->kobj, name);
5110 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5111 }
5112
5113 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5114 if (!al)
5115 return -ENOMEM;
5116
5117 al->s = s;
5118 al->name = name;
5119 al->next = alias_list;
5120 alias_list = al;
5121 return 0;
5122}
5123
5124static int __init slab_sysfs_init(void)
5125{
5b95a4ac 5126 struct kmem_cache *s;
81819f0f
CL
5127 int err;
5128
2bce6485
CL
5129 down_write(&slub_lock);
5130
0ff21e46 5131 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5132 if (!slab_kset) {
2bce6485 5133 up_write(&slub_lock);
81819f0f
CL
5134 printk(KERN_ERR "Cannot register slab subsystem.\n");
5135 return -ENOSYS;
5136 }
5137
26a7bd03
CL
5138 slab_state = SYSFS;
5139
5b95a4ac 5140 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5141 err = sysfs_slab_add(s);
5d540fb7
CL
5142 if (err)
5143 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5144 " to sysfs\n", s->name);
26a7bd03 5145 }
81819f0f
CL
5146
5147 while (alias_list) {
5148 struct saved_alias *al = alias_list;
5149
5150 alias_list = alias_list->next;
5151 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
5152 if (err)
5153 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5154 " %s to sysfs\n", s->name);
81819f0f
CL
5155 kfree(al);
5156 }
5157
2bce6485 5158 up_write(&slub_lock);
81819f0f
CL
5159 resiliency_test();
5160 return 0;
5161}
5162
5163__initcall(slab_sysfs_init);
ab4d5ed5 5164#endif /* CONFIG_SYSFS */
57ed3eda
PE
5165
5166/*
5167 * The /proc/slabinfo ABI
5168 */
158a9624 5169#ifdef CONFIG_SLABINFO
57ed3eda
PE
5170static void print_slabinfo_header(struct seq_file *m)
5171{
5172 seq_puts(m, "slabinfo - version: 2.1\n");
5173 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
5174 "<objperslab> <pagesperslab>");
5175 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5176 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5177 seq_putc(m, '\n');
5178}
5179
5180static void *s_start(struct seq_file *m, loff_t *pos)
5181{
5182 loff_t n = *pos;
5183
5184 down_read(&slub_lock);
5185 if (!n)
5186 print_slabinfo_header(m);
5187
5188 return seq_list_start(&slab_caches, *pos);
5189}
5190
5191static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5192{
5193 return seq_list_next(p, &slab_caches, pos);
5194}
5195
5196static void s_stop(struct seq_file *m, void *p)
5197{
5198 up_read(&slub_lock);
5199}
5200
5201static int s_show(struct seq_file *m, void *p)
5202{
5203 unsigned long nr_partials = 0;
5204 unsigned long nr_slabs = 0;
5205 unsigned long nr_inuse = 0;
205ab99d
CL
5206 unsigned long nr_objs = 0;
5207 unsigned long nr_free = 0;
57ed3eda
PE
5208 struct kmem_cache *s;
5209 int node;
5210
5211 s = list_entry(p, struct kmem_cache, list);
5212
5213 for_each_online_node(node) {
5214 struct kmem_cache_node *n = get_node(s, node);
5215
5216 if (!n)
5217 continue;
5218
5219 nr_partials += n->nr_partial;
5220 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
5221 nr_objs += atomic_long_read(&n->total_objects);
5222 nr_free += count_partial(n, count_free);
57ed3eda
PE
5223 }
5224
205ab99d 5225 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
5226
5227 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
5228 nr_objs, s->size, oo_objects(s->oo),
5229 (1 << oo_order(s->oo)));
57ed3eda
PE
5230 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5231 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5232 0UL);
5233 seq_putc(m, '\n');
5234 return 0;
5235}
5236
7b3c3a50 5237static const struct seq_operations slabinfo_op = {
57ed3eda
PE
5238 .start = s_start,
5239 .next = s_next,
5240 .stop = s_stop,
5241 .show = s_show,
5242};
5243
7b3c3a50
AD
5244static int slabinfo_open(struct inode *inode, struct file *file)
5245{
5246 return seq_open(file, &slabinfo_op);
5247}
5248
5249static const struct file_operations proc_slabinfo_operations = {
5250 .open = slabinfo_open,
5251 .read = seq_read,
5252 .llseek = seq_lseek,
5253 .release = seq_release,
5254};
5255
5256static int __init slab_proc_init(void)
5257{
cf5d1131 5258 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
5259 return 0;
5260}
5261module_init(slab_proc_init);
158a9624 5262#endif /* CONFIG_SLABINFO */