slub: Simplify control flow in __slab_alloc()
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
7b3c3a50 19#include <linux/proc_fs.h>
81819f0f 20#include <linux/seq_file.h>
5a896d9e 21#include <linux/kmemcheck.h>
81819f0f
CL
22#include <linux/cpu.h>
23#include <linux/cpuset.h>
24#include <linux/mempolicy.h>
25#include <linux/ctype.h>
3ac7fe5a 26#include <linux/debugobjects.h>
81819f0f 27#include <linux/kallsyms.h>
b9049e23 28#include <linux/memory.h>
f8bd2258 29#include <linux/math64.h>
773ff60e 30#include <linux/fault-inject.h>
bfa71457 31#include <linux/stacktrace.h>
4de900b4 32#include <linux/prefetch.h>
81819f0f 33
4a92379b
RK
34#include <trace/events/kmem.h>
35
81819f0f
CL
36/*
37 * Lock order:
881db7fb
CL
38 * 1. slub_lock (Global Semaphore)
39 * 2. node->list_lock
40 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 41 *
881db7fb
CL
42 * slub_lock
43 *
44 * The role of the slub_lock is to protect the list of all the slabs
45 * and to synchronize major metadata changes to slab cache structures.
46 *
47 * The slab_lock is only used for debugging and on arches that do not
48 * have the ability to do a cmpxchg_double. It only protects the second
49 * double word in the page struct. Meaning
50 * A. page->freelist -> List of object free in a page
51 * B. page->counters -> Counters of objects
52 * C. page->frozen -> frozen state
53 *
54 * If a slab is frozen then it is exempt from list management. It is not
55 * on any list. The processor that froze the slab is the one who can
56 * perform list operations on the page. Other processors may put objects
57 * onto the freelist but the processor that froze the slab is the only
58 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
59 *
60 * The list_lock protects the partial and full list on each node and
61 * the partial slab counter. If taken then no new slabs may be added or
62 * removed from the lists nor make the number of partial slabs be modified.
63 * (Note that the total number of slabs is an atomic value that may be
64 * modified without taking the list lock).
65 *
66 * The list_lock is a centralized lock and thus we avoid taking it as
67 * much as possible. As long as SLUB does not have to handle partial
68 * slabs, operations can continue without any centralized lock. F.e.
69 * allocating a long series of objects that fill up slabs does not require
70 * the list lock.
81819f0f
CL
71 * Interrupts are disabled during allocation and deallocation in order to
72 * make the slab allocator safe to use in the context of an irq. In addition
73 * interrupts are disabled to ensure that the processor does not change
74 * while handling per_cpu slabs, due to kernel preemption.
75 *
76 * SLUB assigns one slab for allocation to each processor.
77 * Allocations only occur from these slabs called cpu slabs.
78 *
672bba3a
CL
79 * Slabs with free elements are kept on a partial list and during regular
80 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 81 * freed then the slab will show up again on the partial lists.
672bba3a
CL
82 * We track full slabs for debugging purposes though because otherwise we
83 * cannot scan all objects.
81819f0f
CL
84 *
85 * Slabs are freed when they become empty. Teardown and setup is
86 * minimal so we rely on the page allocators per cpu caches for
87 * fast frees and allocs.
88 *
89 * Overloading of page flags that are otherwise used for LRU management.
90 *
4b6f0750
CL
91 * PageActive The slab is frozen and exempt from list processing.
92 * This means that the slab is dedicated to a purpose
93 * such as satisfying allocations for a specific
94 * processor. Objects may be freed in the slab while
95 * it is frozen but slab_free will then skip the usual
96 * list operations. It is up to the processor holding
97 * the slab to integrate the slab into the slab lists
98 * when the slab is no longer needed.
99 *
100 * One use of this flag is to mark slabs that are
101 * used for allocations. Then such a slab becomes a cpu
102 * slab. The cpu slab may be equipped with an additional
dfb4f096 103 * freelist that allows lockless access to
894b8788
CL
104 * free objects in addition to the regular freelist
105 * that requires the slab lock.
81819f0f
CL
106 *
107 * PageError Slab requires special handling due to debug
108 * options set. This moves slab handling out of
894b8788 109 * the fast path and disables lockless freelists.
81819f0f
CL
110 */
111
af537b0a
CL
112#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
113 SLAB_TRACE | SLAB_DEBUG_FREE)
114
115static inline int kmem_cache_debug(struct kmem_cache *s)
116{
5577bd8a 117#ifdef CONFIG_SLUB_DEBUG
af537b0a 118 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 119#else
af537b0a 120 return 0;
5577bd8a 121#endif
af537b0a 122}
5577bd8a 123
81819f0f
CL
124/*
125 * Issues still to be resolved:
126 *
81819f0f
CL
127 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
128 *
81819f0f
CL
129 * - Variable sizing of the per node arrays
130 */
131
132/* Enable to test recovery from slab corruption on boot */
133#undef SLUB_RESILIENCY_TEST
134
b789ef51
CL
135/* Enable to log cmpxchg failures */
136#undef SLUB_DEBUG_CMPXCHG
137
2086d26a
CL
138/*
139 * Mininum number of partial slabs. These will be left on the partial
140 * lists even if they are empty. kmem_cache_shrink may reclaim them.
141 */
76be8950 142#define MIN_PARTIAL 5
e95eed57 143
2086d26a
CL
144/*
145 * Maximum number of desirable partial slabs.
146 * The existence of more partial slabs makes kmem_cache_shrink
147 * sort the partial list by the number of objects in the.
148 */
149#define MAX_PARTIAL 10
150
81819f0f
CL
151#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
152 SLAB_POISON | SLAB_STORE_USER)
672bba3a 153
fa5ec8a1 154/*
3de47213
DR
155 * Debugging flags that require metadata to be stored in the slab. These get
156 * disabled when slub_debug=O is used and a cache's min order increases with
157 * metadata.
fa5ec8a1 158 */
3de47213 159#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 160
81819f0f
CL
161/*
162 * Set of flags that will prevent slab merging
163 */
164#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
165 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
166 SLAB_FAILSLAB)
81819f0f
CL
167
168#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 169 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 170
210b5c06
CG
171#define OO_SHIFT 16
172#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 173#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 174
81819f0f 175/* Internal SLUB flags */
f90ec390 176#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 177#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f
CL
178
179static int kmem_size = sizeof(struct kmem_cache);
180
181#ifdef CONFIG_SMP
182static struct notifier_block slab_notifier;
183#endif
184
185static enum {
186 DOWN, /* No slab functionality available */
51df1142 187 PARTIAL, /* Kmem_cache_node works */
672bba3a 188 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
189 SYSFS /* Sysfs up */
190} slab_state = DOWN;
191
192/* A list of all slab caches on the system */
193static DECLARE_RWSEM(slub_lock);
5af328a5 194static LIST_HEAD(slab_caches);
81819f0f 195
02cbc874
CL
196/*
197 * Tracking user of a slab.
198 */
d6543e39 199#define TRACK_ADDRS_COUNT 16
02cbc874 200struct track {
ce71e27c 201 unsigned long addr; /* Called from address */
d6543e39
BG
202#ifdef CONFIG_STACKTRACE
203 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
204#endif
02cbc874
CL
205 int cpu; /* Was running on cpu */
206 int pid; /* Pid context */
207 unsigned long when; /* When did the operation occur */
208};
209
210enum track_item { TRACK_ALLOC, TRACK_FREE };
211
ab4d5ed5 212#ifdef CONFIG_SYSFS
81819f0f
CL
213static int sysfs_slab_add(struct kmem_cache *);
214static int sysfs_slab_alias(struct kmem_cache *, const char *);
215static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 216
81819f0f 217#else
0c710013
CL
218static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
219static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
220 { return 0; }
151c602f
CL
221static inline void sysfs_slab_remove(struct kmem_cache *s)
222{
84c1cf62 223 kfree(s->name);
151c602f
CL
224 kfree(s);
225}
8ff12cfc 226
81819f0f
CL
227#endif
228
4fdccdfb 229static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
230{
231#ifdef CONFIG_SLUB_STATS
84e554e6 232 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
233#endif
234}
235
81819f0f
CL
236/********************************************************************
237 * Core slab cache functions
238 *******************************************************************/
239
240int slab_is_available(void)
241{
242 return slab_state >= UP;
243}
244
245static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
246{
81819f0f 247 return s->node[node];
81819f0f
CL
248}
249
6446faa2 250/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
251static inline int check_valid_pointer(struct kmem_cache *s,
252 struct page *page, const void *object)
253{
254 void *base;
255
a973e9dd 256 if (!object)
02cbc874
CL
257 return 1;
258
a973e9dd 259 base = page_address(page);
39b26464 260 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
261 (object - base) % s->size) {
262 return 0;
263 }
264
265 return 1;
266}
267
7656c72b
CL
268static inline void *get_freepointer(struct kmem_cache *s, void *object)
269{
270 return *(void **)(object + s->offset);
271}
272
0ad9500e
ED
273static void prefetch_freepointer(const struct kmem_cache *s, void *object)
274{
275 prefetch(object + s->offset);
276}
277
1393d9a1
CL
278static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
279{
280 void *p;
281
282#ifdef CONFIG_DEBUG_PAGEALLOC
283 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
284#else
285 p = get_freepointer(s, object);
286#endif
287 return p;
288}
289
7656c72b
CL
290static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
291{
292 *(void **)(object + s->offset) = fp;
293}
294
295/* Loop over all objects in a slab */
224a88be
CL
296#define for_each_object(__p, __s, __addr, __objects) \
297 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
298 __p += (__s)->size)
299
7656c72b
CL
300/* Determine object index from a given position */
301static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
302{
303 return (p - addr) / s->size;
304}
305
d71f606f
MK
306static inline size_t slab_ksize(const struct kmem_cache *s)
307{
308#ifdef CONFIG_SLUB_DEBUG
309 /*
310 * Debugging requires use of the padding between object
311 * and whatever may come after it.
312 */
313 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
314 return s->objsize;
315
316#endif
317 /*
318 * If we have the need to store the freelist pointer
319 * back there or track user information then we can
320 * only use the space before that information.
321 */
322 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
323 return s->inuse;
324 /*
325 * Else we can use all the padding etc for the allocation
326 */
327 return s->size;
328}
329
ab9a0f19
LJ
330static inline int order_objects(int order, unsigned long size, int reserved)
331{
332 return ((PAGE_SIZE << order) - reserved) / size;
333}
334
834f3d11 335static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 336 unsigned long size, int reserved)
834f3d11
CL
337{
338 struct kmem_cache_order_objects x = {
ab9a0f19 339 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
340 };
341
342 return x;
343}
344
345static inline int oo_order(struct kmem_cache_order_objects x)
346{
210b5c06 347 return x.x >> OO_SHIFT;
834f3d11
CL
348}
349
350static inline int oo_objects(struct kmem_cache_order_objects x)
351{
210b5c06 352 return x.x & OO_MASK;
834f3d11
CL
353}
354
881db7fb
CL
355/*
356 * Per slab locking using the pagelock
357 */
358static __always_inline void slab_lock(struct page *page)
359{
360 bit_spin_lock(PG_locked, &page->flags);
361}
362
363static __always_inline void slab_unlock(struct page *page)
364{
365 __bit_spin_unlock(PG_locked, &page->flags);
366}
367
1d07171c
CL
368/* Interrupts must be disabled (for the fallback code to work right) */
369static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
370 void *freelist_old, unsigned long counters_old,
371 void *freelist_new, unsigned long counters_new,
372 const char *n)
373{
374 VM_BUG_ON(!irqs_disabled());
2565409f
HC
375#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
376 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 377 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 378 if (cmpxchg_double(&page->freelist, &page->counters,
1d07171c
CL
379 freelist_old, counters_old,
380 freelist_new, counters_new))
381 return 1;
382 } else
383#endif
384 {
385 slab_lock(page);
386 if (page->freelist == freelist_old && page->counters == counters_old) {
387 page->freelist = freelist_new;
388 page->counters = counters_new;
389 slab_unlock(page);
390 return 1;
391 }
392 slab_unlock(page);
393 }
394
395 cpu_relax();
396 stat(s, CMPXCHG_DOUBLE_FAIL);
397
398#ifdef SLUB_DEBUG_CMPXCHG
399 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
400#endif
401
402 return 0;
403}
404
b789ef51
CL
405static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
406 void *freelist_old, unsigned long counters_old,
407 void *freelist_new, unsigned long counters_new,
408 const char *n)
409{
2565409f
HC
410#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
411 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 412 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 413 if (cmpxchg_double(&page->freelist, &page->counters,
b789ef51
CL
414 freelist_old, counters_old,
415 freelist_new, counters_new))
416 return 1;
417 } else
418#endif
419 {
1d07171c
CL
420 unsigned long flags;
421
422 local_irq_save(flags);
881db7fb 423 slab_lock(page);
b789ef51
CL
424 if (page->freelist == freelist_old && page->counters == counters_old) {
425 page->freelist = freelist_new;
426 page->counters = counters_new;
881db7fb 427 slab_unlock(page);
1d07171c 428 local_irq_restore(flags);
b789ef51
CL
429 return 1;
430 }
881db7fb 431 slab_unlock(page);
1d07171c 432 local_irq_restore(flags);
b789ef51
CL
433 }
434
435 cpu_relax();
436 stat(s, CMPXCHG_DOUBLE_FAIL);
437
438#ifdef SLUB_DEBUG_CMPXCHG
439 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
440#endif
441
442 return 0;
443}
444
41ecc55b 445#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
446/*
447 * Determine a map of object in use on a page.
448 *
881db7fb 449 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
450 * not vanish from under us.
451 */
452static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
453{
454 void *p;
455 void *addr = page_address(page);
456
457 for (p = page->freelist; p; p = get_freepointer(s, p))
458 set_bit(slab_index(p, s, addr), map);
459}
460
41ecc55b
CL
461/*
462 * Debug settings:
463 */
f0630fff
CL
464#ifdef CONFIG_SLUB_DEBUG_ON
465static int slub_debug = DEBUG_DEFAULT_FLAGS;
466#else
41ecc55b 467static int slub_debug;
f0630fff 468#endif
41ecc55b
CL
469
470static char *slub_debug_slabs;
fa5ec8a1 471static int disable_higher_order_debug;
41ecc55b 472
81819f0f
CL
473/*
474 * Object debugging
475 */
476static void print_section(char *text, u8 *addr, unsigned int length)
477{
ffc79d28
SAS
478 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
479 length, 1);
81819f0f
CL
480}
481
81819f0f
CL
482static struct track *get_track(struct kmem_cache *s, void *object,
483 enum track_item alloc)
484{
485 struct track *p;
486
487 if (s->offset)
488 p = object + s->offset + sizeof(void *);
489 else
490 p = object + s->inuse;
491
492 return p + alloc;
493}
494
495static void set_track(struct kmem_cache *s, void *object,
ce71e27c 496 enum track_item alloc, unsigned long addr)
81819f0f 497{
1a00df4a 498 struct track *p = get_track(s, object, alloc);
81819f0f 499
81819f0f 500 if (addr) {
d6543e39
BG
501#ifdef CONFIG_STACKTRACE
502 struct stack_trace trace;
503 int i;
504
505 trace.nr_entries = 0;
506 trace.max_entries = TRACK_ADDRS_COUNT;
507 trace.entries = p->addrs;
508 trace.skip = 3;
509 save_stack_trace(&trace);
510
511 /* See rant in lockdep.c */
512 if (trace.nr_entries != 0 &&
513 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
514 trace.nr_entries--;
515
516 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
517 p->addrs[i] = 0;
518#endif
81819f0f
CL
519 p->addr = addr;
520 p->cpu = smp_processor_id();
88e4ccf2 521 p->pid = current->pid;
81819f0f
CL
522 p->when = jiffies;
523 } else
524 memset(p, 0, sizeof(struct track));
525}
526
81819f0f
CL
527static void init_tracking(struct kmem_cache *s, void *object)
528{
24922684
CL
529 if (!(s->flags & SLAB_STORE_USER))
530 return;
531
ce71e27c
EGM
532 set_track(s, object, TRACK_FREE, 0UL);
533 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
534}
535
536static void print_track(const char *s, struct track *t)
537{
538 if (!t->addr)
539 return;
540
7daf705f 541 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 542 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
543#ifdef CONFIG_STACKTRACE
544 {
545 int i;
546 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
547 if (t->addrs[i])
548 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
549 else
550 break;
551 }
552#endif
24922684
CL
553}
554
555static void print_tracking(struct kmem_cache *s, void *object)
556{
557 if (!(s->flags & SLAB_STORE_USER))
558 return;
559
560 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
561 print_track("Freed", get_track(s, object, TRACK_FREE));
562}
563
564static void print_page_info(struct page *page)
565{
39b26464
CL
566 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
567 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
568
569}
570
571static void slab_bug(struct kmem_cache *s, char *fmt, ...)
572{
573 va_list args;
574 char buf[100];
575
576 va_start(args, fmt);
577 vsnprintf(buf, sizeof(buf), fmt, args);
578 va_end(args);
579 printk(KERN_ERR "========================================"
580 "=====================================\n");
265d47e7 581 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
24922684
CL
582 printk(KERN_ERR "----------------------------------------"
583 "-------------------------------------\n\n");
81819f0f
CL
584}
585
24922684
CL
586static void slab_fix(struct kmem_cache *s, char *fmt, ...)
587{
588 va_list args;
589 char buf[100];
590
591 va_start(args, fmt);
592 vsnprintf(buf, sizeof(buf), fmt, args);
593 va_end(args);
594 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
595}
596
597static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
598{
599 unsigned int off; /* Offset of last byte */
a973e9dd 600 u8 *addr = page_address(page);
24922684
CL
601
602 print_tracking(s, p);
603
604 print_page_info(page);
605
606 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
607 p, p - addr, get_freepointer(s, p));
608
609 if (p > addr + 16)
ffc79d28 610 print_section("Bytes b4 ", p - 16, 16);
81819f0f 611
ffc79d28
SAS
612 print_section("Object ", p, min_t(unsigned long, s->objsize,
613 PAGE_SIZE));
81819f0f 614 if (s->flags & SLAB_RED_ZONE)
ffc79d28 615 print_section("Redzone ", p + s->objsize,
81819f0f
CL
616 s->inuse - s->objsize);
617
81819f0f
CL
618 if (s->offset)
619 off = s->offset + sizeof(void *);
620 else
621 off = s->inuse;
622
24922684 623 if (s->flags & SLAB_STORE_USER)
81819f0f 624 off += 2 * sizeof(struct track);
81819f0f
CL
625
626 if (off != s->size)
627 /* Beginning of the filler is the free pointer */
ffc79d28 628 print_section("Padding ", p + off, s->size - off);
24922684
CL
629
630 dump_stack();
81819f0f
CL
631}
632
633static void object_err(struct kmem_cache *s, struct page *page,
634 u8 *object, char *reason)
635{
3dc50637 636 slab_bug(s, "%s", reason);
24922684 637 print_trailer(s, page, object);
81819f0f
CL
638}
639
24922684 640static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
641{
642 va_list args;
643 char buf[100];
644
24922684
CL
645 va_start(args, fmt);
646 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 647 va_end(args);
3dc50637 648 slab_bug(s, "%s", buf);
24922684 649 print_page_info(page);
81819f0f
CL
650 dump_stack();
651}
652
f7cb1933 653static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
654{
655 u8 *p = object;
656
657 if (s->flags & __OBJECT_POISON) {
658 memset(p, POISON_FREE, s->objsize - 1);
06428780 659 p[s->objsize - 1] = POISON_END;
81819f0f
CL
660 }
661
662 if (s->flags & SLAB_RED_ZONE)
f7cb1933 663 memset(p + s->objsize, val, s->inuse - s->objsize);
81819f0f
CL
664}
665
24922684
CL
666static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
667 void *from, void *to)
668{
669 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
670 memset(from, data, to - from);
671}
672
673static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
674 u8 *object, char *what,
06428780 675 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
676{
677 u8 *fault;
678 u8 *end;
679
79824820 680 fault = memchr_inv(start, value, bytes);
24922684
CL
681 if (!fault)
682 return 1;
683
684 end = start + bytes;
685 while (end > fault && end[-1] == value)
686 end--;
687
688 slab_bug(s, "%s overwritten", what);
689 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
690 fault, end - 1, fault[0], value);
691 print_trailer(s, page, object);
692
693 restore_bytes(s, what, value, fault, end);
694 return 0;
81819f0f
CL
695}
696
81819f0f
CL
697/*
698 * Object layout:
699 *
700 * object address
701 * Bytes of the object to be managed.
702 * If the freepointer may overlay the object then the free
703 * pointer is the first word of the object.
672bba3a 704 *
81819f0f
CL
705 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
706 * 0xa5 (POISON_END)
707 *
708 * object + s->objsize
709 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
710 * Padding is extended by another word if Redzoning is enabled and
711 * objsize == inuse.
712 *
81819f0f
CL
713 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
714 * 0xcc (RED_ACTIVE) for objects in use.
715 *
716 * object + s->inuse
672bba3a
CL
717 * Meta data starts here.
718 *
81819f0f
CL
719 * A. Free pointer (if we cannot overwrite object on free)
720 * B. Tracking data for SLAB_STORE_USER
672bba3a 721 * C. Padding to reach required alignment boundary or at mininum
6446faa2 722 * one word if debugging is on to be able to detect writes
672bba3a
CL
723 * before the word boundary.
724 *
725 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
726 *
727 * object + s->size
672bba3a 728 * Nothing is used beyond s->size.
81819f0f 729 *
672bba3a
CL
730 * If slabcaches are merged then the objsize and inuse boundaries are mostly
731 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
732 * may be used with merged slabcaches.
733 */
734
81819f0f
CL
735static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
736{
737 unsigned long off = s->inuse; /* The end of info */
738
739 if (s->offset)
740 /* Freepointer is placed after the object. */
741 off += sizeof(void *);
742
743 if (s->flags & SLAB_STORE_USER)
744 /* We also have user information there */
745 off += 2 * sizeof(struct track);
746
747 if (s->size == off)
748 return 1;
749
24922684
CL
750 return check_bytes_and_report(s, page, p, "Object padding",
751 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
752}
753
39b26464 754/* Check the pad bytes at the end of a slab page */
81819f0f
CL
755static int slab_pad_check(struct kmem_cache *s, struct page *page)
756{
24922684
CL
757 u8 *start;
758 u8 *fault;
759 u8 *end;
760 int length;
761 int remainder;
81819f0f
CL
762
763 if (!(s->flags & SLAB_POISON))
764 return 1;
765
a973e9dd 766 start = page_address(page);
ab9a0f19 767 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
768 end = start + length;
769 remainder = length % s->size;
81819f0f
CL
770 if (!remainder)
771 return 1;
772
79824820 773 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
24922684
CL
774 if (!fault)
775 return 1;
776 while (end > fault && end[-1] == POISON_INUSE)
777 end--;
778
779 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 780 print_section("Padding ", end - remainder, remainder);
24922684 781
8a3d271d 782 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 783 return 0;
81819f0f
CL
784}
785
786static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 787 void *object, u8 val)
81819f0f
CL
788{
789 u8 *p = object;
790 u8 *endobject = object + s->objsize;
791
792 if (s->flags & SLAB_RED_ZONE) {
24922684 793 if (!check_bytes_and_report(s, page, object, "Redzone",
f7cb1933 794 endobject, val, s->inuse - s->objsize))
81819f0f 795 return 0;
81819f0f 796 } else {
3adbefee
IM
797 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
798 check_bytes_and_report(s, page, p, "Alignment padding",
799 endobject, POISON_INUSE, s->inuse - s->objsize);
800 }
81819f0f
CL
801 }
802
803 if (s->flags & SLAB_POISON) {
f7cb1933 804 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684
CL
805 (!check_bytes_and_report(s, page, p, "Poison", p,
806 POISON_FREE, s->objsize - 1) ||
807 !check_bytes_and_report(s, page, p, "Poison",
06428780 808 p + s->objsize - 1, POISON_END, 1)))
81819f0f 809 return 0;
81819f0f
CL
810 /*
811 * check_pad_bytes cleans up on its own.
812 */
813 check_pad_bytes(s, page, p);
814 }
815
f7cb1933 816 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
817 /*
818 * Object and freepointer overlap. Cannot check
819 * freepointer while object is allocated.
820 */
821 return 1;
822
823 /* Check free pointer validity */
824 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
825 object_err(s, page, p, "Freepointer corrupt");
826 /*
9f6c708e 827 * No choice but to zap it and thus lose the remainder
81819f0f 828 * of the free objects in this slab. May cause
672bba3a 829 * another error because the object count is now wrong.
81819f0f 830 */
a973e9dd 831 set_freepointer(s, p, NULL);
81819f0f
CL
832 return 0;
833 }
834 return 1;
835}
836
837static int check_slab(struct kmem_cache *s, struct page *page)
838{
39b26464
CL
839 int maxobj;
840
81819f0f
CL
841 VM_BUG_ON(!irqs_disabled());
842
843 if (!PageSlab(page)) {
24922684 844 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
845 return 0;
846 }
39b26464 847
ab9a0f19 848 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
849 if (page->objects > maxobj) {
850 slab_err(s, page, "objects %u > max %u",
851 s->name, page->objects, maxobj);
852 return 0;
853 }
854 if (page->inuse > page->objects) {
24922684 855 slab_err(s, page, "inuse %u > max %u",
39b26464 856 s->name, page->inuse, page->objects);
81819f0f
CL
857 return 0;
858 }
859 /* Slab_pad_check fixes things up after itself */
860 slab_pad_check(s, page);
861 return 1;
862}
863
864/*
672bba3a
CL
865 * Determine if a certain object on a page is on the freelist. Must hold the
866 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
867 */
868static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
869{
870 int nr = 0;
881db7fb 871 void *fp;
81819f0f 872 void *object = NULL;
224a88be 873 unsigned long max_objects;
81819f0f 874
881db7fb 875 fp = page->freelist;
39b26464 876 while (fp && nr <= page->objects) {
81819f0f
CL
877 if (fp == search)
878 return 1;
879 if (!check_valid_pointer(s, page, fp)) {
880 if (object) {
881 object_err(s, page, object,
882 "Freechain corrupt");
a973e9dd 883 set_freepointer(s, object, NULL);
81819f0f
CL
884 break;
885 } else {
24922684 886 slab_err(s, page, "Freepointer corrupt");
a973e9dd 887 page->freelist = NULL;
39b26464 888 page->inuse = page->objects;
24922684 889 slab_fix(s, "Freelist cleared");
81819f0f
CL
890 return 0;
891 }
892 break;
893 }
894 object = fp;
895 fp = get_freepointer(s, object);
896 nr++;
897 }
898
ab9a0f19 899 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
900 if (max_objects > MAX_OBJS_PER_PAGE)
901 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
902
903 if (page->objects != max_objects) {
904 slab_err(s, page, "Wrong number of objects. Found %d but "
905 "should be %d", page->objects, max_objects);
906 page->objects = max_objects;
907 slab_fix(s, "Number of objects adjusted.");
908 }
39b26464 909 if (page->inuse != page->objects - nr) {
70d71228 910 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
911 "counted were %d", page->inuse, page->objects - nr);
912 page->inuse = page->objects - nr;
24922684 913 slab_fix(s, "Object count adjusted.");
81819f0f
CL
914 }
915 return search == NULL;
916}
917
0121c619
CL
918static void trace(struct kmem_cache *s, struct page *page, void *object,
919 int alloc)
3ec09742
CL
920{
921 if (s->flags & SLAB_TRACE) {
922 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
923 s->name,
924 alloc ? "alloc" : "free",
925 object, page->inuse,
926 page->freelist);
927
928 if (!alloc)
ffc79d28 929 print_section("Object ", (void *)object, s->objsize);
3ec09742
CL
930
931 dump_stack();
932 }
933}
934
c016b0bd
CL
935/*
936 * Hooks for other subsystems that check memory allocations. In a typical
937 * production configuration these hooks all should produce no code at all.
938 */
939static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
940{
c1d50836 941 flags &= gfp_allowed_mask;
c016b0bd
CL
942 lockdep_trace_alloc(flags);
943 might_sleep_if(flags & __GFP_WAIT);
944
945 return should_failslab(s->objsize, flags, s->flags);
946}
947
948static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
949{
c1d50836 950 flags &= gfp_allowed_mask;
b3d41885 951 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
c016b0bd
CL
952 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
953}
954
955static inline void slab_free_hook(struct kmem_cache *s, void *x)
956{
957 kmemleak_free_recursive(x, s->flags);
c016b0bd 958
d3f661d6
CL
959 /*
960 * Trouble is that we may no longer disable interupts in the fast path
961 * So in order to make the debug calls that expect irqs to be
962 * disabled we need to disable interrupts temporarily.
963 */
964#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
965 {
966 unsigned long flags;
967
968 local_irq_save(flags);
969 kmemcheck_slab_free(s, x, s->objsize);
970 debug_check_no_locks_freed(x, s->objsize);
d3f661d6
CL
971 local_irq_restore(flags);
972 }
973#endif
f9b615de
TG
974 if (!(s->flags & SLAB_DEBUG_OBJECTS))
975 debug_check_no_obj_freed(x, s->objsize);
c016b0bd
CL
976}
977
643b1138 978/*
672bba3a 979 * Tracking of fully allocated slabs for debugging purposes.
5cc6eee8
CL
980 *
981 * list_lock must be held.
643b1138 982 */
5cc6eee8
CL
983static void add_full(struct kmem_cache *s,
984 struct kmem_cache_node *n, struct page *page)
643b1138 985{
5cc6eee8
CL
986 if (!(s->flags & SLAB_STORE_USER))
987 return;
988
643b1138 989 list_add(&page->lru, &n->full);
643b1138
CL
990}
991
5cc6eee8
CL
992/*
993 * list_lock must be held.
994 */
643b1138
CL
995static void remove_full(struct kmem_cache *s, struct page *page)
996{
643b1138
CL
997 if (!(s->flags & SLAB_STORE_USER))
998 return;
999
643b1138 1000 list_del(&page->lru);
643b1138
CL
1001}
1002
0f389ec6
CL
1003/* Tracking of the number of slabs for debugging purposes */
1004static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1005{
1006 struct kmem_cache_node *n = get_node(s, node);
1007
1008 return atomic_long_read(&n->nr_slabs);
1009}
1010
26c02cf0
AB
1011static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1012{
1013 return atomic_long_read(&n->nr_slabs);
1014}
1015
205ab99d 1016static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1017{
1018 struct kmem_cache_node *n = get_node(s, node);
1019
1020 /*
1021 * May be called early in order to allocate a slab for the
1022 * kmem_cache_node structure. Solve the chicken-egg
1023 * dilemma by deferring the increment of the count during
1024 * bootstrap (see early_kmem_cache_node_alloc).
1025 */
7340cc84 1026 if (n) {
0f389ec6 1027 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1028 atomic_long_add(objects, &n->total_objects);
1029 }
0f389ec6 1030}
205ab99d 1031static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1032{
1033 struct kmem_cache_node *n = get_node(s, node);
1034
1035 atomic_long_dec(&n->nr_slabs);
205ab99d 1036 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1037}
1038
1039/* Object debug checks for alloc/free paths */
3ec09742
CL
1040static void setup_object_debug(struct kmem_cache *s, struct page *page,
1041 void *object)
1042{
1043 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1044 return;
1045
f7cb1933 1046 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1047 init_tracking(s, object);
1048}
1049
1537066c 1050static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 1051 void *object, unsigned long addr)
81819f0f
CL
1052{
1053 if (!check_slab(s, page))
1054 goto bad;
1055
81819f0f
CL
1056 if (!check_valid_pointer(s, page, object)) {
1057 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1058 goto bad;
81819f0f
CL
1059 }
1060
f7cb1933 1061 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1062 goto bad;
81819f0f 1063
3ec09742
CL
1064 /* Success perform special debug activities for allocs */
1065 if (s->flags & SLAB_STORE_USER)
1066 set_track(s, object, TRACK_ALLOC, addr);
1067 trace(s, page, object, 1);
f7cb1933 1068 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1069 return 1;
3ec09742 1070
81819f0f
CL
1071bad:
1072 if (PageSlab(page)) {
1073 /*
1074 * If this is a slab page then lets do the best we can
1075 * to avoid issues in the future. Marking all objects
672bba3a 1076 * as used avoids touching the remaining objects.
81819f0f 1077 */
24922684 1078 slab_fix(s, "Marking all objects used");
39b26464 1079 page->inuse = page->objects;
a973e9dd 1080 page->freelist = NULL;
81819f0f
CL
1081 }
1082 return 0;
1083}
1084
1537066c
CL
1085static noinline int free_debug_processing(struct kmem_cache *s,
1086 struct page *page, void *object, unsigned long addr)
81819f0f 1087{
5c2e4bbb
CL
1088 unsigned long flags;
1089 int rc = 0;
1090
1091 local_irq_save(flags);
881db7fb
CL
1092 slab_lock(page);
1093
81819f0f
CL
1094 if (!check_slab(s, page))
1095 goto fail;
1096
1097 if (!check_valid_pointer(s, page, object)) {
70d71228 1098 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1099 goto fail;
1100 }
1101
1102 if (on_freelist(s, page, object)) {
24922684 1103 object_err(s, page, object, "Object already free");
81819f0f
CL
1104 goto fail;
1105 }
1106
f7cb1933 1107 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1108 goto out;
81819f0f
CL
1109
1110 if (unlikely(s != page->slab)) {
3adbefee 1111 if (!PageSlab(page)) {
70d71228
CL
1112 slab_err(s, page, "Attempt to free object(0x%p) "
1113 "outside of slab", object);
3adbefee 1114 } else if (!page->slab) {
81819f0f 1115 printk(KERN_ERR
70d71228 1116 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1117 object);
70d71228 1118 dump_stack();
06428780 1119 } else
24922684
CL
1120 object_err(s, page, object,
1121 "page slab pointer corrupt.");
81819f0f
CL
1122 goto fail;
1123 }
3ec09742 1124
3ec09742
CL
1125 if (s->flags & SLAB_STORE_USER)
1126 set_track(s, object, TRACK_FREE, addr);
1127 trace(s, page, object, 0);
f7cb1933 1128 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb
CL
1129 rc = 1;
1130out:
881db7fb 1131 slab_unlock(page);
5c2e4bbb
CL
1132 local_irq_restore(flags);
1133 return rc;
3ec09742 1134
81819f0f 1135fail:
24922684 1136 slab_fix(s, "Object at 0x%p not freed", object);
5c2e4bbb 1137 goto out;
81819f0f
CL
1138}
1139
41ecc55b
CL
1140static int __init setup_slub_debug(char *str)
1141{
f0630fff
CL
1142 slub_debug = DEBUG_DEFAULT_FLAGS;
1143 if (*str++ != '=' || !*str)
1144 /*
1145 * No options specified. Switch on full debugging.
1146 */
1147 goto out;
1148
1149 if (*str == ',')
1150 /*
1151 * No options but restriction on slabs. This means full
1152 * debugging for slabs matching a pattern.
1153 */
1154 goto check_slabs;
1155
fa5ec8a1
DR
1156 if (tolower(*str) == 'o') {
1157 /*
1158 * Avoid enabling debugging on caches if its minimum order
1159 * would increase as a result.
1160 */
1161 disable_higher_order_debug = 1;
1162 goto out;
1163 }
1164
f0630fff
CL
1165 slub_debug = 0;
1166 if (*str == '-')
1167 /*
1168 * Switch off all debugging measures.
1169 */
1170 goto out;
1171
1172 /*
1173 * Determine which debug features should be switched on
1174 */
06428780 1175 for (; *str && *str != ','; str++) {
f0630fff
CL
1176 switch (tolower(*str)) {
1177 case 'f':
1178 slub_debug |= SLAB_DEBUG_FREE;
1179 break;
1180 case 'z':
1181 slub_debug |= SLAB_RED_ZONE;
1182 break;
1183 case 'p':
1184 slub_debug |= SLAB_POISON;
1185 break;
1186 case 'u':
1187 slub_debug |= SLAB_STORE_USER;
1188 break;
1189 case 't':
1190 slub_debug |= SLAB_TRACE;
1191 break;
4c13dd3b
DM
1192 case 'a':
1193 slub_debug |= SLAB_FAILSLAB;
1194 break;
f0630fff
CL
1195 default:
1196 printk(KERN_ERR "slub_debug option '%c' "
06428780 1197 "unknown. skipped\n", *str);
f0630fff 1198 }
41ecc55b
CL
1199 }
1200
f0630fff 1201check_slabs:
41ecc55b
CL
1202 if (*str == ',')
1203 slub_debug_slabs = str + 1;
f0630fff 1204out:
41ecc55b
CL
1205 return 1;
1206}
1207
1208__setup("slub_debug", setup_slub_debug);
1209
ba0268a8
CL
1210static unsigned long kmem_cache_flags(unsigned long objsize,
1211 unsigned long flags, const char *name,
51cc5068 1212 void (*ctor)(void *))
41ecc55b
CL
1213{
1214 /*
e153362a 1215 * Enable debugging if selected on the kernel commandline.
41ecc55b 1216 */
e153362a 1217 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1218 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1219 flags |= slub_debug;
ba0268a8
CL
1220
1221 return flags;
41ecc55b
CL
1222}
1223#else
3ec09742
CL
1224static inline void setup_object_debug(struct kmem_cache *s,
1225 struct page *page, void *object) {}
41ecc55b 1226
3ec09742 1227static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1228 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1229
3ec09742 1230static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1231 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1232
41ecc55b
CL
1233static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1234 { return 1; }
1235static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1236 void *object, u8 val) { return 1; }
5cc6eee8
CL
1237static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1238 struct page *page) {}
2cfb7455 1239static inline void remove_full(struct kmem_cache *s, struct page *page) {}
ba0268a8
CL
1240static inline unsigned long kmem_cache_flags(unsigned long objsize,
1241 unsigned long flags, const char *name,
51cc5068 1242 void (*ctor)(void *))
ba0268a8
CL
1243{
1244 return flags;
1245}
41ecc55b 1246#define slub_debug 0
0f389ec6 1247
fdaa45e9
IM
1248#define disable_higher_order_debug 0
1249
0f389ec6
CL
1250static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1251 { return 0; }
26c02cf0
AB
1252static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1253 { return 0; }
205ab99d
CL
1254static inline void inc_slabs_node(struct kmem_cache *s, int node,
1255 int objects) {}
1256static inline void dec_slabs_node(struct kmem_cache *s, int node,
1257 int objects) {}
7d550c56
CL
1258
1259static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1260 { return 0; }
1261
1262static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1263 void *object) {}
1264
1265static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1266
ab4d5ed5 1267#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1268
81819f0f
CL
1269/*
1270 * Slab allocation and freeing
1271 */
65c3376a
CL
1272static inline struct page *alloc_slab_page(gfp_t flags, int node,
1273 struct kmem_cache_order_objects oo)
1274{
1275 int order = oo_order(oo);
1276
b1eeab67
VN
1277 flags |= __GFP_NOTRACK;
1278
2154a336 1279 if (node == NUMA_NO_NODE)
65c3376a
CL
1280 return alloc_pages(flags, order);
1281 else
6b65aaf3 1282 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1283}
1284
81819f0f
CL
1285static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1286{
06428780 1287 struct page *page;
834f3d11 1288 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1289 gfp_t alloc_gfp;
81819f0f 1290
7e0528da
CL
1291 flags &= gfp_allowed_mask;
1292
1293 if (flags & __GFP_WAIT)
1294 local_irq_enable();
1295
b7a49f0d 1296 flags |= s->allocflags;
e12ba74d 1297
ba52270d
PE
1298 /*
1299 * Let the initial higher-order allocation fail under memory pressure
1300 * so we fall-back to the minimum order allocation.
1301 */
1302 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1303
1304 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1305 if (unlikely(!page)) {
1306 oo = s->min;
1307 /*
1308 * Allocation may have failed due to fragmentation.
1309 * Try a lower order alloc if possible
1310 */
1311 page = alloc_slab_page(flags, node, oo);
81819f0f 1312
7e0528da
CL
1313 if (page)
1314 stat(s, ORDER_FALLBACK);
65c3376a 1315 }
5a896d9e 1316
7e0528da
CL
1317 if (flags & __GFP_WAIT)
1318 local_irq_disable();
1319
1320 if (!page)
1321 return NULL;
1322
5a896d9e 1323 if (kmemcheck_enabled
5086c389 1324 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1325 int pages = 1 << oo_order(oo);
1326
1327 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1328
1329 /*
1330 * Objects from caches that have a constructor don't get
1331 * cleared when they're allocated, so we need to do it here.
1332 */
1333 if (s->ctor)
1334 kmemcheck_mark_uninitialized_pages(page, pages);
1335 else
1336 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1337 }
1338
834f3d11 1339 page->objects = oo_objects(oo);
81819f0f
CL
1340 mod_zone_page_state(page_zone(page),
1341 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1342 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1343 1 << oo_order(oo));
81819f0f
CL
1344
1345 return page;
1346}
1347
1348static void setup_object(struct kmem_cache *s, struct page *page,
1349 void *object)
1350{
3ec09742 1351 setup_object_debug(s, page, object);
4f104934 1352 if (unlikely(s->ctor))
51cc5068 1353 s->ctor(object);
81819f0f
CL
1354}
1355
1356static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1357{
1358 struct page *page;
81819f0f 1359 void *start;
81819f0f
CL
1360 void *last;
1361 void *p;
1362
6cb06229 1363 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1364
6cb06229
CL
1365 page = allocate_slab(s,
1366 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1367 if (!page)
1368 goto out;
1369
205ab99d 1370 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1371 page->slab = s;
1372 page->flags |= 1 << PG_slab;
81819f0f
CL
1373
1374 start = page_address(page);
81819f0f
CL
1375
1376 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1377 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1378
1379 last = start;
224a88be 1380 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1381 setup_object(s, page, last);
1382 set_freepointer(s, last, p);
1383 last = p;
1384 }
1385 setup_object(s, page, last);
a973e9dd 1386 set_freepointer(s, last, NULL);
81819f0f
CL
1387
1388 page->freelist = start;
e6e82ea1 1389 page->inuse = page->objects;
8cb0a506 1390 page->frozen = 1;
81819f0f 1391out:
81819f0f
CL
1392 return page;
1393}
1394
1395static void __free_slab(struct kmem_cache *s, struct page *page)
1396{
834f3d11
CL
1397 int order = compound_order(page);
1398 int pages = 1 << order;
81819f0f 1399
af537b0a 1400 if (kmem_cache_debug(s)) {
81819f0f
CL
1401 void *p;
1402
1403 slab_pad_check(s, page);
224a88be
CL
1404 for_each_object(p, s, page_address(page),
1405 page->objects)
f7cb1933 1406 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1407 }
1408
b1eeab67 1409 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1410
81819f0f
CL
1411 mod_zone_page_state(page_zone(page),
1412 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1413 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1414 -pages);
81819f0f 1415
49bd5221
CL
1416 __ClearPageSlab(page);
1417 reset_page_mapcount(page);
1eb5ac64
NP
1418 if (current->reclaim_state)
1419 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1420 __free_pages(page, order);
81819f0f
CL
1421}
1422
da9a638c
LJ
1423#define need_reserve_slab_rcu \
1424 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1425
81819f0f
CL
1426static void rcu_free_slab(struct rcu_head *h)
1427{
1428 struct page *page;
1429
da9a638c
LJ
1430 if (need_reserve_slab_rcu)
1431 page = virt_to_head_page(h);
1432 else
1433 page = container_of((struct list_head *)h, struct page, lru);
1434
81819f0f
CL
1435 __free_slab(page->slab, page);
1436}
1437
1438static void free_slab(struct kmem_cache *s, struct page *page)
1439{
1440 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1441 struct rcu_head *head;
1442
1443 if (need_reserve_slab_rcu) {
1444 int order = compound_order(page);
1445 int offset = (PAGE_SIZE << order) - s->reserved;
1446
1447 VM_BUG_ON(s->reserved != sizeof(*head));
1448 head = page_address(page) + offset;
1449 } else {
1450 /*
1451 * RCU free overloads the RCU head over the LRU
1452 */
1453 head = (void *)&page->lru;
1454 }
81819f0f
CL
1455
1456 call_rcu(head, rcu_free_slab);
1457 } else
1458 __free_slab(s, page);
1459}
1460
1461static void discard_slab(struct kmem_cache *s, struct page *page)
1462{
205ab99d 1463 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1464 free_slab(s, page);
1465}
1466
1467/*
5cc6eee8
CL
1468 * Management of partially allocated slabs.
1469 *
1470 * list_lock must be held.
81819f0f 1471 */
5cc6eee8 1472static inline void add_partial(struct kmem_cache_node *n,
7c2e132c 1473 struct page *page, int tail)
81819f0f 1474{
e95eed57 1475 n->nr_partial++;
136333d1 1476 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1477 list_add_tail(&page->lru, &n->partial);
1478 else
1479 list_add(&page->lru, &n->partial);
81819f0f
CL
1480}
1481
5cc6eee8
CL
1482/*
1483 * list_lock must be held.
1484 */
1485static inline void remove_partial(struct kmem_cache_node *n,
62e346a8
CL
1486 struct page *page)
1487{
1488 list_del(&page->lru);
1489 n->nr_partial--;
1490}
1491
81819f0f 1492/*
7ced3719
CL
1493 * Remove slab from the partial list, freeze it and
1494 * return the pointer to the freelist.
81819f0f 1495 *
497b66f2
CL
1496 * Returns a list of objects or NULL if it fails.
1497 *
7ced3719 1498 * Must hold list_lock since we modify the partial list.
81819f0f 1499 */
497b66f2 1500static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1501 struct kmem_cache_node *n, struct page *page,
49e22585 1502 int mode)
81819f0f 1503{
2cfb7455
CL
1504 void *freelist;
1505 unsigned long counters;
1506 struct page new;
1507
2cfb7455
CL
1508 /*
1509 * Zap the freelist and set the frozen bit.
1510 * The old freelist is the list of objects for the
1511 * per cpu allocation list.
1512 */
7ced3719
CL
1513 freelist = page->freelist;
1514 counters = page->counters;
1515 new.counters = counters;
1516 if (mode)
1517 new.inuse = page->objects;
2cfb7455 1518
7ced3719
CL
1519 VM_BUG_ON(new.frozen);
1520 new.frozen = 1;
2cfb7455 1521
7ced3719 1522 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1523 freelist, counters,
1524 NULL, new.counters,
7ced3719
CL
1525 "acquire_slab"))
1526
1527 return NULL;
2cfb7455
CL
1528
1529 remove_partial(n, page);
7ced3719 1530 WARN_ON(!freelist);
49e22585 1531 return freelist;
81819f0f
CL
1532}
1533
49e22585
CL
1534static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1535
81819f0f 1536/*
672bba3a 1537 * Try to allocate a partial slab from a specific node.
81819f0f 1538 */
497b66f2 1539static void *get_partial_node(struct kmem_cache *s,
acd19fd1 1540 struct kmem_cache_node *n, struct kmem_cache_cpu *c)
81819f0f 1541{
49e22585
CL
1542 struct page *page, *page2;
1543 void *object = NULL;
81819f0f
CL
1544
1545 /*
1546 * Racy check. If we mistakenly see no partial slabs then we
1547 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1548 * partial slab and there is none available then get_partials()
1549 * will return NULL.
81819f0f
CL
1550 */
1551 if (!n || !n->nr_partial)
1552 return NULL;
1553
1554 spin_lock(&n->list_lock);
49e22585 1555 list_for_each_entry_safe(page, page2, &n->partial, lru) {
12d79634 1556 void *t = acquire_slab(s, n, page, object == NULL);
49e22585
CL
1557 int available;
1558
1559 if (!t)
1560 break;
1561
12d79634 1562 if (!object) {
49e22585
CL
1563 c->page = page;
1564 c->node = page_to_nid(page);
1565 stat(s, ALLOC_FROM_PARTIAL);
49e22585
CL
1566 object = t;
1567 available = page->objects - page->inuse;
1568 } else {
1569 page->freelist = t;
1570 available = put_cpu_partial(s, page, 0);
8028dcea 1571 stat(s, CPU_PARTIAL_NODE);
49e22585
CL
1572 }
1573 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1574 break;
1575
497b66f2 1576 }
81819f0f 1577 spin_unlock(&n->list_lock);
497b66f2 1578 return object;
81819f0f
CL
1579}
1580
1581/*
672bba3a 1582 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1583 */
acd19fd1
CL
1584static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
1585 struct kmem_cache_cpu *c)
81819f0f
CL
1586{
1587#ifdef CONFIG_NUMA
1588 struct zonelist *zonelist;
dd1a239f 1589 struct zoneref *z;
54a6eb5c
MG
1590 struct zone *zone;
1591 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1592 void *object;
cc9a6c87 1593 unsigned int cpuset_mems_cookie;
81819f0f
CL
1594
1595 /*
672bba3a
CL
1596 * The defrag ratio allows a configuration of the tradeoffs between
1597 * inter node defragmentation and node local allocations. A lower
1598 * defrag_ratio increases the tendency to do local allocations
1599 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1600 *
672bba3a
CL
1601 * If the defrag_ratio is set to 0 then kmalloc() always
1602 * returns node local objects. If the ratio is higher then kmalloc()
1603 * may return off node objects because partial slabs are obtained
1604 * from other nodes and filled up.
81819f0f 1605 *
6446faa2 1606 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1607 * defrag_ratio = 1000) then every (well almost) allocation will
1608 * first attempt to defrag slab caches on other nodes. This means
1609 * scanning over all nodes to look for partial slabs which may be
1610 * expensive if we do it every time we are trying to find a slab
1611 * with available objects.
81819f0f 1612 */
9824601e
CL
1613 if (!s->remote_node_defrag_ratio ||
1614 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1615 return NULL;
1616
cc9a6c87
MG
1617 do {
1618 cpuset_mems_cookie = get_mems_allowed();
1619 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1620 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1621 struct kmem_cache_node *n;
1622
1623 n = get_node(s, zone_to_nid(zone));
1624
1625 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1626 n->nr_partial > s->min_partial) {
1627 object = get_partial_node(s, n, c);
1628 if (object) {
1629 /*
1630 * Return the object even if
1631 * put_mems_allowed indicated that
1632 * the cpuset mems_allowed was
1633 * updated in parallel. It's a
1634 * harmless race between the alloc
1635 * and the cpuset update.
1636 */
1637 put_mems_allowed(cpuset_mems_cookie);
1638 return object;
1639 }
c0ff7453 1640 }
81819f0f 1641 }
cc9a6c87 1642 } while (!put_mems_allowed(cpuset_mems_cookie));
81819f0f
CL
1643#endif
1644 return NULL;
1645}
1646
1647/*
1648 * Get a partial page, lock it and return it.
1649 */
497b66f2 1650static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1651 struct kmem_cache_cpu *c)
81819f0f 1652{
497b66f2 1653 void *object;
2154a336 1654 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f 1655
497b66f2
CL
1656 object = get_partial_node(s, get_node(s, searchnode), c);
1657 if (object || node != NUMA_NO_NODE)
1658 return object;
81819f0f 1659
acd19fd1 1660 return get_any_partial(s, flags, c);
81819f0f
CL
1661}
1662
8a5ec0ba
CL
1663#ifdef CONFIG_PREEMPT
1664/*
1665 * Calculate the next globally unique transaction for disambiguiation
1666 * during cmpxchg. The transactions start with the cpu number and are then
1667 * incremented by CONFIG_NR_CPUS.
1668 */
1669#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1670#else
1671/*
1672 * No preemption supported therefore also no need to check for
1673 * different cpus.
1674 */
1675#define TID_STEP 1
1676#endif
1677
1678static inline unsigned long next_tid(unsigned long tid)
1679{
1680 return tid + TID_STEP;
1681}
1682
1683static inline unsigned int tid_to_cpu(unsigned long tid)
1684{
1685 return tid % TID_STEP;
1686}
1687
1688static inline unsigned long tid_to_event(unsigned long tid)
1689{
1690 return tid / TID_STEP;
1691}
1692
1693static inline unsigned int init_tid(int cpu)
1694{
1695 return cpu;
1696}
1697
1698static inline void note_cmpxchg_failure(const char *n,
1699 const struct kmem_cache *s, unsigned long tid)
1700{
1701#ifdef SLUB_DEBUG_CMPXCHG
1702 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1703
1704 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1705
1706#ifdef CONFIG_PREEMPT
1707 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1708 printk("due to cpu change %d -> %d\n",
1709 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1710 else
1711#endif
1712 if (tid_to_event(tid) != tid_to_event(actual_tid))
1713 printk("due to cpu running other code. Event %ld->%ld\n",
1714 tid_to_event(tid), tid_to_event(actual_tid));
1715 else
1716 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1717 actual_tid, tid, next_tid(tid));
1718#endif
4fdccdfb 1719 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1720}
1721
8a5ec0ba
CL
1722void init_kmem_cache_cpus(struct kmem_cache *s)
1723{
8a5ec0ba
CL
1724 int cpu;
1725
1726 for_each_possible_cpu(cpu)
1727 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1728}
2cfb7455 1729
81819f0f
CL
1730/*
1731 * Remove the cpu slab
1732 */
dfb4f096 1733static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1734{
2cfb7455 1735 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
dfb4f096 1736 struct page *page = c->page;
2cfb7455
CL
1737 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1738 int lock = 0;
1739 enum slab_modes l = M_NONE, m = M_NONE;
1740 void *freelist;
1741 void *nextfree;
136333d1 1742 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1743 struct page new;
1744 struct page old;
1745
1746 if (page->freelist) {
84e554e6 1747 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1748 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1749 }
1750
1751 c->tid = next_tid(c->tid);
1752 c->page = NULL;
1753 freelist = c->freelist;
1754 c->freelist = NULL;
1755
894b8788 1756 /*
2cfb7455
CL
1757 * Stage one: Free all available per cpu objects back
1758 * to the page freelist while it is still frozen. Leave the
1759 * last one.
1760 *
1761 * There is no need to take the list->lock because the page
1762 * is still frozen.
1763 */
1764 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1765 void *prior;
1766 unsigned long counters;
1767
1768 do {
1769 prior = page->freelist;
1770 counters = page->counters;
1771 set_freepointer(s, freelist, prior);
1772 new.counters = counters;
1773 new.inuse--;
1774 VM_BUG_ON(!new.frozen);
1775
1d07171c 1776 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1777 prior, counters,
1778 freelist, new.counters,
1779 "drain percpu freelist"));
1780
1781 freelist = nextfree;
1782 }
1783
894b8788 1784 /*
2cfb7455
CL
1785 * Stage two: Ensure that the page is unfrozen while the
1786 * list presence reflects the actual number of objects
1787 * during unfreeze.
1788 *
1789 * We setup the list membership and then perform a cmpxchg
1790 * with the count. If there is a mismatch then the page
1791 * is not unfrozen but the page is on the wrong list.
1792 *
1793 * Then we restart the process which may have to remove
1794 * the page from the list that we just put it on again
1795 * because the number of objects in the slab may have
1796 * changed.
894b8788 1797 */
2cfb7455 1798redo:
894b8788 1799
2cfb7455
CL
1800 old.freelist = page->freelist;
1801 old.counters = page->counters;
1802 VM_BUG_ON(!old.frozen);
7c2e132c 1803
2cfb7455
CL
1804 /* Determine target state of the slab */
1805 new.counters = old.counters;
1806 if (freelist) {
1807 new.inuse--;
1808 set_freepointer(s, freelist, old.freelist);
1809 new.freelist = freelist;
1810 } else
1811 new.freelist = old.freelist;
1812
1813 new.frozen = 0;
1814
81107188 1815 if (!new.inuse && n->nr_partial > s->min_partial)
2cfb7455
CL
1816 m = M_FREE;
1817 else if (new.freelist) {
1818 m = M_PARTIAL;
1819 if (!lock) {
1820 lock = 1;
1821 /*
1822 * Taking the spinlock removes the possiblity
1823 * that acquire_slab() will see a slab page that
1824 * is frozen
1825 */
1826 spin_lock(&n->list_lock);
1827 }
1828 } else {
1829 m = M_FULL;
1830 if (kmem_cache_debug(s) && !lock) {
1831 lock = 1;
1832 /*
1833 * This also ensures that the scanning of full
1834 * slabs from diagnostic functions will not see
1835 * any frozen slabs.
1836 */
1837 spin_lock(&n->list_lock);
1838 }
1839 }
1840
1841 if (l != m) {
1842
1843 if (l == M_PARTIAL)
1844
1845 remove_partial(n, page);
1846
1847 else if (l == M_FULL)
894b8788 1848
2cfb7455
CL
1849 remove_full(s, page);
1850
1851 if (m == M_PARTIAL) {
1852
1853 add_partial(n, page, tail);
136333d1 1854 stat(s, tail);
2cfb7455
CL
1855
1856 } else if (m == M_FULL) {
894b8788 1857
2cfb7455
CL
1858 stat(s, DEACTIVATE_FULL);
1859 add_full(s, n, page);
1860
1861 }
1862 }
1863
1864 l = m;
1d07171c 1865 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1866 old.freelist, old.counters,
1867 new.freelist, new.counters,
1868 "unfreezing slab"))
1869 goto redo;
1870
2cfb7455
CL
1871 if (lock)
1872 spin_unlock(&n->list_lock);
1873
1874 if (m == M_FREE) {
1875 stat(s, DEACTIVATE_EMPTY);
1876 discard_slab(s, page);
1877 stat(s, FREE_SLAB);
894b8788 1878 }
81819f0f
CL
1879}
1880
49e22585
CL
1881/* Unfreeze all the cpu partial slabs */
1882static void unfreeze_partials(struct kmem_cache *s)
1883{
1884 struct kmem_cache_node *n = NULL;
1885 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
9ada1934 1886 struct page *page, *discard_page = NULL;
49e22585
CL
1887
1888 while ((page = c->partial)) {
1889 enum slab_modes { M_PARTIAL, M_FREE };
1890 enum slab_modes l, m;
1891 struct page new;
1892 struct page old;
1893
1894 c->partial = page->next;
1895 l = M_FREE;
1896
1897 do {
1898
1899 old.freelist = page->freelist;
1900 old.counters = page->counters;
1901 VM_BUG_ON(!old.frozen);
1902
1903 new.counters = old.counters;
1904 new.freelist = old.freelist;
1905
1906 new.frozen = 0;
1907
dcc3be6a 1908 if (!new.inuse && (!n || n->nr_partial > s->min_partial))
49e22585
CL
1909 m = M_FREE;
1910 else {
1911 struct kmem_cache_node *n2 = get_node(s,
1912 page_to_nid(page));
1913
1914 m = M_PARTIAL;
1915 if (n != n2) {
1916 if (n)
1917 spin_unlock(&n->list_lock);
1918
1919 n = n2;
1920 spin_lock(&n->list_lock);
1921 }
1922 }
1923
1924 if (l != m) {
4c493a5a 1925 if (l == M_PARTIAL) {
49e22585 1926 remove_partial(n, page);
4c493a5a
SL
1927 stat(s, FREE_REMOVE_PARTIAL);
1928 } else {
f64ae042
SL
1929 add_partial(n, page,
1930 DEACTIVATE_TO_TAIL);
4c493a5a
SL
1931 stat(s, FREE_ADD_PARTIAL);
1932 }
49e22585
CL
1933
1934 l = m;
1935 }
1936
1937 } while (!cmpxchg_double_slab(s, page,
1938 old.freelist, old.counters,
1939 new.freelist, new.counters,
1940 "unfreezing slab"));
1941
1942 if (m == M_FREE) {
9ada1934
SL
1943 page->next = discard_page;
1944 discard_page = page;
49e22585
CL
1945 }
1946 }
1947
1948 if (n)
1949 spin_unlock(&n->list_lock);
9ada1934
SL
1950
1951 while (discard_page) {
1952 page = discard_page;
1953 discard_page = discard_page->next;
1954
1955 stat(s, DEACTIVATE_EMPTY);
1956 discard_slab(s, page);
1957 stat(s, FREE_SLAB);
1958 }
49e22585
CL
1959}
1960
1961/*
1962 * Put a page that was just frozen (in __slab_free) into a partial page
1963 * slot if available. This is done without interrupts disabled and without
1964 * preemption disabled. The cmpxchg is racy and may put the partial page
1965 * onto a random cpus partial slot.
1966 *
1967 * If we did not find a slot then simply move all the partials to the
1968 * per node partial list.
1969 */
1970int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1971{
1972 struct page *oldpage;
1973 int pages;
1974 int pobjects;
1975
1976 do {
1977 pages = 0;
1978 pobjects = 0;
1979 oldpage = this_cpu_read(s->cpu_slab->partial);
1980
1981 if (oldpage) {
1982 pobjects = oldpage->pobjects;
1983 pages = oldpage->pages;
1984 if (drain && pobjects > s->cpu_partial) {
1985 unsigned long flags;
1986 /*
1987 * partial array is full. Move the existing
1988 * set to the per node partial list.
1989 */
1990 local_irq_save(flags);
1991 unfreeze_partials(s);
1992 local_irq_restore(flags);
1993 pobjects = 0;
1994 pages = 0;
8028dcea 1995 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
1996 }
1997 }
1998
1999 pages++;
2000 pobjects += page->objects - page->inuse;
2001
2002 page->pages = pages;
2003 page->pobjects = pobjects;
2004 page->next = oldpage;
2005
933393f5 2006 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
49e22585
CL
2007 return pobjects;
2008}
2009
dfb4f096 2010static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2011{
84e554e6 2012 stat(s, CPUSLAB_FLUSH);
dfb4f096 2013 deactivate_slab(s, c);
81819f0f
CL
2014}
2015
2016/*
2017 * Flush cpu slab.
6446faa2 2018 *
81819f0f
CL
2019 * Called from IPI handler with interrupts disabled.
2020 */
0c710013 2021static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2022{
9dfc6e68 2023 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2024
49e22585
CL
2025 if (likely(c)) {
2026 if (c->page)
2027 flush_slab(s, c);
2028
2029 unfreeze_partials(s);
2030 }
81819f0f
CL
2031}
2032
2033static void flush_cpu_slab(void *d)
2034{
2035 struct kmem_cache *s = d;
81819f0f 2036
dfb4f096 2037 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2038}
2039
a8364d55
GBY
2040static bool has_cpu_slab(int cpu, void *info)
2041{
2042 struct kmem_cache *s = info;
2043 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2044
02e1a9cd 2045 return c->page || c->partial;
a8364d55
GBY
2046}
2047
81819f0f
CL
2048static void flush_all(struct kmem_cache *s)
2049{
a8364d55 2050 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2051}
2052
dfb4f096
CL
2053/*
2054 * Check if the objects in a per cpu structure fit numa
2055 * locality expectations.
2056 */
2057static inline int node_match(struct kmem_cache_cpu *c, int node)
2058{
2059#ifdef CONFIG_NUMA
2154a336 2060 if (node != NUMA_NO_NODE && c->node != node)
dfb4f096
CL
2061 return 0;
2062#endif
2063 return 1;
2064}
2065
781b2ba6
PE
2066static int count_free(struct page *page)
2067{
2068 return page->objects - page->inuse;
2069}
2070
2071static unsigned long count_partial(struct kmem_cache_node *n,
2072 int (*get_count)(struct page *))
2073{
2074 unsigned long flags;
2075 unsigned long x = 0;
2076 struct page *page;
2077
2078 spin_lock_irqsave(&n->list_lock, flags);
2079 list_for_each_entry(page, &n->partial, lru)
2080 x += get_count(page);
2081 spin_unlock_irqrestore(&n->list_lock, flags);
2082 return x;
2083}
2084
26c02cf0
AB
2085static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2086{
2087#ifdef CONFIG_SLUB_DEBUG
2088 return atomic_long_read(&n->total_objects);
2089#else
2090 return 0;
2091#endif
2092}
2093
781b2ba6
PE
2094static noinline void
2095slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2096{
2097 int node;
2098
2099 printk(KERN_WARNING
2100 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2101 nid, gfpflags);
2102 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2103 "default order: %d, min order: %d\n", s->name, s->objsize,
2104 s->size, oo_order(s->oo), oo_order(s->min));
2105
fa5ec8a1
DR
2106 if (oo_order(s->min) > get_order(s->objsize))
2107 printk(KERN_WARNING " %s debugging increased min order, use "
2108 "slub_debug=O to disable.\n", s->name);
2109
781b2ba6
PE
2110 for_each_online_node(node) {
2111 struct kmem_cache_node *n = get_node(s, node);
2112 unsigned long nr_slabs;
2113 unsigned long nr_objs;
2114 unsigned long nr_free;
2115
2116 if (!n)
2117 continue;
2118
26c02cf0
AB
2119 nr_free = count_partial(n, count_free);
2120 nr_slabs = node_nr_slabs(n);
2121 nr_objs = node_nr_objs(n);
781b2ba6
PE
2122
2123 printk(KERN_WARNING
2124 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2125 node, nr_slabs, nr_objs, nr_free);
2126 }
2127}
2128
497b66f2
CL
2129static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2130 int node, struct kmem_cache_cpu **pc)
2131{
6faa6833 2132 void *freelist;
497b66f2
CL
2133 struct kmem_cache_cpu *c;
2134 struct page *page = new_slab(s, flags, node);
2135
2136 if (page) {
2137 c = __this_cpu_ptr(s->cpu_slab);
2138 if (c->page)
2139 flush_slab(s, c);
2140
2141 /*
2142 * No other reference to the page yet so we can
2143 * muck around with it freely without cmpxchg
2144 */
6faa6833 2145 freelist = page->freelist;
497b66f2
CL
2146 page->freelist = NULL;
2147
2148 stat(s, ALLOC_SLAB);
2149 c->node = page_to_nid(page);
2150 c->page = page;
2151 *pc = c;
2152 } else
6faa6833 2153 freelist = NULL;
497b66f2 2154
6faa6833 2155 return freelist;
497b66f2
CL
2156}
2157
213eeb9f
CL
2158/*
2159 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2160 * or deactivate the page.
2161 *
2162 * The page is still frozen if the return value is not NULL.
2163 *
2164 * If this function returns NULL then the page has been unfrozen.
2165 */
2166static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2167{
2168 struct page new;
2169 unsigned long counters;
2170 void *freelist;
2171
2172 do {
2173 freelist = page->freelist;
2174 counters = page->counters;
6faa6833 2175
213eeb9f
CL
2176 new.counters = counters;
2177 VM_BUG_ON(!new.frozen);
2178
2179 new.inuse = page->objects;
2180 new.frozen = freelist != NULL;
2181
2182 } while (!cmpxchg_double_slab(s, page,
2183 freelist, counters,
2184 NULL, new.counters,
2185 "get_freelist"));
2186
2187 return freelist;
2188}
2189
81819f0f 2190/*
894b8788
CL
2191 * Slow path. The lockless freelist is empty or we need to perform
2192 * debugging duties.
2193 *
894b8788
CL
2194 * Processing is still very fast if new objects have been freed to the
2195 * regular freelist. In that case we simply take over the regular freelist
2196 * as the lockless freelist and zap the regular freelist.
81819f0f 2197 *
894b8788
CL
2198 * If that is not working then we fall back to the partial lists. We take the
2199 * first element of the freelist as the object to allocate now and move the
2200 * rest of the freelist to the lockless freelist.
81819f0f 2201 *
894b8788 2202 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2203 * we need to allocate a new slab. This is the slowest path since it involves
2204 * a call to the page allocator and the setup of a new slab.
81819f0f 2205 */
ce71e27c
EGM
2206static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2207 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2208{
6faa6833 2209 void *freelist;
8a5ec0ba
CL
2210 unsigned long flags;
2211
2212 local_irq_save(flags);
2213#ifdef CONFIG_PREEMPT
2214 /*
2215 * We may have been preempted and rescheduled on a different
2216 * cpu before disabling interrupts. Need to reload cpu area
2217 * pointer.
2218 */
2219 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2220#endif
81819f0f 2221
497b66f2 2222 if (!c->page)
81819f0f 2223 goto new_slab;
49e22585 2224redo:
6faa6833 2225
fc59c053 2226 if (unlikely(!node_match(c, node))) {
e36a2652 2227 stat(s, ALLOC_NODE_MISMATCH);
fc59c053
CL
2228 deactivate_slab(s, c);
2229 goto new_slab;
2230 }
6446faa2 2231
73736e03 2232 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2233 freelist = c->freelist;
2234 if (freelist)
73736e03 2235 goto load_freelist;
03e404af 2236
2cfb7455 2237 stat(s, ALLOC_SLOWPATH);
03e404af 2238
6faa6833 2239 freelist = get_freelist(s, c->page);
6446faa2 2240
6faa6833 2241 if (!freelist) {
03e404af
CL
2242 c->page = NULL;
2243 stat(s, DEACTIVATE_BYPASS);
fc59c053 2244 goto new_slab;
03e404af 2245 }
6446faa2 2246
84e554e6 2247 stat(s, ALLOC_REFILL);
6446faa2 2248
894b8788 2249load_freelist:
507effea
CL
2250 /*
2251 * freelist is pointing to the list of objects to be used.
2252 * page is pointing to the page from which the objects are obtained.
2253 * That page must be frozen for per cpu allocations to work.
2254 */
2255 VM_BUG_ON(!c->page->frozen);
6faa6833 2256 c->freelist = get_freepointer(s, freelist);
8a5ec0ba
CL
2257 c->tid = next_tid(c->tid);
2258 local_irq_restore(flags);
6faa6833 2259 return freelist;
81819f0f 2260
81819f0f 2261new_slab:
2cfb7455 2262
49e22585
CL
2263 if (c->partial) {
2264 c->page = c->partial;
2265 c->partial = c->page->next;
2266 c->node = page_to_nid(c->page);
2267 stat(s, CPU_PARTIAL_ALLOC);
2268 c->freelist = NULL;
2269 goto redo;
81819f0f
CL
2270 }
2271
49e22585 2272 /* Then do expensive stuff like retrieving pages from the partial lists */
6faa6833 2273 freelist = get_partial(s, gfpflags, node, c);
b811c202 2274
f4697436 2275 if (!freelist)
6faa6833 2276 freelist = new_slab_objects(s, gfpflags, node, &c);
2cfb7455 2277
f4697436
CL
2278 if (unlikely(!freelist)) {
2279 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2280 slab_out_of_memory(s, gfpflags, node);
9e577e8b 2281
f4697436
CL
2282 local_irq_restore(flags);
2283 return NULL;
81819f0f 2284 }
2cfb7455 2285
497b66f2 2286 if (likely(!kmem_cache_debug(s)))
4b6f0750 2287 goto load_freelist;
2cfb7455 2288
497b66f2 2289 /* Only entered in the debug case */
6faa6833 2290 if (!alloc_debug_processing(s, c->page, freelist, addr))
497b66f2 2291 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2292
6faa6833 2293 c->freelist = get_freepointer(s, freelist);
442b06bc 2294 deactivate_slab(s, c);
15b7c514 2295 c->node = NUMA_NO_NODE;
a71ae47a 2296 local_irq_restore(flags);
6faa6833 2297 return freelist;
894b8788
CL
2298}
2299
2300/*
2301 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2302 * have the fastpath folded into their functions. So no function call
2303 * overhead for requests that can be satisfied on the fastpath.
2304 *
2305 * The fastpath works by first checking if the lockless freelist can be used.
2306 * If not then __slab_alloc is called for slow processing.
2307 *
2308 * Otherwise we can simply pick the next object from the lockless free list.
2309 */
06428780 2310static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 2311 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2312{
894b8788 2313 void **object;
dfb4f096 2314 struct kmem_cache_cpu *c;
8a5ec0ba 2315 unsigned long tid;
1f84260c 2316
c016b0bd 2317 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2318 return NULL;
1f84260c 2319
8a5ec0ba 2320redo:
8a5ec0ba
CL
2321
2322 /*
2323 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2324 * enabled. We may switch back and forth between cpus while
2325 * reading from one cpu area. That does not matter as long
2326 * as we end up on the original cpu again when doing the cmpxchg.
2327 */
9dfc6e68 2328 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2329
8a5ec0ba
CL
2330 /*
2331 * The transaction ids are globally unique per cpu and per operation on
2332 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2333 * occurs on the right processor and that there was no operation on the
2334 * linked list in between.
2335 */
2336 tid = c->tid;
2337 barrier();
8a5ec0ba 2338
9dfc6e68 2339 object = c->freelist;
9dfc6e68 2340 if (unlikely(!object || !node_match(c, node)))
894b8788 2341
dfb4f096 2342 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
2343
2344 else {
0ad9500e
ED
2345 void *next_object = get_freepointer_safe(s, object);
2346
8a5ec0ba 2347 /*
25985edc 2348 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2349 * operation and if we are on the right processor.
2350 *
2351 * The cmpxchg does the following atomically (without lock semantics!)
2352 * 1. Relocate first pointer to the current per cpu area.
2353 * 2. Verify that tid and freelist have not been changed
2354 * 3. If they were not changed replace tid and freelist
2355 *
2356 * Since this is without lock semantics the protection is only against
2357 * code executing on this cpu *not* from access by other cpus.
2358 */
933393f5 2359 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2360 s->cpu_slab->freelist, s->cpu_slab->tid,
2361 object, tid,
0ad9500e 2362 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2363
2364 note_cmpxchg_failure("slab_alloc", s, tid);
2365 goto redo;
2366 }
0ad9500e 2367 prefetch_freepointer(s, next_object);
84e554e6 2368 stat(s, ALLOC_FASTPATH);
894b8788 2369 }
8a5ec0ba 2370
74e2134f 2371 if (unlikely(gfpflags & __GFP_ZERO) && object)
ff12059e 2372 memset(object, 0, s->objsize);
d07dbea4 2373
c016b0bd 2374 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2375
894b8788 2376 return object;
81819f0f
CL
2377}
2378
2379void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2380{
2154a336 2381 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2382
ca2b84cb 2383 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
2384
2385 return ret;
81819f0f
CL
2386}
2387EXPORT_SYMBOL(kmem_cache_alloc);
2388
0f24f128 2389#ifdef CONFIG_TRACING
4a92379b
RK
2390void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2391{
2392 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2393 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2394 return ret;
2395}
2396EXPORT_SYMBOL(kmem_cache_alloc_trace);
2397
2398void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 2399{
4a92379b
RK
2400 void *ret = kmalloc_order(size, flags, order);
2401 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2402 return ret;
5b882be4 2403}
4a92379b 2404EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
2405#endif
2406
81819f0f
CL
2407#ifdef CONFIG_NUMA
2408void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2409{
5b882be4
EGM
2410 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2411
ca2b84cb
EGM
2412 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2413 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
2414
2415 return ret;
81819f0f
CL
2416}
2417EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2418
0f24f128 2419#ifdef CONFIG_TRACING
4a92379b 2420void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2421 gfp_t gfpflags,
4a92379b 2422 int node, size_t size)
5b882be4 2423{
4a92379b
RK
2424 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2425
2426 trace_kmalloc_node(_RET_IP_, ret,
2427 size, s->size, gfpflags, node);
2428 return ret;
5b882be4 2429}
4a92379b 2430EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2431#endif
5d1f57e4 2432#endif
5b882be4 2433
81819f0f 2434/*
894b8788
CL
2435 * Slow patch handling. This may still be called frequently since objects
2436 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2437 *
894b8788
CL
2438 * So we still attempt to reduce cache line usage. Just take the slab
2439 * lock and free the item. If there is no additional partial page
2440 * handling required then we can return immediately.
81819f0f 2441 */
894b8788 2442static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2443 void *x, unsigned long addr)
81819f0f
CL
2444{
2445 void *prior;
2446 void **object = (void *)x;
2cfb7455
CL
2447 int was_frozen;
2448 int inuse;
2449 struct page new;
2450 unsigned long counters;
2451 struct kmem_cache_node *n = NULL;
61728d1e 2452 unsigned long uninitialized_var(flags);
81819f0f 2453
8a5ec0ba 2454 stat(s, FREE_SLOWPATH);
81819f0f 2455
8dc16c6c 2456 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
80f08c19 2457 return;
6446faa2 2458
2cfb7455
CL
2459 do {
2460 prior = page->freelist;
2461 counters = page->counters;
2462 set_freepointer(s, object, prior);
2463 new.counters = counters;
2464 was_frozen = new.frozen;
2465 new.inuse--;
2466 if ((!new.inuse || !prior) && !was_frozen && !n) {
49e22585
CL
2467
2468 if (!kmem_cache_debug(s) && !prior)
2469
2470 /*
2471 * Slab was on no list before and will be partially empty
2472 * We can defer the list move and instead freeze it.
2473 */
2474 new.frozen = 1;
2475
2476 else { /* Needs to be taken off a list */
2477
2478 n = get_node(s, page_to_nid(page));
2479 /*
2480 * Speculatively acquire the list_lock.
2481 * If the cmpxchg does not succeed then we may
2482 * drop the list_lock without any processing.
2483 *
2484 * Otherwise the list_lock will synchronize with
2485 * other processors updating the list of slabs.
2486 */
2487 spin_lock_irqsave(&n->list_lock, flags);
2488
2489 }
2cfb7455
CL
2490 }
2491 inuse = new.inuse;
81819f0f 2492
2cfb7455
CL
2493 } while (!cmpxchg_double_slab(s, page,
2494 prior, counters,
2495 object, new.counters,
2496 "__slab_free"));
81819f0f 2497
2cfb7455 2498 if (likely(!n)) {
49e22585
CL
2499
2500 /*
2501 * If we just froze the page then put it onto the
2502 * per cpu partial list.
2503 */
8028dcea 2504 if (new.frozen && !was_frozen) {
49e22585 2505 put_cpu_partial(s, page, 1);
8028dcea
AS
2506 stat(s, CPU_PARTIAL_FREE);
2507 }
49e22585 2508 /*
2cfb7455
CL
2509 * The list lock was not taken therefore no list
2510 * activity can be necessary.
2511 */
2512 if (was_frozen)
2513 stat(s, FREE_FROZEN);
80f08c19 2514 return;
2cfb7455 2515 }
81819f0f
CL
2516
2517 /*
2cfb7455
CL
2518 * was_frozen may have been set after we acquired the list_lock in
2519 * an earlier loop. So we need to check it here again.
81819f0f 2520 */
2cfb7455
CL
2521 if (was_frozen)
2522 stat(s, FREE_FROZEN);
2523 else {
2524 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2525 goto slab_empty;
81819f0f 2526
2cfb7455
CL
2527 /*
2528 * Objects left in the slab. If it was not on the partial list before
2529 * then add it.
2530 */
2531 if (unlikely(!prior)) {
2532 remove_full(s, page);
136333d1 2533 add_partial(n, page, DEACTIVATE_TO_TAIL);
2cfb7455
CL
2534 stat(s, FREE_ADD_PARTIAL);
2535 }
8ff12cfc 2536 }
80f08c19 2537 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2538 return;
2539
2540slab_empty:
a973e9dd 2541 if (prior) {
81819f0f 2542 /*
6fbabb20 2543 * Slab on the partial list.
81819f0f 2544 */
5cc6eee8 2545 remove_partial(n, page);
84e554e6 2546 stat(s, FREE_REMOVE_PARTIAL);
6fbabb20
CL
2547 } else
2548 /* Slab must be on the full list */
2549 remove_full(s, page);
2cfb7455 2550
80f08c19 2551 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2552 stat(s, FREE_SLAB);
81819f0f 2553 discard_slab(s, page);
81819f0f
CL
2554}
2555
894b8788
CL
2556/*
2557 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2558 * can perform fastpath freeing without additional function calls.
2559 *
2560 * The fastpath is only possible if we are freeing to the current cpu slab
2561 * of this processor. This typically the case if we have just allocated
2562 * the item before.
2563 *
2564 * If fastpath is not possible then fall back to __slab_free where we deal
2565 * with all sorts of special processing.
2566 */
06428780 2567static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2568 struct page *page, void *x, unsigned long addr)
894b8788
CL
2569{
2570 void **object = (void *)x;
dfb4f096 2571 struct kmem_cache_cpu *c;
8a5ec0ba 2572 unsigned long tid;
1f84260c 2573
c016b0bd
CL
2574 slab_free_hook(s, x);
2575
8a5ec0ba
CL
2576redo:
2577 /*
2578 * Determine the currently cpus per cpu slab.
2579 * The cpu may change afterward. However that does not matter since
2580 * data is retrieved via this pointer. If we are on the same cpu
2581 * during the cmpxchg then the free will succedd.
2582 */
9dfc6e68 2583 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2584
8a5ec0ba
CL
2585 tid = c->tid;
2586 barrier();
c016b0bd 2587
442b06bc 2588 if (likely(page == c->page)) {
ff12059e 2589 set_freepointer(s, object, c->freelist);
8a5ec0ba 2590
933393f5 2591 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2592 s->cpu_slab->freelist, s->cpu_slab->tid,
2593 c->freelist, tid,
2594 object, next_tid(tid)))) {
2595
2596 note_cmpxchg_failure("slab_free", s, tid);
2597 goto redo;
2598 }
84e554e6 2599 stat(s, FREE_FASTPATH);
894b8788 2600 } else
ff12059e 2601 __slab_free(s, page, x, addr);
894b8788 2602
894b8788
CL
2603}
2604
81819f0f
CL
2605void kmem_cache_free(struct kmem_cache *s, void *x)
2606{
77c5e2d0 2607 struct page *page;
81819f0f 2608
b49af68f 2609 page = virt_to_head_page(x);
81819f0f 2610
ce71e27c 2611 slab_free(s, page, x, _RET_IP_);
5b882be4 2612
ca2b84cb 2613 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2614}
2615EXPORT_SYMBOL(kmem_cache_free);
2616
81819f0f 2617/*
672bba3a
CL
2618 * Object placement in a slab is made very easy because we always start at
2619 * offset 0. If we tune the size of the object to the alignment then we can
2620 * get the required alignment by putting one properly sized object after
2621 * another.
81819f0f
CL
2622 *
2623 * Notice that the allocation order determines the sizes of the per cpu
2624 * caches. Each processor has always one slab available for allocations.
2625 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2626 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2627 * locking overhead.
81819f0f
CL
2628 */
2629
2630/*
2631 * Mininum / Maximum order of slab pages. This influences locking overhead
2632 * and slab fragmentation. A higher order reduces the number of partial slabs
2633 * and increases the number of allocations possible without having to
2634 * take the list_lock.
2635 */
2636static int slub_min_order;
114e9e89 2637static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2638static int slub_min_objects;
81819f0f
CL
2639
2640/*
2641 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2642 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2643 */
2644static int slub_nomerge;
2645
81819f0f
CL
2646/*
2647 * Calculate the order of allocation given an slab object size.
2648 *
672bba3a
CL
2649 * The order of allocation has significant impact on performance and other
2650 * system components. Generally order 0 allocations should be preferred since
2651 * order 0 does not cause fragmentation in the page allocator. Larger objects
2652 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2653 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2654 * would be wasted.
2655 *
2656 * In order to reach satisfactory performance we must ensure that a minimum
2657 * number of objects is in one slab. Otherwise we may generate too much
2658 * activity on the partial lists which requires taking the list_lock. This is
2659 * less a concern for large slabs though which are rarely used.
81819f0f 2660 *
672bba3a
CL
2661 * slub_max_order specifies the order where we begin to stop considering the
2662 * number of objects in a slab as critical. If we reach slub_max_order then
2663 * we try to keep the page order as low as possible. So we accept more waste
2664 * of space in favor of a small page order.
81819f0f 2665 *
672bba3a
CL
2666 * Higher order allocations also allow the placement of more objects in a
2667 * slab and thereby reduce object handling overhead. If the user has
2668 * requested a higher mininum order then we start with that one instead of
2669 * the smallest order which will fit the object.
81819f0f 2670 */
5e6d444e 2671static inline int slab_order(int size, int min_objects,
ab9a0f19 2672 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2673{
2674 int order;
2675 int rem;
6300ea75 2676 int min_order = slub_min_order;
81819f0f 2677
ab9a0f19 2678 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2679 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2680
6300ea75 2681 for (order = max(min_order,
5e6d444e
CL
2682 fls(min_objects * size - 1) - PAGE_SHIFT);
2683 order <= max_order; order++) {
81819f0f 2684
5e6d444e 2685 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2686
ab9a0f19 2687 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2688 continue;
2689
ab9a0f19 2690 rem = (slab_size - reserved) % size;
81819f0f 2691
5e6d444e 2692 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2693 break;
2694
2695 }
672bba3a 2696
81819f0f
CL
2697 return order;
2698}
2699
ab9a0f19 2700static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2701{
2702 int order;
2703 int min_objects;
2704 int fraction;
e8120ff1 2705 int max_objects;
5e6d444e
CL
2706
2707 /*
2708 * Attempt to find best configuration for a slab. This
2709 * works by first attempting to generate a layout with
2710 * the best configuration and backing off gradually.
2711 *
2712 * First we reduce the acceptable waste in a slab. Then
2713 * we reduce the minimum objects required in a slab.
2714 */
2715 min_objects = slub_min_objects;
9b2cd506
CL
2716 if (!min_objects)
2717 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2718 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2719 min_objects = min(min_objects, max_objects);
2720
5e6d444e 2721 while (min_objects > 1) {
c124f5b5 2722 fraction = 16;
5e6d444e
CL
2723 while (fraction >= 4) {
2724 order = slab_order(size, min_objects,
ab9a0f19 2725 slub_max_order, fraction, reserved);
5e6d444e
CL
2726 if (order <= slub_max_order)
2727 return order;
2728 fraction /= 2;
2729 }
5086c389 2730 min_objects--;
5e6d444e
CL
2731 }
2732
2733 /*
2734 * We were unable to place multiple objects in a slab. Now
2735 * lets see if we can place a single object there.
2736 */
ab9a0f19 2737 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2738 if (order <= slub_max_order)
2739 return order;
2740
2741 /*
2742 * Doh this slab cannot be placed using slub_max_order.
2743 */
ab9a0f19 2744 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2745 if (order < MAX_ORDER)
5e6d444e
CL
2746 return order;
2747 return -ENOSYS;
2748}
2749
81819f0f 2750/*
672bba3a 2751 * Figure out what the alignment of the objects will be.
81819f0f
CL
2752 */
2753static unsigned long calculate_alignment(unsigned long flags,
2754 unsigned long align, unsigned long size)
2755{
2756 /*
6446faa2
CL
2757 * If the user wants hardware cache aligned objects then follow that
2758 * suggestion if the object is sufficiently large.
81819f0f 2759 *
6446faa2
CL
2760 * The hardware cache alignment cannot override the specified
2761 * alignment though. If that is greater then use it.
81819f0f 2762 */
b6210386
NP
2763 if (flags & SLAB_HWCACHE_ALIGN) {
2764 unsigned long ralign = cache_line_size();
2765 while (size <= ralign / 2)
2766 ralign /= 2;
2767 align = max(align, ralign);
2768 }
81819f0f
CL
2769
2770 if (align < ARCH_SLAB_MINALIGN)
b6210386 2771 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2772
2773 return ALIGN(align, sizeof(void *));
2774}
2775
5595cffc
PE
2776static void
2777init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2778{
2779 n->nr_partial = 0;
81819f0f
CL
2780 spin_lock_init(&n->list_lock);
2781 INIT_LIST_HEAD(&n->partial);
8ab1372f 2782#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2783 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2784 atomic_long_set(&n->total_objects, 0);
643b1138 2785 INIT_LIST_HEAD(&n->full);
8ab1372f 2786#endif
81819f0f
CL
2787}
2788
55136592 2789static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2790{
6c182dc0
CL
2791 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2792 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2793
8a5ec0ba 2794 /*
d4d84fef
CM
2795 * Must align to double word boundary for the double cmpxchg
2796 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2797 */
d4d84fef
CM
2798 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2799 2 * sizeof(void *));
8a5ec0ba
CL
2800
2801 if (!s->cpu_slab)
2802 return 0;
2803
2804 init_kmem_cache_cpus(s);
4c93c355 2805
8a5ec0ba 2806 return 1;
4c93c355 2807}
4c93c355 2808
51df1142
CL
2809static struct kmem_cache *kmem_cache_node;
2810
81819f0f
CL
2811/*
2812 * No kmalloc_node yet so do it by hand. We know that this is the first
2813 * slab on the node for this slabcache. There are no concurrent accesses
2814 * possible.
2815 *
2816 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2817 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2818 * memory on a fresh node that has no slab structures yet.
81819f0f 2819 */
55136592 2820static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2821{
2822 struct page *page;
2823 struct kmem_cache_node *n;
2824
51df1142 2825 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2826
51df1142 2827 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2828
2829 BUG_ON(!page);
a2f92ee7
CL
2830 if (page_to_nid(page) != node) {
2831 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2832 "node %d\n", node);
2833 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2834 "in order to be able to continue\n");
2835 }
2836
81819f0f
CL
2837 n = page->freelist;
2838 BUG_ON(!n);
51df1142 2839 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2840 page->inuse = 1;
8cb0a506 2841 page->frozen = 0;
51df1142 2842 kmem_cache_node->node[node] = n;
8ab1372f 2843#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2844 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2845 init_tracking(kmem_cache_node, n);
8ab1372f 2846#endif
51df1142
CL
2847 init_kmem_cache_node(n, kmem_cache_node);
2848 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2849
136333d1 2850 add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2851}
2852
2853static void free_kmem_cache_nodes(struct kmem_cache *s)
2854{
2855 int node;
2856
f64dc58c 2857 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2858 struct kmem_cache_node *n = s->node[node];
51df1142 2859
73367bd8 2860 if (n)
51df1142
CL
2861 kmem_cache_free(kmem_cache_node, n);
2862
81819f0f
CL
2863 s->node[node] = NULL;
2864 }
2865}
2866
55136592 2867static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2868{
2869 int node;
81819f0f 2870
f64dc58c 2871 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2872 struct kmem_cache_node *n;
2873
73367bd8 2874 if (slab_state == DOWN) {
55136592 2875 early_kmem_cache_node_alloc(node);
73367bd8
AD
2876 continue;
2877 }
51df1142 2878 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2879 GFP_KERNEL, node);
81819f0f 2880
73367bd8
AD
2881 if (!n) {
2882 free_kmem_cache_nodes(s);
2883 return 0;
81819f0f 2884 }
73367bd8 2885
81819f0f 2886 s->node[node] = n;
5595cffc 2887 init_kmem_cache_node(n, s);
81819f0f
CL
2888 }
2889 return 1;
2890}
81819f0f 2891
c0bdb232 2892static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2893{
2894 if (min < MIN_PARTIAL)
2895 min = MIN_PARTIAL;
2896 else if (min > MAX_PARTIAL)
2897 min = MAX_PARTIAL;
2898 s->min_partial = min;
2899}
2900
81819f0f
CL
2901/*
2902 * calculate_sizes() determines the order and the distribution of data within
2903 * a slab object.
2904 */
06b285dc 2905static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2906{
2907 unsigned long flags = s->flags;
2908 unsigned long size = s->objsize;
2909 unsigned long align = s->align;
834f3d11 2910 int order;
81819f0f 2911
d8b42bf5
CL
2912 /*
2913 * Round up object size to the next word boundary. We can only
2914 * place the free pointer at word boundaries and this determines
2915 * the possible location of the free pointer.
2916 */
2917 size = ALIGN(size, sizeof(void *));
2918
2919#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2920 /*
2921 * Determine if we can poison the object itself. If the user of
2922 * the slab may touch the object after free or before allocation
2923 * then we should never poison the object itself.
2924 */
2925 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2926 !s->ctor)
81819f0f
CL
2927 s->flags |= __OBJECT_POISON;
2928 else
2929 s->flags &= ~__OBJECT_POISON;
2930
81819f0f
CL
2931
2932 /*
672bba3a 2933 * If we are Redzoning then check if there is some space between the
81819f0f 2934 * end of the object and the free pointer. If not then add an
672bba3a 2935 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2936 */
2937 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2938 size += sizeof(void *);
41ecc55b 2939#endif
81819f0f
CL
2940
2941 /*
672bba3a
CL
2942 * With that we have determined the number of bytes in actual use
2943 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2944 */
2945 s->inuse = size;
2946
2947 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2948 s->ctor)) {
81819f0f
CL
2949 /*
2950 * Relocate free pointer after the object if it is not
2951 * permitted to overwrite the first word of the object on
2952 * kmem_cache_free.
2953 *
2954 * This is the case if we do RCU, have a constructor or
2955 * destructor or are poisoning the objects.
2956 */
2957 s->offset = size;
2958 size += sizeof(void *);
2959 }
2960
c12b3c62 2961#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2962 if (flags & SLAB_STORE_USER)
2963 /*
2964 * Need to store information about allocs and frees after
2965 * the object.
2966 */
2967 size += 2 * sizeof(struct track);
2968
be7b3fbc 2969 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2970 /*
2971 * Add some empty padding so that we can catch
2972 * overwrites from earlier objects rather than let
2973 * tracking information or the free pointer be
0211a9c8 2974 * corrupted if a user writes before the start
81819f0f
CL
2975 * of the object.
2976 */
2977 size += sizeof(void *);
41ecc55b 2978#endif
672bba3a 2979
81819f0f
CL
2980 /*
2981 * Determine the alignment based on various parameters that the
65c02d4c
CL
2982 * user specified and the dynamic determination of cache line size
2983 * on bootup.
81819f0f
CL
2984 */
2985 align = calculate_alignment(flags, align, s->objsize);
dcb0ce1b 2986 s->align = align;
81819f0f
CL
2987
2988 /*
2989 * SLUB stores one object immediately after another beginning from
2990 * offset 0. In order to align the objects we have to simply size
2991 * each object to conform to the alignment.
2992 */
2993 size = ALIGN(size, align);
2994 s->size = size;
06b285dc
CL
2995 if (forced_order >= 0)
2996 order = forced_order;
2997 else
ab9a0f19 2998 order = calculate_order(size, s->reserved);
81819f0f 2999
834f3d11 3000 if (order < 0)
81819f0f
CL
3001 return 0;
3002
b7a49f0d 3003 s->allocflags = 0;
834f3d11 3004 if (order)
b7a49f0d
CL
3005 s->allocflags |= __GFP_COMP;
3006
3007 if (s->flags & SLAB_CACHE_DMA)
3008 s->allocflags |= SLUB_DMA;
3009
3010 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3011 s->allocflags |= __GFP_RECLAIMABLE;
3012
81819f0f
CL
3013 /*
3014 * Determine the number of objects per slab
3015 */
ab9a0f19
LJ
3016 s->oo = oo_make(order, size, s->reserved);
3017 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3018 if (oo_objects(s->oo) > oo_objects(s->max))
3019 s->max = s->oo;
81819f0f 3020
834f3d11 3021 return !!oo_objects(s->oo);
81819f0f
CL
3022
3023}
3024
55136592 3025static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
3026 const char *name, size_t size,
3027 size_t align, unsigned long flags,
51cc5068 3028 void (*ctor)(void *))
81819f0f
CL
3029{
3030 memset(s, 0, kmem_size);
3031 s->name = name;
3032 s->ctor = ctor;
81819f0f 3033 s->objsize = size;
81819f0f 3034 s->align = align;
ba0268a8 3035 s->flags = kmem_cache_flags(size, flags, name, ctor);
ab9a0f19 3036 s->reserved = 0;
81819f0f 3037
da9a638c
LJ
3038 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3039 s->reserved = sizeof(struct rcu_head);
81819f0f 3040
06b285dc 3041 if (!calculate_sizes(s, -1))
81819f0f 3042 goto error;
3de47213
DR
3043 if (disable_higher_order_debug) {
3044 /*
3045 * Disable debugging flags that store metadata if the min slab
3046 * order increased.
3047 */
3048 if (get_order(s->size) > get_order(s->objsize)) {
3049 s->flags &= ~DEBUG_METADATA_FLAGS;
3050 s->offset = 0;
3051 if (!calculate_sizes(s, -1))
3052 goto error;
3053 }
3054 }
81819f0f 3055
2565409f
HC
3056#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3057 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3058 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3059 /* Enable fast mode */
3060 s->flags |= __CMPXCHG_DOUBLE;
3061#endif
3062
3b89d7d8
DR
3063 /*
3064 * The larger the object size is, the more pages we want on the partial
3065 * list to avoid pounding the page allocator excessively.
3066 */
49e22585
CL
3067 set_min_partial(s, ilog2(s->size) / 2);
3068
3069 /*
3070 * cpu_partial determined the maximum number of objects kept in the
3071 * per cpu partial lists of a processor.
3072 *
3073 * Per cpu partial lists mainly contain slabs that just have one
3074 * object freed. If they are used for allocation then they can be
3075 * filled up again with minimal effort. The slab will never hit the
3076 * per node partial lists and therefore no locking will be required.
3077 *
3078 * This setting also determines
3079 *
3080 * A) The number of objects from per cpu partial slabs dumped to the
3081 * per node list when we reach the limit.
9f264904 3082 * B) The number of objects in cpu partial slabs to extract from the
49e22585
CL
3083 * per node list when we run out of per cpu objects. We only fetch 50%
3084 * to keep some capacity around for frees.
3085 */
8f1e33da
CL
3086 if (kmem_cache_debug(s))
3087 s->cpu_partial = 0;
3088 else if (s->size >= PAGE_SIZE)
49e22585
CL
3089 s->cpu_partial = 2;
3090 else if (s->size >= 1024)
3091 s->cpu_partial = 6;
3092 else if (s->size >= 256)
3093 s->cpu_partial = 13;
3094 else
3095 s->cpu_partial = 30;
3096
81819f0f
CL
3097 s->refcount = 1;
3098#ifdef CONFIG_NUMA
e2cb96b7 3099 s->remote_node_defrag_ratio = 1000;
81819f0f 3100#endif
55136592 3101 if (!init_kmem_cache_nodes(s))
dfb4f096 3102 goto error;
81819f0f 3103
55136592 3104 if (alloc_kmem_cache_cpus(s))
81819f0f 3105 return 1;
ff12059e 3106
4c93c355 3107 free_kmem_cache_nodes(s);
81819f0f
CL
3108error:
3109 if (flags & SLAB_PANIC)
3110 panic("Cannot create slab %s size=%lu realsize=%u "
3111 "order=%u offset=%u flags=%lx\n",
834f3d11 3112 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
3113 s->offset, flags);
3114 return 0;
3115}
81819f0f 3116
81819f0f
CL
3117/*
3118 * Determine the size of a slab object
3119 */
3120unsigned int kmem_cache_size(struct kmem_cache *s)
3121{
3122 return s->objsize;
3123}
3124EXPORT_SYMBOL(kmem_cache_size);
3125
33b12c38
CL
3126static void list_slab_objects(struct kmem_cache *s, struct page *page,
3127 const char *text)
3128{
3129#ifdef CONFIG_SLUB_DEBUG
3130 void *addr = page_address(page);
3131 void *p;
a5dd5c11
NK
3132 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3133 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3134 if (!map)
3135 return;
33b12c38
CL
3136 slab_err(s, page, "%s", text);
3137 slab_lock(page);
33b12c38 3138
5f80b13a 3139 get_map(s, page, map);
33b12c38
CL
3140 for_each_object(p, s, addr, page->objects) {
3141
3142 if (!test_bit(slab_index(p, s, addr), map)) {
3143 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3144 p, p - addr);
3145 print_tracking(s, p);
3146 }
3147 }
3148 slab_unlock(page);
bbd7d57b 3149 kfree(map);
33b12c38
CL
3150#endif
3151}
3152
81819f0f 3153/*
599870b1 3154 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3155 * This is called from kmem_cache_close(). We must be the last thread
3156 * using the cache and therefore we do not need to lock anymore.
81819f0f 3157 */
599870b1 3158static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3159{
81819f0f
CL
3160 struct page *page, *h;
3161
33b12c38 3162 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3163 if (!page->inuse) {
5cc6eee8 3164 remove_partial(n, page);
81819f0f 3165 discard_slab(s, page);
33b12c38
CL
3166 } else {
3167 list_slab_objects(s, page,
3168 "Objects remaining on kmem_cache_close()");
599870b1 3169 }
33b12c38 3170 }
81819f0f
CL
3171}
3172
3173/*
672bba3a 3174 * Release all resources used by a slab cache.
81819f0f 3175 */
0c710013 3176static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3177{
3178 int node;
3179
3180 flush_all(s);
9dfc6e68 3181 free_percpu(s->cpu_slab);
81819f0f 3182 /* Attempt to free all objects */
f64dc58c 3183 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3184 struct kmem_cache_node *n = get_node(s, node);
3185
599870b1
CL
3186 free_partial(s, n);
3187 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3188 return 1;
3189 }
3190 free_kmem_cache_nodes(s);
3191 return 0;
3192}
3193
3194/*
3195 * Close a cache and release the kmem_cache structure
3196 * (must be used for caches created using kmem_cache_create)
3197 */
3198void kmem_cache_destroy(struct kmem_cache *s)
3199{
3200 down_write(&slub_lock);
3201 s->refcount--;
3202 if (!s->refcount) {
3203 list_del(&s->list);
69cb8e6b 3204 up_write(&slub_lock);
d629d819
PE
3205 if (kmem_cache_close(s)) {
3206 printk(KERN_ERR "SLUB %s: %s called for cache that "
3207 "still has objects.\n", s->name, __func__);
3208 dump_stack();
3209 }
d76b1590
ED
3210 if (s->flags & SLAB_DESTROY_BY_RCU)
3211 rcu_barrier();
81819f0f 3212 sysfs_slab_remove(s);
69cb8e6b
CL
3213 } else
3214 up_write(&slub_lock);
81819f0f
CL
3215}
3216EXPORT_SYMBOL(kmem_cache_destroy);
3217
3218/********************************************************************
3219 * Kmalloc subsystem
3220 *******************************************************************/
3221
51df1142 3222struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
3223EXPORT_SYMBOL(kmalloc_caches);
3224
51df1142
CL
3225static struct kmem_cache *kmem_cache;
3226
55136592 3227#ifdef CONFIG_ZONE_DMA
51df1142 3228static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
3229#endif
3230
81819f0f
CL
3231static int __init setup_slub_min_order(char *str)
3232{
06428780 3233 get_option(&str, &slub_min_order);
81819f0f
CL
3234
3235 return 1;
3236}
3237
3238__setup("slub_min_order=", setup_slub_min_order);
3239
3240static int __init setup_slub_max_order(char *str)
3241{
06428780 3242 get_option(&str, &slub_max_order);
818cf590 3243 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3244
3245 return 1;
3246}
3247
3248__setup("slub_max_order=", setup_slub_max_order);
3249
3250static int __init setup_slub_min_objects(char *str)
3251{
06428780 3252 get_option(&str, &slub_min_objects);
81819f0f
CL
3253
3254 return 1;
3255}
3256
3257__setup("slub_min_objects=", setup_slub_min_objects);
3258
3259static int __init setup_slub_nomerge(char *str)
3260{
3261 slub_nomerge = 1;
3262 return 1;
3263}
3264
3265__setup("slub_nomerge", setup_slub_nomerge);
3266
51df1142
CL
3267static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3268 int size, unsigned int flags)
81819f0f 3269{
51df1142
CL
3270 struct kmem_cache *s;
3271
3272 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3273
83b519e8
PE
3274 /*
3275 * This function is called with IRQs disabled during early-boot on
3276 * single CPU so there's no need to take slub_lock here.
3277 */
55136592 3278 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 3279 flags, NULL))
81819f0f
CL
3280 goto panic;
3281
3282 list_add(&s->list, &slab_caches);
51df1142 3283 return s;
81819f0f
CL
3284
3285panic:
3286 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 3287 return NULL;
81819f0f
CL
3288}
3289
f1b26339
CL
3290/*
3291 * Conversion table for small slabs sizes / 8 to the index in the
3292 * kmalloc array. This is necessary for slabs < 192 since we have non power
3293 * of two cache sizes there. The size of larger slabs can be determined using
3294 * fls.
3295 */
3296static s8 size_index[24] = {
3297 3, /* 8 */
3298 4, /* 16 */
3299 5, /* 24 */
3300 5, /* 32 */
3301 6, /* 40 */
3302 6, /* 48 */
3303 6, /* 56 */
3304 6, /* 64 */
3305 1, /* 72 */
3306 1, /* 80 */
3307 1, /* 88 */
3308 1, /* 96 */
3309 7, /* 104 */
3310 7, /* 112 */
3311 7, /* 120 */
3312 7, /* 128 */
3313 2, /* 136 */
3314 2, /* 144 */
3315 2, /* 152 */
3316 2, /* 160 */
3317 2, /* 168 */
3318 2, /* 176 */
3319 2, /* 184 */
3320 2 /* 192 */
3321};
3322
acdfcd04
AK
3323static inline int size_index_elem(size_t bytes)
3324{
3325 return (bytes - 1) / 8;
3326}
3327
81819f0f
CL
3328static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3329{
f1b26339 3330 int index;
81819f0f 3331
f1b26339
CL
3332 if (size <= 192) {
3333 if (!size)
3334 return ZERO_SIZE_PTR;
81819f0f 3335
acdfcd04 3336 index = size_index[size_index_elem(size)];
aadb4bc4 3337 } else
f1b26339 3338 index = fls(size - 1);
81819f0f
CL
3339
3340#ifdef CONFIG_ZONE_DMA
f1b26339 3341 if (unlikely((flags & SLUB_DMA)))
51df1142 3342 return kmalloc_dma_caches[index];
f1b26339 3343
81819f0f 3344#endif
51df1142 3345 return kmalloc_caches[index];
81819f0f
CL
3346}
3347
3348void *__kmalloc(size_t size, gfp_t flags)
3349{
aadb4bc4 3350 struct kmem_cache *s;
5b882be4 3351 void *ret;
81819f0f 3352
ffadd4d0 3353 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 3354 return kmalloc_large(size, flags);
aadb4bc4
CL
3355
3356 s = get_slab(size, flags);
3357
3358 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3359 return s;
3360
2154a336 3361 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 3362
ca2b84cb 3363 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3364
3365 return ret;
81819f0f
CL
3366}
3367EXPORT_SYMBOL(__kmalloc);
3368
5d1f57e4 3369#ifdef CONFIG_NUMA
f619cfe1
CL
3370static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3371{
b1eeab67 3372 struct page *page;
e4f7c0b4 3373 void *ptr = NULL;
f619cfe1 3374
b1eeab67
VN
3375 flags |= __GFP_COMP | __GFP_NOTRACK;
3376 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3377 if (page)
e4f7c0b4
CM
3378 ptr = page_address(page);
3379
3380 kmemleak_alloc(ptr, size, 1, flags);
3381 return ptr;
f619cfe1
CL
3382}
3383
81819f0f
CL
3384void *__kmalloc_node(size_t size, gfp_t flags, int node)
3385{
aadb4bc4 3386 struct kmem_cache *s;
5b882be4 3387 void *ret;
81819f0f 3388
057685cf 3389 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
3390 ret = kmalloc_large_node(size, flags, node);
3391
ca2b84cb
EGM
3392 trace_kmalloc_node(_RET_IP_, ret,
3393 size, PAGE_SIZE << get_order(size),
3394 flags, node);
5b882be4
EGM
3395
3396 return ret;
3397 }
aadb4bc4
CL
3398
3399 s = get_slab(size, flags);
3400
3401 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3402 return s;
3403
5b882be4
EGM
3404 ret = slab_alloc(s, flags, node, _RET_IP_);
3405
ca2b84cb 3406 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3407
3408 return ret;
81819f0f
CL
3409}
3410EXPORT_SYMBOL(__kmalloc_node);
3411#endif
3412
3413size_t ksize(const void *object)
3414{
272c1d21 3415 struct page *page;
81819f0f 3416
ef8b4520 3417 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3418 return 0;
3419
294a80a8 3420 page = virt_to_head_page(object);
294a80a8 3421
76994412
PE
3422 if (unlikely(!PageSlab(page))) {
3423 WARN_ON(!PageCompound(page));
294a80a8 3424 return PAGE_SIZE << compound_order(page);
76994412 3425 }
81819f0f 3426
b3d41885 3427 return slab_ksize(page->slab);
81819f0f 3428}
b1aabecd 3429EXPORT_SYMBOL(ksize);
81819f0f 3430
d18a90dd
BG
3431#ifdef CONFIG_SLUB_DEBUG
3432bool verify_mem_not_deleted(const void *x)
3433{
3434 struct page *page;
3435 void *object = (void *)x;
3436 unsigned long flags;
3437 bool rv;
3438
3439 if (unlikely(ZERO_OR_NULL_PTR(x)))
3440 return false;
3441
3442 local_irq_save(flags);
3443
3444 page = virt_to_head_page(x);
3445 if (unlikely(!PageSlab(page))) {
3446 /* maybe it was from stack? */
3447 rv = true;
3448 goto out_unlock;
3449 }
3450
3451 slab_lock(page);
3452 if (on_freelist(page->slab, page, object)) {
3453 object_err(page->slab, page, object, "Object is on free-list");
3454 rv = false;
3455 } else {
3456 rv = true;
3457 }
3458 slab_unlock(page);
3459
3460out_unlock:
3461 local_irq_restore(flags);
3462 return rv;
3463}
3464EXPORT_SYMBOL(verify_mem_not_deleted);
3465#endif
3466
81819f0f
CL
3467void kfree(const void *x)
3468{
81819f0f 3469 struct page *page;
5bb983b0 3470 void *object = (void *)x;
81819f0f 3471
2121db74
PE
3472 trace_kfree(_RET_IP_, x);
3473
2408c550 3474 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3475 return;
3476
b49af68f 3477 page = virt_to_head_page(x);
aadb4bc4 3478 if (unlikely(!PageSlab(page))) {
0937502a 3479 BUG_ON(!PageCompound(page));
e4f7c0b4 3480 kmemleak_free(x);
aadb4bc4
CL
3481 put_page(page);
3482 return;
3483 }
ce71e27c 3484 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
3485}
3486EXPORT_SYMBOL(kfree);
3487
2086d26a 3488/*
672bba3a
CL
3489 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3490 * the remaining slabs by the number of items in use. The slabs with the
3491 * most items in use come first. New allocations will then fill those up
3492 * and thus they can be removed from the partial lists.
3493 *
3494 * The slabs with the least items are placed last. This results in them
3495 * being allocated from last increasing the chance that the last objects
3496 * are freed in them.
2086d26a
CL
3497 */
3498int kmem_cache_shrink(struct kmem_cache *s)
3499{
3500 int node;
3501 int i;
3502 struct kmem_cache_node *n;
3503 struct page *page;
3504 struct page *t;
205ab99d 3505 int objects = oo_objects(s->max);
2086d26a 3506 struct list_head *slabs_by_inuse =
834f3d11 3507 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3508 unsigned long flags;
3509
3510 if (!slabs_by_inuse)
3511 return -ENOMEM;
3512
3513 flush_all(s);
f64dc58c 3514 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3515 n = get_node(s, node);
3516
3517 if (!n->nr_partial)
3518 continue;
3519
834f3d11 3520 for (i = 0; i < objects; i++)
2086d26a
CL
3521 INIT_LIST_HEAD(slabs_by_inuse + i);
3522
3523 spin_lock_irqsave(&n->list_lock, flags);
3524
3525 /*
672bba3a 3526 * Build lists indexed by the items in use in each slab.
2086d26a 3527 *
672bba3a
CL
3528 * Note that concurrent frees may occur while we hold the
3529 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3530 */
3531 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3532 list_move(&page->lru, slabs_by_inuse + page->inuse);
3533 if (!page->inuse)
3534 n->nr_partial--;
2086d26a
CL
3535 }
3536
2086d26a 3537 /*
672bba3a
CL
3538 * Rebuild the partial list with the slabs filled up most
3539 * first and the least used slabs at the end.
2086d26a 3540 */
69cb8e6b 3541 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3542 list_splice(slabs_by_inuse + i, n->partial.prev);
3543
2086d26a 3544 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3545
3546 /* Release empty slabs */
3547 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3548 discard_slab(s, page);
2086d26a
CL
3549 }
3550
3551 kfree(slabs_by_inuse);
3552 return 0;
3553}
3554EXPORT_SYMBOL(kmem_cache_shrink);
3555
92a5bbc1 3556#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
3557static int slab_mem_going_offline_callback(void *arg)
3558{
3559 struct kmem_cache *s;
3560
3561 down_read(&slub_lock);
3562 list_for_each_entry(s, &slab_caches, list)
3563 kmem_cache_shrink(s);
3564 up_read(&slub_lock);
3565
3566 return 0;
3567}
3568
3569static void slab_mem_offline_callback(void *arg)
3570{
3571 struct kmem_cache_node *n;
3572 struct kmem_cache *s;
3573 struct memory_notify *marg = arg;
3574 int offline_node;
3575
3576 offline_node = marg->status_change_nid;
3577
3578 /*
3579 * If the node still has available memory. we need kmem_cache_node
3580 * for it yet.
3581 */
3582 if (offline_node < 0)
3583 return;
3584
3585 down_read(&slub_lock);
3586 list_for_each_entry(s, &slab_caches, list) {
3587 n = get_node(s, offline_node);
3588 if (n) {
3589 /*
3590 * if n->nr_slabs > 0, slabs still exist on the node
3591 * that is going down. We were unable to free them,
c9404c9c 3592 * and offline_pages() function shouldn't call this
b9049e23
YG
3593 * callback. So, we must fail.
3594 */
0f389ec6 3595 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3596
3597 s->node[offline_node] = NULL;
8de66a0c 3598 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3599 }
3600 }
3601 up_read(&slub_lock);
3602}
3603
3604static int slab_mem_going_online_callback(void *arg)
3605{
3606 struct kmem_cache_node *n;
3607 struct kmem_cache *s;
3608 struct memory_notify *marg = arg;
3609 int nid = marg->status_change_nid;
3610 int ret = 0;
3611
3612 /*
3613 * If the node's memory is already available, then kmem_cache_node is
3614 * already created. Nothing to do.
3615 */
3616 if (nid < 0)
3617 return 0;
3618
3619 /*
0121c619 3620 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3621 * allocate a kmem_cache_node structure in order to bring the node
3622 * online.
3623 */
3624 down_read(&slub_lock);
3625 list_for_each_entry(s, &slab_caches, list) {
3626 /*
3627 * XXX: kmem_cache_alloc_node will fallback to other nodes
3628 * since memory is not yet available from the node that
3629 * is brought up.
3630 */
8de66a0c 3631 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3632 if (!n) {
3633 ret = -ENOMEM;
3634 goto out;
3635 }
5595cffc 3636 init_kmem_cache_node(n, s);
b9049e23
YG
3637 s->node[nid] = n;
3638 }
3639out:
3640 up_read(&slub_lock);
3641 return ret;
3642}
3643
3644static int slab_memory_callback(struct notifier_block *self,
3645 unsigned long action, void *arg)
3646{
3647 int ret = 0;
3648
3649 switch (action) {
3650 case MEM_GOING_ONLINE:
3651 ret = slab_mem_going_online_callback(arg);
3652 break;
3653 case MEM_GOING_OFFLINE:
3654 ret = slab_mem_going_offline_callback(arg);
3655 break;
3656 case MEM_OFFLINE:
3657 case MEM_CANCEL_ONLINE:
3658 slab_mem_offline_callback(arg);
3659 break;
3660 case MEM_ONLINE:
3661 case MEM_CANCEL_OFFLINE:
3662 break;
3663 }
dc19f9db
KH
3664 if (ret)
3665 ret = notifier_from_errno(ret);
3666 else
3667 ret = NOTIFY_OK;
b9049e23
YG
3668 return ret;
3669}
3670
3671#endif /* CONFIG_MEMORY_HOTPLUG */
3672
81819f0f
CL
3673/********************************************************************
3674 * Basic setup of slabs
3675 *******************************************************************/
3676
51df1142
CL
3677/*
3678 * Used for early kmem_cache structures that were allocated using
3679 * the page allocator
3680 */
3681
3682static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3683{
3684 int node;
3685
3686 list_add(&s->list, &slab_caches);
3687 s->refcount = -1;
3688
3689 for_each_node_state(node, N_NORMAL_MEMORY) {
3690 struct kmem_cache_node *n = get_node(s, node);
3691 struct page *p;
3692
3693 if (n) {
3694 list_for_each_entry(p, &n->partial, lru)
3695 p->slab = s;
3696
607bf324 3697#ifdef CONFIG_SLUB_DEBUG
51df1142
CL
3698 list_for_each_entry(p, &n->full, lru)
3699 p->slab = s;
3700#endif
3701 }
3702 }
3703}
3704
81819f0f
CL
3705void __init kmem_cache_init(void)
3706{
3707 int i;
4b356be0 3708 int caches = 0;
51df1142
CL
3709 struct kmem_cache *temp_kmem_cache;
3710 int order;
51df1142
CL
3711 struct kmem_cache *temp_kmem_cache_node;
3712 unsigned long kmalloc_size;
3713
fc8d8620
SG
3714 if (debug_guardpage_minorder())
3715 slub_max_order = 0;
3716
51df1142
CL
3717 kmem_size = offsetof(struct kmem_cache, node) +
3718 nr_node_ids * sizeof(struct kmem_cache_node *);
3719
3720 /* Allocate two kmem_caches from the page allocator */
3721 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3722 order = get_order(2 * kmalloc_size);
3723 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3724
81819f0f
CL
3725 /*
3726 * Must first have the slab cache available for the allocations of the
672bba3a 3727 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3728 * kmem_cache_open for slab_state == DOWN.
3729 */
51df1142
CL
3730 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3731
3732 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3733 sizeof(struct kmem_cache_node),
3734 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3735
0c40ba4f 3736 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3737
3738 /* Able to allocate the per node structures */
3739 slab_state = PARTIAL;
3740
51df1142
CL
3741 temp_kmem_cache = kmem_cache;
3742 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3743 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3744 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3745 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3746
51df1142
CL
3747 /*
3748 * Allocate kmem_cache_node properly from the kmem_cache slab.
3749 * kmem_cache_node is separately allocated so no need to
3750 * update any list pointers.
3751 */
3752 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3753
51df1142
CL
3754 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3755 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3756
3757 kmem_cache_bootstrap_fixup(kmem_cache_node);
3758
3759 caches++;
51df1142
CL
3760 kmem_cache_bootstrap_fixup(kmem_cache);
3761 caches++;
3762 /* Free temporary boot structure */
3763 free_pages((unsigned long)temp_kmem_cache, order);
3764
3765 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3766
3767 /*
3768 * Patch up the size_index table if we have strange large alignment
3769 * requirements for the kmalloc array. This is only the case for
6446faa2 3770 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3771 *
3772 * Largest permitted alignment is 256 bytes due to the way we
3773 * handle the index determination for the smaller caches.
3774 *
3775 * Make sure that nothing crazy happens if someone starts tinkering
3776 * around with ARCH_KMALLOC_MINALIGN
3777 */
3778 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3779 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3780
acdfcd04
AK
3781 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3782 int elem = size_index_elem(i);
3783 if (elem >= ARRAY_SIZE(size_index))
3784 break;
3785 size_index[elem] = KMALLOC_SHIFT_LOW;
3786 }
f1b26339 3787
acdfcd04
AK
3788 if (KMALLOC_MIN_SIZE == 64) {
3789 /*
3790 * The 96 byte size cache is not used if the alignment
3791 * is 64 byte.
3792 */
3793 for (i = 64 + 8; i <= 96; i += 8)
3794 size_index[size_index_elem(i)] = 7;
3795 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3796 /*
3797 * The 192 byte sized cache is not used if the alignment
3798 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3799 * instead.
3800 */
3801 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3802 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3803 }
3804
51df1142
CL
3805 /* Caches that are not of the two-to-the-power-of size */
3806 if (KMALLOC_MIN_SIZE <= 32) {
3807 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3808 caches++;
3809 }
3810
3811 if (KMALLOC_MIN_SIZE <= 64) {
3812 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3813 caches++;
3814 }
3815
3816 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3817 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3818 caches++;
3819 }
3820
81819f0f
CL
3821 slab_state = UP;
3822
3823 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3824 if (KMALLOC_MIN_SIZE <= 32) {
3825 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3826 BUG_ON(!kmalloc_caches[1]->name);
3827 }
3828
3829 if (KMALLOC_MIN_SIZE <= 64) {
3830 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3831 BUG_ON(!kmalloc_caches[2]->name);
3832 }
3833
d7278bd7
CL
3834 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3835 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3836
3837 BUG_ON(!s);
51df1142 3838 kmalloc_caches[i]->name = s;
d7278bd7 3839 }
81819f0f
CL
3840
3841#ifdef CONFIG_SMP
3842 register_cpu_notifier(&slab_notifier);
9dfc6e68 3843#endif
81819f0f 3844
55136592 3845#ifdef CONFIG_ZONE_DMA
51df1142
CL
3846 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3847 struct kmem_cache *s = kmalloc_caches[i];
55136592 3848
51df1142 3849 if (s && s->size) {
55136592
CL
3850 char *name = kasprintf(GFP_NOWAIT,
3851 "dma-kmalloc-%d", s->objsize);
3852
3853 BUG_ON(!name);
51df1142
CL
3854 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3855 s->objsize, SLAB_CACHE_DMA);
55136592
CL
3856 }
3857 }
3858#endif
3adbefee
IM
3859 printk(KERN_INFO
3860 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3861 " CPUs=%d, Nodes=%d\n",
3862 caches, cache_line_size(),
81819f0f
CL
3863 slub_min_order, slub_max_order, slub_min_objects,
3864 nr_cpu_ids, nr_node_ids);
3865}
3866
7e85ee0c
PE
3867void __init kmem_cache_init_late(void)
3868{
7e85ee0c
PE
3869}
3870
81819f0f
CL
3871/*
3872 * Find a mergeable slab cache
3873 */
3874static int slab_unmergeable(struct kmem_cache *s)
3875{
3876 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3877 return 1;
3878
c59def9f 3879 if (s->ctor)
81819f0f
CL
3880 return 1;
3881
8ffa6875
CL
3882 /*
3883 * We may have set a slab to be unmergeable during bootstrap.
3884 */
3885 if (s->refcount < 0)
3886 return 1;
3887
81819f0f
CL
3888 return 0;
3889}
3890
3891static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3892 size_t align, unsigned long flags, const char *name,
51cc5068 3893 void (*ctor)(void *))
81819f0f 3894{
5b95a4ac 3895 struct kmem_cache *s;
81819f0f
CL
3896
3897 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3898 return NULL;
3899
c59def9f 3900 if (ctor)
81819f0f
CL
3901 return NULL;
3902
3903 size = ALIGN(size, sizeof(void *));
3904 align = calculate_alignment(flags, align, size);
3905 size = ALIGN(size, align);
ba0268a8 3906 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3907
5b95a4ac 3908 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3909 if (slab_unmergeable(s))
3910 continue;
3911
3912 if (size > s->size)
3913 continue;
3914
ba0268a8 3915 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3916 continue;
3917 /*
3918 * Check if alignment is compatible.
3919 * Courtesy of Adrian Drzewiecki
3920 */
06428780 3921 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3922 continue;
3923
3924 if (s->size - size >= sizeof(void *))
3925 continue;
3926
3927 return s;
3928 }
3929 return NULL;
3930}
3931
3932struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3933 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3934{
3935 struct kmem_cache *s;
84c1cf62 3936 char *n;
81819f0f 3937
fe1ff49d
BH
3938 if (WARN_ON(!name))
3939 return NULL;
3940
81819f0f 3941 down_write(&slub_lock);
ba0268a8 3942 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3943 if (s) {
3944 s->refcount++;
3945 /*
3946 * Adjust the object sizes so that we clear
3947 * the complete object on kzalloc.
3948 */
3949 s->objsize = max(s->objsize, (int)size);
3950 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3951
7b8f3b66 3952 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3953 s->refcount--;
81819f0f 3954 goto err;
7b8f3b66 3955 }
2bce6485 3956 up_write(&slub_lock);
a0e1d1be
CL
3957 return s;
3958 }
6446faa2 3959
84c1cf62
PE
3960 n = kstrdup(name, GFP_KERNEL);
3961 if (!n)
3962 goto err;
3963
a0e1d1be
CL
3964 s = kmalloc(kmem_size, GFP_KERNEL);
3965 if (s) {
84c1cf62 3966 if (kmem_cache_open(s, n,
c59def9f 3967 size, align, flags, ctor)) {
81819f0f 3968 list_add(&s->list, &slab_caches);
66c4c35c 3969 up_write(&slub_lock);
7b8f3b66 3970 if (sysfs_slab_add(s)) {
66c4c35c 3971 down_write(&slub_lock);
7b8f3b66 3972 list_del(&s->list);
84c1cf62 3973 kfree(n);
7b8f3b66 3974 kfree(s);
a0e1d1be 3975 goto err;
7b8f3b66 3976 }
a0e1d1be
CL
3977 return s;
3978 }
84c1cf62 3979 kfree(n);
a0e1d1be 3980 kfree(s);
81819f0f 3981 }
68cee4f1 3982err:
81819f0f 3983 up_write(&slub_lock);
81819f0f 3984
81819f0f
CL
3985 if (flags & SLAB_PANIC)
3986 panic("Cannot create slabcache %s\n", name);
3987 else
3988 s = NULL;
3989 return s;
3990}
3991EXPORT_SYMBOL(kmem_cache_create);
3992
81819f0f 3993#ifdef CONFIG_SMP
81819f0f 3994/*
672bba3a
CL
3995 * Use the cpu notifier to insure that the cpu slabs are flushed when
3996 * necessary.
81819f0f
CL
3997 */
3998static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3999 unsigned long action, void *hcpu)
4000{
4001 long cpu = (long)hcpu;
5b95a4ac
CL
4002 struct kmem_cache *s;
4003 unsigned long flags;
81819f0f
CL
4004
4005 switch (action) {
4006 case CPU_UP_CANCELED:
8bb78442 4007 case CPU_UP_CANCELED_FROZEN:
81819f0f 4008 case CPU_DEAD:
8bb78442 4009 case CPU_DEAD_FROZEN:
5b95a4ac
CL
4010 down_read(&slub_lock);
4011 list_for_each_entry(s, &slab_caches, list) {
4012 local_irq_save(flags);
4013 __flush_cpu_slab(s, cpu);
4014 local_irq_restore(flags);
4015 }
4016 up_read(&slub_lock);
81819f0f
CL
4017 break;
4018 default:
4019 break;
4020 }
4021 return NOTIFY_OK;
4022}
4023
06428780 4024static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 4025 .notifier_call = slab_cpuup_callback
06428780 4026};
81819f0f
CL
4027
4028#endif
4029
ce71e27c 4030void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4031{
aadb4bc4 4032 struct kmem_cache *s;
94b528d0 4033 void *ret;
aadb4bc4 4034
ffadd4d0 4035 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
4036 return kmalloc_large(size, gfpflags);
4037
aadb4bc4 4038 s = get_slab(size, gfpflags);
81819f0f 4039
2408c550 4040 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4041 return s;
81819f0f 4042
2154a336 4043 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0 4044
25985edc 4045 /* Honor the call site pointer we received. */
ca2b84cb 4046 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4047
4048 return ret;
81819f0f
CL
4049}
4050
5d1f57e4 4051#ifdef CONFIG_NUMA
81819f0f 4052void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4053 int node, unsigned long caller)
81819f0f 4054{
aadb4bc4 4055 struct kmem_cache *s;
94b528d0 4056 void *ret;
aadb4bc4 4057
d3e14aa3
XF
4058 if (unlikely(size > SLUB_MAX_SIZE)) {
4059 ret = kmalloc_large_node(size, gfpflags, node);
4060
4061 trace_kmalloc_node(caller, ret,
4062 size, PAGE_SIZE << get_order(size),
4063 gfpflags, node);
4064
4065 return ret;
4066 }
eada35ef 4067
aadb4bc4 4068 s = get_slab(size, gfpflags);
81819f0f 4069
2408c550 4070 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4071 return s;
81819f0f 4072
94b528d0
EGM
4073 ret = slab_alloc(s, gfpflags, node, caller);
4074
25985edc 4075 /* Honor the call site pointer we received. */
ca2b84cb 4076 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4077
4078 return ret;
81819f0f 4079}
5d1f57e4 4080#endif
81819f0f 4081
ab4d5ed5 4082#ifdef CONFIG_SYSFS
205ab99d
CL
4083static int count_inuse(struct page *page)
4084{
4085 return page->inuse;
4086}
4087
4088static int count_total(struct page *page)
4089{
4090 return page->objects;
4091}
ab4d5ed5 4092#endif
205ab99d 4093
ab4d5ed5 4094#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4095static int validate_slab(struct kmem_cache *s, struct page *page,
4096 unsigned long *map)
53e15af0
CL
4097{
4098 void *p;
a973e9dd 4099 void *addr = page_address(page);
53e15af0
CL
4100
4101 if (!check_slab(s, page) ||
4102 !on_freelist(s, page, NULL))
4103 return 0;
4104
4105 /* Now we know that a valid freelist exists */
39b26464 4106 bitmap_zero(map, page->objects);
53e15af0 4107
5f80b13a
CL
4108 get_map(s, page, map);
4109 for_each_object(p, s, addr, page->objects) {
4110 if (test_bit(slab_index(p, s, addr), map))
4111 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4112 return 0;
53e15af0
CL
4113 }
4114
224a88be 4115 for_each_object(p, s, addr, page->objects)
7656c72b 4116 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4117 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4118 return 0;
4119 return 1;
4120}
4121
434e245d
CL
4122static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4123 unsigned long *map)
53e15af0 4124{
881db7fb
CL
4125 slab_lock(page);
4126 validate_slab(s, page, map);
4127 slab_unlock(page);
53e15af0
CL
4128}
4129
434e245d
CL
4130static int validate_slab_node(struct kmem_cache *s,
4131 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4132{
4133 unsigned long count = 0;
4134 struct page *page;
4135 unsigned long flags;
4136
4137 spin_lock_irqsave(&n->list_lock, flags);
4138
4139 list_for_each_entry(page, &n->partial, lru) {
434e245d 4140 validate_slab_slab(s, page, map);
53e15af0
CL
4141 count++;
4142 }
4143 if (count != n->nr_partial)
4144 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4145 "counter=%ld\n", s->name, count, n->nr_partial);
4146
4147 if (!(s->flags & SLAB_STORE_USER))
4148 goto out;
4149
4150 list_for_each_entry(page, &n->full, lru) {
434e245d 4151 validate_slab_slab(s, page, map);
53e15af0
CL
4152 count++;
4153 }
4154 if (count != atomic_long_read(&n->nr_slabs))
4155 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4156 "counter=%ld\n", s->name, count,
4157 atomic_long_read(&n->nr_slabs));
4158
4159out:
4160 spin_unlock_irqrestore(&n->list_lock, flags);
4161 return count;
4162}
4163
434e245d 4164static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4165{
4166 int node;
4167 unsigned long count = 0;
205ab99d 4168 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
4169 sizeof(unsigned long), GFP_KERNEL);
4170
4171 if (!map)
4172 return -ENOMEM;
53e15af0
CL
4173
4174 flush_all(s);
f64dc58c 4175 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
4176 struct kmem_cache_node *n = get_node(s, node);
4177
434e245d 4178 count += validate_slab_node(s, n, map);
53e15af0 4179 }
434e245d 4180 kfree(map);
53e15af0
CL
4181 return count;
4182}
88a420e4 4183/*
672bba3a 4184 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4185 * and freed.
4186 */
4187
4188struct location {
4189 unsigned long count;
ce71e27c 4190 unsigned long addr;
45edfa58
CL
4191 long long sum_time;
4192 long min_time;
4193 long max_time;
4194 long min_pid;
4195 long max_pid;
174596a0 4196 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4197 nodemask_t nodes;
88a420e4
CL
4198};
4199
4200struct loc_track {
4201 unsigned long max;
4202 unsigned long count;
4203 struct location *loc;
4204};
4205
4206static void free_loc_track(struct loc_track *t)
4207{
4208 if (t->max)
4209 free_pages((unsigned long)t->loc,
4210 get_order(sizeof(struct location) * t->max));
4211}
4212
68dff6a9 4213static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4214{
4215 struct location *l;
4216 int order;
4217
88a420e4
CL
4218 order = get_order(sizeof(struct location) * max);
4219
68dff6a9 4220 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4221 if (!l)
4222 return 0;
4223
4224 if (t->count) {
4225 memcpy(l, t->loc, sizeof(struct location) * t->count);
4226 free_loc_track(t);
4227 }
4228 t->max = max;
4229 t->loc = l;
4230 return 1;
4231}
4232
4233static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4234 const struct track *track)
88a420e4
CL
4235{
4236 long start, end, pos;
4237 struct location *l;
ce71e27c 4238 unsigned long caddr;
45edfa58 4239 unsigned long age = jiffies - track->when;
88a420e4
CL
4240
4241 start = -1;
4242 end = t->count;
4243
4244 for ( ; ; ) {
4245 pos = start + (end - start + 1) / 2;
4246
4247 /*
4248 * There is nothing at "end". If we end up there
4249 * we need to add something to before end.
4250 */
4251 if (pos == end)
4252 break;
4253
4254 caddr = t->loc[pos].addr;
45edfa58
CL
4255 if (track->addr == caddr) {
4256
4257 l = &t->loc[pos];
4258 l->count++;
4259 if (track->when) {
4260 l->sum_time += age;
4261 if (age < l->min_time)
4262 l->min_time = age;
4263 if (age > l->max_time)
4264 l->max_time = age;
4265
4266 if (track->pid < l->min_pid)
4267 l->min_pid = track->pid;
4268 if (track->pid > l->max_pid)
4269 l->max_pid = track->pid;
4270
174596a0
RR
4271 cpumask_set_cpu(track->cpu,
4272 to_cpumask(l->cpus));
45edfa58
CL
4273 }
4274 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4275 return 1;
4276 }
4277
45edfa58 4278 if (track->addr < caddr)
88a420e4
CL
4279 end = pos;
4280 else
4281 start = pos;
4282 }
4283
4284 /*
672bba3a 4285 * Not found. Insert new tracking element.
88a420e4 4286 */
68dff6a9 4287 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4288 return 0;
4289
4290 l = t->loc + pos;
4291 if (pos < t->count)
4292 memmove(l + 1, l,
4293 (t->count - pos) * sizeof(struct location));
4294 t->count++;
4295 l->count = 1;
45edfa58
CL
4296 l->addr = track->addr;
4297 l->sum_time = age;
4298 l->min_time = age;
4299 l->max_time = age;
4300 l->min_pid = track->pid;
4301 l->max_pid = track->pid;
174596a0
RR
4302 cpumask_clear(to_cpumask(l->cpus));
4303 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4304 nodes_clear(l->nodes);
4305 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4306 return 1;
4307}
4308
4309static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4310 struct page *page, enum track_item alloc,
a5dd5c11 4311 unsigned long *map)
88a420e4 4312{
a973e9dd 4313 void *addr = page_address(page);
88a420e4
CL
4314 void *p;
4315
39b26464 4316 bitmap_zero(map, page->objects);
5f80b13a 4317 get_map(s, page, map);
88a420e4 4318
224a88be 4319 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4320 if (!test_bit(slab_index(p, s, addr), map))
4321 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4322}
4323
4324static int list_locations(struct kmem_cache *s, char *buf,
4325 enum track_item alloc)
4326{
e374d483 4327 int len = 0;
88a420e4 4328 unsigned long i;
68dff6a9 4329 struct loc_track t = { 0, 0, NULL };
88a420e4 4330 int node;
bbd7d57b
ED
4331 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4332 sizeof(unsigned long), GFP_KERNEL);
88a420e4 4333
bbd7d57b
ED
4334 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4335 GFP_TEMPORARY)) {
4336 kfree(map);
68dff6a9 4337 return sprintf(buf, "Out of memory\n");
bbd7d57b 4338 }
88a420e4
CL
4339 /* Push back cpu slabs */
4340 flush_all(s);
4341
f64dc58c 4342 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
4343 struct kmem_cache_node *n = get_node(s, node);
4344 unsigned long flags;
4345 struct page *page;
4346
9e86943b 4347 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4348 continue;
4349
4350 spin_lock_irqsave(&n->list_lock, flags);
4351 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4352 process_slab(&t, s, page, alloc, map);
88a420e4 4353 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4354 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4355 spin_unlock_irqrestore(&n->list_lock, flags);
4356 }
4357
4358 for (i = 0; i < t.count; i++) {
45edfa58 4359 struct location *l = &t.loc[i];
88a420e4 4360
9c246247 4361 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4362 break;
e374d483 4363 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4364
4365 if (l->addr)
62c70bce 4366 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4367 else
e374d483 4368 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4369
4370 if (l->sum_time != l->min_time) {
e374d483 4371 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4372 l->min_time,
4373 (long)div_u64(l->sum_time, l->count),
4374 l->max_time);
45edfa58 4375 } else
e374d483 4376 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4377 l->min_time);
4378
4379 if (l->min_pid != l->max_pid)
e374d483 4380 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4381 l->min_pid, l->max_pid);
4382 else
e374d483 4383 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4384 l->min_pid);
4385
174596a0
RR
4386 if (num_online_cpus() > 1 &&
4387 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4388 len < PAGE_SIZE - 60) {
4389 len += sprintf(buf + len, " cpus=");
4390 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 4391 to_cpumask(l->cpus));
45edfa58
CL
4392 }
4393
62bc62a8 4394 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4395 len < PAGE_SIZE - 60) {
4396 len += sprintf(buf + len, " nodes=");
4397 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
4398 l->nodes);
4399 }
4400
e374d483 4401 len += sprintf(buf + len, "\n");
88a420e4
CL
4402 }
4403
4404 free_loc_track(&t);
bbd7d57b 4405 kfree(map);
88a420e4 4406 if (!t.count)
e374d483
HH
4407 len += sprintf(buf, "No data\n");
4408 return len;
88a420e4 4409}
ab4d5ed5 4410#endif
88a420e4 4411
a5a84755
CL
4412#ifdef SLUB_RESILIENCY_TEST
4413static void resiliency_test(void)
4414{
4415 u8 *p;
4416
4417 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4418
4419 printk(KERN_ERR "SLUB resiliency testing\n");
4420 printk(KERN_ERR "-----------------------\n");
4421 printk(KERN_ERR "A. Corruption after allocation\n");
4422
4423 p = kzalloc(16, GFP_KERNEL);
4424 p[16] = 0x12;
4425 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4426 " 0x12->0x%p\n\n", p + 16);
4427
4428 validate_slab_cache(kmalloc_caches[4]);
4429
4430 /* Hmmm... The next two are dangerous */
4431 p = kzalloc(32, GFP_KERNEL);
4432 p[32 + sizeof(void *)] = 0x34;
4433 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4434 " 0x34 -> -0x%p\n", p);
4435 printk(KERN_ERR
4436 "If allocated object is overwritten then not detectable\n\n");
4437
4438 validate_slab_cache(kmalloc_caches[5]);
4439 p = kzalloc(64, GFP_KERNEL);
4440 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4441 *p = 0x56;
4442 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4443 p);
4444 printk(KERN_ERR
4445 "If allocated object is overwritten then not detectable\n\n");
4446 validate_slab_cache(kmalloc_caches[6]);
4447
4448 printk(KERN_ERR "\nB. Corruption after free\n");
4449 p = kzalloc(128, GFP_KERNEL);
4450 kfree(p);
4451 *p = 0x78;
4452 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4453 validate_slab_cache(kmalloc_caches[7]);
4454
4455 p = kzalloc(256, GFP_KERNEL);
4456 kfree(p);
4457 p[50] = 0x9a;
4458 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4459 p);
4460 validate_slab_cache(kmalloc_caches[8]);
4461
4462 p = kzalloc(512, GFP_KERNEL);
4463 kfree(p);
4464 p[512] = 0xab;
4465 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4466 validate_slab_cache(kmalloc_caches[9]);
4467}
4468#else
4469#ifdef CONFIG_SYSFS
4470static void resiliency_test(void) {};
4471#endif
4472#endif
4473
ab4d5ed5 4474#ifdef CONFIG_SYSFS
81819f0f 4475enum slab_stat_type {
205ab99d
CL
4476 SL_ALL, /* All slabs */
4477 SL_PARTIAL, /* Only partially allocated slabs */
4478 SL_CPU, /* Only slabs used for cpu caches */
4479 SL_OBJECTS, /* Determine allocated objects not slabs */
4480 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4481};
4482
205ab99d 4483#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4484#define SO_PARTIAL (1 << SL_PARTIAL)
4485#define SO_CPU (1 << SL_CPU)
4486#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4487#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4488
62e5c4b4
CG
4489static ssize_t show_slab_objects(struct kmem_cache *s,
4490 char *buf, unsigned long flags)
81819f0f
CL
4491{
4492 unsigned long total = 0;
81819f0f
CL
4493 int node;
4494 int x;
4495 unsigned long *nodes;
4496 unsigned long *per_cpu;
4497
4498 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4499 if (!nodes)
4500 return -ENOMEM;
81819f0f
CL
4501 per_cpu = nodes + nr_node_ids;
4502
205ab99d
CL
4503 if (flags & SO_CPU) {
4504 int cpu;
81819f0f 4505
205ab99d 4506 for_each_possible_cpu(cpu) {
9dfc6e68 4507 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
bc6697d8 4508 int node = ACCESS_ONCE(c->node);
49e22585 4509 struct page *page;
dfb4f096 4510
bc6697d8 4511 if (node < 0)
205ab99d 4512 continue;
bc6697d8
ED
4513 page = ACCESS_ONCE(c->page);
4514 if (page) {
4515 if (flags & SO_TOTAL)
4516 x = page->objects;
205ab99d 4517 else if (flags & SO_OBJECTS)
bc6697d8 4518 x = page->inuse;
81819f0f
CL
4519 else
4520 x = 1;
205ab99d 4521
81819f0f 4522 total += x;
bc6697d8 4523 nodes[node] += x;
81819f0f 4524 }
49e22585
CL
4525 page = c->partial;
4526
4527 if (page) {
4528 x = page->pobjects;
bc6697d8
ED
4529 total += x;
4530 nodes[node] += x;
49e22585 4531 }
bc6697d8 4532 per_cpu[node]++;
81819f0f
CL
4533 }
4534 }
4535
04d94879 4536 lock_memory_hotplug();
ab4d5ed5 4537#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4538 if (flags & SO_ALL) {
4539 for_each_node_state(node, N_NORMAL_MEMORY) {
4540 struct kmem_cache_node *n = get_node(s, node);
4541
4542 if (flags & SO_TOTAL)
4543 x = atomic_long_read(&n->total_objects);
4544 else if (flags & SO_OBJECTS)
4545 x = atomic_long_read(&n->total_objects) -
4546 count_partial(n, count_free);
81819f0f 4547
81819f0f 4548 else
205ab99d 4549 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4550 total += x;
4551 nodes[node] += x;
4552 }
4553
ab4d5ed5
CL
4554 } else
4555#endif
4556 if (flags & SO_PARTIAL) {
205ab99d
CL
4557 for_each_node_state(node, N_NORMAL_MEMORY) {
4558 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4559
205ab99d
CL
4560 if (flags & SO_TOTAL)
4561 x = count_partial(n, count_total);
4562 else if (flags & SO_OBJECTS)
4563 x = count_partial(n, count_inuse);
81819f0f 4564 else
205ab99d 4565 x = n->nr_partial;
81819f0f
CL
4566 total += x;
4567 nodes[node] += x;
4568 }
4569 }
81819f0f
CL
4570 x = sprintf(buf, "%lu", total);
4571#ifdef CONFIG_NUMA
f64dc58c 4572 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4573 if (nodes[node])
4574 x += sprintf(buf + x, " N%d=%lu",
4575 node, nodes[node]);
4576#endif
04d94879 4577 unlock_memory_hotplug();
81819f0f
CL
4578 kfree(nodes);
4579 return x + sprintf(buf + x, "\n");
4580}
4581
ab4d5ed5 4582#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4583static int any_slab_objects(struct kmem_cache *s)
4584{
4585 int node;
81819f0f 4586
dfb4f096 4587 for_each_online_node(node) {
81819f0f
CL
4588 struct kmem_cache_node *n = get_node(s, node);
4589
dfb4f096
CL
4590 if (!n)
4591 continue;
4592
4ea33e2d 4593 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4594 return 1;
4595 }
4596 return 0;
4597}
ab4d5ed5 4598#endif
81819f0f
CL
4599
4600#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4601#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4602
4603struct slab_attribute {
4604 struct attribute attr;
4605 ssize_t (*show)(struct kmem_cache *s, char *buf);
4606 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4607};
4608
4609#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4610 static struct slab_attribute _name##_attr = \
4611 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4612
4613#define SLAB_ATTR(_name) \
4614 static struct slab_attribute _name##_attr = \
ab067e99 4615 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4616
81819f0f
CL
4617static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4618{
4619 return sprintf(buf, "%d\n", s->size);
4620}
4621SLAB_ATTR_RO(slab_size);
4622
4623static ssize_t align_show(struct kmem_cache *s, char *buf)
4624{
4625 return sprintf(buf, "%d\n", s->align);
4626}
4627SLAB_ATTR_RO(align);
4628
4629static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4630{
4631 return sprintf(buf, "%d\n", s->objsize);
4632}
4633SLAB_ATTR_RO(object_size);
4634
4635static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4636{
834f3d11 4637 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4638}
4639SLAB_ATTR_RO(objs_per_slab);
4640
06b285dc
CL
4641static ssize_t order_store(struct kmem_cache *s,
4642 const char *buf, size_t length)
4643{
0121c619
CL
4644 unsigned long order;
4645 int err;
4646
4647 err = strict_strtoul(buf, 10, &order);
4648 if (err)
4649 return err;
06b285dc
CL
4650
4651 if (order > slub_max_order || order < slub_min_order)
4652 return -EINVAL;
4653
4654 calculate_sizes(s, order);
4655 return length;
4656}
4657
81819f0f
CL
4658static ssize_t order_show(struct kmem_cache *s, char *buf)
4659{
834f3d11 4660 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4661}
06b285dc 4662SLAB_ATTR(order);
81819f0f 4663
73d342b1
DR
4664static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4665{
4666 return sprintf(buf, "%lu\n", s->min_partial);
4667}
4668
4669static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4670 size_t length)
4671{
4672 unsigned long min;
4673 int err;
4674
4675 err = strict_strtoul(buf, 10, &min);
4676 if (err)
4677 return err;
4678
c0bdb232 4679 set_min_partial(s, min);
73d342b1
DR
4680 return length;
4681}
4682SLAB_ATTR(min_partial);
4683
49e22585
CL
4684static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4685{
4686 return sprintf(buf, "%u\n", s->cpu_partial);
4687}
4688
4689static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4690 size_t length)
4691{
4692 unsigned long objects;
4693 int err;
4694
4695 err = strict_strtoul(buf, 10, &objects);
4696 if (err)
4697 return err;
74ee4ef1
DR
4698 if (objects && kmem_cache_debug(s))
4699 return -EINVAL;
49e22585
CL
4700
4701 s->cpu_partial = objects;
4702 flush_all(s);
4703 return length;
4704}
4705SLAB_ATTR(cpu_partial);
4706
81819f0f
CL
4707static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4708{
62c70bce
JP
4709 if (!s->ctor)
4710 return 0;
4711 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4712}
4713SLAB_ATTR_RO(ctor);
4714
81819f0f
CL
4715static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4716{
4717 return sprintf(buf, "%d\n", s->refcount - 1);
4718}
4719SLAB_ATTR_RO(aliases);
4720
81819f0f
CL
4721static ssize_t partial_show(struct kmem_cache *s, char *buf)
4722{
d9acf4b7 4723 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4724}
4725SLAB_ATTR_RO(partial);
4726
4727static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4728{
d9acf4b7 4729 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4730}
4731SLAB_ATTR_RO(cpu_slabs);
4732
4733static ssize_t objects_show(struct kmem_cache *s, char *buf)
4734{
205ab99d 4735 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4736}
4737SLAB_ATTR_RO(objects);
4738
205ab99d
CL
4739static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4740{
4741 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4742}
4743SLAB_ATTR_RO(objects_partial);
4744
49e22585
CL
4745static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4746{
4747 int objects = 0;
4748 int pages = 0;
4749 int cpu;
4750 int len;
4751
4752 for_each_online_cpu(cpu) {
4753 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4754
4755 if (page) {
4756 pages += page->pages;
4757 objects += page->pobjects;
4758 }
4759 }
4760
4761 len = sprintf(buf, "%d(%d)", objects, pages);
4762
4763#ifdef CONFIG_SMP
4764 for_each_online_cpu(cpu) {
4765 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4766
4767 if (page && len < PAGE_SIZE - 20)
4768 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4769 page->pobjects, page->pages);
4770 }
4771#endif
4772 return len + sprintf(buf + len, "\n");
4773}
4774SLAB_ATTR_RO(slabs_cpu_partial);
4775
a5a84755
CL
4776static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4777{
4778 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4779}
4780
4781static ssize_t reclaim_account_store(struct kmem_cache *s,
4782 const char *buf, size_t length)
4783{
4784 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4785 if (buf[0] == '1')
4786 s->flags |= SLAB_RECLAIM_ACCOUNT;
4787 return length;
4788}
4789SLAB_ATTR(reclaim_account);
4790
4791static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4792{
4793 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4794}
4795SLAB_ATTR_RO(hwcache_align);
4796
4797#ifdef CONFIG_ZONE_DMA
4798static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4799{
4800 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4801}
4802SLAB_ATTR_RO(cache_dma);
4803#endif
4804
4805static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4806{
4807 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4808}
4809SLAB_ATTR_RO(destroy_by_rcu);
4810
ab9a0f19
LJ
4811static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4812{
4813 return sprintf(buf, "%d\n", s->reserved);
4814}
4815SLAB_ATTR_RO(reserved);
4816
ab4d5ed5 4817#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4818static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4819{
4820 return show_slab_objects(s, buf, SO_ALL);
4821}
4822SLAB_ATTR_RO(slabs);
4823
205ab99d
CL
4824static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4825{
4826 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4827}
4828SLAB_ATTR_RO(total_objects);
4829
81819f0f
CL
4830static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4831{
4832 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4833}
4834
4835static ssize_t sanity_checks_store(struct kmem_cache *s,
4836 const char *buf, size_t length)
4837{
4838 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4839 if (buf[0] == '1') {
4840 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4841 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4842 }
81819f0f
CL
4843 return length;
4844}
4845SLAB_ATTR(sanity_checks);
4846
4847static ssize_t trace_show(struct kmem_cache *s, char *buf)
4848{
4849 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4850}
4851
4852static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4853 size_t length)
4854{
4855 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4856 if (buf[0] == '1') {
4857 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4858 s->flags |= SLAB_TRACE;
b789ef51 4859 }
81819f0f
CL
4860 return length;
4861}
4862SLAB_ATTR(trace);
4863
81819f0f
CL
4864static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4865{
4866 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4867}
4868
4869static ssize_t red_zone_store(struct kmem_cache *s,
4870 const char *buf, size_t length)
4871{
4872 if (any_slab_objects(s))
4873 return -EBUSY;
4874
4875 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4876 if (buf[0] == '1') {
4877 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4878 s->flags |= SLAB_RED_ZONE;
b789ef51 4879 }
06b285dc 4880 calculate_sizes(s, -1);
81819f0f
CL
4881 return length;
4882}
4883SLAB_ATTR(red_zone);
4884
4885static ssize_t poison_show(struct kmem_cache *s, char *buf)
4886{
4887 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4888}
4889
4890static ssize_t poison_store(struct kmem_cache *s,
4891 const char *buf, size_t length)
4892{
4893 if (any_slab_objects(s))
4894 return -EBUSY;
4895
4896 s->flags &= ~SLAB_POISON;
b789ef51
CL
4897 if (buf[0] == '1') {
4898 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4899 s->flags |= SLAB_POISON;
b789ef51 4900 }
06b285dc 4901 calculate_sizes(s, -1);
81819f0f
CL
4902 return length;
4903}
4904SLAB_ATTR(poison);
4905
4906static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4907{
4908 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4909}
4910
4911static ssize_t store_user_store(struct kmem_cache *s,
4912 const char *buf, size_t length)
4913{
4914 if (any_slab_objects(s))
4915 return -EBUSY;
4916
4917 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4918 if (buf[0] == '1') {
4919 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4920 s->flags |= SLAB_STORE_USER;
b789ef51 4921 }
06b285dc 4922 calculate_sizes(s, -1);
81819f0f
CL
4923 return length;
4924}
4925SLAB_ATTR(store_user);
4926
53e15af0
CL
4927static ssize_t validate_show(struct kmem_cache *s, char *buf)
4928{
4929 return 0;
4930}
4931
4932static ssize_t validate_store(struct kmem_cache *s,
4933 const char *buf, size_t length)
4934{
434e245d
CL
4935 int ret = -EINVAL;
4936
4937 if (buf[0] == '1') {
4938 ret = validate_slab_cache(s);
4939 if (ret >= 0)
4940 ret = length;
4941 }
4942 return ret;
53e15af0
CL
4943}
4944SLAB_ATTR(validate);
a5a84755
CL
4945
4946static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4947{
4948 if (!(s->flags & SLAB_STORE_USER))
4949 return -ENOSYS;
4950 return list_locations(s, buf, TRACK_ALLOC);
4951}
4952SLAB_ATTR_RO(alloc_calls);
4953
4954static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4955{
4956 if (!(s->flags & SLAB_STORE_USER))
4957 return -ENOSYS;
4958 return list_locations(s, buf, TRACK_FREE);
4959}
4960SLAB_ATTR_RO(free_calls);
4961#endif /* CONFIG_SLUB_DEBUG */
4962
4963#ifdef CONFIG_FAILSLAB
4964static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4965{
4966 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4967}
4968
4969static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4970 size_t length)
4971{
4972 s->flags &= ~SLAB_FAILSLAB;
4973 if (buf[0] == '1')
4974 s->flags |= SLAB_FAILSLAB;
4975 return length;
4976}
4977SLAB_ATTR(failslab);
ab4d5ed5 4978#endif
53e15af0 4979
2086d26a
CL
4980static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4981{
4982 return 0;
4983}
4984
4985static ssize_t shrink_store(struct kmem_cache *s,
4986 const char *buf, size_t length)
4987{
4988 if (buf[0] == '1') {
4989 int rc = kmem_cache_shrink(s);
4990
4991 if (rc)
4992 return rc;
4993 } else
4994 return -EINVAL;
4995 return length;
4996}
4997SLAB_ATTR(shrink);
4998
81819f0f 4999#ifdef CONFIG_NUMA
9824601e 5000static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5001{
9824601e 5002 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5003}
5004
9824601e 5005static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5006 const char *buf, size_t length)
5007{
0121c619
CL
5008 unsigned long ratio;
5009 int err;
5010
5011 err = strict_strtoul(buf, 10, &ratio);
5012 if (err)
5013 return err;
5014
e2cb96b7 5015 if (ratio <= 100)
0121c619 5016 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5017
81819f0f
CL
5018 return length;
5019}
9824601e 5020SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5021#endif
5022
8ff12cfc 5023#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5024static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5025{
5026 unsigned long sum = 0;
5027 int cpu;
5028 int len;
5029 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5030
5031 if (!data)
5032 return -ENOMEM;
5033
5034 for_each_online_cpu(cpu) {
9dfc6e68 5035 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5036
5037 data[cpu] = x;
5038 sum += x;
5039 }
5040
5041 len = sprintf(buf, "%lu", sum);
5042
50ef37b9 5043#ifdef CONFIG_SMP
8ff12cfc
CL
5044 for_each_online_cpu(cpu) {
5045 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5046 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5047 }
50ef37b9 5048#endif
8ff12cfc
CL
5049 kfree(data);
5050 return len + sprintf(buf + len, "\n");
5051}
5052
78eb00cc
DR
5053static void clear_stat(struct kmem_cache *s, enum stat_item si)
5054{
5055 int cpu;
5056
5057 for_each_online_cpu(cpu)
9dfc6e68 5058 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5059}
5060
8ff12cfc
CL
5061#define STAT_ATTR(si, text) \
5062static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5063{ \
5064 return show_stat(s, buf, si); \
5065} \
78eb00cc
DR
5066static ssize_t text##_store(struct kmem_cache *s, \
5067 const char *buf, size_t length) \
5068{ \
5069 if (buf[0] != '0') \
5070 return -EINVAL; \
5071 clear_stat(s, si); \
5072 return length; \
5073} \
5074SLAB_ATTR(text); \
8ff12cfc
CL
5075
5076STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5077STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5078STAT_ATTR(FREE_FASTPATH, free_fastpath);
5079STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5080STAT_ATTR(FREE_FROZEN, free_frozen);
5081STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5082STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5083STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5084STAT_ATTR(ALLOC_SLAB, alloc_slab);
5085STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5086STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5087STAT_ATTR(FREE_SLAB, free_slab);
5088STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5089STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5090STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5091STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5092STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5093STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5094STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5095STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5096STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5097STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5098STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5099STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5100STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5101STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
5102#endif
5103
06428780 5104static struct attribute *slab_attrs[] = {
81819f0f
CL
5105 &slab_size_attr.attr,
5106 &object_size_attr.attr,
5107 &objs_per_slab_attr.attr,
5108 &order_attr.attr,
73d342b1 5109 &min_partial_attr.attr,
49e22585 5110 &cpu_partial_attr.attr,
81819f0f 5111 &objects_attr.attr,
205ab99d 5112 &objects_partial_attr.attr,
81819f0f
CL
5113 &partial_attr.attr,
5114 &cpu_slabs_attr.attr,
5115 &ctor_attr.attr,
81819f0f
CL
5116 &aliases_attr.attr,
5117 &align_attr.attr,
81819f0f
CL
5118 &hwcache_align_attr.attr,
5119 &reclaim_account_attr.attr,
5120 &destroy_by_rcu_attr.attr,
a5a84755 5121 &shrink_attr.attr,
ab9a0f19 5122 &reserved_attr.attr,
49e22585 5123 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5124#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5125 &total_objects_attr.attr,
5126 &slabs_attr.attr,
5127 &sanity_checks_attr.attr,
5128 &trace_attr.attr,
81819f0f
CL
5129 &red_zone_attr.attr,
5130 &poison_attr.attr,
5131 &store_user_attr.attr,
53e15af0 5132 &validate_attr.attr,
88a420e4
CL
5133 &alloc_calls_attr.attr,
5134 &free_calls_attr.attr,
ab4d5ed5 5135#endif
81819f0f
CL
5136#ifdef CONFIG_ZONE_DMA
5137 &cache_dma_attr.attr,
5138#endif
5139#ifdef CONFIG_NUMA
9824601e 5140 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5141#endif
5142#ifdef CONFIG_SLUB_STATS
5143 &alloc_fastpath_attr.attr,
5144 &alloc_slowpath_attr.attr,
5145 &free_fastpath_attr.attr,
5146 &free_slowpath_attr.attr,
5147 &free_frozen_attr.attr,
5148 &free_add_partial_attr.attr,
5149 &free_remove_partial_attr.attr,
5150 &alloc_from_partial_attr.attr,
5151 &alloc_slab_attr.attr,
5152 &alloc_refill_attr.attr,
e36a2652 5153 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5154 &free_slab_attr.attr,
5155 &cpuslab_flush_attr.attr,
5156 &deactivate_full_attr.attr,
5157 &deactivate_empty_attr.attr,
5158 &deactivate_to_head_attr.attr,
5159 &deactivate_to_tail_attr.attr,
5160 &deactivate_remote_frees_attr.attr,
03e404af 5161 &deactivate_bypass_attr.attr,
65c3376a 5162 &order_fallback_attr.attr,
b789ef51
CL
5163 &cmpxchg_double_fail_attr.attr,
5164 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5165 &cpu_partial_alloc_attr.attr,
5166 &cpu_partial_free_attr.attr,
8028dcea
AS
5167 &cpu_partial_node_attr.attr,
5168 &cpu_partial_drain_attr.attr,
81819f0f 5169#endif
4c13dd3b
DM
5170#ifdef CONFIG_FAILSLAB
5171 &failslab_attr.attr,
5172#endif
5173
81819f0f
CL
5174 NULL
5175};
5176
5177static struct attribute_group slab_attr_group = {
5178 .attrs = slab_attrs,
5179};
5180
5181static ssize_t slab_attr_show(struct kobject *kobj,
5182 struct attribute *attr,
5183 char *buf)
5184{
5185 struct slab_attribute *attribute;
5186 struct kmem_cache *s;
5187 int err;
5188
5189 attribute = to_slab_attr(attr);
5190 s = to_slab(kobj);
5191
5192 if (!attribute->show)
5193 return -EIO;
5194
5195 err = attribute->show(s, buf);
5196
5197 return err;
5198}
5199
5200static ssize_t slab_attr_store(struct kobject *kobj,
5201 struct attribute *attr,
5202 const char *buf, size_t len)
5203{
5204 struct slab_attribute *attribute;
5205 struct kmem_cache *s;
5206 int err;
5207
5208 attribute = to_slab_attr(attr);
5209 s = to_slab(kobj);
5210
5211 if (!attribute->store)
5212 return -EIO;
5213
5214 err = attribute->store(s, buf, len);
5215
5216 return err;
5217}
5218
151c602f
CL
5219static void kmem_cache_release(struct kobject *kobj)
5220{
5221 struct kmem_cache *s = to_slab(kobj);
5222
84c1cf62 5223 kfree(s->name);
151c602f
CL
5224 kfree(s);
5225}
5226
52cf25d0 5227static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5228 .show = slab_attr_show,
5229 .store = slab_attr_store,
5230};
5231
5232static struct kobj_type slab_ktype = {
5233 .sysfs_ops = &slab_sysfs_ops,
151c602f 5234 .release = kmem_cache_release
81819f0f
CL
5235};
5236
5237static int uevent_filter(struct kset *kset, struct kobject *kobj)
5238{
5239 struct kobj_type *ktype = get_ktype(kobj);
5240
5241 if (ktype == &slab_ktype)
5242 return 1;
5243 return 0;
5244}
5245
9cd43611 5246static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5247 .filter = uevent_filter,
5248};
5249
27c3a314 5250static struct kset *slab_kset;
81819f0f
CL
5251
5252#define ID_STR_LENGTH 64
5253
5254/* Create a unique string id for a slab cache:
6446faa2
CL
5255 *
5256 * Format :[flags-]size
81819f0f
CL
5257 */
5258static char *create_unique_id(struct kmem_cache *s)
5259{
5260 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5261 char *p = name;
5262
5263 BUG_ON(!name);
5264
5265 *p++ = ':';
5266 /*
5267 * First flags affecting slabcache operations. We will only
5268 * get here for aliasable slabs so we do not need to support
5269 * too many flags. The flags here must cover all flags that
5270 * are matched during merging to guarantee that the id is
5271 * unique.
5272 */
5273 if (s->flags & SLAB_CACHE_DMA)
5274 *p++ = 'd';
5275 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5276 *p++ = 'a';
5277 if (s->flags & SLAB_DEBUG_FREE)
5278 *p++ = 'F';
5a896d9e
VN
5279 if (!(s->flags & SLAB_NOTRACK))
5280 *p++ = 't';
81819f0f
CL
5281 if (p != name + 1)
5282 *p++ = '-';
5283 p += sprintf(p, "%07d", s->size);
5284 BUG_ON(p > name + ID_STR_LENGTH - 1);
5285 return name;
5286}
5287
5288static int sysfs_slab_add(struct kmem_cache *s)
5289{
5290 int err;
5291 const char *name;
5292 int unmergeable;
5293
5294 if (slab_state < SYSFS)
5295 /* Defer until later */
5296 return 0;
5297
5298 unmergeable = slab_unmergeable(s);
5299 if (unmergeable) {
5300 /*
5301 * Slabcache can never be merged so we can use the name proper.
5302 * This is typically the case for debug situations. In that
5303 * case we can catch duplicate names easily.
5304 */
27c3a314 5305 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5306 name = s->name;
5307 } else {
5308 /*
5309 * Create a unique name for the slab as a target
5310 * for the symlinks.
5311 */
5312 name = create_unique_id(s);
5313 }
5314
27c3a314 5315 s->kobj.kset = slab_kset;
1eada11c
GKH
5316 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5317 if (err) {
5318 kobject_put(&s->kobj);
81819f0f 5319 return err;
1eada11c 5320 }
81819f0f
CL
5321
5322 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
5323 if (err) {
5324 kobject_del(&s->kobj);
5325 kobject_put(&s->kobj);
81819f0f 5326 return err;
5788d8ad 5327 }
81819f0f
CL
5328 kobject_uevent(&s->kobj, KOBJ_ADD);
5329 if (!unmergeable) {
5330 /* Setup first alias */
5331 sysfs_slab_alias(s, s->name);
5332 kfree(name);
5333 }
5334 return 0;
5335}
5336
5337static void sysfs_slab_remove(struct kmem_cache *s)
5338{
2bce6485
CL
5339 if (slab_state < SYSFS)
5340 /*
5341 * Sysfs has not been setup yet so no need to remove the
5342 * cache from sysfs.
5343 */
5344 return;
5345
81819f0f
CL
5346 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5347 kobject_del(&s->kobj);
151c602f 5348 kobject_put(&s->kobj);
81819f0f
CL
5349}
5350
5351/*
5352 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5353 * available lest we lose that information.
81819f0f
CL
5354 */
5355struct saved_alias {
5356 struct kmem_cache *s;
5357 const char *name;
5358 struct saved_alias *next;
5359};
5360
5af328a5 5361static struct saved_alias *alias_list;
81819f0f
CL
5362
5363static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5364{
5365 struct saved_alias *al;
5366
5367 if (slab_state == SYSFS) {
5368 /*
5369 * If we have a leftover link then remove it.
5370 */
27c3a314
GKH
5371 sysfs_remove_link(&slab_kset->kobj, name);
5372 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5373 }
5374
5375 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5376 if (!al)
5377 return -ENOMEM;
5378
5379 al->s = s;
5380 al->name = name;
5381 al->next = alias_list;
5382 alias_list = al;
5383 return 0;
5384}
5385
5386static int __init slab_sysfs_init(void)
5387{
5b95a4ac 5388 struct kmem_cache *s;
81819f0f
CL
5389 int err;
5390
2bce6485
CL
5391 down_write(&slub_lock);
5392
0ff21e46 5393 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5394 if (!slab_kset) {
2bce6485 5395 up_write(&slub_lock);
81819f0f
CL
5396 printk(KERN_ERR "Cannot register slab subsystem.\n");
5397 return -ENOSYS;
5398 }
5399
26a7bd03
CL
5400 slab_state = SYSFS;
5401
5b95a4ac 5402 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5403 err = sysfs_slab_add(s);
5d540fb7
CL
5404 if (err)
5405 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5406 " to sysfs\n", s->name);
26a7bd03 5407 }
81819f0f
CL
5408
5409 while (alias_list) {
5410 struct saved_alias *al = alias_list;
5411
5412 alias_list = alias_list->next;
5413 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
5414 if (err)
5415 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5416 " %s to sysfs\n", s->name);
81819f0f
CL
5417 kfree(al);
5418 }
5419
2bce6485 5420 up_write(&slub_lock);
81819f0f
CL
5421 resiliency_test();
5422 return 0;
5423}
5424
5425__initcall(slab_sysfs_init);
ab4d5ed5 5426#endif /* CONFIG_SYSFS */
57ed3eda
PE
5427
5428/*
5429 * The /proc/slabinfo ABI
5430 */
158a9624 5431#ifdef CONFIG_SLABINFO
57ed3eda
PE
5432static void print_slabinfo_header(struct seq_file *m)
5433{
5434 seq_puts(m, "slabinfo - version: 2.1\n");
5435 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
5436 "<objperslab> <pagesperslab>");
5437 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5438 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5439 seq_putc(m, '\n');
5440}
5441
5442static void *s_start(struct seq_file *m, loff_t *pos)
5443{
5444 loff_t n = *pos;
5445
5446 down_read(&slub_lock);
5447 if (!n)
5448 print_slabinfo_header(m);
5449
5450 return seq_list_start(&slab_caches, *pos);
5451}
5452
5453static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5454{
5455 return seq_list_next(p, &slab_caches, pos);
5456}
5457
5458static void s_stop(struct seq_file *m, void *p)
5459{
5460 up_read(&slub_lock);
5461}
5462
5463static int s_show(struct seq_file *m, void *p)
5464{
5465 unsigned long nr_partials = 0;
5466 unsigned long nr_slabs = 0;
5467 unsigned long nr_inuse = 0;
205ab99d
CL
5468 unsigned long nr_objs = 0;
5469 unsigned long nr_free = 0;
57ed3eda
PE
5470 struct kmem_cache *s;
5471 int node;
5472
5473 s = list_entry(p, struct kmem_cache, list);
5474
5475 for_each_online_node(node) {
5476 struct kmem_cache_node *n = get_node(s, node);
5477
5478 if (!n)
5479 continue;
5480
5481 nr_partials += n->nr_partial;
5482 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
5483 nr_objs += atomic_long_read(&n->total_objects);
5484 nr_free += count_partial(n, count_free);
57ed3eda
PE
5485 }
5486
205ab99d 5487 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
5488
5489 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
5490 nr_objs, s->size, oo_objects(s->oo),
5491 (1 << oo_order(s->oo)));
57ed3eda
PE
5492 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5493 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5494 0UL);
5495 seq_putc(m, '\n');
5496 return 0;
5497}
5498
7b3c3a50 5499static const struct seq_operations slabinfo_op = {
57ed3eda
PE
5500 .start = s_start,
5501 .next = s_next,
5502 .stop = s_stop,
5503 .show = s_show,
5504};
5505
7b3c3a50
AD
5506static int slabinfo_open(struct inode *inode, struct file *file)
5507{
5508 return seq_open(file, &slabinfo_op);
5509}
5510
5511static const struct file_operations proc_slabinfo_operations = {
5512 .open = slabinfo_open,
5513 .read = seq_read,
5514 .llseek = seq_lseek,
5515 .release = seq_release,
5516};
5517
5518static int __init slab_proc_init(void)
5519{
ab067e99 5520 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
5521 return 0;
5522}
5523module_init(slab_proc_init);
158a9624 5524#endif /* CONFIG_SLABINFO */