mm/migrate: mark unmap_and_move() "noinline" to avoid ICE in gcc 4.7.3
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
3ac38faa 21#include <linux/notifier.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
5a896d9e 24#include <linux/kmemcheck.h>
81819f0f
CL
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
3ac7fe5a 29#include <linux/debugobjects.h>
81819f0f 30#include <linux/kallsyms.h>
b9049e23 31#include <linux/memory.h>
f8bd2258 32#include <linux/math64.h>
773ff60e 33#include <linux/fault-inject.h>
bfa71457 34#include <linux/stacktrace.h>
4de900b4 35#include <linux/prefetch.h>
2633d7a0 36#include <linux/memcontrol.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
65 *
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
71 *
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
81819f0f
CL
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
81 *
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
84 *
672bba3a
CL
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 87 * freed then the slab will show up again on the partial lists.
672bba3a
CL
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
81819f0f
CL
90 *
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
94 *
95 * Overloading of page flags that are otherwise used for LRU management.
96 *
4b6f0750
CL
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
dfb4f096 109 * freelist that allows lockless access to
894b8788
CL
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
81819f0f
CL
112 *
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
894b8788 115 * the fast path and disables lockless freelists.
81819f0f
CL
116 */
117
af537b0a
CL
118static inline int kmem_cache_debug(struct kmem_cache *s)
119{
5577bd8a 120#ifdef CONFIG_SLUB_DEBUG
af537b0a 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 122#else
af537b0a 123 return 0;
5577bd8a 124#endif
af537b0a 125}
5577bd8a 126
345c905d
JK
127static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
128{
129#ifdef CONFIG_SLUB_CPU_PARTIAL
130 return !kmem_cache_debug(s);
131#else
132 return false;
133#endif
134}
135
81819f0f
CL
136/*
137 * Issues still to be resolved:
138 *
81819f0f
CL
139 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
140 *
81819f0f
CL
141 * - Variable sizing of the per node arrays
142 */
143
144/* Enable to test recovery from slab corruption on boot */
145#undef SLUB_RESILIENCY_TEST
146
b789ef51
CL
147/* Enable to log cmpxchg failures */
148#undef SLUB_DEBUG_CMPXCHG
149
2086d26a
CL
150/*
151 * Mininum number of partial slabs. These will be left on the partial
152 * lists even if they are empty. kmem_cache_shrink may reclaim them.
153 */
76be8950 154#define MIN_PARTIAL 5
e95eed57 155
2086d26a
CL
156/*
157 * Maximum number of desirable partial slabs.
158 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 159 * sort the partial list by the number of objects in use.
2086d26a
CL
160 */
161#define MAX_PARTIAL 10
162
81819f0f
CL
163#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
164 SLAB_POISON | SLAB_STORE_USER)
672bba3a 165
fa5ec8a1 166/*
3de47213
DR
167 * Debugging flags that require metadata to be stored in the slab. These get
168 * disabled when slub_debug=O is used and a cache's min order increases with
169 * metadata.
fa5ec8a1 170 */
3de47213 171#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 172
210b5c06
CG
173#define OO_SHIFT 16
174#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 175#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 176
81819f0f 177/* Internal SLUB flags */
f90ec390 178#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 179#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 180
81819f0f
CL
181#ifdef CONFIG_SMP
182static struct notifier_block slab_notifier;
183#endif
184
02cbc874
CL
185/*
186 * Tracking user of a slab.
187 */
d6543e39 188#define TRACK_ADDRS_COUNT 16
02cbc874 189struct track {
ce71e27c 190 unsigned long addr; /* Called from address */
d6543e39
BG
191#ifdef CONFIG_STACKTRACE
192 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
193#endif
02cbc874
CL
194 int cpu; /* Was running on cpu */
195 int pid; /* Pid context */
196 unsigned long when; /* When did the operation occur */
197};
198
199enum track_item { TRACK_ALLOC, TRACK_FREE };
200
ab4d5ed5 201#ifdef CONFIG_SYSFS
81819f0f
CL
202static int sysfs_slab_add(struct kmem_cache *);
203static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 204static void memcg_propagate_slab_attrs(struct kmem_cache *s);
81819f0f 205#else
0c710013
CL
206static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
207static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
208 { return 0; }
107dab5c 209static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
81819f0f
CL
210#endif
211
4fdccdfb 212static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
213{
214#ifdef CONFIG_SLUB_STATS
88da03a6
CL
215 /*
216 * The rmw is racy on a preemptible kernel but this is acceptable, so
217 * avoid this_cpu_add()'s irq-disable overhead.
218 */
219 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
220#endif
221}
222
81819f0f
CL
223/********************************************************************
224 * Core slab cache functions
225 *******************************************************************/
226
6446faa2 227/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
228static inline int check_valid_pointer(struct kmem_cache *s,
229 struct page *page, const void *object)
230{
231 void *base;
232
a973e9dd 233 if (!object)
02cbc874
CL
234 return 1;
235
a973e9dd 236 base = page_address(page);
39b26464 237 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
238 (object - base) % s->size) {
239 return 0;
240 }
241
242 return 1;
243}
244
7656c72b
CL
245static inline void *get_freepointer(struct kmem_cache *s, void *object)
246{
247 return *(void **)(object + s->offset);
248}
249
0ad9500e
ED
250static void prefetch_freepointer(const struct kmem_cache *s, void *object)
251{
252 prefetch(object + s->offset);
253}
254
1393d9a1
CL
255static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
256{
257 void *p;
258
259#ifdef CONFIG_DEBUG_PAGEALLOC
260 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
261#else
262 p = get_freepointer(s, object);
263#endif
264 return p;
265}
266
7656c72b
CL
267static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
268{
269 *(void **)(object + s->offset) = fp;
270}
271
272/* Loop over all objects in a slab */
224a88be
CL
273#define for_each_object(__p, __s, __addr, __objects) \
274 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
275 __p += (__s)->size)
276
54266640
WY
277#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
278 for (__p = (__addr), __idx = 1; __idx <= __objects;\
279 __p += (__s)->size, __idx++)
280
7656c72b
CL
281/* Determine object index from a given position */
282static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
283{
284 return (p - addr) / s->size;
285}
286
d71f606f
MK
287static inline size_t slab_ksize(const struct kmem_cache *s)
288{
289#ifdef CONFIG_SLUB_DEBUG
290 /*
291 * Debugging requires use of the padding between object
292 * and whatever may come after it.
293 */
294 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
3b0efdfa 295 return s->object_size;
d71f606f
MK
296
297#endif
298 /*
299 * If we have the need to store the freelist pointer
300 * back there or track user information then we can
301 * only use the space before that information.
302 */
303 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
304 return s->inuse;
305 /*
306 * Else we can use all the padding etc for the allocation
307 */
308 return s->size;
309}
310
ab9a0f19
LJ
311static inline int order_objects(int order, unsigned long size, int reserved)
312{
313 return ((PAGE_SIZE << order) - reserved) / size;
314}
315
834f3d11 316static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 317 unsigned long size, int reserved)
834f3d11
CL
318{
319 struct kmem_cache_order_objects x = {
ab9a0f19 320 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
321 };
322
323 return x;
324}
325
326static inline int oo_order(struct kmem_cache_order_objects x)
327{
210b5c06 328 return x.x >> OO_SHIFT;
834f3d11
CL
329}
330
331static inline int oo_objects(struct kmem_cache_order_objects x)
332{
210b5c06 333 return x.x & OO_MASK;
834f3d11
CL
334}
335
881db7fb
CL
336/*
337 * Per slab locking using the pagelock
338 */
339static __always_inline void slab_lock(struct page *page)
340{
341 bit_spin_lock(PG_locked, &page->flags);
342}
343
344static __always_inline void slab_unlock(struct page *page)
345{
346 __bit_spin_unlock(PG_locked, &page->flags);
347}
348
a0320865
DH
349static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
350{
351 struct page tmp;
352 tmp.counters = counters_new;
353 /*
354 * page->counters can cover frozen/inuse/objects as well
355 * as page->_count. If we assign to ->counters directly
356 * we run the risk of losing updates to page->_count, so
357 * be careful and only assign to the fields we need.
358 */
359 page->frozen = tmp.frozen;
360 page->inuse = tmp.inuse;
361 page->objects = tmp.objects;
362}
363
1d07171c
CL
364/* Interrupts must be disabled (for the fallback code to work right) */
365static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
366 void *freelist_old, unsigned long counters_old,
367 void *freelist_new, unsigned long counters_new,
368 const char *n)
369{
370 VM_BUG_ON(!irqs_disabled());
2565409f
HC
371#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
372 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 373 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 374 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
375 freelist_old, counters_old,
376 freelist_new, counters_new))
377 return 1;
1d07171c
CL
378 } else
379#endif
380 {
381 slab_lock(page);
d0e0ac97
CG
382 if (page->freelist == freelist_old &&
383 page->counters == counters_old) {
1d07171c 384 page->freelist = freelist_new;
a0320865 385 set_page_slub_counters(page, counters_new);
1d07171c
CL
386 slab_unlock(page);
387 return 1;
388 }
389 slab_unlock(page);
390 }
391
392 cpu_relax();
393 stat(s, CMPXCHG_DOUBLE_FAIL);
394
395#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 396 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
397#endif
398
399 return 0;
400}
401
b789ef51
CL
402static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
403 void *freelist_old, unsigned long counters_old,
404 void *freelist_new, unsigned long counters_new,
405 const char *n)
406{
2565409f
HC
407#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
408 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 409 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 410 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
411 freelist_old, counters_old,
412 freelist_new, counters_new))
413 return 1;
b789ef51
CL
414 } else
415#endif
416 {
1d07171c
CL
417 unsigned long flags;
418
419 local_irq_save(flags);
881db7fb 420 slab_lock(page);
d0e0ac97
CG
421 if (page->freelist == freelist_old &&
422 page->counters == counters_old) {
b789ef51 423 page->freelist = freelist_new;
a0320865 424 set_page_slub_counters(page, counters_new);
881db7fb 425 slab_unlock(page);
1d07171c 426 local_irq_restore(flags);
b789ef51
CL
427 return 1;
428 }
881db7fb 429 slab_unlock(page);
1d07171c 430 local_irq_restore(flags);
b789ef51
CL
431 }
432
433 cpu_relax();
434 stat(s, CMPXCHG_DOUBLE_FAIL);
435
436#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 437 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
438#endif
439
440 return 0;
441}
442
41ecc55b 443#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
444/*
445 * Determine a map of object in use on a page.
446 *
881db7fb 447 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
448 * not vanish from under us.
449 */
450static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
451{
452 void *p;
453 void *addr = page_address(page);
454
455 for (p = page->freelist; p; p = get_freepointer(s, p))
456 set_bit(slab_index(p, s, addr), map);
457}
458
41ecc55b
CL
459/*
460 * Debug settings:
461 */
f0630fff
CL
462#ifdef CONFIG_SLUB_DEBUG_ON
463static int slub_debug = DEBUG_DEFAULT_FLAGS;
464#else
41ecc55b 465static int slub_debug;
f0630fff 466#endif
41ecc55b
CL
467
468static char *slub_debug_slabs;
fa5ec8a1 469static int disable_higher_order_debug;
41ecc55b 470
a79316c6
AR
471/*
472 * slub is about to manipulate internal object metadata. This memory lies
473 * outside the range of the allocated object, so accessing it would normally
474 * be reported by kasan as a bounds error. metadata_access_enable() is used
475 * to tell kasan that these accesses are OK.
476 */
477static inline void metadata_access_enable(void)
478{
479 kasan_disable_current();
480}
481
482static inline void metadata_access_disable(void)
483{
484 kasan_enable_current();
485}
486
81819f0f
CL
487/*
488 * Object debugging
489 */
490static void print_section(char *text, u8 *addr, unsigned int length)
491{
a79316c6 492 metadata_access_enable();
ffc79d28
SAS
493 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
494 length, 1);
a79316c6 495 metadata_access_disable();
81819f0f
CL
496}
497
81819f0f
CL
498static struct track *get_track(struct kmem_cache *s, void *object,
499 enum track_item alloc)
500{
501 struct track *p;
502
503 if (s->offset)
504 p = object + s->offset + sizeof(void *);
505 else
506 p = object + s->inuse;
507
508 return p + alloc;
509}
510
511static void set_track(struct kmem_cache *s, void *object,
ce71e27c 512 enum track_item alloc, unsigned long addr)
81819f0f 513{
1a00df4a 514 struct track *p = get_track(s, object, alloc);
81819f0f 515
81819f0f 516 if (addr) {
d6543e39
BG
517#ifdef CONFIG_STACKTRACE
518 struct stack_trace trace;
519 int i;
520
521 trace.nr_entries = 0;
522 trace.max_entries = TRACK_ADDRS_COUNT;
523 trace.entries = p->addrs;
524 trace.skip = 3;
a79316c6 525 metadata_access_enable();
d6543e39 526 save_stack_trace(&trace);
a79316c6 527 metadata_access_disable();
d6543e39
BG
528
529 /* See rant in lockdep.c */
530 if (trace.nr_entries != 0 &&
531 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
532 trace.nr_entries--;
533
534 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
535 p->addrs[i] = 0;
536#endif
81819f0f
CL
537 p->addr = addr;
538 p->cpu = smp_processor_id();
88e4ccf2 539 p->pid = current->pid;
81819f0f
CL
540 p->when = jiffies;
541 } else
542 memset(p, 0, sizeof(struct track));
543}
544
81819f0f
CL
545static void init_tracking(struct kmem_cache *s, void *object)
546{
24922684
CL
547 if (!(s->flags & SLAB_STORE_USER))
548 return;
549
ce71e27c
EGM
550 set_track(s, object, TRACK_FREE, 0UL);
551 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
552}
553
554static void print_track(const char *s, struct track *t)
555{
556 if (!t->addr)
557 return;
558
f9f58285
FF
559 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
560 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
561#ifdef CONFIG_STACKTRACE
562 {
563 int i;
564 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
565 if (t->addrs[i])
f9f58285 566 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
567 else
568 break;
569 }
570#endif
24922684
CL
571}
572
573static void print_tracking(struct kmem_cache *s, void *object)
574{
575 if (!(s->flags & SLAB_STORE_USER))
576 return;
577
578 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
579 print_track("Freed", get_track(s, object, TRACK_FREE));
580}
581
582static void print_page_info(struct page *page)
583{
f9f58285 584 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 585 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
586
587}
588
589static void slab_bug(struct kmem_cache *s, char *fmt, ...)
590{
ecc42fbe 591 struct va_format vaf;
24922684 592 va_list args;
24922684
CL
593
594 va_start(args, fmt);
ecc42fbe
FF
595 vaf.fmt = fmt;
596 vaf.va = &args;
f9f58285 597 pr_err("=============================================================================\n");
ecc42fbe 598 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 599 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 600
373d4d09 601 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 602 va_end(args);
81819f0f
CL
603}
604
24922684
CL
605static void slab_fix(struct kmem_cache *s, char *fmt, ...)
606{
ecc42fbe 607 struct va_format vaf;
24922684 608 va_list args;
24922684
CL
609
610 va_start(args, fmt);
ecc42fbe
FF
611 vaf.fmt = fmt;
612 vaf.va = &args;
613 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 614 va_end(args);
24922684
CL
615}
616
617static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
618{
619 unsigned int off; /* Offset of last byte */
a973e9dd 620 u8 *addr = page_address(page);
24922684
CL
621
622 print_tracking(s, p);
623
624 print_page_info(page);
625
f9f58285
FF
626 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
627 p, p - addr, get_freepointer(s, p));
24922684
CL
628
629 if (p > addr + 16)
ffc79d28 630 print_section("Bytes b4 ", p - 16, 16);
81819f0f 631
3b0efdfa 632 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 633 PAGE_SIZE));
81819f0f 634 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
635 print_section("Redzone ", p + s->object_size,
636 s->inuse - s->object_size);
81819f0f 637
81819f0f
CL
638 if (s->offset)
639 off = s->offset + sizeof(void *);
640 else
641 off = s->inuse;
642
24922684 643 if (s->flags & SLAB_STORE_USER)
81819f0f 644 off += 2 * sizeof(struct track);
81819f0f
CL
645
646 if (off != s->size)
647 /* Beginning of the filler is the free pointer */
ffc79d28 648 print_section("Padding ", p + off, s->size - off);
24922684
CL
649
650 dump_stack();
81819f0f
CL
651}
652
75c66def 653void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
654 u8 *object, char *reason)
655{
3dc50637 656 slab_bug(s, "%s", reason);
24922684 657 print_trailer(s, page, object);
81819f0f
CL
658}
659
d0e0ac97
CG
660static void slab_err(struct kmem_cache *s, struct page *page,
661 const char *fmt, ...)
81819f0f
CL
662{
663 va_list args;
664 char buf[100];
665
24922684
CL
666 va_start(args, fmt);
667 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 668 va_end(args);
3dc50637 669 slab_bug(s, "%s", buf);
24922684 670 print_page_info(page);
81819f0f
CL
671 dump_stack();
672}
673
f7cb1933 674static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
675{
676 u8 *p = object;
677
678 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
679 memset(p, POISON_FREE, s->object_size - 1);
680 p[s->object_size - 1] = POISON_END;
81819f0f
CL
681 }
682
683 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 684 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
685}
686
24922684
CL
687static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
688 void *from, void *to)
689{
690 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
691 memset(from, data, to - from);
692}
693
694static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
695 u8 *object, char *what,
06428780 696 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
697{
698 u8 *fault;
699 u8 *end;
700
a79316c6 701 metadata_access_enable();
79824820 702 fault = memchr_inv(start, value, bytes);
a79316c6 703 metadata_access_disable();
24922684
CL
704 if (!fault)
705 return 1;
706
707 end = start + bytes;
708 while (end > fault && end[-1] == value)
709 end--;
710
711 slab_bug(s, "%s overwritten", what);
f9f58285 712 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
713 fault, end - 1, fault[0], value);
714 print_trailer(s, page, object);
715
716 restore_bytes(s, what, value, fault, end);
717 return 0;
81819f0f
CL
718}
719
81819f0f
CL
720/*
721 * Object layout:
722 *
723 * object address
724 * Bytes of the object to be managed.
725 * If the freepointer may overlay the object then the free
726 * pointer is the first word of the object.
672bba3a 727 *
81819f0f
CL
728 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
729 * 0xa5 (POISON_END)
730 *
3b0efdfa 731 * object + s->object_size
81819f0f 732 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 733 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 734 * object_size == inuse.
672bba3a 735 *
81819f0f
CL
736 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
737 * 0xcc (RED_ACTIVE) for objects in use.
738 *
739 * object + s->inuse
672bba3a
CL
740 * Meta data starts here.
741 *
81819f0f
CL
742 * A. Free pointer (if we cannot overwrite object on free)
743 * B. Tracking data for SLAB_STORE_USER
672bba3a 744 * C. Padding to reach required alignment boundary or at mininum
6446faa2 745 * one word if debugging is on to be able to detect writes
672bba3a
CL
746 * before the word boundary.
747 *
748 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
749 *
750 * object + s->size
672bba3a 751 * Nothing is used beyond s->size.
81819f0f 752 *
3b0efdfa 753 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 754 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
755 * may be used with merged slabcaches.
756 */
757
81819f0f
CL
758static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
759{
760 unsigned long off = s->inuse; /* The end of info */
761
762 if (s->offset)
763 /* Freepointer is placed after the object. */
764 off += sizeof(void *);
765
766 if (s->flags & SLAB_STORE_USER)
767 /* We also have user information there */
768 off += 2 * sizeof(struct track);
769
770 if (s->size == off)
771 return 1;
772
24922684
CL
773 return check_bytes_and_report(s, page, p, "Object padding",
774 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
775}
776
39b26464 777/* Check the pad bytes at the end of a slab page */
81819f0f
CL
778static int slab_pad_check(struct kmem_cache *s, struct page *page)
779{
24922684
CL
780 u8 *start;
781 u8 *fault;
782 u8 *end;
783 int length;
784 int remainder;
81819f0f
CL
785
786 if (!(s->flags & SLAB_POISON))
787 return 1;
788
a973e9dd 789 start = page_address(page);
ab9a0f19 790 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
791 end = start + length;
792 remainder = length % s->size;
81819f0f
CL
793 if (!remainder)
794 return 1;
795
a79316c6 796 metadata_access_enable();
79824820 797 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
a79316c6 798 metadata_access_disable();
24922684
CL
799 if (!fault)
800 return 1;
801 while (end > fault && end[-1] == POISON_INUSE)
802 end--;
803
804 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 805 print_section("Padding ", end - remainder, remainder);
24922684 806
8a3d271d 807 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 808 return 0;
81819f0f
CL
809}
810
811static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 812 void *object, u8 val)
81819f0f
CL
813{
814 u8 *p = object;
3b0efdfa 815 u8 *endobject = object + s->object_size;
81819f0f
CL
816
817 if (s->flags & SLAB_RED_ZONE) {
24922684 818 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 819 endobject, val, s->inuse - s->object_size))
81819f0f 820 return 0;
81819f0f 821 } else {
3b0efdfa 822 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 823 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
824 endobject, POISON_INUSE,
825 s->inuse - s->object_size);
3adbefee 826 }
81819f0f
CL
827 }
828
829 if (s->flags & SLAB_POISON) {
f7cb1933 830 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 831 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 832 POISON_FREE, s->object_size - 1) ||
24922684 833 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 834 p + s->object_size - 1, POISON_END, 1)))
81819f0f 835 return 0;
81819f0f
CL
836 /*
837 * check_pad_bytes cleans up on its own.
838 */
839 check_pad_bytes(s, page, p);
840 }
841
f7cb1933 842 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
843 /*
844 * Object and freepointer overlap. Cannot check
845 * freepointer while object is allocated.
846 */
847 return 1;
848
849 /* Check free pointer validity */
850 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
851 object_err(s, page, p, "Freepointer corrupt");
852 /*
9f6c708e 853 * No choice but to zap it and thus lose the remainder
81819f0f 854 * of the free objects in this slab. May cause
672bba3a 855 * another error because the object count is now wrong.
81819f0f 856 */
a973e9dd 857 set_freepointer(s, p, NULL);
81819f0f
CL
858 return 0;
859 }
860 return 1;
861}
862
863static int check_slab(struct kmem_cache *s, struct page *page)
864{
39b26464
CL
865 int maxobj;
866
81819f0f
CL
867 VM_BUG_ON(!irqs_disabled());
868
869 if (!PageSlab(page)) {
24922684 870 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
871 return 0;
872 }
39b26464 873
ab9a0f19 874 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
875 if (page->objects > maxobj) {
876 slab_err(s, page, "objects %u > max %u",
f6edde9c 877 page->objects, maxobj);
39b26464
CL
878 return 0;
879 }
880 if (page->inuse > page->objects) {
24922684 881 slab_err(s, page, "inuse %u > max %u",
f6edde9c 882 page->inuse, page->objects);
81819f0f
CL
883 return 0;
884 }
885 /* Slab_pad_check fixes things up after itself */
886 slab_pad_check(s, page);
887 return 1;
888}
889
890/*
672bba3a
CL
891 * Determine if a certain object on a page is on the freelist. Must hold the
892 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
893 */
894static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
895{
896 int nr = 0;
881db7fb 897 void *fp;
81819f0f 898 void *object = NULL;
f6edde9c 899 int max_objects;
81819f0f 900
881db7fb 901 fp = page->freelist;
39b26464 902 while (fp && nr <= page->objects) {
81819f0f
CL
903 if (fp == search)
904 return 1;
905 if (!check_valid_pointer(s, page, fp)) {
906 if (object) {
907 object_err(s, page, object,
908 "Freechain corrupt");
a973e9dd 909 set_freepointer(s, object, NULL);
81819f0f 910 } else {
24922684 911 slab_err(s, page, "Freepointer corrupt");
a973e9dd 912 page->freelist = NULL;
39b26464 913 page->inuse = page->objects;
24922684 914 slab_fix(s, "Freelist cleared");
81819f0f
CL
915 return 0;
916 }
917 break;
918 }
919 object = fp;
920 fp = get_freepointer(s, object);
921 nr++;
922 }
923
ab9a0f19 924 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
925 if (max_objects > MAX_OBJS_PER_PAGE)
926 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
927
928 if (page->objects != max_objects) {
929 slab_err(s, page, "Wrong number of objects. Found %d but "
930 "should be %d", page->objects, max_objects);
931 page->objects = max_objects;
932 slab_fix(s, "Number of objects adjusted.");
933 }
39b26464 934 if (page->inuse != page->objects - nr) {
70d71228 935 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
936 "counted were %d", page->inuse, page->objects - nr);
937 page->inuse = page->objects - nr;
24922684 938 slab_fix(s, "Object count adjusted.");
81819f0f
CL
939 }
940 return search == NULL;
941}
942
0121c619
CL
943static void trace(struct kmem_cache *s, struct page *page, void *object,
944 int alloc)
3ec09742
CL
945{
946 if (s->flags & SLAB_TRACE) {
f9f58285 947 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
948 s->name,
949 alloc ? "alloc" : "free",
950 object, page->inuse,
951 page->freelist);
952
953 if (!alloc)
d0e0ac97
CG
954 print_section("Object ", (void *)object,
955 s->object_size);
3ec09742
CL
956
957 dump_stack();
958 }
959}
960
643b1138 961/*
672bba3a 962 * Tracking of fully allocated slabs for debugging purposes.
643b1138 963 */
5cc6eee8
CL
964static void add_full(struct kmem_cache *s,
965 struct kmem_cache_node *n, struct page *page)
643b1138 966{
5cc6eee8
CL
967 if (!(s->flags & SLAB_STORE_USER))
968 return;
969
255d0884 970 lockdep_assert_held(&n->list_lock);
643b1138 971 list_add(&page->lru, &n->full);
643b1138
CL
972}
973
c65c1877 974static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 975{
643b1138
CL
976 if (!(s->flags & SLAB_STORE_USER))
977 return;
978
255d0884 979 lockdep_assert_held(&n->list_lock);
643b1138 980 list_del(&page->lru);
643b1138
CL
981}
982
0f389ec6
CL
983/* Tracking of the number of slabs for debugging purposes */
984static inline unsigned long slabs_node(struct kmem_cache *s, int node)
985{
986 struct kmem_cache_node *n = get_node(s, node);
987
988 return atomic_long_read(&n->nr_slabs);
989}
990
26c02cf0
AB
991static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
992{
993 return atomic_long_read(&n->nr_slabs);
994}
995
205ab99d 996static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
997{
998 struct kmem_cache_node *n = get_node(s, node);
999
1000 /*
1001 * May be called early in order to allocate a slab for the
1002 * kmem_cache_node structure. Solve the chicken-egg
1003 * dilemma by deferring the increment of the count during
1004 * bootstrap (see early_kmem_cache_node_alloc).
1005 */
338b2642 1006 if (likely(n)) {
0f389ec6 1007 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1008 atomic_long_add(objects, &n->total_objects);
1009 }
0f389ec6 1010}
205ab99d 1011static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1012{
1013 struct kmem_cache_node *n = get_node(s, node);
1014
1015 atomic_long_dec(&n->nr_slabs);
205ab99d 1016 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1017}
1018
1019/* Object debug checks for alloc/free paths */
3ec09742
CL
1020static void setup_object_debug(struct kmem_cache *s, struct page *page,
1021 void *object)
1022{
1023 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1024 return;
1025
f7cb1933 1026 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1027 init_tracking(s, object);
1028}
1029
d0e0ac97
CG
1030static noinline int alloc_debug_processing(struct kmem_cache *s,
1031 struct page *page,
ce71e27c 1032 void *object, unsigned long addr)
81819f0f
CL
1033{
1034 if (!check_slab(s, page))
1035 goto bad;
1036
81819f0f
CL
1037 if (!check_valid_pointer(s, page, object)) {
1038 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1039 goto bad;
81819f0f
CL
1040 }
1041
f7cb1933 1042 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1043 goto bad;
81819f0f 1044
3ec09742
CL
1045 /* Success perform special debug activities for allocs */
1046 if (s->flags & SLAB_STORE_USER)
1047 set_track(s, object, TRACK_ALLOC, addr);
1048 trace(s, page, object, 1);
f7cb1933 1049 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1050 return 1;
3ec09742 1051
81819f0f
CL
1052bad:
1053 if (PageSlab(page)) {
1054 /*
1055 * If this is a slab page then lets do the best we can
1056 * to avoid issues in the future. Marking all objects
672bba3a 1057 * as used avoids touching the remaining objects.
81819f0f 1058 */
24922684 1059 slab_fix(s, "Marking all objects used");
39b26464 1060 page->inuse = page->objects;
a973e9dd 1061 page->freelist = NULL;
81819f0f
CL
1062 }
1063 return 0;
1064}
1065
19c7ff9e
CL
1066static noinline struct kmem_cache_node *free_debug_processing(
1067 struct kmem_cache *s, struct page *page, void *object,
1068 unsigned long addr, unsigned long *flags)
81819f0f 1069{
19c7ff9e 1070 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
5c2e4bbb 1071
19c7ff9e 1072 spin_lock_irqsave(&n->list_lock, *flags);
881db7fb
CL
1073 slab_lock(page);
1074
81819f0f
CL
1075 if (!check_slab(s, page))
1076 goto fail;
1077
1078 if (!check_valid_pointer(s, page, object)) {
70d71228 1079 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1080 goto fail;
1081 }
1082
1083 if (on_freelist(s, page, object)) {
24922684 1084 object_err(s, page, object, "Object already free");
81819f0f
CL
1085 goto fail;
1086 }
1087
f7cb1933 1088 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1089 goto out;
81819f0f 1090
1b4f59e3 1091 if (unlikely(s != page->slab_cache)) {
3adbefee 1092 if (!PageSlab(page)) {
70d71228
CL
1093 slab_err(s, page, "Attempt to free object(0x%p) "
1094 "outside of slab", object);
1b4f59e3 1095 } else if (!page->slab_cache) {
f9f58285
FF
1096 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1097 object);
70d71228 1098 dump_stack();
06428780 1099 } else
24922684
CL
1100 object_err(s, page, object,
1101 "page slab pointer corrupt.");
81819f0f
CL
1102 goto fail;
1103 }
3ec09742 1104
3ec09742
CL
1105 if (s->flags & SLAB_STORE_USER)
1106 set_track(s, object, TRACK_FREE, addr);
1107 trace(s, page, object, 0);
f7cb1933 1108 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb 1109out:
881db7fb 1110 slab_unlock(page);
19c7ff9e
CL
1111 /*
1112 * Keep node_lock to preserve integrity
1113 * until the object is actually freed
1114 */
1115 return n;
3ec09742 1116
81819f0f 1117fail:
19c7ff9e
CL
1118 slab_unlock(page);
1119 spin_unlock_irqrestore(&n->list_lock, *flags);
24922684 1120 slab_fix(s, "Object at 0x%p not freed", object);
19c7ff9e 1121 return NULL;
81819f0f
CL
1122}
1123
41ecc55b
CL
1124static int __init setup_slub_debug(char *str)
1125{
f0630fff
CL
1126 slub_debug = DEBUG_DEFAULT_FLAGS;
1127 if (*str++ != '=' || !*str)
1128 /*
1129 * No options specified. Switch on full debugging.
1130 */
1131 goto out;
1132
1133 if (*str == ',')
1134 /*
1135 * No options but restriction on slabs. This means full
1136 * debugging for slabs matching a pattern.
1137 */
1138 goto check_slabs;
1139
fa5ec8a1
DR
1140 if (tolower(*str) == 'o') {
1141 /*
1142 * Avoid enabling debugging on caches if its minimum order
1143 * would increase as a result.
1144 */
1145 disable_higher_order_debug = 1;
1146 goto out;
1147 }
1148
f0630fff
CL
1149 slub_debug = 0;
1150 if (*str == '-')
1151 /*
1152 * Switch off all debugging measures.
1153 */
1154 goto out;
1155
1156 /*
1157 * Determine which debug features should be switched on
1158 */
06428780 1159 for (; *str && *str != ','; str++) {
f0630fff
CL
1160 switch (tolower(*str)) {
1161 case 'f':
1162 slub_debug |= SLAB_DEBUG_FREE;
1163 break;
1164 case 'z':
1165 slub_debug |= SLAB_RED_ZONE;
1166 break;
1167 case 'p':
1168 slub_debug |= SLAB_POISON;
1169 break;
1170 case 'u':
1171 slub_debug |= SLAB_STORE_USER;
1172 break;
1173 case 't':
1174 slub_debug |= SLAB_TRACE;
1175 break;
4c13dd3b
DM
1176 case 'a':
1177 slub_debug |= SLAB_FAILSLAB;
1178 break;
f0630fff 1179 default:
f9f58285
FF
1180 pr_err("slub_debug option '%c' unknown. skipped\n",
1181 *str);
f0630fff 1182 }
41ecc55b
CL
1183 }
1184
f0630fff 1185check_slabs:
41ecc55b
CL
1186 if (*str == ',')
1187 slub_debug_slabs = str + 1;
f0630fff 1188out:
41ecc55b
CL
1189 return 1;
1190}
1191
1192__setup("slub_debug", setup_slub_debug);
1193
423c929c 1194unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1195 unsigned long flags, const char *name,
51cc5068 1196 void (*ctor)(void *))
41ecc55b
CL
1197{
1198 /*
e153362a 1199 * Enable debugging if selected on the kernel commandline.
41ecc55b 1200 */
c6f58d9b
CL
1201 if (slub_debug && (!slub_debug_slabs || (name &&
1202 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1203 flags |= slub_debug;
ba0268a8
CL
1204
1205 return flags;
41ecc55b
CL
1206}
1207#else
3ec09742
CL
1208static inline void setup_object_debug(struct kmem_cache *s,
1209 struct page *page, void *object) {}
41ecc55b 1210
3ec09742 1211static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1212 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1213
19c7ff9e
CL
1214static inline struct kmem_cache_node *free_debug_processing(
1215 struct kmem_cache *s, struct page *page, void *object,
1216 unsigned long addr, unsigned long *flags) { return NULL; }
41ecc55b 1217
41ecc55b
CL
1218static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1219 { return 1; }
1220static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1221 void *object, u8 val) { return 1; }
5cc6eee8
CL
1222static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1223 struct page *page) {}
c65c1877
PZ
1224static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1225 struct page *page) {}
423c929c 1226unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1227 unsigned long flags, const char *name,
51cc5068 1228 void (*ctor)(void *))
ba0268a8
CL
1229{
1230 return flags;
1231}
41ecc55b 1232#define slub_debug 0
0f389ec6 1233
fdaa45e9
IM
1234#define disable_higher_order_debug 0
1235
0f389ec6
CL
1236static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1237 { return 0; }
26c02cf0
AB
1238static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1239 { return 0; }
205ab99d
CL
1240static inline void inc_slabs_node(struct kmem_cache *s, int node,
1241 int objects) {}
1242static inline void dec_slabs_node(struct kmem_cache *s, int node,
1243 int objects) {}
7d550c56 1244
02e72cc6
AR
1245#endif /* CONFIG_SLUB_DEBUG */
1246
1247/*
1248 * Hooks for other subsystems that check memory allocations. In a typical
1249 * production configuration these hooks all should produce no code at all.
1250 */
d56791b3
RB
1251static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1252{
1253 kmemleak_alloc(ptr, size, 1, flags);
0316bec2 1254 kasan_kmalloc_large(ptr, size);
d56791b3
RB
1255}
1256
1257static inline void kfree_hook(const void *x)
1258{
1259 kmemleak_free(x);
0316bec2 1260 kasan_kfree_large(x);
d56791b3
RB
1261}
1262
8135be5a
VD
1263static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
1264 gfp_t flags)
02e72cc6
AR
1265{
1266 flags &= gfp_allowed_mask;
1267 lockdep_trace_alloc(flags);
1268 might_sleep_if(flags & __GFP_WAIT);
7d550c56 1269
8135be5a
VD
1270 if (should_failslab(s->object_size, flags, s->flags))
1271 return NULL;
1272
1273 return memcg_kmem_get_cache(s, flags);
02e72cc6
AR
1274}
1275
1276static inline void slab_post_alloc_hook(struct kmem_cache *s,
1277 gfp_t flags, void *object)
d56791b3 1278{
02e72cc6
AR
1279 flags &= gfp_allowed_mask;
1280 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1281 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
8135be5a 1282 memcg_kmem_put_cache(s);
0316bec2 1283 kasan_slab_alloc(s, object);
d56791b3 1284}
7d550c56 1285
d56791b3
RB
1286static inline void slab_free_hook(struct kmem_cache *s, void *x)
1287{
1288 kmemleak_free_recursive(x, s->flags);
7d550c56 1289
02e72cc6
AR
1290 /*
1291 * Trouble is that we may no longer disable interrupts in the fast path
1292 * So in order to make the debug calls that expect irqs to be
1293 * disabled we need to disable interrupts temporarily.
1294 */
1295#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1296 {
1297 unsigned long flags;
1298
1299 local_irq_save(flags);
1300 kmemcheck_slab_free(s, x, s->object_size);
1301 debug_check_no_locks_freed(x, s->object_size);
1302 local_irq_restore(flags);
1303 }
1304#endif
1305 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1306 debug_check_no_obj_freed(x, s->object_size);
0316bec2
AR
1307
1308 kasan_slab_free(s, x);
02e72cc6 1309}
205ab99d 1310
81819f0f
CL
1311/*
1312 * Slab allocation and freeing
1313 */
5dfb4175
VD
1314static inline struct page *alloc_slab_page(struct kmem_cache *s,
1315 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1316{
5dfb4175 1317 struct page *page;
65c3376a
CL
1318 int order = oo_order(oo);
1319
b1eeab67
VN
1320 flags |= __GFP_NOTRACK;
1321
5dfb4175
VD
1322 if (memcg_charge_slab(s, flags, order))
1323 return NULL;
1324
2154a336 1325 if (node == NUMA_NO_NODE)
5dfb4175 1326 page = alloc_pages(flags, order);
65c3376a 1327 else
5dfb4175
VD
1328 page = alloc_pages_exact_node(node, flags, order);
1329
1330 if (!page)
1331 memcg_uncharge_slab(s, order);
1332
1333 return page;
65c3376a
CL
1334}
1335
81819f0f
CL
1336static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1337{
06428780 1338 struct page *page;
834f3d11 1339 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1340 gfp_t alloc_gfp;
81819f0f 1341
7e0528da
CL
1342 flags &= gfp_allowed_mask;
1343
1344 if (flags & __GFP_WAIT)
1345 local_irq_enable();
1346
b7a49f0d 1347 flags |= s->allocflags;
e12ba74d 1348
ba52270d
PE
1349 /*
1350 * Let the initial higher-order allocation fail under memory pressure
1351 * so we fall-back to the minimum order allocation.
1352 */
1353 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1354
5dfb4175 1355 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1356 if (unlikely(!page)) {
1357 oo = s->min;
80c3a998 1358 alloc_gfp = flags;
65c3376a
CL
1359 /*
1360 * Allocation may have failed due to fragmentation.
1361 * Try a lower order alloc if possible
1362 */
5dfb4175 1363 page = alloc_slab_page(s, alloc_gfp, node, oo);
81819f0f 1364
7e0528da
CL
1365 if (page)
1366 stat(s, ORDER_FALLBACK);
65c3376a 1367 }
5a896d9e 1368
737b719e 1369 if (kmemcheck_enabled && page
5086c389 1370 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1371 int pages = 1 << oo_order(oo);
1372
80c3a998 1373 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
b1eeab67
VN
1374
1375 /*
1376 * Objects from caches that have a constructor don't get
1377 * cleared when they're allocated, so we need to do it here.
1378 */
1379 if (s->ctor)
1380 kmemcheck_mark_uninitialized_pages(page, pages);
1381 else
1382 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1383 }
1384
737b719e
DR
1385 if (flags & __GFP_WAIT)
1386 local_irq_disable();
1387 if (!page)
1388 return NULL;
1389
834f3d11 1390 page->objects = oo_objects(oo);
81819f0f
CL
1391 mod_zone_page_state(page_zone(page),
1392 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1393 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1394 1 << oo_order(oo));
81819f0f
CL
1395
1396 return page;
1397}
1398
1399static void setup_object(struct kmem_cache *s, struct page *page,
1400 void *object)
1401{
3ec09742 1402 setup_object_debug(s, page, object);
0316bec2
AR
1403 if (unlikely(s->ctor)) {
1404 kasan_unpoison_object_data(s, object);
51cc5068 1405 s->ctor(object);
0316bec2
AR
1406 kasan_poison_object_data(s, object);
1407 }
81819f0f
CL
1408}
1409
1410static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1411{
1412 struct page *page;
81819f0f 1413 void *start;
81819f0f 1414 void *p;
1f458cbf 1415 int order;
54266640 1416 int idx;
81819f0f 1417
c871ac4e
AM
1418 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1419 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1420 BUG();
1421 }
81819f0f 1422
6cb06229
CL
1423 page = allocate_slab(s,
1424 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1425 if (!page)
1426 goto out;
1427
1f458cbf 1428 order = compound_order(page);
205ab99d 1429 inc_slabs_node(s, page_to_nid(page), page->objects);
1b4f59e3 1430 page->slab_cache = s;
c03f94cc 1431 __SetPageSlab(page);
072bb0aa
MG
1432 if (page->pfmemalloc)
1433 SetPageSlabPfmemalloc(page);
81819f0f
CL
1434
1435 start = page_address(page);
81819f0f
CL
1436
1437 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1438 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f 1439
0316bec2
AR
1440 kasan_poison_slab(page);
1441
54266640
WY
1442 for_each_object_idx(p, idx, s, start, page->objects) {
1443 setup_object(s, page, p);
1444 if (likely(idx < page->objects))
1445 set_freepointer(s, p, p + s->size);
1446 else
1447 set_freepointer(s, p, NULL);
81819f0f 1448 }
81819f0f
CL
1449
1450 page->freelist = start;
e6e82ea1 1451 page->inuse = page->objects;
8cb0a506 1452 page->frozen = 1;
81819f0f 1453out:
81819f0f
CL
1454 return page;
1455}
1456
1457static void __free_slab(struct kmem_cache *s, struct page *page)
1458{
834f3d11
CL
1459 int order = compound_order(page);
1460 int pages = 1 << order;
81819f0f 1461
af537b0a 1462 if (kmem_cache_debug(s)) {
81819f0f
CL
1463 void *p;
1464
1465 slab_pad_check(s, page);
224a88be
CL
1466 for_each_object(p, s, page_address(page),
1467 page->objects)
f7cb1933 1468 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1469 }
1470
b1eeab67 1471 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1472
81819f0f
CL
1473 mod_zone_page_state(page_zone(page),
1474 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1475 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1476 -pages);
81819f0f 1477
072bb0aa 1478 __ClearPageSlabPfmemalloc(page);
49bd5221 1479 __ClearPageSlab(page);
1f458cbf 1480
22b751c3 1481 page_mapcount_reset(page);
1eb5ac64
NP
1482 if (current->reclaim_state)
1483 current->reclaim_state->reclaimed_slab += pages;
5dfb4175
VD
1484 __free_pages(page, order);
1485 memcg_uncharge_slab(s, order);
81819f0f
CL
1486}
1487
da9a638c
LJ
1488#define need_reserve_slab_rcu \
1489 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1490
81819f0f
CL
1491static void rcu_free_slab(struct rcu_head *h)
1492{
1493 struct page *page;
1494
da9a638c
LJ
1495 if (need_reserve_slab_rcu)
1496 page = virt_to_head_page(h);
1497 else
1498 page = container_of((struct list_head *)h, struct page, lru);
1499
1b4f59e3 1500 __free_slab(page->slab_cache, page);
81819f0f
CL
1501}
1502
1503static void free_slab(struct kmem_cache *s, struct page *page)
1504{
1505 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1506 struct rcu_head *head;
1507
1508 if (need_reserve_slab_rcu) {
1509 int order = compound_order(page);
1510 int offset = (PAGE_SIZE << order) - s->reserved;
1511
1512 VM_BUG_ON(s->reserved != sizeof(*head));
1513 head = page_address(page) + offset;
1514 } else {
1515 /*
1516 * RCU free overloads the RCU head over the LRU
1517 */
1518 head = (void *)&page->lru;
1519 }
81819f0f
CL
1520
1521 call_rcu(head, rcu_free_slab);
1522 } else
1523 __free_slab(s, page);
1524}
1525
1526static void discard_slab(struct kmem_cache *s, struct page *page)
1527{
205ab99d 1528 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1529 free_slab(s, page);
1530}
1531
1532/*
5cc6eee8 1533 * Management of partially allocated slabs.
81819f0f 1534 */
1e4dd946
SR
1535static inline void
1536__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1537{
e95eed57 1538 n->nr_partial++;
136333d1 1539 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1540 list_add_tail(&page->lru, &n->partial);
1541 else
1542 list_add(&page->lru, &n->partial);
81819f0f
CL
1543}
1544
1e4dd946
SR
1545static inline void add_partial(struct kmem_cache_node *n,
1546 struct page *page, int tail)
62e346a8 1547{
c65c1877 1548 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1549 __add_partial(n, page, tail);
1550}
c65c1877 1551
1e4dd946
SR
1552static inline void
1553__remove_partial(struct kmem_cache_node *n, struct page *page)
1554{
62e346a8
CL
1555 list_del(&page->lru);
1556 n->nr_partial--;
1557}
1558
1e4dd946
SR
1559static inline void remove_partial(struct kmem_cache_node *n,
1560 struct page *page)
1561{
1562 lockdep_assert_held(&n->list_lock);
1563 __remove_partial(n, page);
1564}
1565
81819f0f 1566/*
7ced3719
CL
1567 * Remove slab from the partial list, freeze it and
1568 * return the pointer to the freelist.
81819f0f 1569 *
497b66f2 1570 * Returns a list of objects or NULL if it fails.
81819f0f 1571 */
497b66f2 1572static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1573 struct kmem_cache_node *n, struct page *page,
633b0764 1574 int mode, int *objects)
81819f0f 1575{
2cfb7455
CL
1576 void *freelist;
1577 unsigned long counters;
1578 struct page new;
1579
c65c1877
PZ
1580 lockdep_assert_held(&n->list_lock);
1581
2cfb7455
CL
1582 /*
1583 * Zap the freelist and set the frozen bit.
1584 * The old freelist is the list of objects for the
1585 * per cpu allocation list.
1586 */
7ced3719
CL
1587 freelist = page->freelist;
1588 counters = page->counters;
1589 new.counters = counters;
633b0764 1590 *objects = new.objects - new.inuse;
23910c50 1591 if (mode) {
7ced3719 1592 new.inuse = page->objects;
23910c50
PE
1593 new.freelist = NULL;
1594 } else {
1595 new.freelist = freelist;
1596 }
2cfb7455 1597
a0132ac0 1598 VM_BUG_ON(new.frozen);
7ced3719 1599 new.frozen = 1;
2cfb7455 1600
7ced3719 1601 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1602 freelist, counters,
02d7633f 1603 new.freelist, new.counters,
7ced3719 1604 "acquire_slab"))
7ced3719 1605 return NULL;
2cfb7455
CL
1606
1607 remove_partial(n, page);
7ced3719 1608 WARN_ON(!freelist);
49e22585 1609 return freelist;
81819f0f
CL
1610}
1611
633b0764 1612static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1613static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1614
81819f0f 1615/*
672bba3a 1616 * Try to allocate a partial slab from a specific node.
81819f0f 1617 */
8ba00bb6
JK
1618static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1619 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1620{
49e22585
CL
1621 struct page *page, *page2;
1622 void *object = NULL;
633b0764
JK
1623 int available = 0;
1624 int objects;
81819f0f
CL
1625
1626 /*
1627 * Racy check. If we mistakenly see no partial slabs then we
1628 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1629 * partial slab and there is none available then get_partials()
1630 * will return NULL.
81819f0f
CL
1631 */
1632 if (!n || !n->nr_partial)
1633 return NULL;
1634
1635 spin_lock(&n->list_lock);
49e22585 1636 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1637 void *t;
49e22585 1638
8ba00bb6
JK
1639 if (!pfmemalloc_match(page, flags))
1640 continue;
1641
633b0764 1642 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1643 if (!t)
1644 break;
1645
633b0764 1646 available += objects;
12d79634 1647 if (!object) {
49e22585 1648 c->page = page;
49e22585 1649 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1650 object = t;
49e22585 1651 } else {
633b0764 1652 put_cpu_partial(s, page, 0);
8028dcea 1653 stat(s, CPU_PARTIAL_NODE);
49e22585 1654 }
345c905d
JK
1655 if (!kmem_cache_has_cpu_partial(s)
1656 || available > s->cpu_partial / 2)
49e22585
CL
1657 break;
1658
497b66f2 1659 }
81819f0f 1660 spin_unlock(&n->list_lock);
497b66f2 1661 return object;
81819f0f
CL
1662}
1663
1664/*
672bba3a 1665 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1666 */
de3ec035 1667static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1668 struct kmem_cache_cpu *c)
81819f0f
CL
1669{
1670#ifdef CONFIG_NUMA
1671 struct zonelist *zonelist;
dd1a239f 1672 struct zoneref *z;
54a6eb5c
MG
1673 struct zone *zone;
1674 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1675 void *object;
cc9a6c87 1676 unsigned int cpuset_mems_cookie;
81819f0f
CL
1677
1678 /*
672bba3a
CL
1679 * The defrag ratio allows a configuration of the tradeoffs between
1680 * inter node defragmentation and node local allocations. A lower
1681 * defrag_ratio increases the tendency to do local allocations
1682 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1683 *
672bba3a
CL
1684 * If the defrag_ratio is set to 0 then kmalloc() always
1685 * returns node local objects. If the ratio is higher then kmalloc()
1686 * may return off node objects because partial slabs are obtained
1687 * from other nodes and filled up.
81819f0f 1688 *
6446faa2 1689 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1690 * defrag_ratio = 1000) then every (well almost) allocation will
1691 * first attempt to defrag slab caches on other nodes. This means
1692 * scanning over all nodes to look for partial slabs which may be
1693 * expensive if we do it every time we are trying to find a slab
1694 * with available objects.
81819f0f 1695 */
9824601e
CL
1696 if (!s->remote_node_defrag_ratio ||
1697 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1698 return NULL;
1699
cc9a6c87 1700 do {
d26914d1 1701 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1702 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1703 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1704 struct kmem_cache_node *n;
1705
1706 n = get_node(s, zone_to_nid(zone));
1707
dee2f8aa 1708 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1709 n->nr_partial > s->min_partial) {
8ba00bb6 1710 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1711 if (object) {
1712 /*
d26914d1
MG
1713 * Don't check read_mems_allowed_retry()
1714 * here - if mems_allowed was updated in
1715 * parallel, that was a harmless race
1716 * between allocation and the cpuset
1717 * update
cc9a6c87 1718 */
cc9a6c87
MG
1719 return object;
1720 }
c0ff7453 1721 }
81819f0f 1722 }
d26914d1 1723 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1724#endif
1725 return NULL;
1726}
1727
1728/*
1729 * Get a partial page, lock it and return it.
1730 */
497b66f2 1731static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1732 struct kmem_cache_cpu *c)
81819f0f 1733{
497b66f2 1734 void *object;
a561ce00
JK
1735 int searchnode = node;
1736
1737 if (node == NUMA_NO_NODE)
1738 searchnode = numa_mem_id();
1739 else if (!node_present_pages(node))
1740 searchnode = node_to_mem_node(node);
81819f0f 1741
8ba00bb6 1742 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1743 if (object || node != NUMA_NO_NODE)
1744 return object;
81819f0f 1745
acd19fd1 1746 return get_any_partial(s, flags, c);
81819f0f
CL
1747}
1748
8a5ec0ba
CL
1749#ifdef CONFIG_PREEMPT
1750/*
1751 * Calculate the next globally unique transaction for disambiguiation
1752 * during cmpxchg. The transactions start with the cpu number and are then
1753 * incremented by CONFIG_NR_CPUS.
1754 */
1755#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1756#else
1757/*
1758 * No preemption supported therefore also no need to check for
1759 * different cpus.
1760 */
1761#define TID_STEP 1
1762#endif
1763
1764static inline unsigned long next_tid(unsigned long tid)
1765{
1766 return tid + TID_STEP;
1767}
1768
1769static inline unsigned int tid_to_cpu(unsigned long tid)
1770{
1771 return tid % TID_STEP;
1772}
1773
1774static inline unsigned long tid_to_event(unsigned long tid)
1775{
1776 return tid / TID_STEP;
1777}
1778
1779static inline unsigned int init_tid(int cpu)
1780{
1781 return cpu;
1782}
1783
1784static inline void note_cmpxchg_failure(const char *n,
1785 const struct kmem_cache *s, unsigned long tid)
1786{
1787#ifdef SLUB_DEBUG_CMPXCHG
1788 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1789
f9f58285 1790 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
1791
1792#ifdef CONFIG_PREEMPT
1793 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 1794 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
1795 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1796 else
1797#endif
1798 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 1799 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
1800 tid_to_event(tid), tid_to_event(actual_tid));
1801 else
f9f58285 1802 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
1803 actual_tid, tid, next_tid(tid));
1804#endif
4fdccdfb 1805 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1806}
1807
788e1aad 1808static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1809{
8a5ec0ba
CL
1810 int cpu;
1811
1812 for_each_possible_cpu(cpu)
1813 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1814}
2cfb7455 1815
81819f0f
CL
1816/*
1817 * Remove the cpu slab
1818 */
d0e0ac97
CG
1819static void deactivate_slab(struct kmem_cache *s, struct page *page,
1820 void *freelist)
81819f0f 1821{
2cfb7455 1822 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1823 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1824 int lock = 0;
1825 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1826 void *nextfree;
136333d1 1827 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1828 struct page new;
1829 struct page old;
1830
1831 if (page->freelist) {
84e554e6 1832 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1833 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1834 }
1835
894b8788 1836 /*
2cfb7455
CL
1837 * Stage one: Free all available per cpu objects back
1838 * to the page freelist while it is still frozen. Leave the
1839 * last one.
1840 *
1841 * There is no need to take the list->lock because the page
1842 * is still frozen.
1843 */
1844 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1845 void *prior;
1846 unsigned long counters;
1847
1848 do {
1849 prior = page->freelist;
1850 counters = page->counters;
1851 set_freepointer(s, freelist, prior);
1852 new.counters = counters;
1853 new.inuse--;
a0132ac0 1854 VM_BUG_ON(!new.frozen);
2cfb7455 1855
1d07171c 1856 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1857 prior, counters,
1858 freelist, new.counters,
1859 "drain percpu freelist"));
1860
1861 freelist = nextfree;
1862 }
1863
894b8788 1864 /*
2cfb7455
CL
1865 * Stage two: Ensure that the page is unfrozen while the
1866 * list presence reflects the actual number of objects
1867 * during unfreeze.
1868 *
1869 * We setup the list membership and then perform a cmpxchg
1870 * with the count. If there is a mismatch then the page
1871 * is not unfrozen but the page is on the wrong list.
1872 *
1873 * Then we restart the process which may have to remove
1874 * the page from the list that we just put it on again
1875 * because the number of objects in the slab may have
1876 * changed.
894b8788 1877 */
2cfb7455 1878redo:
894b8788 1879
2cfb7455
CL
1880 old.freelist = page->freelist;
1881 old.counters = page->counters;
a0132ac0 1882 VM_BUG_ON(!old.frozen);
7c2e132c 1883
2cfb7455
CL
1884 /* Determine target state of the slab */
1885 new.counters = old.counters;
1886 if (freelist) {
1887 new.inuse--;
1888 set_freepointer(s, freelist, old.freelist);
1889 new.freelist = freelist;
1890 } else
1891 new.freelist = old.freelist;
1892
1893 new.frozen = 0;
1894
8a5b20ae 1895 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
1896 m = M_FREE;
1897 else if (new.freelist) {
1898 m = M_PARTIAL;
1899 if (!lock) {
1900 lock = 1;
1901 /*
1902 * Taking the spinlock removes the possiblity
1903 * that acquire_slab() will see a slab page that
1904 * is frozen
1905 */
1906 spin_lock(&n->list_lock);
1907 }
1908 } else {
1909 m = M_FULL;
1910 if (kmem_cache_debug(s) && !lock) {
1911 lock = 1;
1912 /*
1913 * This also ensures that the scanning of full
1914 * slabs from diagnostic functions will not see
1915 * any frozen slabs.
1916 */
1917 spin_lock(&n->list_lock);
1918 }
1919 }
1920
1921 if (l != m) {
1922
1923 if (l == M_PARTIAL)
1924
1925 remove_partial(n, page);
1926
1927 else if (l == M_FULL)
894b8788 1928
c65c1877 1929 remove_full(s, n, page);
2cfb7455
CL
1930
1931 if (m == M_PARTIAL) {
1932
1933 add_partial(n, page, tail);
136333d1 1934 stat(s, tail);
2cfb7455
CL
1935
1936 } else if (m == M_FULL) {
894b8788 1937
2cfb7455
CL
1938 stat(s, DEACTIVATE_FULL);
1939 add_full(s, n, page);
1940
1941 }
1942 }
1943
1944 l = m;
1d07171c 1945 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1946 old.freelist, old.counters,
1947 new.freelist, new.counters,
1948 "unfreezing slab"))
1949 goto redo;
1950
2cfb7455
CL
1951 if (lock)
1952 spin_unlock(&n->list_lock);
1953
1954 if (m == M_FREE) {
1955 stat(s, DEACTIVATE_EMPTY);
1956 discard_slab(s, page);
1957 stat(s, FREE_SLAB);
894b8788 1958 }
81819f0f
CL
1959}
1960
d24ac77f
JK
1961/*
1962 * Unfreeze all the cpu partial slabs.
1963 *
59a09917
CL
1964 * This function must be called with interrupts disabled
1965 * for the cpu using c (or some other guarantee must be there
1966 * to guarantee no concurrent accesses).
d24ac77f 1967 */
59a09917
CL
1968static void unfreeze_partials(struct kmem_cache *s,
1969 struct kmem_cache_cpu *c)
49e22585 1970{
345c905d 1971#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 1972 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 1973 struct page *page, *discard_page = NULL;
49e22585
CL
1974
1975 while ((page = c->partial)) {
49e22585
CL
1976 struct page new;
1977 struct page old;
1978
1979 c->partial = page->next;
43d77867
JK
1980
1981 n2 = get_node(s, page_to_nid(page));
1982 if (n != n2) {
1983 if (n)
1984 spin_unlock(&n->list_lock);
1985
1986 n = n2;
1987 spin_lock(&n->list_lock);
1988 }
49e22585
CL
1989
1990 do {
1991
1992 old.freelist = page->freelist;
1993 old.counters = page->counters;
a0132ac0 1994 VM_BUG_ON(!old.frozen);
49e22585
CL
1995
1996 new.counters = old.counters;
1997 new.freelist = old.freelist;
1998
1999 new.frozen = 0;
2000
d24ac77f 2001 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2002 old.freelist, old.counters,
2003 new.freelist, new.counters,
2004 "unfreezing slab"));
2005
8a5b20ae 2006 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2007 page->next = discard_page;
2008 discard_page = page;
43d77867
JK
2009 } else {
2010 add_partial(n, page, DEACTIVATE_TO_TAIL);
2011 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2012 }
2013 }
2014
2015 if (n)
2016 spin_unlock(&n->list_lock);
9ada1934
SL
2017
2018 while (discard_page) {
2019 page = discard_page;
2020 discard_page = discard_page->next;
2021
2022 stat(s, DEACTIVATE_EMPTY);
2023 discard_slab(s, page);
2024 stat(s, FREE_SLAB);
2025 }
345c905d 2026#endif
49e22585
CL
2027}
2028
2029/*
2030 * Put a page that was just frozen (in __slab_free) into a partial page
2031 * slot if available. This is done without interrupts disabled and without
2032 * preemption disabled. The cmpxchg is racy and may put the partial page
2033 * onto a random cpus partial slot.
2034 *
2035 * If we did not find a slot then simply move all the partials to the
2036 * per node partial list.
2037 */
633b0764 2038static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2039{
345c905d 2040#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2041 struct page *oldpage;
2042 int pages;
2043 int pobjects;
2044
d6e0b7fa 2045 preempt_disable();
49e22585
CL
2046 do {
2047 pages = 0;
2048 pobjects = 0;
2049 oldpage = this_cpu_read(s->cpu_slab->partial);
2050
2051 if (oldpage) {
2052 pobjects = oldpage->pobjects;
2053 pages = oldpage->pages;
2054 if (drain && pobjects > s->cpu_partial) {
2055 unsigned long flags;
2056 /*
2057 * partial array is full. Move the existing
2058 * set to the per node partial list.
2059 */
2060 local_irq_save(flags);
59a09917 2061 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2062 local_irq_restore(flags);
e24fc410 2063 oldpage = NULL;
49e22585
CL
2064 pobjects = 0;
2065 pages = 0;
8028dcea 2066 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2067 }
2068 }
2069
2070 pages++;
2071 pobjects += page->objects - page->inuse;
2072
2073 page->pages = pages;
2074 page->pobjects = pobjects;
2075 page->next = oldpage;
2076
d0e0ac97
CG
2077 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2078 != oldpage);
d6e0b7fa
VD
2079 if (unlikely(!s->cpu_partial)) {
2080 unsigned long flags;
2081
2082 local_irq_save(flags);
2083 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2084 local_irq_restore(flags);
2085 }
2086 preempt_enable();
345c905d 2087#endif
49e22585
CL
2088}
2089
dfb4f096 2090static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2091{
84e554e6 2092 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
2093 deactivate_slab(s, c->page, c->freelist);
2094
2095 c->tid = next_tid(c->tid);
2096 c->page = NULL;
2097 c->freelist = NULL;
81819f0f
CL
2098}
2099
2100/*
2101 * Flush cpu slab.
6446faa2 2102 *
81819f0f
CL
2103 * Called from IPI handler with interrupts disabled.
2104 */
0c710013 2105static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2106{
9dfc6e68 2107 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2108
49e22585
CL
2109 if (likely(c)) {
2110 if (c->page)
2111 flush_slab(s, c);
2112
59a09917 2113 unfreeze_partials(s, c);
49e22585 2114 }
81819f0f
CL
2115}
2116
2117static void flush_cpu_slab(void *d)
2118{
2119 struct kmem_cache *s = d;
81819f0f 2120
dfb4f096 2121 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2122}
2123
a8364d55
GBY
2124static bool has_cpu_slab(int cpu, void *info)
2125{
2126 struct kmem_cache *s = info;
2127 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2128
02e1a9cd 2129 return c->page || c->partial;
a8364d55
GBY
2130}
2131
81819f0f
CL
2132static void flush_all(struct kmem_cache *s)
2133{
a8364d55 2134 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2135}
2136
dfb4f096
CL
2137/*
2138 * Check if the objects in a per cpu structure fit numa
2139 * locality expectations.
2140 */
57d437d2 2141static inline int node_match(struct page *page, int node)
dfb4f096
CL
2142{
2143#ifdef CONFIG_NUMA
4d7868e6 2144 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2145 return 0;
2146#endif
2147 return 1;
2148}
2149
9a02d699 2150#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2151static int count_free(struct page *page)
2152{
2153 return page->objects - page->inuse;
2154}
2155
9a02d699
DR
2156static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2157{
2158 return atomic_long_read(&n->total_objects);
2159}
2160#endif /* CONFIG_SLUB_DEBUG */
2161
2162#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2163static unsigned long count_partial(struct kmem_cache_node *n,
2164 int (*get_count)(struct page *))
2165{
2166 unsigned long flags;
2167 unsigned long x = 0;
2168 struct page *page;
2169
2170 spin_lock_irqsave(&n->list_lock, flags);
2171 list_for_each_entry(page, &n->partial, lru)
2172 x += get_count(page);
2173 spin_unlock_irqrestore(&n->list_lock, flags);
2174 return x;
2175}
9a02d699 2176#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2177
781b2ba6
PE
2178static noinline void
2179slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2180{
9a02d699
DR
2181#ifdef CONFIG_SLUB_DEBUG
2182 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2183 DEFAULT_RATELIMIT_BURST);
781b2ba6 2184 int node;
fa45dc25 2185 struct kmem_cache_node *n;
781b2ba6 2186
9a02d699
DR
2187 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2188 return;
2189
f9f58285 2190 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
781b2ba6 2191 nid, gfpflags);
f9f58285
FF
2192 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2193 s->name, s->object_size, s->size, oo_order(s->oo),
2194 oo_order(s->min));
781b2ba6 2195
3b0efdfa 2196 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2197 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2198 s->name);
fa5ec8a1 2199
fa45dc25 2200 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2201 unsigned long nr_slabs;
2202 unsigned long nr_objs;
2203 unsigned long nr_free;
2204
26c02cf0
AB
2205 nr_free = count_partial(n, count_free);
2206 nr_slabs = node_nr_slabs(n);
2207 nr_objs = node_nr_objs(n);
781b2ba6 2208
f9f58285 2209 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2210 node, nr_slabs, nr_objs, nr_free);
2211 }
9a02d699 2212#endif
781b2ba6
PE
2213}
2214
497b66f2
CL
2215static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2216 int node, struct kmem_cache_cpu **pc)
2217{
6faa6833 2218 void *freelist;
188fd063
CL
2219 struct kmem_cache_cpu *c = *pc;
2220 struct page *page;
497b66f2 2221
188fd063 2222 freelist = get_partial(s, flags, node, c);
497b66f2 2223
188fd063
CL
2224 if (freelist)
2225 return freelist;
2226
2227 page = new_slab(s, flags, node);
497b66f2 2228 if (page) {
7c8e0181 2229 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2230 if (c->page)
2231 flush_slab(s, c);
2232
2233 /*
2234 * No other reference to the page yet so we can
2235 * muck around with it freely without cmpxchg
2236 */
6faa6833 2237 freelist = page->freelist;
497b66f2
CL
2238 page->freelist = NULL;
2239
2240 stat(s, ALLOC_SLAB);
497b66f2
CL
2241 c->page = page;
2242 *pc = c;
2243 } else
6faa6833 2244 freelist = NULL;
497b66f2 2245
6faa6833 2246 return freelist;
497b66f2
CL
2247}
2248
072bb0aa
MG
2249static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2250{
2251 if (unlikely(PageSlabPfmemalloc(page)))
2252 return gfp_pfmemalloc_allowed(gfpflags);
2253
2254 return true;
2255}
2256
213eeb9f 2257/*
d0e0ac97
CG
2258 * Check the page->freelist of a page and either transfer the freelist to the
2259 * per cpu freelist or deactivate the page.
213eeb9f
CL
2260 *
2261 * The page is still frozen if the return value is not NULL.
2262 *
2263 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2264 *
2265 * This function must be called with interrupt disabled.
213eeb9f
CL
2266 */
2267static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2268{
2269 struct page new;
2270 unsigned long counters;
2271 void *freelist;
2272
2273 do {
2274 freelist = page->freelist;
2275 counters = page->counters;
6faa6833 2276
213eeb9f 2277 new.counters = counters;
a0132ac0 2278 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2279
2280 new.inuse = page->objects;
2281 new.frozen = freelist != NULL;
2282
d24ac77f 2283 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2284 freelist, counters,
2285 NULL, new.counters,
2286 "get_freelist"));
2287
2288 return freelist;
2289}
2290
81819f0f 2291/*
894b8788
CL
2292 * Slow path. The lockless freelist is empty or we need to perform
2293 * debugging duties.
2294 *
894b8788
CL
2295 * Processing is still very fast if new objects have been freed to the
2296 * regular freelist. In that case we simply take over the regular freelist
2297 * as the lockless freelist and zap the regular freelist.
81819f0f 2298 *
894b8788
CL
2299 * If that is not working then we fall back to the partial lists. We take the
2300 * first element of the freelist as the object to allocate now and move the
2301 * rest of the freelist to the lockless freelist.
81819f0f 2302 *
894b8788 2303 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2304 * we need to allocate a new slab. This is the slowest path since it involves
2305 * a call to the page allocator and the setup of a new slab.
81819f0f 2306 */
ce71e27c
EGM
2307static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2308 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2309{
6faa6833 2310 void *freelist;
f6e7def7 2311 struct page *page;
8a5ec0ba
CL
2312 unsigned long flags;
2313
2314 local_irq_save(flags);
2315#ifdef CONFIG_PREEMPT
2316 /*
2317 * We may have been preempted and rescheduled on a different
2318 * cpu before disabling interrupts. Need to reload cpu area
2319 * pointer.
2320 */
2321 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2322#endif
81819f0f 2323
f6e7def7
CL
2324 page = c->page;
2325 if (!page)
81819f0f 2326 goto new_slab;
49e22585 2327redo:
6faa6833 2328
57d437d2 2329 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2330 int searchnode = node;
2331
2332 if (node != NUMA_NO_NODE && !node_present_pages(node))
2333 searchnode = node_to_mem_node(node);
2334
2335 if (unlikely(!node_match(page, searchnode))) {
2336 stat(s, ALLOC_NODE_MISMATCH);
2337 deactivate_slab(s, page, c->freelist);
2338 c->page = NULL;
2339 c->freelist = NULL;
2340 goto new_slab;
2341 }
fc59c053 2342 }
6446faa2 2343
072bb0aa
MG
2344 /*
2345 * By rights, we should be searching for a slab page that was
2346 * PFMEMALLOC but right now, we are losing the pfmemalloc
2347 * information when the page leaves the per-cpu allocator
2348 */
2349 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2350 deactivate_slab(s, page, c->freelist);
2351 c->page = NULL;
2352 c->freelist = NULL;
2353 goto new_slab;
2354 }
2355
73736e03 2356 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2357 freelist = c->freelist;
2358 if (freelist)
73736e03 2359 goto load_freelist;
03e404af 2360
f6e7def7 2361 freelist = get_freelist(s, page);
6446faa2 2362
6faa6833 2363 if (!freelist) {
03e404af
CL
2364 c->page = NULL;
2365 stat(s, DEACTIVATE_BYPASS);
fc59c053 2366 goto new_slab;
03e404af 2367 }
6446faa2 2368
84e554e6 2369 stat(s, ALLOC_REFILL);
6446faa2 2370
894b8788 2371load_freelist:
507effea
CL
2372 /*
2373 * freelist is pointing to the list of objects to be used.
2374 * page is pointing to the page from which the objects are obtained.
2375 * That page must be frozen for per cpu allocations to work.
2376 */
a0132ac0 2377 VM_BUG_ON(!c->page->frozen);
6faa6833 2378 c->freelist = get_freepointer(s, freelist);
8a5ec0ba
CL
2379 c->tid = next_tid(c->tid);
2380 local_irq_restore(flags);
6faa6833 2381 return freelist;
81819f0f 2382
81819f0f 2383new_slab:
2cfb7455 2384
49e22585 2385 if (c->partial) {
f6e7def7
CL
2386 page = c->page = c->partial;
2387 c->partial = page->next;
49e22585
CL
2388 stat(s, CPU_PARTIAL_ALLOC);
2389 c->freelist = NULL;
2390 goto redo;
81819f0f
CL
2391 }
2392
188fd063 2393 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2394
f4697436 2395 if (unlikely(!freelist)) {
9a02d699 2396 slab_out_of_memory(s, gfpflags, node);
f4697436
CL
2397 local_irq_restore(flags);
2398 return NULL;
81819f0f 2399 }
2cfb7455 2400
f6e7def7 2401 page = c->page;
5091b74a 2402 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2403 goto load_freelist;
2cfb7455 2404
497b66f2 2405 /* Only entered in the debug case */
d0e0ac97
CG
2406 if (kmem_cache_debug(s) &&
2407 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2408 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2409
f6e7def7 2410 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2411 c->page = NULL;
2412 c->freelist = NULL;
a71ae47a 2413 local_irq_restore(flags);
6faa6833 2414 return freelist;
894b8788
CL
2415}
2416
2417/*
2418 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2419 * have the fastpath folded into their functions. So no function call
2420 * overhead for requests that can be satisfied on the fastpath.
2421 *
2422 * The fastpath works by first checking if the lockless freelist can be used.
2423 * If not then __slab_alloc is called for slow processing.
2424 *
2425 * Otherwise we can simply pick the next object from the lockless free list.
2426 */
2b847c3c 2427static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2428 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2429{
894b8788 2430 void **object;
dfb4f096 2431 struct kmem_cache_cpu *c;
57d437d2 2432 struct page *page;
8a5ec0ba 2433 unsigned long tid;
1f84260c 2434
8135be5a
VD
2435 s = slab_pre_alloc_hook(s, gfpflags);
2436 if (!s)
773ff60e 2437 return NULL;
8a5ec0ba 2438redo:
8a5ec0ba
CL
2439 /*
2440 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2441 * enabled. We may switch back and forth between cpus while
2442 * reading from one cpu area. That does not matter as long
2443 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2444 *
9aabf810
JK
2445 * We should guarantee that tid and kmem_cache are retrieved on
2446 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2447 * to check if it is matched or not.
8a5ec0ba 2448 */
9aabf810
JK
2449 do {
2450 tid = this_cpu_read(s->cpu_slab->tid);
2451 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2452 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2453 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2454
2455 /*
2456 * Irqless object alloc/free algorithm used here depends on sequence
2457 * of fetching cpu_slab's data. tid should be fetched before anything
2458 * on c to guarantee that object and page associated with previous tid
2459 * won't be used with current tid. If we fetch tid first, object and
2460 * page could be one associated with next tid and our alloc/free
2461 * request will be failed. In this case, we will retry. So, no problem.
2462 */
2463 barrier();
8a5ec0ba 2464
8a5ec0ba
CL
2465 /*
2466 * The transaction ids are globally unique per cpu and per operation on
2467 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2468 * occurs on the right processor and that there was no operation on the
2469 * linked list in between.
2470 */
8a5ec0ba 2471
9dfc6e68 2472 object = c->freelist;
57d437d2 2473 page = c->page;
8eae1492 2474 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2475 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2476 stat(s, ALLOC_SLOWPATH);
2477 } else {
0ad9500e
ED
2478 void *next_object = get_freepointer_safe(s, object);
2479
8a5ec0ba 2480 /*
25985edc 2481 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2482 * operation and if we are on the right processor.
2483 *
d0e0ac97
CG
2484 * The cmpxchg does the following atomically (without lock
2485 * semantics!)
8a5ec0ba
CL
2486 * 1. Relocate first pointer to the current per cpu area.
2487 * 2. Verify that tid and freelist have not been changed
2488 * 3. If they were not changed replace tid and freelist
2489 *
d0e0ac97
CG
2490 * Since this is without lock semantics the protection is only
2491 * against code executing on this cpu *not* from access by
2492 * other cpus.
8a5ec0ba 2493 */
933393f5 2494 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2495 s->cpu_slab->freelist, s->cpu_slab->tid,
2496 object, tid,
0ad9500e 2497 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2498
2499 note_cmpxchg_failure("slab_alloc", s, tid);
2500 goto redo;
2501 }
0ad9500e 2502 prefetch_freepointer(s, next_object);
84e554e6 2503 stat(s, ALLOC_FASTPATH);
894b8788 2504 }
8a5ec0ba 2505
74e2134f 2506 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2507 memset(object, 0, s->object_size);
d07dbea4 2508
c016b0bd 2509 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2510
894b8788 2511 return object;
81819f0f
CL
2512}
2513
2b847c3c
EG
2514static __always_inline void *slab_alloc(struct kmem_cache *s,
2515 gfp_t gfpflags, unsigned long addr)
2516{
2517 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2518}
2519
81819f0f
CL
2520void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2521{
2b847c3c 2522 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2523
d0e0ac97
CG
2524 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2525 s->size, gfpflags);
5b882be4
EGM
2526
2527 return ret;
81819f0f
CL
2528}
2529EXPORT_SYMBOL(kmem_cache_alloc);
2530
0f24f128 2531#ifdef CONFIG_TRACING
4a92379b
RK
2532void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2533{
2b847c3c 2534 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2535 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0316bec2 2536 kasan_kmalloc(s, ret, size);
4a92379b
RK
2537 return ret;
2538}
2539EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2540#endif
2541
81819f0f
CL
2542#ifdef CONFIG_NUMA
2543void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2544{
2b847c3c 2545 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2546
ca2b84cb 2547 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2548 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2549
2550 return ret;
81819f0f
CL
2551}
2552EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2553
0f24f128 2554#ifdef CONFIG_TRACING
4a92379b 2555void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2556 gfp_t gfpflags,
4a92379b 2557 int node, size_t size)
5b882be4 2558{
2b847c3c 2559 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2560
2561 trace_kmalloc_node(_RET_IP_, ret,
2562 size, s->size, gfpflags, node);
0316bec2
AR
2563
2564 kasan_kmalloc(s, ret, size);
4a92379b 2565 return ret;
5b882be4 2566}
4a92379b 2567EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2568#endif
5d1f57e4 2569#endif
5b882be4 2570
81819f0f 2571/*
94e4d712 2572 * Slow path handling. This may still be called frequently since objects
894b8788 2573 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2574 *
894b8788
CL
2575 * So we still attempt to reduce cache line usage. Just take the slab
2576 * lock and free the item. If there is no additional partial page
2577 * handling required then we can return immediately.
81819f0f 2578 */
894b8788 2579static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2580 void *x, unsigned long addr)
81819f0f
CL
2581{
2582 void *prior;
2583 void **object = (void *)x;
2cfb7455 2584 int was_frozen;
2cfb7455
CL
2585 struct page new;
2586 unsigned long counters;
2587 struct kmem_cache_node *n = NULL;
61728d1e 2588 unsigned long uninitialized_var(flags);
81819f0f 2589
8a5ec0ba 2590 stat(s, FREE_SLOWPATH);
81819f0f 2591
19c7ff9e
CL
2592 if (kmem_cache_debug(s) &&
2593 !(n = free_debug_processing(s, page, x, addr, &flags)))
80f08c19 2594 return;
6446faa2 2595
2cfb7455 2596 do {
837d678d
JK
2597 if (unlikely(n)) {
2598 spin_unlock_irqrestore(&n->list_lock, flags);
2599 n = NULL;
2600 }
2cfb7455
CL
2601 prior = page->freelist;
2602 counters = page->counters;
2603 set_freepointer(s, object, prior);
2604 new.counters = counters;
2605 was_frozen = new.frozen;
2606 new.inuse--;
837d678d 2607 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2608
c65c1877 2609 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2610
2611 /*
d0e0ac97
CG
2612 * Slab was on no list before and will be
2613 * partially empty
2614 * We can defer the list move and instead
2615 * freeze it.
49e22585
CL
2616 */
2617 new.frozen = 1;
2618
c65c1877 2619 } else { /* Needs to be taken off a list */
49e22585 2620
b455def2 2621 n = get_node(s, page_to_nid(page));
49e22585
CL
2622 /*
2623 * Speculatively acquire the list_lock.
2624 * If the cmpxchg does not succeed then we may
2625 * drop the list_lock without any processing.
2626 *
2627 * Otherwise the list_lock will synchronize with
2628 * other processors updating the list of slabs.
2629 */
2630 spin_lock_irqsave(&n->list_lock, flags);
2631
2632 }
2cfb7455 2633 }
81819f0f 2634
2cfb7455
CL
2635 } while (!cmpxchg_double_slab(s, page,
2636 prior, counters,
2637 object, new.counters,
2638 "__slab_free"));
81819f0f 2639
2cfb7455 2640 if (likely(!n)) {
49e22585
CL
2641
2642 /*
2643 * If we just froze the page then put it onto the
2644 * per cpu partial list.
2645 */
8028dcea 2646 if (new.frozen && !was_frozen) {
49e22585 2647 put_cpu_partial(s, page, 1);
8028dcea
AS
2648 stat(s, CPU_PARTIAL_FREE);
2649 }
49e22585 2650 /*
2cfb7455
CL
2651 * The list lock was not taken therefore no list
2652 * activity can be necessary.
2653 */
b455def2
L
2654 if (was_frozen)
2655 stat(s, FREE_FROZEN);
2656 return;
2657 }
81819f0f 2658
8a5b20ae 2659 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2660 goto slab_empty;
2661
81819f0f 2662 /*
837d678d
JK
2663 * Objects left in the slab. If it was not on the partial list before
2664 * then add it.
81819f0f 2665 */
345c905d
JK
2666 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2667 if (kmem_cache_debug(s))
c65c1877 2668 remove_full(s, n, page);
837d678d
JK
2669 add_partial(n, page, DEACTIVATE_TO_TAIL);
2670 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2671 }
80f08c19 2672 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2673 return;
2674
2675slab_empty:
a973e9dd 2676 if (prior) {
81819f0f 2677 /*
6fbabb20 2678 * Slab on the partial list.
81819f0f 2679 */
5cc6eee8 2680 remove_partial(n, page);
84e554e6 2681 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2682 } else {
6fbabb20 2683 /* Slab must be on the full list */
c65c1877
PZ
2684 remove_full(s, n, page);
2685 }
2cfb7455 2686
80f08c19 2687 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2688 stat(s, FREE_SLAB);
81819f0f 2689 discard_slab(s, page);
81819f0f
CL
2690}
2691
894b8788
CL
2692/*
2693 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2694 * can perform fastpath freeing without additional function calls.
2695 *
2696 * The fastpath is only possible if we are freeing to the current cpu slab
2697 * of this processor. This typically the case if we have just allocated
2698 * the item before.
2699 *
2700 * If fastpath is not possible then fall back to __slab_free where we deal
2701 * with all sorts of special processing.
2702 */
06428780 2703static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2704 struct page *page, void *x, unsigned long addr)
894b8788
CL
2705{
2706 void **object = (void *)x;
dfb4f096 2707 struct kmem_cache_cpu *c;
8a5ec0ba 2708 unsigned long tid;
1f84260c 2709
c016b0bd
CL
2710 slab_free_hook(s, x);
2711
8a5ec0ba
CL
2712redo:
2713 /*
2714 * Determine the currently cpus per cpu slab.
2715 * The cpu may change afterward. However that does not matter since
2716 * data is retrieved via this pointer. If we are on the same cpu
2717 * during the cmpxchg then the free will succedd.
2718 */
9aabf810
JK
2719 do {
2720 tid = this_cpu_read(s->cpu_slab->tid);
2721 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2722 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2723 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 2724
9aabf810
JK
2725 /* Same with comment on barrier() in slab_alloc_node() */
2726 barrier();
c016b0bd 2727
442b06bc 2728 if (likely(page == c->page)) {
ff12059e 2729 set_freepointer(s, object, c->freelist);
8a5ec0ba 2730
933393f5 2731 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2732 s->cpu_slab->freelist, s->cpu_slab->tid,
2733 c->freelist, tid,
2734 object, next_tid(tid)))) {
2735
2736 note_cmpxchg_failure("slab_free", s, tid);
2737 goto redo;
2738 }
84e554e6 2739 stat(s, FREE_FASTPATH);
894b8788 2740 } else
ff12059e 2741 __slab_free(s, page, x, addr);
894b8788 2742
894b8788
CL
2743}
2744
81819f0f
CL
2745void kmem_cache_free(struct kmem_cache *s, void *x)
2746{
b9ce5ef4
GC
2747 s = cache_from_obj(s, x);
2748 if (!s)
79576102 2749 return;
b9ce5ef4 2750 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
ca2b84cb 2751 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2752}
2753EXPORT_SYMBOL(kmem_cache_free);
2754
81819f0f 2755/*
672bba3a
CL
2756 * Object placement in a slab is made very easy because we always start at
2757 * offset 0. If we tune the size of the object to the alignment then we can
2758 * get the required alignment by putting one properly sized object after
2759 * another.
81819f0f
CL
2760 *
2761 * Notice that the allocation order determines the sizes of the per cpu
2762 * caches. Each processor has always one slab available for allocations.
2763 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2764 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2765 * locking overhead.
81819f0f
CL
2766 */
2767
2768/*
2769 * Mininum / Maximum order of slab pages. This influences locking overhead
2770 * and slab fragmentation. A higher order reduces the number of partial slabs
2771 * and increases the number of allocations possible without having to
2772 * take the list_lock.
2773 */
2774static int slub_min_order;
114e9e89 2775static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2776static int slub_min_objects;
81819f0f 2777
81819f0f
CL
2778/*
2779 * Calculate the order of allocation given an slab object size.
2780 *
672bba3a
CL
2781 * The order of allocation has significant impact on performance and other
2782 * system components. Generally order 0 allocations should be preferred since
2783 * order 0 does not cause fragmentation in the page allocator. Larger objects
2784 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2785 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2786 * would be wasted.
2787 *
2788 * In order to reach satisfactory performance we must ensure that a minimum
2789 * number of objects is in one slab. Otherwise we may generate too much
2790 * activity on the partial lists which requires taking the list_lock. This is
2791 * less a concern for large slabs though which are rarely used.
81819f0f 2792 *
672bba3a
CL
2793 * slub_max_order specifies the order where we begin to stop considering the
2794 * number of objects in a slab as critical. If we reach slub_max_order then
2795 * we try to keep the page order as low as possible. So we accept more waste
2796 * of space in favor of a small page order.
81819f0f 2797 *
672bba3a
CL
2798 * Higher order allocations also allow the placement of more objects in a
2799 * slab and thereby reduce object handling overhead. If the user has
2800 * requested a higher mininum order then we start with that one instead of
2801 * the smallest order which will fit the object.
81819f0f 2802 */
5e6d444e 2803static inline int slab_order(int size, int min_objects,
ab9a0f19 2804 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2805{
2806 int order;
2807 int rem;
6300ea75 2808 int min_order = slub_min_order;
81819f0f 2809
ab9a0f19 2810 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2811 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2812
6300ea75 2813 for (order = max(min_order,
5e6d444e
CL
2814 fls(min_objects * size - 1) - PAGE_SHIFT);
2815 order <= max_order; order++) {
81819f0f 2816
5e6d444e 2817 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2818
ab9a0f19 2819 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2820 continue;
2821
ab9a0f19 2822 rem = (slab_size - reserved) % size;
81819f0f 2823
5e6d444e 2824 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2825 break;
2826
2827 }
672bba3a 2828
81819f0f
CL
2829 return order;
2830}
2831
ab9a0f19 2832static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2833{
2834 int order;
2835 int min_objects;
2836 int fraction;
e8120ff1 2837 int max_objects;
5e6d444e
CL
2838
2839 /*
2840 * Attempt to find best configuration for a slab. This
2841 * works by first attempting to generate a layout with
2842 * the best configuration and backing off gradually.
2843 *
2844 * First we reduce the acceptable waste in a slab. Then
2845 * we reduce the minimum objects required in a slab.
2846 */
2847 min_objects = slub_min_objects;
9b2cd506
CL
2848 if (!min_objects)
2849 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2850 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2851 min_objects = min(min_objects, max_objects);
2852
5e6d444e 2853 while (min_objects > 1) {
c124f5b5 2854 fraction = 16;
5e6d444e
CL
2855 while (fraction >= 4) {
2856 order = slab_order(size, min_objects,
ab9a0f19 2857 slub_max_order, fraction, reserved);
5e6d444e
CL
2858 if (order <= slub_max_order)
2859 return order;
2860 fraction /= 2;
2861 }
5086c389 2862 min_objects--;
5e6d444e
CL
2863 }
2864
2865 /*
2866 * We were unable to place multiple objects in a slab. Now
2867 * lets see if we can place a single object there.
2868 */
ab9a0f19 2869 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2870 if (order <= slub_max_order)
2871 return order;
2872
2873 /*
2874 * Doh this slab cannot be placed using slub_max_order.
2875 */
ab9a0f19 2876 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2877 if (order < MAX_ORDER)
5e6d444e
CL
2878 return order;
2879 return -ENOSYS;
2880}
2881
5595cffc 2882static void
4053497d 2883init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
2884{
2885 n->nr_partial = 0;
81819f0f
CL
2886 spin_lock_init(&n->list_lock);
2887 INIT_LIST_HEAD(&n->partial);
8ab1372f 2888#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2889 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2890 atomic_long_set(&n->total_objects, 0);
643b1138 2891 INIT_LIST_HEAD(&n->full);
8ab1372f 2892#endif
81819f0f
CL
2893}
2894
55136592 2895static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2896{
6c182dc0 2897 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 2898 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 2899
8a5ec0ba 2900 /*
d4d84fef
CM
2901 * Must align to double word boundary for the double cmpxchg
2902 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2903 */
d4d84fef
CM
2904 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2905 2 * sizeof(void *));
8a5ec0ba
CL
2906
2907 if (!s->cpu_slab)
2908 return 0;
2909
2910 init_kmem_cache_cpus(s);
4c93c355 2911
8a5ec0ba 2912 return 1;
4c93c355 2913}
4c93c355 2914
51df1142
CL
2915static struct kmem_cache *kmem_cache_node;
2916
81819f0f
CL
2917/*
2918 * No kmalloc_node yet so do it by hand. We know that this is the first
2919 * slab on the node for this slabcache. There are no concurrent accesses
2920 * possible.
2921 *
721ae22a
ZYW
2922 * Note that this function only works on the kmem_cache_node
2923 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 2924 * memory on a fresh node that has no slab structures yet.
81819f0f 2925 */
55136592 2926static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2927{
2928 struct page *page;
2929 struct kmem_cache_node *n;
2930
51df1142 2931 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2932
51df1142 2933 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2934
2935 BUG_ON(!page);
a2f92ee7 2936 if (page_to_nid(page) != node) {
f9f58285
FF
2937 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
2938 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
2939 }
2940
81819f0f
CL
2941 n = page->freelist;
2942 BUG_ON(!n);
51df1142 2943 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2944 page->inuse = 1;
8cb0a506 2945 page->frozen = 0;
51df1142 2946 kmem_cache_node->node[node] = n;
8ab1372f 2947#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2948 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2949 init_tracking(kmem_cache_node, n);
8ab1372f 2950#endif
0316bec2 2951 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
4053497d 2952 init_kmem_cache_node(n);
51df1142 2953 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2954
67b6c900 2955 /*
1e4dd946
SR
2956 * No locks need to be taken here as it has just been
2957 * initialized and there is no concurrent access.
67b6c900 2958 */
1e4dd946 2959 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2960}
2961
2962static void free_kmem_cache_nodes(struct kmem_cache *s)
2963{
2964 int node;
fa45dc25 2965 struct kmem_cache_node *n;
81819f0f 2966
fa45dc25
CL
2967 for_each_kmem_cache_node(s, node, n) {
2968 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
2969 s->node[node] = NULL;
2970 }
2971}
2972
55136592 2973static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2974{
2975 int node;
81819f0f 2976
f64dc58c 2977 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2978 struct kmem_cache_node *n;
2979
73367bd8 2980 if (slab_state == DOWN) {
55136592 2981 early_kmem_cache_node_alloc(node);
73367bd8
AD
2982 continue;
2983 }
51df1142 2984 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2985 GFP_KERNEL, node);
81819f0f 2986
73367bd8
AD
2987 if (!n) {
2988 free_kmem_cache_nodes(s);
2989 return 0;
81819f0f 2990 }
73367bd8 2991
81819f0f 2992 s->node[node] = n;
4053497d 2993 init_kmem_cache_node(n);
81819f0f
CL
2994 }
2995 return 1;
2996}
81819f0f 2997
c0bdb232 2998static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2999{
3000 if (min < MIN_PARTIAL)
3001 min = MIN_PARTIAL;
3002 else if (min > MAX_PARTIAL)
3003 min = MAX_PARTIAL;
3004 s->min_partial = min;
3005}
3006
81819f0f
CL
3007/*
3008 * calculate_sizes() determines the order and the distribution of data within
3009 * a slab object.
3010 */
06b285dc 3011static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
3012{
3013 unsigned long flags = s->flags;
3b0efdfa 3014 unsigned long size = s->object_size;
834f3d11 3015 int order;
81819f0f 3016
d8b42bf5
CL
3017 /*
3018 * Round up object size to the next word boundary. We can only
3019 * place the free pointer at word boundaries and this determines
3020 * the possible location of the free pointer.
3021 */
3022 size = ALIGN(size, sizeof(void *));
3023
3024#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3025 /*
3026 * Determine if we can poison the object itself. If the user of
3027 * the slab may touch the object after free or before allocation
3028 * then we should never poison the object itself.
3029 */
3030 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 3031 !s->ctor)
81819f0f
CL
3032 s->flags |= __OBJECT_POISON;
3033 else
3034 s->flags &= ~__OBJECT_POISON;
3035
81819f0f
CL
3036
3037 /*
672bba3a 3038 * If we are Redzoning then check if there is some space between the
81819f0f 3039 * end of the object and the free pointer. If not then add an
672bba3a 3040 * additional word to have some bytes to store Redzone information.
81819f0f 3041 */
3b0efdfa 3042 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3043 size += sizeof(void *);
41ecc55b 3044#endif
81819f0f
CL
3045
3046 /*
672bba3a
CL
3047 * With that we have determined the number of bytes in actual use
3048 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3049 */
3050 s->inuse = size;
3051
3052 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 3053 s->ctor)) {
81819f0f
CL
3054 /*
3055 * Relocate free pointer after the object if it is not
3056 * permitted to overwrite the first word of the object on
3057 * kmem_cache_free.
3058 *
3059 * This is the case if we do RCU, have a constructor or
3060 * destructor or are poisoning the objects.
3061 */
3062 s->offset = size;
3063 size += sizeof(void *);
3064 }
3065
c12b3c62 3066#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3067 if (flags & SLAB_STORE_USER)
3068 /*
3069 * Need to store information about allocs and frees after
3070 * the object.
3071 */
3072 size += 2 * sizeof(struct track);
3073
be7b3fbc 3074 if (flags & SLAB_RED_ZONE)
81819f0f
CL
3075 /*
3076 * Add some empty padding so that we can catch
3077 * overwrites from earlier objects rather than let
3078 * tracking information or the free pointer be
0211a9c8 3079 * corrupted if a user writes before the start
81819f0f
CL
3080 * of the object.
3081 */
3082 size += sizeof(void *);
41ecc55b 3083#endif
672bba3a 3084
81819f0f
CL
3085 /*
3086 * SLUB stores one object immediately after another beginning from
3087 * offset 0. In order to align the objects we have to simply size
3088 * each object to conform to the alignment.
3089 */
45906855 3090 size = ALIGN(size, s->align);
81819f0f 3091 s->size = size;
06b285dc
CL
3092 if (forced_order >= 0)
3093 order = forced_order;
3094 else
ab9a0f19 3095 order = calculate_order(size, s->reserved);
81819f0f 3096
834f3d11 3097 if (order < 0)
81819f0f
CL
3098 return 0;
3099
b7a49f0d 3100 s->allocflags = 0;
834f3d11 3101 if (order)
b7a49f0d
CL
3102 s->allocflags |= __GFP_COMP;
3103
3104 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3105 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3106
3107 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3108 s->allocflags |= __GFP_RECLAIMABLE;
3109
81819f0f
CL
3110 /*
3111 * Determine the number of objects per slab
3112 */
ab9a0f19
LJ
3113 s->oo = oo_make(order, size, s->reserved);
3114 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3115 if (oo_objects(s->oo) > oo_objects(s->max))
3116 s->max = s->oo;
81819f0f 3117
834f3d11 3118 return !!oo_objects(s->oo);
81819f0f
CL
3119}
3120
8a13a4cc 3121static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3122{
8a13a4cc 3123 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3124 s->reserved = 0;
81819f0f 3125
da9a638c
LJ
3126 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3127 s->reserved = sizeof(struct rcu_head);
81819f0f 3128
06b285dc 3129 if (!calculate_sizes(s, -1))
81819f0f 3130 goto error;
3de47213
DR
3131 if (disable_higher_order_debug) {
3132 /*
3133 * Disable debugging flags that store metadata if the min slab
3134 * order increased.
3135 */
3b0efdfa 3136 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3137 s->flags &= ~DEBUG_METADATA_FLAGS;
3138 s->offset = 0;
3139 if (!calculate_sizes(s, -1))
3140 goto error;
3141 }
3142 }
81819f0f 3143
2565409f
HC
3144#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3145 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3146 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3147 /* Enable fast mode */
3148 s->flags |= __CMPXCHG_DOUBLE;
3149#endif
3150
3b89d7d8
DR
3151 /*
3152 * The larger the object size is, the more pages we want on the partial
3153 * list to avoid pounding the page allocator excessively.
3154 */
49e22585
CL
3155 set_min_partial(s, ilog2(s->size) / 2);
3156
3157 /*
3158 * cpu_partial determined the maximum number of objects kept in the
3159 * per cpu partial lists of a processor.
3160 *
3161 * Per cpu partial lists mainly contain slabs that just have one
3162 * object freed. If they are used for allocation then they can be
3163 * filled up again with minimal effort. The slab will never hit the
3164 * per node partial lists and therefore no locking will be required.
3165 *
3166 * This setting also determines
3167 *
3168 * A) The number of objects from per cpu partial slabs dumped to the
3169 * per node list when we reach the limit.
9f264904 3170 * B) The number of objects in cpu partial slabs to extract from the
d0e0ac97
CG
3171 * per node list when we run out of per cpu objects. We only fetch
3172 * 50% to keep some capacity around for frees.
49e22585 3173 */
345c905d 3174 if (!kmem_cache_has_cpu_partial(s))
8f1e33da
CL
3175 s->cpu_partial = 0;
3176 else if (s->size >= PAGE_SIZE)
49e22585
CL
3177 s->cpu_partial = 2;
3178 else if (s->size >= 1024)
3179 s->cpu_partial = 6;
3180 else if (s->size >= 256)
3181 s->cpu_partial = 13;
3182 else
3183 s->cpu_partial = 30;
3184
81819f0f 3185#ifdef CONFIG_NUMA
e2cb96b7 3186 s->remote_node_defrag_ratio = 1000;
81819f0f 3187#endif
55136592 3188 if (!init_kmem_cache_nodes(s))
dfb4f096 3189 goto error;
81819f0f 3190
55136592 3191 if (alloc_kmem_cache_cpus(s))
278b1bb1 3192 return 0;
ff12059e 3193
4c93c355 3194 free_kmem_cache_nodes(s);
81819f0f
CL
3195error:
3196 if (flags & SLAB_PANIC)
3197 panic("Cannot create slab %s size=%lu realsize=%u "
3198 "order=%u offset=%u flags=%lx\n",
d0e0ac97
CG
3199 s->name, (unsigned long)s->size, s->size,
3200 oo_order(s->oo), s->offset, flags);
278b1bb1 3201 return -EINVAL;
81819f0f 3202}
81819f0f 3203
33b12c38
CL
3204static void list_slab_objects(struct kmem_cache *s, struct page *page,
3205 const char *text)
3206{
3207#ifdef CONFIG_SLUB_DEBUG
3208 void *addr = page_address(page);
3209 void *p;
a5dd5c11
NK
3210 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3211 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3212 if (!map)
3213 return;
945cf2b6 3214 slab_err(s, page, text, s->name);
33b12c38 3215 slab_lock(page);
33b12c38 3216
5f80b13a 3217 get_map(s, page, map);
33b12c38
CL
3218 for_each_object(p, s, addr, page->objects) {
3219
3220 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3221 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3222 print_tracking(s, p);
3223 }
3224 }
3225 slab_unlock(page);
bbd7d57b 3226 kfree(map);
33b12c38
CL
3227#endif
3228}
3229
81819f0f 3230/*
599870b1 3231 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3232 * This is called from kmem_cache_close(). We must be the last thread
3233 * using the cache and therefore we do not need to lock anymore.
81819f0f 3234 */
599870b1 3235static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3236{
81819f0f
CL
3237 struct page *page, *h;
3238
33b12c38 3239 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3240 if (!page->inuse) {
1e4dd946 3241 __remove_partial(n, page);
81819f0f 3242 discard_slab(s, page);
33b12c38
CL
3243 } else {
3244 list_slab_objects(s, page,
945cf2b6 3245 "Objects remaining in %s on kmem_cache_close()");
599870b1 3246 }
33b12c38 3247 }
81819f0f
CL
3248}
3249
3250/*
672bba3a 3251 * Release all resources used by a slab cache.
81819f0f 3252 */
0c710013 3253static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3254{
3255 int node;
fa45dc25 3256 struct kmem_cache_node *n;
81819f0f
CL
3257
3258 flush_all(s);
81819f0f 3259 /* Attempt to free all objects */
fa45dc25 3260 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3261 free_partial(s, n);
3262 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3263 return 1;
3264 }
945cf2b6 3265 free_percpu(s->cpu_slab);
81819f0f
CL
3266 free_kmem_cache_nodes(s);
3267 return 0;
3268}
3269
945cf2b6 3270int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f 3271{
41a21285 3272 return kmem_cache_close(s);
81819f0f 3273}
81819f0f
CL
3274
3275/********************************************************************
3276 * Kmalloc subsystem
3277 *******************************************************************/
3278
81819f0f
CL
3279static int __init setup_slub_min_order(char *str)
3280{
06428780 3281 get_option(&str, &slub_min_order);
81819f0f
CL
3282
3283 return 1;
3284}
3285
3286__setup("slub_min_order=", setup_slub_min_order);
3287
3288static int __init setup_slub_max_order(char *str)
3289{
06428780 3290 get_option(&str, &slub_max_order);
818cf590 3291 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3292
3293 return 1;
3294}
3295
3296__setup("slub_max_order=", setup_slub_max_order);
3297
3298static int __init setup_slub_min_objects(char *str)
3299{
06428780 3300 get_option(&str, &slub_min_objects);
81819f0f
CL
3301
3302 return 1;
3303}
3304
3305__setup("slub_min_objects=", setup_slub_min_objects);
3306
81819f0f
CL
3307void *__kmalloc(size_t size, gfp_t flags)
3308{
aadb4bc4 3309 struct kmem_cache *s;
5b882be4 3310 void *ret;
81819f0f 3311
95a05b42 3312 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3313 return kmalloc_large(size, flags);
aadb4bc4 3314
2c59dd65 3315 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3316
3317 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3318 return s;
3319
2b847c3c 3320 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3321
ca2b84cb 3322 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3323
0316bec2
AR
3324 kasan_kmalloc(s, ret, size);
3325
5b882be4 3326 return ret;
81819f0f
CL
3327}
3328EXPORT_SYMBOL(__kmalloc);
3329
5d1f57e4 3330#ifdef CONFIG_NUMA
f619cfe1
CL
3331static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3332{
b1eeab67 3333 struct page *page;
e4f7c0b4 3334 void *ptr = NULL;
f619cfe1 3335
52383431
VD
3336 flags |= __GFP_COMP | __GFP_NOTRACK;
3337 page = alloc_kmem_pages_node(node, flags, get_order(size));
f619cfe1 3338 if (page)
e4f7c0b4
CM
3339 ptr = page_address(page);
3340
d56791b3 3341 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3342 return ptr;
f619cfe1
CL
3343}
3344
81819f0f
CL
3345void *__kmalloc_node(size_t size, gfp_t flags, int node)
3346{
aadb4bc4 3347 struct kmem_cache *s;
5b882be4 3348 void *ret;
81819f0f 3349
95a05b42 3350 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3351 ret = kmalloc_large_node(size, flags, node);
3352
ca2b84cb
EGM
3353 trace_kmalloc_node(_RET_IP_, ret,
3354 size, PAGE_SIZE << get_order(size),
3355 flags, node);
5b882be4
EGM
3356
3357 return ret;
3358 }
aadb4bc4 3359
2c59dd65 3360 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3361
3362 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3363 return s;
3364
2b847c3c 3365 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3366
ca2b84cb 3367 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3368
0316bec2
AR
3369 kasan_kmalloc(s, ret, size);
3370
5b882be4 3371 return ret;
81819f0f
CL
3372}
3373EXPORT_SYMBOL(__kmalloc_node);
3374#endif
3375
0316bec2 3376static size_t __ksize(const void *object)
81819f0f 3377{
272c1d21 3378 struct page *page;
81819f0f 3379
ef8b4520 3380 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3381 return 0;
3382
294a80a8 3383 page = virt_to_head_page(object);
294a80a8 3384
76994412
PE
3385 if (unlikely(!PageSlab(page))) {
3386 WARN_ON(!PageCompound(page));
294a80a8 3387 return PAGE_SIZE << compound_order(page);
76994412 3388 }
81819f0f 3389
1b4f59e3 3390 return slab_ksize(page->slab_cache);
81819f0f 3391}
0316bec2
AR
3392
3393size_t ksize(const void *object)
3394{
3395 size_t size = __ksize(object);
3396 /* We assume that ksize callers could use whole allocated area,
3397 so we need unpoison this area. */
3398 kasan_krealloc(object, size);
3399 return size;
3400}
b1aabecd 3401EXPORT_SYMBOL(ksize);
81819f0f
CL
3402
3403void kfree(const void *x)
3404{
81819f0f 3405 struct page *page;
5bb983b0 3406 void *object = (void *)x;
81819f0f 3407
2121db74
PE
3408 trace_kfree(_RET_IP_, x);
3409
2408c550 3410 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3411 return;
3412
b49af68f 3413 page = virt_to_head_page(x);
aadb4bc4 3414 if (unlikely(!PageSlab(page))) {
0937502a 3415 BUG_ON(!PageCompound(page));
d56791b3 3416 kfree_hook(x);
52383431 3417 __free_kmem_pages(page, compound_order(page));
aadb4bc4
CL
3418 return;
3419 }
1b4f59e3 3420 slab_free(page->slab_cache, page, object, _RET_IP_);
81819f0f
CL
3421}
3422EXPORT_SYMBOL(kfree);
3423
832f37f5
VD
3424#define SHRINK_PROMOTE_MAX 32
3425
2086d26a 3426/*
832f37f5
VD
3427 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3428 * up most to the head of the partial lists. New allocations will then
3429 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
3430 *
3431 * The slabs with the least items are placed last. This results in them
3432 * being allocated from last increasing the chance that the last objects
3433 * are freed in them.
2086d26a 3434 */
d6e0b7fa 3435int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
2086d26a
CL
3436{
3437 int node;
3438 int i;
3439 struct kmem_cache_node *n;
3440 struct page *page;
3441 struct page *t;
832f37f5
VD
3442 struct list_head discard;
3443 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 3444 unsigned long flags;
ce3712d7 3445 int ret = 0;
2086d26a 3446
d6e0b7fa
VD
3447 if (deactivate) {
3448 /*
3449 * Disable empty slabs caching. Used to avoid pinning offline
3450 * memory cgroups by kmem pages that can be freed.
3451 */
3452 s->cpu_partial = 0;
3453 s->min_partial = 0;
3454
3455 /*
3456 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3457 * so we have to make sure the change is visible.
3458 */
3459 kick_all_cpus_sync();
3460 }
3461
2086d26a 3462 flush_all(s);
fa45dc25 3463 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
3464 INIT_LIST_HEAD(&discard);
3465 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3466 INIT_LIST_HEAD(promote + i);
2086d26a
CL
3467
3468 spin_lock_irqsave(&n->list_lock, flags);
3469
3470 /*
832f37f5 3471 * Build lists of slabs to discard or promote.
2086d26a 3472 *
672bba3a
CL
3473 * Note that concurrent frees may occur while we hold the
3474 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3475 */
3476 list_for_each_entry_safe(page, t, &n->partial, lru) {
832f37f5
VD
3477 int free = page->objects - page->inuse;
3478
3479 /* Do not reread page->inuse */
3480 barrier();
3481
3482 /* We do not keep full slabs on the list */
3483 BUG_ON(free <= 0);
3484
3485 if (free == page->objects) {
3486 list_move(&page->lru, &discard);
69cb8e6b 3487 n->nr_partial--;
832f37f5
VD
3488 } else if (free <= SHRINK_PROMOTE_MAX)
3489 list_move(&page->lru, promote + free - 1);
2086d26a
CL
3490 }
3491
2086d26a 3492 /*
832f37f5
VD
3493 * Promote the slabs filled up most to the head of the
3494 * partial list.
2086d26a 3495 */
832f37f5
VD
3496 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3497 list_splice(promote + i, &n->partial);
2086d26a 3498
2086d26a 3499 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3500
3501 /* Release empty slabs */
832f37f5 3502 list_for_each_entry_safe(page, t, &discard, lru)
69cb8e6b 3503 discard_slab(s, page);
ce3712d7
VD
3504
3505 if (slabs_node(s, node))
3506 ret = 1;
2086d26a
CL
3507 }
3508
ce3712d7 3509 return ret;
2086d26a 3510}
2086d26a 3511
b9049e23
YG
3512static int slab_mem_going_offline_callback(void *arg)
3513{
3514 struct kmem_cache *s;
3515
18004c5d 3516 mutex_lock(&slab_mutex);
b9049e23 3517 list_for_each_entry(s, &slab_caches, list)
d6e0b7fa 3518 __kmem_cache_shrink(s, false);
18004c5d 3519 mutex_unlock(&slab_mutex);
b9049e23
YG
3520
3521 return 0;
3522}
3523
3524static void slab_mem_offline_callback(void *arg)
3525{
3526 struct kmem_cache_node *n;
3527 struct kmem_cache *s;
3528 struct memory_notify *marg = arg;
3529 int offline_node;
3530
b9d5ab25 3531 offline_node = marg->status_change_nid_normal;
b9049e23
YG
3532
3533 /*
3534 * If the node still has available memory. we need kmem_cache_node
3535 * for it yet.
3536 */
3537 if (offline_node < 0)
3538 return;
3539
18004c5d 3540 mutex_lock(&slab_mutex);
b9049e23
YG
3541 list_for_each_entry(s, &slab_caches, list) {
3542 n = get_node(s, offline_node);
3543 if (n) {
3544 /*
3545 * if n->nr_slabs > 0, slabs still exist on the node
3546 * that is going down. We were unable to free them,
c9404c9c 3547 * and offline_pages() function shouldn't call this
b9049e23
YG
3548 * callback. So, we must fail.
3549 */
0f389ec6 3550 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3551
3552 s->node[offline_node] = NULL;
8de66a0c 3553 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3554 }
3555 }
18004c5d 3556 mutex_unlock(&slab_mutex);
b9049e23
YG
3557}
3558
3559static int slab_mem_going_online_callback(void *arg)
3560{
3561 struct kmem_cache_node *n;
3562 struct kmem_cache *s;
3563 struct memory_notify *marg = arg;
b9d5ab25 3564 int nid = marg->status_change_nid_normal;
b9049e23
YG
3565 int ret = 0;
3566
3567 /*
3568 * If the node's memory is already available, then kmem_cache_node is
3569 * already created. Nothing to do.
3570 */
3571 if (nid < 0)
3572 return 0;
3573
3574 /*
0121c619 3575 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3576 * allocate a kmem_cache_node structure in order to bring the node
3577 * online.
3578 */
18004c5d 3579 mutex_lock(&slab_mutex);
b9049e23
YG
3580 list_for_each_entry(s, &slab_caches, list) {
3581 /*
3582 * XXX: kmem_cache_alloc_node will fallback to other nodes
3583 * since memory is not yet available from the node that
3584 * is brought up.
3585 */
8de66a0c 3586 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3587 if (!n) {
3588 ret = -ENOMEM;
3589 goto out;
3590 }
4053497d 3591 init_kmem_cache_node(n);
b9049e23
YG
3592 s->node[nid] = n;
3593 }
3594out:
18004c5d 3595 mutex_unlock(&slab_mutex);
b9049e23
YG
3596 return ret;
3597}
3598
3599static int slab_memory_callback(struct notifier_block *self,
3600 unsigned long action, void *arg)
3601{
3602 int ret = 0;
3603
3604 switch (action) {
3605 case MEM_GOING_ONLINE:
3606 ret = slab_mem_going_online_callback(arg);
3607 break;
3608 case MEM_GOING_OFFLINE:
3609 ret = slab_mem_going_offline_callback(arg);
3610 break;
3611 case MEM_OFFLINE:
3612 case MEM_CANCEL_ONLINE:
3613 slab_mem_offline_callback(arg);
3614 break;
3615 case MEM_ONLINE:
3616 case MEM_CANCEL_OFFLINE:
3617 break;
3618 }
dc19f9db
KH
3619 if (ret)
3620 ret = notifier_from_errno(ret);
3621 else
3622 ret = NOTIFY_OK;
b9049e23
YG
3623 return ret;
3624}
3625
3ac38faa
AM
3626static struct notifier_block slab_memory_callback_nb = {
3627 .notifier_call = slab_memory_callback,
3628 .priority = SLAB_CALLBACK_PRI,
3629};
b9049e23 3630
81819f0f
CL
3631/********************************************************************
3632 * Basic setup of slabs
3633 *******************************************************************/
3634
51df1142
CL
3635/*
3636 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
3637 * the page allocator. Allocate them properly then fix up the pointers
3638 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
3639 */
3640
dffb4d60 3641static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
3642{
3643 int node;
dffb4d60 3644 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 3645 struct kmem_cache_node *n;
51df1142 3646
dffb4d60 3647 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 3648
7d557b3c
GC
3649 /*
3650 * This runs very early, and only the boot processor is supposed to be
3651 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3652 * IPIs around.
3653 */
3654 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 3655 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
3656 struct page *p;
3657
fa45dc25
CL
3658 list_for_each_entry(p, &n->partial, lru)
3659 p->slab_cache = s;
51df1142 3660
607bf324 3661#ifdef CONFIG_SLUB_DEBUG
fa45dc25
CL
3662 list_for_each_entry(p, &n->full, lru)
3663 p->slab_cache = s;
51df1142 3664#endif
51df1142 3665 }
f7ce3190 3666 slab_init_memcg_params(s);
dffb4d60
CL
3667 list_add(&s->list, &slab_caches);
3668 return s;
51df1142
CL
3669}
3670
81819f0f
CL
3671void __init kmem_cache_init(void)
3672{
dffb4d60
CL
3673 static __initdata struct kmem_cache boot_kmem_cache,
3674 boot_kmem_cache_node;
51df1142 3675
fc8d8620
SG
3676 if (debug_guardpage_minorder())
3677 slub_max_order = 0;
3678
dffb4d60
CL
3679 kmem_cache_node = &boot_kmem_cache_node;
3680 kmem_cache = &boot_kmem_cache;
51df1142 3681
dffb4d60
CL
3682 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3683 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 3684
3ac38faa 3685 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
3686
3687 /* Able to allocate the per node structures */
3688 slab_state = PARTIAL;
3689
dffb4d60
CL
3690 create_boot_cache(kmem_cache, "kmem_cache",
3691 offsetof(struct kmem_cache, node) +
3692 nr_node_ids * sizeof(struct kmem_cache_node *),
3693 SLAB_HWCACHE_ALIGN);
8a13a4cc 3694
dffb4d60 3695 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 3696
51df1142
CL
3697 /*
3698 * Allocate kmem_cache_node properly from the kmem_cache slab.
3699 * kmem_cache_node is separately allocated so no need to
3700 * update any list pointers.
3701 */
dffb4d60 3702 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
3703
3704 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f97d5f63 3705 create_kmalloc_caches(0);
81819f0f
CL
3706
3707#ifdef CONFIG_SMP
3708 register_cpu_notifier(&slab_notifier);
9dfc6e68 3709#endif
81819f0f 3710
f9f58285 3711 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
f97d5f63 3712 cache_line_size(),
81819f0f
CL
3713 slub_min_order, slub_max_order, slub_min_objects,
3714 nr_cpu_ids, nr_node_ids);
3715}
3716
7e85ee0c
PE
3717void __init kmem_cache_init_late(void)
3718{
7e85ee0c
PE
3719}
3720
2633d7a0 3721struct kmem_cache *
a44cb944
VD
3722__kmem_cache_alias(const char *name, size_t size, size_t align,
3723 unsigned long flags, void (*ctor)(void *))
81819f0f 3724{
426589f5 3725 struct kmem_cache *s, *c;
81819f0f 3726
a44cb944 3727 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3728 if (s) {
3729 s->refcount++;
84d0ddd6 3730
81819f0f
CL
3731 /*
3732 * Adjust the object sizes so that we clear
3733 * the complete object on kzalloc.
3734 */
3b0efdfa 3735 s->object_size = max(s->object_size, (int)size);
81819f0f 3736 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3737
426589f5 3738 for_each_memcg_cache(c, s) {
84d0ddd6
VD
3739 c->object_size = s->object_size;
3740 c->inuse = max_t(int, c->inuse,
3741 ALIGN(size, sizeof(void *)));
3742 }
3743
7b8f3b66 3744 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3745 s->refcount--;
cbb79694 3746 s = NULL;
7b8f3b66 3747 }
a0e1d1be 3748 }
6446faa2 3749
cbb79694
CL
3750 return s;
3751}
84c1cf62 3752
8a13a4cc 3753int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 3754{
aac3a166
PE
3755 int err;
3756
3757 err = kmem_cache_open(s, flags);
3758 if (err)
3759 return err;
20cea968 3760
45530c44
CL
3761 /* Mutex is not taken during early boot */
3762 if (slab_state <= UP)
3763 return 0;
3764
107dab5c 3765 memcg_propagate_slab_attrs(s);
aac3a166 3766 err = sysfs_slab_add(s);
aac3a166
PE
3767 if (err)
3768 kmem_cache_close(s);
20cea968 3769
aac3a166 3770 return err;
81819f0f 3771}
81819f0f 3772
81819f0f 3773#ifdef CONFIG_SMP
81819f0f 3774/*
672bba3a
CL
3775 * Use the cpu notifier to insure that the cpu slabs are flushed when
3776 * necessary.
81819f0f 3777 */
0db0628d 3778static int slab_cpuup_callback(struct notifier_block *nfb,
81819f0f
CL
3779 unsigned long action, void *hcpu)
3780{
3781 long cpu = (long)hcpu;
5b95a4ac
CL
3782 struct kmem_cache *s;
3783 unsigned long flags;
81819f0f
CL
3784
3785 switch (action) {
3786 case CPU_UP_CANCELED:
8bb78442 3787 case CPU_UP_CANCELED_FROZEN:
81819f0f 3788 case CPU_DEAD:
8bb78442 3789 case CPU_DEAD_FROZEN:
18004c5d 3790 mutex_lock(&slab_mutex);
5b95a4ac
CL
3791 list_for_each_entry(s, &slab_caches, list) {
3792 local_irq_save(flags);
3793 __flush_cpu_slab(s, cpu);
3794 local_irq_restore(flags);
3795 }
18004c5d 3796 mutex_unlock(&slab_mutex);
81819f0f
CL
3797 break;
3798 default:
3799 break;
3800 }
3801 return NOTIFY_OK;
3802}
3803
0db0628d 3804static struct notifier_block slab_notifier = {
3adbefee 3805 .notifier_call = slab_cpuup_callback
06428780 3806};
81819f0f
CL
3807
3808#endif
3809
ce71e27c 3810void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3811{
aadb4bc4 3812 struct kmem_cache *s;
94b528d0 3813 void *ret;
aadb4bc4 3814
95a05b42 3815 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
3816 return kmalloc_large(size, gfpflags);
3817
2c59dd65 3818 s = kmalloc_slab(size, gfpflags);
81819f0f 3819
2408c550 3820 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3821 return s;
81819f0f 3822
2b847c3c 3823 ret = slab_alloc(s, gfpflags, caller);
94b528d0 3824
25985edc 3825 /* Honor the call site pointer we received. */
ca2b84cb 3826 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3827
3828 return ret;
81819f0f
CL
3829}
3830
5d1f57e4 3831#ifdef CONFIG_NUMA
81819f0f 3832void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3833 int node, unsigned long caller)
81819f0f 3834{
aadb4bc4 3835 struct kmem_cache *s;
94b528d0 3836 void *ret;
aadb4bc4 3837
95a05b42 3838 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
3839 ret = kmalloc_large_node(size, gfpflags, node);
3840
3841 trace_kmalloc_node(caller, ret,
3842 size, PAGE_SIZE << get_order(size),
3843 gfpflags, node);
3844
3845 return ret;
3846 }
eada35ef 3847
2c59dd65 3848 s = kmalloc_slab(size, gfpflags);
81819f0f 3849
2408c550 3850 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3851 return s;
81819f0f 3852
2b847c3c 3853 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 3854
25985edc 3855 /* Honor the call site pointer we received. */
ca2b84cb 3856 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3857
3858 return ret;
81819f0f 3859}
5d1f57e4 3860#endif
81819f0f 3861
ab4d5ed5 3862#ifdef CONFIG_SYSFS
205ab99d
CL
3863static int count_inuse(struct page *page)
3864{
3865 return page->inuse;
3866}
3867
3868static int count_total(struct page *page)
3869{
3870 return page->objects;
3871}
ab4d5ed5 3872#endif
205ab99d 3873
ab4d5ed5 3874#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3875static int validate_slab(struct kmem_cache *s, struct page *page,
3876 unsigned long *map)
53e15af0
CL
3877{
3878 void *p;
a973e9dd 3879 void *addr = page_address(page);
53e15af0
CL
3880
3881 if (!check_slab(s, page) ||
3882 !on_freelist(s, page, NULL))
3883 return 0;
3884
3885 /* Now we know that a valid freelist exists */
39b26464 3886 bitmap_zero(map, page->objects);
53e15af0 3887
5f80b13a
CL
3888 get_map(s, page, map);
3889 for_each_object(p, s, addr, page->objects) {
3890 if (test_bit(slab_index(p, s, addr), map))
3891 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3892 return 0;
53e15af0
CL
3893 }
3894
224a88be 3895 for_each_object(p, s, addr, page->objects)
7656c72b 3896 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3897 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3898 return 0;
3899 return 1;
3900}
3901
434e245d
CL
3902static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3903 unsigned long *map)
53e15af0 3904{
881db7fb
CL
3905 slab_lock(page);
3906 validate_slab(s, page, map);
3907 slab_unlock(page);
53e15af0
CL
3908}
3909
434e245d
CL
3910static int validate_slab_node(struct kmem_cache *s,
3911 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3912{
3913 unsigned long count = 0;
3914 struct page *page;
3915 unsigned long flags;
3916
3917 spin_lock_irqsave(&n->list_lock, flags);
3918
3919 list_for_each_entry(page, &n->partial, lru) {
434e245d 3920 validate_slab_slab(s, page, map);
53e15af0
CL
3921 count++;
3922 }
3923 if (count != n->nr_partial)
f9f58285
FF
3924 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
3925 s->name, count, n->nr_partial);
53e15af0
CL
3926
3927 if (!(s->flags & SLAB_STORE_USER))
3928 goto out;
3929
3930 list_for_each_entry(page, &n->full, lru) {
434e245d 3931 validate_slab_slab(s, page, map);
53e15af0
CL
3932 count++;
3933 }
3934 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
3935 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
3936 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
3937
3938out:
3939 spin_unlock_irqrestore(&n->list_lock, flags);
3940 return count;
3941}
3942
434e245d 3943static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3944{
3945 int node;
3946 unsigned long count = 0;
205ab99d 3947 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d 3948 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 3949 struct kmem_cache_node *n;
434e245d
CL
3950
3951 if (!map)
3952 return -ENOMEM;
53e15af0
CL
3953
3954 flush_all(s);
fa45dc25 3955 for_each_kmem_cache_node(s, node, n)
434e245d 3956 count += validate_slab_node(s, n, map);
434e245d 3957 kfree(map);
53e15af0
CL
3958 return count;
3959}
88a420e4 3960/*
672bba3a 3961 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3962 * and freed.
3963 */
3964
3965struct location {
3966 unsigned long count;
ce71e27c 3967 unsigned long addr;
45edfa58
CL
3968 long long sum_time;
3969 long min_time;
3970 long max_time;
3971 long min_pid;
3972 long max_pid;
174596a0 3973 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3974 nodemask_t nodes;
88a420e4
CL
3975};
3976
3977struct loc_track {
3978 unsigned long max;
3979 unsigned long count;
3980 struct location *loc;
3981};
3982
3983static void free_loc_track(struct loc_track *t)
3984{
3985 if (t->max)
3986 free_pages((unsigned long)t->loc,
3987 get_order(sizeof(struct location) * t->max));
3988}
3989
68dff6a9 3990static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3991{
3992 struct location *l;
3993 int order;
3994
88a420e4
CL
3995 order = get_order(sizeof(struct location) * max);
3996
68dff6a9 3997 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3998 if (!l)
3999 return 0;
4000
4001 if (t->count) {
4002 memcpy(l, t->loc, sizeof(struct location) * t->count);
4003 free_loc_track(t);
4004 }
4005 t->max = max;
4006 t->loc = l;
4007 return 1;
4008}
4009
4010static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4011 const struct track *track)
88a420e4
CL
4012{
4013 long start, end, pos;
4014 struct location *l;
ce71e27c 4015 unsigned long caddr;
45edfa58 4016 unsigned long age = jiffies - track->when;
88a420e4
CL
4017
4018 start = -1;
4019 end = t->count;
4020
4021 for ( ; ; ) {
4022 pos = start + (end - start + 1) / 2;
4023
4024 /*
4025 * There is nothing at "end". If we end up there
4026 * we need to add something to before end.
4027 */
4028 if (pos == end)
4029 break;
4030
4031 caddr = t->loc[pos].addr;
45edfa58
CL
4032 if (track->addr == caddr) {
4033
4034 l = &t->loc[pos];
4035 l->count++;
4036 if (track->when) {
4037 l->sum_time += age;
4038 if (age < l->min_time)
4039 l->min_time = age;
4040 if (age > l->max_time)
4041 l->max_time = age;
4042
4043 if (track->pid < l->min_pid)
4044 l->min_pid = track->pid;
4045 if (track->pid > l->max_pid)
4046 l->max_pid = track->pid;
4047
174596a0
RR
4048 cpumask_set_cpu(track->cpu,
4049 to_cpumask(l->cpus));
45edfa58
CL
4050 }
4051 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4052 return 1;
4053 }
4054
45edfa58 4055 if (track->addr < caddr)
88a420e4
CL
4056 end = pos;
4057 else
4058 start = pos;
4059 }
4060
4061 /*
672bba3a 4062 * Not found. Insert new tracking element.
88a420e4 4063 */
68dff6a9 4064 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4065 return 0;
4066
4067 l = t->loc + pos;
4068 if (pos < t->count)
4069 memmove(l + 1, l,
4070 (t->count - pos) * sizeof(struct location));
4071 t->count++;
4072 l->count = 1;
45edfa58
CL
4073 l->addr = track->addr;
4074 l->sum_time = age;
4075 l->min_time = age;
4076 l->max_time = age;
4077 l->min_pid = track->pid;
4078 l->max_pid = track->pid;
174596a0
RR
4079 cpumask_clear(to_cpumask(l->cpus));
4080 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4081 nodes_clear(l->nodes);
4082 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4083 return 1;
4084}
4085
4086static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4087 struct page *page, enum track_item alloc,
a5dd5c11 4088 unsigned long *map)
88a420e4 4089{
a973e9dd 4090 void *addr = page_address(page);
88a420e4
CL
4091 void *p;
4092
39b26464 4093 bitmap_zero(map, page->objects);
5f80b13a 4094 get_map(s, page, map);
88a420e4 4095
224a88be 4096 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4097 if (!test_bit(slab_index(p, s, addr), map))
4098 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4099}
4100
4101static int list_locations(struct kmem_cache *s, char *buf,
4102 enum track_item alloc)
4103{
e374d483 4104 int len = 0;
88a420e4 4105 unsigned long i;
68dff6a9 4106 struct loc_track t = { 0, 0, NULL };
88a420e4 4107 int node;
bbd7d57b
ED
4108 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4109 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4110 struct kmem_cache_node *n;
88a420e4 4111
bbd7d57b
ED
4112 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4113 GFP_TEMPORARY)) {
4114 kfree(map);
68dff6a9 4115 return sprintf(buf, "Out of memory\n");
bbd7d57b 4116 }
88a420e4
CL
4117 /* Push back cpu slabs */
4118 flush_all(s);
4119
fa45dc25 4120 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4121 unsigned long flags;
4122 struct page *page;
4123
9e86943b 4124 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4125 continue;
4126
4127 spin_lock_irqsave(&n->list_lock, flags);
4128 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4129 process_slab(&t, s, page, alloc, map);
88a420e4 4130 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4131 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4132 spin_unlock_irqrestore(&n->list_lock, flags);
4133 }
4134
4135 for (i = 0; i < t.count; i++) {
45edfa58 4136 struct location *l = &t.loc[i];
88a420e4 4137
9c246247 4138 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4139 break;
e374d483 4140 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4141
4142 if (l->addr)
62c70bce 4143 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4144 else
e374d483 4145 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4146
4147 if (l->sum_time != l->min_time) {
e374d483 4148 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4149 l->min_time,
4150 (long)div_u64(l->sum_time, l->count),
4151 l->max_time);
45edfa58 4152 } else
e374d483 4153 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4154 l->min_time);
4155
4156 if (l->min_pid != l->max_pid)
e374d483 4157 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4158 l->min_pid, l->max_pid);
4159 else
e374d483 4160 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4161 l->min_pid);
4162
174596a0
RR
4163 if (num_online_cpus() > 1 &&
4164 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4165 len < PAGE_SIZE - 60)
4166 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4167 " cpus=%*pbl",
4168 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4169
62bc62a8 4170 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4171 len < PAGE_SIZE - 60)
4172 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4173 " nodes=%*pbl",
4174 nodemask_pr_args(&l->nodes));
45edfa58 4175
e374d483 4176 len += sprintf(buf + len, "\n");
88a420e4
CL
4177 }
4178
4179 free_loc_track(&t);
bbd7d57b 4180 kfree(map);
88a420e4 4181 if (!t.count)
e374d483
HH
4182 len += sprintf(buf, "No data\n");
4183 return len;
88a420e4 4184}
ab4d5ed5 4185#endif
88a420e4 4186
a5a84755 4187#ifdef SLUB_RESILIENCY_TEST
c07b8183 4188static void __init resiliency_test(void)
a5a84755
CL
4189{
4190 u8 *p;
4191
95a05b42 4192 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4193
f9f58285
FF
4194 pr_err("SLUB resiliency testing\n");
4195 pr_err("-----------------------\n");
4196 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4197
4198 p = kzalloc(16, GFP_KERNEL);
4199 p[16] = 0x12;
f9f58285
FF
4200 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4201 p + 16);
a5a84755
CL
4202
4203 validate_slab_cache(kmalloc_caches[4]);
4204
4205 /* Hmmm... The next two are dangerous */
4206 p = kzalloc(32, GFP_KERNEL);
4207 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4208 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4209 p);
4210 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4211
4212 validate_slab_cache(kmalloc_caches[5]);
4213 p = kzalloc(64, GFP_KERNEL);
4214 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4215 *p = 0x56;
f9f58285
FF
4216 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4217 p);
4218 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4219 validate_slab_cache(kmalloc_caches[6]);
4220
f9f58285 4221 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4222 p = kzalloc(128, GFP_KERNEL);
4223 kfree(p);
4224 *p = 0x78;
f9f58285 4225 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a5a84755
CL
4226 validate_slab_cache(kmalloc_caches[7]);
4227
4228 p = kzalloc(256, GFP_KERNEL);
4229 kfree(p);
4230 p[50] = 0x9a;
f9f58285 4231 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
a5a84755
CL
4232 validate_slab_cache(kmalloc_caches[8]);
4233
4234 p = kzalloc(512, GFP_KERNEL);
4235 kfree(p);
4236 p[512] = 0xab;
f9f58285 4237 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a5a84755
CL
4238 validate_slab_cache(kmalloc_caches[9]);
4239}
4240#else
4241#ifdef CONFIG_SYSFS
4242static void resiliency_test(void) {};
4243#endif
4244#endif
4245
ab4d5ed5 4246#ifdef CONFIG_SYSFS
81819f0f 4247enum slab_stat_type {
205ab99d
CL
4248 SL_ALL, /* All slabs */
4249 SL_PARTIAL, /* Only partially allocated slabs */
4250 SL_CPU, /* Only slabs used for cpu caches */
4251 SL_OBJECTS, /* Determine allocated objects not slabs */
4252 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4253};
4254
205ab99d 4255#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4256#define SO_PARTIAL (1 << SL_PARTIAL)
4257#define SO_CPU (1 << SL_CPU)
4258#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4259#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4260
62e5c4b4
CG
4261static ssize_t show_slab_objects(struct kmem_cache *s,
4262 char *buf, unsigned long flags)
81819f0f
CL
4263{
4264 unsigned long total = 0;
81819f0f
CL
4265 int node;
4266 int x;
4267 unsigned long *nodes;
81819f0f 4268
e35e1a97 4269 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4270 if (!nodes)
4271 return -ENOMEM;
81819f0f 4272
205ab99d
CL
4273 if (flags & SO_CPU) {
4274 int cpu;
81819f0f 4275
205ab99d 4276 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4277 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4278 cpu);
ec3ab083 4279 int node;
49e22585 4280 struct page *page;
dfb4f096 4281
bc6697d8 4282 page = ACCESS_ONCE(c->page);
ec3ab083
CL
4283 if (!page)
4284 continue;
205ab99d 4285
ec3ab083
CL
4286 node = page_to_nid(page);
4287 if (flags & SO_TOTAL)
4288 x = page->objects;
4289 else if (flags & SO_OBJECTS)
4290 x = page->inuse;
4291 else
4292 x = 1;
49e22585 4293
ec3ab083
CL
4294 total += x;
4295 nodes[node] += x;
4296
4297 page = ACCESS_ONCE(c->partial);
49e22585 4298 if (page) {
8afb1474
LZ
4299 node = page_to_nid(page);
4300 if (flags & SO_TOTAL)
4301 WARN_ON_ONCE(1);
4302 else if (flags & SO_OBJECTS)
4303 WARN_ON_ONCE(1);
4304 else
4305 x = page->pages;
bc6697d8
ED
4306 total += x;
4307 nodes[node] += x;
49e22585 4308 }
81819f0f
CL
4309 }
4310 }
4311
bfc8c901 4312 get_online_mems();
ab4d5ed5 4313#ifdef CONFIG_SLUB_DEBUG
205ab99d 4314 if (flags & SO_ALL) {
fa45dc25
CL
4315 struct kmem_cache_node *n;
4316
4317 for_each_kmem_cache_node(s, node, n) {
205ab99d 4318
d0e0ac97
CG
4319 if (flags & SO_TOTAL)
4320 x = atomic_long_read(&n->total_objects);
4321 else if (flags & SO_OBJECTS)
4322 x = atomic_long_read(&n->total_objects) -
4323 count_partial(n, count_free);
81819f0f 4324 else
205ab99d 4325 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4326 total += x;
4327 nodes[node] += x;
4328 }
4329
ab4d5ed5
CL
4330 } else
4331#endif
4332 if (flags & SO_PARTIAL) {
fa45dc25 4333 struct kmem_cache_node *n;
81819f0f 4334
fa45dc25 4335 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4336 if (flags & SO_TOTAL)
4337 x = count_partial(n, count_total);
4338 else if (flags & SO_OBJECTS)
4339 x = count_partial(n, count_inuse);
81819f0f 4340 else
205ab99d 4341 x = n->nr_partial;
81819f0f
CL
4342 total += x;
4343 nodes[node] += x;
4344 }
4345 }
81819f0f
CL
4346 x = sprintf(buf, "%lu", total);
4347#ifdef CONFIG_NUMA
fa45dc25 4348 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4349 if (nodes[node])
4350 x += sprintf(buf + x, " N%d=%lu",
4351 node, nodes[node]);
4352#endif
bfc8c901 4353 put_online_mems();
81819f0f
CL
4354 kfree(nodes);
4355 return x + sprintf(buf + x, "\n");
4356}
4357
ab4d5ed5 4358#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4359static int any_slab_objects(struct kmem_cache *s)
4360{
4361 int node;
fa45dc25 4362 struct kmem_cache_node *n;
81819f0f 4363
fa45dc25 4364 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4365 if (atomic_long_read(&n->total_objects))
81819f0f 4366 return 1;
fa45dc25 4367
81819f0f
CL
4368 return 0;
4369}
ab4d5ed5 4370#endif
81819f0f
CL
4371
4372#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4373#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4374
4375struct slab_attribute {
4376 struct attribute attr;
4377 ssize_t (*show)(struct kmem_cache *s, char *buf);
4378 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4379};
4380
4381#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4382 static struct slab_attribute _name##_attr = \
4383 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4384
4385#define SLAB_ATTR(_name) \
4386 static struct slab_attribute _name##_attr = \
ab067e99 4387 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4388
81819f0f
CL
4389static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4390{
4391 return sprintf(buf, "%d\n", s->size);
4392}
4393SLAB_ATTR_RO(slab_size);
4394
4395static ssize_t align_show(struct kmem_cache *s, char *buf)
4396{
4397 return sprintf(buf, "%d\n", s->align);
4398}
4399SLAB_ATTR_RO(align);
4400
4401static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4402{
3b0efdfa 4403 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4404}
4405SLAB_ATTR_RO(object_size);
4406
4407static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4408{
834f3d11 4409 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4410}
4411SLAB_ATTR_RO(objs_per_slab);
4412
06b285dc
CL
4413static ssize_t order_store(struct kmem_cache *s,
4414 const char *buf, size_t length)
4415{
0121c619
CL
4416 unsigned long order;
4417 int err;
4418
3dbb95f7 4419 err = kstrtoul(buf, 10, &order);
0121c619
CL
4420 if (err)
4421 return err;
06b285dc
CL
4422
4423 if (order > slub_max_order || order < slub_min_order)
4424 return -EINVAL;
4425
4426 calculate_sizes(s, order);
4427 return length;
4428}
4429
81819f0f
CL
4430static ssize_t order_show(struct kmem_cache *s, char *buf)
4431{
834f3d11 4432 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4433}
06b285dc 4434SLAB_ATTR(order);
81819f0f 4435
73d342b1
DR
4436static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4437{
4438 return sprintf(buf, "%lu\n", s->min_partial);
4439}
4440
4441static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4442 size_t length)
4443{
4444 unsigned long min;
4445 int err;
4446
3dbb95f7 4447 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4448 if (err)
4449 return err;
4450
c0bdb232 4451 set_min_partial(s, min);
73d342b1
DR
4452 return length;
4453}
4454SLAB_ATTR(min_partial);
4455
49e22585
CL
4456static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4457{
4458 return sprintf(buf, "%u\n", s->cpu_partial);
4459}
4460
4461static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4462 size_t length)
4463{
4464 unsigned long objects;
4465 int err;
4466
3dbb95f7 4467 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4468 if (err)
4469 return err;
345c905d 4470 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4471 return -EINVAL;
49e22585
CL
4472
4473 s->cpu_partial = objects;
4474 flush_all(s);
4475 return length;
4476}
4477SLAB_ATTR(cpu_partial);
4478
81819f0f
CL
4479static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4480{
62c70bce
JP
4481 if (!s->ctor)
4482 return 0;
4483 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4484}
4485SLAB_ATTR_RO(ctor);
4486
81819f0f
CL
4487static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4488{
4307c14f 4489 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
4490}
4491SLAB_ATTR_RO(aliases);
4492
81819f0f
CL
4493static ssize_t partial_show(struct kmem_cache *s, char *buf)
4494{
d9acf4b7 4495 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4496}
4497SLAB_ATTR_RO(partial);
4498
4499static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4500{
d9acf4b7 4501 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4502}
4503SLAB_ATTR_RO(cpu_slabs);
4504
4505static ssize_t objects_show(struct kmem_cache *s, char *buf)
4506{
205ab99d 4507 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4508}
4509SLAB_ATTR_RO(objects);
4510
205ab99d
CL
4511static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4512{
4513 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4514}
4515SLAB_ATTR_RO(objects_partial);
4516
49e22585
CL
4517static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4518{
4519 int objects = 0;
4520 int pages = 0;
4521 int cpu;
4522 int len;
4523
4524 for_each_online_cpu(cpu) {
4525 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4526
4527 if (page) {
4528 pages += page->pages;
4529 objects += page->pobjects;
4530 }
4531 }
4532
4533 len = sprintf(buf, "%d(%d)", objects, pages);
4534
4535#ifdef CONFIG_SMP
4536 for_each_online_cpu(cpu) {
4537 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4538
4539 if (page && len < PAGE_SIZE - 20)
4540 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4541 page->pobjects, page->pages);
4542 }
4543#endif
4544 return len + sprintf(buf + len, "\n");
4545}
4546SLAB_ATTR_RO(slabs_cpu_partial);
4547
a5a84755
CL
4548static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4549{
4550 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4551}
4552
4553static ssize_t reclaim_account_store(struct kmem_cache *s,
4554 const char *buf, size_t length)
4555{
4556 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4557 if (buf[0] == '1')
4558 s->flags |= SLAB_RECLAIM_ACCOUNT;
4559 return length;
4560}
4561SLAB_ATTR(reclaim_account);
4562
4563static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4564{
4565 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4566}
4567SLAB_ATTR_RO(hwcache_align);
4568
4569#ifdef CONFIG_ZONE_DMA
4570static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4571{
4572 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4573}
4574SLAB_ATTR_RO(cache_dma);
4575#endif
4576
4577static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4578{
4579 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4580}
4581SLAB_ATTR_RO(destroy_by_rcu);
4582
ab9a0f19
LJ
4583static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4584{
4585 return sprintf(buf, "%d\n", s->reserved);
4586}
4587SLAB_ATTR_RO(reserved);
4588
ab4d5ed5 4589#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4590static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4591{
4592 return show_slab_objects(s, buf, SO_ALL);
4593}
4594SLAB_ATTR_RO(slabs);
4595
205ab99d
CL
4596static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4597{
4598 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4599}
4600SLAB_ATTR_RO(total_objects);
4601
81819f0f
CL
4602static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4603{
4604 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4605}
4606
4607static ssize_t sanity_checks_store(struct kmem_cache *s,
4608 const char *buf, size_t length)
4609{
4610 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4611 if (buf[0] == '1') {
4612 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4613 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4614 }
81819f0f
CL
4615 return length;
4616}
4617SLAB_ATTR(sanity_checks);
4618
4619static ssize_t trace_show(struct kmem_cache *s, char *buf)
4620{
4621 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4622}
4623
4624static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4625 size_t length)
4626{
c9e16131
CL
4627 /*
4628 * Tracing a merged cache is going to give confusing results
4629 * as well as cause other issues like converting a mergeable
4630 * cache into an umergeable one.
4631 */
4632 if (s->refcount > 1)
4633 return -EINVAL;
4634
81819f0f 4635 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4636 if (buf[0] == '1') {
4637 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4638 s->flags |= SLAB_TRACE;
b789ef51 4639 }
81819f0f
CL
4640 return length;
4641}
4642SLAB_ATTR(trace);
4643
81819f0f
CL
4644static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4645{
4646 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4647}
4648
4649static ssize_t red_zone_store(struct kmem_cache *s,
4650 const char *buf, size_t length)
4651{
4652 if (any_slab_objects(s))
4653 return -EBUSY;
4654
4655 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4656 if (buf[0] == '1') {
4657 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4658 s->flags |= SLAB_RED_ZONE;
b789ef51 4659 }
06b285dc 4660 calculate_sizes(s, -1);
81819f0f
CL
4661 return length;
4662}
4663SLAB_ATTR(red_zone);
4664
4665static ssize_t poison_show(struct kmem_cache *s, char *buf)
4666{
4667 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4668}
4669
4670static ssize_t poison_store(struct kmem_cache *s,
4671 const char *buf, size_t length)
4672{
4673 if (any_slab_objects(s))
4674 return -EBUSY;
4675
4676 s->flags &= ~SLAB_POISON;
b789ef51
CL
4677 if (buf[0] == '1') {
4678 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4679 s->flags |= SLAB_POISON;
b789ef51 4680 }
06b285dc 4681 calculate_sizes(s, -1);
81819f0f
CL
4682 return length;
4683}
4684SLAB_ATTR(poison);
4685
4686static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4687{
4688 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4689}
4690
4691static ssize_t store_user_store(struct kmem_cache *s,
4692 const char *buf, size_t length)
4693{
4694 if (any_slab_objects(s))
4695 return -EBUSY;
4696
4697 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4698 if (buf[0] == '1') {
4699 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4700 s->flags |= SLAB_STORE_USER;
b789ef51 4701 }
06b285dc 4702 calculate_sizes(s, -1);
81819f0f
CL
4703 return length;
4704}
4705SLAB_ATTR(store_user);
4706
53e15af0
CL
4707static ssize_t validate_show(struct kmem_cache *s, char *buf)
4708{
4709 return 0;
4710}
4711
4712static ssize_t validate_store(struct kmem_cache *s,
4713 const char *buf, size_t length)
4714{
434e245d
CL
4715 int ret = -EINVAL;
4716
4717 if (buf[0] == '1') {
4718 ret = validate_slab_cache(s);
4719 if (ret >= 0)
4720 ret = length;
4721 }
4722 return ret;
53e15af0
CL
4723}
4724SLAB_ATTR(validate);
a5a84755
CL
4725
4726static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4727{
4728 if (!(s->flags & SLAB_STORE_USER))
4729 return -ENOSYS;
4730 return list_locations(s, buf, TRACK_ALLOC);
4731}
4732SLAB_ATTR_RO(alloc_calls);
4733
4734static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4735{
4736 if (!(s->flags & SLAB_STORE_USER))
4737 return -ENOSYS;
4738 return list_locations(s, buf, TRACK_FREE);
4739}
4740SLAB_ATTR_RO(free_calls);
4741#endif /* CONFIG_SLUB_DEBUG */
4742
4743#ifdef CONFIG_FAILSLAB
4744static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4745{
4746 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4747}
4748
4749static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4750 size_t length)
4751{
c9e16131
CL
4752 if (s->refcount > 1)
4753 return -EINVAL;
4754
a5a84755
CL
4755 s->flags &= ~SLAB_FAILSLAB;
4756 if (buf[0] == '1')
4757 s->flags |= SLAB_FAILSLAB;
4758 return length;
4759}
4760SLAB_ATTR(failslab);
ab4d5ed5 4761#endif
53e15af0 4762
2086d26a
CL
4763static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4764{
4765 return 0;
4766}
4767
4768static ssize_t shrink_store(struct kmem_cache *s,
4769 const char *buf, size_t length)
4770{
832f37f5
VD
4771 if (buf[0] == '1')
4772 kmem_cache_shrink(s);
4773 else
2086d26a
CL
4774 return -EINVAL;
4775 return length;
4776}
4777SLAB_ATTR(shrink);
4778
81819f0f 4779#ifdef CONFIG_NUMA
9824601e 4780static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4781{
9824601e 4782 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4783}
4784
9824601e 4785static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4786 const char *buf, size_t length)
4787{
0121c619
CL
4788 unsigned long ratio;
4789 int err;
4790
3dbb95f7 4791 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
4792 if (err)
4793 return err;
4794
e2cb96b7 4795 if (ratio <= 100)
0121c619 4796 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4797
81819f0f
CL
4798 return length;
4799}
9824601e 4800SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4801#endif
4802
8ff12cfc 4803#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4804static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4805{
4806 unsigned long sum = 0;
4807 int cpu;
4808 int len;
4809 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4810
4811 if (!data)
4812 return -ENOMEM;
4813
4814 for_each_online_cpu(cpu) {
9dfc6e68 4815 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4816
4817 data[cpu] = x;
4818 sum += x;
4819 }
4820
4821 len = sprintf(buf, "%lu", sum);
4822
50ef37b9 4823#ifdef CONFIG_SMP
8ff12cfc
CL
4824 for_each_online_cpu(cpu) {
4825 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4826 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4827 }
50ef37b9 4828#endif
8ff12cfc
CL
4829 kfree(data);
4830 return len + sprintf(buf + len, "\n");
4831}
4832
78eb00cc
DR
4833static void clear_stat(struct kmem_cache *s, enum stat_item si)
4834{
4835 int cpu;
4836
4837 for_each_online_cpu(cpu)
9dfc6e68 4838 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4839}
4840
8ff12cfc
CL
4841#define STAT_ATTR(si, text) \
4842static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4843{ \
4844 return show_stat(s, buf, si); \
4845} \
78eb00cc
DR
4846static ssize_t text##_store(struct kmem_cache *s, \
4847 const char *buf, size_t length) \
4848{ \
4849 if (buf[0] != '0') \
4850 return -EINVAL; \
4851 clear_stat(s, si); \
4852 return length; \
4853} \
4854SLAB_ATTR(text); \
8ff12cfc
CL
4855
4856STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4857STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4858STAT_ATTR(FREE_FASTPATH, free_fastpath);
4859STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4860STAT_ATTR(FREE_FROZEN, free_frozen);
4861STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4862STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4863STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4864STAT_ATTR(ALLOC_SLAB, alloc_slab);
4865STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 4866STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
4867STAT_ATTR(FREE_SLAB, free_slab);
4868STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4869STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4870STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4871STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4872STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4873STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 4874STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 4875STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
4876STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4877STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
4878STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4879STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
4880STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4881STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
4882#endif
4883
06428780 4884static struct attribute *slab_attrs[] = {
81819f0f
CL
4885 &slab_size_attr.attr,
4886 &object_size_attr.attr,
4887 &objs_per_slab_attr.attr,
4888 &order_attr.attr,
73d342b1 4889 &min_partial_attr.attr,
49e22585 4890 &cpu_partial_attr.attr,
81819f0f 4891 &objects_attr.attr,
205ab99d 4892 &objects_partial_attr.attr,
81819f0f
CL
4893 &partial_attr.attr,
4894 &cpu_slabs_attr.attr,
4895 &ctor_attr.attr,
81819f0f
CL
4896 &aliases_attr.attr,
4897 &align_attr.attr,
81819f0f
CL
4898 &hwcache_align_attr.attr,
4899 &reclaim_account_attr.attr,
4900 &destroy_by_rcu_attr.attr,
a5a84755 4901 &shrink_attr.attr,
ab9a0f19 4902 &reserved_attr.attr,
49e22585 4903 &slabs_cpu_partial_attr.attr,
ab4d5ed5 4904#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4905 &total_objects_attr.attr,
4906 &slabs_attr.attr,
4907 &sanity_checks_attr.attr,
4908 &trace_attr.attr,
81819f0f
CL
4909 &red_zone_attr.attr,
4910 &poison_attr.attr,
4911 &store_user_attr.attr,
53e15af0 4912 &validate_attr.attr,
88a420e4
CL
4913 &alloc_calls_attr.attr,
4914 &free_calls_attr.attr,
ab4d5ed5 4915#endif
81819f0f
CL
4916#ifdef CONFIG_ZONE_DMA
4917 &cache_dma_attr.attr,
4918#endif
4919#ifdef CONFIG_NUMA
9824601e 4920 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4921#endif
4922#ifdef CONFIG_SLUB_STATS
4923 &alloc_fastpath_attr.attr,
4924 &alloc_slowpath_attr.attr,
4925 &free_fastpath_attr.attr,
4926 &free_slowpath_attr.attr,
4927 &free_frozen_attr.attr,
4928 &free_add_partial_attr.attr,
4929 &free_remove_partial_attr.attr,
4930 &alloc_from_partial_attr.attr,
4931 &alloc_slab_attr.attr,
4932 &alloc_refill_attr.attr,
e36a2652 4933 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
4934 &free_slab_attr.attr,
4935 &cpuslab_flush_attr.attr,
4936 &deactivate_full_attr.attr,
4937 &deactivate_empty_attr.attr,
4938 &deactivate_to_head_attr.attr,
4939 &deactivate_to_tail_attr.attr,
4940 &deactivate_remote_frees_attr.attr,
03e404af 4941 &deactivate_bypass_attr.attr,
65c3376a 4942 &order_fallback_attr.attr,
b789ef51
CL
4943 &cmpxchg_double_fail_attr.attr,
4944 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
4945 &cpu_partial_alloc_attr.attr,
4946 &cpu_partial_free_attr.attr,
8028dcea
AS
4947 &cpu_partial_node_attr.attr,
4948 &cpu_partial_drain_attr.attr,
81819f0f 4949#endif
4c13dd3b
DM
4950#ifdef CONFIG_FAILSLAB
4951 &failslab_attr.attr,
4952#endif
4953
81819f0f
CL
4954 NULL
4955};
4956
4957static struct attribute_group slab_attr_group = {
4958 .attrs = slab_attrs,
4959};
4960
4961static ssize_t slab_attr_show(struct kobject *kobj,
4962 struct attribute *attr,
4963 char *buf)
4964{
4965 struct slab_attribute *attribute;
4966 struct kmem_cache *s;
4967 int err;
4968
4969 attribute = to_slab_attr(attr);
4970 s = to_slab(kobj);
4971
4972 if (!attribute->show)
4973 return -EIO;
4974
4975 err = attribute->show(s, buf);
4976
4977 return err;
4978}
4979
4980static ssize_t slab_attr_store(struct kobject *kobj,
4981 struct attribute *attr,
4982 const char *buf, size_t len)
4983{
4984 struct slab_attribute *attribute;
4985 struct kmem_cache *s;
4986 int err;
4987
4988 attribute = to_slab_attr(attr);
4989 s = to_slab(kobj);
4990
4991 if (!attribute->store)
4992 return -EIO;
4993
4994 err = attribute->store(s, buf, len);
107dab5c
GC
4995#ifdef CONFIG_MEMCG_KMEM
4996 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 4997 struct kmem_cache *c;
81819f0f 4998
107dab5c
GC
4999 mutex_lock(&slab_mutex);
5000 if (s->max_attr_size < len)
5001 s->max_attr_size = len;
5002
ebe945c2
GC
5003 /*
5004 * This is a best effort propagation, so this function's return
5005 * value will be determined by the parent cache only. This is
5006 * basically because not all attributes will have a well
5007 * defined semantics for rollbacks - most of the actions will
5008 * have permanent effects.
5009 *
5010 * Returning the error value of any of the children that fail
5011 * is not 100 % defined, in the sense that users seeing the
5012 * error code won't be able to know anything about the state of
5013 * the cache.
5014 *
5015 * Only returning the error code for the parent cache at least
5016 * has well defined semantics. The cache being written to
5017 * directly either failed or succeeded, in which case we loop
5018 * through the descendants with best-effort propagation.
5019 */
426589f5
VD
5020 for_each_memcg_cache(c, s)
5021 attribute->store(c, buf, len);
107dab5c
GC
5022 mutex_unlock(&slab_mutex);
5023 }
5024#endif
81819f0f
CL
5025 return err;
5026}
5027
107dab5c
GC
5028static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5029{
5030#ifdef CONFIG_MEMCG_KMEM
5031 int i;
5032 char *buffer = NULL;
93030d83 5033 struct kmem_cache *root_cache;
107dab5c 5034
93030d83 5035 if (is_root_cache(s))
107dab5c
GC
5036 return;
5037
f7ce3190 5038 root_cache = s->memcg_params.root_cache;
93030d83 5039
107dab5c
GC
5040 /*
5041 * This mean this cache had no attribute written. Therefore, no point
5042 * in copying default values around
5043 */
93030d83 5044 if (!root_cache->max_attr_size)
107dab5c
GC
5045 return;
5046
5047 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5048 char mbuf[64];
5049 char *buf;
5050 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5051
5052 if (!attr || !attr->store || !attr->show)
5053 continue;
5054
5055 /*
5056 * It is really bad that we have to allocate here, so we will
5057 * do it only as a fallback. If we actually allocate, though,
5058 * we can just use the allocated buffer until the end.
5059 *
5060 * Most of the slub attributes will tend to be very small in
5061 * size, but sysfs allows buffers up to a page, so they can
5062 * theoretically happen.
5063 */
5064 if (buffer)
5065 buf = buffer;
93030d83 5066 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5067 buf = mbuf;
5068 else {
5069 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5070 if (WARN_ON(!buffer))
5071 continue;
5072 buf = buffer;
5073 }
5074
93030d83 5075 attr->show(root_cache, buf);
107dab5c
GC
5076 attr->store(s, buf, strlen(buf));
5077 }
5078
5079 if (buffer)
5080 free_page((unsigned long)buffer);
5081#endif
5082}
5083
41a21285
CL
5084static void kmem_cache_release(struct kobject *k)
5085{
5086 slab_kmem_cache_release(to_slab(k));
5087}
5088
52cf25d0 5089static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5090 .show = slab_attr_show,
5091 .store = slab_attr_store,
5092};
5093
5094static struct kobj_type slab_ktype = {
5095 .sysfs_ops = &slab_sysfs_ops,
41a21285 5096 .release = kmem_cache_release,
81819f0f
CL
5097};
5098
5099static int uevent_filter(struct kset *kset, struct kobject *kobj)
5100{
5101 struct kobj_type *ktype = get_ktype(kobj);
5102
5103 if (ktype == &slab_ktype)
5104 return 1;
5105 return 0;
5106}
5107
9cd43611 5108static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5109 .filter = uevent_filter,
5110};
5111
27c3a314 5112static struct kset *slab_kset;
81819f0f 5113
9a41707b
VD
5114static inline struct kset *cache_kset(struct kmem_cache *s)
5115{
5116#ifdef CONFIG_MEMCG_KMEM
5117 if (!is_root_cache(s))
f7ce3190 5118 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5119#endif
5120 return slab_kset;
5121}
5122
81819f0f
CL
5123#define ID_STR_LENGTH 64
5124
5125/* Create a unique string id for a slab cache:
6446faa2
CL
5126 *
5127 * Format :[flags-]size
81819f0f
CL
5128 */
5129static char *create_unique_id(struct kmem_cache *s)
5130{
5131 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5132 char *p = name;
5133
5134 BUG_ON(!name);
5135
5136 *p++ = ':';
5137 /*
5138 * First flags affecting slabcache operations. We will only
5139 * get here for aliasable slabs so we do not need to support
5140 * too many flags. The flags here must cover all flags that
5141 * are matched during merging to guarantee that the id is
5142 * unique.
5143 */
5144 if (s->flags & SLAB_CACHE_DMA)
5145 *p++ = 'd';
5146 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5147 *p++ = 'a';
5148 if (s->flags & SLAB_DEBUG_FREE)
5149 *p++ = 'F';
5a896d9e
VN
5150 if (!(s->flags & SLAB_NOTRACK))
5151 *p++ = 't';
81819f0f
CL
5152 if (p != name + 1)
5153 *p++ = '-';
5154 p += sprintf(p, "%07d", s->size);
2633d7a0 5155
81819f0f
CL
5156 BUG_ON(p > name + ID_STR_LENGTH - 1);
5157 return name;
5158}
5159
5160static int sysfs_slab_add(struct kmem_cache *s)
5161{
5162 int err;
5163 const char *name;
45530c44 5164 int unmergeable = slab_unmergeable(s);
81819f0f 5165
81819f0f
CL
5166 if (unmergeable) {
5167 /*
5168 * Slabcache can never be merged so we can use the name proper.
5169 * This is typically the case for debug situations. In that
5170 * case we can catch duplicate names easily.
5171 */
27c3a314 5172 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5173 name = s->name;
5174 } else {
5175 /*
5176 * Create a unique name for the slab as a target
5177 * for the symlinks.
5178 */
5179 name = create_unique_id(s);
5180 }
5181
9a41707b 5182 s->kobj.kset = cache_kset(s);
26e4f205 5183 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731
DJ
5184 if (err)
5185 goto out_put_kobj;
81819f0f
CL
5186
5187 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5188 if (err)
5189 goto out_del_kobj;
9a41707b
VD
5190
5191#ifdef CONFIG_MEMCG_KMEM
5192 if (is_root_cache(s)) {
5193 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5194 if (!s->memcg_kset) {
54b6a731
DJ
5195 err = -ENOMEM;
5196 goto out_del_kobj;
9a41707b
VD
5197 }
5198 }
5199#endif
5200
81819f0f
CL
5201 kobject_uevent(&s->kobj, KOBJ_ADD);
5202 if (!unmergeable) {
5203 /* Setup first alias */
5204 sysfs_slab_alias(s, s->name);
81819f0f 5205 }
54b6a731
DJ
5206out:
5207 if (!unmergeable)
5208 kfree(name);
5209 return err;
5210out_del_kobj:
5211 kobject_del(&s->kobj);
5212out_put_kobj:
5213 kobject_put(&s->kobj);
5214 goto out;
81819f0f
CL
5215}
5216
41a21285 5217void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5218{
97d06609 5219 if (slab_state < FULL)
2bce6485
CL
5220 /*
5221 * Sysfs has not been setup yet so no need to remove the
5222 * cache from sysfs.
5223 */
5224 return;
5225
9a41707b
VD
5226#ifdef CONFIG_MEMCG_KMEM
5227 kset_unregister(s->memcg_kset);
5228#endif
81819f0f
CL
5229 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5230 kobject_del(&s->kobj);
151c602f 5231 kobject_put(&s->kobj);
81819f0f
CL
5232}
5233
5234/*
5235 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5236 * available lest we lose that information.
81819f0f
CL
5237 */
5238struct saved_alias {
5239 struct kmem_cache *s;
5240 const char *name;
5241 struct saved_alias *next;
5242};
5243
5af328a5 5244static struct saved_alias *alias_list;
81819f0f
CL
5245
5246static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5247{
5248 struct saved_alias *al;
5249
97d06609 5250 if (slab_state == FULL) {
81819f0f
CL
5251 /*
5252 * If we have a leftover link then remove it.
5253 */
27c3a314
GKH
5254 sysfs_remove_link(&slab_kset->kobj, name);
5255 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5256 }
5257
5258 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5259 if (!al)
5260 return -ENOMEM;
5261
5262 al->s = s;
5263 al->name = name;
5264 al->next = alias_list;
5265 alias_list = al;
5266 return 0;
5267}
5268
5269static int __init slab_sysfs_init(void)
5270{
5b95a4ac 5271 struct kmem_cache *s;
81819f0f
CL
5272 int err;
5273
18004c5d 5274 mutex_lock(&slab_mutex);
2bce6485 5275
0ff21e46 5276 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5277 if (!slab_kset) {
18004c5d 5278 mutex_unlock(&slab_mutex);
f9f58285 5279 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5280 return -ENOSYS;
5281 }
5282
97d06609 5283 slab_state = FULL;
26a7bd03 5284
5b95a4ac 5285 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5286 err = sysfs_slab_add(s);
5d540fb7 5287 if (err)
f9f58285
FF
5288 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5289 s->name);
26a7bd03 5290 }
81819f0f
CL
5291
5292 while (alias_list) {
5293 struct saved_alias *al = alias_list;
5294
5295 alias_list = alias_list->next;
5296 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5297 if (err)
f9f58285
FF
5298 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5299 al->name);
81819f0f
CL
5300 kfree(al);
5301 }
5302
18004c5d 5303 mutex_unlock(&slab_mutex);
81819f0f
CL
5304 resiliency_test();
5305 return 0;
5306}
5307
5308__initcall(slab_sysfs_init);
ab4d5ed5 5309#endif /* CONFIG_SYSFS */
57ed3eda
PE
5310
5311/*
5312 * The /proc/slabinfo ABI
5313 */
158a9624 5314#ifdef CONFIG_SLABINFO
0d7561c6 5315void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5316{
57ed3eda 5317 unsigned long nr_slabs = 0;
205ab99d
CL
5318 unsigned long nr_objs = 0;
5319 unsigned long nr_free = 0;
57ed3eda 5320 int node;
fa45dc25 5321 struct kmem_cache_node *n;
57ed3eda 5322
fa45dc25 5323 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5324 nr_slabs += node_nr_slabs(n);
5325 nr_objs += node_nr_objs(n);
205ab99d 5326 nr_free += count_partial(n, count_free);
57ed3eda
PE
5327 }
5328
0d7561c6
GC
5329 sinfo->active_objs = nr_objs - nr_free;
5330 sinfo->num_objs = nr_objs;
5331 sinfo->active_slabs = nr_slabs;
5332 sinfo->num_slabs = nr_slabs;
5333 sinfo->objects_per_slab = oo_objects(s->oo);
5334 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5335}
5336
0d7561c6 5337void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5338{
7b3c3a50
AD
5339}
5340
b7454ad3
GC
5341ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5342 size_t count, loff_t *ppos)
7b3c3a50 5343{
b7454ad3 5344 return -EIO;
7b3c3a50 5345}
158a9624 5346#endif /* CONFIG_SLABINFO */