mm/slub.c: convert printk to pr_foo()
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
3ac38faa 21#include <linux/notifier.h>
81819f0f 22#include <linux/seq_file.h>
5a896d9e 23#include <linux/kmemcheck.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b9049e23 30#include <linux/memory.h>
f8bd2258 31#include <linux/math64.h>
773ff60e 32#include <linux/fault-inject.h>
bfa71457 33#include <linux/stacktrace.h>
4de900b4 34#include <linux/prefetch.h>
2633d7a0 35#include <linux/memcontrol.h>
81819f0f 36
4a92379b
RK
37#include <trace/events/kmem.h>
38
072bb0aa
MG
39#include "internal.h"
40
81819f0f
CL
41/*
42 * Lock order:
18004c5d 43 * 1. slab_mutex (Global Mutex)
881db7fb
CL
44 * 2. node->list_lock
45 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 46 *
18004c5d 47 * slab_mutex
881db7fb 48 *
18004c5d 49 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
50 * and to synchronize major metadata changes to slab cache structures.
51 *
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
58 *
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
64 *
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
70 *
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
75 * the list lock.
81819f0f
CL
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
80 *
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
83 *
672bba3a
CL
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 86 * freed then the slab will show up again on the partial lists.
672bba3a
CL
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
81819f0f
CL
89 *
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
93 *
94 * Overloading of page flags that are otherwise used for LRU management.
95 *
4b6f0750
CL
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
dfb4f096 108 * freelist that allows lockless access to
894b8788
CL
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
81819f0f
CL
111 *
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
894b8788 114 * the fast path and disables lockless freelists.
81819f0f
CL
115 */
116
af537b0a
CL
117static inline int kmem_cache_debug(struct kmem_cache *s)
118{
5577bd8a 119#ifdef CONFIG_SLUB_DEBUG
af537b0a 120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 121#else
af537b0a 122 return 0;
5577bd8a 123#endif
af537b0a 124}
5577bd8a 125
345c905d
JK
126static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
127{
128#ifdef CONFIG_SLUB_CPU_PARTIAL
129 return !kmem_cache_debug(s);
130#else
131 return false;
132#endif
133}
134
81819f0f
CL
135/*
136 * Issues still to be resolved:
137 *
81819f0f
CL
138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
139 *
81819f0f
CL
140 * - Variable sizing of the per node arrays
141 */
142
143/* Enable to test recovery from slab corruption on boot */
144#undef SLUB_RESILIENCY_TEST
145
b789ef51
CL
146/* Enable to log cmpxchg failures */
147#undef SLUB_DEBUG_CMPXCHG
148
2086d26a
CL
149/*
150 * Mininum number of partial slabs. These will be left on the partial
151 * lists even if they are empty. kmem_cache_shrink may reclaim them.
152 */
76be8950 153#define MIN_PARTIAL 5
e95eed57 154
2086d26a
CL
155/*
156 * Maximum number of desirable partial slabs.
157 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 158 * sort the partial list by the number of objects in use.
2086d26a
CL
159 */
160#define MAX_PARTIAL 10
161
81819f0f
CL
162#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 SLAB_POISON | SLAB_STORE_USER)
672bba3a 164
fa5ec8a1 165/*
3de47213
DR
166 * Debugging flags that require metadata to be stored in the slab. These get
167 * disabled when slub_debug=O is used and a cache's min order increases with
168 * metadata.
fa5ec8a1 169 */
3de47213 170#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 171
81819f0f
CL
172/*
173 * Set of flags that will prevent slab merging
174 */
175#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
176 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
177 SLAB_FAILSLAB)
81819f0f
CL
178
179#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 180 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 181
210b5c06
CG
182#define OO_SHIFT 16
183#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 184#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 185
81819f0f 186/* Internal SLUB flags */
f90ec390 187#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 188#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 189
81819f0f
CL
190#ifdef CONFIG_SMP
191static struct notifier_block slab_notifier;
192#endif
193
02cbc874
CL
194/*
195 * Tracking user of a slab.
196 */
d6543e39 197#define TRACK_ADDRS_COUNT 16
02cbc874 198struct track {
ce71e27c 199 unsigned long addr; /* Called from address */
d6543e39
BG
200#ifdef CONFIG_STACKTRACE
201 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
202#endif
02cbc874
CL
203 int cpu; /* Was running on cpu */
204 int pid; /* Pid context */
205 unsigned long when; /* When did the operation occur */
206};
207
208enum track_item { TRACK_ALLOC, TRACK_FREE };
209
ab4d5ed5 210#ifdef CONFIG_SYSFS
81819f0f
CL
211static int sysfs_slab_add(struct kmem_cache *);
212static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 213static void memcg_propagate_slab_attrs(struct kmem_cache *s);
81819f0f 214#else
0c710013
CL
215static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
216static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
217 { return 0; }
107dab5c 218static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
81819f0f
CL
219#endif
220
4fdccdfb 221static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
222{
223#ifdef CONFIG_SLUB_STATS
88da03a6
CL
224 /*
225 * The rmw is racy on a preemptible kernel but this is acceptable, so
226 * avoid this_cpu_add()'s irq-disable overhead.
227 */
228 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
229#endif
230}
231
81819f0f
CL
232/********************************************************************
233 * Core slab cache functions
234 *******************************************************************/
235
81819f0f
CL
236static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
237{
81819f0f 238 return s->node[node];
81819f0f
CL
239}
240
6446faa2 241/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
242static inline int check_valid_pointer(struct kmem_cache *s,
243 struct page *page, const void *object)
244{
245 void *base;
246
a973e9dd 247 if (!object)
02cbc874
CL
248 return 1;
249
a973e9dd 250 base = page_address(page);
39b26464 251 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
252 (object - base) % s->size) {
253 return 0;
254 }
255
256 return 1;
257}
258
7656c72b
CL
259static inline void *get_freepointer(struct kmem_cache *s, void *object)
260{
261 return *(void **)(object + s->offset);
262}
263
0ad9500e
ED
264static void prefetch_freepointer(const struct kmem_cache *s, void *object)
265{
266 prefetch(object + s->offset);
267}
268
1393d9a1
CL
269static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
270{
271 void *p;
272
273#ifdef CONFIG_DEBUG_PAGEALLOC
274 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
275#else
276 p = get_freepointer(s, object);
277#endif
278 return p;
279}
280
7656c72b
CL
281static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
282{
283 *(void **)(object + s->offset) = fp;
284}
285
286/* Loop over all objects in a slab */
224a88be
CL
287#define for_each_object(__p, __s, __addr, __objects) \
288 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
289 __p += (__s)->size)
290
7656c72b
CL
291/* Determine object index from a given position */
292static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
293{
294 return (p - addr) / s->size;
295}
296
d71f606f
MK
297static inline size_t slab_ksize(const struct kmem_cache *s)
298{
299#ifdef CONFIG_SLUB_DEBUG
300 /*
301 * Debugging requires use of the padding between object
302 * and whatever may come after it.
303 */
304 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
3b0efdfa 305 return s->object_size;
d71f606f
MK
306
307#endif
308 /*
309 * If we have the need to store the freelist pointer
310 * back there or track user information then we can
311 * only use the space before that information.
312 */
313 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
314 return s->inuse;
315 /*
316 * Else we can use all the padding etc for the allocation
317 */
318 return s->size;
319}
320
ab9a0f19
LJ
321static inline int order_objects(int order, unsigned long size, int reserved)
322{
323 return ((PAGE_SIZE << order) - reserved) / size;
324}
325
834f3d11 326static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 327 unsigned long size, int reserved)
834f3d11
CL
328{
329 struct kmem_cache_order_objects x = {
ab9a0f19 330 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
331 };
332
333 return x;
334}
335
336static inline int oo_order(struct kmem_cache_order_objects x)
337{
210b5c06 338 return x.x >> OO_SHIFT;
834f3d11
CL
339}
340
341static inline int oo_objects(struct kmem_cache_order_objects x)
342{
210b5c06 343 return x.x & OO_MASK;
834f3d11
CL
344}
345
881db7fb
CL
346/*
347 * Per slab locking using the pagelock
348 */
349static __always_inline void slab_lock(struct page *page)
350{
351 bit_spin_lock(PG_locked, &page->flags);
352}
353
354static __always_inline void slab_unlock(struct page *page)
355{
356 __bit_spin_unlock(PG_locked, &page->flags);
357}
358
a0320865
DH
359static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
360{
361 struct page tmp;
362 tmp.counters = counters_new;
363 /*
364 * page->counters can cover frozen/inuse/objects as well
365 * as page->_count. If we assign to ->counters directly
366 * we run the risk of losing updates to page->_count, so
367 * be careful and only assign to the fields we need.
368 */
369 page->frozen = tmp.frozen;
370 page->inuse = tmp.inuse;
371 page->objects = tmp.objects;
372}
373
1d07171c
CL
374/* Interrupts must be disabled (for the fallback code to work right) */
375static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
376 void *freelist_old, unsigned long counters_old,
377 void *freelist_new, unsigned long counters_new,
378 const char *n)
379{
380 VM_BUG_ON(!irqs_disabled());
2565409f
HC
381#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
382 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 383 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 384 if (cmpxchg_double(&page->freelist, &page->counters,
1d07171c
CL
385 freelist_old, counters_old,
386 freelist_new, counters_new))
387 return 1;
388 } else
389#endif
390 {
391 slab_lock(page);
d0e0ac97
CG
392 if (page->freelist == freelist_old &&
393 page->counters == counters_old) {
1d07171c 394 page->freelist = freelist_new;
a0320865 395 set_page_slub_counters(page, counters_new);
1d07171c
CL
396 slab_unlock(page);
397 return 1;
398 }
399 slab_unlock(page);
400 }
401
402 cpu_relax();
403 stat(s, CMPXCHG_DOUBLE_FAIL);
404
405#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 406 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
407#endif
408
409 return 0;
410}
411
b789ef51
CL
412static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
413 void *freelist_old, unsigned long counters_old,
414 void *freelist_new, unsigned long counters_new,
415 const char *n)
416{
2565409f
HC
417#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
418 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 419 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 420 if (cmpxchg_double(&page->freelist, &page->counters,
b789ef51
CL
421 freelist_old, counters_old,
422 freelist_new, counters_new))
423 return 1;
424 } else
425#endif
426 {
1d07171c
CL
427 unsigned long flags;
428
429 local_irq_save(flags);
881db7fb 430 slab_lock(page);
d0e0ac97
CG
431 if (page->freelist == freelist_old &&
432 page->counters == counters_old) {
b789ef51 433 page->freelist = freelist_new;
a0320865 434 set_page_slub_counters(page, counters_new);
881db7fb 435 slab_unlock(page);
1d07171c 436 local_irq_restore(flags);
b789ef51
CL
437 return 1;
438 }
881db7fb 439 slab_unlock(page);
1d07171c 440 local_irq_restore(flags);
b789ef51
CL
441 }
442
443 cpu_relax();
444 stat(s, CMPXCHG_DOUBLE_FAIL);
445
446#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 447 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
448#endif
449
450 return 0;
451}
452
41ecc55b 453#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
454/*
455 * Determine a map of object in use on a page.
456 *
881db7fb 457 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
458 * not vanish from under us.
459 */
460static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
461{
462 void *p;
463 void *addr = page_address(page);
464
465 for (p = page->freelist; p; p = get_freepointer(s, p))
466 set_bit(slab_index(p, s, addr), map);
467}
468
41ecc55b
CL
469/*
470 * Debug settings:
471 */
f0630fff
CL
472#ifdef CONFIG_SLUB_DEBUG_ON
473static int slub_debug = DEBUG_DEFAULT_FLAGS;
474#else
41ecc55b 475static int slub_debug;
f0630fff 476#endif
41ecc55b
CL
477
478static char *slub_debug_slabs;
fa5ec8a1 479static int disable_higher_order_debug;
41ecc55b 480
81819f0f
CL
481/*
482 * Object debugging
483 */
484static void print_section(char *text, u8 *addr, unsigned int length)
485{
ffc79d28
SAS
486 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
487 length, 1);
81819f0f
CL
488}
489
81819f0f
CL
490static struct track *get_track(struct kmem_cache *s, void *object,
491 enum track_item alloc)
492{
493 struct track *p;
494
495 if (s->offset)
496 p = object + s->offset + sizeof(void *);
497 else
498 p = object + s->inuse;
499
500 return p + alloc;
501}
502
503static void set_track(struct kmem_cache *s, void *object,
ce71e27c 504 enum track_item alloc, unsigned long addr)
81819f0f 505{
1a00df4a 506 struct track *p = get_track(s, object, alloc);
81819f0f 507
81819f0f 508 if (addr) {
d6543e39
BG
509#ifdef CONFIG_STACKTRACE
510 struct stack_trace trace;
511 int i;
512
513 trace.nr_entries = 0;
514 trace.max_entries = TRACK_ADDRS_COUNT;
515 trace.entries = p->addrs;
516 trace.skip = 3;
517 save_stack_trace(&trace);
518
519 /* See rant in lockdep.c */
520 if (trace.nr_entries != 0 &&
521 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
522 trace.nr_entries--;
523
524 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
525 p->addrs[i] = 0;
526#endif
81819f0f
CL
527 p->addr = addr;
528 p->cpu = smp_processor_id();
88e4ccf2 529 p->pid = current->pid;
81819f0f
CL
530 p->when = jiffies;
531 } else
532 memset(p, 0, sizeof(struct track));
533}
534
81819f0f
CL
535static void init_tracking(struct kmem_cache *s, void *object)
536{
24922684
CL
537 if (!(s->flags & SLAB_STORE_USER))
538 return;
539
ce71e27c
EGM
540 set_track(s, object, TRACK_FREE, 0UL);
541 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
542}
543
544static void print_track(const char *s, struct track *t)
545{
546 if (!t->addr)
547 return;
548
f9f58285
FF
549 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
550 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
551#ifdef CONFIG_STACKTRACE
552 {
553 int i;
554 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
555 if (t->addrs[i])
f9f58285 556 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
557 else
558 break;
559 }
560#endif
24922684
CL
561}
562
563static void print_tracking(struct kmem_cache *s, void *object)
564{
565 if (!(s->flags & SLAB_STORE_USER))
566 return;
567
568 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
569 print_track("Freed", get_track(s, object, TRACK_FREE));
570}
571
572static void print_page_info(struct page *page)
573{
f9f58285 574 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 575 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
576
577}
578
579static void slab_bug(struct kmem_cache *s, char *fmt, ...)
580{
581 va_list args;
582 char buf[100];
583
584 va_start(args, fmt);
585 vsnprintf(buf, sizeof(buf), fmt, args);
586 va_end(args);
f9f58285
FF
587 pr_err("=============================================================================\n");
588 pr_err("BUG %s (%s): %s\n", s->name, print_tainted(), buf);
589 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 590
373d4d09 591 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
592}
593
24922684
CL
594static void slab_fix(struct kmem_cache *s, char *fmt, ...)
595{
596 va_list args;
597 char buf[100];
598
599 va_start(args, fmt);
600 vsnprintf(buf, sizeof(buf), fmt, args);
601 va_end(args);
f9f58285 602 pr_err("FIX %s: %s\n", s->name, buf);
24922684
CL
603}
604
605static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
606{
607 unsigned int off; /* Offset of last byte */
a973e9dd 608 u8 *addr = page_address(page);
24922684
CL
609
610 print_tracking(s, p);
611
612 print_page_info(page);
613
f9f58285
FF
614 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
615 p, p - addr, get_freepointer(s, p));
24922684
CL
616
617 if (p > addr + 16)
ffc79d28 618 print_section("Bytes b4 ", p - 16, 16);
81819f0f 619
3b0efdfa 620 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 621 PAGE_SIZE));
81819f0f 622 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
623 print_section("Redzone ", p + s->object_size,
624 s->inuse - s->object_size);
81819f0f 625
81819f0f
CL
626 if (s->offset)
627 off = s->offset + sizeof(void *);
628 else
629 off = s->inuse;
630
24922684 631 if (s->flags & SLAB_STORE_USER)
81819f0f 632 off += 2 * sizeof(struct track);
81819f0f
CL
633
634 if (off != s->size)
635 /* Beginning of the filler is the free pointer */
ffc79d28 636 print_section("Padding ", p + off, s->size - off);
24922684
CL
637
638 dump_stack();
81819f0f
CL
639}
640
641static void object_err(struct kmem_cache *s, struct page *page,
642 u8 *object, char *reason)
643{
3dc50637 644 slab_bug(s, "%s", reason);
24922684 645 print_trailer(s, page, object);
81819f0f
CL
646}
647
d0e0ac97
CG
648static void slab_err(struct kmem_cache *s, struct page *page,
649 const char *fmt, ...)
81819f0f
CL
650{
651 va_list args;
652 char buf[100];
653
24922684
CL
654 va_start(args, fmt);
655 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 656 va_end(args);
3dc50637 657 slab_bug(s, "%s", buf);
24922684 658 print_page_info(page);
81819f0f
CL
659 dump_stack();
660}
661
f7cb1933 662static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
663{
664 u8 *p = object;
665
666 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
667 memset(p, POISON_FREE, s->object_size - 1);
668 p[s->object_size - 1] = POISON_END;
81819f0f
CL
669 }
670
671 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 672 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
673}
674
24922684
CL
675static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
676 void *from, void *to)
677{
678 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
679 memset(from, data, to - from);
680}
681
682static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
683 u8 *object, char *what,
06428780 684 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
685{
686 u8 *fault;
687 u8 *end;
688
79824820 689 fault = memchr_inv(start, value, bytes);
24922684
CL
690 if (!fault)
691 return 1;
692
693 end = start + bytes;
694 while (end > fault && end[-1] == value)
695 end--;
696
697 slab_bug(s, "%s overwritten", what);
f9f58285 698 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
699 fault, end - 1, fault[0], value);
700 print_trailer(s, page, object);
701
702 restore_bytes(s, what, value, fault, end);
703 return 0;
81819f0f
CL
704}
705
81819f0f
CL
706/*
707 * Object layout:
708 *
709 * object address
710 * Bytes of the object to be managed.
711 * If the freepointer may overlay the object then the free
712 * pointer is the first word of the object.
672bba3a 713 *
81819f0f
CL
714 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
715 * 0xa5 (POISON_END)
716 *
3b0efdfa 717 * object + s->object_size
81819f0f 718 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 719 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 720 * object_size == inuse.
672bba3a 721 *
81819f0f
CL
722 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
723 * 0xcc (RED_ACTIVE) for objects in use.
724 *
725 * object + s->inuse
672bba3a
CL
726 * Meta data starts here.
727 *
81819f0f
CL
728 * A. Free pointer (if we cannot overwrite object on free)
729 * B. Tracking data for SLAB_STORE_USER
672bba3a 730 * C. Padding to reach required alignment boundary or at mininum
6446faa2 731 * one word if debugging is on to be able to detect writes
672bba3a
CL
732 * before the word boundary.
733 *
734 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
735 *
736 * object + s->size
672bba3a 737 * Nothing is used beyond s->size.
81819f0f 738 *
3b0efdfa 739 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 740 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
741 * may be used with merged slabcaches.
742 */
743
81819f0f
CL
744static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
745{
746 unsigned long off = s->inuse; /* The end of info */
747
748 if (s->offset)
749 /* Freepointer is placed after the object. */
750 off += sizeof(void *);
751
752 if (s->flags & SLAB_STORE_USER)
753 /* We also have user information there */
754 off += 2 * sizeof(struct track);
755
756 if (s->size == off)
757 return 1;
758
24922684
CL
759 return check_bytes_and_report(s, page, p, "Object padding",
760 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
761}
762
39b26464 763/* Check the pad bytes at the end of a slab page */
81819f0f
CL
764static int slab_pad_check(struct kmem_cache *s, struct page *page)
765{
24922684
CL
766 u8 *start;
767 u8 *fault;
768 u8 *end;
769 int length;
770 int remainder;
81819f0f
CL
771
772 if (!(s->flags & SLAB_POISON))
773 return 1;
774
a973e9dd 775 start = page_address(page);
ab9a0f19 776 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
777 end = start + length;
778 remainder = length % s->size;
81819f0f
CL
779 if (!remainder)
780 return 1;
781
79824820 782 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
24922684
CL
783 if (!fault)
784 return 1;
785 while (end > fault && end[-1] == POISON_INUSE)
786 end--;
787
788 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 789 print_section("Padding ", end - remainder, remainder);
24922684 790
8a3d271d 791 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 792 return 0;
81819f0f
CL
793}
794
795static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 796 void *object, u8 val)
81819f0f
CL
797{
798 u8 *p = object;
3b0efdfa 799 u8 *endobject = object + s->object_size;
81819f0f
CL
800
801 if (s->flags & SLAB_RED_ZONE) {
24922684 802 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 803 endobject, val, s->inuse - s->object_size))
81819f0f 804 return 0;
81819f0f 805 } else {
3b0efdfa 806 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 807 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
808 endobject, POISON_INUSE,
809 s->inuse - s->object_size);
3adbefee 810 }
81819f0f
CL
811 }
812
813 if (s->flags & SLAB_POISON) {
f7cb1933 814 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 815 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 816 POISON_FREE, s->object_size - 1) ||
24922684 817 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 818 p + s->object_size - 1, POISON_END, 1)))
81819f0f 819 return 0;
81819f0f
CL
820 /*
821 * check_pad_bytes cleans up on its own.
822 */
823 check_pad_bytes(s, page, p);
824 }
825
f7cb1933 826 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
827 /*
828 * Object and freepointer overlap. Cannot check
829 * freepointer while object is allocated.
830 */
831 return 1;
832
833 /* Check free pointer validity */
834 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
835 object_err(s, page, p, "Freepointer corrupt");
836 /*
9f6c708e 837 * No choice but to zap it and thus lose the remainder
81819f0f 838 * of the free objects in this slab. May cause
672bba3a 839 * another error because the object count is now wrong.
81819f0f 840 */
a973e9dd 841 set_freepointer(s, p, NULL);
81819f0f
CL
842 return 0;
843 }
844 return 1;
845}
846
847static int check_slab(struct kmem_cache *s, struct page *page)
848{
39b26464
CL
849 int maxobj;
850
81819f0f
CL
851 VM_BUG_ON(!irqs_disabled());
852
853 if (!PageSlab(page)) {
24922684 854 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
855 return 0;
856 }
39b26464 857
ab9a0f19 858 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
859 if (page->objects > maxobj) {
860 slab_err(s, page, "objects %u > max %u",
861 s->name, page->objects, maxobj);
862 return 0;
863 }
864 if (page->inuse > page->objects) {
24922684 865 slab_err(s, page, "inuse %u > max %u",
39b26464 866 s->name, page->inuse, page->objects);
81819f0f
CL
867 return 0;
868 }
869 /* Slab_pad_check fixes things up after itself */
870 slab_pad_check(s, page);
871 return 1;
872}
873
874/*
672bba3a
CL
875 * Determine if a certain object on a page is on the freelist. Must hold the
876 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
877 */
878static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
879{
880 int nr = 0;
881db7fb 881 void *fp;
81819f0f 882 void *object = NULL;
224a88be 883 unsigned long max_objects;
81819f0f 884
881db7fb 885 fp = page->freelist;
39b26464 886 while (fp && nr <= page->objects) {
81819f0f
CL
887 if (fp == search)
888 return 1;
889 if (!check_valid_pointer(s, page, fp)) {
890 if (object) {
891 object_err(s, page, object,
892 "Freechain corrupt");
a973e9dd 893 set_freepointer(s, object, NULL);
81819f0f 894 } else {
24922684 895 slab_err(s, page, "Freepointer corrupt");
a973e9dd 896 page->freelist = NULL;
39b26464 897 page->inuse = page->objects;
24922684 898 slab_fix(s, "Freelist cleared");
81819f0f
CL
899 return 0;
900 }
901 break;
902 }
903 object = fp;
904 fp = get_freepointer(s, object);
905 nr++;
906 }
907
ab9a0f19 908 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
909 if (max_objects > MAX_OBJS_PER_PAGE)
910 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
911
912 if (page->objects != max_objects) {
913 slab_err(s, page, "Wrong number of objects. Found %d but "
914 "should be %d", page->objects, max_objects);
915 page->objects = max_objects;
916 slab_fix(s, "Number of objects adjusted.");
917 }
39b26464 918 if (page->inuse != page->objects - nr) {
70d71228 919 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
920 "counted were %d", page->inuse, page->objects - nr);
921 page->inuse = page->objects - nr;
24922684 922 slab_fix(s, "Object count adjusted.");
81819f0f
CL
923 }
924 return search == NULL;
925}
926
0121c619
CL
927static void trace(struct kmem_cache *s, struct page *page, void *object,
928 int alloc)
3ec09742
CL
929{
930 if (s->flags & SLAB_TRACE) {
f9f58285 931 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
932 s->name,
933 alloc ? "alloc" : "free",
934 object, page->inuse,
935 page->freelist);
936
937 if (!alloc)
d0e0ac97
CG
938 print_section("Object ", (void *)object,
939 s->object_size);
3ec09742
CL
940
941 dump_stack();
942 }
943}
944
c016b0bd
CL
945/*
946 * Hooks for other subsystems that check memory allocations. In a typical
947 * production configuration these hooks all should produce no code at all.
948 */
d56791b3
RB
949static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
950{
951 kmemleak_alloc(ptr, size, 1, flags);
952}
953
954static inline void kfree_hook(const void *x)
955{
956 kmemleak_free(x);
957}
958
c016b0bd
CL
959static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
960{
c1d50836 961 flags &= gfp_allowed_mask;
c016b0bd
CL
962 lockdep_trace_alloc(flags);
963 might_sleep_if(flags & __GFP_WAIT);
964
3b0efdfa 965 return should_failslab(s->object_size, flags, s->flags);
c016b0bd
CL
966}
967
d0e0ac97
CG
968static inline void slab_post_alloc_hook(struct kmem_cache *s,
969 gfp_t flags, void *object)
c016b0bd 970{
c1d50836 971 flags &= gfp_allowed_mask;
b3d41885 972 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
3b0efdfa 973 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
c016b0bd
CL
974}
975
976static inline void slab_free_hook(struct kmem_cache *s, void *x)
977{
978 kmemleak_free_recursive(x, s->flags);
c016b0bd 979
d3f661d6 980 /*
d1756174 981 * Trouble is that we may no longer disable interrupts in the fast path
d3f661d6
CL
982 * So in order to make the debug calls that expect irqs to be
983 * disabled we need to disable interrupts temporarily.
984 */
985#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
986 {
987 unsigned long flags;
988
989 local_irq_save(flags);
3b0efdfa
CL
990 kmemcheck_slab_free(s, x, s->object_size);
991 debug_check_no_locks_freed(x, s->object_size);
d3f661d6
CL
992 local_irq_restore(flags);
993 }
994#endif
f9b615de 995 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3b0efdfa 996 debug_check_no_obj_freed(x, s->object_size);
c016b0bd
CL
997}
998
643b1138 999/*
672bba3a 1000 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1001 */
5cc6eee8
CL
1002static void add_full(struct kmem_cache *s,
1003 struct kmem_cache_node *n, struct page *page)
643b1138 1004{
5cc6eee8
CL
1005 if (!(s->flags & SLAB_STORE_USER))
1006 return;
1007
255d0884 1008 lockdep_assert_held(&n->list_lock);
643b1138 1009 list_add(&page->lru, &n->full);
643b1138
CL
1010}
1011
c65c1877 1012static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1013{
643b1138
CL
1014 if (!(s->flags & SLAB_STORE_USER))
1015 return;
1016
255d0884 1017 lockdep_assert_held(&n->list_lock);
643b1138 1018 list_del(&page->lru);
643b1138
CL
1019}
1020
0f389ec6
CL
1021/* Tracking of the number of slabs for debugging purposes */
1022static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1023{
1024 struct kmem_cache_node *n = get_node(s, node);
1025
1026 return atomic_long_read(&n->nr_slabs);
1027}
1028
26c02cf0
AB
1029static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1030{
1031 return atomic_long_read(&n->nr_slabs);
1032}
1033
205ab99d 1034static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1035{
1036 struct kmem_cache_node *n = get_node(s, node);
1037
1038 /*
1039 * May be called early in order to allocate a slab for the
1040 * kmem_cache_node structure. Solve the chicken-egg
1041 * dilemma by deferring the increment of the count during
1042 * bootstrap (see early_kmem_cache_node_alloc).
1043 */
338b2642 1044 if (likely(n)) {
0f389ec6 1045 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1046 atomic_long_add(objects, &n->total_objects);
1047 }
0f389ec6 1048}
205ab99d 1049static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1050{
1051 struct kmem_cache_node *n = get_node(s, node);
1052
1053 atomic_long_dec(&n->nr_slabs);
205ab99d 1054 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1055}
1056
1057/* Object debug checks for alloc/free paths */
3ec09742
CL
1058static void setup_object_debug(struct kmem_cache *s, struct page *page,
1059 void *object)
1060{
1061 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1062 return;
1063
f7cb1933 1064 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1065 init_tracking(s, object);
1066}
1067
d0e0ac97
CG
1068static noinline int alloc_debug_processing(struct kmem_cache *s,
1069 struct page *page,
ce71e27c 1070 void *object, unsigned long addr)
81819f0f
CL
1071{
1072 if (!check_slab(s, page))
1073 goto bad;
1074
81819f0f
CL
1075 if (!check_valid_pointer(s, page, object)) {
1076 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1077 goto bad;
81819f0f
CL
1078 }
1079
f7cb1933 1080 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1081 goto bad;
81819f0f 1082
3ec09742
CL
1083 /* Success perform special debug activities for allocs */
1084 if (s->flags & SLAB_STORE_USER)
1085 set_track(s, object, TRACK_ALLOC, addr);
1086 trace(s, page, object, 1);
f7cb1933 1087 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1088 return 1;
3ec09742 1089
81819f0f
CL
1090bad:
1091 if (PageSlab(page)) {
1092 /*
1093 * If this is a slab page then lets do the best we can
1094 * to avoid issues in the future. Marking all objects
672bba3a 1095 * as used avoids touching the remaining objects.
81819f0f 1096 */
24922684 1097 slab_fix(s, "Marking all objects used");
39b26464 1098 page->inuse = page->objects;
a973e9dd 1099 page->freelist = NULL;
81819f0f
CL
1100 }
1101 return 0;
1102}
1103
19c7ff9e
CL
1104static noinline struct kmem_cache_node *free_debug_processing(
1105 struct kmem_cache *s, struct page *page, void *object,
1106 unsigned long addr, unsigned long *flags)
81819f0f 1107{
19c7ff9e 1108 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
5c2e4bbb 1109
19c7ff9e 1110 spin_lock_irqsave(&n->list_lock, *flags);
881db7fb
CL
1111 slab_lock(page);
1112
81819f0f
CL
1113 if (!check_slab(s, page))
1114 goto fail;
1115
1116 if (!check_valid_pointer(s, page, object)) {
70d71228 1117 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1118 goto fail;
1119 }
1120
1121 if (on_freelist(s, page, object)) {
24922684 1122 object_err(s, page, object, "Object already free");
81819f0f
CL
1123 goto fail;
1124 }
1125
f7cb1933 1126 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1127 goto out;
81819f0f 1128
1b4f59e3 1129 if (unlikely(s != page->slab_cache)) {
3adbefee 1130 if (!PageSlab(page)) {
70d71228
CL
1131 slab_err(s, page, "Attempt to free object(0x%p) "
1132 "outside of slab", object);
1b4f59e3 1133 } else if (!page->slab_cache) {
f9f58285
FF
1134 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1135 object);
70d71228 1136 dump_stack();
06428780 1137 } else
24922684
CL
1138 object_err(s, page, object,
1139 "page slab pointer corrupt.");
81819f0f
CL
1140 goto fail;
1141 }
3ec09742 1142
3ec09742
CL
1143 if (s->flags & SLAB_STORE_USER)
1144 set_track(s, object, TRACK_FREE, addr);
1145 trace(s, page, object, 0);
f7cb1933 1146 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb 1147out:
881db7fb 1148 slab_unlock(page);
19c7ff9e
CL
1149 /*
1150 * Keep node_lock to preserve integrity
1151 * until the object is actually freed
1152 */
1153 return n;
3ec09742 1154
81819f0f 1155fail:
19c7ff9e
CL
1156 slab_unlock(page);
1157 spin_unlock_irqrestore(&n->list_lock, *flags);
24922684 1158 slab_fix(s, "Object at 0x%p not freed", object);
19c7ff9e 1159 return NULL;
81819f0f
CL
1160}
1161
41ecc55b
CL
1162static int __init setup_slub_debug(char *str)
1163{
f0630fff
CL
1164 slub_debug = DEBUG_DEFAULT_FLAGS;
1165 if (*str++ != '=' || !*str)
1166 /*
1167 * No options specified. Switch on full debugging.
1168 */
1169 goto out;
1170
1171 if (*str == ',')
1172 /*
1173 * No options but restriction on slabs. This means full
1174 * debugging for slabs matching a pattern.
1175 */
1176 goto check_slabs;
1177
fa5ec8a1
DR
1178 if (tolower(*str) == 'o') {
1179 /*
1180 * Avoid enabling debugging on caches if its minimum order
1181 * would increase as a result.
1182 */
1183 disable_higher_order_debug = 1;
1184 goto out;
1185 }
1186
f0630fff
CL
1187 slub_debug = 0;
1188 if (*str == '-')
1189 /*
1190 * Switch off all debugging measures.
1191 */
1192 goto out;
1193
1194 /*
1195 * Determine which debug features should be switched on
1196 */
06428780 1197 for (; *str && *str != ','; str++) {
f0630fff
CL
1198 switch (tolower(*str)) {
1199 case 'f':
1200 slub_debug |= SLAB_DEBUG_FREE;
1201 break;
1202 case 'z':
1203 slub_debug |= SLAB_RED_ZONE;
1204 break;
1205 case 'p':
1206 slub_debug |= SLAB_POISON;
1207 break;
1208 case 'u':
1209 slub_debug |= SLAB_STORE_USER;
1210 break;
1211 case 't':
1212 slub_debug |= SLAB_TRACE;
1213 break;
4c13dd3b
DM
1214 case 'a':
1215 slub_debug |= SLAB_FAILSLAB;
1216 break;
f0630fff 1217 default:
f9f58285
FF
1218 pr_err("slub_debug option '%c' unknown. skipped\n",
1219 *str);
f0630fff 1220 }
41ecc55b
CL
1221 }
1222
f0630fff 1223check_slabs:
41ecc55b
CL
1224 if (*str == ',')
1225 slub_debug_slabs = str + 1;
f0630fff 1226out:
41ecc55b
CL
1227 return 1;
1228}
1229
1230__setup("slub_debug", setup_slub_debug);
1231
3b0efdfa 1232static unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1233 unsigned long flags, const char *name,
51cc5068 1234 void (*ctor)(void *))
41ecc55b
CL
1235{
1236 /*
e153362a 1237 * Enable debugging if selected on the kernel commandline.
41ecc55b 1238 */
c6f58d9b
CL
1239 if (slub_debug && (!slub_debug_slabs || (name &&
1240 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1241 flags |= slub_debug;
ba0268a8
CL
1242
1243 return flags;
41ecc55b
CL
1244}
1245#else
3ec09742
CL
1246static inline void setup_object_debug(struct kmem_cache *s,
1247 struct page *page, void *object) {}
41ecc55b 1248
3ec09742 1249static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1250 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1251
19c7ff9e
CL
1252static inline struct kmem_cache_node *free_debug_processing(
1253 struct kmem_cache *s, struct page *page, void *object,
1254 unsigned long addr, unsigned long *flags) { return NULL; }
41ecc55b 1255
41ecc55b
CL
1256static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1257 { return 1; }
1258static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1259 void *object, u8 val) { return 1; }
5cc6eee8
CL
1260static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1261 struct page *page) {}
c65c1877
PZ
1262static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1263 struct page *page) {}
3b0efdfa 1264static inline unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1265 unsigned long flags, const char *name,
51cc5068 1266 void (*ctor)(void *))
ba0268a8
CL
1267{
1268 return flags;
1269}
41ecc55b 1270#define slub_debug 0
0f389ec6 1271
fdaa45e9
IM
1272#define disable_higher_order_debug 0
1273
0f389ec6
CL
1274static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1275 { return 0; }
26c02cf0
AB
1276static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1277 { return 0; }
205ab99d
CL
1278static inline void inc_slabs_node(struct kmem_cache *s, int node,
1279 int objects) {}
1280static inline void dec_slabs_node(struct kmem_cache *s, int node,
1281 int objects) {}
7d550c56 1282
d56791b3
RB
1283static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1284{
1285 kmemleak_alloc(ptr, size, 1, flags);
1286}
1287
1288static inline void kfree_hook(const void *x)
1289{
1290 kmemleak_free(x);
1291}
1292
7d550c56
CL
1293static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1294 { return 0; }
1295
1296static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
d56791b3
RB
1297 void *object)
1298{
1299 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags,
1300 flags & gfp_allowed_mask);
1301}
7d550c56 1302
d56791b3
RB
1303static inline void slab_free_hook(struct kmem_cache *s, void *x)
1304{
1305 kmemleak_free_recursive(x, s->flags);
1306}
7d550c56 1307
ab4d5ed5 1308#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1309
81819f0f
CL
1310/*
1311 * Slab allocation and freeing
1312 */
65c3376a
CL
1313static inline struct page *alloc_slab_page(gfp_t flags, int node,
1314 struct kmem_cache_order_objects oo)
1315{
1316 int order = oo_order(oo);
1317
b1eeab67
VN
1318 flags |= __GFP_NOTRACK;
1319
2154a336 1320 if (node == NUMA_NO_NODE)
65c3376a
CL
1321 return alloc_pages(flags, order);
1322 else
6b65aaf3 1323 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1324}
1325
81819f0f
CL
1326static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1327{
06428780 1328 struct page *page;
834f3d11 1329 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1330 gfp_t alloc_gfp;
81819f0f 1331
7e0528da
CL
1332 flags &= gfp_allowed_mask;
1333
1334 if (flags & __GFP_WAIT)
1335 local_irq_enable();
1336
b7a49f0d 1337 flags |= s->allocflags;
e12ba74d 1338
ba52270d
PE
1339 /*
1340 * Let the initial higher-order allocation fail under memory pressure
1341 * so we fall-back to the minimum order allocation.
1342 */
1343 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1344
1345 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1346 if (unlikely(!page)) {
1347 oo = s->min;
80c3a998 1348 alloc_gfp = flags;
65c3376a
CL
1349 /*
1350 * Allocation may have failed due to fragmentation.
1351 * Try a lower order alloc if possible
1352 */
80c3a998 1353 page = alloc_slab_page(alloc_gfp, node, oo);
81819f0f 1354
7e0528da
CL
1355 if (page)
1356 stat(s, ORDER_FALLBACK);
65c3376a 1357 }
5a896d9e 1358
737b719e 1359 if (kmemcheck_enabled && page
5086c389 1360 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1361 int pages = 1 << oo_order(oo);
1362
80c3a998 1363 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
b1eeab67
VN
1364
1365 /*
1366 * Objects from caches that have a constructor don't get
1367 * cleared when they're allocated, so we need to do it here.
1368 */
1369 if (s->ctor)
1370 kmemcheck_mark_uninitialized_pages(page, pages);
1371 else
1372 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1373 }
1374
737b719e
DR
1375 if (flags & __GFP_WAIT)
1376 local_irq_disable();
1377 if (!page)
1378 return NULL;
1379
834f3d11 1380 page->objects = oo_objects(oo);
81819f0f
CL
1381 mod_zone_page_state(page_zone(page),
1382 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1383 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1384 1 << oo_order(oo));
81819f0f
CL
1385
1386 return page;
1387}
1388
1389static void setup_object(struct kmem_cache *s, struct page *page,
1390 void *object)
1391{
3ec09742 1392 setup_object_debug(s, page, object);
4f104934 1393 if (unlikely(s->ctor))
51cc5068 1394 s->ctor(object);
81819f0f
CL
1395}
1396
1397static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1398{
1399 struct page *page;
81819f0f 1400 void *start;
81819f0f
CL
1401 void *last;
1402 void *p;
1f458cbf 1403 int order;
81819f0f 1404
6cb06229 1405 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1406
6cb06229
CL
1407 page = allocate_slab(s,
1408 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1409 if (!page)
1410 goto out;
1411
1f458cbf 1412 order = compound_order(page);
205ab99d 1413 inc_slabs_node(s, page_to_nid(page), page->objects);
1f458cbf 1414 memcg_bind_pages(s, order);
1b4f59e3 1415 page->slab_cache = s;
c03f94cc 1416 __SetPageSlab(page);
072bb0aa
MG
1417 if (page->pfmemalloc)
1418 SetPageSlabPfmemalloc(page);
81819f0f
CL
1419
1420 start = page_address(page);
81819f0f
CL
1421
1422 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1423 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f
CL
1424
1425 last = start;
224a88be 1426 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1427 setup_object(s, page, last);
1428 set_freepointer(s, last, p);
1429 last = p;
1430 }
1431 setup_object(s, page, last);
a973e9dd 1432 set_freepointer(s, last, NULL);
81819f0f
CL
1433
1434 page->freelist = start;
e6e82ea1 1435 page->inuse = page->objects;
8cb0a506 1436 page->frozen = 1;
81819f0f 1437out:
81819f0f
CL
1438 return page;
1439}
1440
1441static void __free_slab(struct kmem_cache *s, struct page *page)
1442{
834f3d11
CL
1443 int order = compound_order(page);
1444 int pages = 1 << order;
81819f0f 1445
af537b0a 1446 if (kmem_cache_debug(s)) {
81819f0f
CL
1447 void *p;
1448
1449 slab_pad_check(s, page);
224a88be
CL
1450 for_each_object(p, s, page_address(page),
1451 page->objects)
f7cb1933 1452 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1453 }
1454
b1eeab67 1455 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1456
81819f0f
CL
1457 mod_zone_page_state(page_zone(page),
1458 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1459 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1460 -pages);
81819f0f 1461
072bb0aa 1462 __ClearPageSlabPfmemalloc(page);
49bd5221 1463 __ClearPageSlab(page);
1f458cbf
GC
1464
1465 memcg_release_pages(s, order);
22b751c3 1466 page_mapcount_reset(page);
1eb5ac64
NP
1467 if (current->reclaim_state)
1468 current->reclaim_state->reclaimed_slab += pages;
d79923fa 1469 __free_memcg_kmem_pages(page, order);
81819f0f
CL
1470}
1471
da9a638c
LJ
1472#define need_reserve_slab_rcu \
1473 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1474
81819f0f
CL
1475static void rcu_free_slab(struct rcu_head *h)
1476{
1477 struct page *page;
1478
da9a638c
LJ
1479 if (need_reserve_slab_rcu)
1480 page = virt_to_head_page(h);
1481 else
1482 page = container_of((struct list_head *)h, struct page, lru);
1483
1b4f59e3 1484 __free_slab(page->slab_cache, page);
81819f0f
CL
1485}
1486
1487static void free_slab(struct kmem_cache *s, struct page *page)
1488{
1489 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1490 struct rcu_head *head;
1491
1492 if (need_reserve_slab_rcu) {
1493 int order = compound_order(page);
1494 int offset = (PAGE_SIZE << order) - s->reserved;
1495
1496 VM_BUG_ON(s->reserved != sizeof(*head));
1497 head = page_address(page) + offset;
1498 } else {
1499 /*
1500 * RCU free overloads the RCU head over the LRU
1501 */
1502 head = (void *)&page->lru;
1503 }
81819f0f
CL
1504
1505 call_rcu(head, rcu_free_slab);
1506 } else
1507 __free_slab(s, page);
1508}
1509
1510static void discard_slab(struct kmem_cache *s, struct page *page)
1511{
205ab99d 1512 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1513 free_slab(s, page);
1514}
1515
1516/*
5cc6eee8 1517 * Management of partially allocated slabs.
81819f0f 1518 */
1e4dd946
SR
1519static inline void
1520__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1521{
e95eed57 1522 n->nr_partial++;
136333d1 1523 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1524 list_add_tail(&page->lru, &n->partial);
1525 else
1526 list_add(&page->lru, &n->partial);
81819f0f
CL
1527}
1528
1e4dd946
SR
1529static inline void add_partial(struct kmem_cache_node *n,
1530 struct page *page, int tail)
62e346a8 1531{
c65c1877 1532 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1533 __add_partial(n, page, tail);
1534}
c65c1877 1535
1e4dd946
SR
1536static inline void
1537__remove_partial(struct kmem_cache_node *n, struct page *page)
1538{
62e346a8
CL
1539 list_del(&page->lru);
1540 n->nr_partial--;
1541}
1542
1e4dd946
SR
1543static inline void remove_partial(struct kmem_cache_node *n,
1544 struct page *page)
1545{
1546 lockdep_assert_held(&n->list_lock);
1547 __remove_partial(n, page);
1548}
1549
81819f0f 1550/*
7ced3719
CL
1551 * Remove slab from the partial list, freeze it and
1552 * return the pointer to the freelist.
81819f0f 1553 *
497b66f2 1554 * Returns a list of objects or NULL if it fails.
81819f0f 1555 */
497b66f2 1556static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1557 struct kmem_cache_node *n, struct page *page,
633b0764 1558 int mode, int *objects)
81819f0f 1559{
2cfb7455
CL
1560 void *freelist;
1561 unsigned long counters;
1562 struct page new;
1563
c65c1877
PZ
1564 lockdep_assert_held(&n->list_lock);
1565
2cfb7455
CL
1566 /*
1567 * Zap the freelist and set the frozen bit.
1568 * The old freelist is the list of objects for the
1569 * per cpu allocation list.
1570 */
7ced3719
CL
1571 freelist = page->freelist;
1572 counters = page->counters;
1573 new.counters = counters;
633b0764 1574 *objects = new.objects - new.inuse;
23910c50 1575 if (mode) {
7ced3719 1576 new.inuse = page->objects;
23910c50
PE
1577 new.freelist = NULL;
1578 } else {
1579 new.freelist = freelist;
1580 }
2cfb7455 1581
a0132ac0 1582 VM_BUG_ON(new.frozen);
7ced3719 1583 new.frozen = 1;
2cfb7455 1584
7ced3719 1585 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1586 freelist, counters,
02d7633f 1587 new.freelist, new.counters,
7ced3719 1588 "acquire_slab"))
7ced3719 1589 return NULL;
2cfb7455
CL
1590
1591 remove_partial(n, page);
7ced3719 1592 WARN_ON(!freelist);
49e22585 1593 return freelist;
81819f0f
CL
1594}
1595
633b0764 1596static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1597static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1598
81819f0f 1599/*
672bba3a 1600 * Try to allocate a partial slab from a specific node.
81819f0f 1601 */
8ba00bb6
JK
1602static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1603 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1604{
49e22585
CL
1605 struct page *page, *page2;
1606 void *object = NULL;
633b0764
JK
1607 int available = 0;
1608 int objects;
81819f0f
CL
1609
1610 /*
1611 * Racy check. If we mistakenly see no partial slabs then we
1612 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1613 * partial slab and there is none available then get_partials()
1614 * will return NULL.
81819f0f
CL
1615 */
1616 if (!n || !n->nr_partial)
1617 return NULL;
1618
1619 spin_lock(&n->list_lock);
49e22585 1620 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1621 void *t;
49e22585 1622
8ba00bb6
JK
1623 if (!pfmemalloc_match(page, flags))
1624 continue;
1625
633b0764 1626 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1627 if (!t)
1628 break;
1629
633b0764 1630 available += objects;
12d79634 1631 if (!object) {
49e22585 1632 c->page = page;
49e22585 1633 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1634 object = t;
49e22585 1635 } else {
633b0764 1636 put_cpu_partial(s, page, 0);
8028dcea 1637 stat(s, CPU_PARTIAL_NODE);
49e22585 1638 }
345c905d
JK
1639 if (!kmem_cache_has_cpu_partial(s)
1640 || available > s->cpu_partial / 2)
49e22585
CL
1641 break;
1642
497b66f2 1643 }
81819f0f 1644 spin_unlock(&n->list_lock);
497b66f2 1645 return object;
81819f0f
CL
1646}
1647
1648/*
672bba3a 1649 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1650 */
de3ec035 1651static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1652 struct kmem_cache_cpu *c)
81819f0f
CL
1653{
1654#ifdef CONFIG_NUMA
1655 struct zonelist *zonelist;
dd1a239f 1656 struct zoneref *z;
54a6eb5c
MG
1657 struct zone *zone;
1658 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1659 void *object;
cc9a6c87 1660 unsigned int cpuset_mems_cookie;
81819f0f
CL
1661
1662 /*
672bba3a
CL
1663 * The defrag ratio allows a configuration of the tradeoffs between
1664 * inter node defragmentation and node local allocations. A lower
1665 * defrag_ratio increases the tendency to do local allocations
1666 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1667 *
672bba3a
CL
1668 * If the defrag_ratio is set to 0 then kmalloc() always
1669 * returns node local objects. If the ratio is higher then kmalloc()
1670 * may return off node objects because partial slabs are obtained
1671 * from other nodes and filled up.
81819f0f 1672 *
6446faa2 1673 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1674 * defrag_ratio = 1000) then every (well almost) allocation will
1675 * first attempt to defrag slab caches on other nodes. This means
1676 * scanning over all nodes to look for partial slabs which may be
1677 * expensive if we do it every time we are trying to find a slab
1678 * with available objects.
81819f0f 1679 */
9824601e
CL
1680 if (!s->remote_node_defrag_ratio ||
1681 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1682 return NULL;
1683
cc9a6c87 1684 do {
d26914d1 1685 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1686 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1687 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1688 struct kmem_cache_node *n;
1689
1690 n = get_node(s, zone_to_nid(zone));
1691
1692 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1693 n->nr_partial > s->min_partial) {
8ba00bb6 1694 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1695 if (object) {
1696 /*
d26914d1
MG
1697 * Don't check read_mems_allowed_retry()
1698 * here - if mems_allowed was updated in
1699 * parallel, that was a harmless race
1700 * between allocation and the cpuset
1701 * update
cc9a6c87 1702 */
cc9a6c87
MG
1703 return object;
1704 }
c0ff7453 1705 }
81819f0f 1706 }
d26914d1 1707 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1708#endif
1709 return NULL;
1710}
1711
1712/*
1713 * Get a partial page, lock it and return it.
1714 */
497b66f2 1715static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1716 struct kmem_cache_cpu *c)
81819f0f 1717{
497b66f2 1718 void *object;
2154a336 1719 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f 1720
8ba00bb6 1721 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1722 if (object || node != NUMA_NO_NODE)
1723 return object;
81819f0f 1724
acd19fd1 1725 return get_any_partial(s, flags, c);
81819f0f
CL
1726}
1727
8a5ec0ba
CL
1728#ifdef CONFIG_PREEMPT
1729/*
1730 * Calculate the next globally unique transaction for disambiguiation
1731 * during cmpxchg. The transactions start with the cpu number and are then
1732 * incremented by CONFIG_NR_CPUS.
1733 */
1734#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1735#else
1736/*
1737 * No preemption supported therefore also no need to check for
1738 * different cpus.
1739 */
1740#define TID_STEP 1
1741#endif
1742
1743static inline unsigned long next_tid(unsigned long tid)
1744{
1745 return tid + TID_STEP;
1746}
1747
1748static inline unsigned int tid_to_cpu(unsigned long tid)
1749{
1750 return tid % TID_STEP;
1751}
1752
1753static inline unsigned long tid_to_event(unsigned long tid)
1754{
1755 return tid / TID_STEP;
1756}
1757
1758static inline unsigned int init_tid(int cpu)
1759{
1760 return cpu;
1761}
1762
1763static inline void note_cmpxchg_failure(const char *n,
1764 const struct kmem_cache *s, unsigned long tid)
1765{
1766#ifdef SLUB_DEBUG_CMPXCHG
1767 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1768
f9f58285 1769 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
1770
1771#ifdef CONFIG_PREEMPT
1772 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 1773 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
1774 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1775 else
1776#endif
1777 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 1778 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
1779 tid_to_event(tid), tid_to_event(actual_tid));
1780 else
f9f58285 1781 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
1782 actual_tid, tid, next_tid(tid));
1783#endif
4fdccdfb 1784 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1785}
1786
788e1aad 1787static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1788{
8a5ec0ba
CL
1789 int cpu;
1790
1791 for_each_possible_cpu(cpu)
1792 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1793}
2cfb7455 1794
81819f0f
CL
1795/*
1796 * Remove the cpu slab
1797 */
d0e0ac97
CG
1798static void deactivate_slab(struct kmem_cache *s, struct page *page,
1799 void *freelist)
81819f0f 1800{
2cfb7455 1801 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1802 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1803 int lock = 0;
1804 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1805 void *nextfree;
136333d1 1806 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1807 struct page new;
1808 struct page old;
1809
1810 if (page->freelist) {
84e554e6 1811 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1812 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1813 }
1814
894b8788 1815 /*
2cfb7455
CL
1816 * Stage one: Free all available per cpu objects back
1817 * to the page freelist while it is still frozen. Leave the
1818 * last one.
1819 *
1820 * There is no need to take the list->lock because the page
1821 * is still frozen.
1822 */
1823 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1824 void *prior;
1825 unsigned long counters;
1826
1827 do {
1828 prior = page->freelist;
1829 counters = page->counters;
1830 set_freepointer(s, freelist, prior);
1831 new.counters = counters;
1832 new.inuse--;
a0132ac0 1833 VM_BUG_ON(!new.frozen);
2cfb7455 1834
1d07171c 1835 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1836 prior, counters,
1837 freelist, new.counters,
1838 "drain percpu freelist"));
1839
1840 freelist = nextfree;
1841 }
1842
894b8788 1843 /*
2cfb7455
CL
1844 * Stage two: Ensure that the page is unfrozen while the
1845 * list presence reflects the actual number of objects
1846 * during unfreeze.
1847 *
1848 * We setup the list membership and then perform a cmpxchg
1849 * with the count. If there is a mismatch then the page
1850 * is not unfrozen but the page is on the wrong list.
1851 *
1852 * Then we restart the process which may have to remove
1853 * the page from the list that we just put it on again
1854 * because the number of objects in the slab may have
1855 * changed.
894b8788 1856 */
2cfb7455 1857redo:
894b8788 1858
2cfb7455
CL
1859 old.freelist = page->freelist;
1860 old.counters = page->counters;
a0132ac0 1861 VM_BUG_ON(!old.frozen);
7c2e132c 1862
2cfb7455
CL
1863 /* Determine target state of the slab */
1864 new.counters = old.counters;
1865 if (freelist) {
1866 new.inuse--;
1867 set_freepointer(s, freelist, old.freelist);
1868 new.freelist = freelist;
1869 } else
1870 new.freelist = old.freelist;
1871
1872 new.frozen = 0;
1873
81107188 1874 if (!new.inuse && n->nr_partial > s->min_partial)
2cfb7455
CL
1875 m = M_FREE;
1876 else if (new.freelist) {
1877 m = M_PARTIAL;
1878 if (!lock) {
1879 lock = 1;
1880 /*
1881 * Taking the spinlock removes the possiblity
1882 * that acquire_slab() will see a slab page that
1883 * is frozen
1884 */
1885 spin_lock(&n->list_lock);
1886 }
1887 } else {
1888 m = M_FULL;
1889 if (kmem_cache_debug(s) && !lock) {
1890 lock = 1;
1891 /*
1892 * This also ensures that the scanning of full
1893 * slabs from diagnostic functions will not see
1894 * any frozen slabs.
1895 */
1896 spin_lock(&n->list_lock);
1897 }
1898 }
1899
1900 if (l != m) {
1901
1902 if (l == M_PARTIAL)
1903
1904 remove_partial(n, page);
1905
1906 else if (l == M_FULL)
894b8788 1907
c65c1877 1908 remove_full(s, n, page);
2cfb7455
CL
1909
1910 if (m == M_PARTIAL) {
1911
1912 add_partial(n, page, tail);
136333d1 1913 stat(s, tail);
2cfb7455
CL
1914
1915 } else if (m == M_FULL) {
894b8788 1916
2cfb7455
CL
1917 stat(s, DEACTIVATE_FULL);
1918 add_full(s, n, page);
1919
1920 }
1921 }
1922
1923 l = m;
1d07171c 1924 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1925 old.freelist, old.counters,
1926 new.freelist, new.counters,
1927 "unfreezing slab"))
1928 goto redo;
1929
2cfb7455
CL
1930 if (lock)
1931 spin_unlock(&n->list_lock);
1932
1933 if (m == M_FREE) {
1934 stat(s, DEACTIVATE_EMPTY);
1935 discard_slab(s, page);
1936 stat(s, FREE_SLAB);
894b8788 1937 }
81819f0f
CL
1938}
1939
d24ac77f
JK
1940/*
1941 * Unfreeze all the cpu partial slabs.
1942 *
59a09917
CL
1943 * This function must be called with interrupts disabled
1944 * for the cpu using c (or some other guarantee must be there
1945 * to guarantee no concurrent accesses).
d24ac77f 1946 */
59a09917
CL
1947static void unfreeze_partials(struct kmem_cache *s,
1948 struct kmem_cache_cpu *c)
49e22585 1949{
345c905d 1950#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 1951 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 1952 struct page *page, *discard_page = NULL;
49e22585
CL
1953
1954 while ((page = c->partial)) {
49e22585
CL
1955 struct page new;
1956 struct page old;
1957
1958 c->partial = page->next;
43d77867
JK
1959
1960 n2 = get_node(s, page_to_nid(page));
1961 if (n != n2) {
1962 if (n)
1963 spin_unlock(&n->list_lock);
1964
1965 n = n2;
1966 spin_lock(&n->list_lock);
1967 }
49e22585
CL
1968
1969 do {
1970
1971 old.freelist = page->freelist;
1972 old.counters = page->counters;
a0132ac0 1973 VM_BUG_ON(!old.frozen);
49e22585
CL
1974
1975 new.counters = old.counters;
1976 new.freelist = old.freelist;
1977
1978 new.frozen = 0;
1979
d24ac77f 1980 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
1981 old.freelist, old.counters,
1982 new.freelist, new.counters,
1983 "unfreezing slab"));
1984
43d77867 1985 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
9ada1934
SL
1986 page->next = discard_page;
1987 discard_page = page;
43d77867
JK
1988 } else {
1989 add_partial(n, page, DEACTIVATE_TO_TAIL);
1990 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
1991 }
1992 }
1993
1994 if (n)
1995 spin_unlock(&n->list_lock);
9ada1934
SL
1996
1997 while (discard_page) {
1998 page = discard_page;
1999 discard_page = discard_page->next;
2000
2001 stat(s, DEACTIVATE_EMPTY);
2002 discard_slab(s, page);
2003 stat(s, FREE_SLAB);
2004 }
345c905d 2005#endif
49e22585
CL
2006}
2007
2008/*
2009 * Put a page that was just frozen (in __slab_free) into a partial page
2010 * slot if available. This is done without interrupts disabled and without
2011 * preemption disabled. The cmpxchg is racy and may put the partial page
2012 * onto a random cpus partial slot.
2013 *
2014 * If we did not find a slot then simply move all the partials to the
2015 * per node partial list.
2016 */
633b0764 2017static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2018{
345c905d 2019#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2020 struct page *oldpage;
2021 int pages;
2022 int pobjects;
2023
2024 do {
2025 pages = 0;
2026 pobjects = 0;
2027 oldpage = this_cpu_read(s->cpu_slab->partial);
2028
2029 if (oldpage) {
2030 pobjects = oldpage->pobjects;
2031 pages = oldpage->pages;
2032 if (drain && pobjects > s->cpu_partial) {
2033 unsigned long flags;
2034 /*
2035 * partial array is full. Move the existing
2036 * set to the per node partial list.
2037 */
2038 local_irq_save(flags);
59a09917 2039 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2040 local_irq_restore(flags);
e24fc410 2041 oldpage = NULL;
49e22585
CL
2042 pobjects = 0;
2043 pages = 0;
8028dcea 2044 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2045 }
2046 }
2047
2048 pages++;
2049 pobjects += page->objects - page->inuse;
2050
2051 page->pages = pages;
2052 page->pobjects = pobjects;
2053 page->next = oldpage;
2054
d0e0ac97
CG
2055 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2056 != oldpage);
345c905d 2057#endif
49e22585
CL
2058}
2059
dfb4f096 2060static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2061{
84e554e6 2062 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
2063 deactivate_slab(s, c->page, c->freelist);
2064
2065 c->tid = next_tid(c->tid);
2066 c->page = NULL;
2067 c->freelist = NULL;
81819f0f
CL
2068}
2069
2070/*
2071 * Flush cpu slab.
6446faa2 2072 *
81819f0f
CL
2073 * Called from IPI handler with interrupts disabled.
2074 */
0c710013 2075static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2076{
9dfc6e68 2077 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2078
49e22585
CL
2079 if (likely(c)) {
2080 if (c->page)
2081 flush_slab(s, c);
2082
59a09917 2083 unfreeze_partials(s, c);
49e22585 2084 }
81819f0f
CL
2085}
2086
2087static void flush_cpu_slab(void *d)
2088{
2089 struct kmem_cache *s = d;
81819f0f 2090
dfb4f096 2091 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2092}
2093
a8364d55
GBY
2094static bool has_cpu_slab(int cpu, void *info)
2095{
2096 struct kmem_cache *s = info;
2097 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2098
02e1a9cd 2099 return c->page || c->partial;
a8364d55
GBY
2100}
2101
81819f0f
CL
2102static void flush_all(struct kmem_cache *s)
2103{
a8364d55 2104 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2105}
2106
dfb4f096
CL
2107/*
2108 * Check if the objects in a per cpu structure fit numa
2109 * locality expectations.
2110 */
57d437d2 2111static inline int node_match(struct page *page, int node)
dfb4f096
CL
2112{
2113#ifdef CONFIG_NUMA
4d7868e6 2114 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2115 return 0;
2116#endif
2117 return 1;
2118}
2119
781b2ba6
PE
2120static int count_free(struct page *page)
2121{
2122 return page->objects - page->inuse;
2123}
2124
2125static unsigned long count_partial(struct kmem_cache_node *n,
2126 int (*get_count)(struct page *))
2127{
2128 unsigned long flags;
2129 unsigned long x = 0;
2130 struct page *page;
2131
2132 spin_lock_irqsave(&n->list_lock, flags);
2133 list_for_each_entry(page, &n->partial, lru)
2134 x += get_count(page);
2135 spin_unlock_irqrestore(&n->list_lock, flags);
2136 return x;
2137}
2138
26c02cf0
AB
2139static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2140{
2141#ifdef CONFIG_SLUB_DEBUG
2142 return atomic_long_read(&n->total_objects);
2143#else
2144 return 0;
2145#endif
2146}
2147
781b2ba6
PE
2148static noinline void
2149slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2150{
2151 int node;
2152
f9f58285 2153 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
781b2ba6 2154 nid, gfpflags);
f9f58285
FF
2155 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2156 s->name, s->object_size, s->size, oo_order(s->oo),
2157 oo_order(s->min));
781b2ba6 2158
3b0efdfa 2159 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2160 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2161 s->name);
fa5ec8a1 2162
781b2ba6
PE
2163 for_each_online_node(node) {
2164 struct kmem_cache_node *n = get_node(s, node);
2165 unsigned long nr_slabs;
2166 unsigned long nr_objs;
2167 unsigned long nr_free;
2168
2169 if (!n)
2170 continue;
2171
26c02cf0
AB
2172 nr_free = count_partial(n, count_free);
2173 nr_slabs = node_nr_slabs(n);
2174 nr_objs = node_nr_objs(n);
781b2ba6 2175
f9f58285 2176 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2177 node, nr_slabs, nr_objs, nr_free);
2178 }
2179}
2180
497b66f2
CL
2181static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2182 int node, struct kmem_cache_cpu **pc)
2183{
6faa6833 2184 void *freelist;
188fd063
CL
2185 struct kmem_cache_cpu *c = *pc;
2186 struct page *page;
497b66f2 2187
188fd063 2188 freelist = get_partial(s, flags, node, c);
497b66f2 2189
188fd063
CL
2190 if (freelist)
2191 return freelist;
2192
2193 page = new_slab(s, flags, node);
497b66f2
CL
2194 if (page) {
2195 c = __this_cpu_ptr(s->cpu_slab);
2196 if (c->page)
2197 flush_slab(s, c);
2198
2199 /*
2200 * No other reference to the page yet so we can
2201 * muck around with it freely without cmpxchg
2202 */
6faa6833 2203 freelist = page->freelist;
497b66f2
CL
2204 page->freelist = NULL;
2205
2206 stat(s, ALLOC_SLAB);
497b66f2
CL
2207 c->page = page;
2208 *pc = c;
2209 } else
6faa6833 2210 freelist = NULL;
497b66f2 2211
6faa6833 2212 return freelist;
497b66f2
CL
2213}
2214
072bb0aa
MG
2215static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2216{
2217 if (unlikely(PageSlabPfmemalloc(page)))
2218 return gfp_pfmemalloc_allowed(gfpflags);
2219
2220 return true;
2221}
2222
213eeb9f 2223/*
d0e0ac97
CG
2224 * Check the page->freelist of a page and either transfer the freelist to the
2225 * per cpu freelist or deactivate the page.
213eeb9f
CL
2226 *
2227 * The page is still frozen if the return value is not NULL.
2228 *
2229 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2230 *
2231 * This function must be called with interrupt disabled.
213eeb9f
CL
2232 */
2233static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2234{
2235 struct page new;
2236 unsigned long counters;
2237 void *freelist;
2238
2239 do {
2240 freelist = page->freelist;
2241 counters = page->counters;
6faa6833 2242
213eeb9f 2243 new.counters = counters;
a0132ac0 2244 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2245
2246 new.inuse = page->objects;
2247 new.frozen = freelist != NULL;
2248
d24ac77f 2249 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2250 freelist, counters,
2251 NULL, new.counters,
2252 "get_freelist"));
2253
2254 return freelist;
2255}
2256
81819f0f 2257/*
894b8788
CL
2258 * Slow path. The lockless freelist is empty or we need to perform
2259 * debugging duties.
2260 *
894b8788
CL
2261 * Processing is still very fast if new objects have been freed to the
2262 * regular freelist. In that case we simply take over the regular freelist
2263 * as the lockless freelist and zap the regular freelist.
81819f0f 2264 *
894b8788
CL
2265 * If that is not working then we fall back to the partial lists. We take the
2266 * first element of the freelist as the object to allocate now and move the
2267 * rest of the freelist to the lockless freelist.
81819f0f 2268 *
894b8788 2269 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2270 * we need to allocate a new slab. This is the slowest path since it involves
2271 * a call to the page allocator and the setup of a new slab.
81819f0f 2272 */
ce71e27c
EGM
2273static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2274 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2275{
6faa6833 2276 void *freelist;
f6e7def7 2277 struct page *page;
8a5ec0ba
CL
2278 unsigned long flags;
2279
2280 local_irq_save(flags);
2281#ifdef CONFIG_PREEMPT
2282 /*
2283 * We may have been preempted and rescheduled on a different
2284 * cpu before disabling interrupts. Need to reload cpu area
2285 * pointer.
2286 */
2287 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2288#endif
81819f0f 2289
f6e7def7
CL
2290 page = c->page;
2291 if (!page)
81819f0f 2292 goto new_slab;
49e22585 2293redo:
6faa6833 2294
57d437d2 2295 if (unlikely(!node_match(page, node))) {
e36a2652 2296 stat(s, ALLOC_NODE_MISMATCH);
f6e7def7 2297 deactivate_slab(s, page, c->freelist);
c17dda40
CL
2298 c->page = NULL;
2299 c->freelist = NULL;
fc59c053
CL
2300 goto new_slab;
2301 }
6446faa2 2302
072bb0aa
MG
2303 /*
2304 * By rights, we should be searching for a slab page that was
2305 * PFMEMALLOC but right now, we are losing the pfmemalloc
2306 * information when the page leaves the per-cpu allocator
2307 */
2308 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2309 deactivate_slab(s, page, c->freelist);
2310 c->page = NULL;
2311 c->freelist = NULL;
2312 goto new_slab;
2313 }
2314
73736e03 2315 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2316 freelist = c->freelist;
2317 if (freelist)
73736e03 2318 goto load_freelist;
03e404af 2319
2cfb7455 2320 stat(s, ALLOC_SLOWPATH);
03e404af 2321
f6e7def7 2322 freelist = get_freelist(s, page);
6446faa2 2323
6faa6833 2324 if (!freelist) {
03e404af
CL
2325 c->page = NULL;
2326 stat(s, DEACTIVATE_BYPASS);
fc59c053 2327 goto new_slab;
03e404af 2328 }
6446faa2 2329
84e554e6 2330 stat(s, ALLOC_REFILL);
6446faa2 2331
894b8788 2332load_freelist:
507effea
CL
2333 /*
2334 * freelist is pointing to the list of objects to be used.
2335 * page is pointing to the page from which the objects are obtained.
2336 * That page must be frozen for per cpu allocations to work.
2337 */
a0132ac0 2338 VM_BUG_ON(!c->page->frozen);
6faa6833 2339 c->freelist = get_freepointer(s, freelist);
8a5ec0ba
CL
2340 c->tid = next_tid(c->tid);
2341 local_irq_restore(flags);
6faa6833 2342 return freelist;
81819f0f 2343
81819f0f 2344new_slab:
2cfb7455 2345
49e22585 2346 if (c->partial) {
f6e7def7
CL
2347 page = c->page = c->partial;
2348 c->partial = page->next;
49e22585
CL
2349 stat(s, CPU_PARTIAL_ALLOC);
2350 c->freelist = NULL;
2351 goto redo;
81819f0f
CL
2352 }
2353
188fd063 2354 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2355
f4697436
CL
2356 if (unlikely(!freelist)) {
2357 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2358 slab_out_of_memory(s, gfpflags, node);
2cfb7455 2359
f4697436
CL
2360 local_irq_restore(flags);
2361 return NULL;
81819f0f 2362 }
2cfb7455 2363
f6e7def7 2364 page = c->page;
5091b74a 2365 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2366 goto load_freelist;
2cfb7455 2367
497b66f2 2368 /* Only entered in the debug case */
d0e0ac97
CG
2369 if (kmem_cache_debug(s) &&
2370 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2371 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2372
f6e7def7 2373 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2374 c->page = NULL;
2375 c->freelist = NULL;
a71ae47a 2376 local_irq_restore(flags);
6faa6833 2377 return freelist;
894b8788
CL
2378}
2379
2380/*
2381 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2382 * have the fastpath folded into their functions. So no function call
2383 * overhead for requests that can be satisfied on the fastpath.
2384 *
2385 * The fastpath works by first checking if the lockless freelist can be used.
2386 * If not then __slab_alloc is called for slow processing.
2387 *
2388 * Otherwise we can simply pick the next object from the lockless free list.
2389 */
2b847c3c 2390static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2391 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2392{
894b8788 2393 void **object;
dfb4f096 2394 struct kmem_cache_cpu *c;
57d437d2 2395 struct page *page;
8a5ec0ba 2396 unsigned long tid;
1f84260c 2397
c016b0bd 2398 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2399 return NULL;
1f84260c 2400
d79923fa 2401 s = memcg_kmem_get_cache(s, gfpflags);
8a5ec0ba 2402redo:
8a5ec0ba
CL
2403 /*
2404 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2405 * enabled. We may switch back and forth between cpus while
2406 * reading from one cpu area. That does not matter as long
2407 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b
CL
2408 *
2409 * Preemption is disabled for the retrieval of the tid because that
2410 * must occur from the current processor. We cannot allow rescheduling
2411 * on a different processor between the determination of the pointer
2412 * and the retrieval of the tid.
8a5ec0ba 2413 */
7cccd80b 2414 preempt_disable();
9dfc6e68 2415 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2416
8a5ec0ba
CL
2417 /*
2418 * The transaction ids are globally unique per cpu and per operation on
2419 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2420 * occurs on the right processor and that there was no operation on the
2421 * linked list in between.
2422 */
2423 tid = c->tid;
7cccd80b 2424 preempt_enable();
8a5ec0ba 2425
9dfc6e68 2426 object = c->freelist;
57d437d2 2427 page = c->page;
ac6434e6 2428 if (unlikely(!object || !node_match(page, node)))
dfb4f096 2429 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
2430
2431 else {
0ad9500e
ED
2432 void *next_object = get_freepointer_safe(s, object);
2433
8a5ec0ba 2434 /*
25985edc 2435 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2436 * operation and if we are on the right processor.
2437 *
d0e0ac97
CG
2438 * The cmpxchg does the following atomically (without lock
2439 * semantics!)
8a5ec0ba
CL
2440 * 1. Relocate first pointer to the current per cpu area.
2441 * 2. Verify that tid and freelist have not been changed
2442 * 3. If they were not changed replace tid and freelist
2443 *
d0e0ac97
CG
2444 * Since this is without lock semantics the protection is only
2445 * against code executing on this cpu *not* from access by
2446 * other cpus.
8a5ec0ba 2447 */
933393f5 2448 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2449 s->cpu_slab->freelist, s->cpu_slab->tid,
2450 object, tid,
0ad9500e 2451 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2452
2453 note_cmpxchg_failure("slab_alloc", s, tid);
2454 goto redo;
2455 }
0ad9500e 2456 prefetch_freepointer(s, next_object);
84e554e6 2457 stat(s, ALLOC_FASTPATH);
894b8788 2458 }
8a5ec0ba 2459
74e2134f 2460 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2461 memset(object, 0, s->object_size);
d07dbea4 2462
c016b0bd 2463 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2464
894b8788 2465 return object;
81819f0f
CL
2466}
2467
2b847c3c
EG
2468static __always_inline void *slab_alloc(struct kmem_cache *s,
2469 gfp_t gfpflags, unsigned long addr)
2470{
2471 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2472}
2473
81819f0f
CL
2474void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2475{
2b847c3c 2476 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2477
d0e0ac97
CG
2478 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2479 s->size, gfpflags);
5b882be4
EGM
2480
2481 return ret;
81819f0f
CL
2482}
2483EXPORT_SYMBOL(kmem_cache_alloc);
2484
0f24f128 2485#ifdef CONFIG_TRACING
4a92379b
RK
2486void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2487{
2b847c3c 2488 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b
RK
2489 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2490 return ret;
2491}
2492EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2493#endif
2494
81819f0f
CL
2495#ifdef CONFIG_NUMA
2496void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2497{
2b847c3c 2498 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2499
ca2b84cb 2500 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2501 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2502
2503 return ret;
81819f0f
CL
2504}
2505EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2506
0f24f128 2507#ifdef CONFIG_TRACING
4a92379b 2508void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2509 gfp_t gfpflags,
4a92379b 2510 int node, size_t size)
5b882be4 2511{
2b847c3c 2512 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2513
2514 trace_kmalloc_node(_RET_IP_, ret,
2515 size, s->size, gfpflags, node);
2516 return ret;
5b882be4 2517}
4a92379b 2518EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2519#endif
5d1f57e4 2520#endif
5b882be4 2521
81819f0f 2522/*
894b8788
CL
2523 * Slow patch handling. This may still be called frequently since objects
2524 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2525 *
894b8788
CL
2526 * So we still attempt to reduce cache line usage. Just take the slab
2527 * lock and free the item. If there is no additional partial page
2528 * handling required then we can return immediately.
81819f0f 2529 */
894b8788 2530static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2531 void *x, unsigned long addr)
81819f0f
CL
2532{
2533 void *prior;
2534 void **object = (void *)x;
2cfb7455 2535 int was_frozen;
2cfb7455
CL
2536 struct page new;
2537 unsigned long counters;
2538 struct kmem_cache_node *n = NULL;
61728d1e 2539 unsigned long uninitialized_var(flags);
81819f0f 2540
8a5ec0ba 2541 stat(s, FREE_SLOWPATH);
81819f0f 2542
19c7ff9e
CL
2543 if (kmem_cache_debug(s) &&
2544 !(n = free_debug_processing(s, page, x, addr, &flags)))
80f08c19 2545 return;
6446faa2 2546
2cfb7455 2547 do {
837d678d
JK
2548 if (unlikely(n)) {
2549 spin_unlock_irqrestore(&n->list_lock, flags);
2550 n = NULL;
2551 }
2cfb7455
CL
2552 prior = page->freelist;
2553 counters = page->counters;
2554 set_freepointer(s, object, prior);
2555 new.counters = counters;
2556 was_frozen = new.frozen;
2557 new.inuse--;
837d678d 2558 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2559
c65c1877 2560 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2561
2562 /*
d0e0ac97
CG
2563 * Slab was on no list before and will be
2564 * partially empty
2565 * We can defer the list move and instead
2566 * freeze it.
49e22585
CL
2567 */
2568 new.frozen = 1;
2569
c65c1877 2570 } else { /* Needs to be taken off a list */
49e22585
CL
2571
2572 n = get_node(s, page_to_nid(page));
2573 /*
2574 * Speculatively acquire the list_lock.
2575 * If the cmpxchg does not succeed then we may
2576 * drop the list_lock without any processing.
2577 *
2578 * Otherwise the list_lock will synchronize with
2579 * other processors updating the list of slabs.
2580 */
2581 spin_lock_irqsave(&n->list_lock, flags);
2582
2583 }
2cfb7455 2584 }
81819f0f 2585
2cfb7455
CL
2586 } while (!cmpxchg_double_slab(s, page,
2587 prior, counters,
2588 object, new.counters,
2589 "__slab_free"));
81819f0f 2590
2cfb7455 2591 if (likely(!n)) {
49e22585
CL
2592
2593 /*
2594 * If we just froze the page then put it onto the
2595 * per cpu partial list.
2596 */
8028dcea 2597 if (new.frozen && !was_frozen) {
49e22585 2598 put_cpu_partial(s, page, 1);
8028dcea
AS
2599 stat(s, CPU_PARTIAL_FREE);
2600 }
49e22585 2601 /*
2cfb7455
CL
2602 * The list lock was not taken therefore no list
2603 * activity can be necessary.
2604 */
2605 if (was_frozen)
2606 stat(s, FREE_FROZEN);
80f08c19 2607 return;
2cfb7455 2608 }
81819f0f 2609
837d678d
JK
2610 if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
2611 goto slab_empty;
2612
81819f0f 2613 /*
837d678d
JK
2614 * Objects left in the slab. If it was not on the partial list before
2615 * then add it.
81819f0f 2616 */
345c905d
JK
2617 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2618 if (kmem_cache_debug(s))
c65c1877 2619 remove_full(s, n, page);
837d678d
JK
2620 add_partial(n, page, DEACTIVATE_TO_TAIL);
2621 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2622 }
80f08c19 2623 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2624 return;
2625
2626slab_empty:
a973e9dd 2627 if (prior) {
81819f0f 2628 /*
6fbabb20 2629 * Slab on the partial list.
81819f0f 2630 */
5cc6eee8 2631 remove_partial(n, page);
84e554e6 2632 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2633 } else {
6fbabb20 2634 /* Slab must be on the full list */
c65c1877
PZ
2635 remove_full(s, n, page);
2636 }
2cfb7455 2637
80f08c19 2638 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2639 stat(s, FREE_SLAB);
81819f0f 2640 discard_slab(s, page);
81819f0f
CL
2641}
2642
894b8788
CL
2643/*
2644 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2645 * can perform fastpath freeing without additional function calls.
2646 *
2647 * The fastpath is only possible if we are freeing to the current cpu slab
2648 * of this processor. This typically the case if we have just allocated
2649 * the item before.
2650 *
2651 * If fastpath is not possible then fall back to __slab_free where we deal
2652 * with all sorts of special processing.
2653 */
06428780 2654static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2655 struct page *page, void *x, unsigned long addr)
894b8788
CL
2656{
2657 void **object = (void *)x;
dfb4f096 2658 struct kmem_cache_cpu *c;
8a5ec0ba 2659 unsigned long tid;
1f84260c 2660
c016b0bd
CL
2661 slab_free_hook(s, x);
2662
8a5ec0ba
CL
2663redo:
2664 /*
2665 * Determine the currently cpus per cpu slab.
2666 * The cpu may change afterward. However that does not matter since
2667 * data is retrieved via this pointer. If we are on the same cpu
2668 * during the cmpxchg then the free will succedd.
2669 */
7cccd80b 2670 preempt_disable();
9dfc6e68 2671 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2672
8a5ec0ba 2673 tid = c->tid;
7cccd80b 2674 preempt_enable();
c016b0bd 2675
442b06bc 2676 if (likely(page == c->page)) {
ff12059e 2677 set_freepointer(s, object, c->freelist);
8a5ec0ba 2678
933393f5 2679 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2680 s->cpu_slab->freelist, s->cpu_slab->tid,
2681 c->freelist, tid,
2682 object, next_tid(tid)))) {
2683
2684 note_cmpxchg_failure("slab_free", s, tid);
2685 goto redo;
2686 }
84e554e6 2687 stat(s, FREE_FASTPATH);
894b8788 2688 } else
ff12059e 2689 __slab_free(s, page, x, addr);
894b8788 2690
894b8788
CL
2691}
2692
81819f0f
CL
2693void kmem_cache_free(struct kmem_cache *s, void *x)
2694{
b9ce5ef4
GC
2695 s = cache_from_obj(s, x);
2696 if (!s)
79576102 2697 return;
b9ce5ef4 2698 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
ca2b84cb 2699 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2700}
2701EXPORT_SYMBOL(kmem_cache_free);
2702
81819f0f 2703/*
672bba3a
CL
2704 * Object placement in a slab is made very easy because we always start at
2705 * offset 0. If we tune the size of the object to the alignment then we can
2706 * get the required alignment by putting one properly sized object after
2707 * another.
81819f0f
CL
2708 *
2709 * Notice that the allocation order determines the sizes of the per cpu
2710 * caches. Each processor has always one slab available for allocations.
2711 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2712 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2713 * locking overhead.
81819f0f
CL
2714 */
2715
2716/*
2717 * Mininum / Maximum order of slab pages. This influences locking overhead
2718 * and slab fragmentation. A higher order reduces the number of partial slabs
2719 * and increases the number of allocations possible without having to
2720 * take the list_lock.
2721 */
2722static int slub_min_order;
114e9e89 2723static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2724static int slub_min_objects;
81819f0f
CL
2725
2726/*
2727 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2728 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2729 */
2730static int slub_nomerge;
2731
81819f0f
CL
2732/*
2733 * Calculate the order of allocation given an slab object size.
2734 *
672bba3a
CL
2735 * The order of allocation has significant impact on performance and other
2736 * system components. Generally order 0 allocations should be preferred since
2737 * order 0 does not cause fragmentation in the page allocator. Larger objects
2738 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2739 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2740 * would be wasted.
2741 *
2742 * In order to reach satisfactory performance we must ensure that a minimum
2743 * number of objects is in one slab. Otherwise we may generate too much
2744 * activity on the partial lists which requires taking the list_lock. This is
2745 * less a concern for large slabs though which are rarely used.
81819f0f 2746 *
672bba3a
CL
2747 * slub_max_order specifies the order where we begin to stop considering the
2748 * number of objects in a slab as critical. If we reach slub_max_order then
2749 * we try to keep the page order as low as possible. So we accept more waste
2750 * of space in favor of a small page order.
81819f0f 2751 *
672bba3a
CL
2752 * Higher order allocations also allow the placement of more objects in a
2753 * slab and thereby reduce object handling overhead. If the user has
2754 * requested a higher mininum order then we start with that one instead of
2755 * the smallest order which will fit the object.
81819f0f 2756 */
5e6d444e 2757static inline int slab_order(int size, int min_objects,
ab9a0f19 2758 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2759{
2760 int order;
2761 int rem;
6300ea75 2762 int min_order = slub_min_order;
81819f0f 2763
ab9a0f19 2764 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2765 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2766
6300ea75 2767 for (order = max(min_order,
5e6d444e
CL
2768 fls(min_objects * size - 1) - PAGE_SHIFT);
2769 order <= max_order; order++) {
81819f0f 2770
5e6d444e 2771 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2772
ab9a0f19 2773 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2774 continue;
2775
ab9a0f19 2776 rem = (slab_size - reserved) % size;
81819f0f 2777
5e6d444e 2778 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2779 break;
2780
2781 }
672bba3a 2782
81819f0f
CL
2783 return order;
2784}
2785
ab9a0f19 2786static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2787{
2788 int order;
2789 int min_objects;
2790 int fraction;
e8120ff1 2791 int max_objects;
5e6d444e
CL
2792
2793 /*
2794 * Attempt to find best configuration for a slab. This
2795 * works by first attempting to generate a layout with
2796 * the best configuration and backing off gradually.
2797 *
2798 * First we reduce the acceptable waste in a slab. Then
2799 * we reduce the minimum objects required in a slab.
2800 */
2801 min_objects = slub_min_objects;
9b2cd506
CL
2802 if (!min_objects)
2803 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2804 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2805 min_objects = min(min_objects, max_objects);
2806
5e6d444e 2807 while (min_objects > 1) {
c124f5b5 2808 fraction = 16;
5e6d444e
CL
2809 while (fraction >= 4) {
2810 order = slab_order(size, min_objects,
ab9a0f19 2811 slub_max_order, fraction, reserved);
5e6d444e
CL
2812 if (order <= slub_max_order)
2813 return order;
2814 fraction /= 2;
2815 }
5086c389 2816 min_objects--;
5e6d444e
CL
2817 }
2818
2819 /*
2820 * We were unable to place multiple objects in a slab. Now
2821 * lets see if we can place a single object there.
2822 */
ab9a0f19 2823 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2824 if (order <= slub_max_order)
2825 return order;
2826
2827 /*
2828 * Doh this slab cannot be placed using slub_max_order.
2829 */
ab9a0f19 2830 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2831 if (order < MAX_ORDER)
5e6d444e
CL
2832 return order;
2833 return -ENOSYS;
2834}
2835
5595cffc 2836static void
4053497d 2837init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
2838{
2839 n->nr_partial = 0;
81819f0f
CL
2840 spin_lock_init(&n->list_lock);
2841 INIT_LIST_HEAD(&n->partial);
8ab1372f 2842#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2843 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2844 atomic_long_set(&n->total_objects, 0);
643b1138 2845 INIT_LIST_HEAD(&n->full);
8ab1372f 2846#endif
81819f0f
CL
2847}
2848
55136592 2849static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2850{
6c182dc0 2851 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 2852 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 2853
8a5ec0ba 2854 /*
d4d84fef
CM
2855 * Must align to double word boundary for the double cmpxchg
2856 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2857 */
d4d84fef
CM
2858 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2859 2 * sizeof(void *));
8a5ec0ba
CL
2860
2861 if (!s->cpu_slab)
2862 return 0;
2863
2864 init_kmem_cache_cpus(s);
4c93c355 2865
8a5ec0ba 2866 return 1;
4c93c355 2867}
4c93c355 2868
51df1142
CL
2869static struct kmem_cache *kmem_cache_node;
2870
81819f0f
CL
2871/*
2872 * No kmalloc_node yet so do it by hand. We know that this is the first
2873 * slab on the node for this slabcache. There are no concurrent accesses
2874 * possible.
2875 *
721ae22a
ZYW
2876 * Note that this function only works on the kmem_cache_node
2877 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 2878 * memory on a fresh node that has no slab structures yet.
81819f0f 2879 */
55136592 2880static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2881{
2882 struct page *page;
2883 struct kmem_cache_node *n;
2884
51df1142 2885 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2886
51df1142 2887 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2888
2889 BUG_ON(!page);
a2f92ee7 2890 if (page_to_nid(page) != node) {
f9f58285
FF
2891 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
2892 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
2893 }
2894
81819f0f
CL
2895 n = page->freelist;
2896 BUG_ON(!n);
51df1142 2897 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2898 page->inuse = 1;
8cb0a506 2899 page->frozen = 0;
51df1142 2900 kmem_cache_node->node[node] = n;
8ab1372f 2901#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2902 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2903 init_tracking(kmem_cache_node, n);
8ab1372f 2904#endif
4053497d 2905 init_kmem_cache_node(n);
51df1142 2906 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2907
67b6c900 2908 /*
1e4dd946
SR
2909 * No locks need to be taken here as it has just been
2910 * initialized and there is no concurrent access.
67b6c900 2911 */
1e4dd946 2912 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2913}
2914
2915static void free_kmem_cache_nodes(struct kmem_cache *s)
2916{
2917 int node;
2918
f64dc58c 2919 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2920 struct kmem_cache_node *n = s->node[node];
51df1142 2921
73367bd8 2922 if (n)
51df1142
CL
2923 kmem_cache_free(kmem_cache_node, n);
2924
81819f0f
CL
2925 s->node[node] = NULL;
2926 }
2927}
2928
55136592 2929static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2930{
2931 int node;
81819f0f 2932
f64dc58c 2933 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2934 struct kmem_cache_node *n;
2935
73367bd8 2936 if (slab_state == DOWN) {
55136592 2937 early_kmem_cache_node_alloc(node);
73367bd8
AD
2938 continue;
2939 }
51df1142 2940 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2941 GFP_KERNEL, node);
81819f0f 2942
73367bd8
AD
2943 if (!n) {
2944 free_kmem_cache_nodes(s);
2945 return 0;
81819f0f 2946 }
73367bd8 2947
81819f0f 2948 s->node[node] = n;
4053497d 2949 init_kmem_cache_node(n);
81819f0f
CL
2950 }
2951 return 1;
2952}
81819f0f 2953
c0bdb232 2954static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2955{
2956 if (min < MIN_PARTIAL)
2957 min = MIN_PARTIAL;
2958 else if (min > MAX_PARTIAL)
2959 min = MAX_PARTIAL;
2960 s->min_partial = min;
2961}
2962
81819f0f
CL
2963/*
2964 * calculate_sizes() determines the order and the distribution of data within
2965 * a slab object.
2966 */
06b285dc 2967static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2968{
2969 unsigned long flags = s->flags;
3b0efdfa 2970 unsigned long size = s->object_size;
834f3d11 2971 int order;
81819f0f 2972
d8b42bf5
CL
2973 /*
2974 * Round up object size to the next word boundary. We can only
2975 * place the free pointer at word boundaries and this determines
2976 * the possible location of the free pointer.
2977 */
2978 size = ALIGN(size, sizeof(void *));
2979
2980#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2981 /*
2982 * Determine if we can poison the object itself. If the user of
2983 * the slab may touch the object after free or before allocation
2984 * then we should never poison the object itself.
2985 */
2986 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2987 !s->ctor)
81819f0f
CL
2988 s->flags |= __OBJECT_POISON;
2989 else
2990 s->flags &= ~__OBJECT_POISON;
2991
81819f0f
CL
2992
2993 /*
672bba3a 2994 * If we are Redzoning then check if there is some space between the
81819f0f 2995 * end of the object and the free pointer. If not then add an
672bba3a 2996 * additional word to have some bytes to store Redzone information.
81819f0f 2997 */
3b0efdfa 2998 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 2999 size += sizeof(void *);
41ecc55b 3000#endif
81819f0f
CL
3001
3002 /*
672bba3a
CL
3003 * With that we have determined the number of bytes in actual use
3004 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3005 */
3006 s->inuse = size;
3007
3008 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 3009 s->ctor)) {
81819f0f
CL
3010 /*
3011 * Relocate free pointer after the object if it is not
3012 * permitted to overwrite the first word of the object on
3013 * kmem_cache_free.
3014 *
3015 * This is the case if we do RCU, have a constructor or
3016 * destructor or are poisoning the objects.
3017 */
3018 s->offset = size;
3019 size += sizeof(void *);
3020 }
3021
c12b3c62 3022#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3023 if (flags & SLAB_STORE_USER)
3024 /*
3025 * Need to store information about allocs and frees after
3026 * the object.
3027 */
3028 size += 2 * sizeof(struct track);
3029
be7b3fbc 3030 if (flags & SLAB_RED_ZONE)
81819f0f
CL
3031 /*
3032 * Add some empty padding so that we can catch
3033 * overwrites from earlier objects rather than let
3034 * tracking information or the free pointer be
0211a9c8 3035 * corrupted if a user writes before the start
81819f0f
CL
3036 * of the object.
3037 */
3038 size += sizeof(void *);
41ecc55b 3039#endif
672bba3a 3040
81819f0f
CL
3041 /*
3042 * SLUB stores one object immediately after another beginning from
3043 * offset 0. In order to align the objects we have to simply size
3044 * each object to conform to the alignment.
3045 */
45906855 3046 size = ALIGN(size, s->align);
81819f0f 3047 s->size = size;
06b285dc
CL
3048 if (forced_order >= 0)
3049 order = forced_order;
3050 else
ab9a0f19 3051 order = calculate_order(size, s->reserved);
81819f0f 3052
834f3d11 3053 if (order < 0)
81819f0f
CL
3054 return 0;
3055
b7a49f0d 3056 s->allocflags = 0;
834f3d11 3057 if (order)
b7a49f0d
CL
3058 s->allocflags |= __GFP_COMP;
3059
3060 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3061 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3062
3063 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3064 s->allocflags |= __GFP_RECLAIMABLE;
3065
81819f0f
CL
3066 /*
3067 * Determine the number of objects per slab
3068 */
ab9a0f19
LJ
3069 s->oo = oo_make(order, size, s->reserved);
3070 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3071 if (oo_objects(s->oo) > oo_objects(s->max))
3072 s->max = s->oo;
81819f0f 3073
834f3d11 3074 return !!oo_objects(s->oo);
81819f0f
CL
3075}
3076
8a13a4cc 3077static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3078{
8a13a4cc 3079 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3080 s->reserved = 0;
81819f0f 3081
da9a638c
LJ
3082 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3083 s->reserved = sizeof(struct rcu_head);
81819f0f 3084
06b285dc 3085 if (!calculate_sizes(s, -1))
81819f0f 3086 goto error;
3de47213
DR
3087 if (disable_higher_order_debug) {
3088 /*
3089 * Disable debugging flags that store metadata if the min slab
3090 * order increased.
3091 */
3b0efdfa 3092 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3093 s->flags &= ~DEBUG_METADATA_FLAGS;
3094 s->offset = 0;
3095 if (!calculate_sizes(s, -1))
3096 goto error;
3097 }
3098 }
81819f0f 3099
2565409f
HC
3100#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3101 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3102 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3103 /* Enable fast mode */
3104 s->flags |= __CMPXCHG_DOUBLE;
3105#endif
3106
3b89d7d8
DR
3107 /*
3108 * The larger the object size is, the more pages we want on the partial
3109 * list to avoid pounding the page allocator excessively.
3110 */
49e22585
CL
3111 set_min_partial(s, ilog2(s->size) / 2);
3112
3113 /*
3114 * cpu_partial determined the maximum number of objects kept in the
3115 * per cpu partial lists of a processor.
3116 *
3117 * Per cpu partial lists mainly contain slabs that just have one
3118 * object freed. If they are used for allocation then they can be
3119 * filled up again with minimal effort. The slab will never hit the
3120 * per node partial lists and therefore no locking will be required.
3121 *
3122 * This setting also determines
3123 *
3124 * A) The number of objects from per cpu partial slabs dumped to the
3125 * per node list when we reach the limit.
9f264904 3126 * B) The number of objects in cpu partial slabs to extract from the
d0e0ac97
CG
3127 * per node list when we run out of per cpu objects. We only fetch
3128 * 50% to keep some capacity around for frees.
49e22585 3129 */
345c905d 3130 if (!kmem_cache_has_cpu_partial(s))
8f1e33da
CL
3131 s->cpu_partial = 0;
3132 else if (s->size >= PAGE_SIZE)
49e22585
CL
3133 s->cpu_partial = 2;
3134 else if (s->size >= 1024)
3135 s->cpu_partial = 6;
3136 else if (s->size >= 256)
3137 s->cpu_partial = 13;
3138 else
3139 s->cpu_partial = 30;
3140
81819f0f 3141#ifdef CONFIG_NUMA
e2cb96b7 3142 s->remote_node_defrag_ratio = 1000;
81819f0f 3143#endif
55136592 3144 if (!init_kmem_cache_nodes(s))
dfb4f096 3145 goto error;
81819f0f 3146
55136592 3147 if (alloc_kmem_cache_cpus(s))
278b1bb1 3148 return 0;
ff12059e 3149
4c93c355 3150 free_kmem_cache_nodes(s);
81819f0f
CL
3151error:
3152 if (flags & SLAB_PANIC)
3153 panic("Cannot create slab %s size=%lu realsize=%u "
3154 "order=%u offset=%u flags=%lx\n",
d0e0ac97
CG
3155 s->name, (unsigned long)s->size, s->size,
3156 oo_order(s->oo), s->offset, flags);
278b1bb1 3157 return -EINVAL;
81819f0f 3158}
81819f0f 3159
33b12c38
CL
3160static void list_slab_objects(struct kmem_cache *s, struct page *page,
3161 const char *text)
3162{
3163#ifdef CONFIG_SLUB_DEBUG
3164 void *addr = page_address(page);
3165 void *p;
a5dd5c11
NK
3166 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3167 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3168 if (!map)
3169 return;
945cf2b6 3170 slab_err(s, page, text, s->name);
33b12c38 3171 slab_lock(page);
33b12c38 3172
5f80b13a 3173 get_map(s, page, map);
33b12c38
CL
3174 for_each_object(p, s, addr, page->objects) {
3175
3176 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3177 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3178 print_tracking(s, p);
3179 }
3180 }
3181 slab_unlock(page);
bbd7d57b 3182 kfree(map);
33b12c38
CL
3183#endif
3184}
3185
81819f0f 3186/*
599870b1 3187 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3188 * This is called from kmem_cache_close(). We must be the last thread
3189 * using the cache and therefore we do not need to lock anymore.
81819f0f 3190 */
599870b1 3191static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3192{
81819f0f
CL
3193 struct page *page, *h;
3194
33b12c38 3195 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3196 if (!page->inuse) {
1e4dd946 3197 __remove_partial(n, page);
81819f0f 3198 discard_slab(s, page);
33b12c38
CL
3199 } else {
3200 list_slab_objects(s, page,
945cf2b6 3201 "Objects remaining in %s on kmem_cache_close()");
599870b1 3202 }
33b12c38 3203 }
81819f0f
CL
3204}
3205
3206/*
672bba3a 3207 * Release all resources used by a slab cache.
81819f0f 3208 */
0c710013 3209static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3210{
3211 int node;
3212
3213 flush_all(s);
81819f0f 3214 /* Attempt to free all objects */
f64dc58c 3215 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3216 struct kmem_cache_node *n = get_node(s, node);
3217
599870b1
CL
3218 free_partial(s, n);
3219 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3220 return 1;
3221 }
945cf2b6 3222 free_percpu(s->cpu_slab);
81819f0f
CL
3223 free_kmem_cache_nodes(s);
3224 return 0;
3225}
3226
945cf2b6 3227int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f 3228{
41a21285 3229 return kmem_cache_close(s);
81819f0f 3230}
81819f0f
CL
3231
3232/********************************************************************
3233 * Kmalloc subsystem
3234 *******************************************************************/
3235
81819f0f
CL
3236static int __init setup_slub_min_order(char *str)
3237{
06428780 3238 get_option(&str, &slub_min_order);
81819f0f
CL
3239
3240 return 1;
3241}
3242
3243__setup("slub_min_order=", setup_slub_min_order);
3244
3245static int __init setup_slub_max_order(char *str)
3246{
06428780 3247 get_option(&str, &slub_max_order);
818cf590 3248 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3249
3250 return 1;
3251}
3252
3253__setup("slub_max_order=", setup_slub_max_order);
3254
3255static int __init setup_slub_min_objects(char *str)
3256{
06428780 3257 get_option(&str, &slub_min_objects);
81819f0f
CL
3258
3259 return 1;
3260}
3261
3262__setup("slub_min_objects=", setup_slub_min_objects);
3263
3264static int __init setup_slub_nomerge(char *str)
3265{
3266 slub_nomerge = 1;
3267 return 1;
3268}
3269
3270__setup("slub_nomerge", setup_slub_nomerge);
3271
81819f0f
CL
3272void *__kmalloc(size_t size, gfp_t flags)
3273{
aadb4bc4 3274 struct kmem_cache *s;
5b882be4 3275 void *ret;
81819f0f 3276
95a05b42 3277 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3278 return kmalloc_large(size, flags);
aadb4bc4 3279
2c59dd65 3280 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3281
3282 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3283 return s;
3284
2b847c3c 3285 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3286
ca2b84cb 3287 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3288
3289 return ret;
81819f0f
CL
3290}
3291EXPORT_SYMBOL(__kmalloc);
3292
5d1f57e4 3293#ifdef CONFIG_NUMA
f619cfe1
CL
3294static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3295{
b1eeab67 3296 struct page *page;
e4f7c0b4 3297 void *ptr = NULL;
f619cfe1 3298
d79923fa 3299 flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
b1eeab67 3300 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3301 if (page)
e4f7c0b4
CM
3302 ptr = page_address(page);
3303
d56791b3 3304 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3305 return ptr;
f619cfe1
CL
3306}
3307
81819f0f
CL
3308void *__kmalloc_node(size_t size, gfp_t flags, int node)
3309{
aadb4bc4 3310 struct kmem_cache *s;
5b882be4 3311 void *ret;
81819f0f 3312
95a05b42 3313 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3314 ret = kmalloc_large_node(size, flags, node);
3315
ca2b84cb
EGM
3316 trace_kmalloc_node(_RET_IP_, ret,
3317 size, PAGE_SIZE << get_order(size),
3318 flags, node);
5b882be4
EGM
3319
3320 return ret;
3321 }
aadb4bc4 3322
2c59dd65 3323 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3324
3325 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3326 return s;
3327
2b847c3c 3328 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3329
ca2b84cb 3330 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3331
3332 return ret;
81819f0f
CL
3333}
3334EXPORT_SYMBOL(__kmalloc_node);
3335#endif
3336
3337size_t ksize(const void *object)
3338{
272c1d21 3339 struct page *page;
81819f0f 3340
ef8b4520 3341 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3342 return 0;
3343
294a80a8 3344 page = virt_to_head_page(object);
294a80a8 3345
76994412
PE
3346 if (unlikely(!PageSlab(page))) {
3347 WARN_ON(!PageCompound(page));
294a80a8 3348 return PAGE_SIZE << compound_order(page);
76994412 3349 }
81819f0f 3350
1b4f59e3 3351 return slab_ksize(page->slab_cache);
81819f0f 3352}
b1aabecd 3353EXPORT_SYMBOL(ksize);
81819f0f
CL
3354
3355void kfree(const void *x)
3356{
81819f0f 3357 struct page *page;
5bb983b0 3358 void *object = (void *)x;
81819f0f 3359
2121db74
PE
3360 trace_kfree(_RET_IP_, x);
3361
2408c550 3362 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3363 return;
3364
b49af68f 3365 page = virt_to_head_page(x);
aadb4bc4 3366 if (unlikely(!PageSlab(page))) {
0937502a 3367 BUG_ON(!PageCompound(page));
d56791b3 3368 kfree_hook(x);
d79923fa 3369 __free_memcg_kmem_pages(page, compound_order(page));
aadb4bc4
CL
3370 return;
3371 }
1b4f59e3 3372 slab_free(page->slab_cache, page, object, _RET_IP_);
81819f0f
CL
3373}
3374EXPORT_SYMBOL(kfree);
3375
2086d26a 3376/*
672bba3a
CL
3377 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3378 * the remaining slabs by the number of items in use. The slabs with the
3379 * most items in use come first. New allocations will then fill those up
3380 * and thus they can be removed from the partial lists.
3381 *
3382 * The slabs with the least items are placed last. This results in them
3383 * being allocated from last increasing the chance that the last objects
3384 * are freed in them.
2086d26a
CL
3385 */
3386int kmem_cache_shrink(struct kmem_cache *s)
3387{
3388 int node;
3389 int i;
3390 struct kmem_cache_node *n;
3391 struct page *page;
3392 struct page *t;
205ab99d 3393 int objects = oo_objects(s->max);
2086d26a 3394 struct list_head *slabs_by_inuse =
834f3d11 3395 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3396 unsigned long flags;
3397
3398 if (!slabs_by_inuse)
3399 return -ENOMEM;
3400
3401 flush_all(s);
f64dc58c 3402 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3403 n = get_node(s, node);
3404
3405 if (!n->nr_partial)
3406 continue;
3407
834f3d11 3408 for (i = 0; i < objects; i++)
2086d26a
CL
3409 INIT_LIST_HEAD(slabs_by_inuse + i);
3410
3411 spin_lock_irqsave(&n->list_lock, flags);
3412
3413 /*
672bba3a 3414 * Build lists indexed by the items in use in each slab.
2086d26a 3415 *
672bba3a
CL
3416 * Note that concurrent frees may occur while we hold the
3417 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3418 */
3419 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3420 list_move(&page->lru, slabs_by_inuse + page->inuse);
3421 if (!page->inuse)
3422 n->nr_partial--;
2086d26a
CL
3423 }
3424
2086d26a 3425 /*
672bba3a
CL
3426 * Rebuild the partial list with the slabs filled up most
3427 * first and the least used slabs at the end.
2086d26a 3428 */
69cb8e6b 3429 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3430 list_splice(slabs_by_inuse + i, n->partial.prev);
3431
2086d26a 3432 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3433
3434 /* Release empty slabs */
3435 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3436 discard_slab(s, page);
2086d26a
CL
3437 }
3438
3439 kfree(slabs_by_inuse);
3440 return 0;
3441}
3442EXPORT_SYMBOL(kmem_cache_shrink);
3443
b9049e23
YG
3444static int slab_mem_going_offline_callback(void *arg)
3445{
3446 struct kmem_cache *s;
3447
18004c5d 3448 mutex_lock(&slab_mutex);
b9049e23
YG
3449 list_for_each_entry(s, &slab_caches, list)
3450 kmem_cache_shrink(s);
18004c5d 3451 mutex_unlock(&slab_mutex);
b9049e23
YG
3452
3453 return 0;
3454}
3455
3456static void slab_mem_offline_callback(void *arg)
3457{
3458 struct kmem_cache_node *n;
3459 struct kmem_cache *s;
3460 struct memory_notify *marg = arg;
3461 int offline_node;
3462
b9d5ab25 3463 offline_node = marg->status_change_nid_normal;
b9049e23
YG
3464
3465 /*
3466 * If the node still has available memory. we need kmem_cache_node
3467 * for it yet.
3468 */
3469 if (offline_node < 0)
3470 return;
3471
18004c5d 3472 mutex_lock(&slab_mutex);
b9049e23
YG
3473 list_for_each_entry(s, &slab_caches, list) {
3474 n = get_node(s, offline_node);
3475 if (n) {
3476 /*
3477 * if n->nr_slabs > 0, slabs still exist on the node
3478 * that is going down. We were unable to free them,
c9404c9c 3479 * and offline_pages() function shouldn't call this
b9049e23
YG
3480 * callback. So, we must fail.
3481 */
0f389ec6 3482 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3483
3484 s->node[offline_node] = NULL;
8de66a0c 3485 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3486 }
3487 }
18004c5d 3488 mutex_unlock(&slab_mutex);
b9049e23
YG
3489}
3490
3491static int slab_mem_going_online_callback(void *arg)
3492{
3493 struct kmem_cache_node *n;
3494 struct kmem_cache *s;
3495 struct memory_notify *marg = arg;
b9d5ab25 3496 int nid = marg->status_change_nid_normal;
b9049e23
YG
3497 int ret = 0;
3498
3499 /*
3500 * If the node's memory is already available, then kmem_cache_node is
3501 * already created. Nothing to do.
3502 */
3503 if (nid < 0)
3504 return 0;
3505
3506 /*
0121c619 3507 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3508 * allocate a kmem_cache_node structure in order to bring the node
3509 * online.
3510 */
18004c5d 3511 mutex_lock(&slab_mutex);
b9049e23
YG
3512 list_for_each_entry(s, &slab_caches, list) {
3513 /*
3514 * XXX: kmem_cache_alloc_node will fallback to other nodes
3515 * since memory is not yet available from the node that
3516 * is brought up.
3517 */
8de66a0c 3518 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3519 if (!n) {
3520 ret = -ENOMEM;
3521 goto out;
3522 }
4053497d 3523 init_kmem_cache_node(n);
b9049e23
YG
3524 s->node[nid] = n;
3525 }
3526out:
18004c5d 3527 mutex_unlock(&slab_mutex);
b9049e23
YG
3528 return ret;
3529}
3530
3531static int slab_memory_callback(struct notifier_block *self,
3532 unsigned long action, void *arg)
3533{
3534 int ret = 0;
3535
3536 switch (action) {
3537 case MEM_GOING_ONLINE:
3538 ret = slab_mem_going_online_callback(arg);
3539 break;
3540 case MEM_GOING_OFFLINE:
3541 ret = slab_mem_going_offline_callback(arg);
3542 break;
3543 case MEM_OFFLINE:
3544 case MEM_CANCEL_ONLINE:
3545 slab_mem_offline_callback(arg);
3546 break;
3547 case MEM_ONLINE:
3548 case MEM_CANCEL_OFFLINE:
3549 break;
3550 }
dc19f9db
KH
3551 if (ret)
3552 ret = notifier_from_errno(ret);
3553 else
3554 ret = NOTIFY_OK;
b9049e23
YG
3555 return ret;
3556}
3557
3ac38faa
AM
3558static struct notifier_block slab_memory_callback_nb = {
3559 .notifier_call = slab_memory_callback,
3560 .priority = SLAB_CALLBACK_PRI,
3561};
b9049e23 3562
81819f0f
CL
3563/********************************************************************
3564 * Basic setup of slabs
3565 *******************************************************************/
3566
51df1142
CL
3567/*
3568 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
3569 * the page allocator. Allocate them properly then fix up the pointers
3570 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
3571 */
3572
dffb4d60 3573static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
3574{
3575 int node;
dffb4d60 3576 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
51df1142 3577
dffb4d60 3578 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 3579
7d557b3c
GC
3580 /*
3581 * This runs very early, and only the boot processor is supposed to be
3582 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3583 * IPIs around.
3584 */
3585 __flush_cpu_slab(s, smp_processor_id());
51df1142
CL
3586 for_each_node_state(node, N_NORMAL_MEMORY) {
3587 struct kmem_cache_node *n = get_node(s, node);
3588 struct page *p;
3589
3590 if (n) {
3591 list_for_each_entry(p, &n->partial, lru)
1b4f59e3 3592 p->slab_cache = s;
51df1142 3593
607bf324 3594#ifdef CONFIG_SLUB_DEBUG
51df1142 3595 list_for_each_entry(p, &n->full, lru)
1b4f59e3 3596 p->slab_cache = s;
51df1142
CL
3597#endif
3598 }
3599 }
dffb4d60
CL
3600 list_add(&s->list, &slab_caches);
3601 return s;
51df1142
CL
3602}
3603
81819f0f
CL
3604void __init kmem_cache_init(void)
3605{
dffb4d60
CL
3606 static __initdata struct kmem_cache boot_kmem_cache,
3607 boot_kmem_cache_node;
51df1142 3608
fc8d8620
SG
3609 if (debug_guardpage_minorder())
3610 slub_max_order = 0;
3611
dffb4d60
CL
3612 kmem_cache_node = &boot_kmem_cache_node;
3613 kmem_cache = &boot_kmem_cache;
51df1142 3614
dffb4d60
CL
3615 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3616 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 3617
3ac38faa 3618 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
3619
3620 /* Able to allocate the per node structures */
3621 slab_state = PARTIAL;
3622
dffb4d60
CL
3623 create_boot_cache(kmem_cache, "kmem_cache",
3624 offsetof(struct kmem_cache, node) +
3625 nr_node_ids * sizeof(struct kmem_cache_node *),
3626 SLAB_HWCACHE_ALIGN);
8a13a4cc 3627
dffb4d60 3628 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 3629
51df1142
CL
3630 /*
3631 * Allocate kmem_cache_node properly from the kmem_cache slab.
3632 * kmem_cache_node is separately allocated so no need to
3633 * update any list pointers.
3634 */
dffb4d60 3635 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
3636
3637 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f97d5f63 3638 create_kmalloc_caches(0);
81819f0f
CL
3639
3640#ifdef CONFIG_SMP
3641 register_cpu_notifier(&slab_notifier);
9dfc6e68 3642#endif
81819f0f 3643
f9f58285 3644 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
f97d5f63 3645 cache_line_size(),
81819f0f
CL
3646 slub_min_order, slub_max_order, slub_min_objects,
3647 nr_cpu_ids, nr_node_ids);
3648}
3649
7e85ee0c
PE
3650void __init kmem_cache_init_late(void)
3651{
7e85ee0c
PE
3652}
3653
81819f0f
CL
3654/*
3655 * Find a mergeable slab cache
3656 */
3657static int slab_unmergeable(struct kmem_cache *s)
3658{
3659 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3660 return 1;
3661
a44cb944
VD
3662 if (!is_root_cache(s))
3663 return 1;
3664
c59def9f 3665 if (s->ctor)
81819f0f
CL
3666 return 1;
3667
8ffa6875
CL
3668 /*
3669 * We may have set a slab to be unmergeable during bootstrap.
3670 */
3671 if (s->refcount < 0)
3672 return 1;
3673
81819f0f
CL
3674 return 0;
3675}
3676
a44cb944
VD
3677static struct kmem_cache *find_mergeable(size_t size, size_t align,
3678 unsigned long flags, const char *name, void (*ctor)(void *))
81819f0f 3679{
5b95a4ac 3680 struct kmem_cache *s;
81819f0f
CL
3681
3682 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3683 return NULL;
3684
c59def9f 3685 if (ctor)
81819f0f
CL
3686 return NULL;
3687
3688 size = ALIGN(size, sizeof(void *));
3689 align = calculate_alignment(flags, align, size);
3690 size = ALIGN(size, align);
ba0268a8 3691 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3692
5b95a4ac 3693 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3694 if (slab_unmergeable(s))
3695 continue;
3696
3697 if (size > s->size)
3698 continue;
3699
ba0268a8 3700 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
a44cb944 3701 continue;
81819f0f
CL
3702 /*
3703 * Check if alignment is compatible.
3704 * Courtesy of Adrian Drzewiecki
3705 */
06428780 3706 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3707 continue;
3708
3709 if (s->size - size >= sizeof(void *))
3710 continue;
3711
3712 return s;
3713 }
3714 return NULL;
3715}
3716
2633d7a0 3717struct kmem_cache *
a44cb944
VD
3718__kmem_cache_alias(const char *name, size_t size, size_t align,
3719 unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3720{
3721 struct kmem_cache *s;
3722
a44cb944 3723 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 3724 if (s) {
84d0ddd6
VD
3725 int i;
3726 struct kmem_cache *c;
3727
81819f0f 3728 s->refcount++;
84d0ddd6 3729
81819f0f
CL
3730 /*
3731 * Adjust the object sizes so that we clear
3732 * the complete object on kzalloc.
3733 */
3b0efdfa 3734 s->object_size = max(s->object_size, (int)size);
81819f0f 3735 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3736
84d0ddd6
VD
3737 for_each_memcg_cache_index(i) {
3738 c = cache_from_memcg_idx(s, i);
3739 if (!c)
3740 continue;
3741 c->object_size = s->object_size;
3742 c->inuse = max_t(int, c->inuse,
3743 ALIGN(size, sizeof(void *)));
3744 }
3745
7b8f3b66 3746 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3747 s->refcount--;
cbb79694 3748 s = NULL;
7b8f3b66 3749 }
a0e1d1be 3750 }
6446faa2 3751
cbb79694
CL
3752 return s;
3753}
84c1cf62 3754
8a13a4cc 3755int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 3756{
aac3a166
PE
3757 int err;
3758
3759 err = kmem_cache_open(s, flags);
3760 if (err)
3761 return err;
20cea968 3762
45530c44
CL
3763 /* Mutex is not taken during early boot */
3764 if (slab_state <= UP)
3765 return 0;
3766
107dab5c 3767 memcg_propagate_slab_attrs(s);
aac3a166 3768 err = sysfs_slab_add(s);
aac3a166
PE
3769 if (err)
3770 kmem_cache_close(s);
20cea968 3771
aac3a166 3772 return err;
81819f0f 3773}
81819f0f 3774
81819f0f 3775#ifdef CONFIG_SMP
81819f0f 3776/*
672bba3a
CL
3777 * Use the cpu notifier to insure that the cpu slabs are flushed when
3778 * necessary.
81819f0f 3779 */
0db0628d 3780static int slab_cpuup_callback(struct notifier_block *nfb,
81819f0f
CL
3781 unsigned long action, void *hcpu)
3782{
3783 long cpu = (long)hcpu;
5b95a4ac
CL
3784 struct kmem_cache *s;
3785 unsigned long flags;
81819f0f
CL
3786
3787 switch (action) {
3788 case CPU_UP_CANCELED:
8bb78442 3789 case CPU_UP_CANCELED_FROZEN:
81819f0f 3790 case CPU_DEAD:
8bb78442 3791 case CPU_DEAD_FROZEN:
18004c5d 3792 mutex_lock(&slab_mutex);
5b95a4ac
CL
3793 list_for_each_entry(s, &slab_caches, list) {
3794 local_irq_save(flags);
3795 __flush_cpu_slab(s, cpu);
3796 local_irq_restore(flags);
3797 }
18004c5d 3798 mutex_unlock(&slab_mutex);
81819f0f
CL
3799 break;
3800 default:
3801 break;
3802 }
3803 return NOTIFY_OK;
3804}
3805
0db0628d 3806static struct notifier_block slab_notifier = {
3adbefee 3807 .notifier_call = slab_cpuup_callback
06428780 3808};
81819f0f
CL
3809
3810#endif
3811
ce71e27c 3812void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3813{
aadb4bc4 3814 struct kmem_cache *s;
94b528d0 3815 void *ret;
aadb4bc4 3816
95a05b42 3817 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
3818 return kmalloc_large(size, gfpflags);
3819
2c59dd65 3820 s = kmalloc_slab(size, gfpflags);
81819f0f 3821
2408c550 3822 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3823 return s;
81819f0f 3824
2b847c3c 3825 ret = slab_alloc(s, gfpflags, caller);
94b528d0 3826
25985edc 3827 /* Honor the call site pointer we received. */
ca2b84cb 3828 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3829
3830 return ret;
81819f0f
CL
3831}
3832
5d1f57e4 3833#ifdef CONFIG_NUMA
81819f0f 3834void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3835 int node, unsigned long caller)
81819f0f 3836{
aadb4bc4 3837 struct kmem_cache *s;
94b528d0 3838 void *ret;
aadb4bc4 3839
95a05b42 3840 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
3841 ret = kmalloc_large_node(size, gfpflags, node);
3842
3843 trace_kmalloc_node(caller, ret,
3844 size, PAGE_SIZE << get_order(size),
3845 gfpflags, node);
3846
3847 return ret;
3848 }
eada35ef 3849
2c59dd65 3850 s = kmalloc_slab(size, gfpflags);
81819f0f 3851
2408c550 3852 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3853 return s;
81819f0f 3854
2b847c3c 3855 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 3856
25985edc 3857 /* Honor the call site pointer we received. */
ca2b84cb 3858 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3859
3860 return ret;
81819f0f 3861}
5d1f57e4 3862#endif
81819f0f 3863
ab4d5ed5 3864#ifdef CONFIG_SYSFS
205ab99d
CL
3865static int count_inuse(struct page *page)
3866{
3867 return page->inuse;
3868}
3869
3870static int count_total(struct page *page)
3871{
3872 return page->objects;
3873}
ab4d5ed5 3874#endif
205ab99d 3875
ab4d5ed5 3876#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3877static int validate_slab(struct kmem_cache *s, struct page *page,
3878 unsigned long *map)
53e15af0
CL
3879{
3880 void *p;
a973e9dd 3881 void *addr = page_address(page);
53e15af0
CL
3882
3883 if (!check_slab(s, page) ||
3884 !on_freelist(s, page, NULL))
3885 return 0;
3886
3887 /* Now we know that a valid freelist exists */
39b26464 3888 bitmap_zero(map, page->objects);
53e15af0 3889
5f80b13a
CL
3890 get_map(s, page, map);
3891 for_each_object(p, s, addr, page->objects) {
3892 if (test_bit(slab_index(p, s, addr), map))
3893 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3894 return 0;
53e15af0
CL
3895 }
3896
224a88be 3897 for_each_object(p, s, addr, page->objects)
7656c72b 3898 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3899 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3900 return 0;
3901 return 1;
3902}
3903
434e245d
CL
3904static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3905 unsigned long *map)
53e15af0 3906{
881db7fb
CL
3907 slab_lock(page);
3908 validate_slab(s, page, map);
3909 slab_unlock(page);
53e15af0
CL
3910}
3911
434e245d
CL
3912static int validate_slab_node(struct kmem_cache *s,
3913 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3914{
3915 unsigned long count = 0;
3916 struct page *page;
3917 unsigned long flags;
3918
3919 spin_lock_irqsave(&n->list_lock, flags);
3920
3921 list_for_each_entry(page, &n->partial, lru) {
434e245d 3922 validate_slab_slab(s, page, map);
53e15af0
CL
3923 count++;
3924 }
3925 if (count != n->nr_partial)
f9f58285
FF
3926 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
3927 s->name, count, n->nr_partial);
53e15af0
CL
3928
3929 if (!(s->flags & SLAB_STORE_USER))
3930 goto out;
3931
3932 list_for_each_entry(page, &n->full, lru) {
434e245d 3933 validate_slab_slab(s, page, map);
53e15af0
CL
3934 count++;
3935 }
3936 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
3937 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
3938 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
3939
3940out:
3941 spin_unlock_irqrestore(&n->list_lock, flags);
3942 return count;
3943}
3944
434e245d 3945static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3946{
3947 int node;
3948 unsigned long count = 0;
205ab99d 3949 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3950 sizeof(unsigned long), GFP_KERNEL);
3951
3952 if (!map)
3953 return -ENOMEM;
53e15af0
CL
3954
3955 flush_all(s);
f64dc58c 3956 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3957 struct kmem_cache_node *n = get_node(s, node);
3958
434e245d 3959 count += validate_slab_node(s, n, map);
53e15af0 3960 }
434e245d 3961 kfree(map);
53e15af0
CL
3962 return count;
3963}
88a420e4 3964/*
672bba3a 3965 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3966 * and freed.
3967 */
3968
3969struct location {
3970 unsigned long count;
ce71e27c 3971 unsigned long addr;
45edfa58
CL
3972 long long sum_time;
3973 long min_time;
3974 long max_time;
3975 long min_pid;
3976 long max_pid;
174596a0 3977 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3978 nodemask_t nodes;
88a420e4
CL
3979};
3980
3981struct loc_track {
3982 unsigned long max;
3983 unsigned long count;
3984 struct location *loc;
3985};
3986
3987static void free_loc_track(struct loc_track *t)
3988{
3989 if (t->max)
3990 free_pages((unsigned long)t->loc,
3991 get_order(sizeof(struct location) * t->max));
3992}
3993
68dff6a9 3994static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3995{
3996 struct location *l;
3997 int order;
3998
88a420e4
CL
3999 order = get_order(sizeof(struct location) * max);
4000
68dff6a9 4001 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4002 if (!l)
4003 return 0;
4004
4005 if (t->count) {
4006 memcpy(l, t->loc, sizeof(struct location) * t->count);
4007 free_loc_track(t);
4008 }
4009 t->max = max;
4010 t->loc = l;
4011 return 1;
4012}
4013
4014static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4015 const struct track *track)
88a420e4
CL
4016{
4017 long start, end, pos;
4018 struct location *l;
ce71e27c 4019 unsigned long caddr;
45edfa58 4020 unsigned long age = jiffies - track->when;
88a420e4
CL
4021
4022 start = -1;
4023 end = t->count;
4024
4025 for ( ; ; ) {
4026 pos = start + (end - start + 1) / 2;
4027
4028 /*
4029 * There is nothing at "end". If we end up there
4030 * we need to add something to before end.
4031 */
4032 if (pos == end)
4033 break;
4034
4035 caddr = t->loc[pos].addr;
45edfa58
CL
4036 if (track->addr == caddr) {
4037
4038 l = &t->loc[pos];
4039 l->count++;
4040 if (track->when) {
4041 l->sum_time += age;
4042 if (age < l->min_time)
4043 l->min_time = age;
4044 if (age > l->max_time)
4045 l->max_time = age;
4046
4047 if (track->pid < l->min_pid)
4048 l->min_pid = track->pid;
4049 if (track->pid > l->max_pid)
4050 l->max_pid = track->pid;
4051
174596a0
RR
4052 cpumask_set_cpu(track->cpu,
4053 to_cpumask(l->cpus));
45edfa58
CL
4054 }
4055 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4056 return 1;
4057 }
4058
45edfa58 4059 if (track->addr < caddr)
88a420e4
CL
4060 end = pos;
4061 else
4062 start = pos;
4063 }
4064
4065 /*
672bba3a 4066 * Not found. Insert new tracking element.
88a420e4 4067 */
68dff6a9 4068 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4069 return 0;
4070
4071 l = t->loc + pos;
4072 if (pos < t->count)
4073 memmove(l + 1, l,
4074 (t->count - pos) * sizeof(struct location));
4075 t->count++;
4076 l->count = 1;
45edfa58
CL
4077 l->addr = track->addr;
4078 l->sum_time = age;
4079 l->min_time = age;
4080 l->max_time = age;
4081 l->min_pid = track->pid;
4082 l->max_pid = track->pid;
174596a0
RR
4083 cpumask_clear(to_cpumask(l->cpus));
4084 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4085 nodes_clear(l->nodes);
4086 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4087 return 1;
4088}
4089
4090static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4091 struct page *page, enum track_item alloc,
a5dd5c11 4092 unsigned long *map)
88a420e4 4093{
a973e9dd 4094 void *addr = page_address(page);
88a420e4
CL
4095 void *p;
4096
39b26464 4097 bitmap_zero(map, page->objects);
5f80b13a 4098 get_map(s, page, map);
88a420e4 4099
224a88be 4100 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4101 if (!test_bit(slab_index(p, s, addr), map))
4102 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4103}
4104
4105static int list_locations(struct kmem_cache *s, char *buf,
4106 enum track_item alloc)
4107{
e374d483 4108 int len = 0;
88a420e4 4109 unsigned long i;
68dff6a9 4110 struct loc_track t = { 0, 0, NULL };
88a420e4 4111 int node;
bbd7d57b
ED
4112 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4113 sizeof(unsigned long), GFP_KERNEL);
88a420e4 4114
bbd7d57b
ED
4115 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4116 GFP_TEMPORARY)) {
4117 kfree(map);
68dff6a9 4118 return sprintf(buf, "Out of memory\n");
bbd7d57b 4119 }
88a420e4
CL
4120 /* Push back cpu slabs */
4121 flush_all(s);
4122
f64dc58c 4123 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
4124 struct kmem_cache_node *n = get_node(s, node);
4125 unsigned long flags;
4126 struct page *page;
4127
9e86943b 4128 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4129 continue;
4130
4131 spin_lock_irqsave(&n->list_lock, flags);
4132 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4133 process_slab(&t, s, page, alloc, map);
88a420e4 4134 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4135 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4136 spin_unlock_irqrestore(&n->list_lock, flags);
4137 }
4138
4139 for (i = 0; i < t.count; i++) {
45edfa58 4140 struct location *l = &t.loc[i];
88a420e4 4141
9c246247 4142 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4143 break;
e374d483 4144 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4145
4146 if (l->addr)
62c70bce 4147 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4148 else
e374d483 4149 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4150
4151 if (l->sum_time != l->min_time) {
e374d483 4152 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4153 l->min_time,
4154 (long)div_u64(l->sum_time, l->count),
4155 l->max_time);
45edfa58 4156 } else
e374d483 4157 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4158 l->min_time);
4159
4160 if (l->min_pid != l->max_pid)
e374d483 4161 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4162 l->min_pid, l->max_pid);
4163 else
e374d483 4164 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4165 l->min_pid);
4166
174596a0
RR
4167 if (num_online_cpus() > 1 &&
4168 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4169 len < PAGE_SIZE - 60) {
4170 len += sprintf(buf + len, " cpus=");
d0e0ac97
CG
4171 len += cpulist_scnprintf(buf + len,
4172 PAGE_SIZE - len - 50,
174596a0 4173 to_cpumask(l->cpus));
45edfa58
CL
4174 }
4175
62bc62a8 4176 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4177 len < PAGE_SIZE - 60) {
4178 len += sprintf(buf + len, " nodes=");
d0e0ac97
CG
4179 len += nodelist_scnprintf(buf + len,
4180 PAGE_SIZE - len - 50,
4181 l->nodes);
45edfa58
CL
4182 }
4183
e374d483 4184 len += sprintf(buf + len, "\n");
88a420e4
CL
4185 }
4186
4187 free_loc_track(&t);
bbd7d57b 4188 kfree(map);
88a420e4 4189 if (!t.count)
e374d483
HH
4190 len += sprintf(buf, "No data\n");
4191 return len;
88a420e4 4192}
ab4d5ed5 4193#endif
88a420e4 4194
a5a84755
CL
4195#ifdef SLUB_RESILIENCY_TEST
4196static void resiliency_test(void)
4197{
4198 u8 *p;
4199
95a05b42 4200 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4201
f9f58285
FF
4202 pr_err("SLUB resiliency testing\n");
4203 pr_err("-----------------------\n");
4204 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4205
4206 p = kzalloc(16, GFP_KERNEL);
4207 p[16] = 0x12;
f9f58285
FF
4208 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4209 p + 16);
a5a84755
CL
4210
4211 validate_slab_cache(kmalloc_caches[4]);
4212
4213 /* Hmmm... The next two are dangerous */
4214 p = kzalloc(32, GFP_KERNEL);
4215 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4216 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4217 p);
4218 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4219
4220 validate_slab_cache(kmalloc_caches[5]);
4221 p = kzalloc(64, GFP_KERNEL);
4222 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4223 *p = 0x56;
f9f58285
FF
4224 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4225 p);
4226 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4227 validate_slab_cache(kmalloc_caches[6]);
4228
f9f58285 4229 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4230 p = kzalloc(128, GFP_KERNEL);
4231 kfree(p);
4232 *p = 0x78;
f9f58285 4233 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a5a84755
CL
4234 validate_slab_cache(kmalloc_caches[7]);
4235
4236 p = kzalloc(256, GFP_KERNEL);
4237 kfree(p);
4238 p[50] = 0x9a;
f9f58285 4239 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
a5a84755
CL
4240 validate_slab_cache(kmalloc_caches[8]);
4241
4242 p = kzalloc(512, GFP_KERNEL);
4243 kfree(p);
4244 p[512] = 0xab;
f9f58285 4245 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a5a84755
CL
4246 validate_slab_cache(kmalloc_caches[9]);
4247}
4248#else
4249#ifdef CONFIG_SYSFS
4250static void resiliency_test(void) {};
4251#endif
4252#endif
4253
ab4d5ed5 4254#ifdef CONFIG_SYSFS
81819f0f 4255enum slab_stat_type {
205ab99d
CL
4256 SL_ALL, /* All slabs */
4257 SL_PARTIAL, /* Only partially allocated slabs */
4258 SL_CPU, /* Only slabs used for cpu caches */
4259 SL_OBJECTS, /* Determine allocated objects not slabs */
4260 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4261};
4262
205ab99d 4263#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4264#define SO_PARTIAL (1 << SL_PARTIAL)
4265#define SO_CPU (1 << SL_CPU)
4266#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4267#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4268
62e5c4b4
CG
4269static ssize_t show_slab_objects(struct kmem_cache *s,
4270 char *buf, unsigned long flags)
81819f0f
CL
4271{
4272 unsigned long total = 0;
81819f0f
CL
4273 int node;
4274 int x;
4275 unsigned long *nodes;
81819f0f 4276
e35e1a97 4277 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4278 if (!nodes)
4279 return -ENOMEM;
81819f0f 4280
205ab99d
CL
4281 if (flags & SO_CPU) {
4282 int cpu;
81819f0f 4283
205ab99d 4284 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4285 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4286 cpu);
ec3ab083 4287 int node;
49e22585 4288 struct page *page;
dfb4f096 4289
bc6697d8 4290 page = ACCESS_ONCE(c->page);
ec3ab083
CL
4291 if (!page)
4292 continue;
205ab99d 4293
ec3ab083
CL
4294 node = page_to_nid(page);
4295 if (flags & SO_TOTAL)
4296 x = page->objects;
4297 else if (flags & SO_OBJECTS)
4298 x = page->inuse;
4299 else
4300 x = 1;
49e22585 4301
ec3ab083
CL
4302 total += x;
4303 nodes[node] += x;
4304
4305 page = ACCESS_ONCE(c->partial);
49e22585 4306 if (page) {
8afb1474
LZ
4307 node = page_to_nid(page);
4308 if (flags & SO_TOTAL)
4309 WARN_ON_ONCE(1);
4310 else if (flags & SO_OBJECTS)
4311 WARN_ON_ONCE(1);
4312 else
4313 x = page->pages;
bc6697d8
ED
4314 total += x;
4315 nodes[node] += x;
49e22585 4316 }
81819f0f
CL
4317 }
4318 }
4319
04d94879 4320 lock_memory_hotplug();
ab4d5ed5 4321#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4322 if (flags & SO_ALL) {
4323 for_each_node_state(node, N_NORMAL_MEMORY) {
4324 struct kmem_cache_node *n = get_node(s, node);
4325
d0e0ac97
CG
4326 if (flags & SO_TOTAL)
4327 x = atomic_long_read(&n->total_objects);
4328 else if (flags & SO_OBJECTS)
4329 x = atomic_long_read(&n->total_objects) -
4330 count_partial(n, count_free);
81819f0f 4331 else
205ab99d 4332 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4333 total += x;
4334 nodes[node] += x;
4335 }
4336
ab4d5ed5
CL
4337 } else
4338#endif
4339 if (flags & SO_PARTIAL) {
205ab99d
CL
4340 for_each_node_state(node, N_NORMAL_MEMORY) {
4341 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4342
205ab99d
CL
4343 if (flags & SO_TOTAL)
4344 x = count_partial(n, count_total);
4345 else if (flags & SO_OBJECTS)
4346 x = count_partial(n, count_inuse);
81819f0f 4347 else
205ab99d 4348 x = n->nr_partial;
81819f0f
CL
4349 total += x;
4350 nodes[node] += x;
4351 }
4352 }
81819f0f
CL
4353 x = sprintf(buf, "%lu", total);
4354#ifdef CONFIG_NUMA
f64dc58c 4355 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4356 if (nodes[node])
4357 x += sprintf(buf + x, " N%d=%lu",
4358 node, nodes[node]);
4359#endif
04d94879 4360 unlock_memory_hotplug();
81819f0f
CL
4361 kfree(nodes);
4362 return x + sprintf(buf + x, "\n");
4363}
4364
ab4d5ed5 4365#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4366static int any_slab_objects(struct kmem_cache *s)
4367{
4368 int node;
81819f0f 4369
dfb4f096 4370 for_each_online_node(node) {
81819f0f
CL
4371 struct kmem_cache_node *n = get_node(s, node);
4372
dfb4f096
CL
4373 if (!n)
4374 continue;
4375
4ea33e2d 4376 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4377 return 1;
4378 }
4379 return 0;
4380}
ab4d5ed5 4381#endif
81819f0f
CL
4382
4383#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4384#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4385
4386struct slab_attribute {
4387 struct attribute attr;
4388 ssize_t (*show)(struct kmem_cache *s, char *buf);
4389 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4390};
4391
4392#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4393 static struct slab_attribute _name##_attr = \
4394 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4395
4396#define SLAB_ATTR(_name) \
4397 static struct slab_attribute _name##_attr = \
ab067e99 4398 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4399
81819f0f
CL
4400static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4401{
4402 return sprintf(buf, "%d\n", s->size);
4403}
4404SLAB_ATTR_RO(slab_size);
4405
4406static ssize_t align_show(struct kmem_cache *s, char *buf)
4407{
4408 return sprintf(buf, "%d\n", s->align);
4409}
4410SLAB_ATTR_RO(align);
4411
4412static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4413{
3b0efdfa 4414 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4415}
4416SLAB_ATTR_RO(object_size);
4417
4418static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4419{
834f3d11 4420 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4421}
4422SLAB_ATTR_RO(objs_per_slab);
4423
06b285dc
CL
4424static ssize_t order_store(struct kmem_cache *s,
4425 const char *buf, size_t length)
4426{
0121c619
CL
4427 unsigned long order;
4428 int err;
4429
3dbb95f7 4430 err = kstrtoul(buf, 10, &order);
0121c619
CL
4431 if (err)
4432 return err;
06b285dc
CL
4433
4434 if (order > slub_max_order || order < slub_min_order)
4435 return -EINVAL;
4436
4437 calculate_sizes(s, order);
4438 return length;
4439}
4440
81819f0f
CL
4441static ssize_t order_show(struct kmem_cache *s, char *buf)
4442{
834f3d11 4443 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4444}
06b285dc 4445SLAB_ATTR(order);
81819f0f 4446
73d342b1
DR
4447static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4448{
4449 return sprintf(buf, "%lu\n", s->min_partial);
4450}
4451
4452static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4453 size_t length)
4454{
4455 unsigned long min;
4456 int err;
4457
3dbb95f7 4458 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4459 if (err)
4460 return err;
4461
c0bdb232 4462 set_min_partial(s, min);
73d342b1
DR
4463 return length;
4464}
4465SLAB_ATTR(min_partial);
4466
49e22585
CL
4467static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4468{
4469 return sprintf(buf, "%u\n", s->cpu_partial);
4470}
4471
4472static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4473 size_t length)
4474{
4475 unsigned long objects;
4476 int err;
4477
3dbb95f7 4478 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4479 if (err)
4480 return err;
345c905d 4481 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4482 return -EINVAL;
49e22585
CL
4483
4484 s->cpu_partial = objects;
4485 flush_all(s);
4486 return length;
4487}
4488SLAB_ATTR(cpu_partial);
4489
81819f0f
CL
4490static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4491{
62c70bce
JP
4492 if (!s->ctor)
4493 return 0;
4494 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4495}
4496SLAB_ATTR_RO(ctor);
4497
81819f0f
CL
4498static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4499{
4500 return sprintf(buf, "%d\n", s->refcount - 1);
4501}
4502SLAB_ATTR_RO(aliases);
4503
81819f0f
CL
4504static ssize_t partial_show(struct kmem_cache *s, char *buf)
4505{
d9acf4b7 4506 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4507}
4508SLAB_ATTR_RO(partial);
4509
4510static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4511{
d9acf4b7 4512 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4513}
4514SLAB_ATTR_RO(cpu_slabs);
4515
4516static ssize_t objects_show(struct kmem_cache *s, char *buf)
4517{
205ab99d 4518 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4519}
4520SLAB_ATTR_RO(objects);
4521
205ab99d
CL
4522static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4523{
4524 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4525}
4526SLAB_ATTR_RO(objects_partial);
4527
49e22585
CL
4528static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4529{
4530 int objects = 0;
4531 int pages = 0;
4532 int cpu;
4533 int len;
4534
4535 for_each_online_cpu(cpu) {
4536 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4537
4538 if (page) {
4539 pages += page->pages;
4540 objects += page->pobjects;
4541 }
4542 }
4543
4544 len = sprintf(buf, "%d(%d)", objects, pages);
4545
4546#ifdef CONFIG_SMP
4547 for_each_online_cpu(cpu) {
4548 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4549
4550 if (page && len < PAGE_SIZE - 20)
4551 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4552 page->pobjects, page->pages);
4553 }
4554#endif
4555 return len + sprintf(buf + len, "\n");
4556}
4557SLAB_ATTR_RO(slabs_cpu_partial);
4558
a5a84755
CL
4559static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4560{
4561 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4562}
4563
4564static ssize_t reclaim_account_store(struct kmem_cache *s,
4565 const char *buf, size_t length)
4566{
4567 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4568 if (buf[0] == '1')
4569 s->flags |= SLAB_RECLAIM_ACCOUNT;
4570 return length;
4571}
4572SLAB_ATTR(reclaim_account);
4573
4574static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4575{
4576 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4577}
4578SLAB_ATTR_RO(hwcache_align);
4579
4580#ifdef CONFIG_ZONE_DMA
4581static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4582{
4583 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4584}
4585SLAB_ATTR_RO(cache_dma);
4586#endif
4587
4588static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4589{
4590 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4591}
4592SLAB_ATTR_RO(destroy_by_rcu);
4593
ab9a0f19
LJ
4594static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4595{
4596 return sprintf(buf, "%d\n", s->reserved);
4597}
4598SLAB_ATTR_RO(reserved);
4599
ab4d5ed5 4600#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4601static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4602{
4603 return show_slab_objects(s, buf, SO_ALL);
4604}
4605SLAB_ATTR_RO(slabs);
4606
205ab99d
CL
4607static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4608{
4609 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4610}
4611SLAB_ATTR_RO(total_objects);
4612
81819f0f
CL
4613static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4614{
4615 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4616}
4617
4618static ssize_t sanity_checks_store(struct kmem_cache *s,
4619 const char *buf, size_t length)
4620{
4621 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4622 if (buf[0] == '1') {
4623 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4624 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4625 }
81819f0f
CL
4626 return length;
4627}
4628SLAB_ATTR(sanity_checks);
4629
4630static ssize_t trace_show(struct kmem_cache *s, char *buf)
4631{
4632 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4633}
4634
4635static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4636 size_t length)
4637{
4638 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4639 if (buf[0] == '1') {
4640 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4641 s->flags |= SLAB_TRACE;
b789ef51 4642 }
81819f0f
CL
4643 return length;
4644}
4645SLAB_ATTR(trace);
4646
81819f0f
CL
4647static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4648{
4649 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4650}
4651
4652static ssize_t red_zone_store(struct kmem_cache *s,
4653 const char *buf, size_t length)
4654{
4655 if (any_slab_objects(s))
4656 return -EBUSY;
4657
4658 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4659 if (buf[0] == '1') {
4660 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4661 s->flags |= SLAB_RED_ZONE;
b789ef51 4662 }
06b285dc 4663 calculate_sizes(s, -1);
81819f0f
CL
4664 return length;
4665}
4666SLAB_ATTR(red_zone);
4667
4668static ssize_t poison_show(struct kmem_cache *s, char *buf)
4669{
4670 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4671}
4672
4673static ssize_t poison_store(struct kmem_cache *s,
4674 const char *buf, size_t length)
4675{
4676 if (any_slab_objects(s))
4677 return -EBUSY;
4678
4679 s->flags &= ~SLAB_POISON;
b789ef51
CL
4680 if (buf[0] == '1') {
4681 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4682 s->flags |= SLAB_POISON;
b789ef51 4683 }
06b285dc 4684 calculate_sizes(s, -1);
81819f0f
CL
4685 return length;
4686}
4687SLAB_ATTR(poison);
4688
4689static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4690{
4691 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4692}
4693
4694static ssize_t store_user_store(struct kmem_cache *s,
4695 const char *buf, size_t length)
4696{
4697 if (any_slab_objects(s))
4698 return -EBUSY;
4699
4700 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4701 if (buf[0] == '1') {
4702 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4703 s->flags |= SLAB_STORE_USER;
b789ef51 4704 }
06b285dc 4705 calculate_sizes(s, -1);
81819f0f
CL
4706 return length;
4707}
4708SLAB_ATTR(store_user);
4709
53e15af0
CL
4710static ssize_t validate_show(struct kmem_cache *s, char *buf)
4711{
4712 return 0;
4713}
4714
4715static ssize_t validate_store(struct kmem_cache *s,
4716 const char *buf, size_t length)
4717{
434e245d
CL
4718 int ret = -EINVAL;
4719
4720 if (buf[0] == '1') {
4721 ret = validate_slab_cache(s);
4722 if (ret >= 0)
4723 ret = length;
4724 }
4725 return ret;
53e15af0
CL
4726}
4727SLAB_ATTR(validate);
a5a84755
CL
4728
4729static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4730{
4731 if (!(s->flags & SLAB_STORE_USER))
4732 return -ENOSYS;
4733 return list_locations(s, buf, TRACK_ALLOC);
4734}
4735SLAB_ATTR_RO(alloc_calls);
4736
4737static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4738{
4739 if (!(s->flags & SLAB_STORE_USER))
4740 return -ENOSYS;
4741 return list_locations(s, buf, TRACK_FREE);
4742}
4743SLAB_ATTR_RO(free_calls);
4744#endif /* CONFIG_SLUB_DEBUG */
4745
4746#ifdef CONFIG_FAILSLAB
4747static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4748{
4749 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4750}
4751
4752static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4753 size_t length)
4754{
4755 s->flags &= ~SLAB_FAILSLAB;
4756 if (buf[0] == '1')
4757 s->flags |= SLAB_FAILSLAB;
4758 return length;
4759}
4760SLAB_ATTR(failslab);
ab4d5ed5 4761#endif
53e15af0 4762
2086d26a
CL
4763static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4764{
4765 return 0;
4766}
4767
4768static ssize_t shrink_store(struct kmem_cache *s,
4769 const char *buf, size_t length)
4770{
4771 if (buf[0] == '1') {
4772 int rc = kmem_cache_shrink(s);
4773
4774 if (rc)
4775 return rc;
4776 } else
4777 return -EINVAL;
4778 return length;
4779}
4780SLAB_ATTR(shrink);
4781
81819f0f 4782#ifdef CONFIG_NUMA
9824601e 4783static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4784{
9824601e 4785 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4786}
4787
9824601e 4788static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4789 const char *buf, size_t length)
4790{
0121c619
CL
4791 unsigned long ratio;
4792 int err;
4793
3dbb95f7 4794 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
4795 if (err)
4796 return err;
4797
e2cb96b7 4798 if (ratio <= 100)
0121c619 4799 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4800
81819f0f
CL
4801 return length;
4802}
9824601e 4803SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4804#endif
4805
8ff12cfc 4806#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4807static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4808{
4809 unsigned long sum = 0;
4810 int cpu;
4811 int len;
4812 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4813
4814 if (!data)
4815 return -ENOMEM;
4816
4817 for_each_online_cpu(cpu) {
9dfc6e68 4818 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4819
4820 data[cpu] = x;
4821 sum += x;
4822 }
4823
4824 len = sprintf(buf, "%lu", sum);
4825
50ef37b9 4826#ifdef CONFIG_SMP
8ff12cfc
CL
4827 for_each_online_cpu(cpu) {
4828 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4829 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4830 }
50ef37b9 4831#endif
8ff12cfc
CL
4832 kfree(data);
4833 return len + sprintf(buf + len, "\n");
4834}
4835
78eb00cc
DR
4836static void clear_stat(struct kmem_cache *s, enum stat_item si)
4837{
4838 int cpu;
4839
4840 for_each_online_cpu(cpu)
9dfc6e68 4841 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4842}
4843
8ff12cfc
CL
4844#define STAT_ATTR(si, text) \
4845static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4846{ \
4847 return show_stat(s, buf, si); \
4848} \
78eb00cc
DR
4849static ssize_t text##_store(struct kmem_cache *s, \
4850 const char *buf, size_t length) \
4851{ \
4852 if (buf[0] != '0') \
4853 return -EINVAL; \
4854 clear_stat(s, si); \
4855 return length; \
4856} \
4857SLAB_ATTR(text); \
8ff12cfc
CL
4858
4859STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4860STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4861STAT_ATTR(FREE_FASTPATH, free_fastpath);
4862STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4863STAT_ATTR(FREE_FROZEN, free_frozen);
4864STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4865STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4866STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4867STAT_ATTR(ALLOC_SLAB, alloc_slab);
4868STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 4869STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
4870STAT_ATTR(FREE_SLAB, free_slab);
4871STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4872STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4873STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4874STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4875STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4876STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 4877STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 4878STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
4879STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4880STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
4881STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4882STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
4883STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4884STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
4885#endif
4886
06428780 4887static struct attribute *slab_attrs[] = {
81819f0f
CL
4888 &slab_size_attr.attr,
4889 &object_size_attr.attr,
4890 &objs_per_slab_attr.attr,
4891 &order_attr.attr,
73d342b1 4892 &min_partial_attr.attr,
49e22585 4893 &cpu_partial_attr.attr,
81819f0f 4894 &objects_attr.attr,
205ab99d 4895 &objects_partial_attr.attr,
81819f0f
CL
4896 &partial_attr.attr,
4897 &cpu_slabs_attr.attr,
4898 &ctor_attr.attr,
81819f0f
CL
4899 &aliases_attr.attr,
4900 &align_attr.attr,
81819f0f
CL
4901 &hwcache_align_attr.attr,
4902 &reclaim_account_attr.attr,
4903 &destroy_by_rcu_attr.attr,
a5a84755 4904 &shrink_attr.attr,
ab9a0f19 4905 &reserved_attr.attr,
49e22585 4906 &slabs_cpu_partial_attr.attr,
ab4d5ed5 4907#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4908 &total_objects_attr.attr,
4909 &slabs_attr.attr,
4910 &sanity_checks_attr.attr,
4911 &trace_attr.attr,
81819f0f
CL
4912 &red_zone_attr.attr,
4913 &poison_attr.attr,
4914 &store_user_attr.attr,
53e15af0 4915 &validate_attr.attr,
88a420e4
CL
4916 &alloc_calls_attr.attr,
4917 &free_calls_attr.attr,
ab4d5ed5 4918#endif
81819f0f
CL
4919#ifdef CONFIG_ZONE_DMA
4920 &cache_dma_attr.attr,
4921#endif
4922#ifdef CONFIG_NUMA
9824601e 4923 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4924#endif
4925#ifdef CONFIG_SLUB_STATS
4926 &alloc_fastpath_attr.attr,
4927 &alloc_slowpath_attr.attr,
4928 &free_fastpath_attr.attr,
4929 &free_slowpath_attr.attr,
4930 &free_frozen_attr.attr,
4931 &free_add_partial_attr.attr,
4932 &free_remove_partial_attr.attr,
4933 &alloc_from_partial_attr.attr,
4934 &alloc_slab_attr.attr,
4935 &alloc_refill_attr.attr,
e36a2652 4936 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
4937 &free_slab_attr.attr,
4938 &cpuslab_flush_attr.attr,
4939 &deactivate_full_attr.attr,
4940 &deactivate_empty_attr.attr,
4941 &deactivate_to_head_attr.attr,
4942 &deactivate_to_tail_attr.attr,
4943 &deactivate_remote_frees_attr.attr,
03e404af 4944 &deactivate_bypass_attr.attr,
65c3376a 4945 &order_fallback_attr.attr,
b789ef51
CL
4946 &cmpxchg_double_fail_attr.attr,
4947 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
4948 &cpu_partial_alloc_attr.attr,
4949 &cpu_partial_free_attr.attr,
8028dcea
AS
4950 &cpu_partial_node_attr.attr,
4951 &cpu_partial_drain_attr.attr,
81819f0f 4952#endif
4c13dd3b
DM
4953#ifdef CONFIG_FAILSLAB
4954 &failslab_attr.attr,
4955#endif
4956
81819f0f
CL
4957 NULL
4958};
4959
4960static struct attribute_group slab_attr_group = {
4961 .attrs = slab_attrs,
4962};
4963
4964static ssize_t slab_attr_show(struct kobject *kobj,
4965 struct attribute *attr,
4966 char *buf)
4967{
4968 struct slab_attribute *attribute;
4969 struct kmem_cache *s;
4970 int err;
4971
4972 attribute = to_slab_attr(attr);
4973 s = to_slab(kobj);
4974
4975 if (!attribute->show)
4976 return -EIO;
4977
4978 err = attribute->show(s, buf);
4979
4980 return err;
4981}
4982
4983static ssize_t slab_attr_store(struct kobject *kobj,
4984 struct attribute *attr,
4985 const char *buf, size_t len)
4986{
4987 struct slab_attribute *attribute;
4988 struct kmem_cache *s;
4989 int err;
4990
4991 attribute = to_slab_attr(attr);
4992 s = to_slab(kobj);
4993
4994 if (!attribute->store)
4995 return -EIO;
4996
4997 err = attribute->store(s, buf, len);
107dab5c
GC
4998#ifdef CONFIG_MEMCG_KMEM
4999 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5000 int i;
81819f0f 5001
107dab5c
GC
5002 mutex_lock(&slab_mutex);
5003 if (s->max_attr_size < len)
5004 s->max_attr_size = len;
5005
ebe945c2
GC
5006 /*
5007 * This is a best effort propagation, so this function's return
5008 * value will be determined by the parent cache only. This is
5009 * basically because not all attributes will have a well
5010 * defined semantics for rollbacks - most of the actions will
5011 * have permanent effects.
5012 *
5013 * Returning the error value of any of the children that fail
5014 * is not 100 % defined, in the sense that users seeing the
5015 * error code won't be able to know anything about the state of
5016 * the cache.
5017 *
5018 * Only returning the error code for the parent cache at least
5019 * has well defined semantics. The cache being written to
5020 * directly either failed or succeeded, in which case we loop
5021 * through the descendants with best-effort propagation.
5022 */
107dab5c 5023 for_each_memcg_cache_index(i) {
2ade4de8 5024 struct kmem_cache *c = cache_from_memcg_idx(s, i);
107dab5c
GC
5025 if (c)
5026 attribute->store(c, buf, len);
5027 }
5028 mutex_unlock(&slab_mutex);
5029 }
5030#endif
81819f0f
CL
5031 return err;
5032}
5033
107dab5c
GC
5034static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5035{
5036#ifdef CONFIG_MEMCG_KMEM
5037 int i;
5038 char *buffer = NULL;
93030d83 5039 struct kmem_cache *root_cache;
107dab5c 5040
93030d83 5041 if (is_root_cache(s))
107dab5c
GC
5042 return;
5043
93030d83
VD
5044 root_cache = s->memcg_params->root_cache;
5045
107dab5c
GC
5046 /*
5047 * This mean this cache had no attribute written. Therefore, no point
5048 * in copying default values around
5049 */
93030d83 5050 if (!root_cache->max_attr_size)
107dab5c
GC
5051 return;
5052
5053 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5054 char mbuf[64];
5055 char *buf;
5056 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5057
5058 if (!attr || !attr->store || !attr->show)
5059 continue;
5060
5061 /*
5062 * It is really bad that we have to allocate here, so we will
5063 * do it only as a fallback. If we actually allocate, though,
5064 * we can just use the allocated buffer until the end.
5065 *
5066 * Most of the slub attributes will tend to be very small in
5067 * size, but sysfs allows buffers up to a page, so they can
5068 * theoretically happen.
5069 */
5070 if (buffer)
5071 buf = buffer;
93030d83 5072 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5073 buf = mbuf;
5074 else {
5075 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5076 if (WARN_ON(!buffer))
5077 continue;
5078 buf = buffer;
5079 }
5080
93030d83 5081 attr->show(root_cache, buf);
107dab5c
GC
5082 attr->store(s, buf, strlen(buf));
5083 }
5084
5085 if (buffer)
5086 free_page((unsigned long)buffer);
5087#endif
5088}
5089
41a21285
CL
5090static void kmem_cache_release(struct kobject *k)
5091{
5092 slab_kmem_cache_release(to_slab(k));
5093}
5094
52cf25d0 5095static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5096 .show = slab_attr_show,
5097 .store = slab_attr_store,
5098};
5099
5100static struct kobj_type slab_ktype = {
5101 .sysfs_ops = &slab_sysfs_ops,
41a21285 5102 .release = kmem_cache_release,
81819f0f
CL
5103};
5104
5105static int uevent_filter(struct kset *kset, struct kobject *kobj)
5106{
5107 struct kobj_type *ktype = get_ktype(kobj);
5108
5109 if (ktype == &slab_ktype)
5110 return 1;
5111 return 0;
5112}
5113
9cd43611 5114static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5115 .filter = uevent_filter,
5116};
5117
27c3a314 5118static struct kset *slab_kset;
81819f0f 5119
9a41707b
VD
5120static inline struct kset *cache_kset(struct kmem_cache *s)
5121{
5122#ifdef CONFIG_MEMCG_KMEM
5123 if (!is_root_cache(s))
5124 return s->memcg_params->root_cache->memcg_kset;
5125#endif
5126 return slab_kset;
5127}
5128
81819f0f
CL
5129#define ID_STR_LENGTH 64
5130
5131/* Create a unique string id for a slab cache:
6446faa2
CL
5132 *
5133 * Format :[flags-]size
81819f0f
CL
5134 */
5135static char *create_unique_id(struct kmem_cache *s)
5136{
5137 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5138 char *p = name;
5139
5140 BUG_ON(!name);
5141
5142 *p++ = ':';
5143 /*
5144 * First flags affecting slabcache operations. We will only
5145 * get here for aliasable slabs so we do not need to support
5146 * too many flags. The flags here must cover all flags that
5147 * are matched during merging to guarantee that the id is
5148 * unique.
5149 */
5150 if (s->flags & SLAB_CACHE_DMA)
5151 *p++ = 'd';
5152 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5153 *p++ = 'a';
5154 if (s->flags & SLAB_DEBUG_FREE)
5155 *p++ = 'F';
5a896d9e
VN
5156 if (!(s->flags & SLAB_NOTRACK))
5157 *p++ = 't';
81819f0f
CL
5158 if (p != name + 1)
5159 *p++ = '-';
5160 p += sprintf(p, "%07d", s->size);
2633d7a0
GC
5161
5162#ifdef CONFIG_MEMCG_KMEM
5163 if (!is_root_cache(s))
d0e0ac97
CG
5164 p += sprintf(p, "-%08d",
5165 memcg_cache_id(s->memcg_params->memcg));
2633d7a0
GC
5166#endif
5167
81819f0f
CL
5168 BUG_ON(p > name + ID_STR_LENGTH - 1);
5169 return name;
5170}
5171
5172static int sysfs_slab_add(struct kmem_cache *s)
5173{
5174 int err;
5175 const char *name;
45530c44 5176 int unmergeable = slab_unmergeable(s);
81819f0f 5177
81819f0f
CL
5178 if (unmergeable) {
5179 /*
5180 * Slabcache can never be merged so we can use the name proper.
5181 * This is typically the case for debug situations. In that
5182 * case we can catch duplicate names easily.
5183 */
27c3a314 5184 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5185 name = s->name;
5186 } else {
5187 /*
5188 * Create a unique name for the slab as a target
5189 * for the symlinks.
5190 */
5191 name = create_unique_id(s);
5192 }
5193
9a41707b 5194 s->kobj.kset = cache_kset(s);
26e4f205 5195 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731
DJ
5196 if (err)
5197 goto out_put_kobj;
81819f0f
CL
5198
5199 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5200 if (err)
5201 goto out_del_kobj;
9a41707b
VD
5202
5203#ifdef CONFIG_MEMCG_KMEM
5204 if (is_root_cache(s)) {
5205 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5206 if (!s->memcg_kset) {
54b6a731
DJ
5207 err = -ENOMEM;
5208 goto out_del_kobj;
9a41707b
VD
5209 }
5210 }
5211#endif
5212
81819f0f
CL
5213 kobject_uevent(&s->kobj, KOBJ_ADD);
5214 if (!unmergeable) {
5215 /* Setup first alias */
5216 sysfs_slab_alias(s, s->name);
81819f0f 5217 }
54b6a731
DJ
5218out:
5219 if (!unmergeable)
5220 kfree(name);
5221 return err;
5222out_del_kobj:
5223 kobject_del(&s->kobj);
5224out_put_kobj:
5225 kobject_put(&s->kobj);
5226 goto out;
81819f0f
CL
5227}
5228
41a21285 5229void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5230{
97d06609 5231 if (slab_state < FULL)
2bce6485
CL
5232 /*
5233 * Sysfs has not been setup yet so no need to remove the
5234 * cache from sysfs.
5235 */
5236 return;
5237
9a41707b
VD
5238#ifdef CONFIG_MEMCG_KMEM
5239 kset_unregister(s->memcg_kset);
5240#endif
81819f0f
CL
5241 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5242 kobject_del(&s->kobj);
151c602f 5243 kobject_put(&s->kobj);
81819f0f
CL
5244}
5245
5246/*
5247 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5248 * available lest we lose that information.
81819f0f
CL
5249 */
5250struct saved_alias {
5251 struct kmem_cache *s;
5252 const char *name;
5253 struct saved_alias *next;
5254};
5255
5af328a5 5256static struct saved_alias *alias_list;
81819f0f
CL
5257
5258static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5259{
5260 struct saved_alias *al;
5261
97d06609 5262 if (slab_state == FULL) {
81819f0f
CL
5263 /*
5264 * If we have a leftover link then remove it.
5265 */
27c3a314
GKH
5266 sysfs_remove_link(&slab_kset->kobj, name);
5267 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5268 }
5269
5270 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5271 if (!al)
5272 return -ENOMEM;
5273
5274 al->s = s;
5275 al->name = name;
5276 al->next = alias_list;
5277 alias_list = al;
5278 return 0;
5279}
5280
5281static int __init slab_sysfs_init(void)
5282{
5b95a4ac 5283 struct kmem_cache *s;
81819f0f
CL
5284 int err;
5285
18004c5d 5286 mutex_lock(&slab_mutex);
2bce6485 5287
0ff21e46 5288 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5289 if (!slab_kset) {
18004c5d 5290 mutex_unlock(&slab_mutex);
f9f58285 5291 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5292 return -ENOSYS;
5293 }
5294
97d06609 5295 slab_state = FULL;
26a7bd03 5296
5b95a4ac 5297 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5298 err = sysfs_slab_add(s);
5d540fb7 5299 if (err)
f9f58285
FF
5300 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5301 s->name);
26a7bd03 5302 }
81819f0f
CL
5303
5304 while (alias_list) {
5305 struct saved_alias *al = alias_list;
5306
5307 alias_list = alias_list->next;
5308 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5309 if (err)
f9f58285
FF
5310 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5311 al->name);
81819f0f
CL
5312 kfree(al);
5313 }
5314
18004c5d 5315 mutex_unlock(&slab_mutex);
81819f0f
CL
5316 resiliency_test();
5317 return 0;
5318}
5319
5320__initcall(slab_sysfs_init);
ab4d5ed5 5321#endif /* CONFIG_SYSFS */
57ed3eda
PE
5322
5323/*
5324 * The /proc/slabinfo ABI
5325 */
158a9624 5326#ifdef CONFIG_SLABINFO
0d7561c6 5327void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5328{
57ed3eda 5329 unsigned long nr_slabs = 0;
205ab99d
CL
5330 unsigned long nr_objs = 0;
5331 unsigned long nr_free = 0;
57ed3eda
PE
5332 int node;
5333
57ed3eda
PE
5334 for_each_online_node(node) {
5335 struct kmem_cache_node *n = get_node(s, node);
5336
5337 if (!n)
5338 continue;
5339
c17fd13e
WL
5340 nr_slabs += node_nr_slabs(n);
5341 nr_objs += node_nr_objs(n);
205ab99d 5342 nr_free += count_partial(n, count_free);
57ed3eda
PE
5343 }
5344
0d7561c6
GC
5345 sinfo->active_objs = nr_objs - nr_free;
5346 sinfo->num_objs = nr_objs;
5347 sinfo->active_slabs = nr_slabs;
5348 sinfo->num_slabs = nr_slabs;
5349 sinfo->objects_per_slab = oo_objects(s->oo);
5350 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5351}
5352
0d7561c6 5353void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5354{
7b3c3a50
AD
5355}
5356
b7454ad3
GC
5357ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5358 size_t count, loff_t *ppos)
7b3c3a50 5359{
b7454ad3 5360 return -EIO;
7b3c3a50 5361}
158a9624 5362#endif /* CONFIG_SLABINFO */