mm: Rearrange struct page
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
9 */
10
11#include <linux/mm.h>
1eb5ac64 12#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
13#include <linux/module.h>
14#include <linux/bit_spinlock.h>
15#include <linux/interrupt.h>
16#include <linux/bitops.h>
17#include <linux/slab.h>
7b3c3a50 18#include <linux/proc_fs.h>
81819f0f 19#include <linux/seq_file.h>
5a896d9e 20#include <linux/kmemcheck.h>
81819f0f
CL
21#include <linux/cpu.h>
22#include <linux/cpuset.h>
23#include <linux/mempolicy.h>
24#include <linux/ctype.h>
3ac7fe5a 25#include <linux/debugobjects.h>
81819f0f 26#include <linux/kallsyms.h>
b9049e23 27#include <linux/memory.h>
f8bd2258 28#include <linux/math64.h>
773ff60e 29#include <linux/fault-inject.h>
81819f0f 30
4a92379b
RK
31#include <trace/events/kmem.h>
32
81819f0f
CL
33/*
34 * Lock order:
35 * 1. slab_lock(page)
36 * 2. slab->list_lock
37 *
38 * The slab_lock protects operations on the object of a particular
39 * slab and its metadata in the page struct. If the slab lock
40 * has been taken then no allocations nor frees can be performed
41 * on the objects in the slab nor can the slab be added or removed
42 * from the partial or full lists since this would mean modifying
43 * the page_struct of the slab.
44 *
45 * The list_lock protects the partial and full list on each node and
46 * the partial slab counter. If taken then no new slabs may be added or
47 * removed from the lists nor make the number of partial slabs be modified.
48 * (Note that the total number of slabs is an atomic value that may be
49 * modified without taking the list lock).
50 *
51 * The list_lock is a centralized lock and thus we avoid taking it as
52 * much as possible. As long as SLUB does not have to handle partial
53 * slabs, operations can continue without any centralized lock. F.e.
54 * allocating a long series of objects that fill up slabs does not require
55 * the list lock.
56 *
57 * The lock order is sometimes inverted when we are trying to get a slab
58 * off a list. We take the list_lock and then look for a page on the list
59 * to use. While we do that objects in the slabs may be freed. We can
60 * only operate on the slab if we have also taken the slab_lock. So we use
61 * a slab_trylock() on the slab. If trylock was successful then no frees
62 * can occur anymore and we can use the slab for allocations etc. If the
63 * slab_trylock() does not succeed then frees are in progress in the slab and
64 * we must stay away from it for a while since we may cause a bouncing
65 * cacheline if we try to acquire the lock. So go onto the next slab.
66 * If all pages are busy then we may allocate a new slab instead of reusing
25985edc 67 * a partial slab. A new slab has no one operating on it and thus there is
81819f0f
CL
68 * no danger of cacheline contention.
69 *
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
672bba3a
CL
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 80 * freed then the slab will show up again on the partial lists.
672bba3a
CL
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
81819f0f
CL
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
4b6f0750
CL
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
98 *
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
dfb4f096 102 * freelist that allows lockless access to
894b8788
CL
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
81819f0f
CL
105 *
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
894b8788 108 * the fast path and disables lockless freelists.
81819f0f
CL
109 */
110
af537b0a
CL
111#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
113
114static inline int kmem_cache_debug(struct kmem_cache *s)
115{
5577bd8a 116#ifdef CONFIG_SLUB_DEBUG
af537b0a 117 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 118#else
af537b0a 119 return 0;
5577bd8a 120#endif
af537b0a 121}
5577bd8a 122
81819f0f
CL
123/*
124 * Issues still to be resolved:
125 *
81819f0f
CL
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127 *
81819f0f
CL
128 * - Variable sizing of the per node arrays
129 */
130
131/* Enable to test recovery from slab corruption on boot */
132#undef SLUB_RESILIENCY_TEST
133
2086d26a
CL
134/*
135 * Mininum number of partial slabs. These will be left on the partial
136 * lists even if they are empty. kmem_cache_shrink may reclaim them.
137 */
76be8950 138#define MIN_PARTIAL 5
e95eed57 139
2086d26a
CL
140/*
141 * Maximum number of desirable partial slabs.
142 * The existence of more partial slabs makes kmem_cache_shrink
143 * sort the partial list by the number of objects in the.
144 */
145#define MAX_PARTIAL 10
146
81819f0f
CL
147#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
148 SLAB_POISON | SLAB_STORE_USER)
672bba3a 149
fa5ec8a1 150/*
3de47213
DR
151 * Debugging flags that require metadata to be stored in the slab. These get
152 * disabled when slub_debug=O is used and a cache's min order increases with
153 * metadata.
fa5ec8a1 154 */
3de47213 155#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 156
81819f0f
CL
157/*
158 * Set of flags that will prevent slab merging
159 */
160#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
161 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
162 SLAB_FAILSLAB)
81819f0f
CL
163
164#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 165 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 166
210b5c06
CG
167#define OO_SHIFT 16
168#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 169#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 170
81819f0f 171/* Internal SLUB flags */
f90ec390 172#define __OBJECT_POISON 0x80000000UL /* Poison object */
81819f0f
CL
173
174static int kmem_size = sizeof(struct kmem_cache);
175
176#ifdef CONFIG_SMP
177static struct notifier_block slab_notifier;
178#endif
179
180static enum {
181 DOWN, /* No slab functionality available */
51df1142 182 PARTIAL, /* Kmem_cache_node works */
672bba3a 183 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
184 SYSFS /* Sysfs up */
185} slab_state = DOWN;
186
187/* A list of all slab caches on the system */
188static DECLARE_RWSEM(slub_lock);
5af328a5 189static LIST_HEAD(slab_caches);
81819f0f 190
02cbc874
CL
191/*
192 * Tracking user of a slab.
193 */
194struct track {
ce71e27c 195 unsigned long addr; /* Called from address */
02cbc874
CL
196 int cpu; /* Was running on cpu */
197 int pid; /* Pid context */
198 unsigned long when; /* When did the operation occur */
199};
200
201enum track_item { TRACK_ALLOC, TRACK_FREE };
202
ab4d5ed5 203#ifdef CONFIG_SYSFS
81819f0f
CL
204static int sysfs_slab_add(struct kmem_cache *);
205static int sysfs_slab_alias(struct kmem_cache *, const char *);
206static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 207
81819f0f 208#else
0c710013
CL
209static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
210static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
211 { return 0; }
151c602f
CL
212static inline void sysfs_slab_remove(struct kmem_cache *s)
213{
84c1cf62 214 kfree(s->name);
151c602f
CL
215 kfree(s);
216}
8ff12cfc 217
81819f0f
CL
218#endif
219
4fdccdfb 220static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
221{
222#ifdef CONFIG_SLUB_STATS
84e554e6 223 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
224#endif
225}
226
81819f0f
CL
227/********************************************************************
228 * Core slab cache functions
229 *******************************************************************/
230
231int slab_is_available(void)
232{
233 return slab_state >= UP;
234}
235
236static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
237{
81819f0f 238 return s->node[node];
81819f0f
CL
239}
240
6446faa2 241/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
242static inline int check_valid_pointer(struct kmem_cache *s,
243 struct page *page, const void *object)
244{
245 void *base;
246
a973e9dd 247 if (!object)
02cbc874
CL
248 return 1;
249
a973e9dd 250 base = page_address(page);
39b26464 251 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
252 (object - base) % s->size) {
253 return 0;
254 }
255
256 return 1;
257}
258
7656c72b
CL
259static inline void *get_freepointer(struct kmem_cache *s, void *object)
260{
261 return *(void **)(object + s->offset);
262}
263
1393d9a1
CL
264static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
265{
266 void *p;
267
268#ifdef CONFIG_DEBUG_PAGEALLOC
269 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
270#else
271 p = get_freepointer(s, object);
272#endif
273 return p;
274}
275
7656c72b
CL
276static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
277{
278 *(void **)(object + s->offset) = fp;
279}
280
281/* Loop over all objects in a slab */
224a88be
CL
282#define for_each_object(__p, __s, __addr, __objects) \
283 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
284 __p += (__s)->size)
285
7656c72b
CL
286/* Determine object index from a given position */
287static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
288{
289 return (p - addr) / s->size;
290}
291
d71f606f
MK
292static inline size_t slab_ksize(const struct kmem_cache *s)
293{
294#ifdef CONFIG_SLUB_DEBUG
295 /*
296 * Debugging requires use of the padding between object
297 * and whatever may come after it.
298 */
299 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
300 return s->objsize;
301
302#endif
303 /*
304 * If we have the need to store the freelist pointer
305 * back there or track user information then we can
306 * only use the space before that information.
307 */
308 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
309 return s->inuse;
310 /*
311 * Else we can use all the padding etc for the allocation
312 */
313 return s->size;
314}
315
ab9a0f19
LJ
316static inline int order_objects(int order, unsigned long size, int reserved)
317{
318 return ((PAGE_SIZE << order) - reserved) / size;
319}
320
834f3d11 321static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 322 unsigned long size, int reserved)
834f3d11
CL
323{
324 struct kmem_cache_order_objects x = {
ab9a0f19 325 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
326 };
327
328 return x;
329}
330
331static inline int oo_order(struct kmem_cache_order_objects x)
332{
210b5c06 333 return x.x >> OO_SHIFT;
834f3d11
CL
334}
335
336static inline int oo_objects(struct kmem_cache_order_objects x)
337{
210b5c06 338 return x.x & OO_MASK;
834f3d11
CL
339}
340
41ecc55b 341#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
342/*
343 * Determine a map of object in use on a page.
344 *
345 * Slab lock or node listlock must be held to guarantee that the page does
346 * not vanish from under us.
347 */
348static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
349{
350 void *p;
351 void *addr = page_address(page);
352
353 for (p = page->freelist; p; p = get_freepointer(s, p))
354 set_bit(slab_index(p, s, addr), map);
355}
356
41ecc55b
CL
357/*
358 * Debug settings:
359 */
f0630fff
CL
360#ifdef CONFIG_SLUB_DEBUG_ON
361static int slub_debug = DEBUG_DEFAULT_FLAGS;
362#else
41ecc55b 363static int slub_debug;
f0630fff 364#endif
41ecc55b
CL
365
366static char *slub_debug_slabs;
fa5ec8a1 367static int disable_higher_order_debug;
41ecc55b 368
81819f0f
CL
369/*
370 * Object debugging
371 */
372static void print_section(char *text, u8 *addr, unsigned int length)
373{
374 int i, offset;
375 int newline = 1;
376 char ascii[17];
377
378 ascii[16] = 0;
379
380 for (i = 0; i < length; i++) {
381 if (newline) {
24922684 382 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
383 newline = 0;
384 }
06428780 385 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
386 offset = i % 16;
387 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
388 if (offset == 15) {
06428780 389 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
390 newline = 1;
391 }
392 }
393 if (!newline) {
394 i %= 16;
395 while (i < 16) {
06428780 396 printk(KERN_CONT " ");
81819f0f
CL
397 ascii[i] = ' ';
398 i++;
399 }
06428780 400 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
401 }
402}
403
81819f0f
CL
404static struct track *get_track(struct kmem_cache *s, void *object,
405 enum track_item alloc)
406{
407 struct track *p;
408
409 if (s->offset)
410 p = object + s->offset + sizeof(void *);
411 else
412 p = object + s->inuse;
413
414 return p + alloc;
415}
416
417static void set_track(struct kmem_cache *s, void *object,
ce71e27c 418 enum track_item alloc, unsigned long addr)
81819f0f 419{
1a00df4a 420 struct track *p = get_track(s, object, alloc);
81819f0f 421
81819f0f
CL
422 if (addr) {
423 p->addr = addr;
424 p->cpu = smp_processor_id();
88e4ccf2 425 p->pid = current->pid;
81819f0f
CL
426 p->when = jiffies;
427 } else
428 memset(p, 0, sizeof(struct track));
429}
430
81819f0f
CL
431static void init_tracking(struct kmem_cache *s, void *object)
432{
24922684
CL
433 if (!(s->flags & SLAB_STORE_USER))
434 return;
435
ce71e27c
EGM
436 set_track(s, object, TRACK_FREE, 0UL);
437 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
438}
439
440static void print_track(const char *s, struct track *t)
441{
442 if (!t->addr)
443 return;
444
7daf705f 445 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 446 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
24922684
CL
447}
448
449static void print_tracking(struct kmem_cache *s, void *object)
450{
451 if (!(s->flags & SLAB_STORE_USER))
452 return;
453
454 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
455 print_track("Freed", get_track(s, object, TRACK_FREE));
456}
457
458static void print_page_info(struct page *page)
459{
39b26464
CL
460 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
461 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
462
463}
464
465static void slab_bug(struct kmem_cache *s, char *fmt, ...)
466{
467 va_list args;
468 char buf[100];
469
470 va_start(args, fmt);
471 vsnprintf(buf, sizeof(buf), fmt, args);
472 va_end(args);
473 printk(KERN_ERR "========================================"
474 "=====================================\n");
475 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
476 printk(KERN_ERR "----------------------------------------"
477 "-------------------------------------\n\n");
81819f0f
CL
478}
479
24922684
CL
480static void slab_fix(struct kmem_cache *s, char *fmt, ...)
481{
482 va_list args;
483 char buf[100];
484
485 va_start(args, fmt);
486 vsnprintf(buf, sizeof(buf), fmt, args);
487 va_end(args);
488 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
489}
490
491static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
492{
493 unsigned int off; /* Offset of last byte */
a973e9dd 494 u8 *addr = page_address(page);
24922684
CL
495
496 print_tracking(s, p);
497
498 print_page_info(page);
499
500 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
501 p, p - addr, get_freepointer(s, p));
502
503 if (p > addr + 16)
504 print_section("Bytes b4", p - 16, 16);
505
0ebd652b 506 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
81819f0f
CL
507
508 if (s->flags & SLAB_RED_ZONE)
509 print_section("Redzone", p + s->objsize,
510 s->inuse - s->objsize);
511
81819f0f
CL
512 if (s->offset)
513 off = s->offset + sizeof(void *);
514 else
515 off = s->inuse;
516
24922684 517 if (s->flags & SLAB_STORE_USER)
81819f0f 518 off += 2 * sizeof(struct track);
81819f0f
CL
519
520 if (off != s->size)
521 /* Beginning of the filler is the free pointer */
24922684
CL
522 print_section("Padding", p + off, s->size - off);
523
524 dump_stack();
81819f0f
CL
525}
526
527static void object_err(struct kmem_cache *s, struct page *page,
528 u8 *object, char *reason)
529{
3dc50637 530 slab_bug(s, "%s", reason);
24922684 531 print_trailer(s, page, object);
81819f0f
CL
532}
533
24922684 534static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
535{
536 va_list args;
537 char buf[100];
538
24922684
CL
539 va_start(args, fmt);
540 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 541 va_end(args);
3dc50637 542 slab_bug(s, "%s", buf);
24922684 543 print_page_info(page);
81819f0f
CL
544 dump_stack();
545}
546
f7cb1933 547static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
548{
549 u8 *p = object;
550
551 if (s->flags & __OBJECT_POISON) {
552 memset(p, POISON_FREE, s->objsize - 1);
06428780 553 p[s->objsize - 1] = POISON_END;
81819f0f
CL
554 }
555
556 if (s->flags & SLAB_RED_ZONE)
f7cb1933 557 memset(p + s->objsize, val, s->inuse - s->objsize);
81819f0f
CL
558}
559
24922684 560static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
561{
562 while (bytes) {
563 if (*start != (u8)value)
24922684 564 return start;
81819f0f
CL
565 start++;
566 bytes--;
567 }
24922684
CL
568 return NULL;
569}
570
571static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
572 void *from, void *to)
573{
574 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
575 memset(from, data, to - from);
576}
577
578static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
579 u8 *object, char *what,
06428780 580 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
581{
582 u8 *fault;
583 u8 *end;
584
585 fault = check_bytes(start, value, bytes);
586 if (!fault)
587 return 1;
588
589 end = start + bytes;
590 while (end > fault && end[-1] == value)
591 end--;
592
593 slab_bug(s, "%s overwritten", what);
594 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
595 fault, end - 1, fault[0], value);
596 print_trailer(s, page, object);
597
598 restore_bytes(s, what, value, fault, end);
599 return 0;
81819f0f
CL
600}
601
81819f0f
CL
602/*
603 * Object layout:
604 *
605 * object address
606 * Bytes of the object to be managed.
607 * If the freepointer may overlay the object then the free
608 * pointer is the first word of the object.
672bba3a 609 *
81819f0f
CL
610 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
611 * 0xa5 (POISON_END)
612 *
613 * object + s->objsize
614 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
615 * Padding is extended by another word if Redzoning is enabled and
616 * objsize == inuse.
617 *
81819f0f
CL
618 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
619 * 0xcc (RED_ACTIVE) for objects in use.
620 *
621 * object + s->inuse
672bba3a
CL
622 * Meta data starts here.
623 *
81819f0f
CL
624 * A. Free pointer (if we cannot overwrite object on free)
625 * B. Tracking data for SLAB_STORE_USER
672bba3a 626 * C. Padding to reach required alignment boundary or at mininum
6446faa2 627 * one word if debugging is on to be able to detect writes
672bba3a
CL
628 * before the word boundary.
629 *
630 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
631 *
632 * object + s->size
672bba3a 633 * Nothing is used beyond s->size.
81819f0f 634 *
672bba3a
CL
635 * If slabcaches are merged then the objsize and inuse boundaries are mostly
636 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
637 * may be used with merged slabcaches.
638 */
639
81819f0f
CL
640static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
641{
642 unsigned long off = s->inuse; /* The end of info */
643
644 if (s->offset)
645 /* Freepointer is placed after the object. */
646 off += sizeof(void *);
647
648 if (s->flags & SLAB_STORE_USER)
649 /* We also have user information there */
650 off += 2 * sizeof(struct track);
651
652 if (s->size == off)
653 return 1;
654
24922684
CL
655 return check_bytes_and_report(s, page, p, "Object padding",
656 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
657}
658
39b26464 659/* Check the pad bytes at the end of a slab page */
81819f0f
CL
660static int slab_pad_check(struct kmem_cache *s, struct page *page)
661{
24922684
CL
662 u8 *start;
663 u8 *fault;
664 u8 *end;
665 int length;
666 int remainder;
81819f0f
CL
667
668 if (!(s->flags & SLAB_POISON))
669 return 1;
670
a973e9dd 671 start = page_address(page);
ab9a0f19 672 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
673 end = start + length;
674 remainder = length % s->size;
81819f0f
CL
675 if (!remainder)
676 return 1;
677
39b26464 678 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
679 if (!fault)
680 return 1;
681 while (end > fault && end[-1] == POISON_INUSE)
682 end--;
683
684 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 685 print_section("Padding", end - remainder, remainder);
24922684 686
8a3d271d 687 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 688 return 0;
81819f0f
CL
689}
690
691static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 692 void *object, u8 val)
81819f0f
CL
693{
694 u8 *p = object;
695 u8 *endobject = object + s->objsize;
696
697 if (s->flags & SLAB_RED_ZONE) {
24922684 698 if (!check_bytes_and_report(s, page, object, "Redzone",
f7cb1933 699 endobject, val, s->inuse - s->objsize))
81819f0f 700 return 0;
81819f0f 701 } else {
3adbefee
IM
702 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
703 check_bytes_and_report(s, page, p, "Alignment padding",
704 endobject, POISON_INUSE, s->inuse - s->objsize);
705 }
81819f0f
CL
706 }
707
708 if (s->flags & SLAB_POISON) {
f7cb1933 709 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684
CL
710 (!check_bytes_and_report(s, page, p, "Poison", p,
711 POISON_FREE, s->objsize - 1) ||
712 !check_bytes_and_report(s, page, p, "Poison",
06428780 713 p + s->objsize - 1, POISON_END, 1)))
81819f0f 714 return 0;
81819f0f
CL
715 /*
716 * check_pad_bytes cleans up on its own.
717 */
718 check_pad_bytes(s, page, p);
719 }
720
f7cb1933 721 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
722 /*
723 * Object and freepointer overlap. Cannot check
724 * freepointer while object is allocated.
725 */
726 return 1;
727
728 /* Check free pointer validity */
729 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
730 object_err(s, page, p, "Freepointer corrupt");
731 /*
9f6c708e 732 * No choice but to zap it and thus lose the remainder
81819f0f 733 * of the free objects in this slab. May cause
672bba3a 734 * another error because the object count is now wrong.
81819f0f 735 */
a973e9dd 736 set_freepointer(s, p, NULL);
81819f0f
CL
737 return 0;
738 }
739 return 1;
740}
741
742static int check_slab(struct kmem_cache *s, struct page *page)
743{
39b26464
CL
744 int maxobj;
745
81819f0f
CL
746 VM_BUG_ON(!irqs_disabled());
747
748 if (!PageSlab(page)) {
24922684 749 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
750 return 0;
751 }
39b26464 752
ab9a0f19 753 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
754 if (page->objects > maxobj) {
755 slab_err(s, page, "objects %u > max %u",
756 s->name, page->objects, maxobj);
757 return 0;
758 }
759 if (page->inuse > page->objects) {
24922684 760 slab_err(s, page, "inuse %u > max %u",
39b26464 761 s->name, page->inuse, page->objects);
81819f0f
CL
762 return 0;
763 }
764 /* Slab_pad_check fixes things up after itself */
765 slab_pad_check(s, page);
766 return 1;
767}
768
769/*
672bba3a
CL
770 * Determine if a certain object on a page is on the freelist. Must hold the
771 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
772 */
773static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
774{
775 int nr = 0;
776 void *fp = page->freelist;
777 void *object = NULL;
224a88be 778 unsigned long max_objects;
81819f0f 779
39b26464 780 while (fp && nr <= page->objects) {
81819f0f
CL
781 if (fp == search)
782 return 1;
783 if (!check_valid_pointer(s, page, fp)) {
784 if (object) {
785 object_err(s, page, object,
786 "Freechain corrupt");
a973e9dd 787 set_freepointer(s, object, NULL);
81819f0f
CL
788 break;
789 } else {
24922684 790 slab_err(s, page, "Freepointer corrupt");
a973e9dd 791 page->freelist = NULL;
39b26464 792 page->inuse = page->objects;
24922684 793 slab_fix(s, "Freelist cleared");
81819f0f
CL
794 return 0;
795 }
796 break;
797 }
798 object = fp;
799 fp = get_freepointer(s, object);
800 nr++;
801 }
802
ab9a0f19 803 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
804 if (max_objects > MAX_OBJS_PER_PAGE)
805 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
806
807 if (page->objects != max_objects) {
808 slab_err(s, page, "Wrong number of objects. Found %d but "
809 "should be %d", page->objects, max_objects);
810 page->objects = max_objects;
811 slab_fix(s, "Number of objects adjusted.");
812 }
39b26464 813 if (page->inuse != page->objects - nr) {
70d71228 814 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
815 "counted were %d", page->inuse, page->objects - nr);
816 page->inuse = page->objects - nr;
24922684 817 slab_fix(s, "Object count adjusted.");
81819f0f
CL
818 }
819 return search == NULL;
820}
821
0121c619
CL
822static void trace(struct kmem_cache *s, struct page *page, void *object,
823 int alloc)
3ec09742
CL
824{
825 if (s->flags & SLAB_TRACE) {
826 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
827 s->name,
828 alloc ? "alloc" : "free",
829 object, page->inuse,
830 page->freelist);
831
832 if (!alloc)
833 print_section("Object", (void *)object, s->objsize);
834
835 dump_stack();
836 }
837}
838
c016b0bd
CL
839/*
840 * Hooks for other subsystems that check memory allocations. In a typical
841 * production configuration these hooks all should produce no code at all.
842 */
843static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
844{
c1d50836 845 flags &= gfp_allowed_mask;
c016b0bd
CL
846 lockdep_trace_alloc(flags);
847 might_sleep_if(flags & __GFP_WAIT);
848
849 return should_failslab(s->objsize, flags, s->flags);
850}
851
852static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
853{
c1d50836 854 flags &= gfp_allowed_mask;
b3d41885 855 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
c016b0bd
CL
856 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
857}
858
859static inline void slab_free_hook(struct kmem_cache *s, void *x)
860{
861 kmemleak_free_recursive(x, s->flags);
c016b0bd 862
d3f661d6
CL
863 /*
864 * Trouble is that we may no longer disable interupts in the fast path
865 * So in order to make the debug calls that expect irqs to be
866 * disabled we need to disable interrupts temporarily.
867 */
868#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
869 {
870 unsigned long flags;
871
872 local_irq_save(flags);
873 kmemcheck_slab_free(s, x, s->objsize);
874 debug_check_no_locks_freed(x, s->objsize);
d3f661d6
CL
875 local_irq_restore(flags);
876 }
877#endif
f9b615de
TG
878 if (!(s->flags & SLAB_DEBUG_OBJECTS))
879 debug_check_no_obj_freed(x, s->objsize);
c016b0bd
CL
880}
881
643b1138 882/*
672bba3a 883 * Tracking of fully allocated slabs for debugging purposes.
643b1138 884 */
e95eed57 885static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 886{
643b1138
CL
887 spin_lock(&n->list_lock);
888 list_add(&page->lru, &n->full);
889 spin_unlock(&n->list_lock);
890}
891
892static void remove_full(struct kmem_cache *s, struct page *page)
893{
894 struct kmem_cache_node *n;
895
896 if (!(s->flags & SLAB_STORE_USER))
897 return;
898
899 n = get_node(s, page_to_nid(page));
900
901 spin_lock(&n->list_lock);
902 list_del(&page->lru);
903 spin_unlock(&n->list_lock);
904}
905
0f389ec6
CL
906/* Tracking of the number of slabs for debugging purposes */
907static inline unsigned long slabs_node(struct kmem_cache *s, int node)
908{
909 struct kmem_cache_node *n = get_node(s, node);
910
911 return atomic_long_read(&n->nr_slabs);
912}
913
26c02cf0
AB
914static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
915{
916 return atomic_long_read(&n->nr_slabs);
917}
918
205ab99d 919static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
920{
921 struct kmem_cache_node *n = get_node(s, node);
922
923 /*
924 * May be called early in order to allocate a slab for the
925 * kmem_cache_node structure. Solve the chicken-egg
926 * dilemma by deferring the increment of the count during
927 * bootstrap (see early_kmem_cache_node_alloc).
928 */
7340cc84 929 if (n) {
0f389ec6 930 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
931 atomic_long_add(objects, &n->total_objects);
932 }
0f389ec6 933}
205ab99d 934static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
935{
936 struct kmem_cache_node *n = get_node(s, node);
937
938 atomic_long_dec(&n->nr_slabs);
205ab99d 939 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
940}
941
942/* Object debug checks for alloc/free paths */
3ec09742
CL
943static void setup_object_debug(struct kmem_cache *s, struct page *page,
944 void *object)
945{
946 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
947 return;
948
f7cb1933 949 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
950 init_tracking(s, object);
951}
952
1537066c 953static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 954 void *object, unsigned long addr)
81819f0f
CL
955{
956 if (!check_slab(s, page))
957 goto bad;
958
d692ef6d 959 if (!on_freelist(s, page, object)) {
24922684 960 object_err(s, page, object, "Object already allocated");
70d71228 961 goto bad;
81819f0f
CL
962 }
963
964 if (!check_valid_pointer(s, page, object)) {
965 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 966 goto bad;
81819f0f
CL
967 }
968
f7cb1933 969 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 970 goto bad;
81819f0f 971
3ec09742
CL
972 /* Success perform special debug activities for allocs */
973 if (s->flags & SLAB_STORE_USER)
974 set_track(s, object, TRACK_ALLOC, addr);
975 trace(s, page, object, 1);
f7cb1933 976 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 977 return 1;
3ec09742 978
81819f0f
CL
979bad:
980 if (PageSlab(page)) {
981 /*
982 * If this is a slab page then lets do the best we can
983 * to avoid issues in the future. Marking all objects
672bba3a 984 * as used avoids touching the remaining objects.
81819f0f 985 */
24922684 986 slab_fix(s, "Marking all objects used");
39b26464 987 page->inuse = page->objects;
a973e9dd 988 page->freelist = NULL;
81819f0f
CL
989 }
990 return 0;
991}
992
1537066c
CL
993static noinline int free_debug_processing(struct kmem_cache *s,
994 struct page *page, void *object, unsigned long addr)
81819f0f
CL
995{
996 if (!check_slab(s, page))
997 goto fail;
998
999 if (!check_valid_pointer(s, page, object)) {
70d71228 1000 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1001 goto fail;
1002 }
1003
1004 if (on_freelist(s, page, object)) {
24922684 1005 object_err(s, page, object, "Object already free");
81819f0f
CL
1006 goto fail;
1007 }
1008
f7cb1933 1009 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
81819f0f
CL
1010 return 0;
1011
1012 if (unlikely(s != page->slab)) {
3adbefee 1013 if (!PageSlab(page)) {
70d71228
CL
1014 slab_err(s, page, "Attempt to free object(0x%p) "
1015 "outside of slab", object);
3adbefee 1016 } else if (!page->slab) {
81819f0f 1017 printk(KERN_ERR
70d71228 1018 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1019 object);
70d71228 1020 dump_stack();
06428780 1021 } else
24922684
CL
1022 object_err(s, page, object,
1023 "page slab pointer corrupt.");
81819f0f
CL
1024 goto fail;
1025 }
3ec09742
CL
1026
1027 /* Special debug activities for freeing objects */
50d5c41c 1028 if (!page->frozen && !page->freelist)
3ec09742
CL
1029 remove_full(s, page);
1030 if (s->flags & SLAB_STORE_USER)
1031 set_track(s, object, TRACK_FREE, addr);
1032 trace(s, page, object, 0);
f7cb1933 1033 init_object(s, object, SLUB_RED_INACTIVE);
81819f0f 1034 return 1;
3ec09742 1035
81819f0f 1036fail:
24922684 1037 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
1038 return 0;
1039}
1040
41ecc55b
CL
1041static int __init setup_slub_debug(char *str)
1042{
f0630fff
CL
1043 slub_debug = DEBUG_DEFAULT_FLAGS;
1044 if (*str++ != '=' || !*str)
1045 /*
1046 * No options specified. Switch on full debugging.
1047 */
1048 goto out;
1049
1050 if (*str == ',')
1051 /*
1052 * No options but restriction on slabs. This means full
1053 * debugging for slabs matching a pattern.
1054 */
1055 goto check_slabs;
1056
fa5ec8a1
DR
1057 if (tolower(*str) == 'o') {
1058 /*
1059 * Avoid enabling debugging on caches if its minimum order
1060 * would increase as a result.
1061 */
1062 disable_higher_order_debug = 1;
1063 goto out;
1064 }
1065
f0630fff
CL
1066 slub_debug = 0;
1067 if (*str == '-')
1068 /*
1069 * Switch off all debugging measures.
1070 */
1071 goto out;
1072
1073 /*
1074 * Determine which debug features should be switched on
1075 */
06428780 1076 for (; *str && *str != ','; str++) {
f0630fff
CL
1077 switch (tolower(*str)) {
1078 case 'f':
1079 slub_debug |= SLAB_DEBUG_FREE;
1080 break;
1081 case 'z':
1082 slub_debug |= SLAB_RED_ZONE;
1083 break;
1084 case 'p':
1085 slub_debug |= SLAB_POISON;
1086 break;
1087 case 'u':
1088 slub_debug |= SLAB_STORE_USER;
1089 break;
1090 case 't':
1091 slub_debug |= SLAB_TRACE;
1092 break;
4c13dd3b
DM
1093 case 'a':
1094 slub_debug |= SLAB_FAILSLAB;
1095 break;
f0630fff
CL
1096 default:
1097 printk(KERN_ERR "slub_debug option '%c' "
06428780 1098 "unknown. skipped\n", *str);
f0630fff 1099 }
41ecc55b
CL
1100 }
1101
f0630fff 1102check_slabs:
41ecc55b
CL
1103 if (*str == ',')
1104 slub_debug_slabs = str + 1;
f0630fff 1105out:
41ecc55b
CL
1106 return 1;
1107}
1108
1109__setup("slub_debug", setup_slub_debug);
1110
ba0268a8
CL
1111static unsigned long kmem_cache_flags(unsigned long objsize,
1112 unsigned long flags, const char *name,
51cc5068 1113 void (*ctor)(void *))
41ecc55b
CL
1114{
1115 /*
e153362a 1116 * Enable debugging if selected on the kernel commandline.
41ecc55b 1117 */
e153362a 1118 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1119 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1120 flags |= slub_debug;
ba0268a8
CL
1121
1122 return flags;
41ecc55b
CL
1123}
1124#else
3ec09742
CL
1125static inline void setup_object_debug(struct kmem_cache *s,
1126 struct page *page, void *object) {}
41ecc55b 1127
3ec09742 1128static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1129 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1130
3ec09742 1131static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1132 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1133
41ecc55b
CL
1134static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1135 { return 1; }
1136static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1137 void *object, u8 val) { return 1; }
3ec09742 1138static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1139static inline unsigned long kmem_cache_flags(unsigned long objsize,
1140 unsigned long flags, const char *name,
51cc5068 1141 void (*ctor)(void *))
ba0268a8
CL
1142{
1143 return flags;
1144}
41ecc55b 1145#define slub_debug 0
0f389ec6 1146
fdaa45e9
IM
1147#define disable_higher_order_debug 0
1148
0f389ec6
CL
1149static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1150 { return 0; }
26c02cf0
AB
1151static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1152 { return 0; }
205ab99d
CL
1153static inline void inc_slabs_node(struct kmem_cache *s, int node,
1154 int objects) {}
1155static inline void dec_slabs_node(struct kmem_cache *s, int node,
1156 int objects) {}
7d550c56
CL
1157
1158static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1159 { return 0; }
1160
1161static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1162 void *object) {}
1163
1164static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1165
ab4d5ed5 1166#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1167
81819f0f
CL
1168/*
1169 * Slab allocation and freeing
1170 */
65c3376a
CL
1171static inline struct page *alloc_slab_page(gfp_t flags, int node,
1172 struct kmem_cache_order_objects oo)
1173{
1174 int order = oo_order(oo);
1175
b1eeab67
VN
1176 flags |= __GFP_NOTRACK;
1177
2154a336 1178 if (node == NUMA_NO_NODE)
65c3376a
CL
1179 return alloc_pages(flags, order);
1180 else
6b65aaf3 1181 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1182}
1183
81819f0f
CL
1184static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1185{
06428780 1186 struct page *page;
834f3d11 1187 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1188 gfp_t alloc_gfp;
81819f0f 1189
7e0528da
CL
1190 flags &= gfp_allowed_mask;
1191
1192 if (flags & __GFP_WAIT)
1193 local_irq_enable();
1194
b7a49f0d 1195 flags |= s->allocflags;
e12ba74d 1196
ba52270d
PE
1197 /*
1198 * Let the initial higher-order allocation fail under memory pressure
1199 * so we fall-back to the minimum order allocation.
1200 */
1201 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1202
1203 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1204 if (unlikely(!page)) {
1205 oo = s->min;
1206 /*
1207 * Allocation may have failed due to fragmentation.
1208 * Try a lower order alloc if possible
1209 */
1210 page = alloc_slab_page(flags, node, oo);
81819f0f 1211
7e0528da
CL
1212 if (page)
1213 stat(s, ORDER_FALLBACK);
65c3376a 1214 }
5a896d9e 1215
7e0528da
CL
1216 if (flags & __GFP_WAIT)
1217 local_irq_disable();
1218
1219 if (!page)
1220 return NULL;
1221
5a896d9e 1222 if (kmemcheck_enabled
5086c389 1223 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1224 int pages = 1 << oo_order(oo);
1225
1226 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1227
1228 /*
1229 * Objects from caches that have a constructor don't get
1230 * cleared when they're allocated, so we need to do it here.
1231 */
1232 if (s->ctor)
1233 kmemcheck_mark_uninitialized_pages(page, pages);
1234 else
1235 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1236 }
1237
834f3d11 1238 page->objects = oo_objects(oo);
81819f0f
CL
1239 mod_zone_page_state(page_zone(page),
1240 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1241 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1242 1 << oo_order(oo));
81819f0f
CL
1243
1244 return page;
1245}
1246
1247static void setup_object(struct kmem_cache *s, struct page *page,
1248 void *object)
1249{
3ec09742 1250 setup_object_debug(s, page, object);
4f104934 1251 if (unlikely(s->ctor))
51cc5068 1252 s->ctor(object);
81819f0f
CL
1253}
1254
1255static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1256{
1257 struct page *page;
81819f0f 1258 void *start;
81819f0f
CL
1259 void *last;
1260 void *p;
1261
6cb06229 1262 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1263
6cb06229
CL
1264 page = allocate_slab(s,
1265 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1266 if (!page)
1267 goto out;
1268
205ab99d 1269 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1270 page->slab = s;
1271 page->flags |= 1 << PG_slab;
81819f0f
CL
1272
1273 start = page_address(page);
81819f0f
CL
1274
1275 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1276 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1277
1278 last = start;
224a88be 1279 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1280 setup_object(s, page, last);
1281 set_freepointer(s, last, p);
1282 last = p;
1283 }
1284 setup_object(s, page, last);
a973e9dd 1285 set_freepointer(s, last, NULL);
81819f0f
CL
1286
1287 page->freelist = start;
1288 page->inuse = 0;
8cb0a506 1289 page->frozen = 1;
81819f0f 1290out:
81819f0f
CL
1291 return page;
1292}
1293
1294static void __free_slab(struct kmem_cache *s, struct page *page)
1295{
834f3d11
CL
1296 int order = compound_order(page);
1297 int pages = 1 << order;
81819f0f 1298
af537b0a 1299 if (kmem_cache_debug(s)) {
81819f0f
CL
1300 void *p;
1301
1302 slab_pad_check(s, page);
224a88be
CL
1303 for_each_object(p, s, page_address(page),
1304 page->objects)
f7cb1933 1305 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1306 }
1307
b1eeab67 1308 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1309
81819f0f
CL
1310 mod_zone_page_state(page_zone(page),
1311 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1312 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1313 -pages);
81819f0f 1314
49bd5221
CL
1315 __ClearPageSlab(page);
1316 reset_page_mapcount(page);
1eb5ac64
NP
1317 if (current->reclaim_state)
1318 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1319 __free_pages(page, order);
81819f0f
CL
1320}
1321
da9a638c
LJ
1322#define need_reserve_slab_rcu \
1323 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1324
81819f0f
CL
1325static void rcu_free_slab(struct rcu_head *h)
1326{
1327 struct page *page;
1328
da9a638c
LJ
1329 if (need_reserve_slab_rcu)
1330 page = virt_to_head_page(h);
1331 else
1332 page = container_of((struct list_head *)h, struct page, lru);
1333
81819f0f
CL
1334 __free_slab(page->slab, page);
1335}
1336
1337static void free_slab(struct kmem_cache *s, struct page *page)
1338{
1339 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1340 struct rcu_head *head;
1341
1342 if (need_reserve_slab_rcu) {
1343 int order = compound_order(page);
1344 int offset = (PAGE_SIZE << order) - s->reserved;
1345
1346 VM_BUG_ON(s->reserved != sizeof(*head));
1347 head = page_address(page) + offset;
1348 } else {
1349 /*
1350 * RCU free overloads the RCU head over the LRU
1351 */
1352 head = (void *)&page->lru;
1353 }
81819f0f
CL
1354
1355 call_rcu(head, rcu_free_slab);
1356 } else
1357 __free_slab(s, page);
1358}
1359
1360static void discard_slab(struct kmem_cache *s, struct page *page)
1361{
205ab99d 1362 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1363 free_slab(s, page);
1364}
1365
1366/*
1367 * Per slab locking using the pagelock
1368 */
1369static __always_inline void slab_lock(struct page *page)
1370{
1371 bit_spin_lock(PG_locked, &page->flags);
1372}
1373
1374static __always_inline void slab_unlock(struct page *page)
1375{
a76d3546 1376 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1377}
1378
1379static __always_inline int slab_trylock(struct page *page)
1380{
1381 int rc = 1;
1382
1383 rc = bit_spin_trylock(PG_locked, &page->flags);
1384 return rc;
1385}
1386
1387/*
1388 * Management of partially allocated slabs
1389 */
7c2e132c
CL
1390static void add_partial(struct kmem_cache_node *n,
1391 struct page *page, int tail)
81819f0f 1392{
e95eed57
CL
1393 spin_lock(&n->list_lock);
1394 n->nr_partial++;
7c2e132c
CL
1395 if (tail)
1396 list_add_tail(&page->lru, &n->partial);
1397 else
1398 list_add(&page->lru, &n->partial);
81819f0f
CL
1399 spin_unlock(&n->list_lock);
1400}
1401
62e346a8
CL
1402static inline void __remove_partial(struct kmem_cache_node *n,
1403 struct page *page)
1404{
1405 list_del(&page->lru);
1406 n->nr_partial--;
1407}
1408
0121c619 1409static void remove_partial(struct kmem_cache *s, struct page *page)
81819f0f
CL
1410{
1411 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1412
1413 spin_lock(&n->list_lock);
62e346a8 1414 __remove_partial(n, page);
81819f0f
CL
1415 spin_unlock(&n->list_lock);
1416}
1417
1418/*
672bba3a 1419 * Lock slab and remove from the partial list.
81819f0f 1420 *
672bba3a 1421 * Must hold list_lock.
81819f0f 1422 */
0121c619
CL
1423static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1424 struct page *page)
81819f0f
CL
1425{
1426 if (slab_trylock(page)) {
62e346a8 1427 __remove_partial(n, page);
81819f0f
CL
1428 return 1;
1429 }
1430 return 0;
1431}
1432
1433/*
672bba3a 1434 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1435 */
1436static struct page *get_partial_node(struct kmem_cache_node *n)
1437{
1438 struct page *page;
1439
1440 /*
1441 * Racy check. If we mistakenly see no partial slabs then we
1442 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1443 * partial slab and there is none available then get_partials()
1444 * will return NULL.
81819f0f
CL
1445 */
1446 if (!n || !n->nr_partial)
1447 return NULL;
1448
1449 spin_lock(&n->list_lock);
1450 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1451 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1452 goto out;
1453 page = NULL;
1454out:
1455 spin_unlock(&n->list_lock);
1456 return page;
1457}
1458
1459/*
672bba3a 1460 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1461 */
1462static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1463{
1464#ifdef CONFIG_NUMA
1465 struct zonelist *zonelist;
dd1a239f 1466 struct zoneref *z;
54a6eb5c
MG
1467 struct zone *zone;
1468 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1469 struct page *page;
1470
1471 /*
672bba3a
CL
1472 * The defrag ratio allows a configuration of the tradeoffs between
1473 * inter node defragmentation and node local allocations. A lower
1474 * defrag_ratio increases the tendency to do local allocations
1475 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1476 *
672bba3a
CL
1477 * If the defrag_ratio is set to 0 then kmalloc() always
1478 * returns node local objects. If the ratio is higher then kmalloc()
1479 * may return off node objects because partial slabs are obtained
1480 * from other nodes and filled up.
81819f0f 1481 *
6446faa2 1482 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1483 * defrag_ratio = 1000) then every (well almost) allocation will
1484 * first attempt to defrag slab caches on other nodes. This means
1485 * scanning over all nodes to look for partial slabs which may be
1486 * expensive if we do it every time we are trying to find a slab
1487 * with available objects.
81819f0f 1488 */
9824601e
CL
1489 if (!s->remote_node_defrag_ratio ||
1490 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1491 return NULL;
1492
c0ff7453 1493 get_mems_allowed();
0e88460d 1494 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1495 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1496 struct kmem_cache_node *n;
1497
54a6eb5c 1498 n = get_node(s, zone_to_nid(zone));
81819f0f 1499
54a6eb5c 1500 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1501 n->nr_partial > s->min_partial) {
81819f0f 1502 page = get_partial_node(n);
c0ff7453
MX
1503 if (page) {
1504 put_mems_allowed();
81819f0f 1505 return page;
c0ff7453 1506 }
81819f0f
CL
1507 }
1508 }
c0ff7453 1509 put_mems_allowed();
81819f0f
CL
1510#endif
1511 return NULL;
1512}
1513
1514/*
1515 * Get a partial page, lock it and return it.
1516 */
1517static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1518{
1519 struct page *page;
2154a336 1520 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f
CL
1521
1522 page = get_partial_node(get_node(s, searchnode));
33de04ec 1523 if (page || node != NUMA_NO_NODE)
81819f0f
CL
1524 return page;
1525
1526 return get_any_partial(s, flags);
1527}
1528
1529/*
1530 * Move a page back to the lists.
1531 *
1532 * Must be called with the slab lock held.
1533 *
1534 * On exit the slab lock will have been dropped.
1535 */
7c2e132c 1536static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
3478973d 1537 __releases(bitlock)
81819f0f 1538{
e95eed57
CL
1539 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1540
81819f0f 1541 if (page->inuse) {
e95eed57 1542
a973e9dd 1543 if (page->freelist) {
7c2e132c 1544 add_partial(n, page, tail);
84e554e6 1545 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
8ff12cfc 1546 } else {
84e554e6 1547 stat(s, DEACTIVATE_FULL);
af537b0a 1548 if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
8ff12cfc
CL
1549 add_full(n, page);
1550 }
81819f0f
CL
1551 slab_unlock(page);
1552 } else {
84e554e6 1553 stat(s, DEACTIVATE_EMPTY);
3b89d7d8 1554 if (n->nr_partial < s->min_partial) {
e95eed57 1555 /*
672bba3a
CL
1556 * Adding an empty slab to the partial slabs in order
1557 * to avoid page allocator overhead. This slab needs
1558 * to come after the other slabs with objects in
6446faa2
CL
1559 * so that the others get filled first. That way the
1560 * size of the partial list stays small.
1561 *
0121c619
CL
1562 * kmem_cache_shrink can reclaim any empty slabs from
1563 * the partial list.
e95eed57 1564 */
7c2e132c 1565 add_partial(n, page, 1);
e95eed57
CL
1566 slab_unlock(page);
1567 } else {
1568 slab_unlock(page);
84e554e6 1569 stat(s, FREE_SLAB);
e95eed57
CL
1570 discard_slab(s, page);
1571 }
81819f0f
CL
1572 }
1573}
1574
8a5ec0ba
CL
1575#ifdef CONFIG_PREEMPT
1576/*
1577 * Calculate the next globally unique transaction for disambiguiation
1578 * during cmpxchg. The transactions start with the cpu number and are then
1579 * incremented by CONFIG_NR_CPUS.
1580 */
1581#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1582#else
1583/*
1584 * No preemption supported therefore also no need to check for
1585 * different cpus.
1586 */
1587#define TID_STEP 1
1588#endif
1589
1590static inline unsigned long next_tid(unsigned long tid)
1591{
1592 return tid + TID_STEP;
1593}
1594
1595static inline unsigned int tid_to_cpu(unsigned long tid)
1596{
1597 return tid % TID_STEP;
1598}
1599
1600static inline unsigned long tid_to_event(unsigned long tid)
1601{
1602 return tid / TID_STEP;
1603}
1604
1605static inline unsigned int init_tid(int cpu)
1606{
1607 return cpu;
1608}
1609
1610static inline void note_cmpxchg_failure(const char *n,
1611 const struct kmem_cache *s, unsigned long tid)
1612{
1613#ifdef SLUB_DEBUG_CMPXCHG
1614 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1615
1616 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1617
1618#ifdef CONFIG_PREEMPT
1619 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1620 printk("due to cpu change %d -> %d\n",
1621 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1622 else
1623#endif
1624 if (tid_to_event(tid) != tid_to_event(actual_tid))
1625 printk("due to cpu running other code. Event %ld->%ld\n",
1626 tid_to_event(tid), tid_to_event(actual_tid));
1627 else
1628 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1629 actual_tid, tid, next_tid(tid));
1630#endif
4fdccdfb 1631 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1632}
1633
8a5ec0ba
CL
1634void init_kmem_cache_cpus(struct kmem_cache *s)
1635{
8a5ec0ba
CL
1636 int cpu;
1637
1638 for_each_possible_cpu(cpu)
1639 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1640}
81819f0f
CL
1641/*
1642 * Remove the cpu slab
1643 */
dfb4f096 1644static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3478973d 1645 __releases(bitlock)
81819f0f 1646{
dfb4f096 1647 struct page *page = c->page;
7c2e132c 1648 int tail = 1;
8ff12cfc 1649
b773ad73 1650 if (page->freelist)
84e554e6 1651 stat(s, DEACTIVATE_REMOTE_FREES);
894b8788 1652 /*
6446faa2 1653 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1654 * because both freelists are empty. So this is unlikely
1655 * to occur.
1656 */
a973e9dd 1657 while (unlikely(c->freelist)) {
894b8788
CL
1658 void **object;
1659
7c2e132c
CL
1660 tail = 0; /* Hot objects. Put the slab first */
1661
894b8788 1662 /* Retrieve object from cpu_freelist */
dfb4f096 1663 object = c->freelist;
ff12059e 1664 c->freelist = get_freepointer(s, c->freelist);
894b8788
CL
1665
1666 /* And put onto the regular freelist */
ff12059e 1667 set_freepointer(s, object, page->freelist);
894b8788
CL
1668 page->freelist = object;
1669 page->inuse--;
1670 }
dfb4f096 1671 c->page = NULL;
8a5ec0ba 1672 c->tid = next_tid(c->tid);
8cb0a506 1673 page->frozen = 0;
7c2e132c 1674 unfreeze_slab(s, page, tail);
81819f0f
CL
1675}
1676
dfb4f096 1677static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1678{
84e554e6 1679 stat(s, CPUSLAB_FLUSH);
dfb4f096
CL
1680 slab_lock(c->page);
1681 deactivate_slab(s, c);
81819f0f
CL
1682}
1683
1684/*
1685 * Flush cpu slab.
6446faa2 1686 *
81819f0f
CL
1687 * Called from IPI handler with interrupts disabled.
1688 */
0c710013 1689static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1690{
9dfc6e68 1691 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 1692
dfb4f096
CL
1693 if (likely(c && c->page))
1694 flush_slab(s, c);
81819f0f
CL
1695}
1696
1697static void flush_cpu_slab(void *d)
1698{
1699 struct kmem_cache *s = d;
81819f0f 1700
dfb4f096 1701 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1702}
1703
1704static void flush_all(struct kmem_cache *s)
1705{
15c8b6c1 1706 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
1707}
1708
dfb4f096
CL
1709/*
1710 * Check if the objects in a per cpu structure fit numa
1711 * locality expectations.
1712 */
1713static inline int node_match(struct kmem_cache_cpu *c, int node)
1714{
1715#ifdef CONFIG_NUMA
2154a336 1716 if (node != NUMA_NO_NODE && c->node != node)
dfb4f096
CL
1717 return 0;
1718#endif
1719 return 1;
1720}
1721
781b2ba6
PE
1722static int count_free(struct page *page)
1723{
1724 return page->objects - page->inuse;
1725}
1726
1727static unsigned long count_partial(struct kmem_cache_node *n,
1728 int (*get_count)(struct page *))
1729{
1730 unsigned long flags;
1731 unsigned long x = 0;
1732 struct page *page;
1733
1734 spin_lock_irqsave(&n->list_lock, flags);
1735 list_for_each_entry(page, &n->partial, lru)
1736 x += get_count(page);
1737 spin_unlock_irqrestore(&n->list_lock, flags);
1738 return x;
1739}
1740
26c02cf0
AB
1741static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1742{
1743#ifdef CONFIG_SLUB_DEBUG
1744 return atomic_long_read(&n->total_objects);
1745#else
1746 return 0;
1747#endif
1748}
1749
781b2ba6
PE
1750static noinline void
1751slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1752{
1753 int node;
1754
1755 printk(KERN_WARNING
1756 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1757 nid, gfpflags);
1758 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1759 "default order: %d, min order: %d\n", s->name, s->objsize,
1760 s->size, oo_order(s->oo), oo_order(s->min));
1761
fa5ec8a1
DR
1762 if (oo_order(s->min) > get_order(s->objsize))
1763 printk(KERN_WARNING " %s debugging increased min order, use "
1764 "slub_debug=O to disable.\n", s->name);
1765
781b2ba6
PE
1766 for_each_online_node(node) {
1767 struct kmem_cache_node *n = get_node(s, node);
1768 unsigned long nr_slabs;
1769 unsigned long nr_objs;
1770 unsigned long nr_free;
1771
1772 if (!n)
1773 continue;
1774
26c02cf0
AB
1775 nr_free = count_partial(n, count_free);
1776 nr_slabs = node_nr_slabs(n);
1777 nr_objs = node_nr_objs(n);
781b2ba6
PE
1778
1779 printk(KERN_WARNING
1780 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1781 node, nr_slabs, nr_objs, nr_free);
1782 }
1783}
1784
81819f0f 1785/*
894b8788
CL
1786 * Slow path. The lockless freelist is empty or we need to perform
1787 * debugging duties.
1788 *
1789 * Interrupts are disabled.
81819f0f 1790 *
894b8788
CL
1791 * Processing is still very fast if new objects have been freed to the
1792 * regular freelist. In that case we simply take over the regular freelist
1793 * as the lockless freelist and zap the regular freelist.
81819f0f 1794 *
894b8788
CL
1795 * If that is not working then we fall back to the partial lists. We take the
1796 * first element of the freelist as the object to allocate now and move the
1797 * rest of the freelist to the lockless freelist.
81819f0f 1798 *
894b8788 1799 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1800 * we need to allocate a new slab. This is the slowest path since it involves
1801 * a call to the page allocator and the setup of a new slab.
81819f0f 1802 */
ce71e27c
EGM
1803static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1804 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 1805{
81819f0f 1806 void **object;
01ad8a7b 1807 struct page *page;
8a5ec0ba
CL
1808 unsigned long flags;
1809
1810 local_irq_save(flags);
1811#ifdef CONFIG_PREEMPT
1812 /*
1813 * We may have been preempted and rescheduled on a different
1814 * cpu before disabling interrupts. Need to reload cpu area
1815 * pointer.
1816 */
1817 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 1818#endif
81819f0f 1819
e72e9c23
LT
1820 /* We handle __GFP_ZERO in the caller */
1821 gfpflags &= ~__GFP_ZERO;
1822
01ad8a7b
CL
1823 page = c->page;
1824 if (!page)
81819f0f
CL
1825 goto new_slab;
1826
01ad8a7b 1827 slab_lock(page);
dfb4f096 1828 if (unlikely(!node_match(c, node)))
81819f0f 1829 goto another_slab;
6446faa2 1830
84e554e6 1831 stat(s, ALLOC_REFILL);
6446faa2 1832
894b8788 1833load_freelist:
8cb0a506
CL
1834 VM_BUG_ON(!page->frozen);
1835
01ad8a7b 1836 object = page->freelist;
a973e9dd 1837 if (unlikely(!object))
81819f0f 1838 goto another_slab;
af537b0a 1839 if (kmem_cache_debug(s))
81819f0f
CL
1840 goto debug;
1841
ff12059e 1842 c->freelist = get_freepointer(s, object);
01ad8a7b
CL
1843 page->inuse = page->objects;
1844 page->freelist = NULL;
01ad8a7b 1845
01ad8a7b 1846 slab_unlock(page);
8a5ec0ba
CL
1847 c->tid = next_tid(c->tid);
1848 local_irq_restore(flags);
84e554e6 1849 stat(s, ALLOC_SLOWPATH);
81819f0f
CL
1850 return object;
1851
1852another_slab:
dfb4f096 1853 deactivate_slab(s, c);
81819f0f
CL
1854
1855new_slab:
01ad8a7b
CL
1856 page = get_partial(s, gfpflags, node);
1857 if (page) {
84e554e6 1858 stat(s, ALLOC_FROM_PARTIAL);
8cb0a506 1859 page->frozen = 1;
dc1fb7f4
CL
1860 c->node = page_to_nid(page);
1861 c->page = page;
894b8788 1862 goto load_freelist;
81819f0f
CL
1863 }
1864
01ad8a7b 1865 page = new_slab(s, gfpflags, node);
b811c202 1866
01ad8a7b 1867 if (page) {
9dfc6e68 1868 c = __this_cpu_ptr(s->cpu_slab);
84e554e6 1869 stat(s, ALLOC_SLAB);
05aa3450 1870 if (c->page)
dfb4f096 1871 flush_slab(s, c);
01ad8a7b
CL
1872
1873 slab_lock(page);
50d5c41c 1874 page->frozen = 1;
bd07d87f
DR
1875 c->node = page_to_nid(page);
1876 c->page = page;
4b6f0750 1877 goto load_freelist;
81819f0f 1878 }
95f85989
PE
1879 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1880 slab_out_of_memory(s, gfpflags, node);
2fd66c51 1881 local_irq_restore(flags);
71c7a06f 1882 return NULL;
81819f0f 1883debug:
01ad8a7b 1884 if (!alloc_debug_processing(s, page, object, addr))
81819f0f 1885 goto another_slab;
894b8788 1886
01ad8a7b
CL
1887 page->inuse++;
1888 page->freelist = get_freepointer(s, object);
442b06bc
CL
1889 deactivate_slab(s, c);
1890 c->page = NULL;
15b7c514 1891 c->node = NUMA_NO_NODE;
a71ae47a
CL
1892 local_irq_restore(flags);
1893 return object;
894b8788
CL
1894}
1895
1896/*
1897 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1898 * have the fastpath folded into their functions. So no function call
1899 * overhead for requests that can be satisfied on the fastpath.
1900 *
1901 * The fastpath works by first checking if the lockless freelist can be used.
1902 * If not then __slab_alloc is called for slow processing.
1903 *
1904 * Otherwise we can simply pick the next object from the lockless free list.
1905 */
06428780 1906static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 1907 gfp_t gfpflags, int node, unsigned long addr)
894b8788 1908{
894b8788 1909 void **object;
dfb4f096 1910 struct kmem_cache_cpu *c;
8a5ec0ba 1911 unsigned long tid;
1f84260c 1912
c016b0bd 1913 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 1914 return NULL;
1f84260c 1915
8a5ec0ba 1916redo:
8a5ec0ba
CL
1917
1918 /*
1919 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
1920 * enabled. We may switch back and forth between cpus while
1921 * reading from one cpu area. That does not matter as long
1922 * as we end up on the original cpu again when doing the cmpxchg.
1923 */
9dfc6e68 1924 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 1925
8a5ec0ba
CL
1926 /*
1927 * The transaction ids are globally unique per cpu and per operation on
1928 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
1929 * occurs on the right processor and that there was no operation on the
1930 * linked list in between.
1931 */
1932 tid = c->tid;
1933 barrier();
8a5ec0ba 1934
9dfc6e68 1935 object = c->freelist;
9dfc6e68 1936 if (unlikely(!object || !node_match(c, node)))
894b8788 1937
dfb4f096 1938 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1939
1940 else {
8a5ec0ba 1941 /*
25985edc 1942 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
1943 * operation and if we are on the right processor.
1944 *
1945 * The cmpxchg does the following atomically (without lock semantics!)
1946 * 1. Relocate first pointer to the current per cpu area.
1947 * 2. Verify that tid and freelist have not been changed
1948 * 3. If they were not changed replace tid and freelist
1949 *
1950 * Since this is without lock semantics the protection is only against
1951 * code executing on this cpu *not* from access by other cpus.
1952 */
30106b8c 1953 if (unlikely(!irqsafe_cpu_cmpxchg_double(
8a5ec0ba
CL
1954 s->cpu_slab->freelist, s->cpu_slab->tid,
1955 object, tid,
1393d9a1 1956 get_freepointer_safe(s, object), next_tid(tid)))) {
8a5ec0ba
CL
1957
1958 note_cmpxchg_failure("slab_alloc", s, tid);
1959 goto redo;
1960 }
84e554e6 1961 stat(s, ALLOC_FASTPATH);
894b8788 1962 }
8a5ec0ba 1963
74e2134f 1964 if (unlikely(gfpflags & __GFP_ZERO) && object)
ff12059e 1965 memset(object, 0, s->objsize);
d07dbea4 1966
c016b0bd 1967 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 1968
894b8788 1969 return object;
81819f0f
CL
1970}
1971
1972void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1973{
2154a336 1974 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 1975
ca2b84cb 1976 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
1977
1978 return ret;
81819f0f
CL
1979}
1980EXPORT_SYMBOL(kmem_cache_alloc);
1981
0f24f128 1982#ifdef CONFIG_TRACING
4a92379b
RK
1983void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
1984{
1985 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1986 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
1987 return ret;
1988}
1989EXPORT_SYMBOL(kmem_cache_alloc_trace);
1990
1991void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 1992{
4a92379b
RK
1993 void *ret = kmalloc_order(size, flags, order);
1994 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1995 return ret;
5b882be4 1996}
4a92379b 1997EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
1998#endif
1999
81819f0f
CL
2000#ifdef CONFIG_NUMA
2001void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2002{
5b882be4
EGM
2003 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2004
ca2b84cb
EGM
2005 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2006 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
2007
2008 return ret;
81819f0f
CL
2009}
2010EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2011
0f24f128 2012#ifdef CONFIG_TRACING
4a92379b 2013void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2014 gfp_t gfpflags,
4a92379b 2015 int node, size_t size)
5b882be4 2016{
4a92379b
RK
2017 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2018
2019 trace_kmalloc_node(_RET_IP_, ret,
2020 size, s->size, gfpflags, node);
2021 return ret;
5b882be4 2022}
4a92379b 2023EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2024#endif
5d1f57e4 2025#endif
5b882be4 2026
81819f0f 2027/*
894b8788
CL
2028 * Slow patch handling. This may still be called frequently since objects
2029 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2030 *
894b8788
CL
2031 * So we still attempt to reduce cache line usage. Just take the slab
2032 * lock and free the item. If there is no additional partial page
2033 * handling required then we can return immediately.
81819f0f 2034 */
894b8788 2035static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2036 void *x, unsigned long addr)
81819f0f
CL
2037{
2038 void *prior;
2039 void **object = (void *)x;
8a5ec0ba 2040 unsigned long flags;
81819f0f 2041
8a5ec0ba 2042 local_irq_save(flags);
81819f0f 2043 slab_lock(page);
8a5ec0ba 2044 stat(s, FREE_SLOWPATH);
81819f0f 2045
8dc16c6c
CL
2046 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
2047 goto out_unlock;
6446faa2 2048
ff12059e
CL
2049 prior = page->freelist;
2050 set_freepointer(s, object, prior);
81819f0f
CL
2051 page->freelist = object;
2052 page->inuse--;
2053
50d5c41c 2054 if (unlikely(page->frozen)) {
84e554e6 2055 stat(s, FREE_FROZEN);
81819f0f 2056 goto out_unlock;
8ff12cfc 2057 }
81819f0f
CL
2058
2059 if (unlikely(!page->inuse))
2060 goto slab_empty;
2061
2062 /*
6446faa2 2063 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
2064 * then add it.
2065 */
a973e9dd 2066 if (unlikely(!prior)) {
7c2e132c 2067 add_partial(get_node(s, page_to_nid(page)), page, 1);
84e554e6 2068 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2069 }
81819f0f
CL
2070
2071out_unlock:
2072 slab_unlock(page);
8a5ec0ba 2073 local_irq_restore(flags);
81819f0f
CL
2074 return;
2075
2076slab_empty:
a973e9dd 2077 if (prior) {
81819f0f 2078 /*
672bba3a 2079 * Slab still on the partial list.
81819f0f
CL
2080 */
2081 remove_partial(s, page);
84e554e6 2082 stat(s, FREE_REMOVE_PARTIAL);
8ff12cfc 2083 }
81819f0f 2084 slab_unlock(page);
8a5ec0ba 2085 local_irq_restore(flags);
84e554e6 2086 stat(s, FREE_SLAB);
81819f0f 2087 discard_slab(s, page);
81819f0f
CL
2088}
2089
894b8788
CL
2090/*
2091 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2092 * can perform fastpath freeing without additional function calls.
2093 *
2094 * The fastpath is only possible if we are freeing to the current cpu slab
2095 * of this processor. This typically the case if we have just allocated
2096 * the item before.
2097 *
2098 * If fastpath is not possible then fall back to __slab_free where we deal
2099 * with all sorts of special processing.
2100 */
06428780 2101static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2102 struct page *page, void *x, unsigned long addr)
894b8788
CL
2103{
2104 void **object = (void *)x;
dfb4f096 2105 struct kmem_cache_cpu *c;
8a5ec0ba 2106 unsigned long tid;
1f84260c 2107
c016b0bd
CL
2108 slab_free_hook(s, x);
2109
8a5ec0ba 2110redo:
a24c5a0e 2111
8a5ec0ba
CL
2112 /*
2113 * Determine the currently cpus per cpu slab.
2114 * The cpu may change afterward. However that does not matter since
2115 * data is retrieved via this pointer. If we are on the same cpu
2116 * during the cmpxchg then the free will succedd.
2117 */
9dfc6e68 2118 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2119
8a5ec0ba
CL
2120 tid = c->tid;
2121 barrier();
c016b0bd 2122
442b06bc 2123 if (likely(page == c->page)) {
ff12059e 2124 set_freepointer(s, object, c->freelist);
8a5ec0ba 2125
30106b8c 2126 if (unlikely(!irqsafe_cpu_cmpxchg_double(
8a5ec0ba
CL
2127 s->cpu_slab->freelist, s->cpu_slab->tid,
2128 c->freelist, tid,
2129 object, next_tid(tid)))) {
2130
2131 note_cmpxchg_failure("slab_free", s, tid);
2132 goto redo;
2133 }
84e554e6 2134 stat(s, FREE_FASTPATH);
894b8788 2135 } else
ff12059e 2136 __slab_free(s, page, x, addr);
894b8788 2137
894b8788
CL
2138}
2139
81819f0f
CL
2140void kmem_cache_free(struct kmem_cache *s, void *x)
2141{
77c5e2d0 2142 struct page *page;
81819f0f 2143
b49af68f 2144 page = virt_to_head_page(x);
81819f0f 2145
ce71e27c 2146 slab_free(s, page, x, _RET_IP_);
5b882be4 2147
ca2b84cb 2148 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2149}
2150EXPORT_SYMBOL(kmem_cache_free);
2151
81819f0f 2152/*
672bba3a
CL
2153 * Object placement in a slab is made very easy because we always start at
2154 * offset 0. If we tune the size of the object to the alignment then we can
2155 * get the required alignment by putting one properly sized object after
2156 * another.
81819f0f
CL
2157 *
2158 * Notice that the allocation order determines the sizes of the per cpu
2159 * caches. Each processor has always one slab available for allocations.
2160 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2161 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2162 * locking overhead.
81819f0f
CL
2163 */
2164
2165/*
2166 * Mininum / Maximum order of slab pages. This influences locking overhead
2167 * and slab fragmentation. A higher order reduces the number of partial slabs
2168 * and increases the number of allocations possible without having to
2169 * take the list_lock.
2170 */
2171static int slub_min_order;
114e9e89 2172static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2173static int slub_min_objects;
81819f0f
CL
2174
2175/*
2176 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2177 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2178 */
2179static int slub_nomerge;
2180
81819f0f
CL
2181/*
2182 * Calculate the order of allocation given an slab object size.
2183 *
672bba3a
CL
2184 * The order of allocation has significant impact on performance and other
2185 * system components. Generally order 0 allocations should be preferred since
2186 * order 0 does not cause fragmentation in the page allocator. Larger objects
2187 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2188 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2189 * would be wasted.
2190 *
2191 * In order to reach satisfactory performance we must ensure that a minimum
2192 * number of objects is in one slab. Otherwise we may generate too much
2193 * activity on the partial lists which requires taking the list_lock. This is
2194 * less a concern for large slabs though which are rarely used.
81819f0f 2195 *
672bba3a
CL
2196 * slub_max_order specifies the order where we begin to stop considering the
2197 * number of objects in a slab as critical. If we reach slub_max_order then
2198 * we try to keep the page order as low as possible. So we accept more waste
2199 * of space in favor of a small page order.
81819f0f 2200 *
672bba3a
CL
2201 * Higher order allocations also allow the placement of more objects in a
2202 * slab and thereby reduce object handling overhead. If the user has
2203 * requested a higher mininum order then we start with that one instead of
2204 * the smallest order which will fit the object.
81819f0f 2205 */
5e6d444e 2206static inline int slab_order(int size, int min_objects,
ab9a0f19 2207 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2208{
2209 int order;
2210 int rem;
6300ea75 2211 int min_order = slub_min_order;
81819f0f 2212
ab9a0f19 2213 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2214 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2215
6300ea75 2216 for (order = max(min_order,
5e6d444e
CL
2217 fls(min_objects * size - 1) - PAGE_SHIFT);
2218 order <= max_order; order++) {
81819f0f 2219
5e6d444e 2220 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2221
ab9a0f19 2222 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2223 continue;
2224
ab9a0f19 2225 rem = (slab_size - reserved) % size;
81819f0f 2226
5e6d444e 2227 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2228 break;
2229
2230 }
672bba3a 2231
81819f0f
CL
2232 return order;
2233}
2234
ab9a0f19 2235static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2236{
2237 int order;
2238 int min_objects;
2239 int fraction;
e8120ff1 2240 int max_objects;
5e6d444e
CL
2241
2242 /*
2243 * Attempt to find best configuration for a slab. This
2244 * works by first attempting to generate a layout with
2245 * the best configuration and backing off gradually.
2246 *
2247 * First we reduce the acceptable waste in a slab. Then
2248 * we reduce the minimum objects required in a slab.
2249 */
2250 min_objects = slub_min_objects;
9b2cd506
CL
2251 if (!min_objects)
2252 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2253 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2254 min_objects = min(min_objects, max_objects);
2255
5e6d444e 2256 while (min_objects > 1) {
c124f5b5 2257 fraction = 16;
5e6d444e
CL
2258 while (fraction >= 4) {
2259 order = slab_order(size, min_objects,
ab9a0f19 2260 slub_max_order, fraction, reserved);
5e6d444e
CL
2261 if (order <= slub_max_order)
2262 return order;
2263 fraction /= 2;
2264 }
5086c389 2265 min_objects--;
5e6d444e
CL
2266 }
2267
2268 /*
2269 * We were unable to place multiple objects in a slab. Now
2270 * lets see if we can place a single object there.
2271 */
ab9a0f19 2272 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2273 if (order <= slub_max_order)
2274 return order;
2275
2276 /*
2277 * Doh this slab cannot be placed using slub_max_order.
2278 */
ab9a0f19 2279 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2280 if (order < MAX_ORDER)
5e6d444e
CL
2281 return order;
2282 return -ENOSYS;
2283}
2284
81819f0f 2285/*
672bba3a 2286 * Figure out what the alignment of the objects will be.
81819f0f
CL
2287 */
2288static unsigned long calculate_alignment(unsigned long flags,
2289 unsigned long align, unsigned long size)
2290{
2291 /*
6446faa2
CL
2292 * If the user wants hardware cache aligned objects then follow that
2293 * suggestion if the object is sufficiently large.
81819f0f 2294 *
6446faa2
CL
2295 * The hardware cache alignment cannot override the specified
2296 * alignment though. If that is greater then use it.
81819f0f 2297 */
b6210386
NP
2298 if (flags & SLAB_HWCACHE_ALIGN) {
2299 unsigned long ralign = cache_line_size();
2300 while (size <= ralign / 2)
2301 ralign /= 2;
2302 align = max(align, ralign);
2303 }
81819f0f
CL
2304
2305 if (align < ARCH_SLAB_MINALIGN)
b6210386 2306 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2307
2308 return ALIGN(align, sizeof(void *));
2309}
2310
5595cffc
PE
2311static void
2312init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2313{
2314 n->nr_partial = 0;
81819f0f
CL
2315 spin_lock_init(&n->list_lock);
2316 INIT_LIST_HEAD(&n->partial);
8ab1372f 2317#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2318 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2319 atomic_long_set(&n->total_objects, 0);
643b1138 2320 INIT_LIST_HEAD(&n->full);
8ab1372f 2321#endif
81819f0f
CL
2322}
2323
55136592 2324static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2325{
6c182dc0
CL
2326 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2327 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2328
8a5ec0ba 2329 /*
d4d84fef
CM
2330 * Must align to double word boundary for the double cmpxchg
2331 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2332 */
d4d84fef
CM
2333 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2334 2 * sizeof(void *));
8a5ec0ba
CL
2335
2336 if (!s->cpu_slab)
2337 return 0;
2338
2339 init_kmem_cache_cpus(s);
4c93c355 2340
8a5ec0ba 2341 return 1;
4c93c355 2342}
4c93c355 2343
51df1142
CL
2344static struct kmem_cache *kmem_cache_node;
2345
81819f0f
CL
2346/*
2347 * No kmalloc_node yet so do it by hand. We know that this is the first
2348 * slab on the node for this slabcache. There are no concurrent accesses
2349 * possible.
2350 *
2351 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2352 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2353 * memory on a fresh node that has no slab structures yet.
81819f0f 2354 */
55136592 2355static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2356{
2357 struct page *page;
2358 struct kmem_cache_node *n;
ba84c73c 2359 unsigned long flags;
81819f0f 2360
51df1142 2361 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2362
51df1142 2363 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2364
2365 BUG_ON(!page);
a2f92ee7
CL
2366 if (page_to_nid(page) != node) {
2367 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2368 "node %d\n", node);
2369 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2370 "in order to be able to continue\n");
2371 }
2372
81819f0f
CL
2373 n = page->freelist;
2374 BUG_ON(!n);
51df1142 2375 page->freelist = get_freepointer(kmem_cache_node, n);
81819f0f 2376 page->inuse++;
8cb0a506 2377 page->frozen = 0;
51df1142 2378 kmem_cache_node->node[node] = n;
8ab1372f 2379#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2380 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2381 init_tracking(kmem_cache_node, n);
8ab1372f 2382#endif
51df1142
CL
2383 init_kmem_cache_node(n, kmem_cache_node);
2384 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2385
ba84c73c 2386 /*
2387 * lockdep requires consistent irq usage for each lock
2388 * so even though there cannot be a race this early in
2389 * the boot sequence, we still disable irqs.
2390 */
2391 local_irq_save(flags);
7c2e132c 2392 add_partial(n, page, 0);
ba84c73c 2393 local_irq_restore(flags);
81819f0f
CL
2394}
2395
2396static void free_kmem_cache_nodes(struct kmem_cache *s)
2397{
2398 int node;
2399
f64dc58c 2400 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2401 struct kmem_cache_node *n = s->node[node];
51df1142 2402
73367bd8 2403 if (n)
51df1142
CL
2404 kmem_cache_free(kmem_cache_node, n);
2405
81819f0f
CL
2406 s->node[node] = NULL;
2407 }
2408}
2409
55136592 2410static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2411{
2412 int node;
81819f0f 2413
f64dc58c 2414 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2415 struct kmem_cache_node *n;
2416
73367bd8 2417 if (slab_state == DOWN) {
55136592 2418 early_kmem_cache_node_alloc(node);
73367bd8
AD
2419 continue;
2420 }
51df1142 2421 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2422 GFP_KERNEL, node);
81819f0f 2423
73367bd8
AD
2424 if (!n) {
2425 free_kmem_cache_nodes(s);
2426 return 0;
81819f0f 2427 }
73367bd8 2428
81819f0f 2429 s->node[node] = n;
5595cffc 2430 init_kmem_cache_node(n, s);
81819f0f
CL
2431 }
2432 return 1;
2433}
81819f0f 2434
c0bdb232 2435static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2436{
2437 if (min < MIN_PARTIAL)
2438 min = MIN_PARTIAL;
2439 else if (min > MAX_PARTIAL)
2440 min = MAX_PARTIAL;
2441 s->min_partial = min;
2442}
2443
81819f0f
CL
2444/*
2445 * calculate_sizes() determines the order and the distribution of data within
2446 * a slab object.
2447 */
06b285dc 2448static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2449{
2450 unsigned long flags = s->flags;
2451 unsigned long size = s->objsize;
2452 unsigned long align = s->align;
834f3d11 2453 int order;
81819f0f 2454
d8b42bf5
CL
2455 /*
2456 * Round up object size to the next word boundary. We can only
2457 * place the free pointer at word boundaries and this determines
2458 * the possible location of the free pointer.
2459 */
2460 size = ALIGN(size, sizeof(void *));
2461
2462#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2463 /*
2464 * Determine if we can poison the object itself. If the user of
2465 * the slab may touch the object after free or before allocation
2466 * then we should never poison the object itself.
2467 */
2468 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2469 !s->ctor)
81819f0f
CL
2470 s->flags |= __OBJECT_POISON;
2471 else
2472 s->flags &= ~__OBJECT_POISON;
2473
81819f0f
CL
2474
2475 /*
672bba3a 2476 * If we are Redzoning then check if there is some space between the
81819f0f 2477 * end of the object and the free pointer. If not then add an
672bba3a 2478 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2479 */
2480 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2481 size += sizeof(void *);
41ecc55b 2482#endif
81819f0f
CL
2483
2484 /*
672bba3a
CL
2485 * With that we have determined the number of bytes in actual use
2486 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2487 */
2488 s->inuse = size;
2489
2490 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2491 s->ctor)) {
81819f0f
CL
2492 /*
2493 * Relocate free pointer after the object if it is not
2494 * permitted to overwrite the first word of the object on
2495 * kmem_cache_free.
2496 *
2497 * This is the case if we do RCU, have a constructor or
2498 * destructor or are poisoning the objects.
2499 */
2500 s->offset = size;
2501 size += sizeof(void *);
2502 }
2503
c12b3c62 2504#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2505 if (flags & SLAB_STORE_USER)
2506 /*
2507 * Need to store information about allocs and frees after
2508 * the object.
2509 */
2510 size += 2 * sizeof(struct track);
2511
be7b3fbc 2512 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2513 /*
2514 * Add some empty padding so that we can catch
2515 * overwrites from earlier objects rather than let
2516 * tracking information or the free pointer be
0211a9c8 2517 * corrupted if a user writes before the start
81819f0f
CL
2518 * of the object.
2519 */
2520 size += sizeof(void *);
41ecc55b 2521#endif
672bba3a 2522
81819f0f
CL
2523 /*
2524 * Determine the alignment based on various parameters that the
65c02d4c
CL
2525 * user specified and the dynamic determination of cache line size
2526 * on bootup.
81819f0f
CL
2527 */
2528 align = calculate_alignment(flags, align, s->objsize);
dcb0ce1b 2529 s->align = align;
81819f0f
CL
2530
2531 /*
2532 * SLUB stores one object immediately after another beginning from
2533 * offset 0. In order to align the objects we have to simply size
2534 * each object to conform to the alignment.
2535 */
2536 size = ALIGN(size, align);
2537 s->size = size;
06b285dc
CL
2538 if (forced_order >= 0)
2539 order = forced_order;
2540 else
ab9a0f19 2541 order = calculate_order(size, s->reserved);
81819f0f 2542
834f3d11 2543 if (order < 0)
81819f0f
CL
2544 return 0;
2545
b7a49f0d 2546 s->allocflags = 0;
834f3d11 2547 if (order)
b7a49f0d
CL
2548 s->allocflags |= __GFP_COMP;
2549
2550 if (s->flags & SLAB_CACHE_DMA)
2551 s->allocflags |= SLUB_DMA;
2552
2553 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2554 s->allocflags |= __GFP_RECLAIMABLE;
2555
81819f0f
CL
2556 /*
2557 * Determine the number of objects per slab
2558 */
ab9a0f19
LJ
2559 s->oo = oo_make(order, size, s->reserved);
2560 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
2561 if (oo_objects(s->oo) > oo_objects(s->max))
2562 s->max = s->oo;
81819f0f 2563
834f3d11 2564 return !!oo_objects(s->oo);
81819f0f
CL
2565
2566}
2567
55136592 2568static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
2569 const char *name, size_t size,
2570 size_t align, unsigned long flags,
51cc5068 2571 void (*ctor)(void *))
81819f0f
CL
2572{
2573 memset(s, 0, kmem_size);
2574 s->name = name;
2575 s->ctor = ctor;
81819f0f 2576 s->objsize = size;
81819f0f 2577 s->align = align;
ba0268a8 2578 s->flags = kmem_cache_flags(size, flags, name, ctor);
ab9a0f19 2579 s->reserved = 0;
81819f0f 2580
da9a638c
LJ
2581 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
2582 s->reserved = sizeof(struct rcu_head);
81819f0f 2583
06b285dc 2584 if (!calculate_sizes(s, -1))
81819f0f 2585 goto error;
3de47213
DR
2586 if (disable_higher_order_debug) {
2587 /*
2588 * Disable debugging flags that store metadata if the min slab
2589 * order increased.
2590 */
2591 if (get_order(s->size) > get_order(s->objsize)) {
2592 s->flags &= ~DEBUG_METADATA_FLAGS;
2593 s->offset = 0;
2594 if (!calculate_sizes(s, -1))
2595 goto error;
2596 }
2597 }
81819f0f 2598
3b89d7d8
DR
2599 /*
2600 * The larger the object size is, the more pages we want on the partial
2601 * list to avoid pounding the page allocator excessively.
2602 */
c0bdb232 2603 set_min_partial(s, ilog2(s->size));
81819f0f
CL
2604 s->refcount = 1;
2605#ifdef CONFIG_NUMA
e2cb96b7 2606 s->remote_node_defrag_ratio = 1000;
81819f0f 2607#endif
55136592 2608 if (!init_kmem_cache_nodes(s))
dfb4f096 2609 goto error;
81819f0f 2610
55136592 2611 if (alloc_kmem_cache_cpus(s))
81819f0f 2612 return 1;
ff12059e 2613
4c93c355 2614 free_kmem_cache_nodes(s);
81819f0f
CL
2615error:
2616 if (flags & SLAB_PANIC)
2617 panic("Cannot create slab %s size=%lu realsize=%u "
2618 "order=%u offset=%u flags=%lx\n",
834f3d11 2619 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2620 s->offset, flags);
2621 return 0;
2622}
81819f0f 2623
81819f0f
CL
2624/*
2625 * Determine the size of a slab object
2626 */
2627unsigned int kmem_cache_size(struct kmem_cache *s)
2628{
2629 return s->objsize;
2630}
2631EXPORT_SYMBOL(kmem_cache_size);
2632
33b12c38
CL
2633static void list_slab_objects(struct kmem_cache *s, struct page *page,
2634 const char *text)
2635{
2636#ifdef CONFIG_SLUB_DEBUG
2637 void *addr = page_address(page);
2638 void *p;
a5dd5c11
NK
2639 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2640 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
2641 if (!map)
2642 return;
33b12c38
CL
2643 slab_err(s, page, "%s", text);
2644 slab_lock(page);
33b12c38 2645
5f80b13a 2646 get_map(s, page, map);
33b12c38
CL
2647 for_each_object(p, s, addr, page->objects) {
2648
2649 if (!test_bit(slab_index(p, s, addr), map)) {
2650 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2651 p, p - addr);
2652 print_tracking(s, p);
2653 }
2654 }
2655 slab_unlock(page);
bbd7d57b 2656 kfree(map);
33b12c38
CL
2657#endif
2658}
2659
81819f0f 2660/*
599870b1 2661 * Attempt to free all partial slabs on a node.
81819f0f 2662 */
599870b1 2663static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2664{
81819f0f
CL
2665 unsigned long flags;
2666 struct page *page, *h;
2667
2668 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2669 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 2670 if (!page->inuse) {
62e346a8 2671 __remove_partial(n, page);
81819f0f 2672 discard_slab(s, page);
33b12c38
CL
2673 } else {
2674 list_slab_objects(s, page,
2675 "Objects remaining on kmem_cache_close()");
599870b1 2676 }
33b12c38 2677 }
81819f0f 2678 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2679}
2680
2681/*
672bba3a 2682 * Release all resources used by a slab cache.
81819f0f 2683 */
0c710013 2684static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2685{
2686 int node;
2687
2688 flush_all(s);
9dfc6e68 2689 free_percpu(s->cpu_slab);
81819f0f 2690 /* Attempt to free all objects */
f64dc58c 2691 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2692 struct kmem_cache_node *n = get_node(s, node);
2693
599870b1
CL
2694 free_partial(s, n);
2695 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2696 return 1;
2697 }
2698 free_kmem_cache_nodes(s);
2699 return 0;
2700}
2701
2702/*
2703 * Close a cache and release the kmem_cache structure
2704 * (must be used for caches created using kmem_cache_create)
2705 */
2706void kmem_cache_destroy(struct kmem_cache *s)
2707{
2708 down_write(&slub_lock);
2709 s->refcount--;
2710 if (!s->refcount) {
2711 list_del(&s->list);
d629d819
PE
2712 if (kmem_cache_close(s)) {
2713 printk(KERN_ERR "SLUB %s: %s called for cache that "
2714 "still has objects.\n", s->name, __func__);
2715 dump_stack();
2716 }
d76b1590
ED
2717 if (s->flags & SLAB_DESTROY_BY_RCU)
2718 rcu_barrier();
81819f0f 2719 sysfs_slab_remove(s);
2bce6485
CL
2720 }
2721 up_write(&slub_lock);
81819f0f
CL
2722}
2723EXPORT_SYMBOL(kmem_cache_destroy);
2724
2725/********************************************************************
2726 * Kmalloc subsystem
2727 *******************************************************************/
2728
51df1142 2729struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
2730EXPORT_SYMBOL(kmalloc_caches);
2731
51df1142
CL
2732static struct kmem_cache *kmem_cache;
2733
55136592 2734#ifdef CONFIG_ZONE_DMA
51df1142 2735static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
2736#endif
2737
81819f0f
CL
2738static int __init setup_slub_min_order(char *str)
2739{
06428780 2740 get_option(&str, &slub_min_order);
81819f0f
CL
2741
2742 return 1;
2743}
2744
2745__setup("slub_min_order=", setup_slub_min_order);
2746
2747static int __init setup_slub_max_order(char *str)
2748{
06428780 2749 get_option(&str, &slub_max_order);
818cf590 2750 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
2751
2752 return 1;
2753}
2754
2755__setup("slub_max_order=", setup_slub_max_order);
2756
2757static int __init setup_slub_min_objects(char *str)
2758{
06428780 2759 get_option(&str, &slub_min_objects);
81819f0f
CL
2760
2761 return 1;
2762}
2763
2764__setup("slub_min_objects=", setup_slub_min_objects);
2765
2766static int __init setup_slub_nomerge(char *str)
2767{
2768 slub_nomerge = 1;
2769 return 1;
2770}
2771
2772__setup("slub_nomerge", setup_slub_nomerge);
2773
51df1142
CL
2774static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2775 int size, unsigned int flags)
81819f0f 2776{
51df1142
CL
2777 struct kmem_cache *s;
2778
2779 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2780
83b519e8
PE
2781 /*
2782 * This function is called with IRQs disabled during early-boot on
2783 * single CPU so there's no need to take slub_lock here.
2784 */
55136592 2785 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 2786 flags, NULL))
81819f0f
CL
2787 goto panic;
2788
2789 list_add(&s->list, &slab_caches);
51df1142 2790 return s;
81819f0f
CL
2791
2792panic:
2793 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 2794 return NULL;
81819f0f
CL
2795}
2796
f1b26339
CL
2797/*
2798 * Conversion table for small slabs sizes / 8 to the index in the
2799 * kmalloc array. This is necessary for slabs < 192 since we have non power
2800 * of two cache sizes there. The size of larger slabs can be determined using
2801 * fls.
2802 */
2803static s8 size_index[24] = {
2804 3, /* 8 */
2805 4, /* 16 */
2806 5, /* 24 */
2807 5, /* 32 */
2808 6, /* 40 */
2809 6, /* 48 */
2810 6, /* 56 */
2811 6, /* 64 */
2812 1, /* 72 */
2813 1, /* 80 */
2814 1, /* 88 */
2815 1, /* 96 */
2816 7, /* 104 */
2817 7, /* 112 */
2818 7, /* 120 */
2819 7, /* 128 */
2820 2, /* 136 */
2821 2, /* 144 */
2822 2, /* 152 */
2823 2, /* 160 */
2824 2, /* 168 */
2825 2, /* 176 */
2826 2, /* 184 */
2827 2 /* 192 */
2828};
2829
acdfcd04
AK
2830static inline int size_index_elem(size_t bytes)
2831{
2832 return (bytes - 1) / 8;
2833}
2834
81819f0f
CL
2835static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2836{
f1b26339 2837 int index;
81819f0f 2838
f1b26339
CL
2839 if (size <= 192) {
2840 if (!size)
2841 return ZERO_SIZE_PTR;
81819f0f 2842
acdfcd04 2843 index = size_index[size_index_elem(size)];
aadb4bc4 2844 } else
f1b26339 2845 index = fls(size - 1);
81819f0f
CL
2846
2847#ifdef CONFIG_ZONE_DMA
f1b26339 2848 if (unlikely((flags & SLUB_DMA)))
51df1142 2849 return kmalloc_dma_caches[index];
f1b26339 2850
81819f0f 2851#endif
51df1142 2852 return kmalloc_caches[index];
81819f0f
CL
2853}
2854
2855void *__kmalloc(size_t size, gfp_t flags)
2856{
aadb4bc4 2857 struct kmem_cache *s;
5b882be4 2858 void *ret;
81819f0f 2859
ffadd4d0 2860 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 2861 return kmalloc_large(size, flags);
aadb4bc4
CL
2862
2863 s = get_slab(size, flags);
2864
2865 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2866 return s;
2867
2154a336 2868 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2869
ca2b84cb 2870 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
2871
2872 return ret;
81819f0f
CL
2873}
2874EXPORT_SYMBOL(__kmalloc);
2875
5d1f57e4 2876#ifdef CONFIG_NUMA
f619cfe1
CL
2877static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2878{
b1eeab67 2879 struct page *page;
e4f7c0b4 2880 void *ptr = NULL;
f619cfe1 2881
b1eeab67
VN
2882 flags |= __GFP_COMP | __GFP_NOTRACK;
2883 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 2884 if (page)
e4f7c0b4
CM
2885 ptr = page_address(page);
2886
2887 kmemleak_alloc(ptr, size, 1, flags);
2888 return ptr;
f619cfe1
CL
2889}
2890
81819f0f
CL
2891void *__kmalloc_node(size_t size, gfp_t flags, int node)
2892{
aadb4bc4 2893 struct kmem_cache *s;
5b882be4 2894 void *ret;
81819f0f 2895
057685cf 2896 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
2897 ret = kmalloc_large_node(size, flags, node);
2898
ca2b84cb
EGM
2899 trace_kmalloc_node(_RET_IP_, ret,
2900 size, PAGE_SIZE << get_order(size),
2901 flags, node);
5b882be4
EGM
2902
2903 return ret;
2904 }
aadb4bc4
CL
2905
2906 s = get_slab(size, flags);
2907
2908 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2909 return s;
2910
5b882be4
EGM
2911 ret = slab_alloc(s, flags, node, _RET_IP_);
2912
ca2b84cb 2913 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
2914
2915 return ret;
81819f0f
CL
2916}
2917EXPORT_SYMBOL(__kmalloc_node);
2918#endif
2919
2920size_t ksize(const void *object)
2921{
272c1d21 2922 struct page *page;
81819f0f 2923
ef8b4520 2924 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2925 return 0;
2926
294a80a8 2927 page = virt_to_head_page(object);
294a80a8 2928
76994412
PE
2929 if (unlikely(!PageSlab(page))) {
2930 WARN_ON(!PageCompound(page));
294a80a8 2931 return PAGE_SIZE << compound_order(page);
76994412 2932 }
81819f0f 2933
b3d41885 2934 return slab_ksize(page->slab);
81819f0f 2935}
b1aabecd 2936EXPORT_SYMBOL(ksize);
81819f0f
CL
2937
2938void kfree(const void *x)
2939{
81819f0f 2940 struct page *page;
5bb983b0 2941 void *object = (void *)x;
81819f0f 2942
2121db74
PE
2943 trace_kfree(_RET_IP_, x);
2944
2408c550 2945 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2946 return;
2947
b49af68f 2948 page = virt_to_head_page(x);
aadb4bc4 2949 if (unlikely(!PageSlab(page))) {
0937502a 2950 BUG_ON(!PageCompound(page));
e4f7c0b4 2951 kmemleak_free(x);
aadb4bc4
CL
2952 put_page(page);
2953 return;
2954 }
ce71e27c 2955 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
2956}
2957EXPORT_SYMBOL(kfree);
2958
2086d26a 2959/*
672bba3a
CL
2960 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2961 * the remaining slabs by the number of items in use. The slabs with the
2962 * most items in use come first. New allocations will then fill those up
2963 * and thus they can be removed from the partial lists.
2964 *
2965 * The slabs with the least items are placed last. This results in them
2966 * being allocated from last increasing the chance that the last objects
2967 * are freed in them.
2086d26a
CL
2968 */
2969int kmem_cache_shrink(struct kmem_cache *s)
2970{
2971 int node;
2972 int i;
2973 struct kmem_cache_node *n;
2974 struct page *page;
2975 struct page *t;
205ab99d 2976 int objects = oo_objects(s->max);
2086d26a 2977 struct list_head *slabs_by_inuse =
834f3d11 2978 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
2979 unsigned long flags;
2980
2981 if (!slabs_by_inuse)
2982 return -ENOMEM;
2983
2984 flush_all(s);
f64dc58c 2985 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
2986 n = get_node(s, node);
2987
2988 if (!n->nr_partial)
2989 continue;
2990
834f3d11 2991 for (i = 0; i < objects; i++)
2086d26a
CL
2992 INIT_LIST_HEAD(slabs_by_inuse + i);
2993
2994 spin_lock_irqsave(&n->list_lock, flags);
2995
2996 /*
672bba3a 2997 * Build lists indexed by the items in use in each slab.
2086d26a 2998 *
672bba3a
CL
2999 * Note that concurrent frees may occur while we hold the
3000 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3001 */
3002 list_for_each_entry_safe(page, t, &n->partial, lru) {
3003 if (!page->inuse && slab_trylock(page)) {
3004 /*
3005 * Must hold slab lock here because slab_free
3006 * may have freed the last object and be
3007 * waiting to release the slab.
3008 */
62e346a8 3009 __remove_partial(n, page);
2086d26a
CL
3010 slab_unlock(page);
3011 discard_slab(s, page);
3012 } else {
fcda3d89
CL
3013 list_move(&page->lru,
3014 slabs_by_inuse + page->inuse);
2086d26a
CL
3015 }
3016 }
3017
2086d26a 3018 /*
672bba3a
CL
3019 * Rebuild the partial list with the slabs filled up most
3020 * first and the least used slabs at the end.
2086d26a 3021 */
834f3d11 3022 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
3023 list_splice(slabs_by_inuse + i, n->partial.prev);
3024
2086d26a
CL
3025 spin_unlock_irqrestore(&n->list_lock, flags);
3026 }
3027
3028 kfree(slabs_by_inuse);
3029 return 0;
3030}
3031EXPORT_SYMBOL(kmem_cache_shrink);
3032
92a5bbc1 3033#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
3034static int slab_mem_going_offline_callback(void *arg)
3035{
3036 struct kmem_cache *s;
3037
3038 down_read(&slub_lock);
3039 list_for_each_entry(s, &slab_caches, list)
3040 kmem_cache_shrink(s);
3041 up_read(&slub_lock);
3042
3043 return 0;
3044}
3045
3046static void slab_mem_offline_callback(void *arg)
3047{
3048 struct kmem_cache_node *n;
3049 struct kmem_cache *s;
3050 struct memory_notify *marg = arg;
3051 int offline_node;
3052
3053 offline_node = marg->status_change_nid;
3054
3055 /*
3056 * If the node still has available memory. we need kmem_cache_node
3057 * for it yet.
3058 */
3059 if (offline_node < 0)
3060 return;
3061
3062 down_read(&slub_lock);
3063 list_for_each_entry(s, &slab_caches, list) {
3064 n = get_node(s, offline_node);
3065 if (n) {
3066 /*
3067 * if n->nr_slabs > 0, slabs still exist on the node
3068 * that is going down. We were unable to free them,
c9404c9c 3069 * and offline_pages() function shouldn't call this
b9049e23
YG
3070 * callback. So, we must fail.
3071 */
0f389ec6 3072 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3073
3074 s->node[offline_node] = NULL;
8de66a0c 3075 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3076 }
3077 }
3078 up_read(&slub_lock);
3079}
3080
3081static int slab_mem_going_online_callback(void *arg)
3082{
3083 struct kmem_cache_node *n;
3084 struct kmem_cache *s;
3085 struct memory_notify *marg = arg;
3086 int nid = marg->status_change_nid;
3087 int ret = 0;
3088
3089 /*
3090 * If the node's memory is already available, then kmem_cache_node is
3091 * already created. Nothing to do.
3092 */
3093 if (nid < 0)
3094 return 0;
3095
3096 /*
0121c619 3097 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3098 * allocate a kmem_cache_node structure in order to bring the node
3099 * online.
3100 */
3101 down_read(&slub_lock);
3102 list_for_each_entry(s, &slab_caches, list) {
3103 /*
3104 * XXX: kmem_cache_alloc_node will fallback to other nodes
3105 * since memory is not yet available from the node that
3106 * is brought up.
3107 */
8de66a0c 3108 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3109 if (!n) {
3110 ret = -ENOMEM;
3111 goto out;
3112 }
5595cffc 3113 init_kmem_cache_node(n, s);
b9049e23
YG
3114 s->node[nid] = n;
3115 }
3116out:
3117 up_read(&slub_lock);
3118 return ret;
3119}
3120
3121static int slab_memory_callback(struct notifier_block *self,
3122 unsigned long action, void *arg)
3123{
3124 int ret = 0;
3125
3126 switch (action) {
3127 case MEM_GOING_ONLINE:
3128 ret = slab_mem_going_online_callback(arg);
3129 break;
3130 case MEM_GOING_OFFLINE:
3131 ret = slab_mem_going_offline_callback(arg);
3132 break;
3133 case MEM_OFFLINE:
3134 case MEM_CANCEL_ONLINE:
3135 slab_mem_offline_callback(arg);
3136 break;
3137 case MEM_ONLINE:
3138 case MEM_CANCEL_OFFLINE:
3139 break;
3140 }
dc19f9db
KH
3141 if (ret)
3142 ret = notifier_from_errno(ret);
3143 else
3144 ret = NOTIFY_OK;
b9049e23
YG
3145 return ret;
3146}
3147
3148#endif /* CONFIG_MEMORY_HOTPLUG */
3149
81819f0f
CL
3150/********************************************************************
3151 * Basic setup of slabs
3152 *******************************************************************/
3153
51df1142
CL
3154/*
3155 * Used for early kmem_cache structures that were allocated using
3156 * the page allocator
3157 */
3158
3159static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3160{
3161 int node;
3162
3163 list_add(&s->list, &slab_caches);
3164 s->refcount = -1;
3165
3166 for_each_node_state(node, N_NORMAL_MEMORY) {
3167 struct kmem_cache_node *n = get_node(s, node);
3168 struct page *p;
3169
3170 if (n) {
3171 list_for_each_entry(p, &n->partial, lru)
3172 p->slab = s;
3173
607bf324 3174#ifdef CONFIG_SLUB_DEBUG
51df1142
CL
3175 list_for_each_entry(p, &n->full, lru)
3176 p->slab = s;
3177#endif
3178 }
3179 }
3180}
3181
81819f0f
CL
3182void __init kmem_cache_init(void)
3183{
3184 int i;
4b356be0 3185 int caches = 0;
51df1142
CL
3186 struct kmem_cache *temp_kmem_cache;
3187 int order;
51df1142
CL
3188 struct kmem_cache *temp_kmem_cache_node;
3189 unsigned long kmalloc_size;
3190
3191 kmem_size = offsetof(struct kmem_cache, node) +
3192 nr_node_ids * sizeof(struct kmem_cache_node *);
3193
3194 /* Allocate two kmem_caches from the page allocator */
3195 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3196 order = get_order(2 * kmalloc_size);
3197 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3198
81819f0f
CL
3199 /*
3200 * Must first have the slab cache available for the allocations of the
672bba3a 3201 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3202 * kmem_cache_open for slab_state == DOWN.
3203 */
51df1142
CL
3204 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3205
3206 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3207 sizeof(struct kmem_cache_node),
3208 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3209
0c40ba4f 3210 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3211
3212 /* Able to allocate the per node structures */
3213 slab_state = PARTIAL;
3214
51df1142
CL
3215 temp_kmem_cache = kmem_cache;
3216 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3217 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3218 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3219 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3220
51df1142
CL
3221 /*
3222 * Allocate kmem_cache_node properly from the kmem_cache slab.
3223 * kmem_cache_node is separately allocated so no need to
3224 * update any list pointers.
3225 */
3226 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3227
51df1142
CL
3228 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3229 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3230
3231 kmem_cache_bootstrap_fixup(kmem_cache_node);
3232
3233 caches++;
51df1142
CL
3234 kmem_cache_bootstrap_fixup(kmem_cache);
3235 caches++;
3236 /* Free temporary boot structure */
3237 free_pages((unsigned long)temp_kmem_cache, order);
3238
3239 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3240
3241 /*
3242 * Patch up the size_index table if we have strange large alignment
3243 * requirements for the kmalloc array. This is only the case for
6446faa2 3244 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3245 *
3246 * Largest permitted alignment is 256 bytes due to the way we
3247 * handle the index determination for the smaller caches.
3248 *
3249 * Make sure that nothing crazy happens if someone starts tinkering
3250 * around with ARCH_KMALLOC_MINALIGN
3251 */
3252 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3253 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3254
acdfcd04
AK
3255 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3256 int elem = size_index_elem(i);
3257 if (elem >= ARRAY_SIZE(size_index))
3258 break;
3259 size_index[elem] = KMALLOC_SHIFT_LOW;
3260 }
f1b26339 3261
acdfcd04
AK
3262 if (KMALLOC_MIN_SIZE == 64) {
3263 /*
3264 * The 96 byte size cache is not used if the alignment
3265 * is 64 byte.
3266 */
3267 for (i = 64 + 8; i <= 96; i += 8)
3268 size_index[size_index_elem(i)] = 7;
3269 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3270 /*
3271 * The 192 byte sized cache is not used if the alignment
3272 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3273 * instead.
3274 */
3275 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3276 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3277 }
3278
51df1142
CL
3279 /* Caches that are not of the two-to-the-power-of size */
3280 if (KMALLOC_MIN_SIZE <= 32) {
3281 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3282 caches++;
3283 }
3284
3285 if (KMALLOC_MIN_SIZE <= 64) {
3286 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3287 caches++;
3288 }
3289
3290 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3291 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3292 caches++;
3293 }
3294
81819f0f
CL
3295 slab_state = UP;
3296
3297 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3298 if (KMALLOC_MIN_SIZE <= 32) {
3299 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3300 BUG_ON(!kmalloc_caches[1]->name);
3301 }
3302
3303 if (KMALLOC_MIN_SIZE <= 64) {
3304 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3305 BUG_ON(!kmalloc_caches[2]->name);
3306 }
3307
d7278bd7
CL
3308 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3309 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3310
3311 BUG_ON(!s);
51df1142 3312 kmalloc_caches[i]->name = s;
d7278bd7 3313 }
81819f0f
CL
3314
3315#ifdef CONFIG_SMP
3316 register_cpu_notifier(&slab_notifier);
9dfc6e68 3317#endif
81819f0f 3318
55136592 3319#ifdef CONFIG_ZONE_DMA
51df1142
CL
3320 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3321 struct kmem_cache *s = kmalloc_caches[i];
55136592 3322
51df1142 3323 if (s && s->size) {
55136592
CL
3324 char *name = kasprintf(GFP_NOWAIT,
3325 "dma-kmalloc-%d", s->objsize);
3326
3327 BUG_ON(!name);
51df1142
CL
3328 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3329 s->objsize, SLAB_CACHE_DMA);
55136592
CL
3330 }
3331 }
3332#endif
3adbefee
IM
3333 printk(KERN_INFO
3334 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3335 " CPUs=%d, Nodes=%d\n",
3336 caches, cache_line_size(),
81819f0f
CL
3337 slub_min_order, slub_max_order, slub_min_objects,
3338 nr_cpu_ids, nr_node_ids);
3339}
3340
7e85ee0c
PE
3341void __init kmem_cache_init_late(void)
3342{
7e85ee0c
PE
3343}
3344
81819f0f
CL
3345/*
3346 * Find a mergeable slab cache
3347 */
3348static int slab_unmergeable(struct kmem_cache *s)
3349{
3350 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3351 return 1;
3352
c59def9f 3353 if (s->ctor)
81819f0f
CL
3354 return 1;
3355
8ffa6875
CL
3356 /*
3357 * We may have set a slab to be unmergeable during bootstrap.
3358 */
3359 if (s->refcount < 0)
3360 return 1;
3361
81819f0f
CL
3362 return 0;
3363}
3364
3365static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3366 size_t align, unsigned long flags, const char *name,
51cc5068 3367 void (*ctor)(void *))
81819f0f 3368{
5b95a4ac 3369 struct kmem_cache *s;
81819f0f
CL
3370
3371 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3372 return NULL;
3373
c59def9f 3374 if (ctor)
81819f0f
CL
3375 return NULL;
3376
3377 size = ALIGN(size, sizeof(void *));
3378 align = calculate_alignment(flags, align, size);
3379 size = ALIGN(size, align);
ba0268a8 3380 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3381
5b95a4ac 3382 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3383 if (slab_unmergeable(s))
3384 continue;
3385
3386 if (size > s->size)
3387 continue;
3388
ba0268a8 3389 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3390 continue;
3391 /*
3392 * Check if alignment is compatible.
3393 * Courtesy of Adrian Drzewiecki
3394 */
06428780 3395 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3396 continue;
3397
3398 if (s->size - size >= sizeof(void *))
3399 continue;
3400
3401 return s;
3402 }
3403 return NULL;
3404}
3405
3406struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3407 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3408{
3409 struct kmem_cache *s;
84c1cf62 3410 char *n;
81819f0f 3411
fe1ff49d
BH
3412 if (WARN_ON(!name))
3413 return NULL;
3414
81819f0f 3415 down_write(&slub_lock);
ba0268a8 3416 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3417 if (s) {
3418 s->refcount++;
3419 /*
3420 * Adjust the object sizes so that we clear
3421 * the complete object on kzalloc.
3422 */
3423 s->objsize = max(s->objsize, (int)size);
3424 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3425
7b8f3b66 3426 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3427 s->refcount--;
81819f0f 3428 goto err;
7b8f3b66 3429 }
2bce6485 3430 up_write(&slub_lock);
a0e1d1be
CL
3431 return s;
3432 }
6446faa2 3433
84c1cf62
PE
3434 n = kstrdup(name, GFP_KERNEL);
3435 if (!n)
3436 goto err;
3437
a0e1d1be
CL
3438 s = kmalloc(kmem_size, GFP_KERNEL);
3439 if (s) {
84c1cf62 3440 if (kmem_cache_open(s, n,
c59def9f 3441 size, align, flags, ctor)) {
81819f0f 3442 list_add(&s->list, &slab_caches);
7b8f3b66 3443 if (sysfs_slab_add(s)) {
7b8f3b66 3444 list_del(&s->list);
84c1cf62 3445 kfree(n);
7b8f3b66 3446 kfree(s);
a0e1d1be 3447 goto err;
7b8f3b66 3448 }
2bce6485 3449 up_write(&slub_lock);
a0e1d1be
CL
3450 return s;
3451 }
84c1cf62 3452 kfree(n);
a0e1d1be 3453 kfree(s);
81819f0f 3454 }
68cee4f1 3455err:
81819f0f 3456 up_write(&slub_lock);
81819f0f 3457
81819f0f
CL
3458 if (flags & SLAB_PANIC)
3459 panic("Cannot create slabcache %s\n", name);
3460 else
3461 s = NULL;
3462 return s;
3463}
3464EXPORT_SYMBOL(kmem_cache_create);
3465
81819f0f 3466#ifdef CONFIG_SMP
81819f0f 3467/*
672bba3a
CL
3468 * Use the cpu notifier to insure that the cpu slabs are flushed when
3469 * necessary.
81819f0f
CL
3470 */
3471static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3472 unsigned long action, void *hcpu)
3473{
3474 long cpu = (long)hcpu;
5b95a4ac
CL
3475 struct kmem_cache *s;
3476 unsigned long flags;
81819f0f
CL
3477
3478 switch (action) {
3479 case CPU_UP_CANCELED:
8bb78442 3480 case CPU_UP_CANCELED_FROZEN:
81819f0f 3481 case CPU_DEAD:
8bb78442 3482 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3483 down_read(&slub_lock);
3484 list_for_each_entry(s, &slab_caches, list) {
3485 local_irq_save(flags);
3486 __flush_cpu_slab(s, cpu);
3487 local_irq_restore(flags);
3488 }
3489 up_read(&slub_lock);
81819f0f
CL
3490 break;
3491 default:
3492 break;
3493 }
3494 return NOTIFY_OK;
3495}
3496
06428780 3497static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3498 .notifier_call = slab_cpuup_callback
06428780 3499};
81819f0f
CL
3500
3501#endif
3502
ce71e27c 3503void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3504{
aadb4bc4 3505 struct kmem_cache *s;
94b528d0 3506 void *ret;
aadb4bc4 3507
ffadd4d0 3508 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3509 return kmalloc_large(size, gfpflags);
3510
aadb4bc4 3511 s = get_slab(size, gfpflags);
81819f0f 3512
2408c550 3513 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3514 return s;
81819f0f 3515
2154a336 3516 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0 3517
25985edc 3518 /* Honor the call site pointer we received. */
ca2b84cb 3519 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3520
3521 return ret;
81819f0f
CL
3522}
3523
5d1f57e4 3524#ifdef CONFIG_NUMA
81819f0f 3525void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3526 int node, unsigned long caller)
81819f0f 3527{
aadb4bc4 3528 struct kmem_cache *s;
94b528d0 3529 void *ret;
aadb4bc4 3530
d3e14aa3
XF
3531 if (unlikely(size > SLUB_MAX_SIZE)) {
3532 ret = kmalloc_large_node(size, gfpflags, node);
3533
3534 trace_kmalloc_node(caller, ret,
3535 size, PAGE_SIZE << get_order(size),
3536 gfpflags, node);
3537
3538 return ret;
3539 }
eada35ef 3540
aadb4bc4 3541 s = get_slab(size, gfpflags);
81819f0f 3542
2408c550 3543 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3544 return s;
81819f0f 3545
94b528d0
EGM
3546 ret = slab_alloc(s, gfpflags, node, caller);
3547
25985edc 3548 /* Honor the call site pointer we received. */
ca2b84cb 3549 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3550
3551 return ret;
81819f0f 3552}
5d1f57e4 3553#endif
81819f0f 3554
ab4d5ed5 3555#ifdef CONFIG_SYSFS
205ab99d
CL
3556static int count_inuse(struct page *page)
3557{
3558 return page->inuse;
3559}
3560
3561static int count_total(struct page *page)
3562{
3563 return page->objects;
3564}
ab4d5ed5 3565#endif
205ab99d 3566
ab4d5ed5 3567#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3568static int validate_slab(struct kmem_cache *s, struct page *page,
3569 unsigned long *map)
53e15af0
CL
3570{
3571 void *p;
a973e9dd 3572 void *addr = page_address(page);
53e15af0
CL
3573
3574 if (!check_slab(s, page) ||
3575 !on_freelist(s, page, NULL))
3576 return 0;
3577
3578 /* Now we know that a valid freelist exists */
39b26464 3579 bitmap_zero(map, page->objects);
53e15af0 3580
5f80b13a
CL
3581 get_map(s, page, map);
3582 for_each_object(p, s, addr, page->objects) {
3583 if (test_bit(slab_index(p, s, addr), map))
3584 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3585 return 0;
53e15af0
CL
3586 }
3587
224a88be 3588 for_each_object(p, s, addr, page->objects)
7656c72b 3589 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3590 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3591 return 0;
3592 return 1;
3593}
3594
434e245d
CL
3595static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3596 unsigned long *map)
53e15af0
CL
3597{
3598 if (slab_trylock(page)) {
434e245d 3599 validate_slab(s, page, map);
53e15af0
CL
3600 slab_unlock(page);
3601 } else
3602 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3603 s->name, page);
53e15af0
CL
3604}
3605
434e245d
CL
3606static int validate_slab_node(struct kmem_cache *s,
3607 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3608{
3609 unsigned long count = 0;
3610 struct page *page;
3611 unsigned long flags;
3612
3613 spin_lock_irqsave(&n->list_lock, flags);
3614
3615 list_for_each_entry(page, &n->partial, lru) {
434e245d 3616 validate_slab_slab(s, page, map);
53e15af0
CL
3617 count++;
3618 }
3619 if (count != n->nr_partial)
3620 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3621 "counter=%ld\n", s->name, count, n->nr_partial);
3622
3623 if (!(s->flags & SLAB_STORE_USER))
3624 goto out;
3625
3626 list_for_each_entry(page, &n->full, lru) {
434e245d 3627 validate_slab_slab(s, page, map);
53e15af0
CL
3628 count++;
3629 }
3630 if (count != atomic_long_read(&n->nr_slabs))
3631 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3632 "counter=%ld\n", s->name, count,
3633 atomic_long_read(&n->nr_slabs));
3634
3635out:
3636 spin_unlock_irqrestore(&n->list_lock, flags);
3637 return count;
3638}
3639
434e245d 3640static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3641{
3642 int node;
3643 unsigned long count = 0;
205ab99d 3644 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3645 sizeof(unsigned long), GFP_KERNEL);
3646
3647 if (!map)
3648 return -ENOMEM;
53e15af0
CL
3649
3650 flush_all(s);
f64dc58c 3651 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3652 struct kmem_cache_node *n = get_node(s, node);
3653
434e245d 3654 count += validate_slab_node(s, n, map);
53e15af0 3655 }
434e245d 3656 kfree(map);
53e15af0
CL
3657 return count;
3658}
88a420e4 3659/*
672bba3a 3660 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3661 * and freed.
3662 */
3663
3664struct location {
3665 unsigned long count;
ce71e27c 3666 unsigned long addr;
45edfa58
CL
3667 long long sum_time;
3668 long min_time;
3669 long max_time;
3670 long min_pid;
3671 long max_pid;
174596a0 3672 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3673 nodemask_t nodes;
88a420e4
CL
3674};
3675
3676struct loc_track {
3677 unsigned long max;
3678 unsigned long count;
3679 struct location *loc;
3680};
3681
3682static void free_loc_track(struct loc_track *t)
3683{
3684 if (t->max)
3685 free_pages((unsigned long)t->loc,
3686 get_order(sizeof(struct location) * t->max));
3687}
3688
68dff6a9 3689static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3690{
3691 struct location *l;
3692 int order;
3693
88a420e4
CL
3694 order = get_order(sizeof(struct location) * max);
3695
68dff6a9 3696 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3697 if (!l)
3698 return 0;
3699
3700 if (t->count) {
3701 memcpy(l, t->loc, sizeof(struct location) * t->count);
3702 free_loc_track(t);
3703 }
3704 t->max = max;
3705 t->loc = l;
3706 return 1;
3707}
3708
3709static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3710 const struct track *track)
88a420e4
CL
3711{
3712 long start, end, pos;
3713 struct location *l;
ce71e27c 3714 unsigned long caddr;
45edfa58 3715 unsigned long age = jiffies - track->when;
88a420e4
CL
3716
3717 start = -1;
3718 end = t->count;
3719
3720 for ( ; ; ) {
3721 pos = start + (end - start + 1) / 2;
3722
3723 /*
3724 * There is nothing at "end". If we end up there
3725 * we need to add something to before end.
3726 */
3727 if (pos == end)
3728 break;
3729
3730 caddr = t->loc[pos].addr;
45edfa58
CL
3731 if (track->addr == caddr) {
3732
3733 l = &t->loc[pos];
3734 l->count++;
3735 if (track->when) {
3736 l->sum_time += age;
3737 if (age < l->min_time)
3738 l->min_time = age;
3739 if (age > l->max_time)
3740 l->max_time = age;
3741
3742 if (track->pid < l->min_pid)
3743 l->min_pid = track->pid;
3744 if (track->pid > l->max_pid)
3745 l->max_pid = track->pid;
3746
174596a0
RR
3747 cpumask_set_cpu(track->cpu,
3748 to_cpumask(l->cpus));
45edfa58
CL
3749 }
3750 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3751 return 1;
3752 }
3753
45edfa58 3754 if (track->addr < caddr)
88a420e4
CL
3755 end = pos;
3756 else
3757 start = pos;
3758 }
3759
3760 /*
672bba3a 3761 * Not found. Insert new tracking element.
88a420e4 3762 */
68dff6a9 3763 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3764 return 0;
3765
3766 l = t->loc + pos;
3767 if (pos < t->count)
3768 memmove(l + 1, l,
3769 (t->count - pos) * sizeof(struct location));
3770 t->count++;
3771 l->count = 1;
45edfa58
CL
3772 l->addr = track->addr;
3773 l->sum_time = age;
3774 l->min_time = age;
3775 l->max_time = age;
3776 l->min_pid = track->pid;
3777 l->max_pid = track->pid;
174596a0
RR
3778 cpumask_clear(to_cpumask(l->cpus));
3779 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
3780 nodes_clear(l->nodes);
3781 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3782 return 1;
3783}
3784
3785static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 3786 struct page *page, enum track_item alloc,
a5dd5c11 3787 unsigned long *map)
88a420e4 3788{
a973e9dd 3789 void *addr = page_address(page);
88a420e4
CL
3790 void *p;
3791
39b26464 3792 bitmap_zero(map, page->objects);
5f80b13a 3793 get_map(s, page, map);
88a420e4 3794
224a88be 3795 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3796 if (!test_bit(slab_index(p, s, addr), map))
3797 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3798}
3799
3800static int list_locations(struct kmem_cache *s, char *buf,
3801 enum track_item alloc)
3802{
e374d483 3803 int len = 0;
88a420e4 3804 unsigned long i;
68dff6a9 3805 struct loc_track t = { 0, 0, NULL };
88a420e4 3806 int node;
bbd7d57b
ED
3807 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3808 sizeof(unsigned long), GFP_KERNEL);
88a420e4 3809
bbd7d57b
ED
3810 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3811 GFP_TEMPORARY)) {
3812 kfree(map);
68dff6a9 3813 return sprintf(buf, "Out of memory\n");
bbd7d57b 3814 }
88a420e4
CL
3815 /* Push back cpu slabs */
3816 flush_all(s);
3817
f64dc58c 3818 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3819 struct kmem_cache_node *n = get_node(s, node);
3820 unsigned long flags;
3821 struct page *page;
3822
9e86943b 3823 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3824 continue;
3825
3826 spin_lock_irqsave(&n->list_lock, flags);
3827 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 3828 process_slab(&t, s, page, alloc, map);
88a420e4 3829 list_for_each_entry(page, &n->full, lru)
bbd7d57b 3830 process_slab(&t, s, page, alloc, map);
88a420e4
CL
3831 spin_unlock_irqrestore(&n->list_lock, flags);
3832 }
3833
3834 for (i = 0; i < t.count; i++) {
45edfa58 3835 struct location *l = &t.loc[i];
88a420e4 3836
9c246247 3837 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 3838 break;
e374d483 3839 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3840
3841 if (l->addr)
62c70bce 3842 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 3843 else
e374d483 3844 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3845
3846 if (l->sum_time != l->min_time) {
e374d483 3847 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
3848 l->min_time,
3849 (long)div_u64(l->sum_time, l->count),
3850 l->max_time);
45edfa58 3851 } else
e374d483 3852 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3853 l->min_time);
3854
3855 if (l->min_pid != l->max_pid)
e374d483 3856 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3857 l->min_pid, l->max_pid);
3858 else
e374d483 3859 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3860 l->min_pid);
3861
174596a0
RR
3862 if (num_online_cpus() > 1 &&
3863 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
3864 len < PAGE_SIZE - 60) {
3865 len += sprintf(buf + len, " cpus=");
3866 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 3867 to_cpumask(l->cpus));
45edfa58
CL
3868 }
3869
62bc62a8 3870 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3871 len < PAGE_SIZE - 60) {
3872 len += sprintf(buf + len, " nodes=");
3873 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3874 l->nodes);
3875 }
3876
e374d483 3877 len += sprintf(buf + len, "\n");
88a420e4
CL
3878 }
3879
3880 free_loc_track(&t);
bbd7d57b 3881 kfree(map);
88a420e4 3882 if (!t.count)
e374d483
HH
3883 len += sprintf(buf, "No data\n");
3884 return len;
88a420e4 3885}
ab4d5ed5 3886#endif
88a420e4 3887
a5a84755
CL
3888#ifdef SLUB_RESILIENCY_TEST
3889static void resiliency_test(void)
3890{
3891 u8 *p;
3892
3893 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
3894
3895 printk(KERN_ERR "SLUB resiliency testing\n");
3896 printk(KERN_ERR "-----------------------\n");
3897 printk(KERN_ERR "A. Corruption after allocation\n");
3898
3899 p = kzalloc(16, GFP_KERNEL);
3900 p[16] = 0x12;
3901 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3902 " 0x12->0x%p\n\n", p + 16);
3903
3904 validate_slab_cache(kmalloc_caches[4]);
3905
3906 /* Hmmm... The next two are dangerous */
3907 p = kzalloc(32, GFP_KERNEL);
3908 p[32 + sizeof(void *)] = 0x34;
3909 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3910 " 0x34 -> -0x%p\n", p);
3911 printk(KERN_ERR
3912 "If allocated object is overwritten then not detectable\n\n");
3913
3914 validate_slab_cache(kmalloc_caches[5]);
3915 p = kzalloc(64, GFP_KERNEL);
3916 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3917 *p = 0x56;
3918 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3919 p);
3920 printk(KERN_ERR
3921 "If allocated object is overwritten then not detectable\n\n");
3922 validate_slab_cache(kmalloc_caches[6]);
3923
3924 printk(KERN_ERR "\nB. Corruption after free\n");
3925 p = kzalloc(128, GFP_KERNEL);
3926 kfree(p);
3927 *p = 0x78;
3928 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3929 validate_slab_cache(kmalloc_caches[7]);
3930
3931 p = kzalloc(256, GFP_KERNEL);
3932 kfree(p);
3933 p[50] = 0x9a;
3934 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3935 p);
3936 validate_slab_cache(kmalloc_caches[8]);
3937
3938 p = kzalloc(512, GFP_KERNEL);
3939 kfree(p);
3940 p[512] = 0xab;
3941 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3942 validate_slab_cache(kmalloc_caches[9]);
3943}
3944#else
3945#ifdef CONFIG_SYSFS
3946static void resiliency_test(void) {};
3947#endif
3948#endif
3949
ab4d5ed5 3950#ifdef CONFIG_SYSFS
81819f0f 3951enum slab_stat_type {
205ab99d
CL
3952 SL_ALL, /* All slabs */
3953 SL_PARTIAL, /* Only partially allocated slabs */
3954 SL_CPU, /* Only slabs used for cpu caches */
3955 SL_OBJECTS, /* Determine allocated objects not slabs */
3956 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
3957};
3958
205ab99d 3959#define SO_ALL (1 << SL_ALL)
81819f0f
CL
3960#define SO_PARTIAL (1 << SL_PARTIAL)
3961#define SO_CPU (1 << SL_CPU)
3962#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 3963#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 3964
62e5c4b4
CG
3965static ssize_t show_slab_objects(struct kmem_cache *s,
3966 char *buf, unsigned long flags)
81819f0f
CL
3967{
3968 unsigned long total = 0;
81819f0f
CL
3969 int node;
3970 int x;
3971 unsigned long *nodes;
3972 unsigned long *per_cpu;
3973
3974 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
3975 if (!nodes)
3976 return -ENOMEM;
81819f0f
CL
3977 per_cpu = nodes + nr_node_ids;
3978
205ab99d
CL
3979 if (flags & SO_CPU) {
3980 int cpu;
81819f0f 3981
205ab99d 3982 for_each_possible_cpu(cpu) {
9dfc6e68 3983 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
dfb4f096 3984
205ab99d
CL
3985 if (!c || c->node < 0)
3986 continue;
3987
3988 if (c->page) {
3989 if (flags & SO_TOTAL)
3990 x = c->page->objects;
3991 else if (flags & SO_OBJECTS)
3992 x = c->page->inuse;
81819f0f
CL
3993 else
3994 x = 1;
205ab99d 3995
81819f0f 3996 total += x;
205ab99d 3997 nodes[c->node] += x;
81819f0f 3998 }
205ab99d 3999 per_cpu[c->node]++;
81819f0f
CL
4000 }
4001 }
4002
04d94879 4003 lock_memory_hotplug();
ab4d5ed5 4004#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4005 if (flags & SO_ALL) {
4006 for_each_node_state(node, N_NORMAL_MEMORY) {
4007 struct kmem_cache_node *n = get_node(s, node);
4008
4009 if (flags & SO_TOTAL)
4010 x = atomic_long_read(&n->total_objects);
4011 else if (flags & SO_OBJECTS)
4012 x = atomic_long_read(&n->total_objects) -
4013 count_partial(n, count_free);
81819f0f 4014
81819f0f 4015 else
205ab99d 4016 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4017 total += x;
4018 nodes[node] += x;
4019 }
4020
ab4d5ed5
CL
4021 } else
4022#endif
4023 if (flags & SO_PARTIAL) {
205ab99d
CL
4024 for_each_node_state(node, N_NORMAL_MEMORY) {
4025 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4026
205ab99d
CL
4027 if (flags & SO_TOTAL)
4028 x = count_partial(n, count_total);
4029 else if (flags & SO_OBJECTS)
4030 x = count_partial(n, count_inuse);
81819f0f 4031 else
205ab99d 4032 x = n->nr_partial;
81819f0f
CL
4033 total += x;
4034 nodes[node] += x;
4035 }
4036 }
81819f0f
CL
4037 x = sprintf(buf, "%lu", total);
4038#ifdef CONFIG_NUMA
f64dc58c 4039 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4040 if (nodes[node])
4041 x += sprintf(buf + x, " N%d=%lu",
4042 node, nodes[node]);
4043#endif
04d94879 4044 unlock_memory_hotplug();
81819f0f
CL
4045 kfree(nodes);
4046 return x + sprintf(buf + x, "\n");
4047}
4048
ab4d5ed5 4049#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4050static int any_slab_objects(struct kmem_cache *s)
4051{
4052 int node;
81819f0f 4053
dfb4f096 4054 for_each_online_node(node) {
81819f0f
CL
4055 struct kmem_cache_node *n = get_node(s, node);
4056
dfb4f096
CL
4057 if (!n)
4058 continue;
4059
4ea33e2d 4060 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4061 return 1;
4062 }
4063 return 0;
4064}
ab4d5ed5 4065#endif
81819f0f
CL
4066
4067#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4068#define to_slab(n) container_of(n, struct kmem_cache, kobj);
4069
4070struct slab_attribute {
4071 struct attribute attr;
4072 ssize_t (*show)(struct kmem_cache *s, char *buf);
4073 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4074};
4075
4076#define SLAB_ATTR_RO(_name) \
4077 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4078
4079#define SLAB_ATTR(_name) \
4080 static struct slab_attribute _name##_attr = \
4081 __ATTR(_name, 0644, _name##_show, _name##_store)
4082
81819f0f
CL
4083static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4084{
4085 return sprintf(buf, "%d\n", s->size);
4086}
4087SLAB_ATTR_RO(slab_size);
4088
4089static ssize_t align_show(struct kmem_cache *s, char *buf)
4090{
4091 return sprintf(buf, "%d\n", s->align);
4092}
4093SLAB_ATTR_RO(align);
4094
4095static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4096{
4097 return sprintf(buf, "%d\n", s->objsize);
4098}
4099SLAB_ATTR_RO(object_size);
4100
4101static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4102{
834f3d11 4103 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4104}
4105SLAB_ATTR_RO(objs_per_slab);
4106
06b285dc
CL
4107static ssize_t order_store(struct kmem_cache *s,
4108 const char *buf, size_t length)
4109{
0121c619
CL
4110 unsigned long order;
4111 int err;
4112
4113 err = strict_strtoul(buf, 10, &order);
4114 if (err)
4115 return err;
06b285dc
CL
4116
4117 if (order > slub_max_order || order < slub_min_order)
4118 return -EINVAL;
4119
4120 calculate_sizes(s, order);
4121 return length;
4122}
4123
81819f0f
CL
4124static ssize_t order_show(struct kmem_cache *s, char *buf)
4125{
834f3d11 4126 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4127}
06b285dc 4128SLAB_ATTR(order);
81819f0f 4129
73d342b1
DR
4130static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4131{
4132 return sprintf(buf, "%lu\n", s->min_partial);
4133}
4134
4135static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4136 size_t length)
4137{
4138 unsigned long min;
4139 int err;
4140
4141 err = strict_strtoul(buf, 10, &min);
4142 if (err)
4143 return err;
4144
c0bdb232 4145 set_min_partial(s, min);
73d342b1
DR
4146 return length;
4147}
4148SLAB_ATTR(min_partial);
4149
81819f0f
CL
4150static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4151{
62c70bce
JP
4152 if (!s->ctor)
4153 return 0;
4154 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4155}
4156SLAB_ATTR_RO(ctor);
4157
81819f0f
CL
4158static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4159{
4160 return sprintf(buf, "%d\n", s->refcount - 1);
4161}
4162SLAB_ATTR_RO(aliases);
4163
81819f0f
CL
4164static ssize_t partial_show(struct kmem_cache *s, char *buf)
4165{
d9acf4b7 4166 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4167}
4168SLAB_ATTR_RO(partial);
4169
4170static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4171{
d9acf4b7 4172 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4173}
4174SLAB_ATTR_RO(cpu_slabs);
4175
4176static ssize_t objects_show(struct kmem_cache *s, char *buf)
4177{
205ab99d 4178 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4179}
4180SLAB_ATTR_RO(objects);
4181
205ab99d
CL
4182static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4183{
4184 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4185}
4186SLAB_ATTR_RO(objects_partial);
4187
a5a84755
CL
4188static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4189{
4190 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4191}
4192
4193static ssize_t reclaim_account_store(struct kmem_cache *s,
4194 const char *buf, size_t length)
4195{
4196 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4197 if (buf[0] == '1')
4198 s->flags |= SLAB_RECLAIM_ACCOUNT;
4199 return length;
4200}
4201SLAB_ATTR(reclaim_account);
4202
4203static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4204{
4205 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4206}
4207SLAB_ATTR_RO(hwcache_align);
4208
4209#ifdef CONFIG_ZONE_DMA
4210static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4211{
4212 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4213}
4214SLAB_ATTR_RO(cache_dma);
4215#endif
4216
4217static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4218{
4219 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4220}
4221SLAB_ATTR_RO(destroy_by_rcu);
4222
ab9a0f19
LJ
4223static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4224{
4225 return sprintf(buf, "%d\n", s->reserved);
4226}
4227SLAB_ATTR_RO(reserved);
4228
ab4d5ed5 4229#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4230static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4231{
4232 return show_slab_objects(s, buf, SO_ALL);
4233}
4234SLAB_ATTR_RO(slabs);
4235
205ab99d
CL
4236static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4237{
4238 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4239}
4240SLAB_ATTR_RO(total_objects);
4241
81819f0f
CL
4242static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4243{
4244 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4245}
4246
4247static ssize_t sanity_checks_store(struct kmem_cache *s,
4248 const char *buf, size_t length)
4249{
4250 s->flags &= ~SLAB_DEBUG_FREE;
4251 if (buf[0] == '1')
4252 s->flags |= SLAB_DEBUG_FREE;
4253 return length;
4254}
4255SLAB_ATTR(sanity_checks);
4256
4257static ssize_t trace_show(struct kmem_cache *s, char *buf)
4258{
4259 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4260}
4261
4262static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4263 size_t length)
4264{
4265 s->flags &= ~SLAB_TRACE;
4266 if (buf[0] == '1')
4267 s->flags |= SLAB_TRACE;
4268 return length;
4269}
4270SLAB_ATTR(trace);
4271
81819f0f
CL
4272static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4273{
4274 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4275}
4276
4277static ssize_t red_zone_store(struct kmem_cache *s,
4278 const char *buf, size_t length)
4279{
4280 if (any_slab_objects(s))
4281 return -EBUSY;
4282
4283 s->flags &= ~SLAB_RED_ZONE;
4284 if (buf[0] == '1')
4285 s->flags |= SLAB_RED_ZONE;
06b285dc 4286 calculate_sizes(s, -1);
81819f0f
CL
4287 return length;
4288}
4289SLAB_ATTR(red_zone);
4290
4291static ssize_t poison_show(struct kmem_cache *s, char *buf)
4292{
4293 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4294}
4295
4296static ssize_t poison_store(struct kmem_cache *s,
4297 const char *buf, size_t length)
4298{
4299 if (any_slab_objects(s))
4300 return -EBUSY;
4301
4302 s->flags &= ~SLAB_POISON;
4303 if (buf[0] == '1')
4304 s->flags |= SLAB_POISON;
06b285dc 4305 calculate_sizes(s, -1);
81819f0f
CL
4306 return length;
4307}
4308SLAB_ATTR(poison);
4309
4310static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4311{
4312 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4313}
4314
4315static ssize_t store_user_store(struct kmem_cache *s,
4316 const char *buf, size_t length)
4317{
4318 if (any_slab_objects(s))
4319 return -EBUSY;
4320
4321 s->flags &= ~SLAB_STORE_USER;
4322 if (buf[0] == '1')
4323 s->flags |= SLAB_STORE_USER;
06b285dc 4324 calculate_sizes(s, -1);
81819f0f
CL
4325 return length;
4326}
4327SLAB_ATTR(store_user);
4328
53e15af0
CL
4329static ssize_t validate_show(struct kmem_cache *s, char *buf)
4330{
4331 return 0;
4332}
4333
4334static ssize_t validate_store(struct kmem_cache *s,
4335 const char *buf, size_t length)
4336{
434e245d
CL
4337 int ret = -EINVAL;
4338
4339 if (buf[0] == '1') {
4340 ret = validate_slab_cache(s);
4341 if (ret >= 0)
4342 ret = length;
4343 }
4344 return ret;
53e15af0
CL
4345}
4346SLAB_ATTR(validate);
a5a84755
CL
4347
4348static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4349{
4350 if (!(s->flags & SLAB_STORE_USER))
4351 return -ENOSYS;
4352 return list_locations(s, buf, TRACK_ALLOC);
4353}
4354SLAB_ATTR_RO(alloc_calls);
4355
4356static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4357{
4358 if (!(s->flags & SLAB_STORE_USER))
4359 return -ENOSYS;
4360 return list_locations(s, buf, TRACK_FREE);
4361}
4362SLAB_ATTR_RO(free_calls);
4363#endif /* CONFIG_SLUB_DEBUG */
4364
4365#ifdef CONFIG_FAILSLAB
4366static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4367{
4368 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4369}
4370
4371static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4372 size_t length)
4373{
4374 s->flags &= ~SLAB_FAILSLAB;
4375 if (buf[0] == '1')
4376 s->flags |= SLAB_FAILSLAB;
4377 return length;
4378}
4379SLAB_ATTR(failslab);
ab4d5ed5 4380#endif
53e15af0 4381
2086d26a
CL
4382static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4383{
4384 return 0;
4385}
4386
4387static ssize_t shrink_store(struct kmem_cache *s,
4388 const char *buf, size_t length)
4389{
4390 if (buf[0] == '1') {
4391 int rc = kmem_cache_shrink(s);
4392
4393 if (rc)
4394 return rc;
4395 } else
4396 return -EINVAL;
4397 return length;
4398}
4399SLAB_ATTR(shrink);
4400
81819f0f 4401#ifdef CONFIG_NUMA
9824601e 4402static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4403{
9824601e 4404 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4405}
4406
9824601e 4407static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4408 const char *buf, size_t length)
4409{
0121c619
CL
4410 unsigned long ratio;
4411 int err;
4412
4413 err = strict_strtoul(buf, 10, &ratio);
4414 if (err)
4415 return err;
4416
e2cb96b7 4417 if (ratio <= 100)
0121c619 4418 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4419
81819f0f
CL
4420 return length;
4421}
9824601e 4422SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4423#endif
4424
8ff12cfc 4425#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4426static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4427{
4428 unsigned long sum = 0;
4429 int cpu;
4430 int len;
4431 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4432
4433 if (!data)
4434 return -ENOMEM;
4435
4436 for_each_online_cpu(cpu) {
9dfc6e68 4437 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4438
4439 data[cpu] = x;
4440 sum += x;
4441 }
4442
4443 len = sprintf(buf, "%lu", sum);
4444
50ef37b9 4445#ifdef CONFIG_SMP
8ff12cfc
CL
4446 for_each_online_cpu(cpu) {
4447 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4448 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4449 }
50ef37b9 4450#endif
8ff12cfc
CL
4451 kfree(data);
4452 return len + sprintf(buf + len, "\n");
4453}
4454
78eb00cc
DR
4455static void clear_stat(struct kmem_cache *s, enum stat_item si)
4456{
4457 int cpu;
4458
4459 for_each_online_cpu(cpu)
9dfc6e68 4460 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4461}
4462
8ff12cfc
CL
4463#define STAT_ATTR(si, text) \
4464static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4465{ \
4466 return show_stat(s, buf, si); \
4467} \
78eb00cc
DR
4468static ssize_t text##_store(struct kmem_cache *s, \
4469 const char *buf, size_t length) \
4470{ \
4471 if (buf[0] != '0') \
4472 return -EINVAL; \
4473 clear_stat(s, si); \
4474 return length; \
4475} \
4476SLAB_ATTR(text); \
8ff12cfc
CL
4477
4478STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4479STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4480STAT_ATTR(FREE_FASTPATH, free_fastpath);
4481STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4482STAT_ATTR(FREE_FROZEN, free_frozen);
4483STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4484STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4485STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4486STAT_ATTR(ALLOC_SLAB, alloc_slab);
4487STAT_ATTR(ALLOC_REFILL, alloc_refill);
4488STAT_ATTR(FREE_SLAB, free_slab);
4489STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4490STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4491STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4492STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4493STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4494STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
65c3376a 4495STAT_ATTR(ORDER_FALLBACK, order_fallback);
8ff12cfc
CL
4496#endif
4497
06428780 4498static struct attribute *slab_attrs[] = {
81819f0f
CL
4499 &slab_size_attr.attr,
4500 &object_size_attr.attr,
4501 &objs_per_slab_attr.attr,
4502 &order_attr.attr,
73d342b1 4503 &min_partial_attr.attr,
81819f0f 4504 &objects_attr.attr,
205ab99d 4505 &objects_partial_attr.attr,
81819f0f
CL
4506 &partial_attr.attr,
4507 &cpu_slabs_attr.attr,
4508 &ctor_attr.attr,
81819f0f
CL
4509 &aliases_attr.attr,
4510 &align_attr.attr,
81819f0f
CL
4511 &hwcache_align_attr.attr,
4512 &reclaim_account_attr.attr,
4513 &destroy_by_rcu_attr.attr,
a5a84755 4514 &shrink_attr.attr,
ab9a0f19 4515 &reserved_attr.attr,
ab4d5ed5 4516#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4517 &total_objects_attr.attr,
4518 &slabs_attr.attr,
4519 &sanity_checks_attr.attr,
4520 &trace_attr.attr,
81819f0f
CL
4521 &red_zone_attr.attr,
4522 &poison_attr.attr,
4523 &store_user_attr.attr,
53e15af0 4524 &validate_attr.attr,
88a420e4
CL
4525 &alloc_calls_attr.attr,
4526 &free_calls_attr.attr,
ab4d5ed5 4527#endif
81819f0f
CL
4528#ifdef CONFIG_ZONE_DMA
4529 &cache_dma_attr.attr,
4530#endif
4531#ifdef CONFIG_NUMA
9824601e 4532 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4533#endif
4534#ifdef CONFIG_SLUB_STATS
4535 &alloc_fastpath_attr.attr,
4536 &alloc_slowpath_attr.attr,
4537 &free_fastpath_attr.attr,
4538 &free_slowpath_attr.attr,
4539 &free_frozen_attr.attr,
4540 &free_add_partial_attr.attr,
4541 &free_remove_partial_attr.attr,
4542 &alloc_from_partial_attr.attr,
4543 &alloc_slab_attr.attr,
4544 &alloc_refill_attr.attr,
4545 &free_slab_attr.attr,
4546 &cpuslab_flush_attr.attr,
4547 &deactivate_full_attr.attr,
4548 &deactivate_empty_attr.attr,
4549 &deactivate_to_head_attr.attr,
4550 &deactivate_to_tail_attr.attr,
4551 &deactivate_remote_frees_attr.attr,
65c3376a 4552 &order_fallback_attr.attr,
81819f0f 4553#endif
4c13dd3b
DM
4554#ifdef CONFIG_FAILSLAB
4555 &failslab_attr.attr,
4556#endif
4557
81819f0f
CL
4558 NULL
4559};
4560
4561static struct attribute_group slab_attr_group = {
4562 .attrs = slab_attrs,
4563};
4564
4565static ssize_t slab_attr_show(struct kobject *kobj,
4566 struct attribute *attr,
4567 char *buf)
4568{
4569 struct slab_attribute *attribute;
4570 struct kmem_cache *s;
4571 int err;
4572
4573 attribute = to_slab_attr(attr);
4574 s = to_slab(kobj);
4575
4576 if (!attribute->show)
4577 return -EIO;
4578
4579 err = attribute->show(s, buf);
4580
4581 return err;
4582}
4583
4584static ssize_t slab_attr_store(struct kobject *kobj,
4585 struct attribute *attr,
4586 const char *buf, size_t len)
4587{
4588 struct slab_attribute *attribute;
4589 struct kmem_cache *s;
4590 int err;
4591
4592 attribute = to_slab_attr(attr);
4593 s = to_slab(kobj);
4594
4595 if (!attribute->store)
4596 return -EIO;
4597
4598 err = attribute->store(s, buf, len);
4599
4600 return err;
4601}
4602
151c602f
CL
4603static void kmem_cache_release(struct kobject *kobj)
4604{
4605 struct kmem_cache *s = to_slab(kobj);
4606
84c1cf62 4607 kfree(s->name);
151c602f
CL
4608 kfree(s);
4609}
4610
52cf25d0 4611static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
4612 .show = slab_attr_show,
4613 .store = slab_attr_store,
4614};
4615
4616static struct kobj_type slab_ktype = {
4617 .sysfs_ops = &slab_sysfs_ops,
151c602f 4618 .release = kmem_cache_release
81819f0f
CL
4619};
4620
4621static int uevent_filter(struct kset *kset, struct kobject *kobj)
4622{
4623 struct kobj_type *ktype = get_ktype(kobj);
4624
4625 if (ktype == &slab_ktype)
4626 return 1;
4627 return 0;
4628}
4629
9cd43611 4630static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
4631 .filter = uevent_filter,
4632};
4633
27c3a314 4634static struct kset *slab_kset;
81819f0f
CL
4635
4636#define ID_STR_LENGTH 64
4637
4638/* Create a unique string id for a slab cache:
6446faa2
CL
4639 *
4640 * Format :[flags-]size
81819f0f
CL
4641 */
4642static char *create_unique_id(struct kmem_cache *s)
4643{
4644 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4645 char *p = name;
4646
4647 BUG_ON(!name);
4648
4649 *p++ = ':';
4650 /*
4651 * First flags affecting slabcache operations. We will only
4652 * get here for aliasable slabs so we do not need to support
4653 * too many flags. The flags here must cover all flags that
4654 * are matched during merging to guarantee that the id is
4655 * unique.
4656 */
4657 if (s->flags & SLAB_CACHE_DMA)
4658 *p++ = 'd';
4659 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4660 *p++ = 'a';
4661 if (s->flags & SLAB_DEBUG_FREE)
4662 *p++ = 'F';
5a896d9e
VN
4663 if (!(s->flags & SLAB_NOTRACK))
4664 *p++ = 't';
81819f0f
CL
4665 if (p != name + 1)
4666 *p++ = '-';
4667 p += sprintf(p, "%07d", s->size);
4668 BUG_ON(p > name + ID_STR_LENGTH - 1);
4669 return name;
4670}
4671
4672static int sysfs_slab_add(struct kmem_cache *s)
4673{
4674 int err;
4675 const char *name;
4676 int unmergeable;
4677
4678 if (slab_state < SYSFS)
4679 /* Defer until later */
4680 return 0;
4681
4682 unmergeable = slab_unmergeable(s);
4683 if (unmergeable) {
4684 /*
4685 * Slabcache can never be merged so we can use the name proper.
4686 * This is typically the case for debug situations. In that
4687 * case we can catch duplicate names easily.
4688 */
27c3a314 4689 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4690 name = s->name;
4691 } else {
4692 /*
4693 * Create a unique name for the slab as a target
4694 * for the symlinks.
4695 */
4696 name = create_unique_id(s);
4697 }
4698
27c3a314 4699 s->kobj.kset = slab_kset;
1eada11c
GKH
4700 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4701 if (err) {
4702 kobject_put(&s->kobj);
81819f0f 4703 return err;
1eada11c 4704 }
81819f0f
CL
4705
4706 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
4707 if (err) {
4708 kobject_del(&s->kobj);
4709 kobject_put(&s->kobj);
81819f0f 4710 return err;
5788d8ad 4711 }
81819f0f
CL
4712 kobject_uevent(&s->kobj, KOBJ_ADD);
4713 if (!unmergeable) {
4714 /* Setup first alias */
4715 sysfs_slab_alias(s, s->name);
4716 kfree(name);
4717 }
4718 return 0;
4719}
4720
4721static void sysfs_slab_remove(struct kmem_cache *s)
4722{
2bce6485
CL
4723 if (slab_state < SYSFS)
4724 /*
4725 * Sysfs has not been setup yet so no need to remove the
4726 * cache from sysfs.
4727 */
4728 return;
4729
81819f0f
CL
4730 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4731 kobject_del(&s->kobj);
151c602f 4732 kobject_put(&s->kobj);
81819f0f
CL
4733}
4734
4735/*
4736 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 4737 * available lest we lose that information.
81819f0f
CL
4738 */
4739struct saved_alias {
4740 struct kmem_cache *s;
4741 const char *name;
4742 struct saved_alias *next;
4743};
4744
5af328a5 4745static struct saved_alias *alias_list;
81819f0f
CL
4746
4747static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4748{
4749 struct saved_alias *al;
4750
4751 if (slab_state == SYSFS) {
4752 /*
4753 * If we have a leftover link then remove it.
4754 */
27c3a314
GKH
4755 sysfs_remove_link(&slab_kset->kobj, name);
4756 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4757 }
4758
4759 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4760 if (!al)
4761 return -ENOMEM;
4762
4763 al->s = s;
4764 al->name = name;
4765 al->next = alias_list;
4766 alias_list = al;
4767 return 0;
4768}
4769
4770static int __init slab_sysfs_init(void)
4771{
5b95a4ac 4772 struct kmem_cache *s;
81819f0f
CL
4773 int err;
4774
2bce6485
CL
4775 down_write(&slub_lock);
4776
0ff21e46 4777 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4778 if (!slab_kset) {
2bce6485 4779 up_write(&slub_lock);
81819f0f
CL
4780 printk(KERN_ERR "Cannot register slab subsystem.\n");
4781 return -ENOSYS;
4782 }
4783
26a7bd03
CL
4784 slab_state = SYSFS;
4785
5b95a4ac 4786 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4787 err = sysfs_slab_add(s);
5d540fb7
CL
4788 if (err)
4789 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4790 " to sysfs\n", s->name);
26a7bd03 4791 }
81819f0f
CL
4792
4793 while (alias_list) {
4794 struct saved_alias *al = alias_list;
4795
4796 alias_list = alias_list->next;
4797 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4798 if (err)
4799 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4800 " %s to sysfs\n", s->name);
81819f0f
CL
4801 kfree(al);
4802 }
4803
2bce6485 4804 up_write(&slub_lock);
81819f0f
CL
4805 resiliency_test();
4806 return 0;
4807}
4808
4809__initcall(slab_sysfs_init);
ab4d5ed5 4810#endif /* CONFIG_SYSFS */
57ed3eda
PE
4811
4812/*
4813 * The /proc/slabinfo ABI
4814 */
158a9624 4815#ifdef CONFIG_SLABINFO
57ed3eda
PE
4816static void print_slabinfo_header(struct seq_file *m)
4817{
4818 seq_puts(m, "slabinfo - version: 2.1\n");
4819 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4820 "<objperslab> <pagesperslab>");
4821 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4822 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4823 seq_putc(m, '\n');
4824}
4825
4826static void *s_start(struct seq_file *m, loff_t *pos)
4827{
4828 loff_t n = *pos;
4829
4830 down_read(&slub_lock);
4831 if (!n)
4832 print_slabinfo_header(m);
4833
4834 return seq_list_start(&slab_caches, *pos);
4835}
4836
4837static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4838{
4839 return seq_list_next(p, &slab_caches, pos);
4840}
4841
4842static void s_stop(struct seq_file *m, void *p)
4843{
4844 up_read(&slub_lock);
4845}
4846
4847static int s_show(struct seq_file *m, void *p)
4848{
4849 unsigned long nr_partials = 0;
4850 unsigned long nr_slabs = 0;
4851 unsigned long nr_inuse = 0;
205ab99d
CL
4852 unsigned long nr_objs = 0;
4853 unsigned long nr_free = 0;
57ed3eda
PE
4854 struct kmem_cache *s;
4855 int node;
4856
4857 s = list_entry(p, struct kmem_cache, list);
4858
4859 for_each_online_node(node) {
4860 struct kmem_cache_node *n = get_node(s, node);
4861
4862 if (!n)
4863 continue;
4864
4865 nr_partials += n->nr_partial;
4866 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
4867 nr_objs += atomic_long_read(&n->total_objects);
4868 nr_free += count_partial(n, count_free);
57ed3eda
PE
4869 }
4870
205ab99d 4871 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
4872
4873 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
4874 nr_objs, s->size, oo_objects(s->oo),
4875 (1 << oo_order(s->oo)));
57ed3eda
PE
4876 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4877 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4878 0UL);
4879 seq_putc(m, '\n');
4880 return 0;
4881}
4882
7b3c3a50 4883static const struct seq_operations slabinfo_op = {
57ed3eda
PE
4884 .start = s_start,
4885 .next = s_next,
4886 .stop = s_stop,
4887 .show = s_show,
4888};
4889
7b3c3a50
AD
4890static int slabinfo_open(struct inode *inode, struct file *file)
4891{
4892 return seq_open(file, &slabinfo_op);
4893}
4894
4895static const struct file_operations proc_slabinfo_operations = {
4896 .open = slabinfo_open,
4897 .read = seq_read,
4898 .llseek = seq_lseek,
4899 .release = seq_release,
4900};
4901
4902static int __init slab_proc_init(void)
4903{
cf5d1131 4904 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
4905 return 0;
4906}
4907module_init(slab_proc_init);
158a9624 4908#endif /* CONFIG_SLABINFO */