slub: improve bulk alloc strategy
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
3ac38faa 21#include <linux/notifier.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
5a896d9e 24#include <linux/kmemcheck.h>
81819f0f
CL
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
3ac7fe5a 29#include <linux/debugobjects.h>
81819f0f 30#include <linux/kallsyms.h>
b9049e23 31#include <linux/memory.h>
f8bd2258 32#include <linux/math64.h>
773ff60e 33#include <linux/fault-inject.h>
bfa71457 34#include <linux/stacktrace.h>
4de900b4 35#include <linux/prefetch.h>
2633d7a0 36#include <linux/memcontrol.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
65 *
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
71 *
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
81819f0f
CL
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
81 *
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
84 *
672bba3a
CL
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 87 * freed then the slab will show up again on the partial lists.
672bba3a
CL
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
81819f0f
CL
90 *
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
94 *
95 * Overloading of page flags that are otherwise used for LRU management.
96 *
4b6f0750
CL
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
dfb4f096 109 * freelist that allows lockless access to
894b8788
CL
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
81819f0f
CL
112 *
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
894b8788 115 * the fast path and disables lockless freelists.
81819f0f
CL
116 */
117
af537b0a
CL
118static inline int kmem_cache_debug(struct kmem_cache *s)
119{
5577bd8a 120#ifdef CONFIG_SLUB_DEBUG
af537b0a 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 122#else
af537b0a 123 return 0;
5577bd8a 124#endif
af537b0a 125}
5577bd8a 126
345c905d
JK
127static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
128{
129#ifdef CONFIG_SLUB_CPU_PARTIAL
130 return !kmem_cache_debug(s);
131#else
132 return false;
133#endif
134}
135
81819f0f
CL
136/*
137 * Issues still to be resolved:
138 *
81819f0f
CL
139 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
140 *
81819f0f
CL
141 * - Variable sizing of the per node arrays
142 */
143
144/* Enable to test recovery from slab corruption on boot */
145#undef SLUB_RESILIENCY_TEST
146
b789ef51
CL
147/* Enable to log cmpxchg failures */
148#undef SLUB_DEBUG_CMPXCHG
149
2086d26a
CL
150/*
151 * Mininum number of partial slabs. These will be left on the partial
152 * lists even if they are empty. kmem_cache_shrink may reclaim them.
153 */
76be8950 154#define MIN_PARTIAL 5
e95eed57 155
2086d26a
CL
156/*
157 * Maximum number of desirable partial slabs.
158 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 159 * sort the partial list by the number of objects in use.
2086d26a
CL
160 */
161#define MAX_PARTIAL 10
162
81819f0f
CL
163#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
164 SLAB_POISON | SLAB_STORE_USER)
672bba3a 165
fa5ec8a1 166/*
3de47213
DR
167 * Debugging flags that require metadata to be stored in the slab. These get
168 * disabled when slub_debug=O is used and a cache's min order increases with
169 * metadata.
fa5ec8a1 170 */
3de47213 171#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 172
210b5c06
CG
173#define OO_SHIFT 16
174#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 175#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 176
81819f0f 177/* Internal SLUB flags */
f90ec390 178#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 179#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 180
81819f0f
CL
181#ifdef CONFIG_SMP
182static struct notifier_block slab_notifier;
183#endif
184
02cbc874
CL
185/*
186 * Tracking user of a slab.
187 */
d6543e39 188#define TRACK_ADDRS_COUNT 16
02cbc874 189struct track {
ce71e27c 190 unsigned long addr; /* Called from address */
d6543e39
BG
191#ifdef CONFIG_STACKTRACE
192 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
193#endif
02cbc874
CL
194 int cpu; /* Was running on cpu */
195 int pid; /* Pid context */
196 unsigned long when; /* When did the operation occur */
197};
198
199enum track_item { TRACK_ALLOC, TRACK_FREE };
200
ab4d5ed5 201#ifdef CONFIG_SYSFS
81819f0f
CL
202static int sysfs_slab_add(struct kmem_cache *);
203static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 204static void memcg_propagate_slab_attrs(struct kmem_cache *s);
81819f0f 205#else
0c710013
CL
206static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
207static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
208 { return 0; }
107dab5c 209static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
81819f0f
CL
210#endif
211
4fdccdfb 212static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
213{
214#ifdef CONFIG_SLUB_STATS
88da03a6
CL
215 /*
216 * The rmw is racy on a preemptible kernel but this is acceptable, so
217 * avoid this_cpu_add()'s irq-disable overhead.
218 */
219 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
220#endif
221}
222
81819f0f
CL
223/********************************************************************
224 * Core slab cache functions
225 *******************************************************************/
226
6446faa2 227/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
228static inline int check_valid_pointer(struct kmem_cache *s,
229 struct page *page, const void *object)
230{
231 void *base;
232
a973e9dd 233 if (!object)
02cbc874
CL
234 return 1;
235
a973e9dd 236 base = page_address(page);
39b26464 237 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
238 (object - base) % s->size) {
239 return 0;
240 }
241
242 return 1;
243}
244
7656c72b
CL
245static inline void *get_freepointer(struct kmem_cache *s, void *object)
246{
247 return *(void **)(object + s->offset);
248}
249
0ad9500e
ED
250static void prefetch_freepointer(const struct kmem_cache *s, void *object)
251{
252 prefetch(object + s->offset);
253}
254
1393d9a1
CL
255static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
256{
257 void *p;
258
259#ifdef CONFIG_DEBUG_PAGEALLOC
260 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
261#else
262 p = get_freepointer(s, object);
263#endif
264 return p;
265}
266
7656c72b
CL
267static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
268{
269 *(void **)(object + s->offset) = fp;
270}
271
272/* Loop over all objects in a slab */
224a88be
CL
273#define for_each_object(__p, __s, __addr, __objects) \
274 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
275 __p += (__s)->size)
276
54266640
WY
277#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
278 for (__p = (__addr), __idx = 1; __idx <= __objects;\
279 __p += (__s)->size, __idx++)
280
7656c72b
CL
281/* Determine object index from a given position */
282static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
283{
284 return (p - addr) / s->size;
285}
286
d71f606f
MK
287static inline size_t slab_ksize(const struct kmem_cache *s)
288{
289#ifdef CONFIG_SLUB_DEBUG
290 /*
291 * Debugging requires use of the padding between object
292 * and whatever may come after it.
293 */
294 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
3b0efdfa 295 return s->object_size;
d71f606f
MK
296
297#endif
298 /*
299 * If we have the need to store the freelist pointer
300 * back there or track user information then we can
301 * only use the space before that information.
302 */
303 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
304 return s->inuse;
305 /*
306 * Else we can use all the padding etc for the allocation
307 */
308 return s->size;
309}
310
ab9a0f19
LJ
311static inline int order_objects(int order, unsigned long size, int reserved)
312{
313 return ((PAGE_SIZE << order) - reserved) / size;
314}
315
834f3d11 316static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 317 unsigned long size, int reserved)
834f3d11
CL
318{
319 struct kmem_cache_order_objects x = {
ab9a0f19 320 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
321 };
322
323 return x;
324}
325
326static inline int oo_order(struct kmem_cache_order_objects x)
327{
210b5c06 328 return x.x >> OO_SHIFT;
834f3d11
CL
329}
330
331static inline int oo_objects(struct kmem_cache_order_objects x)
332{
210b5c06 333 return x.x & OO_MASK;
834f3d11
CL
334}
335
881db7fb
CL
336/*
337 * Per slab locking using the pagelock
338 */
339static __always_inline void slab_lock(struct page *page)
340{
341 bit_spin_lock(PG_locked, &page->flags);
342}
343
344static __always_inline void slab_unlock(struct page *page)
345{
346 __bit_spin_unlock(PG_locked, &page->flags);
347}
348
a0320865
DH
349static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
350{
351 struct page tmp;
352 tmp.counters = counters_new;
353 /*
354 * page->counters can cover frozen/inuse/objects as well
355 * as page->_count. If we assign to ->counters directly
356 * we run the risk of losing updates to page->_count, so
357 * be careful and only assign to the fields we need.
358 */
359 page->frozen = tmp.frozen;
360 page->inuse = tmp.inuse;
361 page->objects = tmp.objects;
362}
363
1d07171c
CL
364/* Interrupts must be disabled (for the fallback code to work right) */
365static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
366 void *freelist_old, unsigned long counters_old,
367 void *freelist_new, unsigned long counters_new,
368 const char *n)
369{
370 VM_BUG_ON(!irqs_disabled());
2565409f
HC
371#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
372 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 373 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 374 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
375 freelist_old, counters_old,
376 freelist_new, counters_new))
6f6528a1 377 return true;
1d07171c
CL
378 } else
379#endif
380 {
381 slab_lock(page);
d0e0ac97
CG
382 if (page->freelist == freelist_old &&
383 page->counters == counters_old) {
1d07171c 384 page->freelist = freelist_new;
a0320865 385 set_page_slub_counters(page, counters_new);
1d07171c 386 slab_unlock(page);
6f6528a1 387 return true;
1d07171c
CL
388 }
389 slab_unlock(page);
390 }
391
392 cpu_relax();
393 stat(s, CMPXCHG_DOUBLE_FAIL);
394
395#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 396 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
397#endif
398
6f6528a1 399 return false;
1d07171c
CL
400}
401
b789ef51
CL
402static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
403 void *freelist_old, unsigned long counters_old,
404 void *freelist_new, unsigned long counters_new,
405 const char *n)
406{
2565409f
HC
407#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
408 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 409 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 410 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
411 freelist_old, counters_old,
412 freelist_new, counters_new))
6f6528a1 413 return true;
b789ef51
CL
414 } else
415#endif
416 {
1d07171c
CL
417 unsigned long flags;
418
419 local_irq_save(flags);
881db7fb 420 slab_lock(page);
d0e0ac97
CG
421 if (page->freelist == freelist_old &&
422 page->counters == counters_old) {
b789ef51 423 page->freelist = freelist_new;
a0320865 424 set_page_slub_counters(page, counters_new);
881db7fb 425 slab_unlock(page);
1d07171c 426 local_irq_restore(flags);
6f6528a1 427 return true;
b789ef51 428 }
881db7fb 429 slab_unlock(page);
1d07171c 430 local_irq_restore(flags);
b789ef51
CL
431 }
432
433 cpu_relax();
434 stat(s, CMPXCHG_DOUBLE_FAIL);
435
436#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 437 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
438#endif
439
6f6528a1 440 return false;
b789ef51
CL
441}
442
41ecc55b 443#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
444/*
445 * Determine a map of object in use on a page.
446 *
881db7fb 447 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
448 * not vanish from under us.
449 */
450static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
451{
452 void *p;
453 void *addr = page_address(page);
454
455 for (p = page->freelist; p; p = get_freepointer(s, p))
456 set_bit(slab_index(p, s, addr), map);
457}
458
41ecc55b
CL
459/*
460 * Debug settings:
461 */
f0630fff
CL
462#ifdef CONFIG_SLUB_DEBUG_ON
463static int slub_debug = DEBUG_DEFAULT_FLAGS;
464#else
41ecc55b 465static int slub_debug;
f0630fff 466#endif
41ecc55b
CL
467
468static char *slub_debug_slabs;
fa5ec8a1 469static int disable_higher_order_debug;
41ecc55b 470
a79316c6
AR
471/*
472 * slub is about to manipulate internal object metadata. This memory lies
473 * outside the range of the allocated object, so accessing it would normally
474 * be reported by kasan as a bounds error. metadata_access_enable() is used
475 * to tell kasan that these accesses are OK.
476 */
477static inline void metadata_access_enable(void)
478{
479 kasan_disable_current();
480}
481
482static inline void metadata_access_disable(void)
483{
484 kasan_enable_current();
485}
486
81819f0f
CL
487/*
488 * Object debugging
489 */
490static void print_section(char *text, u8 *addr, unsigned int length)
491{
a79316c6 492 metadata_access_enable();
ffc79d28
SAS
493 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
494 length, 1);
a79316c6 495 metadata_access_disable();
81819f0f
CL
496}
497
81819f0f
CL
498static struct track *get_track(struct kmem_cache *s, void *object,
499 enum track_item alloc)
500{
501 struct track *p;
502
503 if (s->offset)
504 p = object + s->offset + sizeof(void *);
505 else
506 p = object + s->inuse;
507
508 return p + alloc;
509}
510
511static void set_track(struct kmem_cache *s, void *object,
ce71e27c 512 enum track_item alloc, unsigned long addr)
81819f0f 513{
1a00df4a 514 struct track *p = get_track(s, object, alloc);
81819f0f 515
81819f0f 516 if (addr) {
d6543e39
BG
517#ifdef CONFIG_STACKTRACE
518 struct stack_trace trace;
519 int i;
520
521 trace.nr_entries = 0;
522 trace.max_entries = TRACK_ADDRS_COUNT;
523 trace.entries = p->addrs;
524 trace.skip = 3;
a79316c6 525 metadata_access_enable();
d6543e39 526 save_stack_trace(&trace);
a79316c6 527 metadata_access_disable();
d6543e39
BG
528
529 /* See rant in lockdep.c */
530 if (trace.nr_entries != 0 &&
531 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
532 trace.nr_entries--;
533
534 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
535 p->addrs[i] = 0;
536#endif
81819f0f
CL
537 p->addr = addr;
538 p->cpu = smp_processor_id();
88e4ccf2 539 p->pid = current->pid;
81819f0f
CL
540 p->when = jiffies;
541 } else
542 memset(p, 0, sizeof(struct track));
543}
544
81819f0f
CL
545static void init_tracking(struct kmem_cache *s, void *object)
546{
24922684
CL
547 if (!(s->flags & SLAB_STORE_USER))
548 return;
549
ce71e27c
EGM
550 set_track(s, object, TRACK_FREE, 0UL);
551 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
552}
553
554static void print_track(const char *s, struct track *t)
555{
556 if (!t->addr)
557 return;
558
f9f58285
FF
559 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
560 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
561#ifdef CONFIG_STACKTRACE
562 {
563 int i;
564 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
565 if (t->addrs[i])
f9f58285 566 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
567 else
568 break;
569 }
570#endif
24922684
CL
571}
572
573static void print_tracking(struct kmem_cache *s, void *object)
574{
575 if (!(s->flags & SLAB_STORE_USER))
576 return;
577
578 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
579 print_track("Freed", get_track(s, object, TRACK_FREE));
580}
581
582static void print_page_info(struct page *page)
583{
f9f58285 584 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 585 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
586
587}
588
589static void slab_bug(struct kmem_cache *s, char *fmt, ...)
590{
ecc42fbe 591 struct va_format vaf;
24922684 592 va_list args;
24922684
CL
593
594 va_start(args, fmt);
ecc42fbe
FF
595 vaf.fmt = fmt;
596 vaf.va = &args;
f9f58285 597 pr_err("=============================================================================\n");
ecc42fbe 598 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 599 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 600
373d4d09 601 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 602 va_end(args);
81819f0f
CL
603}
604
24922684
CL
605static void slab_fix(struct kmem_cache *s, char *fmt, ...)
606{
ecc42fbe 607 struct va_format vaf;
24922684 608 va_list args;
24922684
CL
609
610 va_start(args, fmt);
ecc42fbe
FF
611 vaf.fmt = fmt;
612 vaf.va = &args;
613 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 614 va_end(args);
24922684
CL
615}
616
617static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
618{
619 unsigned int off; /* Offset of last byte */
a973e9dd 620 u8 *addr = page_address(page);
24922684
CL
621
622 print_tracking(s, p);
623
624 print_page_info(page);
625
f9f58285
FF
626 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
627 p, p - addr, get_freepointer(s, p));
24922684
CL
628
629 if (p > addr + 16)
ffc79d28 630 print_section("Bytes b4 ", p - 16, 16);
81819f0f 631
3b0efdfa 632 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 633 PAGE_SIZE));
81819f0f 634 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
635 print_section("Redzone ", p + s->object_size,
636 s->inuse - s->object_size);
81819f0f 637
81819f0f
CL
638 if (s->offset)
639 off = s->offset + sizeof(void *);
640 else
641 off = s->inuse;
642
24922684 643 if (s->flags & SLAB_STORE_USER)
81819f0f 644 off += 2 * sizeof(struct track);
81819f0f
CL
645
646 if (off != s->size)
647 /* Beginning of the filler is the free pointer */
ffc79d28 648 print_section("Padding ", p + off, s->size - off);
24922684
CL
649
650 dump_stack();
81819f0f
CL
651}
652
75c66def 653void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
654 u8 *object, char *reason)
655{
3dc50637 656 slab_bug(s, "%s", reason);
24922684 657 print_trailer(s, page, object);
81819f0f
CL
658}
659
d0e0ac97
CG
660static void slab_err(struct kmem_cache *s, struct page *page,
661 const char *fmt, ...)
81819f0f
CL
662{
663 va_list args;
664 char buf[100];
665
24922684
CL
666 va_start(args, fmt);
667 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 668 va_end(args);
3dc50637 669 slab_bug(s, "%s", buf);
24922684 670 print_page_info(page);
81819f0f
CL
671 dump_stack();
672}
673
f7cb1933 674static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
675{
676 u8 *p = object;
677
678 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
679 memset(p, POISON_FREE, s->object_size - 1);
680 p[s->object_size - 1] = POISON_END;
81819f0f
CL
681 }
682
683 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 684 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
685}
686
24922684
CL
687static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
688 void *from, void *to)
689{
690 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
691 memset(from, data, to - from);
692}
693
694static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
695 u8 *object, char *what,
06428780 696 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
697{
698 u8 *fault;
699 u8 *end;
700
a79316c6 701 metadata_access_enable();
79824820 702 fault = memchr_inv(start, value, bytes);
a79316c6 703 metadata_access_disable();
24922684
CL
704 if (!fault)
705 return 1;
706
707 end = start + bytes;
708 while (end > fault && end[-1] == value)
709 end--;
710
711 slab_bug(s, "%s overwritten", what);
f9f58285 712 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
713 fault, end - 1, fault[0], value);
714 print_trailer(s, page, object);
715
716 restore_bytes(s, what, value, fault, end);
717 return 0;
81819f0f
CL
718}
719
81819f0f
CL
720/*
721 * Object layout:
722 *
723 * object address
724 * Bytes of the object to be managed.
725 * If the freepointer may overlay the object then the free
726 * pointer is the first word of the object.
672bba3a 727 *
81819f0f
CL
728 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
729 * 0xa5 (POISON_END)
730 *
3b0efdfa 731 * object + s->object_size
81819f0f 732 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 733 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 734 * object_size == inuse.
672bba3a 735 *
81819f0f
CL
736 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
737 * 0xcc (RED_ACTIVE) for objects in use.
738 *
739 * object + s->inuse
672bba3a
CL
740 * Meta data starts here.
741 *
81819f0f
CL
742 * A. Free pointer (if we cannot overwrite object on free)
743 * B. Tracking data for SLAB_STORE_USER
672bba3a 744 * C. Padding to reach required alignment boundary or at mininum
6446faa2 745 * one word if debugging is on to be able to detect writes
672bba3a
CL
746 * before the word boundary.
747 *
748 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
749 *
750 * object + s->size
672bba3a 751 * Nothing is used beyond s->size.
81819f0f 752 *
3b0efdfa 753 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 754 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
755 * may be used with merged slabcaches.
756 */
757
81819f0f
CL
758static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
759{
760 unsigned long off = s->inuse; /* The end of info */
761
762 if (s->offset)
763 /* Freepointer is placed after the object. */
764 off += sizeof(void *);
765
766 if (s->flags & SLAB_STORE_USER)
767 /* We also have user information there */
768 off += 2 * sizeof(struct track);
769
770 if (s->size == off)
771 return 1;
772
24922684
CL
773 return check_bytes_and_report(s, page, p, "Object padding",
774 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
775}
776
39b26464 777/* Check the pad bytes at the end of a slab page */
81819f0f
CL
778static int slab_pad_check(struct kmem_cache *s, struct page *page)
779{
24922684
CL
780 u8 *start;
781 u8 *fault;
782 u8 *end;
783 int length;
784 int remainder;
81819f0f
CL
785
786 if (!(s->flags & SLAB_POISON))
787 return 1;
788
a973e9dd 789 start = page_address(page);
ab9a0f19 790 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
791 end = start + length;
792 remainder = length % s->size;
81819f0f
CL
793 if (!remainder)
794 return 1;
795
a79316c6 796 metadata_access_enable();
79824820 797 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
a79316c6 798 metadata_access_disable();
24922684
CL
799 if (!fault)
800 return 1;
801 while (end > fault && end[-1] == POISON_INUSE)
802 end--;
803
804 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 805 print_section("Padding ", end - remainder, remainder);
24922684 806
8a3d271d 807 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 808 return 0;
81819f0f
CL
809}
810
811static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 812 void *object, u8 val)
81819f0f
CL
813{
814 u8 *p = object;
3b0efdfa 815 u8 *endobject = object + s->object_size;
81819f0f
CL
816
817 if (s->flags & SLAB_RED_ZONE) {
24922684 818 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 819 endobject, val, s->inuse - s->object_size))
81819f0f 820 return 0;
81819f0f 821 } else {
3b0efdfa 822 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 823 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
824 endobject, POISON_INUSE,
825 s->inuse - s->object_size);
3adbefee 826 }
81819f0f
CL
827 }
828
829 if (s->flags & SLAB_POISON) {
f7cb1933 830 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 831 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 832 POISON_FREE, s->object_size - 1) ||
24922684 833 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 834 p + s->object_size - 1, POISON_END, 1)))
81819f0f 835 return 0;
81819f0f
CL
836 /*
837 * check_pad_bytes cleans up on its own.
838 */
839 check_pad_bytes(s, page, p);
840 }
841
f7cb1933 842 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
843 /*
844 * Object and freepointer overlap. Cannot check
845 * freepointer while object is allocated.
846 */
847 return 1;
848
849 /* Check free pointer validity */
850 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
851 object_err(s, page, p, "Freepointer corrupt");
852 /*
9f6c708e 853 * No choice but to zap it and thus lose the remainder
81819f0f 854 * of the free objects in this slab. May cause
672bba3a 855 * another error because the object count is now wrong.
81819f0f 856 */
a973e9dd 857 set_freepointer(s, p, NULL);
81819f0f
CL
858 return 0;
859 }
860 return 1;
861}
862
863static int check_slab(struct kmem_cache *s, struct page *page)
864{
39b26464
CL
865 int maxobj;
866
81819f0f
CL
867 VM_BUG_ON(!irqs_disabled());
868
869 if (!PageSlab(page)) {
24922684 870 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
871 return 0;
872 }
39b26464 873
ab9a0f19 874 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
875 if (page->objects > maxobj) {
876 slab_err(s, page, "objects %u > max %u",
f6edde9c 877 page->objects, maxobj);
39b26464
CL
878 return 0;
879 }
880 if (page->inuse > page->objects) {
24922684 881 slab_err(s, page, "inuse %u > max %u",
f6edde9c 882 page->inuse, page->objects);
81819f0f
CL
883 return 0;
884 }
885 /* Slab_pad_check fixes things up after itself */
886 slab_pad_check(s, page);
887 return 1;
888}
889
890/*
672bba3a
CL
891 * Determine if a certain object on a page is on the freelist. Must hold the
892 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
893 */
894static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
895{
896 int nr = 0;
881db7fb 897 void *fp;
81819f0f 898 void *object = NULL;
f6edde9c 899 int max_objects;
81819f0f 900
881db7fb 901 fp = page->freelist;
39b26464 902 while (fp && nr <= page->objects) {
81819f0f
CL
903 if (fp == search)
904 return 1;
905 if (!check_valid_pointer(s, page, fp)) {
906 if (object) {
907 object_err(s, page, object,
908 "Freechain corrupt");
a973e9dd 909 set_freepointer(s, object, NULL);
81819f0f 910 } else {
24922684 911 slab_err(s, page, "Freepointer corrupt");
a973e9dd 912 page->freelist = NULL;
39b26464 913 page->inuse = page->objects;
24922684 914 slab_fix(s, "Freelist cleared");
81819f0f
CL
915 return 0;
916 }
917 break;
918 }
919 object = fp;
920 fp = get_freepointer(s, object);
921 nr++;
922 }
923
ab9a0f19 924 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
925 if (max_objects > MAX_OBJS_PER_PAGE)
926 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
927
928 if (page->objects != max_objects) {
929 slab_err(s, page, "Wrong number of objects. Found %d but "
930 "should be %d", page->objects, max_objects);
931 page->objects = max_objects;
932 slab_fix(s, "Number of objects adjusted.");
933 }
39b26464 934 if (page->inuse != page->objects - nr) {
70d71228 935 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
936 "counted were %d", page->inuse, page->objects - nr);
937 page->inuse = page->objects - nr;
24922684 938 slab_fix(s, "Object count adjusted.");
81819f0f
CL
939 }
940 return search == NULL;
941}
942
0121c619
CL
943static void trace(struct kmem_cache *s, struct page *page, void *object,
944 int alloc)
3ec09742
CL
945{
946 if (s->flags & SLAB_TRACE) {
f9f58285 947 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
948 s->name,
949 alloc ? "alloc" : "free",
950 object, page->inuse,
951 page->freelist);
952
953 if (!alloc)
d0e0ac97
CG
954 print_section("Object ", (void *)object,
955 s->object_size);
3ec09742
CL
956
957 dump_stack();
958 }
959}
960
643b1138 961/*
672bba3a 962 * Tracking of fully allocated slabs for debugging purposes.
643b1138 963 */
5cc6eee8
CL
964static void add_full(struct kmem_cache *s,
965 struct kmem_cache_node *n, struct page *page)
643b1138 966{
5cc6eee8
CL
967 if (!(s->flags & SLAB_STORE_USER))
968 return;
969
255d0884 970 lockdep_assert_held(&n->list_lock);
643b1138 971 list_add(&page->lru, &n->full);
643b1138
CL
972}
973
c65c1877 974static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 975{
643b1138
CL
976 if (!(s->flags & SLAB_STORE_USER))
977 return;
978
255d0884 979 lockdep_assert_held(&n->list_lock);
643b1138 980 list_del(&page->lru);
643b1138
CL
981}
982
0f389ec6
CL
983/* Tracking of the number of slabs for debugging purposes */
984static inline unsigned long slabs_node(struct kmem_cache *s, int node)
985{
986 struct kmem_cache_node *n = get_node(s, node);
987
988 return atomic_long_read(&n->nr_slabs);
989}
990
26c02cf0
AB
991static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
992{
993 return atomic_long_read(&n->nr_slabs);
994}
995
205ab99d 996static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
997{
998 struct kmem_cache_node *n = get_node(s, node);
999
1000 /*
1001 * May be called early in order to allocate a slab for the
1002 * kmem_cache_node structure. Solve the chicken-egg
1003 * dilemma by deferring the increment of the count during
1004 * bootstrap (see early_kmem_cache_node_alloc).
1005 */
338b2642 1006 if (likely(n)) {
0f389ec6 1007 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1008 atomic_long_add(objects, &n->total_objects);
1009 }
0f389ec6 1010}
205ab99d 1011static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1012{
1013 struct kmem_cache_node *n = get_node(s, node);
1014
1015 atomic_long_dec(&n->nr_slabs);
205ab99d 1016 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1017}
1018
1019/* Object debug checks for alloc/free paths */
3ec09742
CL
1020static void setup_object_debug(struct kmem_cache *s, struct page *page,
1021 void *object)
1022{
1023 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1024 return;
1025
f7cb1933 1026 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1027 init_tracking(s, object);
1028}
1029
d0e0ac97
CG
1030static noinline int alloc_debug_processing(struct kmem_cache *s,
1031 struct page *page,
ce71e27c 1032 void *object, unsigned long addr)
81819f0f
CL
1033{
1034 if (!check_slab(s, page))
1035 goto bad;
1036
81819f0f
CL
1037 if (!check_valid_pointer(s, page, object)) {
1038 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1039 goto bad;
81819f0f
CL
1040 }
1041
f7cb1933 1042 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1043 goto bad;
81819f0f 1044
3ec09742
CL
1045 /* Success perform special debug activities for allocs */
1046 if (s->flags & SLAB_STORE_USER)
1047 set_track(s, object, TRACK_ALLOC, addr);
1048 trace(s, page, object, 1);
f7cb1933 1049 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1050 return 1;
3ec09742 1051
81819f0f
CL
1052bad:
1053 if (PageSlab(page)) {
1054 /*
1055 * If this is a slab page then lets do the best we can
1056 * to avoid issues in the future. Marking all objects
672bba3a 1057 * as used avoids touching the remaining objects.
81819f0f 1058 */
24922684 1059 slab_fix(s, "Marking all objects used");
39b26464 1060 page->inuse = page->objects;
a973e9dd 1061 page->freelist = NULL;
81819f0f
CL
1062 }
1063 return 0;
1064}
1065
19c7ff9e
CL
1066static noinline struct kmem_cache_node *free_debug_processing(
1067 struct kmem_cache *s, struct page *page, void *object,
1068 unsigned long addr, unsigned long *flags)
81819f0f 1069{
19c7ff9e 1070 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
5c2e4bbb 1071
19c7ff9e 1072 spin_lock_irqsave(&n->list_lock, *flags);
881db7fb
CL
1073 slab_lock(page);
1074
81819f0f
CL
1075 if (!check_slab(s, page))
1076 goto fail;
1077
1078 if (!check_valid_pointer(s, page, object)) {
70d71228 1079 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1080 goto fail;
1081 }
1082
1083 if (on_freelist(s, page, object)) {
24922684 1084 object_err(s, page, object, "Object already free");
81819f0f
CL
1085 goto fail;
1086 }
1087
f7cb1933 1088 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1089 goto out;
81819f0f 1090
1b4f59e3 1091 if (unlikely(s != page->slab_cache)) {
3adbefee 1092 if (!PageSlab(page)) {
70d71228
CL
1093 slab_err(s, page, "Attempt to free object(0x%p) "
1094 "outside of slab", object);
1b4f59e3 1095 } else if (!page->slab_cache) {
f9f58285
FF
1096 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1097 object);
70d71228 1098 dump_stack();
06428780 1099 } else
24922684
CL
1100 object_err(s, page, object,
1101 "page slab pointer corrupt.");
81819f0f
CL
1102 goto fail;
1103 }
3ec09742 1104
3ec09742
CL
1105 if (s->flags & SLAB_STORE_USER)
1106 set_track(s, object, TRACK_FREE, addr);
1107 trace(s, page, object, 0);
f7cb1933 1108 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb 1109out:
881db7fb 1110 slab_unlock(page);
19c7ff9e
CL
1111 /*
1112 * Keep node_lock to preserve integrity
1113 * until the object is actually freed
1114 */
1115 return n;
3ec09742 1116
81819f0f 1117fail:
19c7ff9e
CL
1118 slab_unlock(page);
1119 spin_unlock_irqrestore(&n->list_lock, *flags);
24922684 1120 slab_fix(s, "Object at 0x%p not freed", object);
19c7ff9e 1121 return NULL;
81819f0f
CL
1122}
1123
41ecc55b
CL
1124static int __init setup_slub_debug(char *str)
1125{
f0630fff
CL
1126 slub_debug = DEBUG_DEFAULT_FLAGS;
1127 if (*str++ != '=' || !*str)
1128 /*
1129 * No options specified. Switch on full debugging.
1130 */
1131 goto out;
1132
1133 if (*str == ',')
1134 /*
1135 * No options but restriction on slabs. This means full
1136 * debugging for slabs matching a pattern.
1137 */
1138 goto check_slabs;
1139
1140 slub_debug = 0;
1141 if (*str == '-')
1142 /*
1143 * Switch off all debugging measures.
1144 */
1145 goto out;
1146
1147 /*
1148 * Determine which debug features should be switched on
1149 */
06428780 1150 for (; *str && *str != ','; str++) {
f0630fff
CL
1151 switch (tolower(*str)) {
1152 case 'f':
1153 slub_debug |= SLAB_DEBUG_FREE;
1154 break;
1155 case 'z':
1156 slub_debug |= SLAB_RED_ZONE;
1157 break;
1158 case 'p':
1159 slub_debug |= SLAB_POISON;
1160 break;
1161 case 'u':
1162 slub_debug |= SLAB_STORE_USER;
1163 break;
1164 case 't':
1165 slub_debug |= SLAB_TRACE;
1166 break;
4c13dd3b
DM
1167 case 'a':
1168 slub_debug |= SLAB_FAILSLAB;
1169 break;
08303a73
CA
1170 case 'o':
1171 /*
1172 * Avoid enabling debugging on caches if its minimum
1173 * order would increase as a result.
1174 */
1175 disable_higher_order_debug = 1;
1176 break;
f0630fff 1177 default:
f9f58285
FF
1178 pr_err("slub_debug option '%c' unknown. skipped\n",
1179 *str);
f0630fff 1180 }
41ecc55b
CL
1181 }
1182
f0630fff 1183check_slabs:
41ecc55b
CL
1184 if (*str == ',')
1185 slub_debug_slabs = str + 1;
f0630fff 1186out:
41ecc55b
CL
1187 return 1;
1188}
1189
1190__setup("slub_debug", setup_slub_debug);
1191
423c929c 1192unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1193 unsigned long flags, const char *name,
51cc5068 1194 void (*ctor)(void *))
41ecc55b
CL
1195{
1196 /*
e153362a 1197 * Enable debugging if selected on the kernel commandline.
41ecc55b 1198 */
c6f58d9b
CL
1199 if (slub_debug && (!slub_debug_slabs || (name &&
1200 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1201 flags |= slub_debug;
ba0268a8
CL
1202
1203 return flags;
41ecc55b
CL
1204}
1205#else
3ec09742
CL
1206static inline void setup_object_debug(struct kmem_cache *s,
1207 struct page *page, void *object) {}
41ecc55b 1208
3ec09742 1209static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1210 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1211
19c7ff9e
CL
1212static inline struct kmem_cache_node *free_debug_processing(
1213 struct kmem_cache *s, struct page *page, void *object,
1214 unsigned long addr, unsigned long *flags) { return NULL; }
41ecc55b 1215
41ecc55b
CL
1216static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1217 { return 1; }
1218static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1219 void *object, u8 val) { return 1; }
5cc6eee8
CL
1220static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1221 struct page *page) {}
c65c1877
PZ
1222static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1223 struct page *page) {}
423c929c 1224unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1225 unsigned long flags, const char *name,
51cc5068 1226 void (*ctor)(void *))
ba0268a8
CL
1227{
1228 return flags;
1229}
41ecc55b 1230#define slub_debug 0
0f389ec6 1231
fdaa45e9
IM
1232#define disable_higher_order_debug 0
1233
0f389ec6
CL
1234static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1235 { return 0; }
26c02cf0
AB
1236static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1237 { return 0; }
205ab99d
CL
1238static inline void inc_slabs_node(struct kmem_cache *s, int node,
1239 int objects) {}
1240static inline void dec_slabs_node(struct kmem_cache *s, int node,
1241 int objects) {}
7d550c56 1242
02e72cc6
AR
1243#endif /* CONFIG_SLUB_DEBUG */
1244
1245/*
1246 * Hooks for other subsystems that check memory allocations. In a typical
1247 * production configuration these hooks all should produce no code at all.
1248 */
d56791b3
RB
1249static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1250{
1251 kmemleak_alloc(ptr, size, 1, flags);
0316bec2 1252 kasan_kmalloc_large(ptr, size);
d56791b3
RB
1253}
1254
1255static inline void kfree_hook(const void *x)
1256{
1257 kmemleak_free(x);
0316bec2 1258 kasan_kfree_large(x);
d56791b3
RB
1259}
1260
8135be5a
VD
1261static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
1262 gfp_t flags)
02e72cc6
AR
1263{
1264 flags &= gfp_allowed_mask;
1265 lockdep_trace_alloc(flags);
1266 might_sleep_if(flags & __GFP_WAIT);
7d550c56 1267
8135be5a
VD
1268 if (should_failslab(s->object_size, flags, s->flags))
1269 return NULL;
1270
1271 return memcg_kmem_get_cache(s, flags);
02e72cc6
AR
1272}
1273
1274static inline void slab_post_alloc_hook(struct kmem_cache *s,
1275 gfp_t flags, void *object)
d56791b3 1276{
02e72cc6
AR
1277 flags &= gfp_allowed_mask;
1278 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1279 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
8135be5a 1280 memcg_kmem_put_cache(s);
0316bec2 1281 kasan_slab_alloc(s, object);
d56791b3 1282}
7d550c56 1283
d56791b3
RB
1284static inline void slab_free_hook(struct kmem_cache *s, void *x)
1285{
1286 kmemleak_free_recursive(x, s->flags);
7d550c56 1287
02e72cc6
AR
1288 /*
1289 * Trouble is that we may no longer disable interrupts in the fast path
1290 * So in order to make the debug calls that expect irqs to be
1291 * disabled we need to disable interrupts temporarily.
1292 */
1293#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1294 {
1295 unsigned long flags;
1296
1297 local_irq_save(flags);
1298 kmemcheck_slab_free(s, x, s->object_size);
1299 debug_check_no_locks_freed(x, s->object_size);
1300 local_irq_restore(flags);
1301 }
1302#endif
1303 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1304 debug_check_no_obj_freed(x, s->object_size);
0316bec2
AR
1305
1306 kasan_slab_free(s, x);
02e72cc6 1307}
205ab99d 1308
81819f0f
CL
1309/*
1310 * Slab allocation and freeing
1311 */
5dfb4175
VD
1312static inline struct page *alloc_slab_page(struct kmem_cache *s,
1313 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1314{
5dfb4175 1315 struct page *page;
65c3376a
CL
1316 int order = oo_order(oo);
1317
b1eeab67
VN
1318 flags |= __GFP_NOTRACK;
1319
5dfb4175
VD
1320 if (memcg_charge_slab(s, flags, order))
1321 return NULL;
1322
2154a336 1323 if (node == NUMA_NO_NODE)
5dfb4175 1324 page = alloc_pages(flags, order);
65c3376a 1325 else
5dfb4175
VD
1326 page = alloc_pages_exact_node(node, flags, order);
1327
1328 if (!page)
1329 memcg_uncharge_slab(s, order);
1330
1331 return page;
65c3376a
CL
1332}
1333
81819f0f
CL
1334static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1335{
06428780 1336 struct page *page;
834f3d11 1337 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1338 gfp_t alloc_gfp;
81819f0f 1339
7e0528da
CL
1340 flags &= gfp_allowed_mask;
1341
1342 if (flags & __GFP_WAIT)
1343 local_irq_enable();
1344
b7a49f0d 1345 flags |= s->allocflags;
e12ba74d 1346
ba52270d
PE
1347 /*
1348 * Let the initial higher-order allocation fail under memory pressure
1349 * so we fall-back to the minimum order allocation.
1350 */
1351 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1352
5dfb4175 1353 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1354 if (unlikely(!page)) {
1355 oo = s->min;
80c3a998 1356 alloc_gfp = flags;
65c3376a
CL
1357 /*
1358 * Allocation may have failed due to fragmentation.
1359 * Try a lower order alloc if possible
1360 */
5dfb4175 1361 page = alloc_slab_page(s, alloc_gfp, node, oo);
81819f0f 1362
7e0528da
CL
1363 if (page)
1364 stat(s, ORDER_FALLBACK);
65c3376a 1365 }
5a896d9e 1366
737b719e 1367 if (kmemcheck_enabled && page
5086c389 1368 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1369 int pages = 1 << oo_order(oo);
1370
80c3a998 1371 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
b1eeab67
VN
1372
1373 /*
1374 * Objects from caches that have a constructor don't get
1375 * cleared when they're allocated, so we need to do it here.
1376 */
1377 if (s->ctor)
1378 kmemcheck_mark_uninitialized_pages(page, pages);
1379 else
1380 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1381 }
1382
737b719e
DR
1383 if (flags & __GFP_WAIT)
1384 local_irq_disable();
1385 if (!page)
1386 return NULL;
1387
834f3d11 1388 page->objects = oo_objects(oo);
81819f0f
CL
1389 mod_zone_page_state(page_zone(page),
1390 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1391 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1392 1 << oo_order(oo));
81819f0f
CL
1393
1394 return page;
1395}
1396
1397static void setup_object(struct kmem_cache *s, struct page *page,
1398 void *object)
1399{
3ec09742 1400 setup_object_debug(s, page, object);
0316bec2
AR
1401 if (unlikely(s->ctor)) {
1402 kasan_unpoison_object_data(s, object);
51cc5068 1403 s->ctor(object);
0316bec2
AR
1404 kasan_poison_object_data(s, object);
1405 }
81819f0f
CL
1406}
1407
1408static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1409{
1410 struct page *page;
81819f0f 1411 void *start;
81819f0f 1412 void *p;
1f458cbf 1413 int order;
54266640 1414 int idx;
81819f0f 1415
c871ac4e
AM
1416 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1417 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1418 BUG();
1419 }
81819f0f 1420
6cb06229
CL
1421 page = allocate_slab(s,
1422 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1423 if (!page)
1424 goto out;
1425
1f458cbf 1426 order = compound_order(page);
205ab99d 1427 inc_slabs_node(s, page_to_nid(page), page->objects);
1b4f59e3 1428 page->slab_cache = s;
c03f94cc 1429 __SetPageSlab(page);
2f064f34 1430 if (page_is_pfmemalloc(page))
072bb0aa 1431 SetPageSlabPfmemalloc(page);
81819f0f
CL
1432
1433 start = page_address(page);
81819f0f
CL
1434
1435 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1436 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f 1437
0316bec2
AR
1438 kasan_poison_slab(page);
1439
54266640
WY
1440 for_each_object_idx(p, idx, s, start, page->objects) {
1441 setup_object(s, page, p);
1442 if (likely(idx < page->objects))
1443 set_freepointer(s, p, p + s->size);
1444 else
1445 set_freepointer(s, p, NULL);
81819f0f 1446 }
81819f0f
CL
1447
1448 page->freelist = start;
e6e82ea1 1449 page->inuse = page->objects;
8cb0a506 1450 page->frozen = 1;
81819f0f 1451out:
81819f0f
CL
1452 return page;
1453}
1454
1455static void __free_slab(struct kmem_cache *s, struct page *page)
1456{
834f3d11
CL
1457 int order = compound_order(page);
1458 int pages = 1 << order;
81819f0f 1459
af537b0a 1460 if (kmem_cache_debug(s)) {
81819f0f
CL
1461 void *p;
1462
1463 slab_pad_check(s, page);
224a88be
CL
1464 for_each_object(p, s, page_address(page),
1465 page->objects)
f7cb1933 1466 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1467 }
1468
b1eeab67 1469 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1470
81819f0f
CL
1471 mod_zone_page_state(page_zone(page),
1472 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1473 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1474 -pages);
81819f0f 1475
072bb0aa 1476 __ClearPageSlabPfmemalloc(page);
49bd5221 1477 __ClearPageSlab(page);
1f458cbf 1478
22b751c3 1479 page_mapcount_reset(page);
1eb5ac64
NP
1480 if (current->reclaim_state)
1481 current->reclaim_state->reclaimed_slab += pages;
5dfb4175
VD
1482 __free_pages(page, order);
1483 memcg_uncharge_slab(s, order);
81819f0f
CL
1484}
1485
da9a638c
LJ
1486#define need_reserve_slab_rcu \
1487 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1488
81819f0f
CL
1489static void rcu_free_slab(struct rcu_head *h)
1490{
1491 struct page *page;
1492
da9a638c
LJ
1493 if (need_reserve_slab_rcu)
1494 page = virt_to_head_page(h);
1495 else
1496 page = container_of((struct list_head *)h, struct page, lru);
1497
1b4f59e3 1498 __free_slab(page->slab_cache, page);
81819f0f
CL
1499}
1500
1501static void free_slab(struct kmem_cache *s, struct page *page)
1502{
1503 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1504 struct rcu_head *head;
1505
1506 if (need_reserve_slab_rcu) {
1507 int order = compound_order(page);
1508 int offset = (PAGE_SIZE << order) - s->reserved;
1509
1510 VM_BUG_ON(s->reserved != sizeof(*head));
1511 head = page_address(page) + offset;
1512 } else {
1513 /*
1514 * RCU free overloads the RCU head over the LRU
1515 */
1516 head = (void *)&page->lru;
1517 }
81819f0f
CL
1518
1519 call_rcu(head, rcu_free_slab);
1520 } else
1521 __free_slab(s, page);
1522}
1523
1524static void discard_slab(struct kmem_cache *s, struct page *page)
1525{
205ab99d 1526 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1527 free_slab(s, page);
1528}
1529
1530/*
5cc6eee8 1531 * Management of partially allocated slabs.
81819f0f 1532 */
1e4dd946
SR
1533static inline void
1534__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1535{
e95eed57 1536 n->nr_partial++;
136333d1 1537 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1538 list_add_tail(&page->lru, &n->partial);
1539 else
1540 list_add(&page->lru, &n->partial);
81819f0f
CL
1541}
1542
1e4dd946
SR
1543static inline void add_partial(struct kmem_cache_node *n,
1544 struct page *page, int tail)
62e346a8 1545{
c65c1877 1546 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1547 __add_partial(n, page, tail);
1548}
c65c1877 1549
1e4dd946
SR
1550static inline void
1551__remove_partial(struct kmem_cache_node *n, struct page *page)
1552{
62e346a8
CL
1553 list_del(&page->lru);
1554 n->nr_partial--;
1555}
1556
1e4dd946
SR
1557static inline void remove_partial(struct kmem_cache_node *n,
1558 struct page *page)
1559{
1560 lockdep_assert_held(&n->list_lock);
1561 __remove_partial(n, page);
1562}
1563
81819f0f 1564/*
7ced3719
CL
1565 * Remove slab from the partial list, freeze it and
1566 * return the pointer to the freelist.
81819f0f 1567 *
497b66f2 1568 * Returns a list of objects or NULL if it fails.
81819f0f 1569 */
497b66f2 1570static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1571 struct kmem_cache_node *n, struct page *page,
633b0764 1572 int mode, int *objects)
81819f0f 1573{
2cfb7455
CL
1574 void *freelist;
1575 unsigned long counters;
1576 struct page new;
1577
c65c1877
PZ
1578 lockdep_assert_held(&n->list_lock);
1579
2cfb7455
CL
1580 /*
1581 * Zap the freelist and set the frozen bit.
1582 * The old freelist is the list of objects for the
1583 * per cpu allocation list.
1584 */
7ced3719
CL
1585 freelist = page->freelist;
1586 counters = page->counters;
1587 new.counters = counters;
633b0764 1588 *objects = new.objects - new.inuse;
23910c50 1589 if (mode) {
7ced3719 1590 new.inuse = page->objects;
23910c50
PE
1591 new.freelist = NULL;
1592 } else {
1593 new.freelist = freelist;
1594 }
2cfb7455 1595
a0132ac0 1596 VM_BUG_ON(new.frozen);
7ced3719 1597 new.frozen = 1;
2cfb7455 1598
7ced3719 1599 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1600 freelist, counters,
02d7633f 1601 new.freelist, new.counters,
7ced3719 1602 "acquire_slab"))
7ced3719 1603 return NULL;
2cfb7455
CL
1604
1605 remove_partial(n, page);
7ced3719 1606 WARN_ON(!freelist);
49e22585 1607 return freelist;
81819f0f
CL
1608}
1609
633b0764 1610static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1611static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1612
81819f0f 1613/*
672bba3a 1614 * Try to allocate a partial slab from a specific node.
81819f0f 1615 */
8ba00bb6
JK
1616static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1617 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1618{
49e22585
CL
1619 struct page *page, *page2;
1620 void *object = NULL;
633b0764
JK
1621 int available = 0;
1622 int objects;
81819f0f
CL
1623
1624 /*
1625 * Racy check. If we mistakenly see no partial slabs then we
1626 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1627 * partial slab and there is none available then get_partials()
1628 * will return NULL.
81819f0f
CL
1629 */
1630 if (!n || !n->nr_partial)
1631 return NULL;
1632
1633 spin_lock(&n->list_lock);
49e22585 1634 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1635 void *t;
49e22585 1636
8ba00bb6
JK
1637 if (!pfmemalloc_match(page, flags))
1638 continue;
1639
633b0764 1640 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1641 if (!t)
1642 break;
1643
633b0764 1644 available += objects;
12d79634 1645 if (!object) {
49e22585 1646 c->page = page;
49e22585 1647 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1648 object = t;
49e22585 1649 } else {
633b0764 1650 put_cpu_partial(s, page, 0);
8028dcea 1651 stat(s, CPU_PARTIAL_NODE);
49e22585 1652 }
345c905d
JK
1653 if (!kmem_cache_has_cpu_partial(s)
1654 || available > s->cpu_partial / 2)
49e22585
CL
1655 break;
1656
497b66f2 1657 }
81819f0f 1658 spin_unlock(&n->list_lock);
497b66f2 1659 return object;
81819f0f
CL
1660}
1661
1662/*
672bba3a 1663 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1664 */
de3ec035 1665static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1666 struct kmem_cache_cpu *c)
81819f0f
CL
1667{
1668#ifdef CONFIG_NUMA
1669 struct zonelist *zonelist;
dd1a239f 1670 struct zoneref *z;
54a6eb5c
MG
1671 struct zone *zone;
1672 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1673 void *object;
cc9a6c87 1674 unsigned int cpuset_mems_cookie;
81819f0f
CL
1675
1676 /*
672bba3a
CL
1677 * The defrag ratio allows a configuration of the tradeoffs between
1678 * inter node defragmentation and node local allocations. A lower
1679 * defrag_ratio increases the tendency to do local allocations
1680 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1681 *
672bba3a
CL
1682 * If the defrag_ratio is set to 0 then kmalloc() always
1683 * returns node local objects. If the ratio is higher then kmalloc()
1684 * may return off node objects because partial slabs are obtained
1685 * from other nodes and filled up.
81819f0f 1686 *
6446faa2 1687 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1688 * defrag_ratio = 1000) then every (well almost) allocation will
1689 * first attempt to defrag slab caches on other nodes. This means
1690 * scanning over all nodes to look for partial slabs which may be
1691 * expensive if we do it every time we are trying to find a slab
1692 * with available objects.
81819f0f 1693 */
9824601e
CL
1694 if (!s->remote_node_defrag_ratio ||
1695 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1696 return NULL;
1697
cc9a6c87 1698 do {
d26914d1 1699 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1700 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1701 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1702 struct kmem_cache_node *n;
1703
1704 n = get_node(s, zone_to_nid(zone));
1705
dee2f8aa 1706 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1707 n->nr_partial > s->min_partial) {
8ba00bb6 1708 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1709 if (object) {
1710 /*
d26914d1
MG
1711 * Don't check read_mems_allowed_retry()
1712 * here - if mems_allowed was updated in
1713 * parallel, that was a harmless race
1714 * between allocation and the cpuset
1715 * update
cc9a6c87 1716 */
cc9a6c87
MG
1717 return object;
1718 }
c0ff7453 1719 }
81819f0f 1720 }
d26914d1 1721 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1722#endif
1723 return NULL;
1724}
1725
1726/*
1727 * Get a partial page, lock it and return it.
1728 */
497b66f2 1729static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1730 struct kmem_cache_cpu *c)
81819f0f 1731{
497b66f2 1732 void *object;
a561ce00
JK
1733 int searchnode = node;
1734
1735 if (node == NUMA_NO_NODE)
1736 searchnode = numa_mem_id();
1737 else if (!node_present_pages(node))
1738 searchnode = node_to_mem_node(node);
81819f0f 1739
8ba00bb6 1740 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1741 if (object || node != NUMA_NO_NODE)
1742 return object;
81819f0f 1743
acd19fd1 1744 return get_any_partial(s, flags, c);
81819f0f
CL
1745}
1746
8a5ec0ba
CL
1747#ifdef CONFIG_PREEMPT
1748/*
1749 * Calculate the next globally unique transaction for disambiguiation
1750 * during cmpxchg. The transactions start with the cpu number and are then
1751 * incremented by CONFIG_NR_CPUS.
1752 */
1753#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1754#else
1755/*
1756 * No preemption supported therefore also no need to check for
1757 * different cpus.
1758 */
1759#define TID_STEP 1
1760#endif
1761
1762static inline unsigned long next_tid(unsigned long tid)
1763{
1764 return tid + TID_STEP;
1765}
1766
1767static inline unsigned int tid_to_cpu(unsigned long tid)
1768{
1769 return tid % TID_STEP;
1770}
1771
1772static inline unsigned long tid_to_event(unsigned long tid)
1773{
1774 return tid / TID_STEP;
1775}
1776
1777static inline unsigned int init_tid(int cpu)
1778{
1779 return cpu;
1780}
1781
1782static inline void note_cmpxchg_failure(const char *n,
1783 const struct kmem_cache *s, unsigned long tid)
1784{
1785#ifdef SLUB_DEBUG_CMPXCHG
1786 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1787
f9f58285 1788 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
1789
1790#ifdef CONFIG_PREEMPT
1791 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 1792 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
1793 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1794 else
1795#endif
1796 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 1797 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
1798 tid_to_event(tid), tid_to_event(actual_tid));
1799 else
f9f58285 1800 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
1801 actual_tid, tid, next_tid(tid));
1802#endif
4fdccdfb 1803 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1804}
1805
788e1aad 1806static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1807{
8a5ec0ba
CL
1808 int cpu;
1809
1810 for_each_possible_cpu(cpu)
1811 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1812}
2cfb7455 1813
81819f0f
CL
1814/*
1815 * Remove the cpu slab
1816 */
d0e0ac97
CG
1817static void deactivate_slab(struct kmem_cache *s, struct page *page,
1818 void *freelist)
81819f0f 1819{
2cfb7455 1820 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1821 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1822 int lock = 0;
1823 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1824 void *nextfree;
136333d1 1825 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1826 struct page new;
1827 struct page old;
1828
1829 if (page->freelist) {
84e554e6 1830 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1831 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1832 }
1833
894b8788 1834 /*
2cfb7455
CL
1835 * Stage one: Free all available per cpu objects back
1836 * to the page freelist while it is still frozen. Leave the
1837 * last one.
1838 *
1839 * There is no need to take the list->lock because the page
1840 * is still frozen.
1841 */
1842 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1843 void *prior;
1844 unsigned long counters;
1845
1846 do {
1847 prior = page->freelist;
1848 counters = page->counters;
1849 set_freepointer(s, freelist, prior);
1850 new.counters = counters;
1851 new.inuse--;
a0132ac0 1852 VM_BUG_ON(!new.frozen);
2cfb7455 1853
1d07171c 1854 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1855 prior, counters,
1856 freelist, new.counters,
1857 "drain percpu freelist"));
1858
1859 freelist = nextfree;
1860 }
1861
894b8788 1862 /*
2cfb7455
CL
1863 * Stage two: Ensure that the page is unfrozen while the
1864 * list presence reflects the actual number of objects
1865 * during unfreeze.
1866 *
1867 * We setup the list membership and then perform a cmpxchg
1868 * with the count. If there is a mismatch then the page
1869 * is not unfrozen but the page is on the wrong list.
1870 *
1871 * Then we restart the process which may have to remove
1872 * the page from the list that we just put it on again
1873 * because the number of objects in the slab may have
1874 * changed.
894b8788 1875 */
2cfb7455 1876redo:
894b8788 1877
2cfb7455
CL
1878 old.freelist = page->freelist;
1879 old.counters = page->counters;
a0132ac0 1880 VM_BUG_ON(!old.frozen);
7c2e132c 1881
2cfb7455
CL
1882 /* Determine target state of the slab */
1883 new.counters = old.counters;
1884 if (freelist) {
1885 new.inuse--;
1886 set_freepointer(s, freelist, old.freelist);
1887 new.freelist = freelist;
1888 } else
1889 new.freelist = old.freelist;
1890
1891 new.frozen = 0;
1892
8a5b20ae 1893 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
1894 m = M_FREE;
1895 else if (new.freelist) {
1896 m = M_PARTIAL;
1897 if (!lock) {
1898 lock = 1;
1899 /*
1900 * Taking the spinlock removes the possiblity
1901 * that acquire_slab() will see a slab page that
1902 * is frozen
1903 */
1904 spin_lock(&n->list_lock);
1905 }
1906 } else {
1907 m = M_FULL;
1908 if (kmem_cache_debug(s) && !lock) {
1909 lock = 1;
1910 /*
1911 * This also ensures that the scanning of full
1912 * slabs from diagnostic functions will not see
1913 * any frozen slabs.
1914 */
1915 spin_lock(&n->list_lock);
1916 }
1917 }
1918
1919 if (l != m) {
1920
1921 if (l == M_PARTIAL)
1922
1923 remove_partial(n, page);
1924
1925 else if (l == M_FULL)
894b8788 1926
c65c1877 1927 remove_full(s, n, page);
2cfb7455
CL
1928
1929 if (m == M_PARTIAL) {
1930
1931 add_partial(n, page, tail);
136333d1 1932 stat(s, tail);
2cfb7455
CL
1933
1934 } else if (m == M_FULL) {
894b8788 1935
2cfb7455
CL
1936 stat(s, DEACTIVATE_FULL);
1937 add_full(s, n, page);
1938
1939 }
1940 }
1941
1942 l = m;
1d07171c 1943 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1944 old.freelist, old.counters,
1945 new.freelist, new.counters,
1946 "unfreezing slab"))
1947 goto redo;
1948
2cfb7455
CL
1949 if (lock)
1950 spin_unlock(&n->list_lock);
1951
1952 if (m == M_FREE) {
1953 stat(s, DEACTIVATE_EMPTY);
1954 discard_slab(s, page);
1955 stat(s, FREE_SLAB);
894b8788 1956 }
81819f0f
CL
1957}
1958
d24ac77f
JK
1959/*
1960 * Unfreeze all the cpu partial slabs.
1961 *
59a09917
CL
1962 * This function must be called with interrupts disabled
1963 * for the cpu using c (or some other guarantee must be there
1964 * to guarantee no concurrent accesses).
d24ac77f 1965 */
59a09917
CL
1966static void unfreeze_partials(struct kmem_cache *s,
1967 struct kmem_cache_cpu *c)
49e22585 1968{
345c905d 1969#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 1970 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 1971 struct page *page, *discard_page = NULL;
49e22585
CL
1972
1973 while ((page = c->partial)) {
49e22585
CL
1974 struct page new;
1975 struct page old;
1976
1977 c->partial = page->next;
43d77867
JK
1978
1979 n2 = get_node(s, page_to_nid(page));
1980 if (n != n2) {
1981 if (n)
1982 spin_unlock(&n->list_lock);
1983
1984 n = n2;
1985 spin_lock(&n->list_lock);
1986 }
49e22585
CL
1987
1988 do {
1989
1990 old.freelist = page->freelist;
1991 old.counters = page->counters;
a0132ac0 1992 VM_BUG_ON(!old.frozen);
49e22585
CL
1993
1994 new.counters = old.counters;
1995 new.freelist = old.freelist;
1996
1997 new.frozen = 0;
1998
d24ac77f 1999 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2000 old.freelist, old.counters,
2001 new.freelist, new.counters,
2002 "unfreezing slab"));
2003
8a5b20ae 2004 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2005 page->next = discard_page;
2006 discard_page = page;
43d77867
JK
2007 } else {
2008 add_partial(n, page, DEACTIVATE_TO_TAIL);
2009 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2010 }
2011 }
2012
2013 if (n)
2014 spin_unlock(&n->list_lock);
9ada1934
SL
2015
2016 while (discard_page) {
2017 page = discard_page;
2018 discard_page = discard_page->next;
2019
2020 stat(s, DEACTIVATE_EMPTY);
2021 discard_slab(s, page);
2022 stat(s, FREE_SLAB);
2023 }
345c905d 2024#endif
49e22585
CL
2025}
2026
2027/*
2028 * Put a page that was just frozen (in __slab_free) into a partial page
2029 * slot if available. This is done without interrupts disabled and without
2030 * preemption disabled. The cmpxchg is racy and may put the partial page
2031 * onto a random cpus partial slot.
2032 *
2033 * If we did not find a slot then simply move all the partials to the
2034 * per node partial list.
2035 */
633b0764 2036static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2037{
345c905d 2038#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2039 struct page *oldpage;
2040 int pages;
2041 int pobjects;
2042
d6e0b7fa 2043 preempt_disable();
49e22585
CL
2044 do {
2045 pages = 0;
2046 pobjects = 0;
2047 oldpage = this_cpu_read(s->cpu_slab->partial);
2048
2049 if (oldpage) {
2050 pobjects = oldpage->pobjects;
2051 pages = oldpage->pages;
2052 if (drain && pobjects > s->cpu_partial) {
2053 unsigned long flags;
2054 /*
2055 * partial array is full. Move the existing
2056 * set to the per node partial list.
2057 */
2058 local_irq_save(flags);
59a09917 2059 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2060 local_irq_restore(flags);
e24fc410 2061 oldpage = NULL;
49e22585
CL
2062 pobjects = 0;
2063 pages = 0;
8028dcea 2064 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2065 }
2066 }
2067
2068 pages++;
2069 pobjects += page->objects - page->inuse;
2070
2071 page->pages = pages;
2072 page->pobjects = pobjects;
2073 page->next = oldpage;
2074
d0e0ac97
CG
2075 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2076 != oldpage);
d6e0b7fa
VD
2077 if (unlikely(!s->cpu_partial)) {
2078 unsigned long flags;
2079
2080 local_irq_save(flags);
2081 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2082 local_irq_restore(flags);
2083 }
2084 preempt_enable();
345c905d 2085#endif
49e22585
CL
2086}
2087
dfb4f096 2088static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2089{
84e554e6 2090 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
2091 deactivate_slab(s, c->page, c->freelist);
2092
2093 c->tid = next_tid(c->tid);
2094 c->page = NULL;
2095 c->freelist = NULL;
81819f0f
CL
2096}
2097
2098/*
2099 * Flush cpu slab.
6446faa2 2100 *
81819f0f
CL
2101 * Called from IPI handler with interrupts disabled.
2102 */
0c710013 2103static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2104{
9dfc6e68 2105 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2106
49e22585
CL
2107 if (likely(c)) {
2108 if (c->page)
2109 flush_slab(s, c);
2110
59a09917 2111 unfreeze_partials(s, c);
49e22585 2112 }
81819f0f
CL
2113}
2114
2115static void flush_cpu_slab(void *d)
2116{
2117 struct kmem_cache *s = d;
81819f0f 2118
dfb4f096 2119 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2120}
2121
a8364d55
GBY
2122static bool has_cpu_slab(int cpu, void *info)
2123{
2124 struct kmem_cache *s = info;
2125 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2126
02e1a9cd 2127 return c->page || c->partial;
a8364d55
GBY
2128}
2129
81819f0f
CL
2130static void flush_all(struct kmem_cache *s)
2131{
a8364d55 2132 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2133}
2134
dfb4f096
CL
2135/*
2136 * Check if the objects in a per cpu structure fit numa
2137 * locality expectations.
2138 */
57d437d2 2139static inline int node_match(struct page *page, int node)
dfb4f096
CL
2140{
2141#ifdef CONFIG_NUMA
4d7868e6 2142 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2143 return 0;
2144#endif
2145 return 1;
2146}
2147
9a02d699 2148#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2149static int count_free(struct page *page)
2150{
2151 return page->objects - page->inuse;
2152}
2153
9a02d699
DR
2154static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2155{
2156 return atomic_long_read(&n->total_objects);
2157}
2158#endif /* CONFIG_SLUB_DEBUG */
2159
2160#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2161static unsigned long count_partial(struct kmem_cache_node *n,
2162 int (*get_count)(struct page *))
2163{
2164 unsigned long flags;
2165 unsigned long x = 0;
2166 struct page *page;
2167
2168 spin_lock_irqsave(&n->list_lock, flags);
2169 list_for_each_entry(page, &n->partial, lru)
2170 x += get_count(page);
2171 spin_unlock_irqrestore(&n->list_lock, flags);
2172 return x;
2173}
9a02d699 2174#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2175
781b2ba6
PE
2176static noinline void
2177slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2178{
9a02d699
DR
2179#ifdef CONFIG_SLUB_DEBUG
2180 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2181 DEFAULT_RATELIMIT_BURST);
781b2ba6 2182 int node;
fa45dc25 2183 struct kmem_cache_node *n;
781b2ba6 2184
9a02d699
DR
2185 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2186 return;
2187
f9f58285 2188 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
781b2ba6 2189 nid, gfpflags);
f9f58285
FF
2190 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2191 s->name, s->object_size, s->size, oo_order(s->oo),
2192 oo_order(s->min));
781b2ba6 2193
3b0efdfa 2194 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2195 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2196 s->name);
fa5ec8a1 2197
fa45dc25 2198 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2199 unsigned long nr_slabs;
2200 unsigned long nr_objs;
2201 unsigned long nr_free;
2202
26c02cf0
AB
2203 nr_free = count_partial(n, count_free);
2204 nr_slabs = node_nr_slabs(n);
2205 nr_objs = node_nr_objs(n);
781b2ba6 2206
f9f58285 2207 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2208 node, nr_slabs, nr_objs, nr_free);
2209 }
9a02d699 2210#endif
781b2ba6
PE
2211}
2212
497b66f2
CL
2213static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2214 int node, struct kmem_cache_cpu **pc)
2215{
6faa6833 2216 void *freelist;
188fd063
CL
2217 struct kmem_cache_cpu *c = *pc;
2218 struct page *page;
497b66f2 2219
188fd063 2220 freelist = get_partial(s, flags, node, c);
497b66f2 2221
188fd063
CL
2222 if (freelist)
2223 return freelist;
2224
2225 page = new_slab(s, flags, node);
497b66f2 2226 if (page) {
7c8e0181 2227 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2228 if (c->page)
2229 flush_slab(s, c);
2230
2231 /*
2232 * No other reference to the page yet so we can
2233 * muck around with it freely without cmpxchg
2234 */
6faa6833 2235 freelist = page->freelist;
497b66f2
CL
2236 page->freelist = NULL;
2237
2238 stat(s, ALLOC_SLAB);
497b66f2
CL
2239 c->page = page;
2240 *pc = c;
2241 } else
6faa6833 2242 freelist = NULL;
497b66f2 2243
6faa6833 2244 return freelist;
497b66f2
CL
2245}
2246
072bb0aa
MG
2247static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2248{
2249 if (unlikely(PageSlabPfmemalloc(page)))
2250 return gfp_pfmemalloc_allowed(gfpflags);
2251
2252 return true;
2253}
2254
213eeb9f 2255/*
d0e0ac97
CG
2256 * Check the page->freelist of a page and either transfer the freelist to the
2257 * per cpu freelist or deactivate the page.
213eeb9f
CL
2258 *
2259 * The page is still frozen if the return value is not NULL.
2260 *
2261 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2262 *
2263 * This function must be called with interrupt disabled.
213eeb9f
CL
2264 */
2265static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2266{
2267 struct page new;
2268 unsigned long counters;
2269 void *freelist;
2270
2271 do {
2272 freelist = page->freelist;
2273 counters = page->counters;
6faa6833 2274
213eeb9f 2275 new.counters = counters;
a0132ac0 2276 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2277
2278 new.inuse = page->objects;
2279 new.frozen = freelist != NULL;
2280
d24ac77f 2281 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2282 freelist, counters,
2283 NULL, new.counters,
2284 "get_freelist"));
2285
2286 return freelist;
2287}
2288
81819f0f 2289/*
894b8788
CL
2290 * Slow path. The lockless freelist is empty or we need to perform
2291 * debugging duties.
2292 *
894b8788
CL
2293 * Processing is still very fast if new objects have been freed to the
2294 * regular freelist. In that case we simply take over the regular freelist
2295 * as the lockless freelist and zap the regular freelist.
81819f0f 2296 *
894b8788
CL
2297 * If that is not working then we fall back to the partial lists. We take the
2298 * first element of the freelist as the object to allocate now and move the
2299 * rest of the freelist to the lockless freelist.
81819f0f 2300 *
894b8788 2301 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2302 * we need to allocate a new slab. This is the slowest path since it involves
2303 * a call to the page allocator and the setup of a new slab.
81819f0f 2304 */
ce71e27c
EGM
2305static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2306 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2307{
6faa6833 2308 void *freelist;
f6e7def7 2309 struct page *page;
8a5ec0ba
CL
2310 unsigned long flags;
2311
2312 local_irq_save(flags);
2313#ifdef CONFIG_PREEMPT
2314 /*
2315 * We may have been preempted and rescheduled on a different
2316 * cpu before disabling interrupts. Need to reload cpu area
2317 * pointer.
2318 */
2319 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2320#endif
81819f0f 2321
f6e7def7
CL
2322 page = c->page;
2323 if (!page)
81819f0f 2324 goto new_slab;
49e22585 2325redo:
6faa6833 2326
57d437d2 2327 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2328 int searchnode = node;
2329
2330 if (node != NUMA_NO_NODE && !node_present_pages(node))
2331 searchnode = node_to_mem_node(node);
2332
2333 if (unlikely(!node_match(page, searchnode))) {
2334 stat(s, ALLOC_NODE_MISMATCH);
2335 deactivate_slab(s, page, c->freelist);
2336 c->page = NULL;
2337 c->freelist = NULL;
2338 goto new_slab;
2339 }
fc59c053 2340 }
6446faa2 2341
072bb0aa
MG
2342 /*
2343 * By rights, we should be searching for a slab page that was
2344 * PFMEMALLOC but right now, we are losing the pfmemalloc
2345 * information when the page leaves the per-cpu allocator
2346 */
2347 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2348 deactivate_slab(s, page, c->freelist);
2349 c->page = NULL;
2350 c->freelist = NULL;
2351 goto new_slab;
2352 }
2353
73736e03 2354 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2355 freelist = c->freelist;
2356 if (freelist)
73736e03 2357 goto load_freelist;
03e404af 2358
f6e7def7 2359 freelist = get_freelist(s, page);
6446faa2 2360
6faa6833 2361 if (!freelist) {
03e404af
CL
2362 c->page = NULL;
2363 stat(s, DEACTIVATE_BYPASS);
fc59c053 2364 goto new_slab;
03e404af 2365 }
6446faa2 2366
84e554e6 2367 stat(s, ALLOC_REFILL);
6446faa2 2368
894b8788 2369load_freelist:
507effea
CL
2370 /*
2371 * freelist is pointing to the list of objects to be used.
2372 * page is pointing to the page from which the objects are obtained.
2373 * That page must be frozen for per cpu allocations to work.
2374 */
a0132ac0 2375 VM_BUG_ON(!c->page->frozen);
6faa6833 2376 c->freelist = get_freepointer(s, freelist);
8a5ec0ba
CL
2377 c->tid = next_tid(c->tid);
2378 local_irq_restore(flags);
6faa6833 2379 return freelist;
81819f0f 2380
81819f0f 2381new_slab:
2cfb7455 2382
49e22585 2383 if (c->partial) {
f6e7def7
CL
2384 page = c->page = c->partial;
2385 c->partial = page->next;
49e22585
CL
2386 stat(s, CPU_PARTIAL_ALLOC);
2387 c->freelist = NULL;
2388 goto redo;
81819f0f
CL
2389 }
2390
188fd063 2391 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2392
f4697436 2393 if (unlikely(!freelist)) {
9a02d699 2394 slab_out_of_memory(s, gfpflags, node);
f4697436
CL
2395 local_irq_restore(flags);
2396 return NULL;
81819f0f 2397 }
2cfb7455 2398
f6e7def7 2399 page = c->page;
5091b74a 2400 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2401 goto load_freelist;
2cfb7455 2402
497b66f2 2403 /* Only entered in the debug case */
d0e0ac97
CG
2404 if (kmem_cache_debug(s) &&
2405 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2406 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2407
f6e7def7 2408 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2409 c->page = NULL;
2410 c->freelist = NULL;
a71ae47a 2411 local_irq_restore(flags);
6faa6833 2412 return freelist;
894b8788
CL
2413}
2414
2415/*
2416 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2417 * have the fastpath folded into their functions. So no function call
2418 * overhead for requests that can be satisfied on the fastpath.
2419 *
2420 * The fastpath works by first checking if the lockless freelist can be used.
2421 * If not then __slab_alloc is called for slow processing.
2422 *
2423 * Otherwise we can simply pick the next object from the lockless free list.
2424 */
2b847c3c 2425static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2426 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2427{
894b8788 2428 void **object;
dfb4f096 2429 struct kmem_cache_cpu *c;
57d437d2 2430 struct page *page;
8a5ec0ba 2431 unsigned long tid;
1f84260c 2432
8135be5a
VD
2433 s = slab_pre_alloc_hook(s, gfpflags);
2434 if (!s)
773ff60e 2435 return NULL;
8a5ec0ba 2436redo:
8a5ec0ba
CL
2437 /*
2438 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2439 * enabled. We may switch back and forth between cpus while
2440 * reading from one cpu area. That does not matter as long
2441 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2442 *
9aabf810
JK
2443 * We should guarantee that tid and kmem_cache are retrieved on
2444 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2445 * to check if it is matched or not.
8a5ec0ba 2446 */
9aabf810
JK
2447 do {
2448 tid = this_cpu_read(s->cpu_slab->tid);
2449 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2450 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2451 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2452
2453 /*
2454 * Irqless object alloc/free algorithm used here depends on sequence
2455 * of fetching cpu_slab's data. tid should be fetched before anything
2456 * on c to guarantee that object and page associated with previous tid
2457 * won't be used with current tid. If we fetch tid first, object and
2458 * page could be one associated with next tid and our alloc/free
2459 * request will be failed. In this case, we will retry. So, no problem.
2460 */
2461 barrier();
8a5ec0ba 2462
8a5ec0ba
CL
2463 /*
2464 * The transaction ids are globally unique per cpu and per operation on
2465 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2466 * occurs on the right processor and that there was no operation on the
2467 * linked list in between.
2468 */
8a5ec0ba 2469
9dfc6e68 2470 object = c->freelist;
57d437d2 2471 page = c->page;
8eae1492 2472 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2473 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2474 stat(s, ALLOC_SLOWPATH);
2475 } else {
0ad9500e
ED
2476 void *next_object = get_freepointer_safe(s, object);
2477
8a5ec0ba 2478 /*
25985edc 2479 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2480 * operation and if we are on the right processor.
2481 *
d0e0ac97
CG
2482 * The cmpxchg does the following atomically (without lock
2483 * semantics!)
8a5ec0ba
CL
2484 * 1. Relocate first pointer to the current per cpu area.
2485 * 2. Verify that tid and freelist have not been changed
2486 * 3. If they were not changed replace tid and freelist
2487 *
d0e0ac97
CG
2488 * Since this is without lock semantics the protection is only
2489 * against code executing on this cpu *not* from access by
2490 * other cpus.
8a5ec0ba 2491 */
933393f5 2492 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2493 s->cpu_slab->freelist, s->cpu_slab->tid,
2494 object, tid,
0ad9500e 2495 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2496
2497 note_cmpxchg_failure("slab_alloc", s, tid);
2498 goto redo;
2499 }
0ad9500e 2500 prefetch_freepointer(s, next_object);
84e554e6 2501 stat(s, ALLOC_FASTPATH);
894b8788 2502 }
8a5ec0ba 2503
74e2134f 2504 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2505 memset(object, 0, s->object_size);
d07dbea4 2506
c016b0bd 2507 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2508
894b8788 2509 return object;
81819f0f
CL
2510}
2511
2b847c3c
EG
2512static __always_inline void *slab_alloc(struct kmem_cache *s,
2513 gfp_t gfpflags, unsigned long addr)
2514{
2515 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2516}
2517
81819f0f
CL
2518void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2519{
2b847c3c 2520 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2521
d0e0ac97
CG
2522 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2523 s->size, gfpflags);
5b882be4
EGM
2524
2525 return ret;
81819f0f
CL
2526}
2527EXPORT_SYMBOL(kmem_cache_alloc);
2528
0f24f128 2529#ifdef CONFIG_TRACING
4a92379b
RK
2530void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2531{
2b847c3c 2532 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2533 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0316bec2 2534 kasan_kmalloc(s, ret, size);
4a92379b
RK
2535 return ret;
2536}
2537EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2538#endif
2539
81819f0f
CL
2540#ifdef CONFIG_NUMA
2541void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2542{
2b847c3c 2543 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2544
ca2b84cb 2545 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2546 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2547
2548 return ret;
81819f0f
CL
2549}
2550EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2551
0f24f128 2552#ifdef CONFIG_TRACING
4a92379b 2553void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2554 gfp_t gfpflags,
4a92379b 2555 int node, size_t size)
5b882be4 2556{
2b847c3c 2557 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2558
2559 trace_kmalloc_node(_RET_IP_, ret,
2560 size, s->size, gfpflags, node);
0316bec2
AR
2561
2562 kasan_kmalloc(s, ret, size);
4a92379b 2563 return ret;
5b882be4 2564}
4a92379b 2565EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2566#endif
5d1f57e4 2567#endif
5b882be4 2568
81819f0f 2569/*
94e4d712 2570 * Slow path handling. This may still be called frequently since objects
894b8788 2571 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2572 *
894b8788
CL
2573 * So we still attempt to reduce cache line usage. Just take the slab
2574 * lock and free the item. If there is no additional partial page
2575 * handling required then we can return immediately.
81819f0f 2576 */
894b8788 2577static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2578 void *x, unsigned long addr)
81819f0f
CL
2579{
2580 void *prior;
2581 void **object = (void *)x;
2cfb7455 2582 int was_frozen;
2cfb7455
CL
2583 struct page new;
2584 unsigned long counters;
2585 struct kmem_cache_node *n = NULL;
61728d1e 2586 unsigned long uninitialized_var(flags);
81819f0f 2587
8a5ec0ba 2588 stat(s, FREE_SLOWPATH);
81819f0f 2589
19c7ff9e
CL
2590 if (kmem_cache_debug(s) &&
2591 !(n = free_debug_processing(s, page, x, addr, &flags)))
80f08c19 2592 return;
6446faa2 2593
2cfb7455 2594 do {
837d678d
JK
2595 if (unlikely(n)) {
2596 spin_unlock_irqrestore(&n->list_lock, flags);
2597 n = NULL;
2598 }
2cfb7455
CL
2599 prior = page->freelist;
2600 counters = page->counters;
2601 set_freepointer(s, object, prior);
2602 new.counters = counters;
2603 was_frozen = new.frozen;
2604 new.inuse--;
837d678d 2605 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2606
c65c1877 2607 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2608
2609 /*
d0e0ac97
CG
2610 * Slab was on no list before and will be
2611 * partially empty
2612 * We can defer the list move and instead
2613 * freeze it.
49e22585
CL
2614 */
2615 new.frozen = 1;
2616
c65c1877 2617 } else { /* Needs to be taken off a list */
49e22585 2618
b455def2 2619 n = get_node(s, page_to_nid(page));
49e22585
CL
2620 /*
2621 * Speculatively acquire the list_lock.
2622 * If the cmpxchg does not succeed then we may
2623 * drop the list_lock without any processing.
2624 *
2625 * Otherwise the list_lock will synchronize with
2626 * other processors updating the list of slabs.
2627 */
2628 spin_lock_irqsave(&n->list_lock, flags);
2629
2630 }
2cfb7455 2631 }
81819f0f 2632
2cfb7455
CL
2633 } while (!cmpxchg_double_slab(s, page,
2634 prior, counters,
2635 object, new.counters,
2636 "__slab_free"));
81819f0f 2637
2cfb7455 2638 if (likely(!n)) {
49e22585
CL
2639
2640 /*
2641 * If we just froze the page then put it onto the
2642 * per cpu partial list.
2643 */
8028dcea 2644 if (new.frozen && !was_frozen) {
49e22585 2645 put_cpu_partial(s, page, 1);
8028dcea
AS
2646 stat(s, CPU_PARTIAL_FREE);
2647 }
49e22585 2648 /*
2cfb7455
CL
2649 * The list lock was not taken therefore no list
2650 * activity can be necessary.
2651 */
b455def2
L
2652 if (was_frozen)
2653 stat(s, FREE_FROZEN);
2654 return;
2655 }
81819f0f 2656
8a5b20ae 2657 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2658 goto slab_empty;
2659
81819f0f 2660 /*
837d678d
JK
2661 * Objects left in the slab. If it was not on the partial list before
2662 * then add it.
81819f0f 2663 */
345c905d
JK
2664 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2665 if (kmem_cache_debug(s))
c65c1877 2666 remove_full(s, n, page);
837d678d
JK
2667 add_partial(n, page, DEACTIVATE_TO_TAIL);
2668 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2669 }
80f08c19 2670 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2671 return;
2672
2673slab_empty:
a973e9dd 2674 if (prior) {
81819f0f 2675 /*
6fbabb20 2676 * Slab on the partial list.
81819f0f 2677 */
5cc6eee8 2678 remove_partial(n, page);
84e554e6 2679 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2680 } else {
6fbabb20 2681 /* Slab must be on the full list */
c65c1877
PZ
2682 remove_full(s, n, page);
2683 }
2cfb7455 2684
80f08c19 2685 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2686 stat(s, FREE_SLAB);
81819f0f 2687 discard_slab(s, page);
81819f0f
CL
2688}
2689
894b8788
CL
2690/*
2691 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2692 * can perform fastpath freeing without additional function calls.
2693 *
2694 * The fastpath is only possible if we are freeing to the current cpu slab
2695 * of this processor. This typically the case if we have just allocated
2696 * the item before.
2697 *
2698 * If fastpath is not possible then fall back to __slab_free where we deal
2699 * with all sorts of special processing.
2700 */
06428780 2701static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2702 struct page *page, void *x, unsigned long addr)
894b8788
CL
2703{
2704 void **object = (void *)x;
dfb4f096 2705 struct kmem_cache_cpu *c;
8a5ec0ba 2706 unsigned long tid;
1f84260c 2707
c016b0bd
CL
2708 slab_free_hook(s, x);
2709
8a5ec0ba
CL
2710redo:
2711 /*
2712 * Determine the currently cpus per cpu slab.
2713 * The cpu may change afterward. However that does not matter since
2714 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 2715 * during the cmpxchg then the free will succeed.
8a5ec0ba 2716 */
9aabf810
JK
2717 do {
2718 tid = this_cpu_read(s->cpu_slab->tid);
2719 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2720 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2721 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 2722
9aabf810
JK
2723 /* Same with comment on barrier() in slab_alloc_node() */
2724 barrier();
c016b0bd 2725
442b06bc 2726 if (likely(page == c->page)) {
ff12059e 2727 set_freepointer(s, object, c->freelist);
8a5ec0ba 2728
933393f5 2729 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2730 s->cpu_slab->freelist, s->cpu_slab->tid,
2731 c->freelist, tid,
2732 object, next_tid(tid)))) {
2733
2734 note_cmpxchg_failure("slab_free", s, tid);
2735 goto redo;
2736 }
84e554e6 2737 stat(s, FREE_FASTPATH);
894b8788 2738 } else
ff12059e 2739 __slab_free(s, page, x, addr);
894b8788 2740
894b8788
CL
2741}
2742
81819f0f
CL
2743void kmem_cache_free(struct kmem_cache *s, void *x)
2744{
b9ce5ef4
GC
2745 s = cache_from_obj(s, x);
2746 if (!s)
79576102 2747 return;
b9ce5ef4 2748 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
ca2b84cb 2749 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2750}
2751EXPORT_SYMBOL(kmem_cache_free);
2752
994eb764 2753/* Note that interrupts must be enabled when calling this function. */
484748f0
CL
2754void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
2755{
2756 __kmem_cache_free_bulk(s, size, p);
2757}
2758EXPORT_SYMBOL(kmem_cache_free_bulk);
2759
994eb764 2760/* Note that interrupts must be enabled when calling this function. */
484748f0 2761bool kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
994eb764 2762 void **p)
484748f0 2763{
994eb764
JDB
2764 struct kmem_cache_cpu *c;
2765 int i;
2766
2767 /* Debugging fallback to generic bulk */
2768 if (kmem_cache_debug(s))
2769 return __kmem_cache_alloc_bulk(s, flags, size, p);
2770
2771 /*
2772 * Drain objects in the per cpu slab, while disabling local
2773 * IRQs, which protects against PREEMPT and interrupts
2774 * handlers invoking normal fastpath.
2775 */
2776 local_irq_disable();
2777 c = this_cpu_ptr(s->cpu_slab);
2778
2779 for (i = 0; i < size; i++) {
2780 void *object = c->freelist;
2781
ebe909e0
JDB
2782 if (unlikely(!object)) {
2783 local_irq_enable();
2784 /*
2785 * Invoking slow path likely have side-effect
2786 * of re-populating per CPU c->freelist
2787 */
2788 p[i] = __slab_alloc(s, flags, NUMA_NO_NODE,
2789 _RET_IP_, c);
2790 if (unlikely(!p[i])) {
2791 __kmem_cache_free_bulk(s, i, p);
2792 return false;
2793 }
2794 local_irq_disable();
2795 c = this_cpu_ptr(s->cpu_slab);
2796 continue; /* goto for-loop */
2797 }
994eb764
JDB
2798
2799 c->freelist = get_freepointer(s, object);
2800 p[i] = object;
2801 }
2802 c->tid = next_tid(c->tid);
2803 local_irq_enable();
2804
2805 /* Clear memory outside IRQ disabled fastpath loop */
2806 if (unlikely(flags & __GFP_ZERO)) {
2807 int j;
2808
2809 for (j = 0; j < i; j++)
2810 memset(p[j], 0, s->object_size);
2811 }
2812
994eb764 2813 return true;
484748f0
CL
2814}
2815EXPORT_SYMBOL(kmem_cache_alloc_bulk);
2816
2817
81819f0f 2818/*
672bba3a
CL
2819 * Object placement in a slab is made very easy because we always start at
2820 * offset 0. If we tune the size of the object to the alignment then we can
2821 * get the required alignment by putting one properly sized object after
2822 * another.
81819f0f
CL
2823 *
2824 * Notice that the allocation order determines the sizes of the per cpu
2825 * caches. Each processor has always one slab available for allocations.
2826 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2827 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2828 * locking overhead.
81819f0f
CL
2829 */
2830
2831/*
2832 * Mininum / Maximum order of slab pages. This influences locking overhead
2833 * and slab fragmentation. A higher order reduces the number of partial slabs
2834 * and increases the number of allocations possible without having to
2835 * take the list_lock.
2836 */
2837static int slub_min_order;
114e9e89 2838static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2839static int slub_min_objects;
81819f0f 2840
81819f0f
CL
2841/*
2842 * Calculate the order of allocation given an slab object size.
2843 *
672bba3a
CL
2844 * The order of allocation has significant impact on performance and other
2845 * system components. Generally order 0 allocations should be preferred since
2846 * order 0 does not cause fragmentation in the page allocator. Larger objects
2847 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2848 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2849 * would be wasted.
2850 *
2851 * In order to reach satisfactory performance we must ensure that a minimum
2852 * number of objects is in one slab. Otherwise we may generate too much
2853 * activity on the partial lists which requires taking the list_lock. This is
2854 * less a concern for large slabs though which are rarely used.
81819f0f 2855 *
672bba3a
CL
2856 * slub_max_order specifies the order where we begin to stop considering the
2857 * number of objects in a slab as critical. If we reach slub_max_order then
2858 * we try to keep the page order as low as possible. So we accept more waste
2859 * of space in favor of a small page order.
81819f0f 2860 *
672bba3a
CL
2861 * Higher order allocations also allow the placement of more objects in a
2862 * slab and thereby reduce object handling overhead. If the user has
2863 * requested a higher mininum order then we start with that one instead of
2864 * the smallest order which will fit the object.
81819f0f 2865 */
5e6d444e 2866static inline int slab_order(int size, int min_objects,
ab9a0f19 2867 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2868{
2869 int order;
2870 int rem;
6300ea75 2871 int min_order = slub_min_order;
81819f0f 2872
ab9a0f19 2873 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2874 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2875
6300ea75 2876 for (order = max(min_order,
5e6d444e
CL
2877 fls(min_objects * size - 1) - PAGE_SHIFT);
2878 order <= max_order; order++) {
81819f0f 2879
5e6d444e 2880 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2881
ab9a0f19 2882 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2883 continue;
2884
ab9a0f19 2885 rem = (slab_size - reserved) % size;
81819f0f 2886
5e6d444e 2887 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2888 break;
2889
2890 }
672bba3a 2891
81819f0f
CL
2892 return order;
2893}
2894
ab9a0f19 2895static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2896{
2897 int order;
2898 int min_objects;
2899 int fraction;
e8120ff1 2900 int max_objects;
5e6d444e
CL
2901
2902 /*
2903 * Attempt to find best configuration for a slab. This
2904 * works by first attempting to generate a layout with
2905 * the best configuration and backing off gradually.
2906 *
2907 * First we reduce the acceptable waste in a slab. Then
2908 * we reduce the minimum objects required in a slab.
2909 */
2910 min_objects = slub_min_objects;
9b2cd506
CL
2911 if (!min_objects)
2912 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2913 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2914 min_objects = min(min_objects, max_objects);
2915
5e6d444e 2916 while (min_objects > 1) {
c124f5b5 2917 fraction = 16;
5e6d444e
CL
2918 while (fraction >= 4) {
2919 order = slab_order(size, min_objects,
ab9a0f19 2920 slub_max_order, fraction, reserved);
5e6d444e
CL
2921 if (order <= slub_max_order)
2922 return order;
2923 fraction /= 2;
2924 }
5086c389 2925 min_objects--;
5e6d444e
CL
2926 }
2927
2928 /*
2929 * We were unable to place multiple objects in a slab. Now
2930 * lets see if we can place a single object there.
2931 */
ab9a0f19 2932 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2933 if (order <= slub_max_order)
2934 return order;
2935
2936 /*
2937 * Doh this slab cannot be placed using slub_max_order.
2938 */
ab9a0f19 2939 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2940 if (order < MAX_ORDER)
5e6d444e
CL
2941 return order;
2942 return -ENOSYS;
2943}
2944
5595cffc 2945static void
4053497d 2946init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
2947{
2948 n->nr_partial = 0;
81819f0f
CL
2949 spin_lock_init(&n->list_lock);
2950 INIT_LIST_HEAD(&n->partial);
8ab1372f 2951#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2952 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2953 atomic_long_set(&n->total_objects, 0);
643b1138 2954 INIT_LIST_HEAD(&n->full);
8ab1372f 2955#endif
81819f0f
CL
2956}
2957
55136592 2958static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2959{
6c182dc0 2960 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 2961 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 2962
8a5ec0ba 2963 /*
d4d84fef
CM
2964 * Must align to double word boundary for the double cmpxchg
2965 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2966 */
d4d84fef
CM
2967 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2968 2 * sizeof(void *));
8a5ec0ba
CL
2969
2970 if (!s->cpu_slab)
2971 return 0;
2972
2973 init_kmem_cache_cpus(s);
4c93c355 2974
8a5ec0ba 2975 return 1;
4c93c355 2976}
4c93c355 2977
51df1142
CL
2978static struct kmem_cache *kmem_cache_node;
2979
81819f0f
CL
2980/*
2981 * No kmalloc_node yet so do it by hand. We know that this is the first
2982 * slab on the node for this slabcache. There are no concurrent accesses
2983 * possible.
2984 *
721ae22a
ZYW
2985 * Note that this function only works on the kmem_cache_node
2986 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 2987 * memory on a fresh node that has no slab structures yet.
81819f0f 2988 */
55136592 2989static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2990{
2991 struct page *page;
2992 struct kmem_cache_node *n;
2993
51df1142 2994 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2995
51df1142 2996 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2997
2998 BUG_ON(!page);
a2f92ee7 2999 if (page_to_nid(page) != node) {
f9f58285
FF
3000 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3001 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3002 }
3003
81819f0f
CL
3004 n = page->freelist;
3005 BUG_ON(!n);
51df1142 3006 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 3007 page->inuse = 1;
8cb0a506 3008 page->frozen = 0;
51df1142 3009 kmem_cache_node->node[node] = n;
8ab1372f 3010#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3011 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3012 init_tracking(kmem_cache_node, n);
8ab1372f 3013#endif
0316bec2 3014 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
4053497d 3015 init_kmem_cache_node(n);
51df1142 3016 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3017
67b6c900 3018 /*
1e4dd946
SR
3019 * No locks need to be taken here as it has just been
3020 * initialized and there is no concurrent access.
67b6c900 3021 */
1e4dd946 3022 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3023}
3024
3025static void free_kmem_cache_nodes(struct kmem_cache *s)
3026{
3027 int node;
fa45dc25 3028 struct kmem_cache_node *n;
81819f0f 3029
fa45dc25
CL
3030 for_each_kmem_cache_node(s, node, n) {
3031 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3032 s->node[node] = NULL;
3033 }
3034}
3035
55136592 3036static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3037{
3038 int node;
81819f0f 3039
f64dc58c 3040 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3041 struct kmem_cache_node *n;
3042
73367bd8 3043 if (slab_state == DOWN) {
55136592 3044 early_kmem_cache_node_alloc(node);
73367bd8
AD
3045 continue;
3046 }
51df1142 3047 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3048 GFP_KERNEL, node);
81819f0f 3049
73367bd8
AD
3050 if (!n) {
3051 free_kmem_cache_nodes(s);
3052 return 0;
81819f0f 3053 }
73367bd8 3054
81819f0f 3055 s->node[node] = n;
4053497d 3056 init_kmem_cache_node(n);
81819f0f
CL
3057 }
3058 return 1;
3059}
81819f0f 3060
c0bdb232 3061static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3062{
3063 if (min < MIN_PARTIAL)
3064 min = MIN_PARTIAL;
3065 else if (min > MAX_PARTIAL)
3066 min = MAX_PARTIAL;
3067 s->min_partial = min;
3068}
3069
81819f0f
CL
3070/*
3071 * calculate_sizes() determines the order and the distribution of data within
3072 * a slab object.
3073 */
06b285dc 3074static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
3075{
3076 unsigned long flags = s->flags;
3b0efdfa 3077 unsigned long size = s->object_size;
834f3d11 3078 int order;
81819f0f 3079
d8b42bf5
CL
3080 /*
3081 * Round up object size to the next word boundary. We can only
3082 * place the free pointer at word boundaries and this determines
3083 * the possible location of the free pointer.
3084 */
3085 size = ALIGN(size, sizeof(void *));
3086
3087#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3088 /*
3089 * Determine if we can poison the object itself. If the user of
3090 * the slab may touch the object after free or before allocation
3091 * then we should never poison the object itself.
3092 */
3093 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 3094 !s->ctor)
81819f0f
CL
3095 s->flags |= __OBJECT_POISON;
3096 else
3097 s->flags &= ~__OBJECT_POISON;
3098
81819f0f
CL
3099
3100 /*
672bba3a 3101 * If we are Redzoning then check if there is some space between the
81819f0f 3102 * end of the object and the free pointer. If not then add an
672bba3a 3103 * additional word to have some bytes to store Redzone information.
81819f0f 3104 */
3b0efdfa 3105 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3106 size += sizeof(void *);
41ecc55b 3107#endif
81819f0f
CL
3108
3109 /*
672bba3a
CL
3110 * With that we have determined the number of bytes in actual use
3111 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3112 */
3113 s->inuse = size;
3114
3115 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 3116 s->ctor)) {
81819f0f
CL
3117 /*
3118 * Relocate free pointer after the object if it is not
3119 * permitted to overwrite the first word of the object on
3120 * kmem_cache_free.
3121 *
3122 * This is the case if we do RCU, have a constructor or
3123 * destructor or are poisoning the objects.
3124 */
3125 s->offset = size;
3126 size += sizeof(void *);
3127 }
3128
c12b3c62 3129#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3130 if (flags & SLAB_STORE_USER)
3131 /*
3132 * Need to store information about allocs and frees after
3133 * the object.
3134 */
3135 size += 2 * sizeof(struct track);
3136
be7b3fbc 3137 if (flags & SLAB_RED_ZONE)
81819f0f
CL
3138 /*
3139 * Add some empty padding so that we can catch
3140 * overwrites from earlier objects rather than let
3141 * tracking information or the free pointer be
0211a9c8 3142 * corrupted if a user writes before the start
81819f0f
CL
3143 * of the object.
3144 */
3145 size += sizeof(void *);
41ecc55b 3146#endif
672bba3a 3147
81819f0f
CL
3148 /*
3149 * SLUB stores one object immediately after another beginning from
3150 * offset 0. In order to align the objects we have to simply size
3151 * each object to conform to the alignment.
3152 */
45906855 3153 size = ALIGN(size, s->align);
81819f0f 3154 s->size = size;
06b285dc
CL
3155 if (forced_order >= 0)
3156 order = forced_order;
3157 else
ab9a0f19 3158 order = calculate_order(size, s->reserved);
81819f0f 3159
834f3d11 3160 if (order < 0)
81819f0f
CL
3161 return 0;
3162
b7a49f0d 3163 s->allocflags = 0;
834f3d11 3164 if (order)
b7a49f0d
CL
3165 s->allocflags |= __GFP_COMP;
3166
3167 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3168 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3169
3170 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3171 s->allocflags |= __GFP_RECLAIMABLE;
3172
81819f0f
CL
3173 /*
3174 * Determine the number of objects per slab
3175 */
ab9a0f19
LJ
3176 s->oo = oo_make(order, size, s->reserved);
3177 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3178 if (oo_objects(s->oo) > oo_objects(s->max))
3179 s->max = s->oo;
81819f0f 3180
834f3d11 3181 return !!oo_objects(s->oo);
81819f0f
CL
3182}
3183
8a13a4cc 3184static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3185{
8a13a4cc 3186 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3187 s->reserved = 0;
81819f0f 3188
da9a638c
LJ
3189 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3190 s->reserved = sizeof(struct rcu_head);
81819f0f 3191
06b285dc 3192 if (!calculate_sizes(s, -1))
81819f0f 3193 goto error;
3de47213
DR
3194 if (disable_higher_order_debug) {
3195 /*
3196 * Disable debugging flags that store metadata if the min slab
3197 * order increased.
3198 */
3b0efdfa 3199 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3200 s->flags &= ~DEBUG_METADATA_FLAGS;
3201 s->offset = 0;
3202 if (!calculate_sizes(s, -1))
3203 goto error;
3204 }
3205 }
81819f0f 3206
2565409f
HC
3207#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3208 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3209 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3210 /* Enable fast mode */
3211 s->flags |= __CMPXCHG_DOUBLE;
3212#endif
3213
3b89d7d8
DR
3214 /*
3215 * The larger the object size is, the more pages we want on the partial
3216 * list to avoid pounding the page allocator excessively.
3217 */
49e22585
CL
3218 set_min_partial(s, ilog2(s->size) / 2);
3219
3220 /*
3221 * cpu_partial determined the maximum number of objects kept in the
3222 * per cpu partial lists of a processor.
3223 *
3224 * Per cpu partial lists mainly contain slabs that just have one
3225 * object freed. If they are used for allocation then they can be
3226 * filled up again with minimal effort. The slab will never hit the
3227 * per node partial lists and therefore no locking will be required.
3228 *
3229 * This setting also determines
3230 *
3231 * A) The number of objects from per cpu partial slabs dumped to the
3232 * per node list when we reach the limit.
9f264904 3233 * B) The number of objects in cpu partial slabs to extract from the
d0e0ac97
CG
3234 * per node list when we run out of per cpu objects. We only fetch
3235 * 50% to keep some capacity around for frees.
49e22585 3236 */
345c905d 3237 if (!kmem_cache_has_cpu_partial(s))
8f1e33da
CL
3238 s->cpu_partial = 0;
3239 else if (s->size >= PAGE_SIZE)
49e22585
CL
3240 s->cpu_partial = 2;
3241 else if (s->size >= 1024)
3242 s->cpu_partial = 6;
3243 else if (s->size >= 256)
3244 s->cpu_partial = 13;
3245 else
3246 s->cpu_partial = 30;
3247
81819f0f 3248#ifdef CONFIG_NUMA
e2cb96b7 3249 s->remote_node_defrag_ratio = 1000;
81819f0f 3250#endif
55136592 3251 if (!init_kmem_cache_nodes(s))
dfb4f096 3252 goto error;
81819f0f 3253
55136592 3254 if (alloc_kmem_cache_cpus(s))
278b1bb1 3255 return 0;
ff12059e 3256
4c93c355 3257 free_kmem_cache_nodes(s);
81819f0f
CL
3258error:
3259 if (flags & SLAB_PANIC)
3260 panic("Cannot create slab %s size=%lu realsize=%u "
3261 "order=%u offset=%u flags=%lx\n",
d0e0ac97
CG
3262 s->name, (unsigned long)s->size, s->size,
3263 oo_order(s->oo), s->offset, flags);
278b1bb1 3264 return -EINVAL;
81819f0f 3265}
81819f0f 3266
33b12c38
CL
3267static void list_slab_objects(struct kmem_cache *s, struct page *page,
3268 const char *text)
3269{
3270#ifdef CONFIG_SLUB_DEBUG
3271 void *addr = page_address(page);
3272 void *p;
a5dd5c11
NK
3273 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3274 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3275 if (!map)
3276 return;
945cf2b6 3277 slab_err(s, page, text, s->name);
33b12c38 3278 slab_lock(page);
33b12c38 3279
5f80b13a 3280 get_map(s, page, map);
33b12c38
CL
3281 for_each_object(p, s, addr, page->objects) {
3282
3283 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3284 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3285 print_tracking(s, p);
3286 }
3287 }
3288 slab_unlock(page);
bbd7d57b 3289 kfree(map);
33b12c38
CL
3290#endif
3291}
3292
81819f0f 3293/*
599870b1 3294 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3295 * This is called from kmem_cache_close(). We must be the last thread
3296 * using the cache and therefore we do not need to lock anymore.
81819f0f 3297 */
599870b1 3298static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3299{
81819f0f
CL
3300 struct page *page, *h;
3301
33b12c38 3302 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3303 if (!page->inuse) {
1e4dd946 3304 __remove_partial(n, page);
81819f0f 3305 discard_slab(s, page);
33b12c38
CL
3306 } else {
3307 list_slab_objects(s, page,
945cf2b6 3308 "Objects remaining in %s on kmem_cache_close()");
599870b1 3309 }
33b12c38 3310 }
81819f0f
CL
3311}
3312
3313/*
672bba3a 3314 * Release all resources used by a slab cache.
81819f0f 3315 */
0c710013 3316static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3317{
3318 int node;
fa45dc25 3319 struct kmem_cache_node *n;
81819f0f
CL
3320
3321 flush_all(s);
81819f0f 3322 /* Attempt to free all objects */
fa45dc25 3323 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3324 free_partial(s, n);
3325 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3326 return 1;
3327 }
945cf2b6 3328 free_percpu(s->cpu_slab);
81819f0f
CL
3329 free_kmem_cache_nodes(s);
3330 return 0;
3331}
3332
945cf2b6 3333int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f 3334{
41a21285 3335 return kmem_cache_close(s);
81819f0f 3336}
81819f0f
CL
3337
3338/********************************************************************
3339 * Kmalloc subsystem
3340 *******************************************************************/
3341
81819f0f
CL
3342static int __init setup_slub_min_order(char *str)
3343{
06428780 3344 get_option(&str, &slub_min_order);
81819f0f
CL
3345
3346 return 1;
3347}
3348
3349__setup("slub_min_order=", setup_slub_min_order);
3350
3351static int __init setup_slub_max_order(char *str)
3352{
06428780 3353 get_option(&str, &slub_max_order);
818cf590 3354 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3355
3356 return 1;
3357}
3358
3359__setup("slub_max_order=", setup_slub_max_order);
3360
3361static int __init setup_slub_min_objects(char *str)
3362{
06428780 3363 get_option(&str, &slub_min_objects);
81819f0f
CL
3364
3365 return 1;
3366}
3367
3368__setup("slub_min_objects=", setup_slub_min_objects);
3369
81819f0f
CL
3370void *__kmalloc(size_t size, gfp_t flags)
3371{
aadb4bc4 3372 struct kmem_cache *s;
5b882be4 3373 void *ret;
81819f0f 3374
95a05b42 3375 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3376 return kmalloc_large(size, flags);
aadb4bc4 3377
2c59dd65 3378 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3379
3380 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3381 return s;
3382
2b847c3c 3383 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3384
ca2b84cb 3385 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3386
0316bec2
AR
3387 kasan_kmalloc(s, ret, size);
3388
5b882be4 3389 return ret;
81819f0f
CL
3390}
3391EXPORT_SYMBOL(__kmalloc);
3392
5d1f57e4 3393#ifdef CONFIG_NUMA
f619cfe1
CL
3394static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3395{
b1eeab67 3396 struct page *page;
e4f7c0b4 3397 void *ptr = NULL;
f619cfe1 3398
52383431
VD
3399 flags |= __GFP_COMP | __GFP_NOTRACK;
3400 page = alloc_kmem_pages_node(node, flags, get_order(size));
f619cfe1 3401 if (page)
e4f7c0b4
CM
3402 ptr = page_address(page);
3403
d56791b3 3404 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3405 return ptr;
f619cfe1
CL
3406}
3407
81819f0f
CL
3408void *__kmalloc_node(size_t size, gfp_t flags, int node)
3409{
aadb4bc4 3410 struct kmem_cache *s;
5b882be4 3411 void *ret;
81819f0f 3412
95a05b42 3413 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3414 ret = kmalloc_large_node(size, flags, node);
3415
ca2b84cb
EGM
3416 trace_kmalloc_node(_RET_IP_, ret,
3417 size, PAGE_SIZE << get_order(size),
3418 flags, node);
5b882be4
EGM
3419
3420 return ret;
3421 }
aadb4bc4 3422
2c59dd65 3423 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3424
3425 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3426 return s;
3427
2b847c3c 3428 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3429
ca2b84cb 3430 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3431
0316bec2
AR
3432 kasan_kmalloc(s, ret, size);
3433
5b882be4 3434 return ret;
81819f0f
CL
3435}
3436EXPORT_SYMBOL(__kmalloc_node);
3437#endif
3438
0316bec2 3439static size_t __ksize(const void *object)
81819f0f 3440{
272c1d21 3441 struct page *page;
81819f0f 3442
ef8b4520 3443 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3444 return 0;
3445
294a80a8 3446 page = virt_to_head_page(object);
294a80a8 3447
76994412
PE
3448 if (unlikely(!PageSlab(page))) {
3449 WARN_ON(!PageCompound(page));
294a80a8 3450 return PAGE_SIZE << compound_order(page);
76994412 3451 }
81819f0f 3452
1b4f59e3 3453 return slab_ksize(page->slab_cache);
81819f0f 3454}
0316bec2
AR
3455
3456size_t ksize(const void *object)
3457{
3458 size_t size = __ksize(object);
3459 /* We assume that ksize callers could use whole allocated area,
3460 so we need unpoison this area. */
3461 kasan_krealloc(object, size);
3462 return size;
3463}
b1aabecd 3464EXPORT_SYMBOL(ksize);
81819f0f
CL
3465
3466void kfree(const void *x)
3467{
81819f0f 3468 struct page *page;
5bb983b0 3469 void *object = (void *)x;
81819f0f 3470
2121db74
PE
3471 trace_kfree(_RET_IP_, x);
3472
2408c550 3473 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3474 return;
3475
b49af68f 3476 page = virt_to_head_page(x);
aadb4bc4 3477 if (unlikely(!PageSlab(page))) {
0937502a 3478 BUG_ON(!PageCompound(page));
d56791b3 3479 kfree_hook(x);
52383431 3480 __free_kmem_pages(page, compound_order(page));
aadb4bc4
CL
3481 return;
3482 }
1b4f59e3 3483 slab_free(page->slab_cache, page, object, _RET_IP_);
81819f0f
CL
3484}
3485EXPORT_SYMBOL(kfree);
3486
832f37f5
VD
3487#define SHRINK_PROMOTE_MAX 32
3488
2086d26a 3489/*
832f37f5
VD
3490 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3491 * up most to the head of the partial lists. New allocations will then
3492 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
3493 *
3494 * The slabs with the least items are placed last. This results in them
3495 * being allocated from last increasing the chance that the last objects
3496 * are freed in them.
2086d26a 3497 */
d6e0b7fa 3498int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
2086d26a
CL
3499{
3500 int node;
3501 int i;
3502 struct kmem_cache_node *n;
3503 struct page *page;
3504 struct page *t;
832f37f5
VD
3505 struct list_head discard;
3506 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 3507 unsigned long flags;
ce3712d7 3508 int ret = 0;
2086d26a 3509
d6e0b7fa
VD
3510 if (deactivate) {
3511 /*
3512 * Disable empty slabs caching. Used to avoid pinning offline
3513 * memory cgroups by kmem pages that can be freed.
3514 */
3515 s->cpu_partial = 0;
3516 s->min_partial = 0;
3517
3518 /*
3519 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3520 * so we have to make sure the change is visible.
3521 */
3522 kick_all_cpus_sync();
3523 }
3524
2086d26a 3525 flush_all(s);
fa45dc25 3526 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
3527 INIT_LIST_HEAD(&discard);
3528 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3529 INIT_LIST_HEAD(promote + i);
2086d26a
CL
3530
3531 spin_lock_irqsave(&n->list_lock, flags);
3532
3533 /*
832f37f5 3534 * Build lists of slabs to discard or promote.
2086d26a 3535 *
672bba3a
CL
3536 * Note that concurrent frees may occur while we hold the
3537 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3538 */
3539 list_for_each_entry_safe(page, t, &n->partial, lru) {
832f37f5
VD
3540 int free = page->objects - page->inuse;
3541
3542 /* Do not reread page->inuse */
3543 barrier();
3544
3545 /* We do not keep full slabs on the list */
3546 BUG_ON(free <= 0);
3547
3548 if (free == page->objects) {
3549 list_move(&page->lru, &discard);
69cb8e6b 3550 n->nr_partial--;
832f37f5
VD
3551 } else if (free <= SHRINK_PROMOTE_MAX)
3552 list_move(&page->lru, promote + free - 1);
2086d26a
CL
3553 }
3554
2086d26a 3555 /*
832f37f5
VD
3556 * Promote the slabs filled up most to the head of the
3557 * partial list.
2086d26a 3558 */
832f37f5
VD
3559 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3560 list_splice(promote + i, &n->partial);
2086d26a 3561
2086d26a 3562 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3563
3564 /* Release empty slabs */
832f37f5 3565 list_for_each_entry_safe(page, t, &discard, lru)
69cb8e6b 3566 discard_slab(s, page);
ce3712d7
VD
3567
3568 if (slabs_node(s, node))
3569 ret = 1;
2086d26a
CL
3570 }
3571
ce3712d7 3572 return ret;
2086d26a 3573}
2086d26a 3574
b9049e23
YG
3575static int slab_mem_going_offline_callback(void *arg)
3576{
3577 struct kmem_cache *s;
3578
18004c5d 3579 mutex_lock(&slab_mutex);
b9049e23 3580 list_for_each_entry(s, &slab_caches, list)
d6e0b7fa 3581 __kmem_cache_shrink(s, false);
18004c5d 3582 mutex_unlock(&slab_mutex);
b9049e23
YG
3583
3584 return 0;
3585}
3586
3587static void slab_mem_offline_callback(void *arg)
3588{
3589 struct kmem_cache_node *n;
3590 struct kmem_cache *s;
3591 struct memory_notify *marg = arg;
3592 int offline_node;
3593
b9d5ab25 3594 offline_node = marg->status_change_nid_normal;
b9049e23
YG
3595
3596 /*
3597 * If the node still has available memory. we need kmem_cache_node
3598 * for it yet.
3599 */
3600 if (offline_node < 0)
3601 return;
3602
18004c5d 3603 mutex_lock(&slab_mutex);
b9049e23
YG
3604 list_for_each_entry(s, &slab_caches, list) {
3605 n = get_node(s, offline_node);
3606 if (n) {
3607 /*
3608 * if n->nr_slabs > 0, slabs still exist on the node
3609 * that is going down. We were unable to free them,
c9404c9c 3610 * and offline_pages() function shouldn't call this
b9049e23
YG
3611 * callback. So, we must fail.
3612 */
0f389ec6 3613 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3614
3615 s->node[offline_node] = NULL;
8de66a0c 3616 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3617 }
3618 }
18004c5d 3619 mutex_unlock(&slab_mutex);
b9049e23
YG
3620}
3621
3622static int slab_mem_going_online_callback(void *arg)
3623{
3624 struct kmem_cache_node *n;
3625 struct kmem_cache *s;
3626 struct memory_notify *marg = arg;
b9d5ab25 3627 int nid = marg->status_change_nid_normal;
b9049e23
YG
3628 int ret = 0;
3629
3630 /*
3631 * If the node's memory is already available, then kmem_cache_node is
3632 * already created. Nothing to do.
3633 */
3634 if (nid < 0)
3635 return 0;
3636
3637 /*
0121c619 3638 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3639 * allocate a kmem_cache_node structure in order to bring the node
3640 * online.
3641 */
18004c5d 3642 mutex_lock(&slab_mutex);
b9049e23
YG
3643 list_for_each_entry(s, &slab_caches, list) {
3644 /*
3645 * XXX: kmem_cache_alloc_node will fallback to other nodes
3646 * since memory is not yet available from the node that
3647 * is brought up.
3648 */
8de66a0c 3649 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3650 if (!n) {
3651 ret = -ENOMEM;
3652 goto out;
3653 }
4053497d 3654 init_kmem_cache_node(n);
b9049e23
YG
3655 s->node[nid] = n;
3656 }
3657out:
18004c5d 3658 mutex_unlock(&slab_mutex);
b9049e23
YG
3659 return ret;
3660}
3661
3662static int slab_memory_callback(struct notifier_block *self,
3663 unsigned long action, void *arg)
3664{
3665 int ret = 0;
3666
3667 switch (action) {
3668 case MEM_GOING_ONLINE:
3669 ret = slab_mem_going_online_callback(arg);
3670 break;
3671 case MEM_GOING_OFFLINE:
3672 ret = slab_mem_going_offline_callback(arg);
3673 break;
3674 case MEM_OFFLINE:
3675 case MEM_CANCEL_ONLINE:
3676 slab_mem_offline_callback(arg);
3677 break;
3678 case MEM_ONLINE:
3679 case MEM_CANCEL_OFFLINE:
3680 break;
3681 }
dc19f9db
KH
3682 if (ret)
3683 ret = notifier_from_errno(ret);
3684 else
3685 ret = NOTIFY_OK;
b9049e23
YG
3686 return ret;
3687}
3688
3ac38faa
AM
3689static struct notifier_block slab_memory_callback_nb = {
3690 .notifier_call = slab_memory_callback,
3691 .priority = SLAB_CALLBACK_PRI,
3692};
b9049e23 3693
81819f0f
CL
3694/********************************************************************
3695 * Basic setup of slabs
3696 *******************************************************************/
3697
51df1142
CL
3698/*
3699 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
3700 * the page allocator. Allocate them properly then fix up the pointers
3701 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
3702 */
3703
dffb4d60 3704static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
3705{
3706 int node;
dffb4d60 3707 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 3708 struct kmem_cache_node *n;
51df1142 3709
dffb4d60 3710 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 3711
7d557b3c
GC
3712 /*
3713 * This runs very early, and only the boot processor is supposed to be
3714 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3715 * IPIs around.
3716 */
3717 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 3718 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
3719 struct page *p;
3720
fa45dc25
CL
3721 list_for_each_entry(p, &n->partial, lru)
3722 p->slab_cache = s;
51df1142 3723
607bf324 3724#ifdef CONFIG_SLUB_DEBUG
fa45dc25
CL
3725 list_for_each_entry(p, &n->full, lru)
3726 p->slab_cache = s;
51df1142 3727#endif
51df1142 3728 }
f7ce3190 3729 slab_init_memcg_params(s);
dffb4d60
CL
3730 list_add(&s->list, &slab_caches);
3731 return s;
51df1142
CL
3732}
3733
81819f0f
CL
3734void __init kmem_cache_init(void)
3735{
dffb4d60
CL
3736 static __initdata struct kmem_cache boot_kmem_cache,
3737 boot_kmem_cache_node;
51df1142 3738
fc8d8620
SG
3739 if (debug_guardpage_minorder())
3740 slub_max_order = 0;
3741
dffb4d60
CL
3742 kmem_cache_node = &boot_kmem_cache_node;
3743 kmem_cache = &boot_kmem_cache;
51df1142 3744
dffb4d60
CL
3745 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3746 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 3747
3ac38faa 3748 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
3749
3750 /* Able to allocate the per node structures */
3751 slab_state = PARTIAL;
3752
dffb4d60
CL
3753 create_boot_cache(kmem_cache, "kmem_cache",
3754 offsetof(struct kmem_cache, node) +
3755 nr_node_ids * sizeof(struct kmem_cache_node *),
3756 SLAB_HWCACHE_ALIGN);
8a13a4cc 3757
dffb4d60 3758 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 3759
51df1142
CL
3760 /*
3761 * Allocate kmem_cache_node properly from the kmem_cache slab.
3762 * kmem_cache_node is separately allocated so no need to
3763 * update any list pointers.
3764 */
dffb4d60 3765 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
3766
3767 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 3768 setup_kmalloc_cache_index_table();
f97d5f63 3769 create_kmalloc_caches(0);
81819f0f
CL
3770
3771#ifdef CONFIG_SMP
3772 register_cpu_notifier(&slab_notifier);
9dfc6e68 3773#endif
81819f0f 3774
f9f58285 3775 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
f97d5f63 3776 cache_line_size(),
81819f0f
CL
3777 slub_min_order, slub_max_order, slub_min_objects,
3778 nr_cpu_ids, nr_node_ids);
3779}
3780
7e85ee0c
PE
3781void __init kmem_cache_init_late(void)
3782{
7e85ee0c
PE
3783}
3784
2633d7a0 3785struct kmem_cache *
a44cb944
VD
3786__kmem_cache_alias(const char *name, size_t size, size_t align,
3787 unsigned long flags, void (*ctor)(void *))
81819f0f 3788{
426589f5 3789 struct kmem_cache *s, *c;
81819f0f 3790
a44cb944 3791 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3792 if (s) {
3793 s->refcount++;
84d0ddd6 3794
81819f0f
CL
3795 /*
3796 * Adjust the object sizes so that we clear
3797 * the complete object on kzalloc.
3798 */
3b0efdfa 3799 s->object_size = max(s->object_size, (int)size);
81819f0f 3800 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3801
426589f5 3802 for_each_memcg_cache(c, s) {
84d0ddd6
VD
3803 c->object_size = s->object_size;
3804 c->inuse = max_t(int, c->inuse,
3805 ALIGN(size, sizeof(void *)));
3806 }
3807
7b8f3b66 3808 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3809 s->refcount--;
cbb79694 3810 s = NULL;
7b8f3b66 3811 }
a0e1d1be 3812 }
6446faa2 3813
cbb79694
CL
3814 return s;
3815}
84c1cf62 3816
8a13a4cc 3817int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 3818{
aac3a166
PE
3819 int err;
3820
3821 err = kmem_cache_open(s, flags);
3822 if (err)
3823 return err;
20cea968 3824
45530c44
CL
3825 /* Mutex is not taken during early boot */
3826 if (slab_state <= UP)
3827 return 0;
3828
107dab5c 3829 memcg_propagate_slab_attrs(s);
aac3a166 3830 err = sysfs_slab_add(s);
aac3a166
PE
3831 if (err)
3832 kmem_cache_close(s);
20cea968 3833
aac3a166 3834 return err;
81819f0f 3835}
81819f0f 3836
81819f0f 3837#ifdef CONFIG_SMP
81819f0f 3838/*
672bba3a
CL
3839 * Use the cpu notifier to insure that the cpu slabs are flushed when
3840 * necessary.
81819f0f 3841 */
0db0628d 3842static int slab_cpuup_callback(struct notifier_block *nfb,
81819f0f
CL
3843 unsigned long action, void *hcpu)
3844{
3845 long cpu = (long)hcpu;
5b95a4ac
CL
3846 struct kmem_cache *s;
3847 unsigned long flags;
81819f0f
CL
3848
3849 switch (action) {
3850 case CPU_UP_CANCELED:
8bb78442 3851 case CPU_UP_CANCELED_FROZEN:
81819f0f 3852 case CPU_DEAD:
8bb78442 3853 case CPU_DEAD_FROZEN:
18004c5d 3854 mutex_lock(&slab_mutex);
5b95a4ac
CL
3855 list_for_each_entry(s, &slab_caches, list) {
3856 local_irq_save(flags);
3857 __flush_cpu_slab(s, cpu);
3858 local_irq_restore(flags);
3859 }
18004c5d 3860 mutex_unlock(&slab_mutex);
81819f0f
CL
3861 break;
3862 default:
3863 break;
3864 }
3865 return NOTIFY_OK;
3866}
3867
0db0628d 3868static struct notifier_block slab_notifier = {
3adbefee 3869 .notifier_call = slab_cpuup_callback
06428780 3870};
81819f0f
CL
3871
3872#endif
3873
ce71e27c 3874void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3875{
aadb4bc4 3876 struct kmem_cache *s;
94b528d0 3877 void *ret;
aadb4bc4 3878
95a05b42 3879 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
3880 return kmalloc_large(size, gfpflags);
3881
2c59dd65 3882 s = kmalloc_slab(size, gfpflags);
81819f0f 3883
2408c550 3884 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3885 return s;
81819f0f 3886
2b847c3c 3887 ret = slab_alloc(s, gfpflags, caller);
94b528d0 3888
25985edc 3889 /* Honor the call site pointer we received. */
ca2b84cb 3890 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3891
3892 return ret;
81819f0f
CL
3893}
3894
5d1f57e4 3895#ifdef CONFIG_NUMA
81819f0f 3896void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3897 int node, unsigned long caller)
81819f0f 3898{
aadb4bc4 3899 struct kmem_cache *s;
94b528d0 3900 void *ret;
aadb4bc4 3901
95a05b42 3902 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
3903 ret = kmalloc_large_node(size, gfpflags, node);
3904
3905 trace_kmalloc_node(caller, ret,
3906 size, PAGE_SIZE << get_order(size),
3907 gfpflags, node);
3908
3909 return ret;
3910 }
eada35ef 3911
2c59dd65 3912 s = kmalloc_slab(size, gfpflags);
81819f0f 3913
2408c550 3914 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3915 return s;
81819f0f 3916
2b847c3c 3917 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 3918
25985edc 3919 /* Honor the call site pointer we received. */
ca2b84cb 3920 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3921
3922 return ret;
81819f0f 3923}
5d1f57e4 3924#endif
81819f0f 3925
ab4d5ed5 3926#ifdef CONFIG_SYSFS
205ab99d
CL
3927static int count_inuse(struct page *page)
3928{
3929 return page->inuse;
3930}
3931
3932static int count_total(struct page *page)
3933{
3934 return page->objects;
3935}
ab4d5ed5 3936#endif
205ab99d 3937
ab4d5ed5 3938#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3939static int validate_slab(struct kmem_cache *s, struct page *page,
3940 unsigned long *map)
53e15af0
CL
3941{
3942 void *p;
a973e9dd 3943 void *addr = page_address(page);
53e15af0
CL
3944
3945 if (!check_slab(s, page) ||
3946 !on_freelist(s, page, NULL))
3947 return 0;
3948
3949 /* Now we know that a valid freelist exists */
39b26464 3950 bitmap_zero(map, page->objects);
53e15af0 3951
5f80b13a
CL
3952 get_map(s, page, map);
3953 for_each_object(p, s, addr, page->objects) {
3954 if (test_bit(slab_index(p, s, addr), map))
3955 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3956 return 0;
53e15af0
CL
3957 }
3958
224a88be 3959 for_each_object(p, s, addr, page->objects)
7656c72b 3960 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3961 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3962 return 0;
3963 return 1;
3964}
3965
434e245d
CL
3966static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3967 unsigned long *map)
53e15af0 3968{
881db7fb
CL
3969 slab_lock(page);
3970 validate_slab(s, page, map);
3971 slab_unlock(page);
53e15af0
CL
3972}
3973
434e245d
CL
3974static int validate_slab_node(struct kmem_cache *s,
3975 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3976{
3977 unsigned long count = 0;
3978 struct page *page;
3979 unsigned long flags;
3980
3981 spin_lock_irqsave(&n->list_lock, flags);
3982
3983 list_for_each_entry(page, &n->partial, lru) {
434e245d 3984 validate_slab_slab(s, page, map);
53e15af0
CL
3985 count++;
3986 }
3987 if (count != n->nr_partial)
f9f58285
FF
3988 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
3989 s->name, count, n->nr_partial);
53e15af0
CL
3990
3991 if (!(s->flags & SLAB_STORE_USER))
3992 goto out;
3993
3994 list_for_each_entry(page, &n->full, lru) {
434e245d 3995 validate_slab_slab(s, page, map);
53e15af0
CL
3996 count++;
3997 }
3998 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
3999 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4000 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4001
4002out:
4003 spin_unlock_irqrestore(&n->list_lock, flags);
4004 return count;
4005}
4006
434e245d 4007static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4008{
4009 int node;
4010 unsigned long count = 0;
205ab99d 4011 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d 4012 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4013 struct kmem_cache_node *n;
434e245d
CL
4014
4015 if (!map)
4016 return -ENOMEM;
53e15af0
CL
4017
4018 flush_all(s);
fa45dc25 4019 for_each_kmem_cache_node(s, node, n)
434e245d 4020 count += validate_slab_node(s, n, map);
434e245d 4021 kfree(map);
53e15af0
CL
4022 return count;
4023}
88a420e4 4024/*
672bba3a 4025 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4026 * and freed.
4027 */
4028
4029struct location {
4030 unsigned long count;
ce71e27c 4031 unsigned long addr;
45edfa58
CL
4032 long long sum_time;
4033 long min_time;
4034 long max_time;
4035 long min_pid;
4036 long max_pid;
174596a0 4037 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4038 nodemask_t nodes;
88a420e4
CL
4039};
4040
4041struct loc_track {
4042 unsigned long max;
4043 unsigned long count;
4044 struct location *loc;
4045};
4046
4047static void free_loc_track(struct loc_track *t)
4048{
4049 if (t->max)
4050 free_pages((unsigned long)t->loc,
4051 get_order(sizeof(struct location) * t->max));
4052}
4053
68dff6a9 4054static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4055{
4056 struct location *l;
4057 int order;
4058
88a420e4
CL
4059 order = get_order(sizeof(struct location) * max);
4060
68dff6a9 4061 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4062 if (!l)
4063 return 0;
4064
4065 if (t->count) {
4066 memcpy(l, t->loc, sizeof(struct location) * t->count);
4067 free_loc_track(t);
4068 }
4069 t->max = max;
4070 t->loc = l;
4071 return 1;
4072}
4073
4074static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4075 const struct track *track)
88a420e4
CL
4076{
4077 long start, end, pos;
4078 struct location *l;
ce71e27c 4079 unsigned long caddr;
45edfa58 4080 unsigned long age = jiffies - track->when;
88a420e4
CL
4081
4082 start = -1;
4083 end = t->count;
4084
4085 for ( ; ; ) {
4086 pos = start + (end - start + 1) / 2;
4087
4088 /*
4089 * There is nothing at "end". If we end up there
4090 * we need to add something to before end.
4091 */
4092 if (pos == end)
4093 break;
4094
4095 caddr = t->loc[pos].addr;
45edfa58
CL
4096 if (track->addr == caddr) {
4097
4098 l = &t->loc[pos];
4099 l->count++;
4100 if (track->when) {
4101 l->sum_time += age;
4102 if (age < l->min_time)
4103 l->min_time = age;
4104 if (age > l->max_time)
4105 l->max_time = age;
4106
4107 if (track->pid < l->min_pid)
4108 l->min_pid = track->pid;
4109 if (track->pid > l->max_pid)
4110 l->max_pid = track->pid;
4111
174596a0
RR
4112 cpumask_set_cpu(track->cpu,
4113 to_cpumask(l->cpus));
45edfa58
CL
4114 }
4115 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4116 return 1;
4117 }
4118
45edfa58 4119 if (track->addr < caddr)
88a420e4
CL
4120 end = pos;
4121 else
4122 start = pos;
4123 }
4124
4125 /*
672bba3a 4126 * Not found. Insert new tracking element.
88a420e4 4127 */
68dff6a9 4128 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4129 return 0;
4130
4131 l = t->loc + pos;
4132 if (pos < t->count)
4133 memmove(l + 1, l,
4134 (t->count - pos) * sizeof(struct location));
4135 t->count++;
4136 l->count = 1;
45edfa58
CL
4137 l->addr = track->addr;
4138 l->sum_time = age;
4139 l->min_time = age;
4140 l->max_time = age;
4141 l->min_pid = track->pid;
4142 l->max_pid = track->pid;
174596a0
RR
4143 cpumask_clear(to_cpumask(l->cpus));
4144 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4145 nodes_clear(l->nodes);
4146 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4147 return 1;
4148}
4149
4150static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4151 struct page *page, enum track_item alloc,
a5dd5c11 4152 unsigned long *map)
88a420e4 4153{
a973e9dd 4154 void *addr = page_address(page);
88a420e4
CL
4155 void *p;
4156
39b26464 4157 bitmap_zero(map, page->objects);
5f80b13a 4158 get_map(s, page, map);
88a420e4 4159
224a88be 4160 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4161 if (!test_bit(slab_index(p, s, addr), map))
4162 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4163}
4164
4165static int list_locations(struct kmem_cache *s, char *buf,
4166 enum track_item alloc)
4167{
e374d483 4168 int len = 0;
88a420e4 4169 unsigned long i;
68dff6a9 4170 struct loc_track t = { 0, 0, NULL };
88a420e4 4171 int node;
bbd7d57b
ED
4172 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4173 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4174 struct kmem_cache_node *n;
88a420e4 4175
bbd7d57b
ED
4176 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4177 GFP_TEMPORARY)) {
4178 kfree(map);
68dff6a9 4179 return sprintf(buf, "Out of memory\n");
bbd7d57b 4180 }
88a420e4
CL
4181 /* Push back cpu slabs */
4182 flush_all(s);
4183
fa45dc25 4184 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4185 unsigned long flags;
4186 struct page *page;
4187
9e86943b 4188 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4189 continue;
4190
4191 spin_lock_irqsave(&n->list_lock, flags);
4192 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4193 process_slab(&t, s, page, alloc, map);
88a420e4 4194 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4195 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4196 spin_unlock_irqrestore(&n->list_lock, flags);
4197 }
4198
4199 for (i = 0; i < t.count; i++) {
45edfa58 4200 struct location *l = &t.loc[i];
88a420e4 4201
9c246247 4202 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4203 break;
e374d483 4204 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4205
4206 if (l->addr)
62c70bce 4207 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4208 else
e374d483 4209 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4210
4211 if (l->sum_time != l->min_time) {
e374d483 4212 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4213 l->min_time,
4214 (long)div_u64(l->sum_time, l->count),
4215 l->max_time);
45edfa58 4216 } else
e374d483 4217 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4218 l->min_time);
4219
4220 if (l->min_pid != l->max_pid)
e374d483 4221 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4222 l->min_pid, l->max_pid);
4223 else
e374d483 4224 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4225 l->min_pid);
4226
174596a0
RR
4227 if (num_online_cpus() > 1 &&
4228 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4229 len < PAGE_SIZE - 60)
4230 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4231 " cpus=%*pbl",
4232 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4233
62bc62a8 4234 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4235 len < PAGE_SIZE - 60)
4236 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4237 " nodes=%*pbl",
4238 nodemask_pr_args(&l->nodes));
45edfa58 4239
e374d483 4240 len += sprintf(buf + len, "\n");
88a420e4
CL
4241 }
4242
4243 free_loc_track(&t);
bbd7d57b 4244 kfree(map);
88a420e4 4245 if (!t.count)
e374d483
HH
4246 len += sprintf(buf, "No data\n");
4247 return len;
88a420e4 4248}
ab4d5ed5 4249#endif
88a420e4 4250
a5a84755 4251#ifdef SLUB_RESILIENCY_TEST
c07b8183 4252static void __init resiliency_test(void)
a5a84755
CL
4253{
4254 u8 *p;
4255
95a05b42 4256 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4257
f9f58285
FF
4258 pr_err("SLUB resiliency testing\n");
4259 pr_err("-----------------------\n");
4260 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4261
4262 p = kzalloc(16, GFP_KERNEL);
4263 p[16] = 0x12;
f9f58285
FF
4264 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4265 p + 16);
a5a84755
CL
4266
4267 validate_slab_cache(kmalloc_caches[4]);
4268
4269 /* Hmmm... The next two are dangerous */
4270 p = kzalloc(32, GFP_KERNEL);
4271 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4272 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4273 p);
4274 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4275
4276 validate_slab_cache(kmalloc_caches[5]);
4277 p = kzalloc(64, GFP_KERNEL);
4278 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4279 *p = 0x56;
f9f58285
FF
4280 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4281 p);
4282 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4283 validate_slab_cache(kmalloc_caches[6]);
4284
f9f58285 4285 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4286 p = kzalloc(128, GFP_KERNEL);
4287 kfree(p);
4288 *p = 0x78;
f9f58285 4289 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a5a84755
CL
4290 validate_slab_cache(kmalloc_caches[7]);
4291
4292 p = kzalloc(256, GFP_KERNEL);
4293 kfree(p);
4294 p[50] = 0x9a;
f9f58285 4295 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
a5a84755
CL
4296 validate_slab_cache(kmalloc_caches[8]);
4297
4298 p = kzalloc(512, GFP_KERNEL);
4299 kfree(p);
4300 p[512] = 0xab;
f9f58285 4301 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a5a84755
CL
4302 validate_slab_cache(kmalloc_caches[9]);
4303}
4304#else
4305#ifdef CONFIG_SYSFS
4306static void resiliency_test(void) {};
4307#endif
4308#endif
4309
ab4d5ed5 4310#ifdef CONFIG_SYSFS
81819f0f 4311enum slab_stat_type {
205ab99d
CL
4312 SL_ALL, /* All slabs */
4313 SL_PARTIAL, /* Only partially allocated slabs */
4314 SL_CPU, /* Only slabs used for cpu caches */
4315 SL_OBJECTS, /* Determine allocated objects not slabs */
4316 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4317};
4318
205ab99d 4319#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4320#define SO_PARTIAL (1 << SL_PARTIAL)
4321#define SO_CPU (1 << SL_CPU)
4322#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4323#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4324
62e5c4b4
CG
4325static ssize_t show_slab_objects(struct kmem_cache *s,
4326 char *buf, unsigned long flags)
81819f0f
CL
4327{
4328 unsigned long total = 0;
81819f0f
CL
4329 int node;
4330 int x;
4331 unsigned long *nodes;
81819f0f 4332
e35e1a97 4333 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4334 if (!nodes)
4335 return -ENOMEM;
81819f0f 4336
205ab99d
CL
4337 if (flags & SO_CPU) {
4338 int cpu;
81819f0f 4339
205ab99d 4340 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4341 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4342 cpu);
ec3ab083 4343 int node;
49e22585 4344 struct page *page;
dfb4f096 4345
4db0c3c2 4346 page = READ_ONCE(c->page);
ec3ab083
CL
4347 if (!page)
4348 continue;
205ab99d 4349
ec3ab083
CL
4350 node = page_to_nid(page);
4351 if (flags & SO_TOTAL)
4352 x = page->objects;
4353 else if (flags & SO_OBJECTS)
4354 x = page->inuse;
4355 else
4356 x = 1;
49e22585 4357
ec3ab083
CL
4358 total += x;
4359 nodes[node] += x;
4360
4db0c3c2 4361 page = READ_ONCE(c->partial);
49e22585 4362 if (page) {
8afb1474
LZ
4363 node = page_to_nid(page);
4364 if (flags & SO_TOTAL)
4365 WARN_ON_ONCE(1);
4366 else if (flags & SO_OBJECTS)
4367 WARN_ON_ONCE(1);
4368 else
4369 x = page->pages;
bc6697d8
ED
4370 total += x;
4371 nodes[node] += x;
49e22585 4372 }
81819f0f
CL
4373 }
4374 }
4375
bfc8c901 4376 get_online_mems();
ab4d5ed5 4377#ifdef CONFIG_SLUB_DEBUG
205ab99d 4378 if (flags & SO_ALL) {
fa45dc25
CL
4379 struct kmem_cache_node *n;
4380
4381 for_each_kmem_cache_node(s, node, n) {
205ab99d 4382
d0e0ac97
CG
4383 if (flags & SO_TOTAL)
4384 x = atomic_long_read(&n->total_objects);
4385 else if (flags & SO_OBJECTS)
4386 x = atomic_long_read(&n->total_objects) -
4387 count_partial(n, count_free);
81819f0f 4388 else
205ab99d 4389 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4390 total += x;
4391 nodes[node] += x;
4392 }
4393
ab4d5ed5
CL
4394 } else
4395#endif
4396 if (flags & SO_PARTIAL) {
fa45dc25 4397 struct kmem_cache_node *n;
81819f0f 4398
fa45dc25 4399 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4400 if (flags & SO_TOTAL)
4401 x = count_partial(n, count_total);
4402 else if (flags & SO_OBJECTS)
4403 x = count_partial(n, count_inuse);
81819f0f 4404 else
205ab99d 4405 x = n->nr_partial;
81819f0f
CL
4406 total += x;
4407 nodes[node] += x;
4408 }
4409 }
81819f0f
CL
4410 x = sprintf(buf, "%lu", total);
4411#ifdef CONFIG_NUMA
fa45dc25 4412 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4413 if (nodes[node])
4414 x += sprintf(buf + x, " N%d=%lu",
4415 node, nodes[node]);
4416#endif
bfc8c901 4417 put_online_mems();
81819f0f
CL
4418 kfree(nodes);
4419 return x + sprintf(buf + x, "\n");
4420}
4421
ab4d5ed5 4422#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4423static int any_slab_objects(struct kmem_cache *s)
4424{
4425 int node;
fa45dc25 4426 struct kmem_cache_node *n;
81819f0f 4427
fa45dc25 4428 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4429 if (atomic_long_read(&n->total_objects))
81819f0f 4430 return 1;
fa45dc25 4431
81819f0f
CL
4432 return 0;
4433}
ab4d5ed5 4434#endif
81819f0f
CL
4435
4436#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4437#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4438
4439struct slab_attribute {
4440 struct attribute attr;
4441 ssize_t (*show)(struct kmem_cache *s, char *buf);
4442 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4443};
4444
4445#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4446 static struct slab_attribute _name##_attr = \
4447 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4448
4449#define SLAB_ATTR(_name) \
4450 static struct slab_attribute _name##_attr = \
ab067e99 4451 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4452
81819f0f
CL
4453static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4454{
4455 return sprintf(buf, "%d\n", s->size);
4456}
4457SLAB_ATTR_RO(slab_size);
4458
4459static ssize_t align_show(struct kmem_cache *s, char *buf)
4460{
4461 return sprintf(buf, "%d\n", s->align);
4462}
4463SLAB_ATTR_RO(align);
4464
4465static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4466{
3b0efdfa 4467 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4468}
4469SLAB_ATTR_RO(object_size);
4470
4471static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4472{
834f3d11 4473 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4474}
4475SLAB_ATTR_RO(objs_per_slab);
4476
06b285dc
CL
4477static ssize_t order_store(struct kmem_cache *s,
4478 const char *buf, size_t length)
4479{
0121c619
CL
4480 unsigned long order;
4481 int err;
4482
3dbb95f7 4483 err = kstrtoul(buf, 10, &order);
0121c619
CL
4484 if (err)
4485 return err;
06b285dc
CL
4486
4487 if (order > slub_max_order || order < slub_min_order)
4488 return -EINVAL;
4489
4490 calculate_sizes(s, order);
4491 return length;
4492}
4493
81819f0f
CL
4494static ssize_t order_show(struct kmem_cache *s, char *buf)
4495{
834f3d11 4496 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4497}
06b285dc 4498SLAB_ATTR(order);
81819f0f 4499
73d342b1
DR
4500static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4501{
4502 return sprintf(buf, "%lu\n", s->min_partial);
4503}
4504
4505static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4506 size_t length)
4507{
4508 unsigned long min;
4509 int err;
4510
3dbb95f7 4511 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4512 if (err)
4513 return err;
4514
c0bdb232 4515 set_min_partial(s, min);
73d342b1
DR
4516 return length;
4517}
4518SLAB_ATTR(min_partial);
4519
49e22585
CL
4520static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4521{
4522 return sprintf(buf, "%u\n", s->cpu_partial);
4523}
4524
4525static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4526 size_t length)
4527{
4528 unsigned long objects;
4529 int err;
4530
3dbb95f7 4531 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4532 if (err)
4533 return err;
345c905d 4534 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4535 return -EINVAL;
49e22585
CL
4536
4537 s->cpu_partial = objects;
4538 flush_all(s);
4539 return length;
4540}
4541SLAB_ATTR(cpu_partial);
4542
81819f0f
CL
4543static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4544{
62c70bce
JP
4545 if (!s->ctor)
4546 return 0;
4547 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4548}
4549SLAB_ATTR_RO(ctor);
4550
81819f0f
CL
4551static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4552{
4307c14f 4553 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
4554}
4555SLAB_ATTR_RO(aliases);
4556
81819f0f
CL
4557static ssize_t partial_show(struct kmem_cache *s, char *buf)
4558{
d9acf4b7 4559 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4560}
4561SLAB_ATTR_RO(partial);
4562
4563static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4564{
d9acf4b7 4565 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4566}
4567SLAB_ATTR_RO(cpu_slabs);
4568
4569static ssize_t objects_show(struct kmem_cache *s, char *buf)
4570{
205ab99d 4571 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4572}
4573SLAB_ATTR_RO(objects);
4574
205ab99d
CL
4575static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4576{
4577 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4578}
4579SLAB_ATTR_RO(objects_partial);
4580
49e22585
CL
4581static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4582{
4583 int objects = 0;
4584 int pages = 0;
4585 int cpu;
4586 int len;
4587
4588 for_each_online_cpu(cpu) {
4589 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4590
4591 if (page) {
4592 pages += page->pages;
4593 objects += page->pobjects;
4594 }
4595 }
4596
4597 len = sprintf(buf, "%d(%d)", objects, pages);
4598
4599#ifdef CONFIG_SMP
4600 for_each_online_cpu(cpu) {
4601 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4602
4603 if (page && len < PAGE_SIZE - 20)
4604 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4605 page->pobjects, page->pages);
4606 }
4607#endif
4608 return len + sprintf(buf + len, "\n");
4609}
4610SLAB_ATTR_RO(slabs_cpu_partial);
4611
a5a84755
CL
4612static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4613{
4614 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4615}
4616
4617static ssize_t reclaim_account_store(struct kmem_cache *s,
4618 const char *buf, size_t length)
4619{
4620 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4621 if (buf[0] == '1')
4622 s->flags |= SLAB_RECLAIM_ACCOUNT;
4623 return length;
4624}
4625SLAB_ATTR(reclaim_account);
4626
4627static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4628{
4629 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4630}
4631SLAB_ATTR_RO(hwcache_align);
4632
4633#ifdef CONFIG_ZONE_DMA
4634static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4635{
4636 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4637}
4638SLAB_ATTR_RO(cache_dma);
4639#endif
4640
4641static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4642{
4643 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4644}
4645SLAB_ATTR_RO(destroy_by_rcu);
4646
ab9a0f19
LJ
4647static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4648{
4649 return sprintf(buf, "%d\n", s->reserved);
4650}
4651SLAB_ATTR_RO(reserved);
4652
ab4d5ed5 4653#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4654static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4655{
4656 return show_slab_objects(s, buf, SO_ALL);
4657}
4658SLAB_ATTR_RO(slabs);
4659
205ab99d
CL
4660static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4661{
4662 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4663}
4664SLAB_ATTR_RO(total_objects);
4665
81819f0f
CL
4666static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4667{
4668 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4669}
4670
4671static ssize_t sanity_checks_store(struct kmem_cache *s,
4672 const char *buf, size_t length)
4673{
4674 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4675 if (buf[0] == '1') {
4676 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4677 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4678 }
81819f0f
CL
4679 return length;
4680}
4681SLAB_ATTR(sanity_checks);
4682
4683static ssize_t trace_show(struct kmem_cache *s, char *buf)
4684{
4685 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4686}
4687
4688static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4689 size_t length)
4690{
c9e16131
CL
4691 /*
4692 * Tracing a merged cache is going to give confusing results
4693 * as well as cause other issues like converting a mergeable
4694 * cache into an umergeable one.
4695 */
4696 if (s->refcount > 1)
4697 return -EINVAL;
4698
81819f0f 4699 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4700 if (buf[0] == '1') {
4701 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4702 s->flags |= SLAB_TRACE;
b789ef51 4703 }
81819f0f
CL
4704 return length;
4705}
4706SLAB_ATTR(trace);
4707
81819f0f
CL
4708static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4709{
4710 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4711}
4712
4713static ssize_t red_zone_store(struct kmem_cache *s,
4714 const char *buf, size_t length)
4715{
4716 if (any_slab_objects(s))
4717 return -EBUSY;
4718
4719 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4720 if (buf[0] == '1') {
4721 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4722 s->flags |= SLAB_RED_ZONE;
b789ef51 4723 }
06b285dc 4724 calculate_sizes(s, -1);
81819f0f
CL
4725 return length;
4726}
4727SLAB_ATTR(red_zone);
4728
4729static ssize_t poison_show(struct kmem_cache *s, char *buf)
4730{
4731 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4732}
4733
4734static ssize_t poison_store(struct kmem_cache *s,
4735 const char *buf, size_t length)
4736{
4737 if (any_slab_objects(s))
4738 return -EBUSY;
4739
4740 s->flags &= ~SLAB_POISON;
b789ef51
CL
4741 if (buf[0] == '1') {
4742 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4743 s->flags |= SLAB_POISON;
b789ef51 4744 }
06b285dc 4745 calculate_sizes(s, -1);
81819f0f
CL
4746 return length;
4747}
4748SLAB_ATTR(poison);
4749
4750static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4751{
4752 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4753}
4754
4755static ssize_t store_user_store(struct kmem_cache *s,
4756 const char *buf, size_t length)
4757{
4758 if (any_slab_objects(s))
4759 return -EBUSY;
4760
4761 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4762 if (buf[0] == '1') {
4763 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4764 s->flags |= SLAB_STORE_USER;
b789ef51 4765 }
06b285dc 4766 calculate_sizes(s, -1);
81819f0f
CL
4767 return length;
4768}
4769SLAB_ATTR(store_user);
4770
53e15af0
CL
4771static ssize_t validate_show(struct kmem_cache *s, char *buf)
4772{
4773 return 0;
4774}
4775
4776static ssize_t validate_store(struct kmem_cache *s,
4777 const char *buf, size_t length)
4778{
434e245d
CL
4779 int ret = -EINVAL;
4780
4781 if (buf[0] == '1') {
4782 ret = validate_slab_cache(s);
4783 if (ret >= 0)
4784 ret = length;
4785 }
4786 return ret;
53e15af0
CL
4787}
4788SLAB_ATTR(validate);
a5a84755
CL
4789
4790static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4791{
4792 if (!(s->flags & SLAB_STORE_USER))
4793 return -ENOSYS;
4794 return list_locations(s, buf, TRACK_ALLOC);
4795}
4796SLAB_ATTR_RO(alloc_calls);
4797
4798static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4799{
4800 if (!(s->flags & SLAB_STORE_USER))
4801 return -ENOSYS;
4802 return list_locations(s, buf, TRACK_FREE);
4803}
4804SLAB_ATTR_RO(free_calls);
4805#endif /* CONFIG_SLUB_DEBUG */
4806
4807#ifdef CONFIG_FAILSLAB
4808static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4809{
4810 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4811}
4812
4813static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4814 size_t length)
4815{
c9e16131
CL
4816 if (s->refcount > 1)
4817 return -EINVAL;
4818
a5a84755
CL
4819 s->flags &= ~SLAB_FAILSLAB;
4820 if (buf[0] == '1')
4821 s->flags |= SLAB_FAILSLAB;
4822 return length;
4823}
4824SLAB_ATTR(failslab);
ab4d5ed5 4825#endif
53e15af0 4826
2086d26a
CL
4827static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4828{
4829 return 0;
4830}
4831
4832static ssize_t shrink_store(struct kmem_cache *s,
4833 const char *buf, size_t length)
4834{
832f37f5
VD
4835 if (buf[0] == '1')
4836 kmem_cache_shrink(s);
4837 else
2086d26a
CL
4838 return -EINVAL;
4839 return length;
4840}
4841SLAB_ATTR(shrink);
4842
81819f0f 4843#ifdef CONFIG_NUMA
9824601e 4844static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4845{
9824601e 4846 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4847}
4848
9824601e 4849static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4850 const char *buf, size_t length)
4851{
0121c619
CL
4852 unsigned long ratio;
4853 int err;
4854
3dbb95f7 4855 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
4856 if (err)
4857 return err;
4858
e2cb96b7 4859 if (ratio <= 100)
0121c619 4860 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4861
81819f0f
CL
4862 return length;
4863}
9824601e 4864SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4865#endif
4866
8ff12cfc 4867#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4868static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4869{
4870 unsigned long sum = 0;
4871 int cpu;
4872 int len;
4873 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4874
4875 if (!data)
4876 return -ENOMEM;
4877
4878 for_each_online_cpu(cpu) {
9dfc6e68 4879 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4880
4881 data[cpu] = x;
4882 sum += x;
4883 }
4884
4885 len = sprintf(buf, "%lu", sum);
4886
50ef37b9 4887#ifdef CONFIG_SMP
8ff12cfc
CL
4888 for_each_online_cpu(cpu) {
4889 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4890 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4891 }
50ef37b9 4892#endif
8ff12cfc
CL
4893 kfree(data);
4894 return len + sprintf(buf + len, "\n");
4895}
4896
78eb00cc
DR
4897static void clear_stat(struct kmem_cache *s, enum stat_item si)
4898{
4899 int cpu;
4900
4901 for_each_online_cpu(cpu)
9dfc6e68 4902 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4903}
4904
8ff12cfc
CL
4905#define STAT_ATTR(si, text) \
4906static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4907{ \
4908 return show_stat(s, buf, si); \
4909} \
78eb00cc
DR
4910static ssize_t text##_store(struct kmem_cache *s, \
4911 const char *buf, size_t length) \
4912{ \
4913 if (buf[0] != '0') \
4914 return -EINVAL; \
4915 clear_stat(s, si); \
4916 return length; \
4917} \
4918SLAB_ATTR(text); \
8ff12cfc
CL
4919
4920STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4921STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4922STAT_ATTR(FREE_FASTPATH, free_fastpath);
4923STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4924STAT_ATTR(FREE_FROZEN, free_frozen);
4925STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4926STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4927STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4928STAT_ATTR(ALLOC_SLAB, alloc_slab);
4929STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 4930STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
4931STAT_ATTR(FREE_SLAB, free_slab);
4932STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4933STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4934STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4935STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4936STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4937STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 4938STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 4939STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
4940STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4941STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
4942STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4943STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
4944STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4945STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
4946#endif
4947
06428780 4948static struct attribute *slab_attrs[] = {
81819f0f
CL
4949 &slab_size_attr.attr,
4950 &object_size_attr.attr,
4951 &objs_per_slab_attr.attr,
4952 &order_attr.attr,
73d342b1 4953 &min_partial_attr.attr,
49e22585 4954 &cpu_partial_attr.attr,
81819f0f 4955 &objects_attr.attr,
205ab99d 4956 &objects_partial_attr.attr,
81819f0f
CL
4957 &partial_attr.attr,
4958 &cpu_slabs_attr.attr,
4959 &ctor_attr.attr,
81819f0f
CL
4960 &aliases_attr.attr,
4961 &align_attr.attr,
81819f0f
CL
4962 &hwcache_align_attr.attr,
4963 &reclaim_account_attr.attr,
4964 &destroy_by_rcu_attr.attr,
a5a84755 4965 &shrink_attr.attr,
ab9a0f19 4966 &reserved_attr.attr,
49e22585 4967 &slabs_cpu_partial_attr.attr,
ab4d5ed5 4968#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4969 &total_objects_attr.attr,
4970 &slabs_attr.attr,
4971 &sanity_checks_attr.attr,
4972 &trace_attr.attr,
81819f0f
CL
4973 &red_zone_attr.attr,
4974 &poison_attr.attr,
4975 &store_user_attr.attr,
53e15af0 4976 &validate_attr.attr,
88a420e4
CL
4977 &alloc_calls_attr.attr,
4978 &free_calls_attr.attr,
ab4d5ed5 4979#endif
81819f0f
CL
4980#ifdef CONFIG_ZONE_DMA
4981 &cache_dma_attr.attr,
4982#endif
4983#ifdef CONFIG_NUMA
9824601e 4984 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4985#endif
4986#ifdef CONFIG_SLUB_STATS
4987 &alloc_fastpath_attr.attr,
4988 &alloc_slowpath_attr.attr,
4989 &free_fastpath_attr.attr,
4990 &free_slowpath_attr.attr,
4991 &free_frozen_attr.attr,
4992 &free_add_partial_attr.attr,
4993 &free_remove_partial_attr.attr,
4994 &alloc_from_partial_attr.attr,
4995 &alloc_slab_attr.attr,
4996 &alloc_refill_attr.attr,
e36a2652 4997 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
4998 &free_slab_attr.attr,
4999 &cpuslab_flush_attr.attr,
5000 &deactivate_full_attr.attr,
5001 &deactivate_empty_attr.attr,
5002 &deactivate_to_head_attr.attr,
5003 &deactivate_to_tail_attr.attr,
5004 &deactivate_remote_frees_attr.attr,
03e404af 5005 &deactivate_bypass_attr.attr,
65c3376a 5006 &order_fallback_attr.attr,
b789ef51
CL
5007 &cmpxchg_double_fail_attr.attr,
5008 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5009 &cpu_partial_alloc_attr.attr,
5010 &cpu_partial_free_attr.attr,
8028dcea
AS
5011 &cpu_partial_node_attr.attr,
5012 &cpu_partial_drain_attr.attr,
81819f0f 5013#endif
4c13dd3b
DM
5014#ifdef CONFIG_FAILSLAB
5015 &failslab_attr.attr,
5016#endif
5017
81819f0f
CL
5018 NULL
5019};
5020
5021static struct attribute_group slab_attr_group = {
5022 .attrs = slab_attrs,
5023};
5024
5025static ssize_t slab_attr_show(struct kobject *kobj,
5026 struct attribute *attr,
5027 char *buf)
5028{
5029 struct slab_attribute *attribute;
5030 struct kmem_cache *s;
5031 int err;
5032
5033 attribute = to_slab_attr(attr);
5034 s = to_slab(kobj);
5035
5036 if (!attribute->show)
5037 return -EIO;
5038
5039 err = attribute->show(s, buf);
5040
5041 return err;
5042}
5043
5044static ssize_t slab_attr_store(struct kobject *kobj,
5045 struct attribute *attr,
5046 const char *buf, size_t len)
5047{
5048 struct slab_attribute *attribute;
5049 struct kmem_cache *s;
5050 int err;
5051
5052 attribute = to_slab_attr(attr);
5053 s = to_slab(kobj);
5054
5055 if (!attribute->store)
5056 return -EIO;
5057
5058 err = attribute->store(s, buf, len);
107dab5c
GC
5059#ifdef CONFIG_MEMCG_KMEM
5060 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5061 struct kmem_cache *c;
81819f0f 5062
107dab5c
GC
5063 mutex_lock(&slab_mutex);
5064 if (s->max_attr_size < len)
5065 s->max_attr_size = len;
5066
ebe945c2
GC
5067 /*
5068 * This is a best effort propagation, so this function's return
5069 * value will be determined by the parent cache only. This is
5070 * basically because not all attributes will have a well
5071 * defined semantics for rollbacks - most of the actions will
5072 * have permanent effects.
5073 *
5074 * Returning the error value of any of the children that fail
5075 * is not 100 % defined, in the sense that users seeing the
5076 * error code won't be able to know anything about the state of
5077 * the cache.
5078 *
5079 * Only returning the error code for the parent cache at least
5080 * has well defined semantics. The cache being written to
5081 * directly either failed or succeeded, in which case we loop
5082 * through the descendants with best-effort propagation.
5083 */
426589f5
VD
5084 for_each_memcg_cache(c, s)
5085 attribute->store(c, buf, len);
107dab5c
GC
5086 mutex_unlock(&slab_mutex);
5087 }
5088#endif
81819f0f
CL
5089 return err;
5090}
5091
107dab5c
GC
5092static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5093{
5094#ifdef CONFIG_MEMCG_KMEM
5095 int i;
5096 char *buffer = NULL;
93030d83 5097 struct kmem_cache *root_cache;
107dab5c 5098
93030d83 5099 if (is_root_cache(s))
107dab5c
GC
5100 return;
5101
f7ce3190 5102 root_cache = s->memcg_params.root_cache;
93030d83 5103
107dab5c
GC
5104 /*
5105 * This mean this cache had no attribute written. Therefore, no point
5106 * in copying default values around
5107 */
93030d83 5108 if (!root_cache->max_attr_size)
107dab5c
GC
5109 return;
5110
5111 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5112 char mbuf[64];
5113 char *buf;
5114 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5115
5116 if (!attr || !attr->store || !attr->show)
5117 continue;
5118
5119 /*
5120 * It is really bad that we have to allocate here, so we will
5121 * do it only as a fallback. If we actually allocate, though,
5122 * we can just use the allocated buffer until the end.
5123 *
5124 * Most of the slub attributes will tend to be very small in
5125 * size, but sysfs allows buffers up to a page, so they can
5126 * theoretically happen.
5127 */
5128 if (buffer)
5129 buf = buffer;
93030d83 5130 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5131 buf = mbuf;
5132 else {
5133 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5134 if (WARN_ON(!buffer))
5135 continue;
5136 buf = buffer;
5137 }
5138
93030d83 5139 attr->show(root_cache, buf);
107dab5c
GC
5140 attr->store(s, buf, strlen(buf));
5141 }
5142
5143 if (buffer)
5144 free_page((unsigned long)buffer);
5145#endif
5146}
5147
41a21285
CL
5148static void kmem_cache_release(struct kobject *k)
5149{
5150 slab_kmem_cache_release(to_slab(k));
5151}
5152
52cf25d0 5153static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5154 .show = slab_attr_show,
5155 .store = slab_attr_store,
5156};
5157
5158static struct kobj_type slab_ktype = {
5159 .sysfs_ops = &slab_sysfs_ops,
41a21285 5160 .release = kmem_cache_release,
81819f0f
CL
5161};
5162
5163static int uevent_filter(struct kset *kset, struct kobject *kobj)
5164{
5165 struct kobj_type *ktype = get_ktype(kobj);
5166
5167 if (ktype == &slab_ktype)
5168 return 1;
5169 return 0;
5170}
5171
9cd43611 5172static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5173 .filter = uevent_filter,
5174};
5175
27c3a314 5176static struct kset *slab_kset;
81819f0f 5177
9a41707b
VD
5178static inline struct kset *cache_kset(struct kmem_cache *s)
5179{
5180#ifdef CONFIG_MEMCG_KMEM
5181 if (!is_root_cache(s))
f7ce3190 5182 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5183#endif
5184 return slab_kset;
5185}
5186
81819f0f
CL
5187#define ID_STR_LENGTH 64
5188
5189/* Create a unique string id for a slab cache:
6446faa2
CL
5190 *
5191 * Format :[flags-]size
81819f0f
CL
5192 */
5193static char *create_unique_id(struct kmem_cache *s)
5194{
5195 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5196 char *p = name;
5197
5198 BUG_ON(!name);
5199
5200 *p++ = ':';
5201 /*
5202 * First flags affecting slabcache operations. We will only
5203 * get here for aliasable slabs so we do not need to support
5204 * too many flags. The flags here must cover all flags that
5205 * are matched during merging to guarantee that the id is
5206 * unique.
5207 */
5208 if (s->flags & SLAB_CACHE_DMA)
5209 *p++ = 'd';
5210 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5211 *p++ = 'a';
5212 if (s->flags & SLAB_DEBUG_FREE)
5213 *p++ = 'F';
5a896d9e
VN
5214 if (!(s->flags & SLAB_NOTRACK))
5215 *p++ = 't';
81819f0f
CL
5216 if (p != name + 1)
5217 *p++ = '-';
5218 p += sprintf(p, "%07d", s->size);
2633d7a0 5219
81819f0f
CL
5220 BUG_ON(p > name + ID_STR_LENGTH - 1);
5221 return name;
5222}
5223
5224static int sysfs_slab_add(struct kmem_cache *s)
5225{
5226 int err;
5227 const char *name;
45530c44 5228 int unmergeable = slab_unmergeable(s);
81819f0f 5229
81819f0f
CL
5230 if (unmergeable) {
5231 /*
5232 * Slabcache can never be merged so we can use the name proper.
5233 * This is typically the case for debug situations. In that
5234 * case we can catch duplicate names easily.
5235 */
27c3a314 5236 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5237 name = s->name;
5238 } else {
5239 /*
5240 * Create a unique name for the slab as a target
5241 * for the symlinks.
5242 */
5243 name = create_unique_id(s);
5244 }
5245
9a41707b 5246 s->kobj.kset = cache_kset(s);
26e4f205 5247 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731
DJ
5248 if (err)
5249 goto out_put_kobj;
81819f0f
CL
5250
5251 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5252 if (err)
5253 goto out_del_kobj;
9a41707b
VD
5254
5255#ifdef CONFIG_MEMCG_KMEM
5256 if (is_root_cache(s)) {
5257 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5258 if (!s->memcg_kset) {
54b6a731
DJ
5259 err = -ENOMEM;
5260 goto out_del_kobj;
9a41707b
VD
5261 }
5262 }
5263#endif
5264
81819f0f
CL
5265 kobject_uevent(&s->kobj, KOBJ_ADD);
5266 if (!unmergeable) {
5267 /* Setup first alias */
5268 sysfs_slab_alias(s, s->name);
81819f0f 5269 }
54b6a731
DJ
5270out:
5271 if (!unmergeable)
5272 kfree(name);
5273 return err;
5274out_del_kobj:
5275 kobject_del(&s->kobj);
5276out_put_kobj:
5277 kobject_put(&s->kobj);
5278 goto out;
81819f0f
CL
5279}
5280
41a21285 5281void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5282{
97d06609 5283 if (slab_state < FULL)
2bce6485
CL
5284 /*
5285 * Sysfs has not been setup yet so no need to remove the
5286 * cache from sysfs.
5287 */
5288 return;
5289
9a41707b
VD
5290#ifdef CONFIG_MEMCG_KMEM
5291 kset_unregister(s->memcg_kset);
5292#endif
81819f0f
CL
5293 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5294 kobject_del(&s->kobj);
151c602f 5295 kobject_put(&s->kobj);
81819f0f
CL
5296}
5297
5298/*
5299 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5300 * available lest we lose that information.
81819f0f
CL
5301 */
5302struct saved_alias {
5303 struct kmem_cache *s;
5304 const char *name;
5305 struct saved_alias *next;
5306};
5307
5af328a5 5308static struct saved_alias *alias_list;
81819f0f
CL
5309
5310static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5311{
5312 struct saved_alias *al;
5313
97d06609 5314 if (slab_state == FULL) {
81819f0f
CL
5315 /*
5316 * If we have a leftover link then remove it.
5317 */
27c3a314
GKH
5318 sysfs_remove_link(&slab_kset->kobj, name);
5319 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5320 }
5321
5322 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5323 if (!al)
5324 return -ENOMEM;
5325
5326 al->s = s;
5327 al->name = name;
5328 al->next = alias_list;
5329 alias_list = al;
5330 return 0;
5331}
5332
5333static int __init slab_sysfs_init(void)
5334{
5b95a4ac 5335 struct kmem_cache *s;
81819f0f
CL
5336 int err;
5337
18004c5d 5338 mutex_lock(&slab_mutex);
2bce6485 5339
0ff21e46 5340 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5341 if (!slab_kset) {
18004c5d 5342 mutex_unlock(&slab_mutex);
f9f58285 5343 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5344 return -ENOSYS;
5345 }
5346
97d06609 5347 slab_state = FULL;
26a7bd03 5348
5b95a4ac 5349 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5350 err = sysfs_slab_add(s);
5d540fb7 5351 if (err)
f9f58285
FF
5352 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5353 s->name);
26a7bd03 5354 }
81819f0f
CL
5355
5356 while (alias_list) {
5357 struct saved_alias *al = alias_list;
5358
5359 alias_list = alias_list->next;
5360 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5361 if (err)
f9f58285
FF
5362 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5363 al->name);
81819f0f
CL
5364 kfree(al);
5365 }
5366
18004c5d 5367 mutex_unlock(&slab_mutex);
81819f0f
CL
5368 resiliency_test();
5369 return 0;
5370}
5371
5372__initcall(slab_sysfs_init);
ab4d5ed5 5373#endif /* CONFIG_SYSFS */
57ed3eda
PE
5374
5375/*
5376 * The /proc/slabinfo ABI
5377 */
158a9624 5378#ifdef CONFIG_SLABINFO
0d7561c6 5379void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5380{
57ed3eda 5381 unsigned long nr_slabs = 0;
205ab99d
CL
5382 unsigned long nr_objs = 0;
5383 unsigned long nr_free = 0;
57ed3eda 5384 int node;
fa45dc25 5385 struct kmem_cache_node *n;
57ed3eda 5386
fa45dc25 5387 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5388 nr_slabs += node_nr_slabs(n);
5389 nr_objs += node_nr_objs(n);
205ab99d 5390 nr_free += count_partial(n, count_free);
57ed3eda
PE
5391 }
5392
0d7561c6
GC
5393 sinfo->active_objs = nr_objs - nr_free;
5394 sinfo->num_objs = nr_objs;
5395 sinfo->active_slabs = nr_slabs;
5396 sinfo->num_slabs = nr_slabs;
5397 sinfo->objects_per_slab = oo_objects(s->oo);
5398 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5399}
5400
0d7561c6 5401void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5402{
7b3c3a50
AD
5403}
5404
b7454ad3
GC
5405ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5406 size_t count, loff_t *ppos)
7b3c3a50 5407{
b7454ad3 5408 return -EIO;
7b3c3a50 5409}
158a9624 5410#endif /* CONFIG_SLABINFO */