mm/slab: re-implement pfmemalloc support
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
3ac38faa 21#include <linux/notifier.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
5a896d9e 24#include <linux/kmemcheck.h>
81819f0f
CL
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
3ac7fe5a 29#include <linux/debugobjects.h>
81819f0f 30#include <linux/kallsyms.h>
b9049e23 31#include <linux/memory.h>
f8bd2258 32#include <linux/math64.h>
773ff60e 33#include <linux/fault-inject.h>
bfa71457 34#include <linux/stacktrace.h>
4de900b4 35#include <linux/prefetch.h>
2633d7a0 36#include <linux/memcontrol.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
65 *
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
71 *
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
81819f0f
CL
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
81 *
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
84 *
672bba3a
CL
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 87 * freed then the slab will show up again on the partial lists.
672bba3a
CL
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
81819f0f
CL
90 *
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
94 *
95 * Overloading of page flags that are otherwise used for LRU management.
96 *
4b6f0750
CL
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
dfb4f096 109 * freelist that allows lockless access to
894b8788
CL
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
81819f0f
CL
112 *
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
894b8788 115 * the fast path and disables lockless freelists.
81819f0f
CL
116 */
117
af537b0a
CL
118static inline int kmem_cache_debug(struct kmem_cache *s)
119{
5577bd8a 120#ifdef CONFIG_SLUB_DEBUG
af537b0a 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 122#else
af537b0a 123 return 0;
5577bd8a 124#endif
af537b0a 125}
5577bd8a 126
345c905d
JK
127static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
128{
129#ifdef CONFIG_SLUB_CPU_PARTIAL
130 return !kmem_cache_debug(s);
131#else
132 return false;
133#endif
134}
135
81819f0f
CL
136/*
137 * Issues still to be resolved:
138 *
81819f0f
CL
139 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
140 *
81819f0f
CL
141 * - Variable sizing of the per node arrays
142 */
143
144/* Enable to test recovery from slab corruption on boot */
145#undef SLUB_RESILIENCY_TEST
146
b789ef51
CL
147/* Enable to log cmpxchg failures */
148#undef SLUB_DEBUG_CMPXCHG
149
2086d26a
CL
150/*
151 * Mininum number of partial slabs. These will be left on the partial
152 * lists even if they are empty. kmem_cache_shrink may reclaim them.
153 */
76be8950 154#define MIN_PARTIAL 5
e95eed57 155
2086d26a
CL
156/*
157 * Maximum number of desirable partial slabs.
158 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 159 * sort the partial list by the number of objects in use.
2086d26a
CL
160 */
161#define MAX_PARTIAL 10
162
81819f0f
CL
163#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
164 SLAB_POISON | SLAB_STORE_USER)
672bba3a 165
fa5ec8a1 166/*
3de47213
DR
167 * Debugging flags that require metadata to be stored in the slab. These get
168 * disabled when slub_debug=O is used and a cache's min order increases with
169 * metadata.
fa5ec8a1 170 */
3de47213 171#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 172
210b5c06
CG
173#define OO_SHIFT 16
174#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 175#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 176
81819f0f 177/* Internal SLUB flags */
f90ec390 178#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 179#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 180
81819f0f
CL
181#ifdef CONFIG_SMP
182static struct notifier_block slab_notifier;
183#endif
184
02cbc874
CL
185/*
186 * Tracking user of a slab.
187 */
d6543e39 188#define TRACK_ADDRS_COUNT 16
02cbc874 189struct track {
ce71e27c 190 unsigned long addr; /* Called from address */
d6543e39
BG
191#ifdef CONFIG_STACKTRACE
192 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
193#endif
02cbc874
CL
194 int cpu; /* Was running on cpu */
195 int pid; /* Pid context */
196 unsigned long when; /* When did the operation occur */
197};
198
199enum track_item { TRACK_ALLOC, TRACK_FREE };
200
ab4d5ed5 201#ifdef CONFIG_SYSFS
81819f0f
CL
202static int sysfs_slab_add(struct kmem_cache *);
203static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 204static void memcg_propagate_slab_attrs(struct kmem_cache *s);
81819f0f 205#else
0c710013
CL
206static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
207static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
208 { return 0; }
107dab5c 209static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
81819f0f
CL
210#endif
211
4fdccdfb 212static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
213{
214#ifdef CONFIG_SLUB_STATS
88da03a6
CL
215 /*
216 * The rmw is racy on a preemptible kernel but this is acceptable, so
217 * avoid this_cpu_add()'s irq-disable overhead.
218 */
219 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
220#endif
221}
222
81819f0f
CL
223/********************************************************************
224 * Core slab cache functions
225 *******************************************************************/
226
6446faa2 227/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
228static inline int check_valid_pointer(struct kmem_cache *s,
229 struct page *page, const void *object)
230{
231 void *base;
232
a973e9dd 233 if (!object)
02cbc874
CL
234 return 1;
235
a973e9dd 236 base = page_address(page);
39b26464 237 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
238 (object - base) % s->size) {
239 return 0;
240 }
241
242 return 1;
243}
244
7656c72b
CL
245static inline void *get_freepointer(struct kmem_cache *s, void *object)
246{
247 return *(void **)(object + s->offset);
248}
249
0ad9500e
ED
250static void prefetch_freepointer(const struct kmem_cache *s, void *object)
251{
252 prefetch(object + s->offset);
253}
254
1393d9a1
CL
255static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
256{
257 void *p;
258
259#ifdef CONFIG_DEBUG_PAGEALLOC
260 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
261#else
262 p = get_freepointer(s, object);
263#endif
264 return p;
265}
266
7656c72b
CL
267static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
268{
269 *(void **)(object + s->offset) = fp;
270}
271
272/* Loop over all objects in a slab */
224a88be
CL
273#define for_each_object(__p, __s, __addr, __objects) \
274 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
275 __p += (__s)->size)
276
54266640
WY
277#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
278 for (__p = (__addr), __idx = 1; __idx <= __objects;\
279 __p += (__s)->size, __idx++)
280
7656c72b
CL
281/* Determine object index from a given position */
282static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
283{
284 return (p - addr) / s->size;
285}
286
ab9a0f19
LJ
287static inline int order_objects(int order, unsigned long size, int reserved)
288{
289 return ((PAGE_SIZE << order) - reserved) / size;
290}
291
834f3d11 292static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 293 unsigned long size, int reserved)
834f3d11
CL
294{
295 struct kmem_cache_order_objects x = {
ab9a0f19 296 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
297 };
298
299 return x;
300}
301
302static inline int oo_order(struct kmem_cache_order_objects x)
303{
210b5c06 304 return x.x >> OO_SHIFT;
834f3d11
CL
305}
306
307static inline int oo_objects(struct kmem_cache_order_objects x)
308{
210b5c06 309 return x.x & OO_MASK;
834f3d11
CL
310}
311
881db7fb
CL
312/*
313 * Per slab locking using the pagelock
314 */
315static __always_inline void slab_lock(struct page *page)
316{
48c935ad 317 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
318 bit_spin_lock(PG_locked, &page->flags);
319}
320
321static __always_inline void slab_unlock(struct page *page)
322{
48c935ad 323 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
324 __bit_spin_unlock(PG_locked, &page->flags);
325}
326
a0320865
DH
327static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
328{
329 struct page tmp;
330 tmp.counters = counters_new;
331 /*
332 * page->counters can cover frozen/inuse/objects as well
333 * as page->_count. If we assign to ->counters directly
334 * we run the risk of losing updates to page->_count, so
335 * be careful and only assign to the fields we need.
336 */
337 page->frozen = tmp.frozen;
338 page->inuse = tmp.inuse;
339 page->objects = tmp.objects;
340}
341
1d07171c
CL
342/* Interrupts must be disabled (for the fallback code to work right) */
343static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
344 void *freelist_old, unsigned long counters_old,
345 void *freelist_new, unsigned long counters_new,
346 const char *n)
347{
348 VM_BUG_ON(!irqs_disabled());
2565409f
HC
349#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
350 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 351 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 352 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
353 freelist_old, counters_old,
354 freelist_new, counters_new))
6f6528a1 355 return true;
1d07171c
CL
356 } else
357#endif
358 {
359 slab_lock(page);
d0e0ac97
CG
360 if (page->freelist == freelist_old &&
361 page->counters == counters_old) {
1d07171c 362 page->freelist = freelist_new;
a0320865 363 set_page_slub_counters(page, counters_new);
1d07171c 364 slab_unlock(page);
6f6528a1 365 return true;
1d07171c
CL
366 }
367 slab_unlock(page);
368 }
369
370 cpu_relax();
371 stat(s, CMPXCHG_DOUBLE_FAIL);
372
373#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 374 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
375#endif
376
6f6528a1 377 return false;
1d07171c
CL
378}
379
b789ef51
CL
380static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
381 void *freelist_old, unsigned long counters_old,
382 void *freelist_new, unsigned long counters_new,
383 const char *n)
384{
2565409f
HC
385#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
386 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 387 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 388 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
389 freelist_old, counters_old,
390 freelist_new, counters_new))
6f6528a1 391 return true;
b789ef51
CL
392 } else
393#endif
394 {
1d07171c
CL
395 unsigned long flags;
396
397 local_irq_save(flags);
881db7fb 398 slab_lock(page);
d0e0ac97
CG
399 if (page->freelist == freelist_old &&
400 page->counters == counters_old) {
b789ef51 401 page->freelist = freelist_new;
a0320865 402 set_page_slub_counters(page, counters_new);
881db7fb 403 slab_unlock(page);
1d07171c 404 local_irq_restore(flags);
6f6528a1 405 return true;
b789ef51 406 }
881db7fb 407 slab_unlock(page);
1d07171c 408 local_irq_restore(flags);
b789ef51
CL
409 }
410
411 cpu_relax();
412 stat(s, CMPXCHG_DOUBLE_FAIL);
413
414#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 415 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
416#endif
417
6f6528a1 418 return false;
b789ef51
CL
419}
420
41ecc55b 421#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
422/*
423 * Determine a map of object in use on a page.
424 *
881db7fb 425 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
426 * not vanish from under us.
427 */
428static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
429{
430 void *p;
431 void *addr = page_address(page);
432
433 for (p = page->freelist; p; p = get_freepointer(s, p))
434 set_bit(slab_index(p, s, addr), map);
435}
436
41ecc55b
CL
437/*
438 * Debug settings:
439 */
89d3c87e 440#if defined(CONFIG_SLUB_DEBUG_ON)
f0630fff 441static int slub_debug = DEBUG_DEFAULT_FLAGS;
89d3c87e
AR
442#elif defined(CONFIG_KASAN)
443static int slub_debug = SLAB_STORE_USER;
f0630fff 444#else
41ecc55b 445static int slub_debug;
f0630fff 446#endif
41ecc55b
CL
447
448static char *slub_debug_slabs;
fa5ec8a1 449static int disable_higher_order_debug;
41ecc55b 450
a79316c6
AR
451/*
452 * slub is about to manipulate internal object metadata. This memory lies
453 * outside the range of the allocated object, so accessing it would normally
454 * be reported by kasan as a bounds error. metadata_access_enable() is used
455 * to tell kasan that these accesses are OK.
456 */
457static inline void metadata_access_enable(void)
458{
459 kasan_disable_current();
460}
461
462static inline void metadata_access_disable(void)
463{
464 kasan_enable_current();
465}
466
81819f0f
CL
467/*
468 * Object debugging
469 */
470static void print_section(char *text, u8 *addr, unsigned int length)
471{
a79316c6 472 metadata_access_enable();
ffc79d28
SAS
473 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
474 length, 1);
a79316c6 475 metadata_access_disable();
81819f0f
CL
476}
477
81819f0f
CL
478static struct track *get_track(struct kmem_cache *s, void *object,
479 enum track_item alloc)
480{
481 struct track *p;
482
483 if (s->offset)
484 p = object + s->offset + sizeof(void *);
485 else
486 p = object + s->inuse;
487
488 return p + alloc;
489}
490
491static void set_track(struct kmem_cache *s, void *object,
ce71e27c 492 enum track_item alloc, unsigned long addr)
81819f0f 493{
1a00df4a 494 struct track *p = get_track(s, object, alloc);
81819f0f 495
81819f0f 496 if (addr) {
d6543e39
BG
497#ifdef CONFIG_STACKTRACE
498 struct stack_trace trace;
499 int i;
500
501 trace.nr_entries = 0;
502 trace.max_entries = TRACK_ADDRS_COUNT;
503 trace.entries = p->addrs;
504 trace.skip = 3;
a79316c6 505 metadata_access_enable();
d6543e39 506 save_stack_trace(&trace);
a79316c6 507 metadata_access_disable();
d6543e39
BG
508
509 /* See rant in lockdep.c */
510 if (trace.nr_entries != 0 &&
511 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
512 trace.nr_entries--;
513
514 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
515 p->addrs[i] = 0;
516#endif
81819f0f
CL
517 p->addr = addr;
518 p->cpu = smp_processor_id();
88e4ccf2 519 p->pid = current->pid;
81819f0f
CL
520 p->when = jiffies;
521 } else
522 memset(p, 0, sizeof(struct track));
523}
524
81819f0f
CL
525static void init_tracking(struct kmem_cache *s, void *object)
526{
24922684
CL
527 if (!(s->flags & SLAB_STORE_USER))
528 return;
529
ce71e27c
EGM
530 set_track(s, object, TRACK_FREE, 0UL);
531 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
532}
533
534static void print_track(const char *s, struct track *t)
535{
536 if (!t->addr)
537 return;
538
f9f58285
FF
539 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
540 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
541#ifdef CONFIG_STACKTRACE
542 {
543 int i;
544 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
545 if (t->addrs[i])
f9f58285 546 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
547 else
548 break;
549 }
550#endif
24922684
CL
551}
552
553static void print_tracking(struct kmem_cache *s, void *object)
554{
555 if (!(s->flags & SLAB_STORE_USER))
556 return;
557
558 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
559 print_track("Freed", get_track(s, object, TRACK_FREE));
560}
561
562static void print_page_info(struct page *page)
563{
f9f58285 564 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 565 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
566
567}
568
569static void slab_bug(struct kmem_cache *s, char *fmt, ...)
570{
ecc42fbe 571 struct va_format vaf;
24922684 572 va_list args;
24922684
CL
573
574 va_start(args, fmt);
ecc42fbe
FF
575 vaf.fmt = fmt;
576 vaf.va = &args;
f9f58285 577 pr_err("=============================================================================\n");
ecc42fbe 578 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 579 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 580
373d4d09 581 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 582 va_end(args);
81819f0f
CL
583}
584
24922684
CL
585static void slab_fix(struct kmem_cache *s, char *fmt, ...)
586{
ecc42fbe 587 struct va_format vaf;
24922684 588 va_list args;
24922684
CL
589
590 va_start(args, fmt);
ecc42fbe
FF
591 vaf.fmt = fmt;
592 vaf.va = &args;
593 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 594 va_end(args);
24922684
CL
595}
596
597static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
598{
599 unsigned int off; /* Offset of last byte */
a973e9dd 600 u8 *addr = page_address(page);
24922684
CL
601
602 print_tracking(s, p);
603
604 print_page_info(page);
605
f9f58285
FF
606 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
607 p, p - addr, get_freepointer(s, p));
24922684
CL
608
609 if (p > addr + 16)
ffc79d28 610 print_section("Bytes b4 ", p - 16, 16);
81819f0f 611
3b0efdfa 612 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 613 PAGE_SIZE));
81819f0f 614 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
615 print_section("Redzone ", p + s->object_size,
616 s->inuse - s->object_size);
81819f0f 617
81819f0f
CL
618 if (s->offset)
619 off = s->offset + sizeof(void *);
620 else
621 off = s->inuse;
622
24922684 623 if (s->flags & SLAB_STORE_USER)
81819f0f 624 off += 2 * sizeof(struct track);
81819f0f
CL
625
626 if (off != s->size)
627 /* Beginning of the filler is the free pointer */
ffc79d28 628 print_section("Padding ", p + off, s->size - off);
24922684
CL
629
630 dump_stack();
81819f0f
CL
631}
632
75c66def 633void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
634 u8 *object, char *reason)
635{
3dc50637 636 slab_bug(s, "%s", reason);
24922684 637 print_trailer(s, page, object);
81819f0f
CL
638}
639
d0e0ac97
CG
640static void slab_err(struct kmem_cache *s, struct page *page,
641 const char *fmt, ...)
81819f0f
CL
642{
643 va_list args;
644 char buf[100];
645
24922684
CL
646 va_start(args, fmt);
647 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 648 va_end(args);
3dc50637 649 slab_bug(s, "%s", buf);
24922684 650 print_page_info(page);
81819f0f
CL
651 dump_stack();
652}
653
f7cb1933 654static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
655{
656 u8 *p = object;
657
658 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
659 memset(p, POISON_FREE, s->object_size - 1);
660 p[s->object_size - 1] = POISON_END;
81819f0f
CL
661 }
662
663 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 664 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
665}
666
24922684
CL
667static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
668 void *from, void *to)
669{
670 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
671 memset(from, data, to - from);
672}
673
674static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
675 u8 *object, char *what,
06428780 676 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
677{
678 u8 *fault;
679 u8 *end;
680
a79316c6 681 metadata_access_enable();
79824820 682 fault = memchr_inv(start, value, bytes);
a79316c6 683 metadata_access_disable();
24922684
CL
684 if (!fault)
685 return 1;
686
687 end = start + bytes;
688 while (end > fault && end[-1] == value)
689 end--;
690
691 slab_bug(s, "%s overwritten", what);
f9f58285 692 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
693 fault, end - 1, fault[0], value);
694 print_trailer(s, page, object);
695
696 restore_bytes(s, what, value, fault, end);
697 return 0;
81819f0f
CL
698}
699
81819f0f
CL
700/*
701 * Object layout:
702 *
703 * object address
704 * Bytes of the object to be managed.
705 * If the freepointer may overlay the object then the free
706 * pointer is the first word of the object.
672bba3a 707 *
81819f0f
CL
708 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
709 * 0xa5 (POISON_END)
710 *
3b0efdfa 711 * object + s->object_size
81819f0f 712 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 713 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 714 * object_size == inuse.
672bba3a 715 *
81819f0f
CL
716 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
717 * 0xcc (RED_ACTIVE) for objects in use.
718 *
719 * object + s->inuse
672bba3a
CL
720 * Meta data starts here.
721 *
81819f0f
CL
722 * A. Free pointer (if we cannot overwrite object on free)
723 * B. Tracking data for SLAB_STORE_USER
672bba3a 724 * C. Padding to reach required alignment boundary or at mininum
6446faa2 725 * one word if debugging is on to be able to detect writes
672bba3a
CL
726 * before the word boundary.
727 *
728 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
729 *
730 * object + s->size
672bba3a 731 * Nothing is used beyond s->size.
81819f0f 732 *
3b0efdfa 733 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 734 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
735 * may be used with merged slabcaches.
736 */
737
81819f0f
CL
738static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
739{
740 unsigned long off = s->inuse; /* The end of info */
741
742 if (s->offset)
743 /* Freepointer is placed after the object. */
744 off += sizeof(void *);
745
746 if (s->flags & SLAB_STORE_USER)
747 /* We also have user information there */
748 off += 2 * sizeof(struct track);
749
750 if (s->size == off)
751 return 1;
752
24922684
CL
753 return check_bytes_and_report(s, page, p, "Object padding",
754 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
755}
756
39b26464 757/* Check the pad bytes at the end of a slab page */
81819f0f
CL
758static int slab_pad_check(struct kmem_cache *s, struct page *page)
759{
24922684
CL
760 u8 *start;
761 u8 *fault;
762 u8 *end;
763 int length;
764 int remainder;
81819f0f
CL
765
766 if (!(s->flags & SLAB_POISON))
767 return 1;
768
a973e9dd 769 start = page_address(page);
ab9a0f19 770 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
771 end = start + length;
772 remainder = length % s->size;
81819f0f
CL
773 if (!remainder)
774 return 1;
775
a79316c6 776 metadata_access_enable();
79824820 777 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
a79316c6 778 metadata_access_disable();
24922684
CL
779 if (!fault)
780 return 1;
781 while (end > fault && end[-1] == POISON_INUSE)
782 end--;
783
784 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 785 print_section("Padding ", end - remainder, remainder);
24922684 786
8a3d271d 787 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 788 return 0;
81819f0f
CL
789}
790
791static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 792 void *object, u8 val)
81819f0f
CL
793{
794 u8 *p = object;
3b0efdfa 795 u8 *endobject = object + s->object_size;
81819f0f
CL
796
797 if (s->flags & SLAB_RED_ZONE) {
24922684 798 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 799 endobject, val, s->inuse - s->object_size))
81819f0f 800 return 0;
81819f0f 801 } else {
3b0efdfa 802 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 803 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
804 endobject, POISON_INUSE,
805 s->inuse - s->object_size);
3adbefee 806 }
81819f0f
CL
807 }
808
809 if (s->flags & SLAB_POISON) {
f7cb1933 810 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 811 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 812 POISON_FREE, s->object_size - 1) ||
24922684 813 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 814 p + s->object_size - 1, POISON_END, 1)))
81819f0f 815 return 0;
81819f0f
CL
816 /*
817 * check_pad_bytes cleans up on its own.
818 */
819 check_pad_bytes(s, page, p);
820 }
821
f7cb1933 822 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
823 /*
824 * Object and freepointer overlap. Cannot check
825 * freepointer while object is allocated.
826 */
827 return 1;
828
829 /* Check free pointer validity */
830 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
831 object_err(s, page, p, "Freepointer corrupt");
832 /*
9f6c708e 833 * No choice but to zap it and thus lose the remainder
81819f0f 834 * of the free objects in this slab. May cause
672bba3a 835 * another error because the object count is now wrong.
81819f0f 836 */
a973e9dd 837 set_freepointer(s, p, NULL);
81819f0f
CL
838 return 0;
839 }
840 return 1;
841}
842
843static int check_slab(struct kmem_cache *s, struct page *page)
844{
39b26464
CL
845 int maxobj;
846
81819f0f
CL
847 VM_BUG_ON(!irqs_disabled());
848
849 if (!PageSlab(page)) {
24922684 850 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
851 return 0;
852 }
39b26464 853
ab9a0f19 854 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
855 if (page->objects > maxobj) {
856 slab_err(s, page, "objects %u > max %u",
f6edde9c 857 page->objects, maxobj);
39b26464
CL
858 return 0;
859 }
860 if (page->inuse > page->objects) {
24922684 861 slab_err(s, page, "inuse %u > max %u",
f6edde9c 862 page->inuse, page->objects);
81819f0f
CL
863 return 0;
864 }
865 /* Slab_pad_check fixes things up after itself */
866 slab_pad_check(s, page);
867 return 1;
868}
869
870/*
672bba3a
CL
871 * Determine if a certain object on a page is on the freelist. Must hold the
872 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
873 */
874static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
875{
876 int nr = 0;
881db7fb 877 void *fp;
81819f0f 878 void *object = NULL;
f6edde9c 879 int max_objects;
81819f0f 880
881db7fb 881 fp = page->freelist;
39b26464 882 while (fp && nr <= page->objects) {
81819f0f
CL
883 if (fp == search)
884 return 1;
885 if (!check_valid_pointer(s, page, fp)) {
886 if (object) {
887 object_err(s, page, object,
888 "Freechain corrupt");
a973e9dd 889 set_freepointer(s, object, NULL);
81819f0f 890 } else {
24922684 891 slab_err(s, page, "Freepointer corrupt");
a973e9dd 892 page->freelist = NULL;
39b26464 893 page->inuse = page->objects;
24922684 894 slab_fix(s, "Freelist cleared");
81819f0f
CL
895 return 0;
896 }
897 break;
898 }
899 object = fp;
900 fp = get_freepointer(s, object);
901 nr++;
902 }
903
ab9a0f19 904 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
905 if (max_objects > MAX_OBJS_PER_PAGE)
906 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
907
908 if (page->objects != max_objects) {
909 slab_err(s, page, "Wrong number of objects. Found %d but "
910 "should be %d", page->objects, max_objects);
911 page->objects = max_objects;
912 slab_fix(s, "Number of objects adjusted.");
913 }
39b26464 914 if (page->inuse != page->objects - nr) {
70d71228 915 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
916 "counted were %d", page->inuse, page->objects - nr);
917 page->inuse = page->objects - nr;
24922684 918 slab_fix(s, "Object count adjusted.");
81819f0f
CL
919 }
920 return search == NULL;
921}
922
0121c619
CL
923static void trace(struct kmem_cache *s, struct page *page, void *object,
924 int alloc)
3ec09742
CL
925{
926 if (s->flags & SLAB_TRACE) {
f9f58285 927 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
928 s->name,
929 alloc ? "alloc" : "free",
930 object, page->inuse,
931 page->freelist);
932
933 if (!alloc)
d0e0ac97
CG
934 print_section("Object ", (void *)object,
935 s->object_size);
3ec09742
CL
936
937 dump_stack();
938 }
939}
940
643b1138 941/*
672bba3a 942 * Tracking of fully allocated slabs for debugging purposes.
643b1138 943 */
5cc6eee8
CL
944static void add_full(struct kmem_cache *s,
945 struct kmem_cache_node *n, struct page *page)
643b1138 946{
5cc6eee8
CL
947 if (!(s->flags & SLAB_STORE_USER))
948 return;
949
255d0884 950 lockdep_assert_held(&n->list_lock);
643b1138 951 list_add(&page->lru, &n->full);
643b1138
CL
952}
953
c65c1877 954static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 955{
643b1138
CL
956 if (!(s->flags & SLAB_STORE_USER))
957 return;
958
255d0884 959 lockdep_assert_held(&n->list_lock);
643b1138 960 list_del(&page->lru);
643b1138
CL
961}
962
0f389ec6
CL
963/* Tracking of the number of slabs for debugging purposes */
964static inline unsigned long slabs_node(struct kmem_cache *s, int node)
965{
966 struct kmem_cache_node *n = get_node(s, node);
967
968 return atomic_long_read(&n->nr_slabs);
969}
970
26c02cf0
AB
971static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
972{
973 return atomic_long_read(&n->nr_slabs);
974}
975
205ab99d 976static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
977{
978 struct kmem_cache_node *n = get_node(s, node);
979
980 /*
981 * May be called early in order to allocate a slab for the
982 * kmem_cache_node structure. Solve the chicken-egg
983 * dilemma by deferring the increment of the count during
984 * bootstrap (see early_kmem_cache_node_alloc).
985 */
338b2642 986 if (likely(n)) {
0f389ec6 987 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
988 atomic_long_add(objects, &n->total_objects);
989 }
0f389ec6 990}
205ab99d 991static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
992{
993 struct kmem_cache_node *n = get_node(s, node);
994
995 atomic_long_dec(&n->nr_slabs);
205ab99d 996 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
997}
998
999/* Object debug checks for alloc/free paths */
3ec09742
CL
1000static void setup_object_debug(struct kmem_cache *s, struct page *page,
1001 void *object)
1002{
1003 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1004 return;
1005
f7cb1933 1006 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1007 init_tracking(s, object);
1008}
1009
d0e0ac97
CG
1010static noinline int alloc_debug_processing(struct kmem_cache *s,
1011 struct page *page,
ce71e27c 1012 void *object, unsigned long addr)
81819f0f
CL
1013{
1014 if (!check_slab(s, page))
1015 goto bad;
1016
81819f0f
CL
1017 if (!check_valid_pointer(s, page, object)) {
1018 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1019 goto bad;
81819f0f
CL
1020 }
1021
f7cb1933 1022 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1023 goto bad;
81819f0f 1024
3ec09742
CL
1025 /* Success perform special debug activities for allocs */
1026 if (s->flags & SLAB_STORE_USER)
1027 set_track(s, object, TRACK_ALLOC, addr);
1028 trace(s, page, object, 1);
f7cb1933 1029 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1030 return 1;
3ec09742 1031
81819f0f
CL
1032bad:
1033 if (PageSlab(page)) {
1034 /*
1035 * If this is a slab page then lets do the best we can
1036 * to avoid issues in the future. Marking all objects
672bba3a 1037 * as used avoids touching the remaining objects.
81819f0f 1038 */
24922684 1039 slab_fix(s, "Marking all objects used");
39b26464 1040 page->inuse = page->objects;
a973e9dd 1041 page->freelist = NULL;
81819f0f
CL
1042 }
1043 return 0;
1044}
1045
81084651 1046/* Supports checking bulk free of a constructed freelist */
19c7ff9e 1047static noinline struct kmem_cache_node *free_debug_processing(
81084651
JDB
1048 struct kmem_cache *s, struct page *page,
1049 void *head, void *tail, int bulk_cnt,
19c7ff9e 1050 unsigned long addr, unsigned long *flags)
81819f0f 1051{
19c7ff9e 1052 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
81084651
JDB
1053 void *object = head;
1054 int cnt = 0;
5c2e4bbb 1055
19c7ff9e 1056 spin_lock_irqsave(&n->list_lock, *flags);
881db7fb
CL
1057 slab_lock(page);
1058
81819f0f
CL
1059 if (!check_slab(s, page))
1060 goto fail;
1061
81084651
JDB
1062next_object:
1063 cnt++;
1064
81819f0f 1065 if (!check_valid_pointer(s, page, object)) {
70d71228 1066 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1067 goto fail;
1068 }
1069
1070 if (on_freelist(s, page, object)) {
24922684 1071 object_err(s, page, object, "Object already free");
81819f0f
CL
1072 goto fail;
1073 }
1074
f7cb1933 1075 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1076 goto out;
81819f0f 1077
1b4f59e3 1078 if (unlikely(s != page->slab_cache)) {
3adbefee 1079 if (!PageSlab(page)) {
70d71228
CL
1080 slab_err(s, page, "Attempt to free object(0x%p) "
1081 "outside of slab", object);
1b4f59e3 1082 } else if (!page->slab_cache) {
f9f58285
FF
1083 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1084 object);
70d71228 1085 dump_stack();
06428780 1086 } else
24922684
CL
1087 object_err(s, page, object,
1088 "page slab pointer corrupt.");
81819f0f
CL
1089 goto fail;
1090 }
3ec09742 1091
3ec09742
CL
1092 if (s->flags & SLAB_STORE_USER)
1093 set_track(s, object, TRACK_FREE, addr);
1094 trace(s, page, object, 0);
81084651 1095 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1096 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1097
1098 /* Reached end of constructed freelist yet? */
1099 if (object != tail) {
1100 object = get_freepointer(s, object);
1101 goto next_object;
1102 }
5c2e4bbb 1103out:
81084651
JDB
1104 if (cnt != bulk_cnt)
1105 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1106 bulk_cnt, cnt);
1107
881db7fb 1108 slab_unlock(page);
19c7ff9e
CL
1109 /*
1110 * Keep node_lock to preserve integrity
1111 * until the object is actually freed
1112 */
1113 return n;
3ec09742 1114
81819f0f 1115fail:
19c7ff9e
CL
1116 slab_unlock(page);
1117 spin_unlock_irqrestore(&n->list_lock, *flags);
24922684 1118 slab_fix(s, "Object at 0x%p not freed", object);
19c7ff9e 1119 return NULL;
81819f0f
CL
1120}
1121
41ecc55b
CL
1122static int __init setup_slub_debug(char *str)
1123{
f0630fff
CL
1124 slub_debug = DEBUG_DEFAULT_FLAGS;
1125 if (*str++ != '=' || !*str)
1126 /*
1127 * No options specified. Switch on full debugging.
1128 */
1129 goto out;
1130
1131 if (*str == ',')
1132 /*
1133 * No options but restriction on slabs. This means full
1134 * debugging for slabs matching a pattern.
1135 */
1136 goto check_slabs;
1137
1138 slub_debug = 0;
1139 if (*str == '-')
1140 /*
1141 * Switch off all debugging measures.
1142 */
1143 goto out;
1144
1145 /*
1146 * Determine which debug features should be switched on
1147 */
06428780 1148 for (; *str && *str != ','; str++) {
f0630fff
CL
1149 switch (tolower(*str)) {
1150 case 'f':
1151 slub_debug |= SLAB_DEBUG_FREE;
1152 break;
1153 case 'z':
1154 slub_debug |= SLAB_RED_ZONE;
1155 break;
1156 case 'p':
1157 slub_debug |= SLAB_POISON;
1158 break;
1159 case 'u':
1160 slub_debug |= SLAB_STORE_USER;
1161 break;
1162 case 't':
1163 slub_debug |= SLAB_TRACE;
1164 break;
4c13dd3b
DM
1165 case 'a':
1166 slub_debug |= SLAB_FAILSLAB;
1167 break;
08303a73
CA
1168 case 'o':
1169 /*
1170 * Avoid enabling debugging on caches if its minimum
1171 * order would increase as a result.
1172 */
1173 disable_higher_order_debug = 1;
1174 break;
f0630fff 1175 default:
f9f58285
FF
1176 pr_err("slub_debug option '%c' unknown. skipped\n",
1177 *str);
f0630fff 1178 }
41ecc55b
CL
1179 }
1180
f0630fff 1181check_slabs:
41ecc55b
CL
1182 if (*str == ',')
1183 slub_debug_slabs = str + 1;
f0630fff 1184out:
41ecc55b
CL
1185 return 1;
1186}
1187
1188__setup("slub_debug", setup_slub_debug);
1189
423c929c 1190unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1191 unsigned long flags, const char *name,
51cc5068 1192 void (*ctor)(void *))
41ecc55b
CL
1193{
1194 /*
e153362a 1195 * Enable debugging if selected on the kernel commandline.
41ecc55b 1196 */
c6f58d9b
CL
1197 if (slub_debug && (!slub_debug_slabs || (name &&
1198 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1199 flags |= slub_debug;
ba0268a8
CL
1200
1201 return flags;
41ecc55b 1202}
b4a64718 1203#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1204static inline void setup_object_debug(struct kmem_cache *s,
1205 struct page *page, void *object) {}
41ecc55b 1206
3ec09742 1207static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1208 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1209
19c7ff9e 1210static inline struct kmem_cache_node *free_debug_processing(
81084651
JDB
1211 struct kmem_cache *s, struct page *page,
1212 void *head, void *tail, int bulk_cnt,
19c7ff9e 1213 unsigned long addr, unsigned long *flags) { return NULL; }
41ecc55b 1214
41ecc55b
CL
1215static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1216 { return 1; }
1217static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1218 void *object, u8 val) { return 1; }
5cc6eee8
CL
1219static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1220 struct page *page) {}
c65c1877
PZ
1221static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1222 struct page *page) {}
423c929c 1223unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1224 unsigned long flags, const char *name,
51cc5068 1225 void (*ctor)(void *))
ba0268a8
CL
1226{
1227 return flags;
1228}
41ecc55b 1229#define slub_debug 0
0f389ec6 1230
fdaa45e9
IM
1231#define disable_higher_order_debug 0
1232
0f389ec6
CL
1233static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1234 { return 0; }
26c02cf0
AB
1235static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1236 { return 0; }
205ab99d
CL
1237static inline void inc_slabs_node(struct kmem_cache *s, int node,
1238 int objects) {}
1239static inline void dec_slabs_node(struct kmem_cache *s, int node,
1240 int objects) {}
7d550c56 1241
02e72cc6
AR
1242#endif /* CONFIG_SLUB_DEBUG */
1243
1244/*
1245 * Hooks for other subsystems that check memory allocations. In a typical
1246 * production configuration these hooks all should produce no code at all.
1247 */
d56791b3
RB
1248static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1249{
1250 kmemleak_alloc(ptr, size, 1, flags);
0316bec2 1251 kasan_kmalloc_large(ptr, size);
d56791b3
RB
1252}
1253
1254static inline void kfree_hook(const void *x)
1255{
1256 kmemleak_free(x);
0316bec2 1257 kasan_kfree_large(x);
d56791b3
RB
1258}
1259
d56791b3
RB
1260static inline void slab_free_hook(struct kmem_cache *s, void *x)
1261{
1262 kmemleak_free_recursive(x, s->flags);
7d550c56 1263
02e72cc6
AR
1264 /*
1265 * Trouble is that we may no longer disable interrupts in the fast path
1266 * So in order to make the debug calls that expect irqs to be
1267 * disabled we need to disable interrupts temporarily.
1268 */
1269#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1270 {
1271 unsigned long flags;
1272
1273 local_irq_save(flags);
1274 kmemcheck_slab_free(s, x, s->object_size);
1275 debug_check_no_locks_freed(x, s->object_size);
1276 local_irq_restore(flags);
1277 }
1278#endif
1279 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1280 debug_check_no_obj_freed(x, s->object_size);
0316bec2
AR
1281
1282 kasan_slab_free(s, x);
02e72cc6 1283}
205ab99d 1284
81084651
JDB
1285static inline void slab_free_freelist_hook(struct kmem_cache *s,
1286 void *head, void *tail)
1287{
1288/*
1289 * Compiler cannot detect this function can be removed if slab_free_hook()
1290 * evaluates to nothing. Thus, catch all relevant config debug options here.
1291 */
1292#if defined(CONFIG_KMEMCHECK) || \
1293 defined(CONFIG_LOCKDEP) || \
1294 defined(CONFIG_DEBUG_KMEMLEAK) || \
1295 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1296 defined(CONFIG_KASAN)
1297
1298 void *object = head;
1299 void *tail_obj = tail ? : head;
1300
1301 do {
1302 slab_free_hook(s, object);
1303 } while ((object != tail_obj) &&
1304 (object = get_freepointer(s, object)));
1305#endif
1306}
1307
588f8ba9
TG
1308static void setup_object(struct kmem_cache *s, struct page *page,
1309 void *object)
1310{
1311 setup_object_debug(s, page, object);
1312 if (unlikely(s->ctor)) {
1313 kasan_unpoison_object_data(s, object);
1314 s->ctor(object);
1315 kasan_poison_object_data(s, object);
1316 }
1317}
1318
81819f0f
CL
1319/*
1320 * Slab allocation and freeing
1321 */
5dfb4175
VD
1322static inline struct page *alloc_slab_page(struct kmem_cache *s,
1323 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1324{
5dfb4175 1325 struct page *page;
65c3376a
CL
1326 int order = oo_order(oo);
1327
b1eeab67
VN
1328 flags |= __GFP_NOTRACK;
1329
2154a336 1330 if (node == NUMA_NO_NODE)
5dfb4175 1331 page = alloc_pages(flags, order);
65c3376a 1332 else
96db800f 1333 page = __alloc_pages_node(node, flags, order);
5dfb4175 1334
f3ccb2c4
VD
1335 if (page && memcg_charge_slab(page, flags, order, s)) {
1336 __free_pages(page, order);
1337 page = NULL;
1338 }
5dfb4175
VD
1339
1340 return page;
65c3376a
CL
1341}
1342
81819f0f
CL
1343static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1344{
06428780 1345 struct page *page;
834f3d11 1346 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1347 gfp_t alloc_gfp;
588f8ba9
TG
1348 void *start, *p;
1349 int idx, order;
81819f0f 1350
7e0528da
CL
1351 flags &= gfp_allowed_mask;
1352
d0164adc 1353 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1354 local_irq_enable();
1355
b7a49f0d 1356 flags |= s->allocflags;
e12ba74d 1357
ba52270d
PE
1358 /*
1359 * Let the initial higher-order allocation fail under memory pressure
1360 * so we fall-back to the minimum order allocation.
1361 */
1362 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc
MG
1363 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1364 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_DIRECT_RECLAIM;
ba52270d 1365
5dfb4175 1366 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1367 if (unlikely(!page)) {
1368 oo = s->min;
80c3a998 1369 alloc_gfp = flags;
65c3376a
CL
1370 /*
1371 * Allocation may have failed due to fragmentation.
1372 * Try a lower order alloc if possible
1373 */
5dfb4175 1374 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1375 if (unlikely(!page))
1376 goto out;
1377 stat(s, ORDER_FALLBACK);
65c3376a 1378 }
5a896d9e 1379
588f8ba9
TG
1380 if (kmemcheck_enabled &&
1381 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1382 int pages = 1 << oo_order(oo);
1383
80c3a998 1384 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
b1eeab67
VN
1385
1386 /*
1387 * Objects from caches that have a constructor don't get
1388 * cleared when they're allocated, so we need to do it here.
1389 */
1390 if (s->ctor)
1391 kmemcheck_mark_uninitialized_pages(page, pages);
1392 else
1393 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1394 }
1395
834f3d11 1396 page->objects = oo_objects(oo);
81819f0f 1397
1f458cbf 1398 order = compound_order(page);
1b4f59e3 1399 page->slab_cache = s;
c03f94cc 1400 __SetPageSlab(page);
2f064f34 1401 if (page_is_pfmemalloc(page))
072bb0aa 1402 SetPageSlabPfmemalloc(page);
81819f0f
CL
1403
1404 start = page_address(page);
81819f0f
CL
1405
1406 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1407 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f 1408
0316bec2
AR
1409 kasan_poison_slab(page);
1410
54266640
WY
1411 for_each_object_idx(p, idx, s, start, page->objects) {
1412 setup_object(s, page, p);
1413 if (likely(idx < page->objects))
1414 set_freepointer(s, p, p + s->size);
1415 else
1416 set_freepointer(s, p, NULL);
81819f0f 1417 }
81819f0f
CL
1418
1419 page->freelist = start;
e6e82ea1 1420 page->inuse = page->objects;
8cb0a506 1421 page->frozen = 1;
588f8ba9 1422
81819f0f 1423out:
d0164adc 1424 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1425 local_irq_disable();
1426 if (!page)
1427 return NULL;
1428
1429 mod_zone_page_state(page_zone(page),
1430 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1431 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1432 1 << oo_order(oo));
1433
1434 inc_slabs_node(s, page_to_nid(page), page->objects);
1435
81819f0f
CL
1436 return page;
1437}
1438
588f8ba9
TG
1439static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1440{
1441 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1442 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1443 BUG();
1444 }
1445
1446 return allocate_slab(s,
1447 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1448}
1449
81819f0f
CL
1450static void __free_slab(struct kmem_cache *s, struct page *page)
1451{
834f3d11
CL
1452 int order = compound_order(page);
1453 int pages = 1 << order;
81819f0f 1454
af537b0a 1455 if (kmem_cache_debug(s)) {
81819f0f
CL
1456 void *p;
1457
1458 slab_pad_check(s, page);
224a88be
CL
1459 for_each_object(p, s, page_address(page),
1460 page->objects)
f7cb1933 1461 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1462 }
1463
b1eeab67 1464 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1465
81819f0f
CL
1466 mod_zone_page_state(page_zone(page),
1467 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1468 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1469 -pages);
81819f0f 1470
072bb0aa 1471 __ClearPageSlabPfmemalloc(page);
49bd5221 1472 __ClearPageSlab(page);
1f458cbf 1473
22b751c3 1474 page_mapcount_reset(page);
1eb5ac64
NP
1475 if (current->reclaim_state)
1476 current->reclaim_state->reclaimed_slab += pages;
f3ccb2c4 1477 __free_kmem_pages(page, order);
81819f0f
CL
1478}
1479
da9a638c
LJ
1480#define need_reserve_slab_rcu \
1481 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1482
81819f0f
CL
1483static void rcu_free_slab(struct rcu_head *h)
1484{
1485 struct page *page;
1486
da9a638c
LJ
1487 if (need_reserve_slab_rcu)
1488 page = virt_to_head_page(h);
1489 else
1490 page = container_of((struct list_head *)h, struct page, lru);
1491
1b4f59e3 1492 __free_slab(page->slab_cache, page);
81819f0f
CL
1493}
1494
1495static void free_slab(struct kmem_cache *s, struct page *page)
1496{
1497 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1498 struct rcu_head *head;
1499
1500 if (need_reserve_slab_rcu) {
1501 int order = compound_order(page);
1502 int offset = (PAGE_SIZE << order) - s->reserved;
1503
1504 VM_BUG_ON(s->reserved != sizeof(*head));
1505 head = page_address(page) + offset;
1506 } else {
bc4f610d 1507 head = &page->rcu_head;
da9a638c 1508 }
81819f0f
CL
1509
1510 call_rcu(head, rcu_free_slab);
1511 } else
1512 __free_slab(s, page);
1513}
1514
1515static void discard_slab(struct kmem_cache *s, struct page *page)
1516{
205ab99d 1517 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1518 free_slab(s, page);
1519}
1520
1521/*
5cc6eee8 1522 * Management of partially allocated slabs.
81819f0f 1523 */
1e4dd946
SR
1524static inline void
1525__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1526{
e95eed57 1527 n->nr_partial++;
136333d1 1528 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1529 list_add_tail(&page->lru, &n->partial);
1530 else
1531 list_add(&page->lru, &n->partial);
81819f0f
CL
1532}
1533
1e4dd946
SR
1534static inline void add_partial(struct kmem_cache_node *n,
1535 struct page *page, int tail)
62e346a8 1536{
c65c1877 1537 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1538 __add_partial(n, page, tail);
1539}
c65c1877 1540
1e4dd946
SR
1541static inline void remove_partial(struct kmem_cache_node *n,
1542 struct page *page)
1543{
1544 lockdep_assert_held(&n->list_lock);
52b4b950
DS
1545 list_del(&page->lru);
1546 n->nr_partial--;
1e4dd946
SR
1547}
1548
81819f0f 1549/*
7ced3719
CL
1550 * Remove slab from the partial list, freeze it and
1551 * return the pointer to the freelist.
81819f0f 1552 *
497b66f2 1553 * Returns a list of objects or NULL if it fails.
81819f0f 1554 */
497b66f2 1555static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1556 struct kmem_cache_node *n, struct page *page,
633b0764 1557 int mode, int *objects)
81819f0f 1558{
2cfb7455
CL
1559 void *freelist;
1560 unsigned long counters;
1561 struct page new;
1562
c65c1877
PZ
1563 lockdep_assert_held(&n->list_lock);
1564
2cfb7455
CL
1565 /*
1566 * Zap the freelist and set the frozen bit.
1567 * The old freelist is the list of objects for the
1568 * per cpu allocation list.
1569 */
7ced3719
CL
1570 freelist = page->freelist;
1571 counters = page->counters;
1572 new.counters = counters;
633b0764 1573 *objects = new.objects - new.inuse;
23910c50 1574 if (mode) {
7ced3719 1575 new.inuse = page->objects;
23910c50
PE
1576 new.freelist = NULL;
1577 } else {
1578 new.freelist = freelist;
1579 }
2cfb7455 1580
a0132ac0 1581 VM_BUG_ON(new.frozen);
7ced3719 1582 new.frozen = 1;
2cfb7455 1583
7ced3719 1584 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1585 freelist, counters,
02d7633f 1586 new.freelist, new.counters,
7ced3719 1587 "acquire_slab"))
7ced3719 1588 return NULL;
2cfb7455
CL
1589
1590 remove_partial(n, page);
7ced3719 1591 WARN_ON(!freelist);
49e22585 1592 return freelist;
81819f0f
CL
1593}
1594
633b0764 1595static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1596static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1597
81819f0f 1598/*
672bba3a 1599 * Try to allocate a partial slab from a specific node.
81819f0f 1600 */
8ba00bb6
JK
1601static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1602 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1603{
49e22585
CL
1604 struct page *page, *page2;
1605 void *object = NULL;
633b0764
JK
1606 int available = 0;
1607 int objects;
81819f0f
CL
1608
1609 /*
1610 * Racy check. If we mistakenly see no partial slabs then we
1611 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1612 * partial slab and there is none available then get_partials()
1613 * will return NULL.
81819f0f
CL
1614 */
1615 if (!n || !n->nr_partial)
1616 return NULL;
1617
1618 spin_lock(&n->list_lock);
49e22585 1619 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1620 void *t;
49e22585 1621
8ba00bb6
JK
1622 if (!pfmemalloc_match(page, flags))
1623 continue;
1624
633b0764 1625 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1626 if (!t)
1627 break;
1628
633b0764 1629 available += objects;
12d79634 1630 if (!object) {
49e22585 1631 c->page = page;
49e22585 1632 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1633 object = t;
49e22585 1634 } else {
633b0764 1635 put_cpu_partial(s, page, 0);
8028dcea 1636 stat(s, CPU_PARTIAL_NODE);
49e22585 1637 }
345c905d
JK
1638 if (!kmem_cache_has_cpu_partial(s)
1639 || available > s->cpu_partial / 2)
49e22585
CL
1640 break;
1641
497b66f2 1642 }
81819f0f 1643 spin_unlock(&n->list_lock);
497b66f2 1644 return object;
81819f0f
CL
1645}
1646
1647/*
672bba3a 1648 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1649 */
de3ec035 1650static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1651 struct kmem_cache_cpu *c)
81819f0f
CL
1652{
1653#ifdef CONFIG_NUMA
1654 struct zonelist *zonelist;
dd1a239f 1655 struct zoneref *z;
54a6eb5c
MG
1656 struct zone *zone;
1657 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1658 void *object;
cc9a6c87 1659 unsigned int cpuset_mems_cookie;
81819f0f
CL
1660
1661 /*
672bba3a
CL
1662 * The defrag ratio allows a configuration of the tradeoffs between
1663 * inter node defragmentation and node local allocations. A lower
1664 * defrag_ratio increases the tendency to do local allocations
1665 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1666 *
672bba3a
CL
1667 * If the defrag_ratio is set to 0 then kmalloc() always
1668 * returns node local objects. If the ratio is higher then kmalloc()
1669 * may return off node objects because partial slabs are obtained
1670 * from other nodes and filled up.
81819f0f 1671 *
6446faa2 1672 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1673 * defrag_ratio = 1000) then every (well almost) allocation will
1674 * first attempt to defrag slab caches on other nodes. This means
1675 * scanning over all nodes to look for partial slabs which may be
1676 * expensive if we do it every time we are trying to find a slab
1677 * with available objects.
81819f0f 1678 */
9824601e
CL
1679 if (!s->remote_node_defrag_ratio ||
1680 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1681 return NULL;
1682
cc9a6c87 1683 do {
d26914d1 1684 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1685 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1686 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1687 struct kmem_cache_node *n;
1688
1689 n = get_node(s, zone_to_nid(zone));
1690
dee2f8aa 1691 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1692 n->nr_partial > s->min_partial) {
8ba00bb6 1693 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1694 if (object) {
1695 /*
d26914d1
MG
1696 * Don't check read_mems_allowed_retry()
1697 * here - if mems_allowed was updated in
1698 * parallel, that was a harmless race
1699 * between allocation and the cpuset
1700 * update
cc9a6c87 1701 */
cc9a6c87
MG
1702 return object;
1703 }
c0ff7453 1704 }
81819f0f 1705 }
d26914d1 1706 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1707#endif
1708 return NULL;
1709}
1710
1711/*
1712 * Get a partial page, lock it and return it.
1713 */
497b66f2 1714static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1715 struct kmem_cache_cpu *c)
81819f0f 1716{
497b66f2 1717 void *object;
a561ce00
JK
1718 int searchnode = node;
1719
1720 if (node == NUMA_NO_NODE)
1721 searchnode = numa_mem_id();
1722 else if (!node_present_pages(node))
1723 searchnode = node_to_mem_node(node);
81819f0f 1724
8ba00bb6 1725 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1726 if (object || node != NUMA_NO_NODE)
1727 return object;
81819f0f 1728
acd19fd1 1729 return get_any_partial(s, flags, c);
81819f0f
CL
1730}
1731
8a5ec0ba
CL
1732#ifdef CONFIG_PREEMPT
1733/*
1734 * Calculate the next globally unique transaction for disambiguiation
1735 * during cmpxchg. The transactions start with the cpu number and are then
1736 * incremented by CONFIG_NR_CPUS.
1737 */
1738#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1739#else
1740/*
1741 * No preemption supported therefore also no need to check for
1742 * different cpus.
1743 */
1744#define TID_STEP 1
1745#endif
1746
1747static inline unsigned long next_tid(unsigned long tid)
1748{
1749 return tid + TID_STEP;
1750}
1751
1752static inline unsigned int tid_to_cpu(unsigned long tid)
1753{
1754 return tid % TID_STEP;
1755}
1756
1757static inline unsigned long tid_to_event(unsigned long tid)
1758{
1759 return tid / TID_STEP;
1760}
1761
1762static inline unsigned int init_tid(int cpu)
1763{
1764 return cpu;
1765}
1766
1767static inline void note_cmpxchg_failure(const char *n,
1768 const struct kmem_cache *s, unsigned long tid)
1769{
1770#ifdef SLUB_DEBUG_CMPXCHG
1771 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1772
f9f58285 1773 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
1774
1775#ifdef CONFIG_PREEMPT
1776 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 1777 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
1778 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1779 else
1780#endif
1781 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 1782 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
1783 tid_to_event(tid), tid_to_event(actual_tid));
1784 else
f9f58285 1785 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
1786 actual_tid, tid, next_tid(tid));
1787#endif
4fdccdfb 1788 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1789}
1790
788e1aad 1791static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1792{
8a5ec0ba
CL
1793 int cpu;
1794
1795 for_each_possible_cpu(cpu)
1796 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1797}
2cfb7455 1798
81819f0f
CL
1799/*
1800 * Remove the cpu slab
1801 */
d0e0ac97
CG
1802static void deactivate_slab(struct kmem_cache *s, struct page *page,
1803 void *freelist)
81819f0f 1804{
2cfb7455 1805 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1806 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1807 int lock = 0;
1808 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1809 void *nextfree;
136333d1 1810 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1811 struct page new;
1812 struct page old;
1813
1814 if (page->freelist) {
84e554e6 1815 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1816 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1817 }
1818
894b8788 1819 /*
2cfb7455
CL
1820 * Stage one: Free all available per cpu objects back
1821 * to the page freelist while it is still frozen. Leave the
1822 * last one.
1823 *
1824 * There is no need to take the list->lock because the page
1825 * is still frozen.
1826 */
1827 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1828 void *prior;
1829 unsigned long counters;
1830
1831 do {
1832 prior = page->freelist;
1833 counters = page->counters;
1834 set_freepointer(s, freelist, prior);
1835 new.counters = counters;
1836 new.inuse--;
a0132ac0 1837 VM_BUG_ON(!new.frozen);
2cfb7455 1838
1d07171c 1839 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1840 prior, counters,
1841 freelist, new.counters,
1842 "drain percpu freelist"));
1843
1844 freelist = nextfree;
1845 }
1846
894b8788 1847 /*
2cfb7455
CL
1848 * Stage two: Ensure that the page is unfrozen while the
1849 * list presence reflects the actual number of objects
1850 * during unfreeze.
1851 *
1852 * We setup the list membership and then perform a cmpxchg
1853 * with the count. If there is a mismatch then the page
1854 * is not unfrozen but the page is on the wrong list.
1855 *
1856 * Then we restart the process which may have to remove
1857 * the page from the list that we just put it on again
1858 * because the number of objects in the slab may have
1859 * changed.
894b8788 1860 */
2cfb7455 1861redo:
894b8788 1862
2cfb7455
CL
1863 old.freelist = page->freelist;
1864 old.counters = page->counters;
a0132ac0 1865 VM_BUG_ON(!old.frozen);
7c2e132c 1866
2cfb7455
CL
1867 /* Determine target state of the slab */
1868 new.counters = old.counters;
1869 if (freelist) {
1870 new.inuse--;
1871 set_freepointer(s, freelist, old.freelist);
1872 new.freelist = freelist;
1873 } else
1874 new.freelist = old.freelist;
1875
1876 new.frozen = 0;
1877
8a5b20ae 1878 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
1879 m = M_FREE;
1880 else if (new.freelist) {
1881 m = M_PARTIAL;
1882 if (!lock) {
1883 lock = 1;
1884 /*
1885 * Taking the spinlock removes the possiblity
1886 * that acquire_slab() will see a slab page that
1887 * is frozen
1888 */
1889 spin_lock(&n->list_lock);
1890 }
1891 } else {
1892 m = M_FULL;
1893 if (kmem_cache_debug(s) && !lock) {
1894 lock = 1;
1895 /*
1896 * This also ensures that the scanning of full
1897 * slabs from diagnostic functions will not see
1898 * any frozen slabs.
1899 */
1900 spin_lock(&n->list_lock);
1901 }
1902 }
1903
1904 if (l != m) {
1905
1906 if (l == M_PARTIAL)
1907
1908 remove_partial(n, page);
1909
1910 else if (l == M_FULL)
894b8788 1911
c65c1877 1912 remove_full(s, n, page);
2cfb7455
CL
1913
1914 if (m == M_PARTIAL) {
1915
1916 add_partial(n, page, tail);
136333d1 1917 stat(s, tail);
2cfb7455
CL
1918
1919 } else if (m == M_FULL) {
894b8788 1920
2cfb7455
CL
1921 stat(s, DEACTIVATE_FULL);
1922 add_full(s, n, page);
1923
1924 }
1925 }
1926
1927 l = m;
1d07171c 1928 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1929 old.freelist, old.counters,
1930 new.freelist, new.counters,
1931 "unfreezing slab"))
1932 goto redo;
1933
2cfb7455
CL
1934 if (lock)
1935 spin_unlock(&n->list_lock);
1936
1937 if (m == M_FREE) {
1938 stat(s, DEACTIVATE_EMPTY);
1939 discard_slab(s, page);
1940 stat(s, FREE_SLAB);
894b8788 1941 }
81819f0f
CL
1942}
1943
d24ac77f
JK
1944/*
1945 * Unfreeze all the cpu partial slabs.
1946 *
59a09917
CL
1947 * This function must be called with interrupts disabled
1948 * for the cpu using c (or some other guarantee must be there
1949 * to guarantee no concurrent accesses).
d24ac77f 1950 */
59a09917
CL
1951static void unfreeze_partials(struct kmem_cache *s,
1952 struct kmem_cache_cpu *c)
49e22585 1953{
345c905d 1954#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 1955 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 1956 struct page *page, *discard_page = NULL;
49e22585
CL
1957
1958 while ((page = c->partial)) {
49e22585
CL
1959 struct page new;
1960 struct page old;
1961
1962 c->partial = page->next;
43d77867
JK
1963
1964 n2 = get_node(s, page_to_nid(page));
1965 if (n != n2) {
1966 if (n)
1967 spin_unlock(&n->list_lock);
1968
1969 n = n2;
1970 spin_lock(&n->list_lock);
1971 }
49e22585
CL
1972
1973 do {
1974
1975 old.freelist = page->freelist;
1976 old.counters = page->counters;
a0132ac0 1977 VM_BUG_ON(!old.frozen);
49e22585
CL
1978
1979 new.counters = old.counters;
1980 new.freelist = old.freelist;
1981
1982 new.frozen = 0;
1983
d24ac77f 1984 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
1985 old.freelist, old.counters,
1986 new.freelist, new.counters,
1987 "unfreezing slab"));
1988
8a5b20ae 1989 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
1990 page->next = discard_page;
1991 discard_page = page;
43d77867
JK
1992 } else {
1993 add_partial(n, page, DEACTIVATE_TO_TAIL);
1994 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
1995 }
1996 }
1997
1998 if (n)
1999 spin_unlock(&n->list_lock);
9ada1934
SL
2000
2001 while (discard_page) {
2002 page = discard_page;
2003 discard_page = discard_page->next;
2004
2005 stat(s, DEACTIVATE_EMPTY);
2006 discard_slab(s, page);
2007 stat(s, FREE_SLAB);
2008 }
345c905d 2009#endif
49e22585
CL
2010}
2011
2012/*
2013 * Put a page that was just frozen (in __slab_free) into a partial page
2014 * slot if available. This is done without interrupts disabled and without
2015 * preemption disabled. The cmpxchg is racy and may put the partial page
2016 * onto a random cpus partial slot.
2017 *
2018 * If we did not find a slot then simply move all the partials to the
2019 * per node partial list.
2020 */
633b0764 2021static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2022{
345c905d 2023#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2024 struct page *oldpage;
2025 int pages;
2026 int pobjects;
2027
d6e0b7fa 2028 preempt_disable();
49e22585
CL
2029 do {
2030 pages = 0;
2031 pobjects = 0;
2032 oldpage = this_cpu_read(s->cpu_slab->partial);
2033
2034 if (oldpage) {
2035 pobjects = oldpage->pobjects;
2036 pages = oldpage->pages;
2037 if (drain && pobjects > s->cpu_partial) {
2038 unsigned long flags;
2039 /*
2040 * partial array is full. Move the existing
2041 * set to the per node partial list.
2042 */
2043 local_irq_save(flags);
59a09917 2044 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2045 local_irq_restore(flags);
e24fc410 2046 oldpage = NULL;
49e22585
CL
2047 pobjects = 0;
2048 pages = 0;
8028dcea 2049 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2050 }
2051 }
2052
2053 pages++;
2054 pobjects += page->objects - page->inuse;
2055
2056 page->pages = pages;
2057 page->pobjects = pobjects;
2058 page->next = oldpage;
2059
d0e0ac97
CG
2060 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2061 != oldpage);
d6e0b7fa
VD
2062 if (unlikely(!s->cpu_partial)) {
2063 unsigned long flags;
2064
2065 local_irq_save(flags);
2066 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2067 local_irq_restore(flags);
2068 }
2069 preempt_enable();
345c905d 2070#endif
49e22585
CL
2071}
2072
dfb4f096 2073static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2074{
84e554e6 2075 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
2076 deactivate_slab(s, c->page, c->freelist);
2077
2078 c->tid = next_tid(c->tid);
2079 c->page = NULL;
2080 c->freelist = NULL;
81819f0f
CL
2081}
2082
2083/*
2084 * Flush cpu slab.
6446faa2 2085 *
81819f0f
CL
2086 * Called from IPI handler with interrupts disabled.
2087 */
0c710013 2088static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2089{
9dfc6e68 2090 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2091
49e22585
CL
2092 if (likely(c)) {
2093 if (c->page)
2094 flush_slab(s, c);
2095
59a09917 2096 unfreeze_partials(s, c);
49e22585 2097 }
81819f0f
CL
2098}
2099
2100static void flush_cpu_slab(void *d)
2101{
2102 struct kmem_cache *s = d;
81819f0f 2103
dfb4f096 2104 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2105}
2106
a8364d55
GBY
2107static bool has_cpu_slab(int cpu, void *info)
2108{
2109 struct kmem_cache *s = info;
2110 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2111
02e1a9cd 2112 return c->page || c->partial;
a8364d55
GBY
2113}
2114
81819f0f
CL
2115static void flush_all(struct kmem_cache *s)
2116{
a8364d55 2117 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2118}
2119
dfb4f096
CL
2120/*
2121 * Check if the objects in a per cpu structure fit numa
2122 * locality expectations.
2123 */
57d437d2 2124static inline int node_match(struct page *page, int node)
dfb4f096
CL
2125{
2126#ifdef CONFIG_NUMA
4d7868e6 2127 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2128 return 0;
2129#endif
2130 return 1;
2131}
2132
9a02d699 2133#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2134static int count_free(struct page *page)
2135{
2136 return page->objects - page->inuse;
2137}
2138
9a02d699
DR
2139static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2140{
2141 return atomic_long_read(&n->total_objects);
2142}
2143#endif /* CONFIG_SLUB_DEBUG */
2144
2145#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2146static unsigned long count_partial(struct kmem_cache_node *n,
2147 int (*get_count)(struct page *))
2148{
2149 unsigned long flags;
2150 unsigned long x = 0;
2151 struct page *page;
2152
2153 spin_lock_irqsave(&n->list_lock, flags);
2154 list_for_each_entry(page, &n->partial, lru)
2155 x += get_count(page);
2156 spin_unlock_irqrestore(&n->list_lock, flags);
2157 return x;
2158}
9a02d699 2159#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2160
781b2ba6
PE
2161static noinline void
2162slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2163{
9a02d699
DR
2164#ifdef CONFIG_SLUB_DEBUG
2165 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2166 DEFAULT_RATELIMIT_BURST);
781b2ba6 2167 int node;
fa45dc25 2168 struct kmem_cache_node *n;
781b2ba6 2169
9a02d699
DR
2170 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2171 return;
2172
f9f58285 2173 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
781b2ba6 2174 nid, gfpflags);
f9f58285
FF
2175 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2176 s->name, s->object_size, s->size, oo_order(s->oo),
2177 oo_order(s->min));
781b2ba6 2178
3b0efdfa 2179 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2180 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2181 s->name);
fa5ec8a1 2182
fa45dc25 2183 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2184 unsigned long nr_slabs;
2185 unsigned long nr_objs;
2186 unsigned long nr_free;
2187
26c02cf0
AB
2188 nr_free = count_partial(n, count_free);
2189 nr_slabs = node_nr_slabs(n);
2190 nr_objs = node_nr_objs(n);
781b2ba6 2191
f9f58285 2192 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2193 node, nr_slabs, nr_objs, nr_free);
2194 }
9a02d699 2195#endif
781b2ba6
PE
2196}
2197
497b66f2
CL
2198static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2199 int node, struct kmem_cache_cpu **pc)
2200{
6faa6833 2201 void *freelist;
188fd063
CL
2202 struct kmem_cache_cpu *c = *pc;
2203 struct page *page;
497b66f2 2204
188fd063 2205 freelist = get_partial(s, flags, node, c);
497b66f2 2206
188fd063
CL
2207 if (freelist)
2208 return freelist;
2209
2210 page = new_slab(s, flags, node);
497b66f2 2211 if (page) {
7c8e0181 2212 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2213 if (c->page)
2214 flush_slab(s, c);
2215
2216 /*
2217 * No other reference to the page yet so we can
2218 * muck around with it freely without cmpxchg
2219 */
6faa6833 2220 freelist = page->freelist;
497b66f2
CL
2221 page->freelist = NULL;
2222
2223 stat(s, ALLOC_SLAB);
497b66f2
CL
2224 c->page = page;
2225 *pc = c;
2226 } else
6faa6833 2227 freelist = NULL;
497b66f2 2228
6faa6833 2229 return freelist;
497b66f2
CL
2230}
2231
072bb0aa
MG
2232static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2233{
2234 if (unlikely(PageSlabPfmemalloc(page)))
2235 return gfp_pfmemalloc_allowed(gfpflags);
2236
2237 return true;
2238}
2239
213eeb9f 2240/*
d0e0ac97
CG
2241 * Check the page->freelist of a page and either transfer the freelist to the
2242 * per cpu freelist or deactivate the page.
213eeb9f
CL
2243 *
2244 * The page is still frozen if the return value is not NULL.
2245 *
2246 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2247 *
2248 * This function must be called with interrupt disabled.
213eeb9f
CL
2249 */
2250static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2251{
2252 struct page new;
2253 unsigned long counters;
2254 void *freelist;
2255
2256 do {
2257 freelist = page->freelist;
2258 counters = page->counters;
6faa6833 2259
213eeb9f 2260 new.counters = counters;
a0132ac0 2261 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2262
2263 new.inuse = page->objects;
2264 new.frozen = freelist != NULL;
2265
d24ac77f 2266 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2267 freelist, counters,
2268 NULL, new.counters,
2269 "get_freelist"));
2270
2271 return freelist;
2272}
2273
81819f0f 2274/*
894b8788
CL
2275 * Slow path. The lockless freelist is empty or we need to perform
2276 * debugging duties.
2277 *
894b8788
CL
2278 * Processing is still very fast if new objects have been freed to the
2279 * regular freelist. In that case we simply take over the regular freelist
2280 * as the lockless freelist and zap the regular freelist.
81819f0f 2281 *
894b8788
CL
2282 * If that is not working then we fall back to the partial lists. We take the
2283 * first element of the freelist as the object to allocate now and move the
2284 * rest of the freelist to the lockless freelist.
81819f0f 2285 *
894b8788 2286 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2287 * we need to allocate a new slab. This is the slowest path since it involves
2288 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2289 *
2290 * Version of __slab_alloc to use when we know that interrupts are
2291 * already disabled (which is the case for bulk allocation).
81819f0f 2292 */
a380a3c7 2293static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2294 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2295{
6faa6833 2296 void *freelist;
f6e7def7 2297 struct page *page;
81819f0f 2298
f6e7def7
CL
2299 page = c->page;
2300 if (!page)
81819f0f 2301 goto new_slab;
49e22585 2302redo:
6faa6833 2303
57d437d2 2304 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2305 int searchnode = node;
2306
2307 if (node != NUMA_NO_NODE && !node_present_pages(node))
2308 searchnode = node_to_mem_node(node);
2309
2310 if (unlikely(!node_match(page, searchnode))) {
2311 stat(s, ALLOC_NODE_MISMATCH);
2312 deactivate_slab(s, page, c->freelist);
2313 c->page = NULL;
2314 c->freelist = NULL;
2315 goto new_slab;
2316 }
fc59c053 2317 }
6446faa2 2318
072bb0aa
MG
2319 /*
2320 * By rights, we should be searching for a slab page that was
2321 * PFMEMALLOC but right now, we are losing the pfmemalloc
2322 * information when the page leaves the per-cpu allocator
2323 */
2324 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2325 deactivate_slab(s, page, c->freelist);
2326 c->page = NULL;
2327 c->freelist = NULL;
2328 goto new_slab;
2329 }
2330
73736e03 2331 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2332 freelist = c->freelist;
2333 if (freelist)
73736e03 2334 goto load_freelist;
03e404af 2335
f6e7def7 2336 freelist = get_freelist(s, page);
6446faa2 2337
6faa6833 2338 if (!freelist) {
03e404af
CL
2339 c->page = NULL;
2340 stat(s, DEACTIVATE_BYPASS);
fc59c053 2341 goto new_slab;
03e404af 2342 }
6446faa2 2343
84e554e6 2344 stat(s, ALLOC_REFILL);
6446faa2 2345
894b8788 2346load_freelist:
507effea
CL
2347 /*
2348 * freelist is pointing to the list of objects to be used.
2349 * page is pointing to the page from which the objects are obtained.
2350 * That page must be frozen for per cpu allocations to work.
2351 */
a0132ac0 2352 VM_BUG_ON(!c->page->frozen);
6faa6833 2353 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2354 c->tid = next_tid(c->tid);
6faa6833 2355 return freelist;
81819f0f 2356
81819f0f 2357new_slab:
2cfb7455 2358
49e22585 2359 if (c->partial) {
f6e7def7
CL
2360 page = c->page = c->partial;
2361 c->partial = page->next;
49e22585
CL
2362 stat(s, CPU_PARTIAL_ALLOC);
2363 c->freelist = NULL;
2364 goto redo;
81819f0f
CL
2365 }
2366
188fd063 2367 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2368
f4697436 2369 if (unlikely(!freelist)) {
9a02d699 2370 slab_out_of_memory(s, gfpflags, node);
f4697436 2371 return NULL;
81819f0f 2372 }
2cfb7455 2373
f6e7def7 2374 page = c->page;
5091b74a 2375 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2376 goto load_freelist;
2cfb7455 2377
497b66f2 2378 /* Only entered in the debug case */
d0e0ac97
CG
2379 if (kmem_cache_debug(s) &&
2380 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2381 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2382
f6e7def7 2383 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2384 c->page = NULL;
2385 c->freelist = NULL;
6faa6833 2386 return freelist;
894b8788
CL
2387}
2388
a380a3c7
CL
2389/*
2390 * Another one that disabled interrupt and compensates for possible
2391 * cpu changes by refetching the per cpu area pointer.
2392 */
2393static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2394 unsigned long addr, struct kmem_cache_cpu *c)
2395{
2396 void *p;
2397 unsigned long flags;
2398
2399 local_irq_save(flags);
2400#ifdef CONFIG_PREEMPT
2401 /*
2402 * We may have been preempted and rescheduled on a different
2403 * cpu before disabling interrupts. Need to reload cpu area
2404 * pointer.
2405 */
2406 c = this_cpu_ptr(s->cpu_slab);
2407#endif
2408
2409 p = ___slab_alloc(s, gfpflags, node, addr, c);
2410 local_irq_restore(flags);
2411 return p;
2412}
2413
894b8788
CL
2414/*
2415 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2416 * have the fastpath folded into their functions. So no function call
2417 * overhead for requests that can be satisfied on the fastpath.
2418 *
2419 * The fastpath works by first checking if the lockless freelist can be used.
2420 * If not then __slab_alloc is called for slow processing.
2421 *
2422 * Otherwise we can simply pick the next object from the lockless free list.
2423 */
2b847c3c 2424static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2425 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2426{
03ec0ed5 2427 void *object;
dfb4f096 2428 struct kmem_cache_cpu *c;
57d437d2 2429 struct page *page;
8a5ec0ba 2430 unsigned long tid;
1f84260c 2431
8135be5a
VD
2432 s = slab_pre_alloc_hook(s, gfpflags);
2433 if (!s)
773ff60e 2434 return NULL;
8a5ec0ba 2435redo:
8a5ec0ba
CL
2436 /*
2437 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2438 * enabled. We may switch back and forth between cpus while
2439 * reading from one cpu area. That does not matter as long
2440 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2441 *
9aabf810
JK
2442 * We should guarantee that tid and kmem_cache are retrieved on
2443 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2444 * to check if it is matched or not.
8a5ec0ba 2445 */
9aabf810
JK
2446 do {
2447 tid = this_cpu_read(s->cpu_slab->tid);
2448 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2449 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2450 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2451
2452 /*
2453 * Irqless object alloc/free algorithm used here depends on sequence
2454 * of fetching cpu_slab's data. tid should be fetched before anything
2455 * on c to guarantee that object and page associated with previous tid
2456 * won't be used with current tid. If we fetch tid first, object and
2457 * page could be one associated with next tid and our alloc/free
2458 * request will be failed. In this case, we will retry. So, no problem.
2459 */
2460 barrier();
8a5ec0ba 2461
8a5ec0ba
CL
2462 /*
2463 * The transaction ids are globally unique per cpu and per operation on
2464 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2465 * occurs on the right processor and that there was no operation on the
2466 * linked list in between.
2467 */
8a5ec0ba 2468
9dfc6e68 2469 object = c->freelist;
57d437d2 2470 page = c->page;
8eae1492 2471 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2472 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2473 stat(s, ALLOC_SLOWPATH);
2474 } else {
0ad9500e
ED
2475 void *next_object = get_freepointer_safe(s, object);
2476
8a5ec0ba 2477 /*
25985edc 2478 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2479 * operation and if we are on the right processor.
2480 *
d0e0ac97
CG
2481 * The cmpxchg does the following atomically (without lock
2482 * semantics!)
8a5ec0ba
CL
2483 * 1. Relocate first pointer to the current per cpu area.
2484 * 2. Verify that tid and freelist have not been changed
2485 * 3. If they were not changed replace tid and freelist
2486 *
d0e0ac97
CG
2487 * Since this is without lock semantics the protection is only
2488 * against code executing on this cpu *not* from access by
2489 * other cpus.
8a5ec0ba 2490 */
933393f5 2491 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2492 s->cpu_slab->freelist, s->cpu_slab->tid,
2493 object, tid,
0ad9500e 2494 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2495
2496 note_cmpxchg_failure("slab_alloc", s, tid);
2497 goto redo;
2498 }
0ad9500e 2499 prefetch_freepointer(s, next_object);
84e554e6 2500 stat(s, ALLOC_FASTPATH);
894b8788 2501 }
8a5ec0ba 2502
74e2134f 2503 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2504 memset(object, 0, s->object_size);
d07dbea4 2505
03ec0ed5 2506 slab_post_alloc_hook(s, gfpflags, 1, &object);
5a896d9e 2507
894b8788 2508 return object;
81819f0f
CL
2509}
2510
2b847c3c
EG
2511static __always_inline void *slab_alloc(struct kmem_cache *s,
2512 gfp_t gfpflags, unsigned long addr)
2513{
2514 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2515}
2516
81819f0f
CL
2517void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2518{
2b847c3c 2519 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2520
d0e0ac97
CG
2521 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2522 s->size, gfpflags);
5b882be4
EGM
2523
2524 return ret;
81819f0f
CL
2525}
2526EXPORT_SYMBOL(kmem_cache_alloc);
2527
0f24f128 2528#ifdef CONFIG_TRACING
4a92379b
RK
2529void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2530{
2b847c3c 2531 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2532 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0316bec2 2533 kasan_kmalloc(s, ret, size);
4a92379b
RK
2534 return ret;
2535}
2536EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2537#endif
2538
81819f0f
CL
2539#ifdef CONFIG_NUMA
2540void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2541{
2b847c3c 2542 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2543
ca2b84cb 2544 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2545 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2546
2547 return ret;
81819f0f
CL
2548}
2549EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2550
0f24f128 2551#ifdef CONFIG_TRACING
4a92379b 2552void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2553 gfp_t gfpflags,
4a92379b 2554 int node, size_t size)
5b882be4 2555{
2b847c3c 2556 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2557
2558 trace_kmalloc_node(_RET_IP_, ret,
2559 size, s->size, gfpflags, node);
0316bec2
AR
2560
2561 kasan_kmalloc(s, ret, size);
4a92379b 2562 return ret;
5b882be4 2563}
4a92379b 2564EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2565#endif
5d1f57e4 2566#endif
5b882be4 2567
81819f0f 2568/*
94e4d712 2569 * Slow path handling. This may still be called frequently since objects
894b8788 2570 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2571 *
894b8788
CL
2572 * So we still attempt to reduce cache line usage. Just take the slab
2573 * lock and free the item. If there is no additional partial page
2574 * handling required then we can return immediately.
81819f0f 2575 */
894b8788 2576static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2577 void *head, void *tail, int cnt,
2578 unsigned long addr)
2579
81819f0f
CL
2580{
2581 void *prior;
2cfb7455 2582 int was_frozen;
2cfb7455
CL
2583 struct page new;
2584 unsigned long counters;
2585 struct kmem_cache_node *n = NULL;
61728d1e 2586 unsigned long uninitialized_var(flags);
81819f0f 2587
8a5ec0ba 2588 stat(s, FREE_SLOWPATH);
81819f0f 2589
19c7ff9e 2590 if (kmem_cache_debug(s) &&
81084651
JDB
2591 !(n = free_debug_processing(s, page, head, tail, cnt,
2592 addr, &flags)))
80f08c19 2593 return;
6446faa2 2594
2cfb7455 2595 do {
837d678d
JK
2596 if (unlikely(n)) {
2597 spin_unlock_irqrestore(&n->list_lock, flags);
2598 n = NULL;
2599 }
2cfb7455
CL
2600 prior = page->freelist;
2601 counters = page->counters;
81084651 2602 set_freepointer(s, tail, prior);
2cfb7455
CL
2603 new.counters = counters;
2604 was_frozen = new.frozen;
81084651 2605 new.inuse -= cnt;
837d678d 2606 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2607
c65c1877 2608 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2609
2610 /*
d0e0ac97
CG
2611 * Slab was on no list before and will be
2612 * partially empty
2613 * We can defer the list move and instead
2614 * freeze it.
49e22585
CL
2615 */
2616 new.frozen = 1;
2617
c65c1877 2618 } else { /* Needs to be taken off a list */
49e22585 2619
b455def2 2620 n = get_node(s, page_to_nid(page));
49e22585
CL
2621 /*
2622 * Speculatively acquire the list_lock.
2623 * If the cmpxchg does not succeed then we may
2624 * drop the list_lock without any processing.
2625 *
2626 * Otherwise the list_lock will synchronize with
2627 * other processors updating the list of slabs.
2628 */
2629 spin_lock_irqsave(&n->list_lock, flags);
2630
2631 }
2cfb7455 2632 }
81819f0f 2633
2cfb7455
CL
2634 } while (!cmpxchg_double_slab(s, page,
2635 prior, counters,
81084651 2636 head, new.counters,
2cfb7455 2637 "__slab_free"));
81819f0f 2638
2cfb7455 2639 if (likely(!n)) {
49e22585
CL
2640
2641 /*
2642 * If we just froze the page then put it onto the
2643 * per cpu partial list.
2644 */
8028dcea 2645 if (new.frozen && !was_frozen) {
49e22585 2646 put_cpu_partial(s, page, 1);
8028dcea
AS
2647 stat(s, CPU_PARTIAL_FREE);
2648 }
49e22585 2649 /*
2cfb7455
CL
2650 * The list lock was not taken therefore no list
2651 * activity can be necessary.
2652 */
b455def2
L
2653 if (was_frozen)
2654 stat(s, FREE_FROZEN);
2655 return;
2656 }
81819f0f 2657
8a5b20ae 2658 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2659 goto slab_empty;
2660
81819f0f 2661 /*
837d678d
JK
2662 * Objects left in the slab. If it was not on the partial list before
2663 * then add it.
81819f0f 2664 */
345c905d
JK
2665 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2666 if (kmem_cache_debug(s))
c65c1877 2667 remove_full(s, n, page);
837d678d
JK
2668 add_partial(n, page, DEACTIVATE_TO_TAIL);
2669 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2670 }
80f08c19 2671 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2672 return;
2673
2674slab_empty:
a973e9dd 2675 if (prior) {
81819f0f 2676 /*
6fbabb20 2677 * Slab on the partial list.
81819f0f 2678 */
5cc6eee8 2679 remove_partial(n, page);
84e554e6 2680 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2681 } else {
6fbabb20 2682 /* Slab must be on the full list */
c65c1877
PZ
2683 remove_full(s, n, page);
2684 }
2cfb7455 2685
80f08c19 2686 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2687 stat(s, FREE_SLAB);
81819f0f 2688 discard_slab(s, page);
81819f0f
CL
2689}
2690
894b8788
CL
2691/*
2692 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2693 * can perform fastpath freeing without additional function calls.
2694 *
2695 * The fastpath is only possible if we are freeing to the current cpu slab
2696 * of this processor. This typically the case if we have just allocated
2697 * the item before.
2698 *
2699 * If fastpath is not possible then fall back to __slab_free where we deal
2700 * with all sorts of special processing.
81084651
JDB
2701 *
2702 * Bulk free of a freelist with several objects (all pointing to the
2703 * same page) possible by specifying head and tail ptr, plus objects
2704 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 2705 */
81084651
JDB
2706static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2707 void *head, void *tail, int cnt,
2708 unsigned long addr)
894b8788 2709{
81084651 2710 void *tail_obj = tail ? : head;
dfb4f096 2711 struct kmem_cache_cpu *c;
8a5ec0ba 2712 unsigned long tid;
1f84260c 2713
81084651 2714 slab_free_freelist_hook(s, head, tail);
c016b0bd 2715
8a5ec0ba
CL
2716redo:
2717 /*
2718 * Determine the currently cpus per cpu slab.
2719 * The cpu may change afterward. However that does not matter since
2720 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 2721 * during the cmpxchg then the free will succeed.
8a5ec0ba 2722 */
9aabf810
JK
2723 do {
2724 tid = this_cpu_read(s->cpu_slab->tid);
2725 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2726 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2727 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 2728
9aabf810
JK
2729 /* Same with comment on barrier() in slab_alloc_node() */
2730 barrier();
c016b0bd 2731
442b06bc 2732 if (likely(page == c->page)) {
81084651 2733 set_freepointer(s, tail_obj, c->freelist);
8a5ec0ba 2734
933393f5 2735 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2736 s->cpu_slab->freelist, s->cpu_slab->tid,
2737 c->freelist, tid,
81084651 2738 head, next_tid(tid)))) {
8a5ec0ba
CL
2739
2740 note_cmpxchg_failure("slab_free", s, tid);
2741 goto redo;
2742 }
84e554e6 2743 stat(s, FREE_FASTPATH);
894b8788 2744 } else
81084651 2745 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 2746
894b8788
CL
2747}
2748
81819f0f
CL
2749void kmem_cache_free(struct kmem_cache *s, void *x)
2750{
b9ce5ef4
GC
2751 s = cache_from_obj(s, x);
2752 if (!s)
79576102 2753 return;
81084651 2754 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 2755 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2756}
2757EXPORT_SYMBOL(kmem_cache_free);
2758
d0ecd894 2759struct detached_freelist {
fbd02630 2760 struct page *page;
d0ecd894
JDB
2761 void *tail;
2762 void *freelist;
2763 int cnt;
376bf125 2764 struct kmem_cache *s;
d0ecd894 2765};
fbd02630 2766
d0ecd894
JDB
2767/*
2768 * This function progressively scans the array with free objects (with
2769 * a limited look ahead) and extract objects belonging to the same
2770 * page. It builds a detached freelist directly within the given
2771 * page/objects. This can happen without any need for
2772 * synchronization, because the objects are owned by running process.
2773 * The freelist is build up as a single linked list in the objects.
2774 * The idea is, that this detached freelist can then be bulk
2775 * transferred to the real freelist(s), but only requiring a single
2776 * synchronization primitive. Look ahead in the array is limited due
2777 * to performance reasons.
2778 */
376bf125
JDB
2779static inline
2780int build_detached_freelist(struct kmem_cache *s, size_t size,
2781 void **p, struct detached_freelist *df)
d0ecd894
JDB
2782{
2783 size_t first_skipped_index = 0;
2784 int lookahead = 3;
2785 void *object;
ca257195 2786 struct page *page;
fbd02630 2787
d0ecd894
JDB
2788 /* Always re-init detached_freelist */
2789 df->page = NULL;
fbd02630 2790
d0ecd894
JDB
2791 do {
2792 object = p[--size];
ca257195 2793 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 2794 } while (!object && size);
3eed034d 2795
d0ecd894
JDB
2796 if (!object)
2797 return 0;
fbd02630 2798
ca257195
JDB
2799 page = virt_to_head_page(object);
2800 if (!s) {
2801 /* Handle kalloc'ed objects */
2802 if (unlikely(!PageSlab(page))) {
2803 BUG_ON(!PageCompound(page));
2804 kfree_hook(object);
2805 __free_kmem_pages(page, compound_order(page));
2806 p[size] = NULL; /* mark object processed */
2807 return size;
2808 }
2809 /* Derive kmem_cache from object */
2810 df->s = page->slab_cache;
2811 } else {
2812 df->s = cache_from_obj(s, object); /* Support for memcg */
2813 }
376bf125 2814
d0ecd894 2815 /* Start new detached freelist */
ca257195 2816 df->page = page;
376bf125 2817 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
2818 df->tail = object;
2819 df->freelist = object;
2820 p[size] = NULL; /* mark object processed */
2821 df->cnt = 1;
2822
2823 while (size) {
2824 object = p[--size];
2825 if (!object)
2826 continue; /* Skip processed objects */
2827
2828 /* df->page is always set at this point */
2829 if (df->page == virt_to_head_page(object)) {
2830 /* Opportunity build freelist */
376bf125 2831 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
2832 df->freelist = object;
2833 df->cnt++;
2834 p[size] = NULL; /* mark object processed */
2835
2836 continue;
fbd02630 2837 }
d0ecd894
JDB
2838
2839 /* Limit look ahead search */
2840 if (!--lookahead)
2841 break;
2842
2843 if (!first_skipped_index)
2844 first_skipped_index = size + 1;
fbd02630 2845 }
d0ecd894
JDB
2846
2847 return first_skipped_index;
2848}
2849
d0ecd894 2850/* Note that interrupts must be enabled when calling this function. */
376bf125 2851void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
2852{
2853 if (WARN_ON(!size))
2854 return;
2855
2856 do {
2857 struct detached_freelist df;
2858
2859 size = build_detached_freelist(s, size, p, &df);
2860 if (unlikely(!df.page))
2861 continue;
2862
376bf125 2863 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
d0ecd894 2864 } while (likely(size));
484748f0
CL
2865}
2866EXPORT_SYMBOL(kmem_cache_free_bulk);
2867
994eb764 2868/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
2869int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2870 void **p)
484748f0 2871{
994eb764
JDB
2872 struct kmem_cache_cpu *c;
2873 int i;
2874
03ec0ed5
JDB
2875 /* memcg and kmem_cache debug support */
2876 s = slab_pre_alloc_hook(s, flags);
2877 if (unlikely(!s))
2878 return false;
994eb764
JDB
2879 /*
2880 * Drain objects in the per cpu slab, while disabling local
2881 * IRQs, which protects against PREEMPT and interrupts
2882 * handlers invoking normal fastpath.
2883 */
2884 local_irq_disable();
2885 c = this_cpu_ptr(s->cpu_slab);
2886
2887 for (i = 0; i < size; i++) {
2888 void *object = c->freelist;
2889
ebe909e0 2890 if (unlikely(!object)) {
ebe909e0
JDB
2891 /*
2892 * Invoking slow path likely have side-effect
2893 * of re-populating per CPU c->freelist
2894 */
87098373 2895 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 2896 _RET_IP_, c);
87098373
CL
2897 if (unlikely(!p[i]))
2898 goto error;
2899
ebe909e0
JDB
2900 c = this_cpu_ptr(s->cpu_slab);
2901 continue; /* goto for-loop */
2902 }
994eb764
JDB
2903 c->freelist = get_freepointer(s, object);
2904 p[i] = object;
2905 }
2906 c->tid = next_tid(c->tid);
2907 local_irq_enable();
2908
2909 /* Clear memory outside IRQ disabled fastpath loop */
2910 if (unlikely(flags & __GFP_ZERO)) {
2911 int j;
2912
2913 for (j = 0; j < i; j++)
2914 memset(p[j], 0, s->object_size);
2915 }
2916
03ec0ed5
JDB
2917 /* memcg and kmem_cache debug support */
2918 slab_post_alloc_hook(s, flags, size, p);
865762a8 2919 return i;
87098373 2920error:
87098373 2921 local_irq_enable();
03ec0ed5
JDB
2922 slab_post_alloc_hook(s, flags, i, p);
2923 __kmem_cache_free_bulk(s, i, p);
865762a8 2924 return 0;
484748f0
CL
2925}
2926EXPORT_SYMBOL(kmem_cache_alloc_bulk);
2927
2928
81819f0f 2929/*
672bba3a
CL
2930 * Object placement in a slab is made very easy because we always start at
2931 * offset 0. If we tune the size of the object to the alignment then we can
2932 * get the required alignment by putting one properly sized object after
2933 * another.
81819f0f
CL
2934 *
2935 * Notice that the allocation order determines the sizes of the per cpu
2936 * caches. Each processor has always one slab available for allocations.
2937 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2938 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2939 * locking overhead.
81819f0f
CL
2940 */
2941
2942/*
2943 * Mininum / Maximum order of slab pages. This influences locking overhead
2944 * and slab fragmentation. A higher order reduces the number of partial slabs
2945 * and increases the number of allocations possible without having to
2946 * take the list_lock.
2947 */
2948static int slub_min_order;
114e9e89 2949static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2950static int slub_min_objects;
81819f0f 2951
81819f0f
CL
2952/*
2953 * Calculate the order of allocation given an slab object size.
2954 *
672bba3a
CL
2955 * The order of allocation has significant impact on performance and other
2956 * system components. Generally order 0 allocations should be preferred since
2957 * order 0 does not cause fragmentation in the page allocator. Larger objects
2958 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2959 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2960 * would be wasted.
2961 *
2962 * In order to reach satisfactory performance we must ensure that a minimum
2963 * number of objects is in one slab. Otherwise we may generate too much
2964 * activity on the partial lists which requires taking the list_lock. This is
2965 * less a concern for large slabs though which are rarely used.
81819f0f 2966 *
672bba3a
CL
2967 * slub_max_order specifies the order where we begin to stop considering the
2968 * number of objects in a slab as critical. If we reach slub_max_order then
2969 * we try to keep the page order as low as possible. So we accept more waste
2970 * of space in favor of a small page order.
81819f0f 2971 *
672bba3a
CL
2972 * Higher order allocations also allow the placement of more objects in a
2973 * slab and thereby reduce object handling overhead. If the user has
2974 * requested a higher mininum order then we start with that one instead of
2975 * the smallest order which will fit the object.
81819f0f 2976 */
5e6d444e 2977static inline int slab_order(int size, int min_objects,
ab9a0f19 2978 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2979{
2980 int order;
2981 int rem;
6300ea75 2982 int min_order = slub_min_order;
81819f0f 2983
ab9a0f19 2984 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2985 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2986
9f835703 2987 for (order = max(min_order, get_order(min_objects * size + reserved));
5e6d444e 2988 order <= max_order; order++) {
81819f0f 2989
5e6d444e 2990 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2991
ab9a0f19 2992 rem = (slab_size - reserved) % size;
81819f0f 2993
5e6d444e 2994 if (rem <= slab_size / fract_leftover)
81819f0f 2995 break;
81819f0f 2996 }
672bba3a 2997
81819f0f
CL
2998 return order;
2999}
3000
ab9a0f19 3001static inline int calculate_order(int size, int reserved)
5e6d444e
CL
3002{
3003 int order;
3004 int min_objects;
3005 int fraction;
e8120ff1 3006 int max_objects;
5e6d444e
CL
3007
3008 /*
3009 * Attempt to find best configuration for a slab. This
3010 * works by first attempting to generate a layout with
3011 * the best configuration and backing off gradually.
3012 *
422ff4d7 3013 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3014 * we reduce the minimum objects required in a slab.
3015 */
3016 min_objects = slub_min_objects;
9b2cd506
CL
3017 if (!min_objects)
3018 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 3019 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
3020 min_objects = min(min_objects, max_objects);
3021
5e6d444e 3022 while (min_objects > 1) {
c124f5b5 3023 fraction = 16;
5e6d444e
CL
3024 while (fraction >= 4) {
3025 order = slab_order(size, min_objects,
ab9a0f19 3026 slub_max_order, fraction, reserved);
5e6d444e
CL
3027 if (order <= slub_max_order)
3028 return order;
3029 fraction /= 2;
3030 }
5086c389 3031 min_objects--;
5e6d444e
CL
3032 }
3033
3034 /*
3035 * We were unable to place multiple objects in a slab. Now
3036 * lets see if we can place a single object there.
3037 */
ab9a0f19 3038 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
3039 if (order <= slub_max_order)
3040 return order;
3041
3042 /*
3043 * Doh this slab cannot be placed using slub_max_order.
3044 */
ab9a0f19 3045 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 3046 if (order < MAX_ORDER)
5e6d444e
CL
3047 return order;
3048 return -ENOSYS;
3049}
3050
5595cffc 3051static void
4053497d 3052init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3053{
3054 n->nr_partial = 0;
81819f0f
CL
3055 spin_lock_init(&n->list_lock);
3056 INIT_LIST_HEAD(&n->partial);
8ab1372f 3057#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3058 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3059 atomic_long_set(&n->total_objects, 0);
643b1138 3060 INIT_LIST_HEAD(&n->full);
8ab1372f 3061#endif
81819f0f
CL
3062}
3063
55136592 3064static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3065{
6c182dc0 3066 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3067 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3068
8a5ec0ba 3069 /*
d4d84fef
CM
3070 * Must align to double word boundary for the double cmpxchg
3071 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3072 */
d4d84fef
CM
3073 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3074 2 * sizeof(void *));
8a5ec0ba
CL
3075
3076 if (!s->cpu_slab)
3077 return 0;
3078
3079 init_kmem_cache_cpus(s);
4c93c355 3080
8a5ec0ba 3081 return 1;
4c93c355 3082}
4c93c355 3083
51df1142
CL
3084static struct kmem_cache *kmem_cache_node;
3085
81819f0f
CL
3086/*
3087 * No kmalloc_node yet so do it by hand. We know that this is the first
3088 * slab on the node for this slabcache. There are no concurrent accesses
3089 * possible.
3090 *
721ae22a
ZYW
3091 * Note that this function only works on the kmem_cache_node
3092 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3093 * memory on a fresh node that has no slab structures yet.
81819f0f 3094 */
55136592 3095static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3096{
3097 struct page *page;
3098 struct kmem_cache_node *n;
3099
51df1142 3100 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3101
51df1142 3102 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3103
3104 BUG_ON(!page);
a2f92ee7 3105 if (page_to_nid(page) != node) {
f9f58285
FF
3106 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3107 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3108 }
3109
81819f0f
CL
3110 n = page->freelist;
3111 BUG_ON(!n);
51df1142 3112 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 3113 page->inuse = 1;
8cb0a506 3114 page->frozen = 0;
51df1142 3115 kmem_cache_node->node[node] = n;
8ab1372f 3116#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3117 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3118 init_tracking(kmem_cache_node, n);
8ab1372f 3119#endif
0316bec2 3120 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
4053497d 3121 init_kmem_cache_node(n);
51df1142 3122 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3123
67b6c900 3124 /*
1e4dd946
SR
3125 * No locks need to be taken here as it has just been
3126 * initialized and there is no concurrent access.
67b6c900 3127 */
1e4dd946 3128 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3129}
3130
3131static void free_kmem_cache_nodes(struct kmem_cache *s)
3132{
3133 int node;
fa45dc25 3134 struct kmem_cache_node *n;
81819f0f 3135
fa45dc25
CL
3136 for_each_kmem_cache_node(s, node, n) {
3137 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3138 s->node[node] = NULL;
3139 }
3140}
3141
52b4b950
DS
3142void __kmem_cache_release(struct kmem_cache *s)
3143{
3144 free_percpu(s->cpu_slab);
3145 free_kmem_cache_nodes(s);
3146}
3147
55136592 3148static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3149{
3150 int node;
81819f0f 3151
f64dc58c 3152 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3153 struct kmem_cache_node *n;
3154
73367bd8 3155 if (slab_state == DOWN) {
55136592 3156 early_kmem_cache_node_alloc(node);
73367bd8
AD
3157 continue;
3158 }
51df1142 3159 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3160 GFP_KERNEL, node);
81819f0f 3161
73367bd8
AD
3162 if (!n) {
3163 free_kmem_cache_nodes(s);
3164 return 0;
81819f0f 3165 }
73367bd8 3166
81819f0f 3167 s->node[node] = n;
4053497d 3168 init_kmem_cache_node(n);
81819f0f
CL
3169 }
3170 return 1;
3171}
81819f0f 3172
c0bdb232 3173static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3174{
3175 if (min < MIN_PARTIAL)
3176 min = MIN_PARTIAL;
3177 else if (min > MAX_PARTIAL)
3178 min = MAX_PARTIAL;
3179 s->min_partial = min;
3180}
3181
81819f0f
CL
3182/*
3183 * calculate_sizes() determines the order and the distribution of data within
3184 * a slab object.
3185 */
06b285dc 3186static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
3187{
3188 unsigned long flags = s->flags;
3b0efdfa 3189 unsigned long size = s->object_size;
834f3d11 3190 int order;
81819f0f 3191
d8b42bf5
CL
3192 /*
3193 * Round up object size to the next word boundary. We can only
3194 * place the free pointer at word boundaries and this determines
3195 * the possible location of the free pointer.
3196 */
3197 size = ALIGN(size, sizeof(void *));
3198
3199#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3200 /*
3201 * Determine if we can poison the object itself. If the user of
3202 * the slab may touch the object after free or before allocation
3203 * then we should never poison the object itself.
3204 */
3205 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 3206 !s->ctor)
81819f0f
CL
3207 s->flags |= __OBJECT_POISON;
3208 else
3209 s->flags &= ~__OBJECT_POISON;
3210
81819f0f
CL
3211
3212 /*
672bba3a 3213 * If we are Redzoning then check if there is some space between the
81819f0f 3214 * end of the object and the free pointer. If not then add an
672bba3a 3215 * additional word to have some bytes to store Redzone information.
81819f0f 3216 */
3b0efdfa 3217 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3218 size += sizeof(void *);
41ecc55b 3219#endif
81819f0f
CL
3220
3221 /*
672bba3a
CL
3222 * With that we have determined the number of bytes in actual use
3223 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3224 */
3225 s->inuse = size;
3226
3227 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 3228 s->ctor)) {
81819f0f
CL
3229 /*
3230 * Relocate free pointer after the object if it is not
3231 * permitted to overwrite the first word of the object on
3232 * kmem_cache_free.
3233 *
3234 * This is the case if we do RCU, have a constructor or
3235 * destructor or are poisoning the objects.
3236 */
3237 s->offset = size;
3238 size += sizeof(void *);
3239 }
3240
c12b3c62 3241#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3242 if (flags & SLAB_STORE_USER)
3243 /*
3244 * Need to store information about allocs and frees after
3245 * the object.
3246 */
3247 size += 2 * sizeof(struct track);
3248
be7b3fbc 3249 if (flags & SLAB_RED_ZONE)
81819f0f
CL
3250 /*
3251 * Add some empty padding so that we can catch
3252 * overwrites from earlier objects rather than let
3253 * tracking information or the free pointer be
0211a9c8 3254 * corrupted if a user writes before the start
81819f0f
CL
3255 * of the object.
3256 */
3257 size += sizeof(void *);
41ecc55b 3258#endif
672bba3a 3259
81819f0f
CL
3260 /*
3261 * SLUB stores one object immediately after another beginning from
3262 * offset 0. In order to align the objects we have to simply size
3263 * each object to conform to the alignment.
3264 */
45906855 3265 size = ALIGN(size, s->align);
81819f0f 3266 s->size = size;
06b285dc
CL
3267 if (forced_order >= 0)
3268 order = forced_order;
3269 else
ab9a0f19 3270 order = calculate_order(size, s->reserved);
81819f0f 3271
834f3d11 3272 if (order < 0)
81819f0f
CL
3273 return 0;
3274
b7a49f0d 3275 s->allocflags = 0;
834f3d11 3276 if (order)
b7a49f0d
CL
3277 s->allocflags |= __GFP_COMP;
3278
3279 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3280 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3281
3282 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3283 s->allocflags |= __GFP_RECLAIMABLE;
3284
81819f0f
CL
3285 /*
3286 * Determine the number of objects per slab
3287 */
ab9a0f19
LJ
3288 s->oo = oo_make(order, size, s->reserved);
3289 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3290 if (oo_objects(s->oo) > oo_objects(s->max))
3291 s->max = s->oo;
81819f0f 3292
834f3d11 3293 return !!oo_objects(s->oo);
81819f0f
CL
3294}
3295
8a13a4cc 3296static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3297{
8a13a4cc 3298 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3299 s->reserved = 0;
81819f0f 3300
da9a638c
LJ
3301 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3302 s->reserved = sizeof(struct rcu_head);
81819f0f 3303
06b285dc 3304 if (!calculate_sizes(s, -1))
81819f0f 3305 goto error;
3de47213
DR
3306 if (disable_higher_order_debug) {
3307 /*
3308 * Disable debugging flags that store metadata if the min slab
3309 * order increased.
3310 */
3b0efdfa 3311 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3312 s->flags &= ~DEBUG_METADATA_FLAGS;
3313 s->offset = 0;
3314 if (!calculate_sizes(s, -1))
3315 goto error;
3316 }
3317 }
81819f0f 3318
2565409f
HC
3319#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3320 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3321 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3322 /* Enable fast mode */
3323 s->flags |= __CMPXCHG_DOUBLE;
3324#endif
3325
3b89d7d8
DR
3326 /*
3327 * The larger the object size is, the more pages we want on the partial
3328 * list to avoid pounding the page allocator excessively.
3329 */
49e22585
CL
3330 set_min_partial(s, ilog2(s->size) / 2);
3331
3332 /*
3333 * cpu_partial determined the maximum number of objects kept in the
3334 * per cpu partial lists of a processor.
3335 *
3336 * Per cpu partial lists mainly contain slabs that just have one
3337 * object freed. If they are used for allocation then they can be
3338 * filled up again with minimal effort. The slab will never hit the
3339 * per node partial lists and therefore no locking will be required.
3340 *
3341 * This setting also determines
3342 *
3343 * A) The number of objects from per cpu partial slabs dumped to the
3344 * per node list when we reach the limit.
9f264904 3345 * B) The number of objects in cpu partial slabs to extract from the
d0e0ac97
CG
3346 * per node list when we run out of per cpu objects. We only fetch
3347 * 50% to keep some capacity around for frees.
49e22585 3348 */
345c905d 3349 if (!kmem_cache_has_cpu_partial(s))
8f1e33da
CL
3350 s->cpu_partial = 0;
3351 else if (s->size >= PAGE_SIZE)
49e22585
CL
3352 s->cpu_partial = 2;
3353 else if (s->size >= 1024)
3354 s->cpu_partial = 6;
3355 else if (s->size >= 256)
3356 s->cpu_partial = 13;
3357 else
3358 s->cpu_partial = 30;
3359
81819f0f 3360#ifdef CONFIG_NUMA
e2cb96b7 3361 s->remote_node_defrag_ratio = 1000;
81819f0f 3362#endif
55136592 3363 if (!init_kmem_cache_nodes(s))
dfb4f096 3364 goto error;
81819f0f 3365
55136592 3366 if (alloc_kmem_cache_cpus(s))
278b1bb1 3367 return 0;
ff12059e 3368
4c93c355 3369 free_kmem_cache_nodes(s);
81819f0f
CL
3370error:
3371 if (flags & SLAB_PANIC)
3372 panic("Cannot create slab %s size=%lu realsize=%u "
3373 "order=%u offset=%u flags=%lx\n",
d0e0ac97
CG
3374 s->name, (unsigned long)s->size, s->size,
3375 oo_order(s->oo), s->offset, flags);
278b1bb1 3376 return -EINVAL;
81819f0f 3377}
81819f0f 3378
33b12c38
CL
3379static void list_slab_objects(struct kmem_cache *s, struct page *page,
3380 const char *text)
3381{
3382#ifdef CONFIG_SLUB_DEBUG
3383 void *addr = page_address(page);
3384 void *p;
a5dd5c11
NK
3385 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3386 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3387 if (!map)
3388 return;
945cf2b6 3389 slab_err(s, page, text, s->name);
33b12c38 3390 slab_lock(page);
33b12c38 3391
5f80b13a 3392 get_map(s, page, map);
33b12c38
CL
3393 for_each_object(p, s, addr, page->objects) {
3394
3395 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3396 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3397 print_tracking(s, p);
3398 }
3399 }
3400 slab_unlock(page);
bbd7d57b 3401 kfree(map);
33b12c38
CL
3402#endif
3403}
3404
81819f0f 3405/*
599870b1 3406 * Attempt to free all partial slabs on a node.
52b4b950
DS
3407 * This is called from __kmem_cache_shutdown(). We must take list_lock
3408 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3409 */
599870b1 3410static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3411{
81819f0f
CL
3412 struct page *page, *h;
3413
52b4b950
DS
3414 BUG_ON(irqs_disabled());
3415 spin_lock_irq(&n->list_lock);
33b12c38 3416 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3417 if (!page->inuse) {
52b4b950 3418 remove_partial(n, page);
81819f0f 3419 discard_slab(s, page);
33b12c38
CL
3420 } else {
3421 list_slab_objects(s, page,
52b4b950 3422 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3423 }
33b12c38 3424 }
52b4b950 3425 spin_unlock_irq(&n->list_lock);
81819f0f
CL
3426}
3427
3428/*
672bba3a 3429 * Release all resources used by a slab cache.
81819f0f 3430 */
52b4b950 3431int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3432{
3433 int node;
fa45dc25 3434 struct kmem_cache_node *n;
81819f0f
CL
3435
3436 flush_all(s);
81819f0f 3437 /* Attempt to free all objects */
fa45dc25 3438 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3439 free_partial(s, n);
3440 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3441 return 1;
3442 }
81819f0f
CL
3443 return 0;
3444}
3445
81819f0f
CL
3446/********************************************************************
3447 * Kmalloc subsystem
3448 *******************************************************************/
3449
81819f0f
CL
3450static int __init setup_slub_min_order(char *str)
3451{
06428780 3452 get_option(&str, &slub_min_order);
81819f0f
CL
3453
3454 return 1;
3455}
3456
3457__setup("slub_min_order=", setup_slub_min_order);
3458
3459static int __init setup_slub_max_order(char *str)
3460{
06428780 3461 get_option(&str, &slub_max_order);
818cf590 3462 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3463
3464 return 1;
3465}
3466
3467__setup("slub_max_order=", setup_slub_max_order);
3468
3469static int __init setup_slub_min_objects(char *str)
3470{
06428780 3471 get_option(&str, &slub_min_objects);
81819f0f
CL
3472
3473 return 1;
3474}
3475
3476__setup("slub_min_objects=", setup_slub_min_objects);
3477
81819f0f
CL
3478void *__kmalloc(size_t size, gfp_t flags)
3479{
aadb4bc4 3480 struct kmem_cache *s;
5b882be4 3481 void *ret;
81819f0f 3482
95a05b42 3483 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3484 return kmalloc_large(size, flags);
aadb4bc4 3485
2c59dd65 3486 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3487
3488 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3489 return s;
3490
2b847c3c 3491 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3492
ca2b84cb 3493 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3494
0316bec2
AR
3495 kasan_kmalloc(s, ret, size);
3496
5b882be4 3497 return ret;
81819f0f
CL
3498}
3499EXPORT_SYMBOL(__kmalloc);
3500
5d1f57e4 3501#ifdef CONFIG_NUMA
f619cfe1
CL
3502static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3503{
b1eeab67 3504 struct page *page;
e4f7c0b4 3505 void *ptr = NULL;
f619cfe1 3506
52383431
VD
3507 flags |= __GFP_COMP | __GFP_NOTRACK;
3508 page = alloc_kmem_pages_node(node, flags, get_order(size));
f619cfe1 3509 if (page)
e4f7c0b4
CM
3510 ptr = page_address(page);
3511
d56791b3 3512 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3513 return ptr;
f619cfe1
CL
3514}
3515
81819f0f
CL
3516void *__kmalloc_node(size_t size, gfp_t flags, int node)
3517{
aadb4bc4 3518 struct kmem_cache *s;
5b882be4 3519 void *ret;
81819f0f 3520
95a05b42 3521 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3522 ret = kmalloc_large_node(size, flags, node);
3523
ca2b84cb
EGM
3524 trace_kmalloc_node(_RET_IP_, ret,
3525 size, PAGE_SIZE << get_order(size),
3526 flags, node);
5b882be4
EGM
3527
3528 return ret;
3529 }
aadb4bc4 3530
2c59dd65 3531 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3532
3533 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3534 return s;
3535
2b847c3c 3536 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3537
ca2b84cb 3538 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3539
0316bec2
AR
3540 kasan_kmalloc(s, ret, size);
3541
5b882be4 3542 return ret;
81819f0f
CL
3543}
3544EXPORT_SYMBOL(__kmalloc_node);
3545#endif
3546
0316bec2 3547static size_t __ksize(const void *object)
81819f0f 3548{
272c1d21 3549 struct page *page;
81819f0f 3550
ef8b4520 3551 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3552 return 0;
3553
294a80a8 3554 page = virt_to_head_page(object);
294a80a8 3555
76994412
PE
3556 if (unlikely(!PageSlab(page))) {
3557 WARN_ON(!PageCompound(page));
294a80a8 3558 return PAGE_SIZE << compound_order(page);
76994412 3559 }
81819f0f 3560
1b4f59e3 3561 return slab_ksize(page->slab_cache);
81819f0f 3562}
0316bec2
AR
3563
3564size_t ksize(const void *object)
3565{
3566 size_t size = __ksize(object);
3567 /* We assume that ksize callers could use whole allocated area,
3568 so we need unpoison this area. */
3569 kasan_krealloc(object, size);
3570 return size;
3571}
b1aabecd 3572EXPORT_SYMBOL(ksize);
81819f0f
CL
3573
3574void kfree(const void *x)
3575{
81819f0f 3576 struct page *page;
5bb983b0 3577 void *object = (void *)x;
81819f0f 3578
2121db74
PE
3579 trace_kfree(_RET_IP_, x);
3580
2408c550 3581 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3582 return;
3583
b49af68f 3584 page = virt_to_head_page(x);
aadb4bc4 3585 if (unlikely(!PageSlab(page))) {
0937502a 3586 BUG_ON(!PageCompound(page));
d56791b3 3587 kfree_hook(x);
52383431 3588 __free_kmem_pages(page, compound_order(page));
aadb4bc4
CL
3589 return;
3590 }
81084651 3591 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
3592}
3593EXPORT_SYMBOL(kfree);
3594
832f37f5
VD
3595#define SHRINK_PROMOTE_MAX 32
3596
2086d26a 3597/*
832f37f5
VD
3598 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3599 * up most to the head of the partial lists. New allocations will then
3600 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
3601 *
3602 * The slabs with the least items are placed last. This results in them
3603 * being allocated from last increasing the chance that the last objects
3604 * are freed in them.
2086d26a 3605 */
d6e0b7fa 3606int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
2086d26a
CL
3607{
3608 int node;
3609 int i;
3610 struct kmem_cache_node *n;
3611 struct page *page;
3612 struct page *t;
832f37f5
VD
3613 struct list_head discard;
3614 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 3615 unsigned long flags;
ce3712d7 3616 int ret = 0;
2086d26a 3617
d6e0b7fa
VD
3618 if (deactivate) {
3619 /*
3620 * Disable empty slabs caching. Used to avoid pinning offline
3621 * memory cgroups by kmem pages that can be freed.
3622 */
3623 s->cpu_partial = 0;
3624 s->min_partial = 0;
3625
3626 /*
3627 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3628 * so we have to make sure the change is visible.
3629 */
3630 kick_all_cpus_sync();
3631 }
3632
2086d26a 3633 flush_all(s);
fa45dc25 3634 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
3635 INIT_LIST_HEAD(&discard);
3636 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3637 INIT_LIST_HEAD(promote + i);
2086d26a
CL
3638
3639 spin_lock_irqsave(&n->list_lock, flags);
3640
3641 /*
832f37f5 3642 * Build lists of slabs to discard or promote.
2086d26a 3643 *
672bba3a
CL
3644 * Note that concurrent frees may occur while we hold the
3645 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3646 */
3647 list_for_each_entry_safe(page, t, &n->partial, lru) {
832f37f5
VD
3648 int free = page->objects - page->inuse;
3649
3650 /* Do not reread page->inuse */
3651 barrier();
3652
3653 /* We do not keep full slabs on the list */
3654 BUG_ON(free <= 0);
3655
3656 if (free == page->objects) {
3657 list_move(&page->lru, &discard);
69cb8e6b 3658 n->nr_partial--;
832f37f5
VD
3659 } else if (free <= SHRINK_PROMOTE_MAX)
3660 list_move(&page->lru, promote + free - 1);
2086d26a
CL
3661 }
3662
2086d26a 3663 /*
832f37f5
VD
3664 * Promote the slabs filled up most to the head of the
3665 * partial list.
2086d26a 3666 */
832f37f5
VD
3667 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3668 list_splice(promote + i, &n->partial);
2086d26a 3669
2086d26a 3670 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3671
3672 /* Release empty slabs */
832f37f5 3673 list_for_each_entry_safe(page, t, &discard, lru)
69cb8e6b 3674 discard_slab(s, page);
ce3712d7
VD
3675
3676 if (slabs_node(s, node))
3677 ret = 1;
2086d26a
CL
3678 }
3679
ce3712d7 3680 return ret;
2086d26a 3681}
2086d26a 3682
b9049e23
YG
3683static int slab_mem_going_offline_callback(void *arg)
3684{
3685 struct kmem_cache *s;
3686
18004c5d 3687 mutex_lock(&slab_mutex);
b9049e23 3688 list_for_each_entry(s, &slab_caches, list)
d6e0b7fa 3689 __kmem_cache_shrink(s, false);
18004c5d 3690 mutex_unlock(&slab_mutex);
b9049e23
YG
3691
3692 return 0;
3693}
3694
3695static void slab_mem_offline_callback(void *arg)
3696{
3697 struct kmem_cache_node *n;
3698 struct kmem_cache *s;
3699 struct memory_notify *marg = arg;
3700 int offline_node;
3701
b9d5ab25 3702 offline_node = marg->status_change_nid_normal;
b9049e23
YG
3703
3704 /*
3705 * If the node still has available memory. we need kmem_cache_node
3706 * for it yet.
3707 */
3708 if (offline_node < 0)
3709 return;
3710
18004c5d 3711 mutex_lock(&slab_mutex);
b9049e23
YG
3712 list_for_each_entry(s, &slab_caches, list) {
3713 n = get_node(s, offline_node);
3714 if (n) {
3715 /*
3716 * if n->nr_slabs > 0, slabs still exist on the node
3717 * that is going down. We were unable to free them,
c9404c9c 3718 * and offline_pages() function shouldn't call this
b9049e23
YG
3719 * callback. So, we must fail.
3720 */
0f389ec6 3721 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3722
3723 s->node[offline_node] = NULL;
8de66a0c 3724 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3725 }
3726 }
18004c5d 3727 mutex_unlock(&slab_mutex);
b9049e23
YG
3728}
3729
3730static int slab_mem_going_online_callback(void *arg)
3731{
3732 struct kmem_cache_node *n;
3733 struct kmem_cache *s;
3734 struct memory_notify *marg = arg;
b9d5ab25 3735 int nid = marg->status_change_nid_normal;
b9049e23
YG
3736 int ret = 0;
3737
3738 /*
3739 * If the node's memory is already available, then kmem_cache_node is
3740 * already created. Nothing to do.
3741 */
3742 if (nid < 0)
3743 return 0;
3744
3745 /*
0121c619 3746 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3747 * allocate a kmem_cache_node structure in order to bring the node
3748 * online.
3749 */
18004c5d 3750 mutex_lock(&slab_mutex);
b9049e23
YG
3751 list_for_each_entry(s, &slab_caches, list) {
3752 /*
3753 * XXX: kmem_cache_alloc_node will fallback to other nodes
3754 * since memory is not yet available from the node that
3755 * is brought up.
3756 */
8de66a0c 3757 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3758 if (!n) {
3759 ret = -ENOMEM;
3760 goto out;
3761 }
4053497d 3762 init_kmem_cache_node(n);
b9049e23
YG
3763 s->node[nid] = n;
3764 }
3765out:
18004c5d 3766 mutex_unlock(&slab_mutex);
b9049e23
YG
3767 return ret;
3768}
3769
3770static int slab_memory_callback(struct notifier_block *self,
3771 unsigned long action, void *arg)
3772{
3773 int ret = 0;
3774
3775 switch (action) {
3776 case MEM_GOING_ONLINE:
3777 ret = slab_mem_going_online_callback(arg);
3778 break;
3779 case MEM_GOING_OFFLINE:
3780 ret = slab_mem_going_offline_callback(arg);
3781 break;
3782 case MEM_OFFLINE:
3783 case MEM_CANCEL_ONLINE:
3784 slab_mem_offline_callback(arg);
3785 break;
3786 case MEM_ONLINE:
3787 case MEM_CANCEL_OFFLINE:
3788 break;
3789 }
dc19f9db
KH
3790 if (ret)
3791 ret = notifier_from_errno(ret);
3792 else
3793 ret = NOTIFY_OK;
b9049e23
YG
3794 return ret;
3795}
3796
3ac38faa
AM
3797static struct notifier_block slab_memory_callback_nb = {
3798 .notifier_call = slab_memory_callback,
3799 .priority = SLAB_CALLBACK_PRI,
3800};
b9049e23 3801
81819f0f
CL
3802/********************************************************************
3803 * Basic setup of slabs
3804 *******************************************************************/
3805
51df1142
CL
3806/*
3807 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
3808 * the page allocator. Allocate them properly then fix up the pointers
3809 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
3810 */
3811
dffb4d60 3812static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
3813{
3814 int node;
dffb4d60 3815 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 3816 struct kmem_cache_node *n;
51df1142 3817
dffb4d60 3818 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 3819
7d557b3c
GC
3820 /*
3821 * This runs very early, and only the boot processor is supposed to be
3822 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3823 * IPIs around.
3824 */
3825 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 3826 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
3827 struct page *p;
3828
fa45dc25
CL
3829 list_for_each_entry(p, &n->partial, lru)
3830 p->slab_cache = s;
51df1142 3831
607bf324 3832#ifdef CONFIG_SLUB_DEBUG
fa45dc25
CL
3833 list_for_each_entry(p, &n->full, lru)
3834 p->slab_cache = s;
51df1142 3835#endif
51df1142 3836 }
f7ce3190 3837 slab_init_memcg_params(s);
dffb4d60
CL
3838 list_add(&s->list, &slab_caches);
3839 return s;
51df1142
CL
3840}
3841
81819f0f
CL
3842void __init kmem_cache_init(void)
3843{
dffb4d60
CL
3844 static __initdata struct kmem_cache boot_kmem_cache,
3845 boot_kmem_cache_node;
51df1142 3846
fc8d8620
SG
3847 if (debug_guardpage_minorder())
3848 slub_max_order = 0;
3849
dffb4d60
CL
3850 kmem_cache_node = &boot_kmem_cache_node;
3851 kmem_cache = &boot_kmem_cache;
51df1142 3852
dffb4d60
CL
3853 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3854 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 3855
3ac38faa 3856 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
3857
3858 /* Able to allocate the per node structures */
3859 slab_state = PARTIAL;
3860
dffb4d60
CL
3861 create_boot_cache(kmem_cache, "kmem_cache",
3862 offsetof(struct kmem_cache, node) +
3863 nr_node_ids * sizeof(struct kmem_cache_node *),
3864 SLAB_HWCACHE_ALIGN);
8a13a4cc 3865
dffb4d60 3866 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 3867
51df1142
CL
3868 /*
3869 * Allocate kmem_cache_node properly from the kmem_cache slab.
3870 * kmem_cache_node is separately allocated so no need to
3871 * update any list pointers.
3872 */
dffb4d60 3873 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
3874
3875 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 3876 setup_kmalloc_cache_index_table();
f97d5f63 3877 create_kmalloc_caches(0);
81819f0f
CL
3878
3879#ifdef CONFIG_SMP
3880 register_cpu_notifier(&slab_notifier);
9dfc6e68 3881#endif
81819f0f 3882
f9f58285 3883 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
f97d5f63 3884 cache_line_size(),
81819f0f
CL
3885 slub_min_order, slub_max_order, slub_min_objects,
3886 nr_cpu_ids, nr_node_ids);
3887}
3888
7e85ee0c
PE
3889void __init kmem_cache_init_late(void)
3890{
7e85ee0c
PE
3891}
3892
2633d7a0 3893struct kmem_cache *
a44cb944
VD
3894__kmem_cache_alias(const char *name, size_t size, size_t align,
3895 unsigned long flags, void (*ctor)(void *))
81819f0f 3896{
426589f5 3897 struct kmem_cache *s, *c;
81819f0f 3898
a44cb944 3899 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3900 if (s) {
3901 s->refcount++;
84d0ddd6 3902
81819f0f
CL
3903 /*
3904 * Adjust the object sizes so that we clear
3905 * the complete object on kzalloc.
3906 */
3b0efdfa 3907 s->object_size = max(s->object_size, (int)size);
81819f0f 3908 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3909
426589f5 3910 for_each_memcg_cache(c, s) {
84d0ddd6
VD
3911 c->object_size = s->object_size;
3912 c->inuse = max_t(int, c->inuse,
3913 ALIGN(size, sizeof(void *)));
3914 }
3915
7b8f3b66 3916 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3917 s->refcount--;
cbb79694 3918 s = NULL;
7b8f3b66 3919 }
a0e1d1be 3920 }
6446faa2 3921
cbb79694
CL
3922 return s;
3923}
84c1cf62 3924
8a13a4cc 3925int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 3926{
aac3a166
PE
3927 int err;
3928
3929 err = kmem_cache_open(s, flags);
3930 if (err)
3931 return err;
20cea968 3932
45530c44
CL
3933 /* Mutex is not taken during early boot */
3934 if (slab_state <= UP)
3935 return 0;
3936
107dab5c 3937 memcg_propagate_slab_attrs(s);
aac3a166 3938 err = sysfs_slab_add(s);
aac3a166 3939 if (err)
52b4b950 3940 __kmem_cache_release(s);
20cea968 3941
aac3a166 3942 return err;
81819f0f 3943}
81819f0f 3944
81819f0f 3945#ifdef CONFIG_SMP
81819f0f 3946/*
672bba3a
CL
3947 * Use the cpu notifier to insure that the cpu slabs are flushed when
3948 * necessary.
81819f0f 3949 */
0db0628d 3950static int slab_cpuup_callback(struct notifier_block *nfb,
81819f0f
CL
3951 unsigned long action, void *hcpu)
3952{
3953 long cpu = (long)hcpu;
5b95a4ac
CL
3954 struct kmem_cache *s;
3955 unsigned long flags;
81819f0f
CL
3956
3957 switch (action) {
3958 case CPU_UP_CANCELED:
8bb78442 3959 case CPU_UP_CANCELED_FROZEN:
81819f0f 3960 case CPU_DEAD:
8bb78442 3961 case CPU_DEAD_FROZEN:
18004c5d 3962 mutex_lock(&slab_mutex);
5b95a4ac
CL
3963 list_for_each_entry(s, &slab_caches, list) {
3964 local_irq_save(flags);
3965 __flush_cpu_slab(s, cpu);
3966 local_irq_restore(flags);
3967 }
18004c5d 3968 mutex_unlock(&slab_mutex);
81819f0f
CL
3969 break;
3970 default:
3971 break;
3972 }
3973 return NOTIFY_OK;
3974}
3975
0db0628d 3976static struct notifier_block slab_notifier = {
3adbefee 3977 .notifier_call = slab_cpuup_callback
06428780 3978};
81819f0f
CL
3979
3980#endif
3981
ce71e27c 3982void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3983{
aadb4bc4 3984 struct kmem_cache *s;
94b528d0 3985 void *ret;
aadb4bc4 3986
95a05b42 3987 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
3988 return kmalloc_large(size, gfpflags);
3989
2c59dd65 3990 s = kmalloc_slab(size, gfpflags);
81819f0f 3991
2408c550 3992 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3993 return s;
81819f0f 3994
2b847c3c 3995 ret = slab_alloc(s, gfpflags, caller);
94b528d0 3996
25985edc 3997 /* Honor the call site pointer we received. */
ca2b84cb 3998 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3999
4000 return ret;
81819f0f
CL
4001}
4002
5d1f57e4 4003#ifdef CONFIG_NUMA
81819f0f 4004void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4005 int node, unsigned long caller)
81819f0f 4006{
aadb4bc4 4007 struct kmem_cache *s;
94b528d0 4008 void *ret;
aadb4bc4 4009
95a05b42 4010 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4011 ret = kmalloc_large_node(size, gfpflags, node);
4012
4013 trace_kmalloc_node(caller, ret,
4014 size, PAGE_SIZE << get_order(size),
4015 gfpflags, node);
4016
4017 return ret;
4018 }
eada35ef 4019
2c59dd65 4020 s = kmalloc_slab(size, gfpflags);
81819f0f 4021
2408c550 4022 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4023 return s;
81819f0f 4024
2b847c3c 4025 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4026
25985edc 4027 /* Honor the call site pointer we received. */
ca2b84cb 4028 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4029
4030 return ret;
81819f0f 4031}
5d1f57e4 4032#endif
81819f0f 4033
ab4d5ed5 4034#ifdef CONFIG_SYSFS
205ab99d
CL
4035static int count_inuse(struct page *page)
4036{
4037 return page->inuse;
4038}
4039
4040static int count_total(struct page *page)
4041{
4042 return page->objects;
4043}
ab4d5ed5 4044#endif
205ab99d 4045
ab4d5ed5 4046#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4047static int validate_slab(struct kmem_cache *s, struct page *page,
4048 unsigned long *map)
53e15af0
CL
4049{
4050 void *p;
a973e9dd 4051 void *addr = page_address(page);
53e15af0
CL
4052
4053 if (!check_slab(s, page) ||
4054 !on_freelist(s, page, NULL))
4055 return 0;
4056
4057 /* Now we know that a valid freelist exists */
39b26464 4058 bitmap_zero(map, page->objects);
53e15af0 4059
5f80b13a
CL
4060 get_map(s, page, map);
4061 for_each_object(p, s, addr, page->objects) {
4062 if (test_bit(slab_index(p, s, addr), map))
4063 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4064 return 0;
53e15af0
CL
4065 }
4066
224a88be 4067 for_each_object(p, s, addr, page->objects)
7656c72b 4068 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4069 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4070 return 0;
4071 return 1;
4072}
4073
434e245d
CL
4074static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4075 unsigned long *map)
53e15af0 4076{
881db7fb
CL
4077 slab_lock(page);
4078 validate_slab(s, page, map);
4079 slab_unlock(page);
53e15af0
CL
4080}
4081
434e245d
CL
4082static int validate_slab_node(struct kmem_cache *s,
4083 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4084{
4085 unsigned long count = 0;
4086 struct page *page;
4087 unsigned long flags;
4088
4089 spin_lock_irqsave(&n->list_lock, flags);
4090
4091 list_for_each_entry(page, &n->partial, lru) {
434e245d 4092 validate_slab_slab(s, page, map);
53e15af0
CL
4093 count++;
4094 }
4095 if (count != n->nr_partial)
f9f58285
FF
4096 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4097 s->name, count, n->nr_partial);
53e15af0
CL
4098
4099 if (!(s->flags & SLAB_STORE_USER))
4100 goto out;
4101
4102 list_for_each_entry(page, &n->full, lru) {
434e245d 4103 validate_slab_slab(s, page, map);
53e15af0
CL
4104 count++;
4105 }
4106 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4107 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4108 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4109
4110out:
4111 spin_unlock_irqrestore(&n->list_lock, flags);
4112 return count;
4113}
4114
434e245d 4115static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4116{
4117 int node;
4118 unsigned long count = 0;
205ab99d 4119 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d 4120 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4121 struct kmem_cache_node *n;
434e245d
CL
4122
4123 if (!map)
4124 return -ENOMEM;
53e15af0
CL
4125
4126 flush_all(s);
fa45dc25 4127 for_each_kmem_cache_node(s, node, n)
434e245d 4128 count += validate_slab_node(s, n, map);
434e245d 4129 kfree(map);
53e15af0
CL
4130 return count;
4131}
88a420e4 4132/*
672bba3a 4133 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4134 * and freed.
4135 */
4136
4137struct location {
4138 unsigned long count;
ce71e27c 4139 unsigned long addr;
45edfa58
CL
4140 long long sum_time;
4141 long min_time;
4142 long max_time;
4143 long min_pid;
4144 long max_pid;
174596a0 4145 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4146 nodemask_t nodes;
88a420e4
CL
4147};
4148
4149struct loc_track {
4150 unsigned long max;
4151 unsigned long count;
4152 struct location *loc;
4153};
4154
4155static void free_loc_track(struct loc_track *t)
4156{
4157 if (t->max)
4158 free_pages((unsigned long)t->loc,
4159 get_order(sizeof(struct location) * t->max));
4160}
4161
68dff6a9 4162static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4163{
4164 struct location *l;
4165 int order;
4166
88a420e4
CL
4167 order = get_order(sizeof(struct location) * max);
4168
68dff6a9 4169 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4170 if (!l)
4171 return 0;
4172
4173 if (t->count) {
4174 memcpy(l, t->loc, sizeof(struct location) * t->count);
4175 free_loc_track(t);
4176 }
4177 t->max = max;
4178 t->loc = l;
4179 return 1;
4180}
4181
4182static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4183 const struct track *track)
88a420e4
CL
4184{
4185 long start, end, pos;
4186 struct location *l;
ce71e27c 4187 unsigned long caddr;
45edfa58 4188 unsigned long age = jiffies - track->when;
88a420e4
CL
4189
4190 start = -1;
4191 end = t->count;
4192
4193 for ( ; ; ) {
4194 pos = start + (end - start + 1) / 2;
4195
4196 /*
4197 * There is nothing at "end". If we end up there
4198 * we need to add something to before end.
4199 */
4200 if (pos == end)
4201 break;
4202
4203 caddr = t->loc[pos].addr;
45edfa58
CL
4204 if (track->addr == caddr) {
4205
4206 l = &t->loc[pos];
4207 l->count++;
4208 if (track->when) {
4209 l->sum_time += age;
4210 if (age < l->min_time)
4211 l->min_time = age;
4212 if (age > l->max_time)
4213 l->max_time = age;
4214
4215 if (track->pid < l->min_pid)
4216 l->min_pid = track->pid;
4217 if (track->pid > l->max_pid)
4218 l->max_pid = track->pid;
4219
174596a0
RR
4220 cpumask_set_cpu(track->cpu,
4221 to_cpumask(l->cpus));
45edfa58
CL
4222 }
4223 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4224 return 1;
4225 }
4226
45edfa58 4227 if (track->addr < caddr)
88a420e4
CL
4228 end = pos;
4229 else
4230 start = pos;
4231 }
4232
4233 /*
672bba3a 4234 * Not found. Insert new tracking element.
88a420e4 4235 */
68dff6a9 4236 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4237 return 0;
4238
4239 l = t->loc + pos;
4240 if (pos < t->count)
4241 memmove(l + 1, l,
4242 (t->count - pos) * sizeof(struct location));
4243 t->count++;
4244 l->count = 1;
45edfa58
CL
4245 l->addr = track->addr;
4246 l->sum_time = age;
4247 l->min_time = age;
4248 l->max_time = age;
4249 l->min_pid = track->pid;
4250 l->max_pid = track->pid;
174596a0
RR
4251 cpumask_clear(to_cpumask(l->cpus));
4252 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4253 nodes_clear(l->nodes);
4254 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4255 return 1;
4256}
4257
4258static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4259 struct page *page, enum track_item alloc,
a5dd5c11 4260 unsigned long *map)
88a420e4 4261{
a973e9dd 4262 void *addr = page_address(page);
88a420e4
CL
4263 void *p;
4264
39b26464 4265 bitmap_zero(map, page->objects);
5f80b13a 4266 get_map(s, page, map);
88a420e4 4267
224a88be 4268 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4269 if (!test_bit(slab_index(p, s, addr), map))
4270 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4271}
4272
4273static int list_locations(struct kmem_cache *s, char *buf,
4274 enum track_item alloc)
4275{
e374d483 4276 int len = 0;
88a420e4 4277 unsigned long i;
68dff6a9 4278 struct loc_track t = { 0, 0, NULL };
88a420e4 4279 int node;
bbd7d57b
ED
4280 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4281 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4282 struct kmem_cache_node *n;
88a420e4 4283
bbd7d57b
ED
4284 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4285 GFP_TEMPORARY)) {
4286 kfree(map);
68dff6a9 4287 return sprintf(buf, "Out of memory\n");
bbd7d57b 4288 }
88a420e4
CL
4289 /* Push back cpu slabs */
4290 flush_all(s);
4291
fa45dc25 4292 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4293 unsigned long flags;
4294 struct page *page;
4295
9e86943b 4296 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4297 continue;
4298
4299 spin_lock_irqsave(&n->list_lock, flags);
4300 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4301 process_slab(&t, s, page, alloc, map);
88a420e4 4302 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4303 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4304 spin_unlock_irqrestore(&n->list_lock, flags);
4305 }
4306
4307 for (i = 0; i < t.count; i++) {
45edfa58 4308 struct location *l = &t.loc[i];
88a420e4 4309
9c246247 4310 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4311 break;
e374d483 4312 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4313
4314 if (l->addr)
62c70bce 4315 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4316 else
e374d483 4317 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4318
4319 if (l->sum_time != l->min_time) {
e374d483 4320 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4321 l->min_time,
4322 (long)div_u64(l->sum_time, l->count),
4323 l->max_time);
45edfa58 4324 } else
e374d483 4325 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4326 l->min_time);
4327
4328 if (l->min_pid != l->max_pid)
e374d483 4329 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4330 l->min_pid, l->max_pid);
4331 else
e374d483 4332 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4333 l->min_pid);
4334
174596a0
RR
4335 if (num_online_cpus() > 1 &&
4336 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4337 len < PAGE_SIZE - 60)
4338 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4339 " cpus=%*pbl",
4340 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4341
62bc62a8 4342 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4343 len < PAGE_SIZE - 60)
4344 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4345 " nodes=%*pbl",
4346 nodemask_pr_args(&l->nodes));
45edfa58 4347
e374d483 4348 len += sprintf(buf + len, "\n");
88a420e4
CL
4349 }
4350
4351 free_loc_track(&t);
bbd7d57b 4352 kfree(map);
88a420e4 4353 if (!t.count)
e374d483
HH
4354 len += sprintf(buf, "No data\n");
4355 return len;
88a420e4 4356}
ab4d5ed5 4357#endif
88a420e4 4358
a5a84755 4359#ifdef SLUB_RESILIENCY_TEST
c07b8183 4360static void __init resiliency_test(void)
a5a84755
CL
4361{
4362 u8 *p;
4363
95a05b42 4364 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4365
f9f58285
FF
4366 pr_err("SLUB resiliency testing\n");
4367 pr_err("-----------------------\n");
4368 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4369
4370 p = kzalloc(16, GFP_KERNEL);
4371 p[16] = 0x12;
f9f58285
FF
4372 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4373 p + 16);
a5a84755
CL
4374
4375 validate_slab_cache(kmalloc_caches[4]);
4376
4377 /* Hmmm... The next two are dangerous */
4378 p = kzalloc(32, GFP_KERNEL);
4379 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4380 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4381 p);
4382 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4383
4384 validate_slab_cache(kmalloc_caches[5]);
4385 p = kzalloc(64, GFP_KERNEL);
4386 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4387 *p = 0x56;
f9f58285
FF
4388 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4389 p);
4390 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4391 validate_slab_cache(kmalloc_caches[6]);
4392
f9f58285 4393 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4394 p = kzalloc(128, GFP_KERNEL);
4395 kfree(p);
4396 *p = 0x78;
f9f58285 4397 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a5a84755
CL
4398 validate_slab_cache(kmalloc_caches[7]);
4399
4400 p = kzalloc(256, GFP_KERNEL);
4401 kfree(p);
4402 p[50] = 0x9a;
f9f58285 4403 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
a5a84755
CL
4404 validate_slab_cache(kmalloc_caches[8]);
4405
4406 p = kzalloc(512, GFP_KERNEL);
4407 kfree(p);
4408 p[512] = 0xab;
f9f58285 4409 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a5a84755
CL
4410 validate_slab_cache(kmalloc_caches[9]);
4411}
4412#else
4413#ifdef CONFIG_SYSFS
4414static void resiliency_test(void) {};
4415#endif
4416#endif
4417
ab4d5ed5 4418#ifdef CONFIG_SYSFS
81819f0f 4419enum slab_stat_type {
205ab99d
CL
4420 SL_ALL, /* All slabs */
4421 SL_PARTIAL, /* Only partially allocated slabs */
4422 SL_CPU, /* Only slabs used for cpu caches */
4423 SL_OBJECTS, /* Determine allocated objects not slabs */
4424 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4425};
4426
205ab99d 4427#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4428#define SO_PARTIAL (1 << SL_PARTIAL)
4429#define SO_CPU (1 << SL_CPU)
4430#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4431#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4432
62e5c4b4
CG
4433static ssize_t show_slab_objects(struct kmem_cache *s,
4434 char *buf, unsigned long flags)
81819f0f
CL
4435{
4436 unsigned long total = 0;
81819f0f
CL
4437 int node;
4438 int x;
4439 unsigned long *nodes;
81819f0f 4440
e35e1a97 4441 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4442 if (!nodes)
4443 return -ENOMEM;
81819f0f 4444
205ab99d
CL
4445 if (flags & SO_CPU) {
4446 int cpu;
81819f0f 4447
205ab99d 4448 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4449 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4450 cpu);
ec3ab083 4451 int node;
49e22585 4452 struct page *page;
dfb4f096 4453
4db0c3c2 4454 page = READ_ONCE(c->page);
ec3ab083
CL
4455 if (!page)
4456 continue;
205ab99d 4457
ec3ab083
CL
4458 node = page_to_nid(page);
4459 if (flags & SO_TOTAL)
4460 x = page->objects;
4461 else if (flags & SO_OBJECTS)
4462 x = page->inuse;
4463 else
4464 x = 1;
49e22585 4465
ec3ab083
CL
4466 total += x;
4467 nodes[node] += x;
4468
4db0c3c2 4469 page = READ_ONCE(c->partial);
49e22585 4470 if (page) {
8afb1474
LZ
4471 node = page_to_nid(page);
4472 if (flags & SO_TOTAL)
4473 WARN_ON_ONCE(1);
4474 else if (flags & SO_OBJECTS)
4475 WARN_ON_ONCE(1);
4476 else
4477 x = page->pages;
bc6697d8
ED
4478 total += x;
4479 nodes[node] += x;
49e22585 4480 }
81819f0f
CL
4481 }
4482 }
4483
bfc8c901 4484 get_online_mems();
ab4d5ed5 4485#ifdef CONFIG_SLUB_DEBUG
205ab99d 4486 if (flags & SO_ALL) {
fa45dc25
CL
4487 struct kmem_cache_node *n;
4488
4489 for_each_kmem_cache_node(s, node, n) {
205ab99d 4490
d0e0ac97
CG
4491 if (flags & SO_TOTAL)
4492 x = atomic_long_read(&n->total_objects);
4493 else if (flags & SO_OBJECTS)
4494 x = atomic_long_read(&n->total_objects) -
4495 count_partial(n, count_free);
81819f0f 4496 else
205ab99d 4497 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4498 total += x;
4499 nodes[node] += x;
4500 }
4501
ab4d5ed5
CL
4502 } else
4503#endif
4504 if (flags & SO_PARTIAL) {
fa45dc25 4505 struct kmem_cache_node *n;
81819f0f 4506
fa45dc25 4507 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4508 if (flags & SO_TOTAL)
4509 x = count_partial(n, count_total);
4510 else if (flags & SO_OBJECTS)
4511 x = count_partial(n, count_inuse);
81819f0f 4512 else
205ab99d 4513 x = n->nr_partial;
81819f0f
CL
4514 total += x;
4515 nodes[node] += x;
4516 }
4517 }
81819f0f
CL
4518 x = sprintf(buf, "%lu", total);
4519#ifdef CONFIG_NUMA
fa45dc25 4520 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4521 if (nodes[node])
4522 x += sprintf(buf + x, " N%d=%lu",
4523 node, nodes[node]);
4524#endif
bfc8c901 4525 put_online_mems();
81819f0f
CL
4526 kfree(nodes);
4527 return x + sprintf(buf + x, "\n");
4528}
4529
ab4d5ed5 4530#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4531static int any_slab_objects(struct kmem_cache *s)
4532{
4533 int node;
fa45dc25 4534 struct kmem_cache_node *n;
81819f0f 4535
fa45dc25 4536 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4537 if (atomic_long_read(&n->total_objects))
81819f0f 4538 return 1;
fa45dc25 4539
81819f0f
CL
4540 return 0;
4541}
ab4d5ed5 4542#endif
81819f0f
CL
4543
4544#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4545#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4546
4547struct slab_attribute {
4548 struct attribute attr;
4549 ssize_t (*show)(struct kmem_cache *s, char *buf);
4550 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4551};
4552
4553#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4554 static struct slab_attribute _name##_attr = \
4555 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4556
4557#define SLAB_ATTR(_name) \
4558 static struct slab_attribute _name##_attr = \
ab067e99 4559 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4560
81819f0f
CL
4561static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4562{
4563 return sprintf(buf, "%d\n", s->size);
4564}
4565SLAB_ATTR_RO(slab_size);
4566
4567static ssize_t align_show(struct kmem_cache *s, char *buf)
4568{
4569 return sprintf(buf, "%d\n", s->align);
4570}
4571SLAB_ATTR_RO(align);
4572
4573static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4574{
3b0efdfa 4575 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4576}
4577SLAB_ATTR_RO(object_size);
4578
4579static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4580{
834f3d11 4581 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4582}
4583SLAB_ATTR_RO(objs_per_slab);
4584
06b285dc
CL
4585static ssize_t order_store(struct kmem_cache *s,
4586 const char *buf, size_t length)
4587{
0121c619
CL
4588 unsigned long order;
4589 int err;
4590
3dbb95f7 4591 err = kstrtoul(buf, 10, &order);
0121c619
CL
4592 if (err)
4593 return err;
06b285dc
CL
4594
4595 if (order > slub_max_order || order < slub_min_order)
4596 return -EINVAL;
4597
4598 calculate_sizes(s, order);
4599 return length;
4600}
4601
81819f0f
CL
4602static ssize_t order_show(struct kmem_cache *s, char *buf)
4603{
834f3d11 4604 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4605}
06b285dc 4606SLAB_ATTR(order);
81819f0f 4607
73d342b1
DR
4608static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4609{
4610 return sprintf(buf, "%lu\n", s->min_partial);
4611}
4612
4613static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4614 size_t length)
4615{
4616 unsigned long min;
4617 int err;
4618
3dbb95f7 4619 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4620 if (err)
4621 return err;
4622
c0bdb232 4623 set_min_partial(s, min);
73d342b1
DR
4624 return length;
4625}
4626SLAB_ATTR(min_partial);
4627
49e22585
CL
4628static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4629{
4630 return sprintf(buf, "%u\n", s->cpu_partial);
4631}
4632
4633static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4634 size_t length)
4635{
4636 unsigned long objects;
4637 int err;
4638
3dbb95f7 4639 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4640 if (err)
4641 return err;
345c905d 4642 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4643 return -EINVAL;
49e22585
CL
4644
4645 s->cpu_partial = objects;
4646 flush_all(s);
4647 return length;
4648}
4649SLAB_ATTR(cpu_partial);
4650
81819f0f
CL
4651static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4652{
62c70bce
JP
4653 if (!s->ctor)
4654 return 0;
4655 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4656}
4657SLAB_ATTR_RO(ctor);
4658
81819f0f
CL
4659static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4660{
4307c14f 4661 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
4662}
4663SLAB_ATTR_RO(aliases);
4664
81819f0f
CL
4665static ssize_t partial_show(struct kmem_cache *s, char *buf)
4666{
d9acf4b7 4667 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4668}
4669SLAB_ATTR_RO(partial);
4670
4671static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4672{
d9acf4b7 4673 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4674}
4675SLAB_ATTR_RO(cpu_slabs);
4676
4677static ssize_t objects_show(struct kmem_cache *s, char *buf)
4678{
205ab99d 4679 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4680}
4681SLAB_ATTR_RO(objects);
4682
205ab99d
CL
4683static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4684{
4685 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4686}
4687SLAB_ATTR_RO(objects_partial);
4688
49e22585
CL
4689static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4690{
4691 int objects = 0;
4692 int pages = 0;
4693 int cpu;
4694 int len;
4695
4696 for_each_online_cpu(cpu) {
4697 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4698
4699 if (page) {
4700 pages += page->pages;
4701 objects += page->pobjects;
4702 }
4703 }
4704
4705 len = sprintf(buf, "%d(%d)", objects, pages);
4706
4707#ifdef CONFIG_SMP
4708 for_each_online_cpu(cpu) {
4709 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4710
4711 if (page && len < PAGE_SIZE - 20)
4712 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4713 page->pobjects, page->pages);
4714 }
4715#endif
4716 return len + sprintf(buf + len, "\n");
4717}
4718SLAB_ATTR_RO(slabs_cpu_partial);
4719
a5a84755
CL
4720static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4721{
4722 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4723}
4724
4725static ssize_t reclaim_account_store(struct kmem_cache *s,
4726 const char *buf, size_t length)
4727{
4728 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4729 if (buf[0] == '1')
4730 s->flags |= SLAB_RECLAIM_ACCOUNT;
4731 return length;
4732}
4733SLAB_ATTR(reclaim_account);
4734
4735static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4736{
4737 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4738}
4739SLAB_ATTR_RO(hwcache_align);
4740
4741#ifdef CONFIG_ZONE_DMA
4742static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4743{
4744 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4745}
4746SLAB_ATTR_RO(cache_dma);
4747#endif
4748
4749static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4750{
4751 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4752}
4753SLAB_ATTR_RO(destroy_by_rcu);
4754
ab9a0f19
LJ
4755static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4756{
4757 return sprintf(buf, "%d\n", s->reserved);
4758}
4759SLAB_ATTR_RO(reserved);
4760
ab4d5ed5 4761#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4762static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4763{
4764 return show_slab_objects(s, buf, SO_ALL);
4765}
4766SLAB_ATTR_RO(slabs);
4767
205ab99d
CL
4768static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4769{
4770 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4771}
4772SLAB_ATTR_RO(total_objects);
4773
81819f0f
CL
4774static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4775{
4776 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4777}
4778
4779static ssize_t sanity_checks_store(struct kmem_cache *s,
4780 const char *buf, size_t length)
4781{
4782 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4783 if (buf[0] == '1') {
4784 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4785 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4786 }
81819f0f
CL
4787 return length;
4788}
4789SLAB_ATTR(sanity_checks);
4790
4791static ssize_t trace_show(struct kmem_cache *s, char *buf)
4792{
4793 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4794}
4795
4796static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4797 size_t length)
4798{
c9e16131
CL
4799 /*
4800 * Tracing a merged cache is going to give confusing results
4801 * as well as cause other issues like converting a mergeable
4802 * cache into an umergeable one.
4803 */
4804 if (s->refcount > 1)
4805 return -EINVAL;
4806
81819f0f 4807 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4808 if (buf[0] == '1') {
4809 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4810 s->flags |= SLAB_TRACE;
b789ef51 4811 }
81819f0f
CL
4812 return length;
4813}
4814SLAB_ATTR(trace);
4815
81819f0f
CL
4816static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4817{
4818 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4819}
4820
4821static ssize_t red_zone_store(struct kmem_cache *s,
4822 const char *buf, size_t length)
4823{
4824 if (any_slab_objects(s))
4825 return -EBUSY;
4826
4827 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4828 if (buf[0] == '1') {
4829 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4830 s->flags |= SLAB_RED_ZONE;
b789ef51 4831 }
06b285dc 4832 calculate_sizes(s, -1);
81819f0f
CL
4833 return length;
4834}
4835SLAB_ATTR(red_zone);
4836
4837static ssize_t poison_show(struct kmem_cache *s, char *buf)
4838{
4839 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4840}
4841
4842static ssize_t poison_store(struct kmem_cache *s,
4843 const char *buf, size_t length)
4844{
4845 if (any_slab_objects(s))
4846 return -EBUSY;
4847
4848 s->flags &= ~SLAB_POISON;
b789ef51
CL
4849 if (buf[0] == '1') {
4850 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4851 s->flags |= SLAB_POISON;
b789ef51 4852 }
06b285dc 4853 calculate_sizes(s, -1);
81819f0f
CL
4854 return length;
4855}
4856SLAB_ATTR(poison);
4857
4858static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4859{
4860 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4861}
4862
4863static ssize_t store_user_store(struct kmem_cache *s,
4864 const char *buf, size_t length)
4865{
4866 if (any_slab_objects(s))
4867 return -EBUSY;
4868
4869 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4870 if (buf[0] == '1') {
4871 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4872 s->flags |= SLAB_STORE_USER;
b789ef51 4873 }
06b285dc 4874 calculate_sizes(s, -1);
81819f0f
CL
4875 return length;
4876}
4877SLAB_ATTR(store_user);
4878
53e15af0
CL
4879static ssize_t validate_show(struct kmem_cache *s, char *buf)
4880{
4881 return 0;
4882}
4883
4884static ssize_t validate_store(struct kmem_cache *s,
4885 const char *buf, size_t length)
4886{
434e245d
CL
4887 int ret = -EINVAL;
4888
4889 if (buf[0] == '1') {
4890 ret = validate_slab_cache(s);
4891 if (ret >= 0)
4892 ret = length;
4893 }
4894 return ret;
53e15af0
CL
4895}
4896SLAB_ATTR(validate);
a5a84755
CL
4897
4898static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4899{
4900 if (!(s->flags & SLAB_STORE_USER))
4901 return -ENOSYS;
4902 return list_locations(s, buf, TRACK_ALLOC);
4903}
4904SLAB_ATTR_RO(alloc_calls);
4905
4906static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4907{
4908 if (!(s->flags & SLAB_STORE_USER))
4909 return -ENOSYS;
4910 return list_locations(s, buf, TRACK_FREE);
4911}
4912SLAB_ATTR_RO(free_calls);
4913#endif /* CONFIG_SLUB_DEBUG */
4914
4915#ifdef CONFIG_FAILSLAB
4916static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4917{
4918 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4919}
4920
4921static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4922 size_t length)
4923{
c9e16131
CL
4924 if (s->refcount > 1)
4925 return -EINVAL;
4926
a5a84755
CL
4927 s->flags &= ~SLAB_FAILSLAB;
4928 if (buf[0] == '1')
4929 s->flags |= SLAB_FAILSLAB;
4930 return length;
4931}
4932SLAB_ATTR(failslab);
ab4d5ed5 4933#endif
53e15af0 4934
2086d26a
CL
4935static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4936{
4937 return 0;
4938}
4939
4940static ssize_t shrink_store(struct kmem_cache *s,
4941 const char *buf, size_t length)
4942{
832f37f5
VD
4943 if (buf[0] == '1')
4944 kmem_cache_shrink(s);
4945 else
2086d26a
CL
4946 return -EINVAL;
4947 return length;
4948}
4949SLAB_ATTR(shrink);
4950
81819f0f 4951#ifdef CONFIG_NUMA
9824601e 4952static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4953{
9824601e 4954 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4955}
4956
9824601e 4957static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4958 const char *buf, size_t length)
4959{
0121c619
CL
4960 unsigned long ratio;
4961 int err;
4962
3dbb95f7 4963 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
4964 if (err)
4965 return err;
4966
e2cb96b7 4967 if (ratio <= 100)
0121c619 4968 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4969
81819f0f
CL
4970 return length;
4971}
9824601e 4972SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4973#endif
4974
8ff12cfc 4975#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4976static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4977{
4978 unsigned long sum = 0;
4979 int cpu;
4980 int len;
4981 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4982
4983 if (!data)
4984 return -ENOMEM;
4985
4986 for_each_online_cpu(cpu) {
9dfc6e68 4987 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4988
4989 data[cpu] = x;
4990 sum += x;
4991 }
4992
4993 len = sprintf(buf, "%lu", sum);
4994
50ef37b9 4995#ifdef CONFIG_SMP
8ff12cfc
CL
4996 for_each_online_cpu(cpu) {
4997 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4998 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4999 }
50ef37b9 5000#endif
8ff12cfc
CL
5001 kfree(data);
5002 return len + sprintf(buf + len, "\n");
5003}
5004
78eb00cc
DR
5005static void clear_stat(struct kmem_cache *s, enum stat_item si)
5006{
5007 int cpu;
5008
5009 for_each_online_cpu(cpu)
9dfc6e68 5010 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5011}
5012
8ff12cfc
CL
5013#define STAT_ATTR(si, text) \
5014static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5015{ \
5016 return show_stat(s, buf, si); \
5017} \
78eb00cc
DR
5018static ssize_t text##_store(struct kmem_cache *s, \
5019 const char *buf, size_t length) \
5020{ \
5021 if (buf[0] != '0') \
5022 return -EINVAL; \
5023 clear_stat(s, si); \
5024 return length; \
5025} \
5026SLAB_ATTR(text); \
8ff12cfc
CL
5027
5028STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5029STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5030STAT_ATTR(FREE_FASTPATH, free_fastpath);
5031STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5032STAT_ATTR(FREE_FROZEN, free_frozen);
5033STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5034STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5035STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5036STAT_ATTR(ALLOC_SLAB, alloc_slab);
5037STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5038STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5039STAT_ATTR(FREE_SLAB, free_slab);
5040STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5041STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5042STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5043STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5044STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5045STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5046STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5047STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5048STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5049STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5050STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5051STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5052STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5053STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
5054#endif
5055
06428780 5056static struct attribute *slab_attrs[] = {
81819f0f
CL
5057 &slab_size_attr.attr,
5058 &object_size_attr.attr,
5059 &objs_per_slab_attr.attr,
5060 &order_attr.attr,
73d342b1 5061 &min_partial_attr.attr,
49e22585 5062 &cpu_partial_attr.attr,
81819f0f 5063 &objects_attr.attr,
205ab99d 5064 &objects_partial_attr.attr,
81819f0f
CL
5065 &partial_attr.attr,
5066 &cpu_slabs_attr.attr,
5067 &ctor_attr.attr,
81819f0f
CL
5068 &aliases_attr.attr,
5069 &align_attr.attr,
81819f0f
CL
5070 &hwcache_align_attr.attr,
5071 &reclaim_account_attr.attr,
5072 &destroy_by_rcu_attr.attr,
a5a84755 5073 &shrink_attr.attr,
ab9a0f19 5074 &reserved_attr.attr,
49e22585 5075 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5076#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5077 &total_objects_attr.attr,
5078 &slabs_attr.attr,
5079 &sanity_checks_attr.attr,
5080 &trace_attr.attr,
81819f0f
CL
5081 &red_zone_attr.attr,
5082 &poison_attr.attr,
5083 &store_user_attr.attr,
53e15af0 5084 &validate_attr.attr,
88a420e4
CL
5085 &alloc_calls_attr.attr,
5086 &free_calls_attr.attr,
ab4d5ed5 5087#endif
81819f0f
CL
5088#ifdef CONFIG_ZONE_DMA
5089 &cache_dma_attr.attr,
5090#endif
5091#ifdef CONFIG_NUMA
9824601e 5092 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5093#endif
5094#ifdef CONFIG_SLUB_STATS
5095 &alloc_fastpath_attr.attr,
5096 &alloc_slowpath_attr.attr,
5097 &free_fastpath_attr.attr,
5098 &free_slowpath_attr.attr,
5099 &free_frozen_attr.attr,
5100 &free_add_partial_attr.attr,
5101 &free_remove_partial_attr.attr,
5102 &alloc_from_partial_attr.attr,
5103 &alloc_slab_attr.attr,
5104 &alloc_refill_attr.attr,
e36a2652 5105 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5106 &free_slab_attr.attr,
5107 &cpuslab_flush_attr.attr,
5108 &deactivate_full_attr.attr,
5109 &deactivate_empty_attr.attr,
5110 &deactivate_to_head_attr.attr,
5111 &deactivate_to_tail_attr.attr,
5112 &deactivate_remote_frees_attr.attr,
03e404af 5113 &deactivate_bypass_attr.attr,
65c3376a 5114 &order_fallback_attr.attr,
b789ef51
CL
5115 &cmpxchg_double_fail_attr.attr,
5116 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5117 &cpu_partial_alloc_attr.attr,
5118 &cpu_partial_free_attr.attr,
8028dcea
AS
5119 &cpu_partial_node_attr.attr,
5120 &cpu_partial_drain_attr.attr,
81819f0f 5121#endif
4c13dd3b
DM
5122#ifdef CONFIG_FAILSLAB
5123 &failslab_attr.attr,
5124#endif
5125
81819f0f
CL
5126 NULL
5127};
5128
5129static struct attribute_group slab_attr_group = {
5130 .attrs = slab_attrs,
5131};
5132
5133static ssize_t slab_attr_show(struct kobject *kobj,
5134 struct attribute *attr,
5135 char *buf)
5136{
5137 struct slab_attribute *attribute;
5138 struct kmem_cache *s;
5139 int err;
5140
5141 attribute = to_slab_attr(attr);
5142 s = to_slab(kobj);
5143
5144 if (!attribute->show)
5145 return -EIO;
5146
5147 err = attribute->show(s, buf);
5148
5149 return err;
5150}
5151
5152static ssize_t slab_attr_store(struct kobject *kobj,
5153 struct attribute *attr,
5154 const char *buf, size_t len)
5155{
5156 struct slab_attribute *attribute;
5157 struct kmem_cache *s;
5158 int err;
5159
5160 attribute = to_slab_attr(attr);
5161 s = to_slab(kobj);
5162
5163 if (!attribute->store)
5164 return -EIO;
5165
5166 err = attribute->store(s, buf, len);
127424c8 5167#ifdef CONFIG_MEMCG
107dab5c 5168 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5169 struct kmem_cache *c;
81819f0f 5170
107dab5c
GC
5171 mutex_lock(&slab_mutex);
5172 if (s->max_attr_size < len)
5173 s->max_attr_size = len;
5174
ebe945c2
GC
5175 /*
5176 * This is a best effort propagation, so this function's return
5177 * value will be determined by the parent cache only. This is
5178 * basically because not all attributes will have a well
5179 * defined semantics for rollbacks - most of the actions will
5180 * have permanent effects.
5181 *
5182 * Returning the error value of any of the children that fail
5183 * is not 100 % defined, in the sense that users seeing the
5184 * error code won't be able to know anything about the state of
5185 * the cache.
5186 *
5187 * Only returning the error code for the parent cache at least
5188 * has well defined semantics. The cache being written to
5189 * directly either failed or succeeded, in which case we loop
5190 * through the descendants with best-effort propagation.
5191 */
426589f5
VD
5192 for_each_memcg_cache(c, s)
5193 attribute->store(c, buf, len);
107dab5c
GC
5194 mutex_unlock(&slab_mutex);
5195 }
5196#endif
81819f0f
CL
5197 return err;
5198}
5199
107dab5c
GC
5200static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5201{
127424c8 5202#ifdef CONFIG_MEMCG
107dab5c
GC
5203 int i;
5204 char *buffer = NULL;
93030d83 5205 struct kmem_cache *root_cache;
107dab5c 5206
93030d83 5207 if (is_root_cache(s))
107dab5c
GC
5208 return;
5209
f7ce3190 5210 root_cache = s->memcg_params.root_cache;
93030d83 5211
107dab5c
GC
5212 /*
5213 * This mean this cache had no attribute written. Therefore, no point
5214 * in copying default values around
5215 */
93030d83 5216 if (!root_cache->max_attr_size)
107dab5c
GC
5217 return;
5218
5219 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5220 char mbuf[64];
5221 char *buf;
5222 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5223
5224 if (!attr || !attr->store || !attr->show)
5225 continue;
5226
5227 /*
5228 * It is really bad that we have to allocate here, so we will
5229 * do it only as a fallback. If we actually allocate, though,
5230 * we can just use the allocated buffer until the end.
5231 *
5232 * Most of the slub attributes will tend to be very small in
5233 * size, but sysfs allows buffers up to a page, so they can
5234 * theoretically happen.
5235 */
5236 if (buffer)
5237 buf = buffer;
93030d83 5238 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5239 buf = mbuf;
5240 else {
5241 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5242 if (WARN_ON(!buffer))
5243 continue;
5244 buf = buffer;
5245 }
5246
93030d83 5247 attr->show(root_cache, buf);
107dab5c
GC
5248 attr->store(s, buf, strlen(buf));
5249 }
5250
5251 if (buffer)
5252 free_page((unsigned long)buffer);
5253#endif
5254}
5255
41a21285
CL
5256static void kmem_cache_release(struct kobject *k)
5257{
5258 slab_kmem_cache_release(to_slab(k));
5259}
5260
52cf25d0 5261static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5262 .show = slab_attr_show,
5263 .store = slab_attr_store,
5264};
5265
5266static struct kobj_type slab_ktype = {
5267 .sysfs_ops = &slab_sysfs_ops,
41a21285 5268 .release = kmem_cache_release,
81819f0f
CL
5269};
5270
5271static int uevent_filter(struct kset *kset, struct kobject *kobj)
5272{
5273 struct kobj_type *ktype = get_ktype(kobj);
5274
5275 if (ktype == &slab_ktype)
5276 return 1;
5277 return 0;
5278}
5279
9cd43611 5280static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5281 .filter = uevent_filter,
5282};
5283
27c3a314 5284static struct kset *slab_kset;
81819f0f 5285
9a41707b
VD
5286static inline struct kset *cache_kset(struct kmem_cache *s)
5287{
127424c8 5288#ifdef CONFIG_MEMCG
9a41707b 5289 if (!is_root_cache(s))
f7ce3190 5290 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5291#endif
5292 return slab_kset;
5293}
5294
81819f0f
CL
5295#define ID_STR_LENGTH 64
5296
5297/* Create a unique string id for a slab cache:
6446faa2
CL
5298 *
5299 * Format :[flags-]size
81819f0f
CL
5300 */
5301static char *create_unique_id(struct kmem_cache *s)
5302{
5303 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5304 char *p = name;
5305
5306 BUG_ON(!name);
5307
5308 *p++ = ':';
5309 /*
5310 * First flags affecting slabcache operations. We will only
5311 * get here for aliasable slabs so we do not need to support
5312 * too many flags. The flags here must cover all flags that
5313 * are matched during merging to guarantee that the id is
5314 * unique.
5315 */
5316 if (s->flags & SLAB_CACHE_DMA)
5317 *p++ = 'd';
5318 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5319 *p++ = 'a';
5320 if (s->flags & SLAB_DEBUG_FREE)
5321 *p++ = 'F';
5a896d9e
VN
5322 if (!(s->flags & SLAB_NOTRACK))
5323 *p++ = 't';
230e9fc2
VD
5324 if (s->flags & SLAB_ACCOUNT)
5325 *p++ = 'A';
81819f0f
CL
5326 if (p != name + 1)
5327 *p++ = '-';
5328 p += sprintf(p, "%07d", s->size);
2633d7a0 5329
81819f0f
CL
5330 BUG_ON(p > name + ID_STR_LENGTH - 1);
5331 return name;
5332}
5333
5334static int sysfs_slab_add(struct kmem_cache *s)
5335{
5336 int err;
5337 const char *name;
45530c44 5338 int unmergeable = slab_unmergeable(s);
81819f0f 5339
81819f0f
CL
5340 if (unmergeable) {
5341 /*
5342 * Slabcache can never be merged so we can use the name proper.
5343 * This is typically the case for debug situations. In that
5344 * case we can catch duplicate names easily.
5345 */
27c3a314 5346 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5347 name = s->name;
5348 } else {
5349 /*
5350 * Create a unique name for the slab as a target
5351 * for the symlinks.
5352 */
5353 name = create_unique_id(s);
5354 }
5355
9a41707b 5356 s->kobj.kset = cache_kset(s);
26e4f205 5357 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731 5358 if (err)
80da026a 5359 goto out;
81819f0f
CL
5360
5361 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5362 if (err)
5363 goto out_del_kobj;
9a41707b 5364
127424c8 5365#ifdef CONFIG_MEMCG
9a41707b
VD
5366 if (is_root_cache(s)) {
5367 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5368 if (!s->memcg_kset) {
54b6a731
DJ
5369 err = -ENOMEM;
5370 goto out_del_kobj;
9a41707b
VD
5371 }
5372 }
5373#endif
5374
81819f0f
CL
5375 kobject_uevent(&s->kobj, KOBJ_ADD);
5376 if (!unmergeable) {
5377 /* Setup first alias */
5378 sysfs_slab_alias(s, s->name);
81819f0f 5379 }
54b6a731
DJ
5380out:
5381 if (!unmergeable)
5382 kfree(name);
5383 return err;
5384out_del_kobj:
5385 kobject_del(&s->kobj);
54b6a731 5386 goto out;
81819f0f
CL
5387}
5388
41a21285 5389void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5390{
97d06609 5391 if (slab_state < FULL)
2bce6485
CL
5392 /*
5393 * Sysfs has not been setup yet so no need to remove the
5394 * cache from sysfs.
5395 */
5396 return;
5397
127424c8 5398#ifdef CONFIG_MEMCG
9a41707b
VD
5399 kset_unregister(s->memcg_kset);
5400#endif
81819f0f
CL
5401 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5402 kobject_del(&s->kobj);
151c602f 5403 kobject_put(&s->kobj);
81819f0f
CL
5404}
5405
5406/*
5407 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5408 * available lest we lose that information.
81819f0f
CL
5409 */
5410struct saved_alias {
5411 struct kmem_cache *s;
5412 const char *name;
5413 struct saved_alias *next;
5414};
5415
5af328a5 5416static struct saved_alias *alias_list;
81819f0f
CL
5417
5418static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5419{
5420 struct saved_alias *al;
5421
97d06609 5422 if (slab_state == FULL) {
81819f0f
CL
5423 /*
5424 * If we have a leftover link then remove it.
5425 */
27c3a314
GKH
5426 sysfs_remove_link(&slab_kset->kobj, name);
5427 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5428 }
5429
5430 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5431 if (!al)
5432 return -ENOMEM;
5433
5434 al->s = s;
5435 al->name = name;
5436 al->next = alias_list;
5437 alias_list = al;
5438 return 0;
5439}
5440
5441static int __init slab_sysfs_init(void)
5442{
5b95a4ac 5443 struct kmem_cache *s;
81819f0f
CL
5444 int err;
5445
18004c5d 5446 mutex_lock(&slab_mutex);
2bce6485 5447
0ff21e46 5448 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5449 if (!slab_kset) {
18004c5d 5450 mutex_unlock(&slab_mutex);
f9f58285 5451 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5452 return -ENOSYS;
5453 }
5454
97d06609 5455 slab_state = FULL;
26a7bd03 5456
5b95a4ac 5457 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5458 err = sysfs_slab_add(s);
5d540fb7 5459 if (err)
f9f58285
FF
5460 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5461 s->name);
26a7bd03 5462 }
81819f0f
CL
5463
5464 while (alias_list) {
5465 struct saved_alias *al = alias_list;
5466
5467 alias_list = alias_list->next;
5468 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5469 if (err)
f9f58285
FF
5470 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5471 al->name);
81819f0f
CL
5472 kfree(al);
5473 }
5474
18004c5d 5475 mutex_unlock(&slab_mutex);
81819f0f
CL
5476 resiliency_test();
5477 return 0;
5478}
5479
5480__initcall(slab_sysfs_init);
ab4d5ed5 5481#endif /* CONFIG_SYSFS */
57ed3eda
PE
5482
5483/*
5484 * The /proc/slabinfo ABI
5485 */
158a9624 5486#ifdef CONFIG_SLABINFO
0d7561c6 5487void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5488{
57ed3eda 5489 unsigned long nr_slabs = 0;
205ab99d
CL
5490 unsigned long nr_objs = 0;
5491 unsigned long nr_free = 0;
57ed3eda 5492 int node;
fa45dc25 5493 struct kmem_cache_node *n;
57ed3eda 5494
fa45dc25 5495 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5496 nr_slabs += node_nr_slabs(n);
5497 nr_objs += node_nr_objs(n);
205ab99d 5498 nr_free += count_partial(n, count_free);
57ed3eda
PE
5499 }
5500
0d7561c6
GC
5501 sinfo->active_objs = nr_objs - nr_free;
5502 sinfo->num_objs = nr_objs;
5503 sinfo->active_slabs = nr_slabs;
5504 sinfo->num_slabs = nr_slabs;
5505 sinfo->objects_per_slab = oo_objects(s->oo);
5506 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5507}
5508
0d7561c6 5509void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5510{
7b3c3a50
AD
5511}
5512
b7454ad3
GC
5513ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5514 size_t count, loff_t *ppos)
7b3c3a50 5515{
b7454ad3 5516 return -EIO;
7b3c3a50 5517}
158a9624 5518#endif /* CONFIG_SLABINFO */