slub: Add statistics for the case that the current slab does not match the node
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
7b3c3a50 19#include <linux/proc_fs.h>
81819f0f 20#include <linux/seq_file.h>
5a896d9e 21#include <linux/kmemcheck.h>
81819f0f
CL
22#include <linux/cpu.h>
23#include <linux/cpuset.h>
24#include <linux/mempolicy.h>
25#include <linux/ctype.h>
3ac7fe5a 26#include <linux/debugobjects.h>
81819f0f 27#include <linux/kallsyms.h>
b9049e23 28#include <linux/memory.h>
f8bd2258 29#include <linux/math64.h>
773ff60e 30#include <linux/fault-inject.h>
81819f0f 31
4a92379b
RK
32#include <trace/events/kmem.h>
33
81819f0f
CL
34/*
35 * Lock order:
881db7fb
CL
36 * 1. slub_lock (Global Semaphore)
37 * 2. node->list_lock
38 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 39 *
881db7fb
CL
40 * slub_lock
41 *
42 * The role of the slub_lock is to protect the list of all the slabs
43 * and to synchronize major metadata changes to slab cache structures.
44 *
45 * The slab_lock is only used for debugging and on arches that do not
46 * have the ability to do a cmpxchg_double. It only protects the second
47 * double word in the page struct. Meaning
48 * A. page->freelist -> List of object free in a page
49 * B. page->counters -> Counters of objects
50 * C. page->frozen -> frozen state
51 *
52 * If a slab is frozen then it is exempt from list management. It is not
53 * on any list. The processor that froze the slab is the one who can
54 * perform list operations on the page. Other processors may put objects
55 * onto the freelist but the processor that froze the slab is the only
56 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
57 *
58 * The list_lock protects the partial and full list on each node and
59 * the partial slab counter. If taken then no new slabs may be added or
60 * removed from the lists nor make the number of partial slabs be modified.
61 * (Note that the total number of slabs is an atomic value that may be
62 * modified without taking the list lock).
63 *
64 * The list_lock is a centralized lock and thus we avoid taking it as
65 * much as possible. As long as SLUB does not have to handle partial
66 * slabs, operations can continue without any centralized lock. F.e.
67 * allocating a long series of objects that fill up slabs does not require
68 * the list lock.
81819f0f
CL
69 * Interrupts are disabled during allocation and deallocation in order to
70 * make the slab allocator safe to use in the context of an irq. In addition
71 * interrupts are disabled to ensure that the processor does not change
72 * while handling per_cpu slabs, due to kernel preemption.
73 *
74 * SLUB assigns one slab for allocation to each processor.
75 * Allocations only occur from these slabs called cpu slabs.
76 *
672bba3a
CL
77 * Slabs with free elements are kept on a partial list and during regular
78 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 79 * freed then the slab will show up again on the partial lists.
672bba3a
CL
80 * We track full slabs for debugging purposes though because otherwise we
81 * cannot scan all objects.
81819f0f
CL
82 *
83 * Slabs are freed when they become empty. Teardown and setup is
84 * minimal so we rely on the page allocators per cpu caches for
85 * fast frees and allocs.
86 *
87 * Overloading of page flags that are otherwise used for LRU management.
88 *
4b6f0750
CL
89 * PageActive The slab is frozen and exempt from list processing.
90 * This means that the slab is dedicated to a purpose
91 * such as satisfying allocations for a specific
92 * processor. Objects may be freed in the slab while
93 * it is frozen but slab_free will then skip the usual
94 * list operations. It is up to the processor holding
95 * the slab to integrate the slab into the slab lists
96 * when the slab is no longer needed.
97 *
98 * One use of this flag is to mark slabs that are
99 * used for allocations. Then such a slab becomes a cpu
100 * slab. The cpu slab may be equipped with an additional
dfb4f096 101 * freelist that allows lockless access to
894b8788
CL
102 * free objects in addition to the regular freelist
103 * that requires the slab lock.
81819f0f
CL
104 *
105 * PageError Slab requires special handling due to debug
106 * options set. This moves slab handling out of
894b8788 107 * the fast path and disables lockless freelists.
81819f0f
CL
108 */
109
af537b0a
CL
110#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
111 SLAB_TRACE | SLAB_DEBUG_FREE)
112
113static inline int kmem_cache_debug(struct kmem_cache *s)
114{
5577bd8a 115#ifdef CONFIG_SLUB_DEBUG
af537b0a 116 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 117#else
af537b0a 118 return 0;
5577bd8a 119#endif
af537b0a 120}
5577bd8a 121
81819f0f
CL
122/*
123 * Issues still to be resolved:
124 *
81819f0f
CL
125 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
126 *
81819f0f
CL
127 * - Variable sizing of the per node arrays
128 */
129
130/* Enable to test recovery from slab corruption on boot */
131#undef SLUB_RESILIENCY_TEST
132
b789ef51
CL
133/* Enable to log cmpxchg failures */
134#undef SLUB_DEBUG_CMPXCHG
135
2086d26a
CL
136/*
137 * Mininum number of partial slabs. These will be left on the partial
138 * lists even if they are empty. kmem_cache_shrink may reclaim them.
139 */
76be8950 140#define MIN_PARTIAL 5
e95eed57 141
2086d26a
CL
142/*
143 * Maximum number of desirable partial slabs.
144 * The existence of more partial slabs makes kmem_cache_shrink
145 * sort the partial list by the number of objects in the.
146 */
147#define MAX_PARTIAL 10
148
81819f0f
CL
149#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
150 SLAB_POISON | SLAB_STORE_USER)
672bba3a 151
fa5ec8a1 152/*
3de47213
DR
153 * Debugging flags that require metadata to be stored in the slab. These get
154 * disabled when slub_debug=O is used and a cache's min order increases with
155 * metadata.
fa5ec8a1 156 */
3de47213 157#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 158
81819f0f
CL
159/*
160 * Set of flags that will prevent slab merging
161 */
162#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
163 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
164 SLAB_FAILSLAB)
81819f0f
CL
165
166#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 167 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 168
210b5c06
CG
169#define OO_SHIFT 16
170#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 171#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 172
81819f0f 173/* Internal SLUB flags */
f90ec390 174#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 175#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f
CL
176
177static int kmem_size = sizeof(struct kmem_cache);
178
179#ifdef CONFIG_SMP
180static struct notifier_block slab_notifier;
181#endif
182
183static enum {
184 DOWN, /* No slab functionality available */
51df1142 185 PARTIAL, /* Kmem_cache_node works */
672bba3a 186 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
187 SYSFS /* Sysfs up */
188} slab_state = DOWN;
189
190/* A list of all slab caches on the system */
191static DECLARE_RWSEM(slub_lock);
5af328a5 192static LIST_HEAD(slab_caches);
81819f0f 193
02cbc874
CL
194/*
195 * Tracking user of a slab.
196 */
197struct track {
ce71e27c 198 unsigned long addr; /* Called from address */
02cbc874
CL
199 int cpu; /* Was running on cpu */
200 int pid; /* Pid context */
201 unsigned long when; /* When did the operation occur */
202};
203
204enum track_item { TRACK_ALLOC, TRACK_FREE };
205
ab4d5ed5 206#ifdef CONFIG_SYSFS
81819f0f
CL
207static int sysfs_slab_add(struct kmem_cache *);
208static int sysfs_slab_alias(struct kmem_cache *, const char *);
209static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 210
81819f0f 211#else
0c710013
CL
212static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
213static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
214 { return 0; }
151c602f
CL
215static inline void sysfs_slab_remove(struct kmem_cache *s)
216{
84c1cf62 217 kfree(s->name);
151c602f
CL
218 kfree(s);
219}
8ff12cfc 220
81819f0f
CL
221#endif
222
4fdccdfb 223static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
224{
225#ifdef CONFIG_SLUB_STATS
84e554e6 226 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
227#endif
228}
229
81819f0f
CL
230/********************************************************************
231 * Core slab cache functions
232 *******************************************************************/
233
234int slab_is_available(void)
235{
236 return slab_state >= UP;
237}
238
239static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
240{
81819f0f 241 return s->node[node];
81819f0f
CL
242}
243
6446faa2 244/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
245static inline int check_valid_pointer(struct kmem_cache *s,
246 struct page *page, const void *object)
247{
248 void *base;
249
a973e9dd 250 if (!object)
02cbc874
CL
251 return 1;
252
a973e9dd 253 base = page_address(page);
39b26464 254 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
255 (object - base) % s->size) {
256 return 0;
257 }
258
259 return 1;
260}
261
7656c72b
CL
262static inline void *get_freepointer(struct kmem_cache *s, void *object)
263{
264 return *(void **)(object + s->offset);
265}
266
1393d9a1
CL
267static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
268{
269 void *p;
270
271#ifdef CONFIG_DEBUG_PAGEALLOC
272 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
273#else
274 p = get_freepointer(s, object);
275#endif
276 return p;
277}
278
7656c72b
CL
279static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
280{
281 *(void **)(object + s->offset) = fp;
282}
283
284/* Loop over all objects in a slab */
224a88be
CL
285#define for_each_object(__p, __s, __addr, __objects) \
286 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
287 __p += (__s)->size)
288
7656c72b
CL
289/* Determine object index from a given position */
290static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
291{
292 return (p - addr) / s->size;
293}
294
d71f606f
MK
295static inline size_t slab_ksize(const struct kmem_cache *s)
296{
297#ifdef CONFIG_SLUB_DEBUG
298 /*
299 * Debugging requires use of the padding between object
300 * and whatever may come after it.
301 */
302 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
303 return s->objsize;
304
305#endif
306 /*
307 * If we have the need to store the freelist pointer
308 * back there or track user information then we can
309 * only use the space before that information.
310 */
311 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
312 return s->inuse;
313 /*
314 * Else we can use all the padding etc for the allocation
315 */
316 return s->size;
317}
318
ab9a0f19
LJ
319static inline int order_objects(int order, unsigned long size, int reserved)
320{
321 return ((PAGE_SIZE << order) - reserved) / size;
322}
323
834f3d11 324static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 325 unsigned long size, int reserved)
834f3d11
CL
326{
327 struct kmem_cache_order_objects x = {
ab9a0f19 328 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
329 };
330
331 return x;
332}
333
334static inline int oo_order(struct kmem_cache_order_objects x)
335{
210b5c06 336 return x.x >> OO_SHIFT;
834f3d11
CL
337}
338
339static inline int oo_objects(struct kmem_cache_order_objects x)
340{
210b5c06 341 return x.x & OO_MASK;
834f3d11
CL
342}
343
881db7fb
CL
344/*
345 * Per slab locking using the pagelock
346 */
347static __always_inline void slab_lock(struct page *page)
348{
349 bit_spin_lock(PG_locked, &page->flags);
350}
351
352static __always_inline void slab_unlock(struct page *page)
353{
354 __bit_spin_unlock(PG_locked, &page->flags);
355}
356
b789ef51
CL
357static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
358 void *freelist_old, unsigned long counters_old,
359 void *freelist_new, unsigned long counters_new,
360 const char *n)
361{
362#ifdef CONFIG_CMPXCHG_DOUBLE
363 if (s->flags & __CMPXCHG_DOUBLE) {
364 if (cmpxchg_double(&page->freelist,
365 freelist_old, counters_old,
366 freelist_new, counters_new))
367 return 1;
368 } else
369#endif
370 {
881db7fb 371 slab_lock(page);
b789ef51
CL
372 if (page->freelist == freelist_old && page->counters == counters_old) {
373 page->freelist = freelist_new;
374 page->counters = counters_new;
881db7fb 375 slab_unlock(page);
b789ef51
CL
376 return 1;
377 }
881db7fb 378 slab_unlock(page);
b789ef51
CL
379 }
380
381 cpu_relax();
382 stat(s, CMPXCHG_DOUBLE_FAIL);
383
384#ifdef SLUB_DEBUG_CMPXCHG
385 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
386#endif
387
388 return 0;
389}
390
41ecc55b 391#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
392/*
393 * Determine a map of object in use on a page.
394 *
881db7fb 395 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
396 * not vanish from under us.
397 */
398static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
399{
400 void *p;
401 void *addr = page_address(page);
402
403 for (p = page->freelist; p; p = get_freepointer(s, p))
404 set_bit(slab_index(p, s, addr), map);
405}
406
41ecc55b
CL
407/*
408 * Debug settings:
409 */
f0630fff
CL
410#ifdef CONFIG_SLUB_DEBUG_ON
411static int slub_debug = DEBUG_DEFAULT_FLAGS;
412#else
41ecc55b 413static int slub_debug;
f0630fff 414#endif
41ecc55b
CL
415
416static char *slub_debug_slabs;
fa5ec8a1 417static int disable_higher_order_debug;
41ecc55b 418
81819f0f
CL
419/*
420 * Object debugging
421 */
422static void print_section(char *text, u8 *addr, unsigned int length)
423{
424 int i, offset;
425 int newline = 1;
426 char ascii[17];
427
428 ascii[16] = 0;
429
430 for (i = 0; i < length; i++) {
431 if (newline) {
24922684 432 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
433 newline = 0;
434 }
06428780 435 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
436 offset = i % 16;
437 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
438 if (offset == 15) {
06428780 439 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
440 newline = 1;
441 }
442 }
443 if (!newline) {
444 i %= 16;
445 while (i < 16) {
06428780 446 printk(KERN_CONT " ");
81819f0f
CL
447 ascii[i] = ' ';
448 i++;
449 }
06428780 450 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
451 }
452}
453
81819f0f
CL
454static struct track *get_track(struct kmem_cache *s, void *object,
455 enum track_item alloc)
456{
457 struct track *p;
458
459 if (s->offset)
460 p = object + s->offset + sizeof(void *);
461 else
462 p = object + s->inuse;
463
464 return p + alloc;
465}
466
467static void set_track(struct kmem_cache *s, void *object,
ce71e27c 468 enum track_item alloc, unsigned long addr)
81819f0f 469{
1a00df4a 470 struct track *p = get_track(s, object, alloc);
81819f0f 471
81819f0f
CL
472 if (addr) {
473 p->addr = addr;
474 p->cpu = smp_processor_id();
88e4ccf2 475 p->pid = current->pid;
81819f0f
CL
476 p->when = jiffies;
477 } else
478 memset(p, 0, sizeof(struct track));
479}
480
81819f0f
CL
481static void init_tracking(struct kmem_cache *s, void *object)
482{
24922684
CL
483 if (!(s->flags & SLAB_STORE_USER))
484 return;
485
ce71e27c
EGM
486 set_track(s, object, TRACK_FREE, 0UL);
487 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
488}
489
490static void print_track(const char *s, struct track *t)
491{
492 if (!t->addr)
493 return;
494
7daf705f 495 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 496 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
24922684
CL
497}
498
499static void print_tracking(struct kmem_cache *s, void *object)
500{
501 if (!(s->flags & SLAB_STORE_USER))
502 return;
503
504 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
505 print_track("Freed", get_track(s, object, TRACK_FREE));
506}
507
508static void print_page_info(struct page *page)
509{
39b26464
CL
510 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
511 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
512
513}
514
515static void slab_bug(struct kmem_cache *s, char *fmt, ...)
516{
517 va_list args;
518 char buf[100];
519
520 va_start(args, fmt);
521 vsnprintf(buf, sizeof(buf), fmt, args);
522 va_end(args);
523 printk(KERN_ERR "========================================"
524 "=====================================\n");
525 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
526 printk(KERN_ERR "----------------------------------------"
527 "-------------------------------------\n\n");
81819f0f
CL
528}
529
24922684
CL
530static void slab_fix(struct kmem_cache *s, char *fmt, ...)
531{
532 va_list args;
533 char buf[100];
534
535 va_start(args, fmt);
536 vsnprintf(buf, sizeof(buf), fmt, args);
537 va_end(args);
538 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
539}
540
541static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
542{
543 unsigned int off; /* Offset of last byte */
a973e9dd 544 u8 *addr = page_address(page);
24922684
CL
545
546 print_tracking(s, p);
547
548 print_page_info(page);
549
550 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
551 p, p - addr, get_freepointer(s, p));
552
553 if (p > addr + 16)
554 print_section("Bytes b4", p - 16, 16);
555
0ebd652b 556 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
81819f0f
CL
557
558 if (s->flags & SLAB_RED_ZONE)
559 print_section("Redzone", p + s->objsize,
560 s->inuse - s->objsize);
561
81819f0f
CL
562 if (s->offset)
563 off = s->offset + sizeof(void *);
564 else
565 off = s->inuse;
566
24922684 567 if (s->flags & SLAB_STORE_USER)
81819f0f 568 off += 2 * sizeof(struct track);
81819f0f
CL
569
570 if (off != s->size)
571 /* Beginning of the filler is the free pointer */
24922684
CL
572 print_section("Padding", p + off, s->size - off);
573
574 dump_stack();
81819f0f
CL
575}
576
577static void object_err(struct kmem_cache *s, struct page *page,
578 u8 *object, char *reason)
579{
3dc50637 580 slab_bug(s, "%s", reason);
24922684 581 print_trailer(s, page, object);
81819f0f
CL
582}
583
24922684 584static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
585{
586 va_list args;
587 char buf[100];
588
24922684
CL
589 va_start(args, fmt);
590 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 591 va_end(args);
3dc50637 592 slab_bug(s, "%s", buf);
24922684 593 print_page_info(page);
81819f0f
CL
594 dump_stack();
595}
596
f7cb1933 597static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
598{
599 u8 *p = object;
600
601 if (s->flags & __OBJECT_POISON) {
602 memset(p, POISON_FREE, s->objsize - 1);
06428780 603 p[s->objsize - 1] = POISON_END;
81819f0f
CL
604 }
605
606 if (s->flags & SLAB_RED_ZONE)
f7cb1933 607 memset(p + s->objsize, val, s->inuse - s->objsize);
81819f0f
CL
608}
609
24922684 610static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
611{
612 while (bytes) {
613 if (*start != (u8)value)
24922684 614 return start;
81819f0f
CL
615 start++;
616 bytes--;
617 }
24922684
CL
618 return NULL;
619}
620
621static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
622 void *from, void *to)
623{
624 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
625 memset(from, data, to - from);
626}
627
628static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
629 u8 *object, char *what,
06428780 630 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
631{
632 u8 *fault;
633 u8 *end;
634
635 fault = check_bytes(start, value, bytes);
636 if (!fault)
637 return 1;
638
639 end = start + bytes;
640 while (end > fault && end[-1] == value)
641 end--;
642
643 slab_bug(s, "%s overwritten", what);
644 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
645 fault, end - 1, fault[0], value);
646 print_trailer(s, page, object);
647
648 restore_bytes(s, what, value, fault, end);
649 return 0;
81819f0f
CL
650}
651
81819f0f
CL
652/*
653 * Object layout:
654 *
655 * object address
656 * Bytes of the object to be managed.
657 * If the freepointer may overlay the object then the free
658 * pointer is the first word of the object.
672bba3a 659 *
81819f0f
CL
660 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
661 * 0xa5 (POISON_END)
662 *
663 * object + s->objsize
664 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
665 * Padding is extended by another word if Redzoning is enabled and
666 * objsize == inuse.
667 *
81819f0f
CL
668 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
669 * 0xcc (RED_ACTIVE) for objects in use.
670 *
671 * object + s->inuse
672bba3a
CL
672 * Meta data starts here.
673 *
81819f0f
CL
674 * A. Free pointer (if we cannot overwrite object on free)
675 * B. Tracking data for SLAB_STORE_USER
672bba3a 676 * C. Padding to reach required alignment boundary or at mininum
6446faa2 677 * one word if debugging is on to be able to detect writes
672bba3a
CL
678 * before the word boundary.
679 *
680 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
681 *
682 * object + s->size
672bba3a 683 * Nothing is used beyond s->size.
81819f0f 684 *
672bba3a
CL
685 * If slabcaches are merged then the objsize and inuse boundaries are mostly
686 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
687 * may be used with merged slabcaches.
688 */
689
81819f0f
CL
690static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
691{
692 unsigned long off = s->inuse; /* The end of info */
693
694 if (s->offset)
695 /* Freepointer is placed after the object. */
696 off += sizeof(void *);
697
698 if (s->flags & SLAB_STORE_USER)
699 /* We also have user information there */
700 off += 2 * sizeof(struct track);
701
702 if (s->size == off)
703 return 1;
704
24922684
CL
705 return check_bytes_and_report(s, page, p, "Object padding",
706 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
707}
708
39b26464 709/* Check the pad bytes at the end of a slab page */
81819f0f
CL
710static int slab_pad_check(struct kmem_cache *s, struct page *page)
711{
24922684
CL
712 u8 *start;
713 u8 *fault;
714 u8 *end;
715 int length;
716 int remainder;
81819f0f
CL
717
718 if (!(s->flags & SLAB_POISON))
719 return 1;
720
a973e9dd 721 start = page_address(page);
ab9a0f19 722 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
723 end = start + length;
724 remainder = length % s->size;
81819f0f
CL
725 if (!remainder)
726 return 1;
727
39b26464 728 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
729 if (!fault)
730 return 1;
731 while (end > fault && end[-1] == POISON_INUSE)
732 end--;
733
734 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 735 print_section("Padding", end - remainder, remainder);
24922684 736
8a3d271d 737 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 738 return 0;
81819f0f
CL
739}
740
741static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 742 void *object, u8 val)
81819f0f
CL
743{
744 u8 *p = object;
745 u8 *endobject = object + s->objsize;
746
747 if (s->flags & SLAB_RED_ZONE) {
24922684 748 if (!check_bytes_and_report(s, page, object, "Redzone",
f7cb1933 749 endobject, val, s->inuse - s->objsize))
81819f0f 750 return 0;
81819f0f 751 } else {
3adbefee
IM
752 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
753 check_bytes_and_report(s, page, p, "Alignment padding",
754 endobject, POISON_INUSE, s->inuse - s->objsize);
755 }
81819f0f
CL
756 }
757
758 if (s->flags & SLAB_POISON) {
f7cb1933 759 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684
CL
760 (!check_bytes_and_report(s, page, p, "Poison", p,
761 POISON_FREE, s->objsize - 1) ||
762 !check_bytes_and_report(s, page, p, "Poison",
06428780 763 p + s->objsize - 1, POISON_END, 1)))
81819f0f 764 return 0;
81819f0f
CL
765 /*
766 * check_pad_bytes cleans up on its own.
767 */
768 check_pad_bytes(s, page, p);
769 }
770
f7cb1933 771 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
772 /*
773 * Object and freepointer overlap. Cannot check
774 * freepointer while object is allocated.
775 */
776 return 1;
777
778 /* Check free pointer validity */
779 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
780 object_err(s, page, p, "Freepointer corrupt");
781 /*
9f6c708e 782 * No choice but to zap it and thus lose the remainder
81819f0f 783 * of the free objects in this slab. May cause
672bba3a 784 * another error because the object count is now wrong.
81819f0f 785 */
a973e9dd 786 set_freepointer(s, p, NULL);
81819f0f
CL
787 return 0;
788 }
789 return 1;
790}
791
792static int check_slab(struct kmem_cache *s, struct page *page)
793{
39b26464
CL
794 int maxobj;
795
81819f0f
CL
796 VM_BUG_ON(!irqs_disabled());
797
798 if (!PageSlab(page)) {
24922684 799 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
800 return 0;
801 }
39b26464 802
ab9a0f19 803 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
804 if (page->objects > maxobj) {
805 slab_err(s, page, "objects %u > max %u",
806 s->name, page->objects, maxobj);
807 return 0;
808 }
809 if (page->inuse > page->objects) {
24922684 810 slab_err(s, page, "inuse %u > max %u",
39b26464 811 s->name, page->inuse, page->objects);
81819f0f
CL
812 return 0;
813 }
814 /* Slab_pad_check fixes things up after itself */
815 slab_pad_check(s, page);
816 return 1;
817}
818
819/*
672bba3a
CL
820 * Determine if a certain object on a page is on the freelist. Must hold the
821 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
822 */
823static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
824{
825 int nr = 0;
881db7fb 826 void *fp;
81819f0f 827 void *object = NULL;
224a88be 828 unsigned long max_objects;
81819f0f 829
881db7fb 830 fp = page->freelist;
39b26464 831 while (fp && nr <= page->objects) {
81819f0f
CL
832 if (fp == search)
833 return 1;
834 if (!check_valid_pointer(s, page, fp)) {
835 if (object) {
836 object_err(s, page, object,
837 "Freechain corrupt");
a973e9dd 838 set_freepointer(s, object, NULL);
81819f0f
CL
839 break;
840 } else {
24922684 841 slab_err(s, page, "Freepointer corrupt");
a973e9dd 842 page->freelist = NULL;
39b26464 843 page->inuse = page->objects;
24922684 844 slab_fix(s, "Freelist cleared");
81819f0f
CL
845 return 0;
846 }
847 break;
848 }
849 object = fp;
850 fp = get_freepointer(s, object);
851 nr++;
852 }
853
ab9a0f19 854 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
855 if (max_objects > MAX_OBJS_PER_PAGE)
856 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
857
858 if (page->objects != max_objects) {
859 slab_err(s, page, "Wrong number of objects. Found %d but "
860 "should be %d", page->objects, max_objects);
861 page->objects = max_objects;
862 slab_fix(s, "Number of objects adjusted.");
863 }
39b26464 864 if (page->inuse != page->objects - nr) {
70d71228 865 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
866 "counted were %d", page->inuse, page->objects - nr);
867 page->inuse = page->objects - nr;
24922684 868 slab_fix(s, "Object count adjusted.");
81819f0f
CL
869 }
870 return search == NULL;
871}
872
0121c619
CL
873static void trace(struct kmem_cache *s, struct page *page, void *object,
874 int alloc)
3ec09742
CL
875{
876 if (s->flags & SLAB_TRACE) {
877 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
878 s->name,
879 alloc ? "alloc" : "free",
880 object, page->inuse,
881 page->freelist);
882
883 if (!alloc)
884 print_section("Object", (void *)object, s->objsize);
885
886 dump_stack();
887 }
888}
889
c016b0bd
CL
890/*
891 * Hooks for other subsystems that check memory allocations. In a typical
892 * production configuration these hooks all should produce no code at all.
893 */
894static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
895{
c1d50836 896 flags &= gfp_allowed_mask;
c016b0bd
CL
897 lockdep_trace_alloc(flags);
898 might_sleep_if(flags & __GFP_WAIT);
899
900 return should_failslab(s->objsize, flags, s->flags);
901}
902
903static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
904{
c1d50836 905 flags &= gfp_allowed_mask;
b3d41885 906 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
c016b0bd
CL
907 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
908}
909
910static inline void slab_free_hook(struct kmem_cache *s, void *x)
911{
912 kmemleak_free_recursive(x, s->flags);
c016b0bd 913
d3f661d6
CL
914 /*
915 * Trouble is that we may no longer disable interupts in the fast path
916 * So in order to make the debug calls that expect irqs to be
917 * disabled we need to disable interrupts temporarily.
918 */
919#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
920 {
921 unsigned long flags;
922
923 local_irq_save(flags);
924 kmemcheck_slab_free(s, x, s->objsize);
925 debug_check_no_locks_freed(x, s->objsize);
d3f661d6
CL
926 local_irq_restore(flags);
927 }
928#endif
f9b615de
TG
929 if (!(s->flags & SLAB_DEBUG_OBJECTS))
930 debug_check_no_obj_freed(x, s->objsize);
c016b0bd
CL
931}
932
643b1138 933/*
672bba3a 934 * Tracking of fully allocated slabs for debugging purposes.
5cc6eee8
CL
935 *
936 * list_lock must be held.
643b1138 937 */
5cc6eee8
CL
938static void add_full(struct kmem_cache *s,
939 struct kmem_cache_node *n, struct page *page)
643b1138 940{
5cc6eee8
CL
941 if (!(s->flags & SLAB_STORE_USER))
942 return;
943
643b1138 944 list_add(&page->lru, &n->full);
643b1138
CL
945}
946
5cc6eee8
CL
947/*
948 * list_lock must be held.
949 */
643b1138
CL
950static void remove_full(struct kmem_cache *s, struct page *page)
951{
643b1138
CL
952 if (!(s->flags & SLAB_STORE_USER))
953 return;
954
643b1138 955 list_del(&page->lru);
643b1138
CL
956}
957
0f389ec6
CL
958/* Tracking of the number of slabs for debugging purposes */
959static inline unsigned long slabs_node(struct kmem_cache *s, int node)
960{
961 struct kmem_cache_node *n = get_node(s, node);
962
963 return atomic_long_read(&n->nr_slabs);
964}
965
26c02cf0
AB
966static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
967{
968 return atomic_long_read(&n->nr_slabs);
969}
970
205ab99d 971static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
972{
973 struct kmem_cache_node *n = get_node(s, node);
974
975 /*
976 * May be called early in order to allocate a slab for the
977 * kmem_cache_node structure. Solve the chicken-egg
978 * dilemma by deferring the increment of the count during
979 * bootstrap (see early_kmem_cache_node_alloc).
980 */
7340cc84 981 if (n) {
0f389ec6 982 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
983 atomic_long_add(objects, &n->total_objects);
984 }
0f389ec6 985}
205ab99d 986static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
987{
988 struct kmem_cache_node *n = get_node(s, node);
989
990 atomic_long_dec(&n->nr_slabs);
205ab99d 991 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
992}
993
994/* Object debug checks for alloc/free paths */
3ec09742
CL
995static void setup_object_debug(struct kmem_cache *s, struct page *page,
996 void *object)
997{
998 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
999 return;
1000
f7cb1933 1001 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1002 init_tracking(s, object);
1003}
1004
1537066c 1005static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 1006 void *object, unsigned long addr)
81819f0f
CL
1007{
1008 if (!check_slab(s, page))
1009 goto bad;
1010
81819f0f
CL
1011 if (!check_valid_pointer(s, page, object)) {
1012 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1013 goto bad;
81819f0f
CL
1014 }
1015
f7cb1933 1016 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1017 goto bad;
81819f0f 1018
3ec09742
CL
1019 /* Success perform special debug activities for allocs */
1020 if (s->flags & SLAB_STORE_USER)
1021 set_track(s, object, TRACK_ALLOC, addr);
1022 trace(s, page, object, 1);
f7cb1933 1023 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1024 return 1;
3ec09742 1025
81819f0f
CL
1026bad:
1027 if (PageSlab(page)) {
1028 /*
1029 * If this is a slab page then lets do the best we can
1030 * to avoid issues in the future. Marking all objects
672bba3a 1031 * as used avoids touching the remaining objects.
81819f0f 1032 */
24922684 1033 slab_fix(s, "Marking all objects used");
39b26464 1034 page->inuse = page->objects;
a973e9dd 1035 page->freelist = NULL;
81819f0f
CL
1036 }
1037 return 0;
1038}
1039
1537066c
CL
1040static noinline int free_debug_processing(struct kmem_cache *s,
1041 struct page *page, void *object, unsigned long addr)
81819f0f 1042{
5c2e4bbb
CL
1043 unsigned long flags;
1044 int rc = 0;
1045
1046 local_irq_save(flags);
881db7fb
CL
1047 slab_lock(page);
1048
81819f0f
CL
1049 if (!check_slab(s, page))
1050 goto fail;
1051
1052 if (!check_valid_pointer(s, page, object)) {
70d71228 1053 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1054 goto fail;
1055 }
1056
1057 if (on_freelist(s, page, object)) {
24922684 1058 object_err(s, page, object, "Object already free");
81819f0f
CL
1059 goto fail;
1060 }
1061
f7cb1933 1062 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1063 goto out;
81819f0f
CL
1064
1065 if (unlikely(s != page->slab)) {
3adbefee 1066 if (!PageSlab(page)) {
70d71228
CL
1067 slab_err(s, page, "Attempt to free object(0x%p) "
1068 "outside of slab", object);
3adbefee 1069 } else if (!page->slab) {
81819f0f 1070 printk(KERN_ERR
70d71228 1071 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1072 object);
70d71228 1073 dump_stack();
06428780 1074 } else
24922684
CL
1075 object_err(s, page, object,
1076 "page slab pointer corrupt.");
81819f0f
CL
1077 goto fail;
1078 }
3ec09742 1079
3ec09742
CL
1080 if (s->flags & SLAB_STORE_USER)
1081 set_track(s, object, TRACK_FREE, addr);
1082 trace(s, page, object, 0);
f7cb1933 1083 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb
CL
1084 rc = 1;
1085out:
881db7fb 1086 slab_unlock(page);
5c2e4bbb
CL
1087 local_irq_restore(flags);
1088 return rc;
3ec09742 1089
81819f0f 1090fail:
24922684 1091 slab_fix(s, "Object at 0x%p not freed", object);
5c2e4bbb 1092 goto out;
81819f0f
CL
1093}
1094
41ecc55b
CL
1095static int __init setup_slub_debug(char *str)
1096{
f0630fff
CL
1097 slub_debug = DEBUG_DEFAULT_FLAGS;
1098 if (*str++ != '=' || !*str)
1099 /*
1100 * No options specified. Switch on full debugging.
1101 */
1102 goto out;
1103
1104 if (*str == ',')
1105 /*
1106 * No options but restriction on slabs. This means full
1107 * debugging for slabs matching a pattern.
1108 */
1109 goto check_slabs;
1110
fa5ec8a1
DR
1111 if (tolower(*str) == 'o') {
1112 /*
1113 * Avoid enabling debugging on caches if its minimum order
1114 * would increase as a result.
1115 */
1116 disable_higher_order_debug = 1;
1117 goto out;
1118 }
1119
f0630fff
CL
1120 slub_debug = 0;
1121 if (*str == '-')
1122 /*
1123 * Switch off all debugging measures.
1124 */
1125 goto out;
1126
1127 /*
1128 * Determine which debug features should be switched on
1129 */
06428780 1130 for (; *str && *str != ','; str++) {
f0630fff
CL
1131 switch (tolower(*str)) {
1132 case 'f':
1133 slub_debug |= SLAB_DEBUG_FREE;
1134 break;
1135 case 'z':
1136 slub_debug |= SLAB_RED_ZONE;
1137 break;
1138 case 'p':
1139 slub_debug |= SLAB_POISON;
1140 break;
1141 case 'u':
1142 slub_debug |= SLAB_STORE_USER;
1143 break;
1144 case 't':
1145 slub_debug |= SLAB_TRACE;
1146 break;
4c13dd3b
DM
1147 case 'a':
1148 slub_debug |= SLAB_FAILSLAB;
1149 break;
f0630fff
CL
1150 default:
1151 printk(KERN_ERR "slub_debug option '%c' "
06428780 1152 "unknown. skipped\n", *str);
f0630fff 1153 }
41ecc55b
CL
1154 }
1155
f0630fff 1156check_slabs:
41ecc55b
CL
1157 if (*str == ',')
1158 slub_debug_slabs = str + 1;
f0630fff 1159out:
41ecc55b
CL
1160 return 1;
1161}
1162
1163__setup("slub_debug", setup_slub_debug);
1164
ba0268a8
CL
1165static unsigned long kmem_cache_flags(unsigned long objsize,
1166 unsigned long flags, const char *name,
51cc5068 1167 void (*ctor)(void *))
41ecc55b
CL
1168{
1169 /*
e153362a 1170 * Enable debugging if selected on the kernel commandline.
41ecc55b 1171 */
e153362a 1172 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1173 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1174 flags |= slub_debug;
ba0268a8
CL
1175
1176 return flags;
41ecc55b
CL
1177}
1178#else
3ec09742
CL
1179static inline void setup_object_debug(struct kmem_cache *s,
1180 struct page *page, void *object) {}
41ecc55b 1181
3ec09742 1182static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1183 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1184
3ec09742 1185static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1186 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1187
41ecc55b
CL
1188static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1189 { return 1; }
1190static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1191 void *object, u8 val) { return 1; }
5cc6eee8
CL
1192static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1193 struct page *page) {}
2cfb7455 1194static inline void remove_full(struct kmem_cache *s, struct page *page) {}
ba0268a8
CL
1195static inline unsigned long kmem_cache_flags(unsigned long objsize,
1196 unsigned long flags, const char *name,
51cc5068 1197 void (*ctor)(void *))
ba0268a8
CL
1198{
1199 return flags;
1200}
41ecc55b 1201#define slub_debug 0
0f389ec6 1202
fdaa45e9
IM
1203#define disable_higher_order_debug 0
1204
0f389ec6
CL
1205static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1206 { return 0; }
26c02cf0
AB
1207static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1208 { return 0; }
205ab99d
CL
1209static inline void inc_slabs_node(struct kmem_cache *s, int node,
1210 int objects) {}
1211static inline void dec_slabs_node(struct kmem_cache *s, int node,
1212 int objects) {}
7d550c56
CL
1213
1214static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1215 { return 0; }
1216
1217static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1218 void *object) {}
1219
1220static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1221
ab4d5ed5 1222#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1223
81819f0f
CL
1224/*
1225 * Slab allocation and freeing
1226 */
65c3376a
CL
1227static inline struct page *alloc_slab_page(gfp_t flags, int node,
1228 struct kmem_cache_order_objects oo)
1229{
1230 int order = oo_order(oo);
1231
b1eeab67
VN
1232 flags |= __GFP_NOTRACK;
1233
2154a336 1234 if (node == NUMA_NO_NODE)
65c3376a
CL
1235 return alloc_pages(flags, order);
1236 else
6b65aaf3 1237 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1238}
1239
81819f0f
CL
1240static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1241{
06428780 1242 struct page *page;
834f3d11 1243 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1244 gfp_t alloc_gfp;
81819f0f 1245
7e0528da
CL
1246 flags &= gfp_allowed_mask;
1247
1248 if (flags & __GFP_WAIT)
1249 local_irq_enable();
1250
b7a49f0d 1251 flags |= s->allocflags;
e12ba74d 1252
ba52270d
PE
1253 /*
1254 * Let the initial higher-order allocation fail under memory pressure
1255 * so we fall-back to the minimum order allocation.
1256 */
1257 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1258
1259 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1260 if (unlikely(!page)) {
1261 oo = s->min;
1262 /*
1263 * Allocation may have failed due to fragmentation.
1264 * Try a lower order alloc if possible
1265 */
1266 page = alloc_slab_page(flags, node, oo);
81819f0f 1267
7e0528da
CL
1268 if (page)
1269 stat(s, ORDER_FALLBACK);
65c3376a 1270 }
5a896d9e 1271
7e0528da
CL
1272 if (flags & __GFP_WAIT)
1273 local_irq_disable();
1274
1275 if (!page)
1276 return NULL;
1277
5a896d9e 1278 if (kmemcheck_enabled
5086c389 1279 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1280 int pages = 1 << oo_order(oo);
1281
1282 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1283
1284 /*
1285 * Objects from caches that have a constructor don't get
1286 * cleared when they're allocated, so we need to do it here.
1287 */
1288 if (s->ctor)
1289 kmemcheck_mark_uninitialized_pages(page, pages);
1290 else
1291 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1292 }
1293
834f3d11 1294 page->objects = oo_objects(oo);
81819f0f
CL
1295 mod_zone_page_state(page_zone(page),
1296 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1297 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1298 1 << oo_order(oo));
81819f0f
CL
1299
1300 return page;
1301}
1302
1303static void setup_object(struct kmem_cache *s, struct page *page,
1304 void *object)
1305{
3ec09742 1306 setup_object_debug(s, page, object);
4f104934 1307 if (unlikely(s->ctor))
51cc5068 1308 s->ctor(object);
81819f0f
CL
1309}
1310
1311static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1312{
1313 struct page *page;
81819f0f 1314 void *start;
81819f0f
CL
1315 void *last;
1316 void *p;
1317
6cb06229 1318 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1319
6cb06229
CL
1320 page = allocate_slab(s,
1321 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1322 if (!page)
1323 goto out;
1324
205ab99d 1325 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1326 page->slab = s;
1327 page->flags |= 1 << PG_slab;
81819f0f
CL
1328
1329 start = page_address(page);
81819f0f
CL
1330
1331 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1332 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1333
1334 last = start;
224a88be 1335 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1336 setup_object(s, page, last);
1337 set_freepointer(s, last, p);
1338 last = p;
1339 }
1340 setup_object(s, page, last);
a973e9dd 1341 set_freepointer(s, last, NULL);
81819f0f
CL
1342
1343 page->freelist = start;
1344 page->inuse = 0;
8cb0a506 1345 page->frozen = 1;
81819f0f 1346out:
81819f0f
CL
1347 return page;
1348}
1349
1350static void __free_slab(struct kmem_cache *s, struct page *page)
1351{
834f3d11
CL
1352 int order = compound_order(page);
1353 int pages = 1 << order;
81819f0f 1354
af537b0a 1355 if (kmem_cache_debug(s)) {
81819f0f
CL
1356 void *p;
1357
1358 slab_pad_check(s, page);
224a88be
CL
1359 for_each_object(p, s, page_address(page),
1360 page->objects)
f7cb1933 1361 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1362 }
1363
b1eeab67 1364 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1365
81819f0f
CL
1366 mod_zone_page_state(page_zone(page),
1367 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1368 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1369 -pages);
81819f0f 1370
49bd5221
CL
1371 __ClearPageSlab(page);
1372 reset_page_mapcount(page);
1eb5ac64
NP
1373 if (current->reclaim_state)
1374 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1375 __free_pages(page, order);
81819f0f
CL
1376}
1377
da9a638c
LJ
1378#define need_reserve_slab_rcu \
1379 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1380
81819f0f
CL
1381static void rcu_free_slab(struct rcu_head *h)
1382{
1383 struct page *page;
1384
da9a638c
LJ
1385 if (need_reserve_slab_rcu)
1386 page = virt_to_head_page(h);
1387 else
1388 page = container_of((struct list_head *)h, struct page, lru);
1389
81819f0f
CL
1390 __free_slab(page->slab, page);
1391}
1392
1393static void free_slab(struct kmem_cache *s, struct page *page)
1394{
1395 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1396 struct rcu_head *head;
1397
1398 if (need_reserve_slab_rcu) {
1399 int order = compound_order(page);
1400 int offset = (PAGE_SIZE << order) - s->reserved;
1401
1402 VM_BUG_ON(s->reserved != sizeof(*head));
1403 head = page_address(page) + offset;
1404 } else {
1405 /*
1406 * RCU free overloads the RCU head over the LRU
1407 */
1408 head = (void *)&page->lru;
1409 }
81819f0f
CL
1410
1411 call_rcu(head, rcu_free_slab);
1412 } else
1413 __free_slab(s, page);
1414}
1415
1416static void discard_slab(struct kmem_cache *s, struct page *page)
1417{
205ab99d 1418 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1419 free_slab(s, page);
1420}
1421
81819f0f 1422/*
5cc6eee8
CL
1423 * Management of partially allocated slabs.
1424 *
1425 * list_lock must be held.
81819f0f 1426 */
5cc6eee8 1427static inline void add_partial(struct kmem_cache_node *n,
7c2e132c 1428 struct page *page, int tail)
81819f0f 1429{
e95eed57 1430 n->nr_partial++;
7c2e132c
CL
1431 if (tail)
1432 list_add_tail(&page->lru, &n->partial);
1433 else
1434 list_add(&page->lru, &n->partial);
81819f0f
CL
1435}
1436
5cc6eee8
CL
1437/*
1438 * list_lock must be held.
1439 */
1440static inline void remove_partial(struct kmem_cache_node *n,
62e346a8
CL
1441 struct page *page)
1442{
1443 list_del(&page->lru);
1444 n->nr_partial--;
1445}
1446
81819f0f 1447/*
5cc6eee8
CL
1448 * Lock slab, remove from the partial list and put the object into the
1449 * per cpu freelist.
81819f0f 1450 *
672bba3a 1451 * Must hold list_lock.
81819f0f 1452 */
881db7fb 1453static inline int acquire_slab(struct kmem_cache *s,
61728d1e 1454 struct kmem_cache_node *n, struct page *page)
81819f0f 1455{
2cfb7455
CL
1456 void *freelist;
1457 unsigned long counters;
1458 struct page new;
1459
2cfb7455
CL
1460 /*
1461 * Zap the freelist and set the frozen bit.
1462 * The old freelist is the list of objects for the
1463 * per cpu allocation list.
1464 */
1465 do {
1466 freelist = page->freelist;
1467 counters = page->counters;
1468 new.counters = counters;
1469 new.inuse = page->objects;
1470
1471 VM_BUG_ON(new.frozen);
1472 new.frozen = 1;
1473
1474 } while (!cmpxchg_double_slab(s, page,
1475 freelist, counters,
1476 NULL, new.counters,
1477 "lock and freeze"));
1478
1479 remove_partial(n, page);
1480
1481 if (freelist) {
1482 /* Populate the per cpu freelist */
1483 this_cpu_write(s->cpu_slab->freelist, freelist);
1484 this_cpu_write(s->cpu_slab->page, page);
1485 this_cpu_write(s->cpu_slab->node, page_to_nid(page));
81819f0f 1486 return 1;
2cfb7455
CL
1487 } else {
1488 /*
1489 * Slab page came from the wrong list. No object to allocate
1490 * from. Put it onto the correct list and continue partial
1491 * scan.
1492 */
1493 printk(KERN_ERR "SLUB: %s : Page without available objects on"
1494 " partial list\n", s->name);
2cfb7455 1495 return 0;
81819f0f 1496 }
81819f0f
CL
1497}
1498
1499/*
672bba3a 1500 * Try to allocate a partial slab from a specific node.
81819f0f 1501 */
61728d1e
CL
1502static struct page *get_partial_node(struct kmem_cache *s,
1503 struct kmem_cache_node *n)
81819f0f
CL
1504{
1505 struct page *page;
1506
1507 /*
1508 * Racy check. If we mistakenly see no partial slabs then we
1509 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1510 * partial slab and there is none available then get_partials()
1511 * will return NULL.
81819f0f
CL
1512 */
1513 if (!n || !n->nr_partial)
1514 return NULL;
1515
1516 spin_lock(&n->list_lock);
1517 list_for_each_entry(page, &n->partial, lru)
881db7fb 1518 if (acquire_slab(s, n, page))
81819f0f
CL
1519 goto out;
1520 page = NULL;
1521out:
1522 spin_unlock(&n->list_lock);
1523 return page;
1524}
1525
1526/*
672bba3a 1527 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1528 */
1529static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1530{
1531#ifdef CONFIG_NUMA
1532 struct zonelist *zonelist;
dd1a239f 1533 struct zoneref *z;
54a6eb5c
MG
1534 struct zone *zone;
1535 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1536 struct page *page;
1537
1538 /*
672bba3a
CL
1539 * The defrag ratio allows a configuration of the tradeoffs between
1540 * inter node defragmentation and node local allocations. A lower
1541 * defrag_ratio increases the tendency to do local allocations
1542 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1543 *
672bba3a
CL
1544 * If the defrag_ratio is set to 0 then kmalloc() always
1545 * returns node local objects. If the ratio is higher then kmalloc()
1546 * may return off node objects because partial slabs are obtained
1547 * from other nodes and filled up.
81819f0f 1548 *
6446faa2 1549 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1550 * defrag_ratio = 1000) then every (well almost) allocation will
1551 * first attempt to defrag slab caches on other nodes. This means
1552 * scanning over all nodes to look for partial slabs which may be
1553 * expensive if we do it every time we are trying to find a slab
1554 * with available objects.
81819f0f 1555 */
9824601e
CL
1556 if (!s->remote_node_defrag_ratio ||
1557 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1558 return NULL;
1559
c0ff7453 1560 get_mems_allowed();
0e88460d 1561 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1562 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1563 struct kmem_cache_node *n;
1564
54a6eb5c 1565 n = get_node(s, zone_to_nid(zone));
81819f0f 1566
54a6eb5c 1567 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1568 n->nr_partial > s->min_partial) {
61728d1e 1569 page = get_partial_node(s, n);
c0ff7453
MX
1570 if (page) {
1571 put_mems_allowed();
81819f0f 1572 return page;
c0ff7453 1573 }
81819f0f
CL
1574 }
1575 }
c0ff7453 1576 put_mems_allowed();
81819f0f
CL
1577#endif
1578 return NULL;
1579}
1580
1581/*
1582 * Get a partial page, lock it and return it.
1583 */
1584static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1585{
1586 struct page *page;
2154a336 1587 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f 1588
61728d1e 1589 page = get_partial_node(s, get_node(s, searchnode));
33de04ec 1590 if (page || node != NUMA_NO_NODE)
81819f0f
CL
1591 return page;
1592
1593 return get_any_partial(s, flags);
1594}
1595
8a5ec0ba
CL
1596#ifdef CONFIG_PREEMPT
1597/*
1598 * Calculate the next globally unique transaction for disambiguiation
1599 * during cmpxchg. The transactions start with the cpu number and are then
1600 * incremented by CONFIG_NR_CPUS.
1601 */
1602#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1603#else
1604/*
1605 * No preemption supported therefore also no need to check for
1606 * different cpus.
1607 */
1608#define TID_STEP 1
1609#endif
1610
1611static inline unsigned long next_tid(unsigned long tid)
1612{
1613 return tid + TID_STEP;
1614}
1615
1616static inline unsigned int tid_to_cpu(unsigned long tid)
1617{
1618 return tid % TID_STEP;
1619}
1620
1621static inline unsigned long tid_to_event(unsigned long tid)
1622{
1623 return tid / TID_STEP;
1624}
1625
1626static inline unsigned int init_tid(int cpu)
1627{
1628 return cpu;
1629}
1630
1631static inline void note_cmpxchg_failure(const char *n,
1632 const struct kmem_cache *s, unsigned long tid)
1633{
1634#ifdef SLUB_DEBUG_CMPXCHG
1635 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1636
1637 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1638
1639#ifdef CONFIG_PREEMPT
1640 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1641 printk("due to cpu change %d -> %d\n",
1642 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1643 else
1644#endif
1645 if (tid_to_event(tid) != tid_to_event(actual_tid))
1646 printk("due to cpu running other code. Event %ld->%ld\n",
1647 tid_to_event(tid), tid_to_event(actual_tid));
1648 else
1649 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1650 actual_tid, tid, next_tid(tid));
1651#endif
4fdccdfb 1652 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1653}
1654
8a5ec0ba
CL
1655void init_kmem_cache_cpus(struct kmem_cache *s)
1656{
8a5ec0ba
CL
1657 int cpu;
1658
1659 for_each_possible_cpu(cpu)
1660 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1661}
2cfb7455
CL
1662/*
1663 * Remove the cpu slab
1664 */
1665
81819f0f
CL
1666/*
1667 * Remove the cpu slab
1668 */
dfb4f096 1669static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1670{
2cfb7455 1671 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
dfb4f096 1672 struct page *page = c->page;
2cfb7455
CL
1673 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1674 int lock = 0;
1675 enum slab_modes l = M_NONE, m = M_NONE;
1676 void *freelist;
1677 void *nextfree;
1678 int tail = 0;
1679 struct page new;
1680 struct page old;
1681
1682 if (page->freelist) {
84e554e6 1683 stat(s, DEACTIVATE_REMOTE_FREES);
2cfb7455
CL
1684 tail = 1;
1685 }
1686
1687 c->tid = next_tid(c->tid);
1688 c->page = NULL;
1689 freelist = c->freelist;
1690 c->freelist = NULL;
1691
894b8788 1692 /*
2cfb7455
CL
1693 * Stage one: Free all available per cpu objects back
1694 * to the page freelist while it is still frozen. Leave the
1695 * last one.
1696 *
1697 * There is no need to take the list->lock because the page
1698 * is still frozen.
1699 */
1700 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1701 void *prior;
1702 unsigned long counters;
1703
1704 do {
1705 prior = page->freelist;
1706 counters = page->counters;
1707 set_freepointer(s, freelist, prior);
1708 new.counters = counters;
1709 new.inuse--;
1710 VM_BUG_ON(!new.frozen);
1711
1712 } while (!cmpxchg_double_slab(s, page,
1713 prior, counters,
1714 freelist, new.counters,
1715 "drain percpu freelist"));
1716
1717 freelist = nextfree;
1718 }
1719
1720 /*
1721 * Stage two: Ensure that the page is unfrozen while the
1722 * list presence reflects the actual number of objects
1723 * during unfreeze.
1724 *
1725 * We setup the list membership and then perform a cmpxchg
1726 * with the count. If there is a mismatch then the page
1727 * is not unfrozen but the page is on the wrong list.
1728 *
1729 * Then we restart the process which may have to remove
1730 * the page from the list that we just put it on again
1731 * because the number of objects in the slab may have
1732 * changed.
894b8788 1733 */
2cfb7455 1734redo:
894b8788 1735
2cfb7455
CL
1736 old.freelist = page->freelist;
1737 old.counters = page->counters;
1738 VM_BUG_ON(!old.frozen);
7c2e132c 1739
2cfb7455
CL
1740 /* Determine target state of the slab */
1741 new.counters = old.counters;
1742 if (freelist) {
1743 new.inuse--;
1744 set_freepointer(s, freelist, old.freelist);
1745 new.freelist = freelist;
1746 } else
1747 new.freelist = old.freelist;
1748
1749 new.frozen = 0;
1750
1751 if (!new.inuse && n->nr_partial < s->min_partial)
1752 m = M_FREE;
1753 else if (new.freelist) {
1754 m = M_PARTIAL;
1755 if (!lock) {
1756 lock = 1;
1757 /*
1758 * Taking the spinlock removes the possiblity
1759 * that acquire_slab() will see a slab page that
1760 * is frozen
1761 */
1762 spin_lock(&n->list_lock);
1763 }
1764 } else {
1765 m = M_FULL;
1766 if (kmem_cache_debug(s) && !lock) {
1767 lock = 1;
1768 /*
1769 * This also ensures that the scanning of full
1770 * slabs from diagnostic functions will not see
1771 * any frozen slabs.
1772 */
1773 spin_lock(&n->list_lock);
1774 }
1775 }
1776
1777 if (l != m) {
1778
1779 if (l == M_PARTIAL)
1780
1781 remove_partial(n, page);
1782
1783 else if (l == M_FULL)
894b8788 1784
2cfb7455
CL
1785 remove_full(s, page);
1786
1787 if (m == M_PARTIAL) {
1788
1789 add_partial(n, page, tail);
1790 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1791
1792 } else if (m == M_FULL) {
1793
1794 stat(s, DEACTIVATE_FULL);
1795 add_full(s, n, page);
1796
1797 }
1798 }
1799
1800 l = m;
1801 if (!cmpxchg_double_slab(s, page,
1802 old.freelist, old.counters,
1803 new.freelist, new.counters,
1804 "unfreezing slab"))
1805 goto redo;
1806
2cfb7455
CL
1807 if (lock)
1808 spin_unlock(&n->list_lock);
1809
1810 if (m == M_FREE) {
1811 stat(s, DEACTIVATE_EMPTY);
1812 discard_slab(s, page);
1813 stat(s, FREE_SLAB);
894b8788 1814 }
81819f0f
CL
1815}
1816
dfb4f096 1817static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1818{
84e554e6 1819 stat(s, CPUSLAB_FLUSH);
dfb4f096 1820 deactivate_slab(s, c);
81819f0f
CL
1821}
1822
1823/*
1824 * Flush cpu slab.
6446faa2 1825 *
81819f0f
CL
1826 * Called from IPI handler with interrupts disabled.
1827 */
0c710013 1828static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1829{
9dfc6e68 1830 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 1831
dfb4f096
CL
1832 if (likely(c && c->page))
1833 flush_slab(s, c);
81819f0f
CL
1834}
1835
1836static void flush_cpu_slab(void *d)
1837{
1838 struct kmem_cache *s = d;
81819f0f 1839
dfb4f096 1840 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1841}
1842
1843static void flush_all(struct kmem_cache *s)
1844{
15c8b6c1 1845 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
1846}
1847
dfb4f096
CL
1848/*
1849 * Check if the objects in a per cpu structure fit numa
1850 * locality expectations.
1851 */
1852static inline int node_match(struct kmem_cache_cpu *c, int node)
1853{
1854#ifdef CONFIG_NUMA
2154a336 1855 if (node != NUMA_NO_NODE && c->node != node)
dfb4f096
CL
1856 return 0;
1857#endif
1858 return 1;
1859}
1860
781b2ba6
PE
1861static int count_free(struct page *page)
1862{
1863 return page->objects - page->inuse;
1864}
1865
1866static unsigned long count_partial(struct kmem_cache_node *n,
1867 int (*get_count)(struct page *))
1868{
1869 unsigned long flags;
1870 unsigned long x = 0;
1871 struct page *page;
1872
1873 spin_lock_irqsave(&n->list_lock, flags);
1874 list_for_each_entry(page, &n->partial, lru)
1875 x += get_count(page);
1876 spin_unlock_irqrestore(&n->list_lock, flags);
1877 return x;
1878}
1879
26c02cf0
AB
1880static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1881{
1882#ifdef CONFIG_SLUB_DEBUG
1883 return atomic_long_read(&n->total_objects);
1884#else
1885 return 0;
1886#endif
1887}
1888
781b2ba6
PE
1889static noinline void
1890slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1891{
1892 int node;
1893
1894 printk(KERN_WARNING
1895 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1896 nid, gfpflags);
1897 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1898 "default order: %d, min order: %d\n", s->name, s->objsize,
1899 s->size, oo_order(s->oo), oo_order(s->min));
1900
fa5ec8a1
DR
1901 if (oo_order(s->min) > get_order(s->objsize))
1902 printk(KERN_WARNING " %s debugging increased min order, use "
1903 "slub_debug=O to disable.\n", s->name);
1904
781b2ba6
PE
1905 for_each_online_node(node) {
1906 struct kmem_cache_node *n = get_node(s, node);
1907 unsigned long nr_slabs;
1908 unsigned long nr_objs;
1909 unsigned long nr_free;
1910
1911 if (!n)
1912 continue;
1913
26c02cf0
AB
1914 nr_free = count_partial(n, count_free);
1915 nr_slabs = node_nr_slabs(n);
1916 nr_objs = node_nr_objs(n);
781b2ba6
PE
1917
1918 printk(KERN_WARNING
1919 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1920 node, nr_slabs, nr_objs, nr_free);
1921 }
1922}
1923
81819f0f 1924/*
894b8788
CL
1925 * Slow path. The lockless freelist is empty or we need to perform
1926 * debugging duties.
1927 *
1928 * Interrupts are disabled.
81819f0f 1929 *
894b8788
CL
1930 * Processing is still very fast if new objects have been freed to the
1931 * regular freelist. In that case we simply take over the regular freelist
1932 * as the lockless freelist and zap the regular freelist.
81819f0f 1933 *
894b8788
CL
1934 * If that is not working then we fall back to the partial lists. We take the
1935 * first element of the freelist as the object to allocate now and move the
1936 * rest of the freelist to the lockless freelist.
81819f0f 1937 *
894b8788 1938 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1939 * we need to allocate a new slab. This is the slowest path since it involves
1940 * a call to the page allocator and the setup of a new slab.
81819f0f 1941 */
ce71e27c
EGM
1942static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1943 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 1944{
81819f0f 1945 void **object;
01ad8a7b 1946 struct page *page;
8a5ec0ba 1947 unsigned long flags;
2cfb7455
CL
1948 struct page new;
1949 unsigned long counters;
8a5ec0ba
CL
1950
1951 local_irq_save(flags);
1952#ifdef CONFIG_PREEMPT
1953 /*
1954 * We may have been preempted and rescheduled on a different
1955 * cpu before disabling interrupts. Need to reload cpu area
1956 * pointer.
1957 */
1958 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 1959#endif
81819f0f 1960
e72e9c23
LT
1961 /* We handle __GFP_ZERO in the caller */
1962 gfpflags &= ~__GFP_ZERO;
1963
01ad8a7b
CL
1964 page = c->page;
1965 if (!page)
81819f0f
CL
1966 goto new_slab;
1967
fc59c053 1968 if (unlikely(!node_match(c, node))) {
e36a2652 1969 stat(s, ALLOC_NODE_MISMATCH);
fc59c053
CL
1970 deactivate_slab(s, c);
1971 goto new_slab;
1972 }
6446faa2 1973
2cfb7455
CL
1974 stat(s, ALLOC_SLOWPATH);
1975
1976 do {
1977 object = page->freelist;
1978 counters = page->counters;
1979 new.counters = counters;
1980 new.inuse = page->objects;
1981 VM_BUG_ON(!new.frozen);
1982
1983 } while (!cmpxchg_double_slab(s, page,
1984 object, counters,
1985 NULL, new.counters,
1986 "__slab_alloc"));
6446faa2 1987
894b8788 1988load_freelist:
8cb0a506
CL
1989 VM_BUG_ON(!page->frozen);
1990
a973e9dd 1991 if (unlikely(!object))
fc59c053 1992 goto new_slab;
81819f0f 1993
2cfb7455 1994 stat(s, ALLOC_REFILL);
01ad8a7b 1995
2cfb7455 1996 c->freelist = get_freepointer(s, object);
8a5ec0ba
CL
1997 c->tid = next_tid(c->tid);
1998 local_irq_restore(flags);
81819f0f
CL
1999 return object;
2000
81819f0f 2001new_slab:
01ad8a7b
CL
2002 page = get_partial(s, gfpflags, node);
2003 if (page) {
84e554e6 2004 stat(s, ALLOC_FROM_PARTIAL);
2cfb7455
CL
2005 object = c->freelist;
2006
2007 if (kmem_cache_debug(s))
2008 goto debug;
894b8788 2009 goto load_freelist;
81819f0f
CL
2010 }
2011
01ad8a7b 2012 page = new_slab(s, gfpflags, node);
b811c202 2013
01ad8a7b 2014 if (page) {
9dfc6e68 2015 c = __this_cpu_ptr(s->cpu_slab);
05aa3450 2016 if (c->page)
dfb4f096 2017 flush_slab(s, c);
01ad8a7b 2018
2cfb7455
CL
2019 /*
2020 * No other reference to the page yet so we can
2021 * muck around with it freely without cmpxchg
2022 */
2023 object = page->freelist;
2024 page->freelist = NULL;
2025 page->inuse = page->objects;
2026
2027 stat(s, ALLOC_SLAB);
bd07d87f
DR
2028 c->node = page_to_nid(page);
2029 c->page = page;
4b6f0750 2030 goto load_freelist;
81819f0f 2031 }
95f85989
PE
2032 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2033 slab_out_of_memory(s, gfpflags, node);
2fd66c51 2034 local_irq_restore(flags);
71c7a06f 2035 return NULL;
2cfb7455 2036
81819f0f 2037debug:
2cfb7455
CL
2038 if (!object || !alloc_debug_processing(s, page, object, addr))
2039 goto new_slab;
894b8788 2040
2cfb7455 2041 c->freelist = get_freepointer(s, object);
442b06bc
CL
2042 deactivate_slab(s, c);
2043 c->page = NULL;
15b7c514 2044 c->node = NUMA_NO_NODE;
a71ae47a
CL
2045 local_irq_restore(flags);
2046 return object;
894b8788
CL
2047}
2048
2049/*
2050 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2051 * have the fastpath folded into their functions. So no function call
2052 * overhead for requests that can be satisfied on the fastpath.
2053 *
2054 * The fastpath works by first checking if the lockless freelist can be used.
2055 * If not then __slab_alloc is called for slow processing.
2056 *
2057 * Otherwise we can simply pick the next object from the lockless free list.
2058 */
06428780 2059static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 2060 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2061{
894b8788 2062 void **object;
dfb4f096 2063 struct kmem_cache_cpu *c;
8a5ec0ba 2064 unsigned long tid;
1f84260c 2065
c016b0bd 2066 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2067 return NULL;
1f84260c 2068
8a5ec0ba 2069redo:
8a5ec0ba
CL
2070
2071 /*
2072 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2073 * enabled. We may switch back and forth between cpus while
2074 * reading from one cpu area. That does not matter as long
2075 * as we end up on the original cpu again when doing the cmpxchg.
2076 */
9dfc6e68 2077 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2078
8a5ec0ba
CL
2079 /*
2080 * The transaction ids are globally unique per cpu and per operation on
2081 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2082 * occurs on the right processor and that there was no operation on the
2083 * linked list in between.
2084 */
2085 tid = c->tid;
2086 barrier();
8a5ec0ba 2087
9dfc6e68 2088 object = c->freelist;
9dfc6e68 2089 if (unlikely(!object || !node_match(c, node)))
894b8788 2090
dfb4f096 2091 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
2092
2093 else {
8a5ec0ba 2094 /*
25985edc 2095 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2096 * operation and if we are on the right processor.
2097 *
2098 * The cmpxchg does the following atomically (without lock semantics!)
2099 * 1. Relocate first pointer to the current per cpu area.
2100 * 2. Verify that tid and freelist have not been changed
2101 * 3. If they were not changed replace tid and freelist
2102 *
2103 * Since this is without lock semantics the protection is only against
2104 * code executing on this cpu *not* from access by other cpus.
2105 */
30106b8c 2106 if (unlikely(!irqsafe_cpu_cmpxchg_double(
8a5ec0ba
CL
2107 s->cpu_slab->freelist, s->cpu_slab->tid,
2108 object, tid,
1393d9a1 2109 get_freepointer_safe(s, object), next_tid(tid)))) {
8a5ec0ba
CL
2110
2111 note_cmpxchg_failure("slab_alloc", s, tid);
2112 goto redo;
2113 }
84e554e6 2114 stat(s, ALLOC_FASTPATH);
894b8788 2115 }
8a5ec0ba 2116
74e2134f 2117 if (unlikely(gfpflags & __GFP_ZERO) && object)
ff12059e 2118 memset(object, 0, s->objsize);
d07dbea4 2119
c016b0bd 2120 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2121
894b8788 2122 return object;
81819f0f
CL
2123}
2124
2125void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2126{
2154a336 2127 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2128
ca2b84cb 2129 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
2130
2131 return ret;
81819f0f
CL
2132}
2133EXPORT_SYMBOL(kmem_cache_alloc);
2134
0f24f128 2135#ifdef CONFIG_TRACING
4a92379b
RK
2136void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2137{
2138 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2139 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2140 return ret;
2141}
2142EXPORT_SYMBOL(kmem_cache_alloc_trace);
2143
2144void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 2145{
4a92379b
RK
2146 void *ret = kmalloc_order(size, flags, order);
2147 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2148 return ret;
5b882be4 2149}
4a92379b 2150EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
2151#endif
2152
81819f0f
CL
2153#ifdef CONFIG_NUMA
2154void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2155{
5b882be4
EGM
2156 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2157
ca2b84cb
EGM
2158 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2159 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
2160
2161 return ret;
81819f0f
CL
2162}
2163EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2164
0f24f128 2165#ifdef CONFIG_TRACING
4a92379b 2166void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2167 gfp_t gfpflags,
4a92379b 2168 int node, size_t size)
5b882be4 2169{
4a92379b
RK
2170 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2171
2172 trace_kmalloc_node(_RET_IP_, ret,
2173 size, s->size, gfpflags, node);
2174 return ret;
5b882be4 2175}
4a92379b 2176EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2177#endif
5d1f57e4 2178#endif
5b882be4 2179
81819f0f 2180/*
894b8788
CL
2181 * Slow patch handling. This may still be called frequently since objects
2182 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2183 *
894b8788
CL
2184 * So we still attempt to reduce cache line usage. Just take the slab
2185 * lock and free the item. If there is no additional partial page
2186 * handling required then we can return immediately.
81819f0f 2187 */
894b8788 2188static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2189 void *x, unsigned long addr)
81819f0f
CL
2190{
2191 void *prior;
2192 void **object = (void *)x;
2cfb7455
CL
2193 int was_frozen;
2194 int inuse;
2195 struct page new;
2196 unsigned long counters;
2197 struct kmem_cache_node *n = NULL;
61728d1e 2198 unsigned long uninitialized_var(flags);
81819f0f 2199
8a5ec0ba 2200 stat(s, FREE_SLOWPATH);
81819f0f 2201
8dc16c6c 2202 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
80f08c19 2203 return;
6446faa2 2204
2cfb7455
CL
2205 do {
2206 prior = page->freelist;
2207 counters = page->counters;
2208 set_freepointer(s, object, prior);
2209 new.counters = counters;
2210 was_frozen = new.frozen;
2211 new.inuse--;
2212 if ((!new.inuse || !prior) && !was_frozen && !n) {
2213 n = get_node(s, page_to_nid(page));
2214 /*
2215 * Speculatively acquire the list_lock.
2216 * If the cmpxchg does not succeed then we may
2217 * drop the list_lock without any processing.
2218 *
2219 * Otherwise the list_lock will synchronize with
2220 * other processors updating the list of slabs.
2221 */
80f08c19 2222 spin_lock_irqsave(&n->list_lock, flags);
2cfb7455
CL
2223 }
2224 inuse = new.inuse;
81819f0f 2225
2cfb7455
CL
2226 } while (!cmpxchg_double_slab(s, page,
2227 prior, counters,
2228 object, new.counters,
2229 "__slab_free"));
81819f0f 2230
2cfb7455
CL
2231 if (likely(!n)) {
2232 /*
2233 * The list lock was not taken therefore no list
2234 * activity can be necessary.
2235 */
2236 if (was_frozen)
2237 stat(s, FREE_FROZEN);
80f08c19 2238 return;
2cfb7455 2239 }
81819f0f
CL
2240
2241 /*
2cfb7455
CL
2242 * was_frozen may have been set after we acquired the list_lock in
2243 * an earlier loop. So we need to check it here again.
81819f0f 2244 */
2cfb7455
CL
2245 if (was_frozen)
2246 stat(s, FREE_FROZEN);
2247 else {
2248 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2249 goto slab_empty;
5cc6eee8 2250
2cfb7455
CL
2251 /*
2252 * Objects left in the slab. If it was not on the partial list before
2253 * then add it.
2254 */
2255 if (unlikely(!prior)) {
2256 remove_full(s, page);
2257 add_partial(n, page, 0);
2258 stat(s, FREE_ADD_PARTIAL);
2259 }
8ff12cfc 2260 }
80f08c19 2261 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2262 return;
2263
2264slab_empty:
a973e9dd 2265 if (prior) {
81819f0f 2266 /*
672bba3a 2267 * Slab still on the partial list.
81819f0f 2268 */
5cc6eee8 2269 remove_partial(n, page);
84e554e6 2270 stat(s, FREE_REMOVE_PARTIAL);
8ff12cfc 2271 }
2cfb7455 2272
80f08c19 2273 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2274 stat(s, FREE_SLAB);
81819f0f 2275 discard_slab(s, page);
81819f0f
CL
2276}
2277
894b8788
CL
2278/*
2279 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2280 * can perform fastpath freeing without additional function calls.
2281 *
2282 * The fastpath is only possible if we are freeing to the current cpu slab
2283 * of this processor. This typically the case if we have just allocated
2284 * the item before.
2285 *
2286 * If fastpath is not possible then fall back to __slab_free where we deal
2287 * with all sorts of special processing.
2288 */
06428780 2289static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2290 struct page *page, void *x, unsigned long addr)
894b8788
CL
2291{
2292 void **object = (void *)x;
dfb4f096 2293 struct kmem_cache_cpu *c;
8a5ec0ba 2294 unsigned long tid;
1f84260c 2295
c016b0bd
CL
2296 slab_free_hook(s, x);
2297
8a5ec0ba 2298redo:
a24c5a0e 2299
8a5ec0ba
CL
2300 /*
2301 * Determine the currently cpus per cpu slab.
2302 * The cpu may change afterward. However that does not matter since
2303 * data is retrieved via this pointer. If we are on the same cpu
2304 * during the cmpxchg then the free will succedd.
2305 */
9dfc6e68 2306 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2307
8a5ec0ba
CL
2308 tid = c->tid;
2309 barrier();
c016b0bd 2310
442b06bc 2311 if (likely(page == c->page)) {
ff12059e 2312 set_freepointer(s, object, c->freelist);
8a5ec0ba 2313
30106b8c 2314 if (unlikely(!irqsafe_cpu_cmpxchg_double(
8a5ec0ba
CL
2315 s->cpu_slab->freelist, s->cpu_slab->tid,
2316 c->freelist, tid,
2317 object, next_tid(tid)))) {
2318
2319 note_cmpxchg_failure("slab_free", s, tid);
2320 goto redo;
2321 }
84e554e6 2322 stat(s, FREE_FASTPATH);
894b8788 2323 } else
ff12059e 2324 __slab_free(s, page, x, addr);
894b8788 2325
894b8788
CL
2326}
2327
81819f0f
CL
2328void kmem_cache_free(struct kmem_cache *s, void *x)
2329{
77c5e2d0 2330 struct page *page;
81819f0f 2331
b49af68f 2332 page = virt_to_head_page(x);
81819f0f 2333
ce71e27c 2334 slab_free(s, page, x, _RET_IP_);
5b882be4 2335
ca2b84cb 2336 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2337}
2338EXPORT_SYMBOL(kmem_cache_free);
2339
81819f0f 2340/*
672bba3a
CL
2341 * Object placement in a slab is made very easy because we always start at
2342 * offset 0. If we tune the size of the object to the alignment then we can
2343 * get the required alignment by putting one properly sized object after
2344 * another.
81819f0f
CL
2345 *
2346 * Notice that the allocation order determines the sizes of the per cpu
2347 * caches. Each processor has always one slab available for allocations.
2348 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2349 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2350 * locking overhead.
81819f0f
CL
2351 */
2352
2353/*
2354 * Mininum / Maximum order of slab pages. This influences locking overhead
2355 * and slab fragmentation. A higher order reduces the number of partial slabs
2356 * and increases the number of allocations possible without having to
2357 * take the list_lock.
2358 */
2359static int slub_min_order;
114e9e89 2360static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2361static int slub_min_objects;
81819f0f
CL
2362
2363/*
2364 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2365 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2366 */
2367static int slub_nomerge;
2368
81819f0f
CL
2369/*
2370 * Calculate the order of allocation given an slab object size.
2371 *
672bba3a
CL
2372 * The order of allocation has significant impact on performance and other
2373 * system components. Generally order 0 allocations should be preferred since
2374 * order 0 does not cause fragmentation in the page allocator. Larger objects
2375 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2376 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2377 * would be wasted.
2378 *
2379 * In order to reach satisfactory performance we must ensure that a minimum
2380 * number of objects is in one slab. Otherwise we may generate too much
2381 * activity on the partial lists which requires taking the list_lock. This is
2382 * less a concern for large slabs though which are rarely used.
81819f0f 2383 *
672bba3a
CL
2384 * slub_max_order specifies the order where we begin to stop considering the
2385 * number of objects in a slab as critical. If we reach slub_max_order then
2386 * we try to keep the page order as low as possible. So we accept more waste
2387 * of space in favor of a small page order.
81819f0f 2388 *
672bba3a
CL
2389 * Higher order allocations also allow the placement of more objects in a
2390 * slab and thereby reduce object handling overhead. If the user has
2391 * requested a higher mininum order then we start with that one instead of
2392 * the smallest order which will fit the object.
81819f0f 2393 */
5e6d444e 2394static inline int slab_order(int size, int min_objects,
ab9a0f19 2395 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2396{
2397 int order;
2398 int rem;
6300ea75 2399 int min_order = slub_min_order;
81819f0f 2400
ab9a0f19 2401 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2402 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2403
6300ea75 2404 for (order = max(min_order,
5e6d444e
CL
2405 fls(min_objects * size - 1) - PAGE_SHIFT);
2406 order <= max_order; order++) {
81819f0f 2407
5e6d444e 2408 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2409
ab9a0f19 2410 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2411 continue;
2412
ab9a0f19 2413 rem = (slab_size - reserved) % size;
81819f0f 2414
5e6d444e 2415 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2416 break;
2417
2418 }
672bba3a 2419
81819f0f
CL
2420 return order;
2421}
2422
ab9a0f19 2423static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2424{
2425 int order;
2426 int min_objects;
2427 int fraction;
e8120ff1 2428 int max_objects;
5e6d444e
CL
2429
2430 /*
2431 * Attempt to find best configuration for a slab. This
2432 * works by first attempting to generate a layout with
2433 * the best configuration and backing off gradually.
2434 *
2435 * First we reduce the acceptable waste in a slab. Then
2436 * we reduce the minimum objects required in a slab.
2437 */
2438 min_objects = slub_min_objects;
9b2cd506
CL
2439 if (!min_objects)
2440 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2441 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2442 min_objects = min(min_objects, max_objects);
2443
5e6d444e 2444 while (min_objects > 1) {
c124f5b5 2445 fraction = 16;
5e6d444e
CL
2446 while (fraction >= 4) {
2447 order = slab_order(size, min_objects,
ab9a0f19 2448 slub_max_order, fraction, reserved);
5e6d444e
CL
2449 if (order <= slub_max_order)
2450 return order;
2451 fraction /= 2;
2452 }
5086c389 2453 min_objects--;
5e6d444e
CL
2454 }
2455
2456 /*
2457 * We were unable to place multiple objects in a slab. Now
2458 * lets see if we can place a single object there.
2459 */
ab9a0f19 2460 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2461 if (order <= slub_max_order)
2462 return order;
2463
2464 /*
2465 * Doh this slab cannot be placed using slub_max_order.
2466 */
ab9a0f19 2467 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2468 if (order < MAX_ORDER)
5e6d444e
CL
2469 return order;
2470 return -ENOSYS;
2471}
2472
81819f0f 2473/*
672bba3a 2474 * Figure out what the alignment of the objects will be.
81819f0f
CL
2475 */
2476static unsigned long calculate_alignment(unsigned long flags,
2477 unsigned long align, unsigned long size)
2478{
2479 /*
6446faa2
CL
2480 * If the user wants hardware cache aligned objects then follow that
2481 * suggestion if the object is sufficiently large.
81819f0f 2482 *
6446faa2
CL
2483 * The hardware cache alignment cannot override the specified
2484 * alignment though. If that is greater then use it.
81819f0f 2485 */
b6210386
NP
2486 if (flags & SLAB_HWCACHE_ALIGN) {
2487 unsigned long ralign = cache_line_size();
2488 while (size <= ralign / 2)
2489 ralign /= 2;
2490 align = max(align, ralign);
2491 }
81819f0f
CL
2492
2493 if (align < ARCH_SLAB_MINALIGN)
b6210386 2494 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2495
2496 return ALIGN(align, sizeof(void *));
2497}
2498
5595cffc
PE
2499static void
2500init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2501{
2502 n->nr_partial = 0;
81819f0f
CL
2503 spin_lock_init(&n->list_lock);
2504 INIT_LIST_HEAD(&n->partial);
8ab1372f 2505#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2506 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2507 atomic_long_set(&n->total_objects, 0);
643b1138 2508 INIT_LIST_HEAD(&n->full);
8ab1372f 2509#endif
81819f0f
CL
2510}
2511
55136592 2512static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2513{
6c182dc0
CL
2514 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2515 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2516
8a5ec0ba 2517 /*
d4d84fef
CM
2518 * Must align to double word boundary for the double cmpxchg
2519 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2520 */
d4d84fef
CM
2521 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2522 2 * sizeof(void *));
8a5ec0ba
CL
2523
2524 if (!s->cpu_slab)
2525 return 0;
2526
2527 init_kmem_cache_cpus(s);
4c93c355 2528
8a5ec0ba 2529 return 1;
4c93c355 2530}
4c93c355 2531
51df1142
CL
2532static struct kmem_cache *kmem_cache_node;
2533
81819f0f
CL
2534/*
2535 * No kmalloc_node yet so do it by hand. We know that this is the first
2536 * slab on the node for this slabcache. There are no concurrent accesses
2537 * possible.
2538 *
2539 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2540 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2541 * memory on a fresh node that has no slab structures yet.
81819f0f 2542 */
55136592 2543static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2544{
2545 struct page *page;
2546 struct kmem_cache_node *n;
2547
51df1142 2548 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2549
51df1142 2550 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2551
2552 BUG_ON(!page);
a2f92ee7
CL
2553 if (page_to_nid(page) != node) {
2554 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2555 "node %d\n", node);
2556 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2557 "in order to be able to continue\n");
2558 }
2559
81819f0f
CL
2560 n = page->freelist;
2561 BUG_ON(!n);
51df1142 2562 page->freelist = get_freepointer(kmem_cache_node, n);
81819f0f 2563 page->inuse++;
8cb0a506 2564 page->frozen = 0;
51df1142 2565 kmem_cache_node->node[node] = n;
8ab1372f 2566#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2567 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2568 init_tracking(kmem_cache_node, n);
8ab1372f 2569#endif
51df1142
CL
2570 init_kmem_cache_node(n, kmem_cache_node);
2571 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2572
7c2e132c 2573 add_partial(n, page, 0);
81819f0f
CL
2574}
2575
2576static void free_kmem_cache_nodes(struct kmem_cache *s)
2577{
2578 int node;
2579
f64dc58c 2580 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2581 struct kmem_cache_node *n = s->node[node];
51df1142 2582
73367bd8 2583 if (n)
51df1142
CL
2584 kmem_cache_free(kmem_cache_node, n);
2585
81819f0f
CL
2586 s->node[node] = NULL;
2587 }
2588}
2589
55136592 2590static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2591{
2592 int node;
81819f0f 2593
f64dc58c 2594 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2595 struct kmem_cache_node *n;
2596
73367bd8 2597 if (slab_state == DOWN) {
55136592 2598 early_kmem_cache_node_alloc(node);
73367bd8
AD
2599 continue;
2600 }
51df1142 2601 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2602 GFP_KERNEL, node);
81819f0f 2603
73367bd8
AD
2604 if (!n) {
2605 free_kmem_cache_nodes(s);
2606 return 0;
81819f0f 2607 }
73367bd8 2608
81819f0f 2609 s->node[node] = n;
5595cffc 2610 init_kmem_cache_node(n, s);
81819f0f
CL
2611 }
2612 return 1;
2613}
81819f0f 2614
c0bdb232 2615static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2616{
2617 if (min < MIN_PARTIAL)
2618 min = MIN_PARTIAL;
2619 else if (min > MAX_PARTIAL)
2620 min = MAX_PARTIAL;
2621 s->min_partial = min;
2622}
2623
81819f0f
CL
2624/*
2625 * calculate_sizes() determines the order and the distribution of data within
2626 * a slab object.
2627 */
06b285dc 2628static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2629{
2630 unsigned long flags = s->flags;
2631 unsigned long size = s->objsize;
2632 unsigned long align = s->align;
834f3d11 2633 int order;
81819f0f 2634
d8b42bf5
CL
2635 /*
2636 * Round up object size to the next word boundary. We can only
2637 * place the free pointer at word boundaries and this determines
2638 * the possible location of the free pointer.
2639 */
2640 size = ALIGN(size, sizeof(void *));
2641
2642#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2643 /*
2644 * Determine if we can poison the object itself. If the user of
2645 * the slab may touch the object after free or before allocation
2646 * then we should never poison the object itself.
2647 */
2648 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2649 !s->ctor)
81819f0f
CL
2650 s->flags |= __OBJECT_POISON;
2651 else
2652 s->flags &= ~__OBJECT_POISON;
2653
81819f0f
CL
2654
2655 /*
672bba3a 2656 * If we are Redzoning then check if there is some space between the
81819f0f 2657 * end of the object and the free pointer. If not then add an
672bba3a 2658 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2659 */
2660 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2661 size += sizeof(void *);
41ecc55b 2662#endif
81819f0f
CL
2663
2664 /*
672bba3a
CL
2665 * With that we have determined the number of bytes in actual use
2666 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2667 */
2668 s->inuse = size;
2669
2670 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2671 s->ctor)) {
81819f0f
CL
2672 /*
2673 * Relocate free pointer after the object if it is not
2674 * permitted to overwrite the first word of the object on
2675 * kmem_cache_free.
2676 *
2677 * This is the case if we do RCU, have a constructor or
2678 * destructor or are poisoning the objects.
2679 */
2680 s->offset = size;
2681 size += sizeof(void *);
2682 }
2683
c12b3c62 2684#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2685 if (flags & SLAB_STORE_USER)
2686 /*
2687 * Need to store information about allocs and frees after
2688 * the object.
2689 */
2690 size += 2 * sizeof(struct track);
2691
be7b3fbc 2692 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2693 /*
2694 * Add some empty padding so that we can catch
2695 * overwrites from earlier objects rather than let
2696 * tracking information or the free pointer be
0211a9c8 2697 * corrupted if a user writes before the start
81819f0f
CL
2698 * of the object.
2699 */
2700 size += sizeof(void *);
41ecc55b 2701#endif
672bba3a 2702
81819f0f
CL
2703 /*
2704 * Determine the alignment based on various parameters that the
65c02d4c
CL
2705 * user specified and the dynamic determination of cache line size
2706 * on bootup.
81819f0f
CL
2707 */
2708 align = calculate_alignment(flags, align, s->objsize);
dcb0ce1b 2709 s->align = align;
81819f0f
CL
2710
2711 /*
2712 * SLUB stores one object immediately after another beginning from
2713 * offset 0. In order to align the objects we have to simply size
2714 * each object to conform to the alignment.
2715 */
2716 size = ALIGN(size, align);
2717 s->size = size;
06b285dc
CL
2718 if (forced_order >= 0)
2719 order = forced_order;
2720 else
ab9a0f19 2721 order = calculate_order(size, s->reserved);
81819f0f 2722
834f3d11 2723 if (order < 0)
81819f0f
CL
2724 return 0;
2725
b7a49f0d 2726 s->allocflags = 0;
834f3d11 2727 if (order)
b7a49f0d
CL
2728 s->allocflags |= __GFP_COMP;
2729
2730 if (s->flags & SLAB_CACHE_DMA)
2731 s->allocflags |= SLUB_DMA;
2732
2733 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2734 s->allocflags |= __GFP_RECLAIMABLE;
2735
81819f0f
CL
2736 /*
2737 * Determine the number of objects per slab
2738 */
ab9a0f19
LJ
2739 s->oo = oo_make(order, size, s->reserved);
2740 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
2741 if (oo_objects(s->oo) > oo_objects(s->max))
2742 s->max = s->oo;
81819f0f 2743
834f3d11 2744 return !!oo_objects(s->oo);
81819f0f
CL
2745
2746}
2747
55136592 2748static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
2749 const char *name, size_t size,
2750 size_t align, unsigned long flags,
51cc5068 2751 void (*ctor)(void *))
81819f0f
CL
2752{
2753 memset(s, 0, kmem_size);
2754 s->name = name;
2755 s->ctor = ctor;
81819f0f 2756 s->objsize = size;
81819f0f 2757 s->align = align;
ba0268a8 2758 s->flags = kmem_cache_flags(size, flags, name, ctor);
ab9a0f19 2759 s->reserved = 0;
81819f0f 2760
da9a638c
LJ
2761 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
2762 s->reserved = sizeof(struct rcu_head);
81819f0f 2763
06b285dc 2764 if (!calculate_sizes(s, -1))
81819f0f 2765 goto error;
3de47213
DR
2766 if (disable_higher_order_debug) {
2767 /*
2768 * Disable debugging flags that store metadata if the min slab
2769 * order increased.
2770 */
2771 if (get_order(s->size) > get_order(s->objsize)) {
2772 s->flags &= ~DEBUG_METADATA_FLAGS;
2773 s->offset = 0;
2774 if (!calculate_sizes(s, -1))
2775 goto error;
2776 }
2777 }
81819f0f 2778
b789ef51
CL
2779#ifdef CONFIG_CMPXCHG_DOUBLE
2780 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
2781 /* Enable fast mode */
2782 s->flags |= __CMPXCHG_DOUBLE;
2783#endif
2784
3b89d7d8
DR
2785 /*
2786 * The larger the object size is, the more pages we want on the partial
2787 * list to avoid pounding the page allocator excessively.
2788 */
c0bdb232 2789 set_min_partial(s, ilog2(s->size));
81819f0f
CL
2790 s->refcount = 1;
2791#ifdef CONFIG_NUMA
e2cb96b7 2792 s->remote_node_defrag_ratio = 1000;
81819f0f 2793#endif
55136592 2794 if (!init_kmem_cache_nodes(s))
dfb4f096 2795 goto error;
81819f0f 2796
55136592 2797 if (alloc_kmem_cache_cpus(s))
81819f0f 2798 return 1;
ff12059e 2799
4c93c355 2800 free_kmem_cache_nodes(s);
81819f0f
CL
2801error:
2802 if (flags & SLAB_PANIC)
2803 panic("Cannot create slab %s size=%lu realsize=%u "
2804 "order=%u offset=%u flags=%lx\n",
834f3d11 2805 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2806 s->offset, flags);
2807 return 0;
2808}
81819f0f 2809
81819f0f
CL
2810/*
2811 * Determine the size of a slab object
2812 */
2813unsigned int kmem_cache_size(struct kmem_cache *s)
2814{
2815 return s->objsize;
2816}
2817EXPORT_SYMBOL(kmem_cache_size);
2818
33b12c38
CL
2819static void list_slab_objects(struct kmem_cache *s, struct page *page,
2820 const char *text)
2821{
2822#ifdef CONFIG_SLUB_DEBUG
2823 void *addr = page_address(page);
2824 void *p;
a5dd5c11
NK
2825 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2826 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
2827 if (!map)
2828 return;
33b12c38
CL
2829 slab_err(s, page, "%s", text);
2830 slab_lock(page);
33b12c38 2831
5f80b13a 2832 get_map(s, page, map);
33b12c38
CL
2833 for_each_object(p, s, addr, page->objects) {
2834
2835 if (!test_bit(slab_index(p, s, addr), map)) {
2836 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2837 p, p - addr);
2838 print_tracking(s, p);
2839 }
2840 }
2841 slab_unlock(page);
bbd7d57b 2842 kfree(map);
33b12c38
CL
2843#endif
2844}
2845
81819f0f 2846/*
599870b1 2847 * Attempt to free all partial slabs on a node.
81819f0f 2848 */
599870b1 2849static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2850{
81819f0f
CL
2851 unsigned long flags;
2852 struct page *page, *h;
2853
2854 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2855 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 2856 if (!page->inuse) {
5cc6eee8 2857 remove_partial(n, page);
81819f0f 2858 discard_slab(s, page);
33b12c38
CL
2859 } else {
2860 list_slab_objects(s, page,
2861 "Objects remaining on kmem_cache_close()");
599870b1 2862 }
33b12c38 2863 }
81819f0f 2864 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2865}
2866
2867/*
672bba3a 2868 * Release all resources used by a slab cache.
81819f0f 2869 */
0c710013 2870static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2871{
2872 int node;
2873
2874 flush_all(s);
9dfc6e68 2875 free_percpu(s->cpu_slab);
81819f0f 2876 /* Attempt to free all objects */
f64dc58c 2877 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2878 struct kmem_cache_node *n = get_node(s, node);
2879
599870b1
CL
2880 free_partial(s, n);
2881 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2882 return 1;
2883 }
2884 free_kmem_cache_nodes(s);
2885 return 0;
2886}
2887
2888/*
2889 * Close a cache and release the kmem_cache structure
2890 * (must be used for caches created using kmem_cache_create)
2891 */
2892void kmem_cache_destroy(struct kmem_cache *s)
2893{
2894 down_write(&slub_lock);
2895 s->refcount--;
2896 if (!s->refcount) {
2897 list_del(&s->list);
d629d819
PE
2898 if (kmem_cache_close(s)) {
2899 printk(KERN_ERR "SLUB %s: %s called for cache that "
2900 "still has objects.\n", s->name, __func__);
2901 dump_stack();
2902 }
d76b1590
ED
2903 if (s->flags & SLAB_DESTROY_BY_RCU)
2904 rcu_barrier();
81819f0f 2905 sysfs_slab_remove(s);
2bce6485
CL
2906 }
2907 up_write(&slub_lock);
81819f0f
CL
2908}
2909EXPORT_SYMBOL(kmem_cache_destroy);
2910
2911/********************************************************************
2912 * Kmalloc subsystem
2913 *******************************************************************/
2914
51df1142 2915struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
2916EXPORT_SYMBOL(kmalloc_caches);
2917
51df1142
CL
2918static struct kmem_cache *kmem_cache;
2919
55136592 2920#ifdef CONFIG_ZONE_DMA
51df1142 2921static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
2922#endif
2923
81819f0f
CL
2924static int __init setup_slub_min_order(char *str)
2925{
06428780 2926 get_option(&str, &slub_min_order);
81819f0f
CL
2927
2928 return 1;
2929}
2930
2931__setup("slub_min_order=", setup_slub_min_order);
2932
2933static int __init setup_slub_max_order(char *str)
2934{
06428780 2935 get_option(&str, &slub_max_order);
818cf590 2936 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
2937
2938 return 1;
2939}
2940
2941__setup("slub_max_order=", setup_slub_max_order);
2942
2943static int __init setup_slub_min_objects(char *str)
2944{
06428780 2945 get_option(&str, &slub_min_objects);
81819f0f
CL
2946
2947 return 1;
2948}
2949
2950__setup("slub_min_objects=", setup_slub_min_objects);
2951
2952static int __init setup_slub_nomerge(char *str)
2953{
2954 slub_nomerge = 1;
2955 return 1;
2956}
2957
2958__setup("slub_nomerge", setup_slub_nomerge);
2959
51df1142
CL
2960static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2961 int size, unsigned int flags)
81819f0f 2962{
51df1142
CL
2963 struct kmem_cache *s;
2964
2965 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2966
83b519e8
PE
2967 /*
2968 * This function is called with IRQs disabled during early-boot on
2969 * single CPU so there's no need to take slub_lock here.
2970 */
55136592 2971 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 2972 flags, NULL))
81819f0f
CL
2973 goto panic;
2974
2975 list_add(&s->list, &slab_caches);
51df1142 2976 return s;
81819f0f
CL
2977
2978panic:
2979 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 2980 return NULL;
81819f0f
CL
2981}
2982
f1b26339
CL
2983/*
2984 * Conversion table for small slabs sizes / 8 to the index in the
2985 * kmalloc array. This is necessary for slabs < 192 since we have non power
2986 * of two cache sizes there. The size of larger slabs can be determined using
2987 * fls.
2988 */
2989static s8 size_index[24] = {
2990 3, /* 8 */
2991 4, /* 16 */
2992 5, /* 24 */
2993 5, /* 32 */
2994 6, /* 40 */
2995 6, /* 48 */
2996 6, /* 56 */
2997 6, /* 64 */
2998 1, /* 72 */
2999 1, /* 80 */
3000 1, /* 88 */
3001 1, /* 96 */
3002 7, /* 104 */
3003 7, /* 112 */
3004 7, /* 120 */
3005 7, /* 128 */
3006 2, /* 136 */
3007 2, /* 144 */
3008 2, /* 152 */
3009 2, /* 160 */
3010 2, /* 168 */
3011 2, /* 176 */
3012 2, /* 184 */
3013 2 /* 192 */
3014};
3015
acdfcd04
AK
3016static inline int size_index_elem(size_t bytes)
3017{
3018 return (bytes - 1) / 8;
3019}
3020
81819f0f
CL
3021static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3022{
f1b26339 3023 int index;
81819f0f 3024
f1b26339
CL
3025 if (size <= 192) {
3026 if (!size)
3027 return ZERO_SIZE_PTR;
81819f0f 3028
acdfcd04 3029 index = size_index[size_index_elem(size)];
aadb4bc4 3030 } else
f1b26339 3031 index = fls(size - 1);
81819f0f
CL
3032
3033#ifdef CONFIG_ZONE_DMA
f1b26339 3034 if (unlikely((flags & SLUB_DMA)))
51df1142 3035 return kmalloc_dma_caches[index];
f1b26339 3036
81819f0f 3037#endif
51df1142 3038 return kmalloc_caches[index];
81819f0f
CL
3039}
3040
3041void *__kmalloc(size_t size, gfp_t flags)
3042{
aadb4bc4 3043 struct kmem_cache *s;
5b882be4 3044 void *ret;
81819f0f 3045
ffadd4d0 3046 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 3047 return kmalloc_large(size, flags);
aadb4bc4
CL
3048
3049 s = get_slab(size, flags);
3050
3051 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3052 return s;
3053
2154a336 3054 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 3055
ca2b84cb 3056 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3057
3058 return ret;
81819f0f
CL
3059}
3060EXPORT_SYMBOL(__kmalloc);
3061
5d1f57e4 3062#ifdef CONFIG_NUMA
f619cfe1
CL
3063static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3064{
b1eeab67 3065 struct page *page;
e4f7c0b4 3066 void *ptr = NULL;
f619cfe1 3067
b1eeab67
VN
3068 flags |= __GFP_COMP | __GFP_NOTRACK;
3069 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3070 if (page)
e4f7c0b4
CM
3071 ptr = page_address(page);
3072
3073 kmemleak_alloc(ptr, size, 1, flags);
3074 return ptr;
f619cfe1
CL
3075}
3076
81819f0f
CL
3077void *__kmalloc_node(size_t size, gfp_t flags, int node)
3078{
aadb4bc4 3079 struct kmem_cache *s;
5b882be4 3080 void *ret;
81819f0f 3081
057685cf 3082 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
3083 ret = kmalloc_large_node(size, flags, node);
3084
ca2b84cb
EGM
3085 trace_kmalloc_node(_RET_IP_, ret,
3086 size, PAGE_SIZE << get_order(size),
3087 flags, node);
5b882be4
EGM
3088
3089 return ret;
3090 }
aadb4bc4
CL
3091
3092 s = get_slab(size, flags);
3093
3094 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3095 return s;
3096
5b882be4
EGM
3097 ret = slab_alloc(s, flags, node, _RET_IP_);
3098
ca2b84cb 3099 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3100
3101 return ret;
81819f0f
CL
3102}
3103EXPORT_SYMBOL(__kmalloc_node);
3104#endif
3105
3106size_t ksize(const void *object)
3107{
272c1d21 3108 struct page *page;
81819f0f 3109
ef8b4520 3110 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3111 return 0;
3112
294a80a8 3113 page = virt_to_head_page(object);
294a80a8 3114
76994412
PE
3115 if (unlikely(!PageSlab(page))) {
3116 WARN_ON(!PageCompound(page));
294a80a8 3117 return PAGE_SIZE << compound_order(page);
76994412 3118 }
81819f0f 3119
b3d41885 3120 return slab_ksize(page->slab);
81819f0f 3121}
b1aabecd 3122EXPORT_SYMBOL(ksize);
81819f0f
CL
3123
3124void kfree(const void *x)
3125{
81819f0f 3126 struct page *page;
5bb983b0 3127 void *object = (void *)x;
81819f0f 3128
2121db74
PE
3129 trace_kfree(_RET_IP_, x);
3130
2408c550 3131 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3132 return;
3133
b49af68f 3134 page = virt_to_head_page(x);
aadb4bc4 3135 if (unlikely(!PageSlab(page))) {
0937502a 3136 BUG_ON(!PageCompound(page));
e4f7c0b4 3137 kmemleak_free(x);
aadb4bc4
CL
3138 put_page(page);
3139 return;
3140 }
ce71e27c 3141 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
3142}
3143EXPORT_SYMBOL(kfree);
3144
2086d26a 3145/*
672bba3a
CL
3146 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3147 * the remaining slabs by the number of items in use. The slabs with the
3148 * most items in use come first. New allocations will then fill those up
3149 * and thus they can be removed from the partial lists.
3150 *
3151 * The slabs with the least items are placed last. This results in them
3152 * being allocated from last increasing the chance that the last objects
3153 * are freed in them.
2086d26a
CL
3154 */
3155int kmem_cache_shrink(struct kmem_cache *s)
3156{
3157 int node;
3158 int i;
3159 struct kmem_cache_node *n;
3160 struct page *page;
3161 struct page *t;
205ab99d 3162 int objects = oo_objects(s->max);
2086d26a 3163 struct list_head *slabs_by_inuse =
834f3d11 3164 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3165 unsigned long flags;
3166
3167 if (!slabs_by_inuse)
3168 return -ENOMEM;
3169
3170 flush_all(s);
f64dc58c 3171 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3172 n = get_node(s, node);
3173
3174 if (!n->nr_partial)
3175 continue;
3176
834f3d11 3177 for (i = 0; i < objects; i++)
2086d26a
CL
3178 INIT_LIST_HEAD(slabs_by_inuse + i);
3179
3180 spin_lock_irqsave(&n->list_lock, flags);
3181
3182 /*
672bba3a 3183 * Build lists indexed by the items in use in each slab.
2086d26a 3184 *
672bba3a
CL
3185 * Note that concurrent frees may occur while we hold the
3186 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3187 */
3188 list_for_each_entry_safe(page, t, &n->partial, lru) {
881db7fb 3189 if (!page->inuse) {
5cc6eee8 3190 remove_partial(n, page);
2086d26a
CL
3191 discard_slab(s, page);
3192 } else {
fcda3d89
CL
3193 list_move(&page->lru,
3194 slabs_by_inuse + page->inuse);
2086d26a
CL
3195 }
3196 }
3197
2086d26a 3198 /*
672bba3a
CL
3199 * Rebuild the partial list with the slabs filled up most
3200 * first and the least used slabs at the end.
2086d26a 3201 */
834f3d11 3202 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
3203 list_splice(slabs_by_inuse + i, n->partial.prev);
3204
2086d26a
CL
3205 spin_unlock_irqrestore(&n->list_lock, flags);
3206 }
3207
3208 kfree(slabs_by_inuse);
3209 return 0;
3210}
3211EXPORT_SYMBOL(kmem_cache_shrink);
3212
92a5bbc1 3213#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
3214static int slab_mem_going_offline_callback(void *arg)
3215{
3216 struct kmem_cache *s;
3217
3218 down_read(&slub_lock);
3219 list_for_each_entry(s, &slab_caches, list)
3220 kmem_cache_shrink(s);
3221 up_read(&slub_lock);
3222
3223 return 0;
3224}
3225
3226static void slab_mem_offline_callback(void *arg)
3227{
3228 struct kmem_cache_node *n;
3229 struct kmem_cache *s;
3230 struct memory_notify *marg = arg;
3231 int offline_node;
3232
3233 offline_node = marg->status_change_nid;
3234
3235 /*
3236 * If the node still has available memory. we need kmem_cache_node
3237 * for it yet.
3238 */
3239 if (offline_node < 0)
3240 return;
3241
3242 down_read(&slub_lock);
3243 list_for_each_entry(s, &slab_caches, list) {
3244 n = get_node(s, offline_node);
3245 if (n) {
3246 /*
3247 * if n->nr_slabs > 0, slabs still exist on the node
3248 * that is going down. We were unable to free them,
c9404c9c 3249 * and offline_pages() function shouldn't call this
b9049e23
YG
3250 * callback. So, we must fail.
3251 */
0f389ec6 3252 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3253
3254 s->node[offline_node] = NULL;
8de66a0c 3255 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3256 }
3257 }
3258 up_read(&slub_lock);
3259}
3260
3261static int slab_mem_going_online_callback(void *arg)
3262{
3263 struct kmem_cache_node *n;
3264 struct kmem_cache *s;
3265 struct memory_notify *marg = arg;
3266 int nid = marg->status_change_nid;
3267 int ret = 0;
3268
3269 /*
3270 * If the node's memory is already available, then kmem_cache_node is
3271 * already created. Nothing to do.
3272 */
3273 if (nid < 0)
3274 return 0;
3275
3276 /*
0121c619 3277 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3278 * allocate a kmem_cache_node structure in order to bring the node
3279 * online.
3280 */
3281 down_read(&slub_lock);
3282 list_for_each_entry(s, &slab_caches, list) {
3283 /*
3284 * XXX: kmem_cache_alloc_node will fallback to other nodes
3285 * since memory is not yet available from the node that
3286 * is brought up.
3287 */
8de66a0c 3288 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3289 if (!n) {
3290 ret = -ENOMEM;
3291 goto out;
3292 }
5595cffc 3293 init_kmem_cache_node(n, s);
b9049e23
YG
3294 s->node[nid] = n;
3295 }
3296out:
3297 up_read(&slub_lock);
3298 return ret;
3299}
3300
3301static int slab_memory_callback(struct notifier_block *self,
3302 unsigned long action, void *arg)
3303{
3304 int ret = 0;
3305
3306 switch (action) {
3307 case MEM_GOING_ONLINE:
3308 ret = slab_mem_going_online_callback(arg);
3309 break;
3310 case MEM_GOING_OFFLINE:
3311 ret = slab_mem_going_offline_callback(arg);
3312 break;
3313 case MEM_OFFLINE:
3314 case MEM_CANCEL_ONLINE:
3315 slab_mem_offline_callback(arg);
3316 break;
3317 case MEM_ONLINE:
3318 case MEM_CANCEL_OFFLINE:
3319 break;
3320 }
dc19f9db
KH
3321 if (ret)
3322 ret = notifier_from_errno(ret);
3323 else
3324 ret = NOTIFY_OK;
b9049e23
YG
3325 return ret;
3326}
3327
3328#endif /* CONFIG_MEMORY_HOTPLUG */
3329
81819f0f
CL
3330/********************************************************************
3331 * Basic setup of slabs
3332 *******************************************************************/
3333
51df1142
CL
3334/*
3335 * Used for early kmem_cache structures that were allocated using
3336 * the page allocator
3337 */
3338
3339static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3340{
3341 int node;
3342
3343 list_add(&s->list, &slab_caches);
3344 s->refcount = -1;
3345
3346 for_each_node_state(node, N_NORMAL_MEMORY) {
3347 struct kmem_cache_node *n = get_node(s, node);
3348 struct page *p;
3349
3350 if (n) {
3351 list_for_each_entry(p, &n->partial, lru)
3352 p->slab = s;
3353
607bf324 3354#ifdef CONFIG_SLUB_DEBUG
51df1142
CL
3355 list_for_each_entry(p, &n->full, lru)
3356 p->slab = s;
3357#endif
3358 }
3359 }
3360}
3361
81819f0f
CL
3362void __init kmem_cache_init(void)
3363{
3364 int i;
4b356be0 3365 int caches = 0;
51df1142
CL
3366 struct kmem_cache *temp_kmem_cache;
3367 int order;
51df1142
CL
3368 struct kmem_cache *temp_kmem_cache_node;
3369 unsigned long kmalloc_size;
3370
3371 kmem_size = offsetof(struct kmem_cache, node) +
3372 nr_node_ids * sizeof(struct kmem_cache_node *);
3373
3374 /* Allocate two kmem_caches from the page allocator */
3375 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3376 order = get_order(2 * kmalloc_size);
3377 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3378
81819f0f
CL
3379 /*
3380 * Must first have the slab cache available for the allocations of the
672bba3a 3381 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3382 * kmem_cache_open for slab_state == DOWN.
3383 */
51df1142
CL
3384 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3385
3386 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3387 sizeof(struct kmem_cache_node),
3388 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3389
0c40ba4f 3390 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3391
3392 /* Able to allocate the per node structures */
3393 slab_state = PARTIAL;
3394
51df1142
CL
3395 temp_kmem_cache = kmem_cache;
3396 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3397 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3398 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3399 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3400
51df1142
CL
3401 /*
3402 * Allocate kmem_cache_node properly from the kmem_cache slab.
3403 * kmem_cache_node is separately allocated so no need to
3404 * update any list pointers.
3405 */
3406 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3407
51df1142
CL
3408 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3409 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3410
3411 kmem_cache_bootstrap_fixup(kmem_cache_node);
3412
3413 caches++;
51df1142
CL
3414 kmem_cache_bootstrap_fixup(kmem_cache);
3415 caches++;
3416 /* Free temporary boot structure */
3417 free_pages((unsigned long)temp_kmem_cache, order);
3418
3419 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3420
3421 /*
3422 * Patch up the size_index table if we have strange large alignment
3423 * requirements for the kmalloc array. This is only the case for
6446faa2 3424 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3425 *
3426 * Largest permitted alignment is 256 bytes due to the way we
3427 * handle the index determination for the smaller caches.
3428 *
3429 * Make sure that nothing crazy happens if someone starts tinkering
3430 * around with ARCH_KMALLOC_MINALIGN
3431 */
3432 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3433 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3434
acdfcd04
AK
3435 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3436 int elem = size_index_elem(i);
3437 if (elem >= ARRAY_SIZE(size_index))
3438 break;
3439 size_index[elem] = KMALLOC_SHIFT_LOW;
3440 }
f1b26339 3441
acdfcd04
AK
3442 if (KMALLOC_MIN_SIZE == 64) {
3443 /*
3444 * The 96 byte size cache is not used if the alignment
3445 * is 64 byte.
3446 */
3447 for (i = 64 + 8; i <= 96; i += 8)
3448 size_index[size_index_elem(i)] = 7;
3449 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3450 /*
3451 * The 192 byte sized cache is not used if the alignment
3452 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3453 * instead.
3454 */
3455 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3456 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3457 }
3458
51df1142
CL
3459 /* Caches that are not of the two-to-the-power-of size */
3460 if (KMALLOC_MIN_SIZE <= 32) {
3461 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3462 caches++;
3463 }
3464
3465 if (KMALLOC_MIN_SIZE <= 64) {
3466 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3467 caches++;
3468 }
3469
3470 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3471 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3472 caches++;
3473 }
3474
81819f0f
CL
3475 slab_state = UP;
3476
3477 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3478 if (KMALLOC_MIN_SIZE <= 32) {
3479 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3480 BUG_ON(!kmalloc_caches[1]->name);
3481 }
3482
3483 if (KMALLOC_MIN_SIZE <= 64) {
3484 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3485 BUG_ON(!kmalloc_caches[2]->name);
3486 }
3487
d7278bd7
CL
3488 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3489 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3490
3491 BUG_ON(!s);
51df1142 3492 kmalloc_caches[i]->name = s;
d7278bd7 3493 }
81819f0f
CL
3494
3495#ifdef CONFIG_SMP
3496 register_cpu_notifier(&slab_notifier);
9dfc6e68 3497#endif
81819f0f 3498
55136592 3499#ifdef CONFIG_ZONE_DMA
51df1142
CL
3500 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3501 struct kmem_cache *s = kmalloc_caches[i];
55136592 3502
51df1142 3503 if (s && s->size) {
55136592
CL
3504 char *name = kasprintf(GFP_NOWAIT,
3505 "dma-kmalloc-%d", s->objsize);
3506
3507 BUG_ON(!name);
51df1142
CL
3508 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3509 s->objsize, SLAB_CACHE_DMA);
55136592
CL
3510 }
3511 }
3512#endif
3adbefee
IM
3513 printk(KERN_INFO
3514 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3515 " CPUs=%d, Nodes=%d\n",
3516 caches, cache_line_size(),
81819f0f
CL
3517 slub_min_order, slub_max_order, slub_min_objects,
3518 nr_cpu_ids, nr_node_ids);
3519}
3520
7e85ee0c
PE
3521void __init kmem_cache_init_late(void)
3522{
7e85ee0c
PE
3523}
3524
81819f0f
CL
3525/*
3526 * Find a mergeable slab cache
3527 */
3528static int slab_unmergeable(struct kmem_cache *s)
3529{
3530 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3531 return 1;
3532
c59def9f 3533 if (s->ctor)
81819f0f
CL
3534 return 1;
3535
8ffa6875
CL
3536 /*
3537 * We may have set a slab to be unmergeable during bootstrap.
3538 */
3539 if (s->refcount < 0)
3540 return 1;
3541
81819f0f
CL
3542 return 0;
3543}
3544
3545static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3546 size_t align, unsigned long flags, const char *name,
51cc5068 3547 void (*ctor)(void *))
81819f0f 3548{
5b95a4ac 3549 struct kmem_cache *s;
81819f0f
CL
3550
3551 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3552 return NULL;
3553
c59def9f 3554 if (ctor)
81819f0f
CL
3555 return NULL;
3556
3557 size = ALIGN(size, sizeof(void *));
3558 align = calculate_alignment(flags, align, size);
3559 size = ALIGN(size, align);
ba0268a8 3560 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3561
5b95a4ac 3562 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3563 if (slab_unmergeable(s))
3564 continue;
3565
3566 if (size > s->size)
3567 continue;
3568
ba0268a8 3569 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3570 continue;
3571 /*
3572 * Check if alignment is compatible.
3573 * Courtesy of Adrian Drzewiecki
3574 */
06428780 3575 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3576 continue;
3577
3578 if (s->size - size >= sizeof(void *))
3579 continue;
3580
3581 return s;
3582 }
3583 return NULL;
3584}
3585
3586struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3587 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3588{
3589 struct kmem_cache *s;
84c1cf62 3590 char *n;
81819f0f 3591
fe1ff49d
BH
3592 if (WARN_ON(!name))
3593 return NULL;
3594
81819f0f 3595 down_write(&slub_lock);
ba0268a8 3596 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3597 if (s) {
3598 s->refcount++;
3599 /*
3600 * Adjust the object sizes so that we clear
3601 * the complete object on kzalloc.
3602 */
3603 s->objsize = max(s->objsize, (int)size);
3604 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3605
7b8f3b66 3606 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3607 s->refcount--;
81819f0f 3608 goto err;
7b8f3b66 3609 }
2bce6485 3610 up_write(&slub_lock);
a0e1d1be
CL
3611 return s;
3612 }
6446faa2 3613
84c1cf62
PE
3614 n = kstrdup(name, GFP_KERNEL);
3615 if (!n)
3616 goto err;
3617
a0e1d1be
CL
3618 s = kmalloc(kmem_size, GFP_KERNEL);
3619 if (s) {
84c1cf62 3620 if (kmem_cache_open(s, n,
c59def9f 3621 size, align, flags, ctor)) {
81819f0f 3622 list_add(&s->list, &slab_caches);
7b8f3b66 3623 if (sysfs_slab_add(s)) {
7b8f3b66 3624 list_del(&s->list);
84c1cf62 3625 kfree(n);
7b8f3b66 3626 kfree(s);
a0e1d1be 3627 goto err;
7b8f3b66 3628 }
2bce6485 3629 up_write(&slub_lock);
a0e1d1be
CL
3630 return s;
3631 }
84c1cf62 3632 kfree(n);
a0e1d1be 3633 kfree(s);
81819f0f 3634 }
68cee4f1 3635err:
81819f0f 3636 up_write(&slub_lock);
81819f0f 3637
81819f0f
CL
3638 if (flags & SLAB_PANIC)
3639 panic("Cannot create slabcache %s\n", name);
3640 else
3641 s = NULL;
3642 return s;
3643}
3644EXPORT_SYMBOL(kmem_cache_create);
3645
81819f0f 3646#ifdef CONFIG_SMP
81819f0f 3647/*
672bba3a
CL
3648 * Use the cpu notifier to insure that the cpu slabs are flushed when
3649 * necessary.
81819f0f
CL
3650 */
3651static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3652 unsigned long action, void *hcpu)
3653{
3654 long cpu = (long)hcpu;
5b95a4ac
CL
3655 struct kmem_cache *s;
3656 unsigned long flags;
81819f0f
CL
3657
3658 switch (action) {
3659 case CPU_UP_CANCELED:
8bb78442 3660 case CPU_UP_CANCELED_FROZEN:
81819f0f 3661 case CPU_DEAD:
8bb78442 3662 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3663 down_read(&slub_lock);
3664 list_for_each_entry(s, &slab_caches, list) {
3665 local_irq_save(flags);
3666 __flush_cpu_slab(s, cpu);
3667 local_irq_restore(flags);
3668 }
3669 up_read(&slub_lock);
81819f0f
CL
3670 break;
3671 default:
3672 break;
3673 }
3674 return NOTIFY_OK;
3675}
3676
06428780 3677static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3678 .notifier_call = slab_cpuup_callback
06428780 3679};
81819f0f
CL
3680
3681#endif
3682
ce71e27c 3683void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3684{
aadb4bc4 3685 struct kmem_cache *s;
94b528d0 3686 void *ret;
aadb4bc4 3687
ffadd4d0 3688 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3689 return kmalloc_large(size, gfpflags);
3690
aadb4bc4 3691 s = get_slab(size, gfpflags);
81819f0f 3692
2408c550 3693 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3694 return s;
81819f0f 3695
2154a336 3696 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0 3697
25985edc 3698 /* Honor the call site pointer we received. */
ca2b84cb 3699 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3700
3701 return ret;
81819f0f
CL
3702}
3703
5d1f57e4 3704#ifdef CONFIG_NUMA
81819f0f 3705void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3706 int node, unsigned long caller)
81819f0f 3707{
aadb4bc4 3708 struct kmem_cache *s;
94b528d0 3709 void *ret;
aadb4bc4 3710
d3e14aa3
XF
3711 if (unlikely(size > SLUB_MAX_SIZE)) {
3712 ret = kmalloc_large_node(size, gfpflags, node);
3713
3714 trace_kmalloc_node(caller, ret,
3715 size, PAGE_SIZE << get_order(size),
3716 gfpflags, node);
3717
3718 return ret;
3719 }
eada35ef 3720
aadb4bc4 3721 s = get_slab(size, gfpflags);
81819f0f 3722
2408c550 3723 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3724 return s;
81819f0f 3725
94b528d0
EGM
3726 ret = slab_alloc(s, gfpflags, node, caller);
3727
25985edc 3728 /* Honor the call site pointer we received. */
ca2b84cb 3729 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3730
3731 return ret;
81819f0f 3732}
5d1f57e4 3733#endif
81819f0f 3734
ab4d5ed5 3735#ifdef CONFIG_SYSFS
205ab99d
CL
3736static int count_inuse(struct page *page)
3737{
3738 return page->inuse;
3739}
3740
3741static int count_total(struct page *page)
3742{
3743 return page->objects;
3744}
ab4d5ed5 3745#endif
205ab99d 3746
ab4d5ed5 3747#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3748static int validate_slab(struct kmem_cache *s, struct page *page,
3749 unsigned long *map)
53e15af0
CL
3750{
3751 void *p;
a973e9dd 3752 void *addr = page_address(page);
53e15af0
CL
3753
3754 if (!check_slab(s, page) ||
3755 !on_freelist(s, page, NULL))
3756 return 0;
3757
3758 /* Now we know that a valid freelist exists */
39b26464 3759 bitmap_zero(map, page->objects);
53e15af0 3760
5f80b13a
CL
3761 get_map(s, page, map);
3762 for_each_object(p, s, addr, page->objects) {
3763 if (test_bit(slab_index(p, s, addr), map))
3764 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3765 return 0;
53e15af0
CL
3766 }
3767
224a88be 3768 for_each_object(p, s, addr, page->objects)
7656c72b 3769 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3770 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3771 return 0;
3772 return 1;
3773}
3774
434e245d
CL
3775static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3776 unsigned long *map)
53e15af0 3777{
881db7fb
CL
3778 slab_lock(page);
3779 validate_slab(s, page, map);
3780 slab_unlock(page);
53e15af0
CL
3781}
3782
434e245d
CL
3783static int validate_slab_node(struct kmem_cache *s,
3784 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3785{
3786 unsigned long count = 0;
3787 struct page *page;
3788 unsigned long flags;
3789
3790 spin_lock_irqsave(&n->list_lock, flags);
3791
3792 list_for_each_entry(page, &n->partial, lru) {
434e245d 3793 validate_slab_slab(s, page, map);
53e15af0
CL
3794 count++;
3795 }
3796 if (count != n->nr_partial)
3797 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3798 "counter=%ld\n", s->name, count, n->nr_partial);
3799
3800 if (!(s->flags & SLAB_STORE_USER))
3801 goto out;
3802
3803 list_for_each_entry(page, &n->full, lru) {
434e245d 3804 validate_slab_slab(s, page, map);
53e15af0
CL
3805 count++;
3806 }
3807 if (count != atomic_long_read(&n->nr_slabs))
3808 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3809 "counter=%ld\n", s->name, count,
3810 atomic_long_read(&n->nr_slabs));
3811
3812out:
3813 spin_unlock_irqrestore(&n->list_lock, flags);
3814 return count;
3815}
3816
434e245d 3817static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3818{
3819 int node;
3820 unsigned long count = 0;
205ab99d 3821 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3822 sizeof(unsigned long), GFP_KERNEL);
3823
3824 if (!map)
3825 return -ENOMEM;
53e15af0
CL
3826
3827 flush_all(s);
f64dc58c 3828 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3829 struct kmem_cache_node *n = get_node(s, node);
3830
434e245d 3831 count += validate_slab_node(s, n, map);
53e15af0 3832 }
434e245d 3833 kfree(map);
53e15af0
CL
3834 return count;
3835}
88a420e4 3836/*
672bba3a 3837 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3838 * and freed.
3839 */
3840
3841struct location {
3842 unsigned long count;
ce71e27c 3843 unsigned long addr;
45edfa58
CL
3844 long long sum_time;
3845 long min_time;
3846 long max_time;
3847 long min_pid;
3848 long max_pid;
174596a0 3849 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3850 nodemask_t nodes;
88a420e4
CL
3851};
3852
3853struct loc_track {
3854 unsigned long max;
3855 unsigned long count;
3856 struct location *loc;
3857};
3858
3859static void free_loc_track(struct loc_track *t)
3860{
3861 if (t->max)
3862 free_pages((unsigned long)t->loc,
3863 get_order(sizeof(struct location) * t->max));
3864}
3865
68dff6a9 3866static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3867{
3868 struct location *l;
3869 int order;
3870
88a420e4
CL
3871 order = get_order(sizeof(struct location) * max);
3872
68dff6a9 3873 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3874 if (!l)
3875 return 0;
3876
3877 if (t->count) {
3878 memcpy(l, t->loc, sizeof(struct location) * t->count);
3879 free_loc_track(t);
3880 }
3881 t->max = max;
3882 t->loc = l;
3883 return 1;
3884}
3885
3886static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3887 const struct track *track)
88a420e4
CL
3888{
3889 long start, end, pos;
3890 struct location *l;
ce71e27c 3891 unsigned long caddr;
45edfa58 3892 unsigned long age = jiffies - track->when;
88a420e4
CL
3893
3894 start = -1;
3895 end = t->count;
3896
3897 for ( ; ; ) {
3898 pos = start + (end - start + 1) / 2;
3899
3900 /*
3901 * There is nothing at "end". If we end up there
3902 * we need to add something to before end.
3903 */
3904 if (pos == end)
3905 break;
3906
3907 caddr = t->loc[pos].addr;
45edfa58
CL
3908 if (track->addr == caddr) {
3909
3910 l = &t->loc[pos];
3911 l->count++;
3912 if (track->when) {
3913 l->sum_time += age;
3914 if (age < l->min_time)
3915 l->min_time = age;
3916 if (age > l->max_time)
3917 l->max_time = age;
3918
3919 if (track->pid < l->min_pid)
3920 l->min_pid = track->pid;
3921 if (track->pid > l->max_pid)
3922 l->max_pid = track->pid;
3923
174596a0
RR
3924 cpumask_set_cpu(track->cpu,
3925 to_cpumask(l->cpus));
45edfa58
CL
3926 }
3927 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3928 return 1;
3929 }
3930
45edfa58 3931 if (track->addr < caddr)
88a420e4
CL
3932 end = pos;
3933 else
3934 start = pos;
3935 }
3936
3937 /*
672bba3a 3938 * Not found. Insert new tracking element.
88a420e4 3939 */
68dff6a9 3940 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3941 return 0;
3942
3943 l = t->loc + pos;
3944 if (pos < t->count)
3945 memmove(l + 1, l,
3946 (t->count - pos) * sizeof(struct location));
3947 t->count++;
3948 l->count = 1;
45edfa58
CL
3949 l->addr = track->addr;
3950 l->sum_time = age;
3951 l->min_time = age;
3952 l->max_time = age;
3953 l->min_pid = track->pid;
3954 l->max_pid = track->pid;
174596a0
RR
3955 cpumask_clear(to_cpumask(l->cpus));
3956 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
3957 nodes_clear(l->nodes);
3958 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3959 return 1;
3960}
3961
3962static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 3963 struct page *page, enum track_item alloc,
a5dd5c11 3964 unsigned long *map)
88a420e4 3965{
a973e9dd 3966 void *addr = page_address(page);
88a420e4
CL
3967 void *p;
3968
39b26464 3969 bitmap_zero(map, page->objects);
5f80b13a 3970 get_map(s, page, map);
88a420e4 3971
224a88be 3972 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3973 if (!test_bit(slab_index(p, s, addr), map))
3974 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3975}
3976
3977static int list_locations(struct kmem_cache *s, char *buf,
3978 enum track_item alloc)
3979{
e374d483 3980 int len = 0;
88a420e4 3981 unsigned long i;
68dff6a9 3982 struct loc_track t = { 0, 0, NULL };
88a420e4 3983 int node;
bbd7d57b
ED
3984 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3985 sizeof(unsigned long), GFP_KERNEL);
88a420e4 3986
bbd7d57b
ED
3987 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3988 GFP_TEMPORARY)) {
3989 kfree(map);
68dff6a9 3990 return sprintf(buf, "Out of memory\n");
bbd7d57b 3991 }
88a420e4
CL
3992 /* Push back cpu slabs */
3993 flush_all(s);
3994
f64dc58c 3995 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3996 struct kmem_cache_node *n = get_node(s, node);
3997 unsigned long flags;
3998 struct page *page;
3999
9e86943b 4000 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4001 continue;
4002
4003 spin_lock_irqsave(&n->list_lock, flags);
4004 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4005 process_slab(&t, s, page, alloc, map);
88a420e4 4006 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4007 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4008 spin_unlock_irqrestore(&n->list_lock, flags);
4009 }
4010
4011 for (i = 0; i < t.count; i++) {
45edfa58 4012 struct location *l = &t.loc[i];
88a420e4 4013
9c246247 4014 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4015 break;
e374d483 4016 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4017
4018 if (l->addr)
62c70bce 4019 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4020 else
e374d483 4021 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4022
4023 if (l->sum_time != l->min_time) {
e374d483 4024 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4025 l->min_time,
4026 (long)div_u64(l->sum_time, l->count),
4027 l->max_time);
45edfa58 4028 } else
e374d483 4029 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4030 l->min_time);
4031
4032 if (l->min_pid != l->max_pid)
e374d483 4033 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4034 l->min_pid, l->max_pid);
4035 else
e374d483 4036 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4037 l->min_pid);
4038
174596a0
RR
4039 if (num_online_cpus() > 1 &&
4040 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4041 len < PAGE_SIZE - 60) {
4042 len += sprintf(buf + len, " cpus=");
4043 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 4044 to_cpumask(l->cpus));
45edfa58
CL
4045 }
4046
62bc62a8 4047 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4048 len < PAGE_SIZE - 60) {
4049 len += sprintf(buf + len, " nodes=");
4050 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
4051 l->nodes);
4052 }
4053
e374d483 4054 len += sprintf(buf + len, "\n");
88a420e4
CL
4055 }
4056
4057 free_loc_track(&t);
bbd7d57b 4058 kfree(map);
88a420e4 4059 if (!t.count)
e374d483
HH
4060 len += sprintf(buf, "No data\n");
4061 return len;
88a420e4 4062}
ab4d5ed5 4063#endif
88a420e4 4064
a5a84755
CL
4065#ifdef SLUB_RESILIENCY_TEST
4066static void resiliency_test(void)
4067{
4068 u8 *p;
4069
4070 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4071
4072 printk(KERN_ERR "SLUB resiliency testing\n");
4073 printk(KERN_ERR "-----------------------\n");
4074 printk(KERN_ERR "A. Corruption after allocation\n");
4075
4076 p = kzalloc(16, GFP_KERNEL);
4077 p[16] = 0x12;
4078 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4079 " 0x12->0x%p\n\n", p + 16);
4080
4081 validate_slab_cache(kmalloc_caches[4]);
4082
4083 /* Hmmm... The next two are dangerous */
4084 p = kzalloc(32, GFP_KERNEL);
4085 p[32 + sizeof(void *)] = 0x34;
4086 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4087 " 0x34 -> -0x%p\n", p);
4088 printk(KERN_ERR
4089 "If allocated object is overwritten then not detectable\n\n");
4090
4091 validate_slab_cache(kmalloc_caches[5]);
4092 p = kzalloc(64, GFP_KERNEL);
4093 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4094 *p = 0x56;
4095 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4096 p);
4097 printk(KERN_ERR
4098 "If allocated object is overwritten then not detectable\n\n");
4099 validate_slab_cache(kmalloc_caches[6]);
4100
4101 printk(KERN_ERR "\nB. Corruption after free\n");
4102 p = kzalloc(128, GFP_KERNEL);
4103 kfree(p);
4104 *p = 0x78;
4105 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4106 validate_slab_cache(kmalloc_caches[7]);
4107
4108 p = kzalloc(256, GFP_KERNEL);
4109 kfree(p);
4110 p[50] = 0x9a;
4111 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4112 p);
4113 validate_slab_cache(kmalloc_caches[8]);
4114
4115 p = kzalloc(512, GFP_KERNEL);
4116 kfree(p);
4117 p[512] = 0xab;
4118 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4119 validate_slab_cache(kmalloc_caches[9]);
4120}
4121#else
4122#ifdef CONFIG_SYSFS
4123static void resiliency_test(void) {};
4124#endif
4125#endif
4126
ab4d5ed5 4127#ifdef CONFIG_SYSFS
81819f0f 4128enum slab_stat_type {
205ab99d
CL
4129 SL_ALL, /* All slabs */
4130 SL_PARTIAL, /* Only partially allocated slabs */
4131 SL_CPU, /* Only slabs used for cpu caches */
4132 SL_OBJECTS, /* Determine allocated objects not slabs */
4133 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4134};
4135
205ab99d 4136#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4137#define SO_PARTIAL (1 << SL_PARTIAL)
4138#define SO_CPU (1 << SL_CPU)
4139#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4140#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4141
62e5c4b4
CG
4142static ssize_t show_slab_objects(struct kmem_cache *s,
4143 char *buf, unsigned long flags)
81819f0f
CL
4144{
4145 unsigned long total = 0;
81819f0f
CL
4146 int node;
4147 int x;
4148 unsigned long *nodes;
4149 unsigned long *per_cpu;
4150
4151 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4152 if (!nodes)
4153 return -ENOMEM;
81819f0f
CL
4154 per_cpu = nodes + nr_node_ids;
4155
205ab99d
CL
4156 if (flags & SO_CPU) {
4157 int cpu;
81819f0f 4158
205ab99d 4159 for_each_possible_cpu(cpu) {
9dfc6e68 4160 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
dfb4f096 4161
205ab99d
CL
4162 if (!c || c->node < 0)
4163 continue;
4164
4165 if (c->page) {
4166 if (flags & SO_TOTAL)
4167 x = c->page->objects;
4168 else if (flags & SO_OBJECTS)
4169 x = c->page->inuse;
81819f0f
CL
4170 else
4171 x = 1;
205ab99d 4172
81819f0f 4173 total += x;
205ab99d 4174 nodes[c->node] += x;
81819f0f 4175 }
205ab99d 4176 per_cpu[c->node]++;
81819f0f
CL
4177 }
4178 }
4179
04d94879 4180 lock_memory_hotplug();
ab4d5ed5 4181#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4182 if (flags & SO_ALL) {
4183 for_each_node_state(node, N_NORMAL_MEMORY) {
4184 struct kmem_cache_node *n = get_node(s, node);
4185
4186 if (flags & SO_TOTAL)
4187 x = atomic_long_read(&n->total_objects);
4188 else if (flags & SO_OBJECTS)
4189 x = atomic_long_read(&n->total_objects) -
4190 count_partial(n, count_free);
81819f0f 4191
81819f0f 4192 else
205ab99d 4193 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4194 total += x;
4195 nodes[node] += x;
4196 }
4197
ab4d5ed5
CL
4198 } else
4199#endif
4200 if (flags & SO_PARTIAL) {
205ab99d
CL
4201 for_each_node_state(node, N_NORMAL_MEMORY) {
4202 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4203
205ab99d
CL
4204 if (flags & SO_TOTAL)
4205 x = count_partial(n, count_total);
4206 else if (flags & SO_OBJECTS)
4207 x = count_partial(n, count_inuse);
81819f0f 4208 else
205ab99d 4209 x = n->nr_partial;
81819f0f
CL
4210 total += x;
4211 nodes[node] += x;
4212 }
4213 }
81819f0f
CL
4214 x = sprintf(buf, "%lu", total);
4215#ifdef CONFIG_NUMA
f64dc58c 4216 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4217 if (nodes[node])
4218 x += sprintf(buf + x, " N%d=%lu",
4219 node, nodes[node]);
4220#endif
04d94879 4221 unlock_memory_hotplug();
81819f0f
CL
4222 kfree(nodes);
4223 return x + sprintf(buf + x, "\n");
4224}
4225
ab4d5ed5 4226#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4227static int any_slab_objects(struct kmem_cache *s)
4228{
4229 int node;
81819f0f 4230
dfb4f096 4231 for_each_online_node(node) {
81819f0f
CL
4232 struct kmem_cache_node *n = get_node(s, node);
4233
dfb4f096
CL
4234 if (!n)
4235 continue;
4236
4ea33e2d 4237 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4238 return 1;
4239 }
4240 return 0;
4241}
ab4d5ed5 4242#endif
81819f0f
CL
4243
4244#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4245#define to_slab(n) container_of(n, struct kmem_cache, kobj);
4246
4247struct slab_attribute {
4248 struct attribute attr;
4249 ssize_t (*show)(struct kmem_cache *s, char *buf);
4250 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4251};
4252
4253#define SLAB_ATTR_RO(_name) \
4254 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4255
4256#define SLAB_ATTR(_name) \
4257 static struct slab_attribute _name##_attr = \
4258 __ATTR(_name, 0644, _name##_show, _name##_store)
4259
81819f0f
CL
4260static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4261{
4262 return sprintf(buf, "%d\n", s->size);
4263}
4264SLAB_ATTR_RO(slab_size);
4265
4266static ssize_t align_show(struct kmem_cache *s, char *buf)
4267{
4268 return sprintf(buf, "%d\n", s->align);
4269}
4270SLAB_ATTR_RO(align);
4271
4272static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4273{
4274 return sprintf(buf, "%d\n", s->objsize);
4275}
4276SLAB_ATTR_RO(object_size);
4277
4278static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4279{
834f3d11 4280 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4281}
4282SLAB_ATTR_RO(objs_per_slab);
4283
06b285dc
CL
4284static ssize_t order_store(struct kmem_cache *s,
4285 const char *buf, size_t length)
4286{
0121c619
CL
4287 unsigned long order;
4288 int err;
4289
4290 err = strict_strtoul(buf, 10, &order);
4291 if (err)
4292 return err;
06b285dc
CL
4293
4294 if (order > slub_max_order || order < slub_min_order)
4295 return -EINVAL;
4296
4297 calculate_sizes(s, order);
4298 return length;
4299}
4300
81819f0f
CL
4301static ssize_t order_show(struct kmem_cache *s, char *buf)
4302{
834f3d11 4303 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4304}
06b285dc 4305SLAB_ATTR(order);
81819f0f 4306
73d342b1
DR
4307static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4308{
4309 return sprintf(buf, "%lu\n", s->min_partial);
4310}
4311
4312static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4313 size_t length)
4314{
4315 unsigned long min;
4316 int err;
4317
4318 err = strict_strtoul(buf, 10, &min);
4319 if (err)
4320 return err;
4321
c0bdb232 4322 set_min_partial(s, min);
73d342b1
DR
4323 return length;
4324}
4325SLAB_ATTR(min_partial);
4326
81819f0f
CL
4327static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4328{
62c70bce
JP
4329 if (!s->ctor)
4330 return 0;
4331 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4332}
4333SLAB_ATTR_RO(ctor);
4334
81819f0f
CL
4335static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4336{
4337 return sprintf(buf, "%d\n", s->refcount - 1);
4338}
4339SLAB_ATTR_RO(aliases);
4340
81819f0f
CL
4341static ssize_t partial_show(struct kmem_cache *s, char *buf)
4342{
d9acf4b7 4343 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4344}
4345SLAB_ATTR_RO(partial);
4346
4347static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4348{
d9acf4b7 4349 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4350}
4351SLAB_ATTR_RO(cpu_slabs);
4352
4353static ssize_t objects_show(struct kmem_cache *s, char *buf)
4354{
205ab99d 4355 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4356}
4357SLAB_ATTR_RO(objects);
4358
205ab99d
CL
4359static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4360{
4361 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4362}
4363SLAB_ATTR_RO(objects_partial);
4364
a5a84755
CL
4365static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4366{
4367 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4368}
4369
4370static ssize_t reclaim_account_store(struct kmem_cache *s,
4371 const char *buf, size_t length)
4372{
4373 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4374 if (buf[0] == '1')
4375 s->flags |= SLAB_RECLAIM_ACCOUNT;
4376 return length;
4377}
4378SLAB_ATTR(reclaim_account);
4379
4380static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4381{
4382 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4383}
4384SLAB_ATTR_RO(hwcache_align);
4385
4386#ifdef CONFIG_ZONE_DMA
4387static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4388{
4389 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4390}
4391SLAB_ATTR_RO(cache_dma);
4392#endif
4393
4394static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4395{
4396 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4397}
4398SLAB_ATTR_RO(destroy_by_rcu);
4399
ab9a0f19
LJ
4400static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4401{
4402 return sprintf(buf, "%d\n", s->reserved);
4403}
4404SLAB_ATTR_RO(reserved);
4405
ab4d5ed5 4406#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4407static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4408{
4409 return show_slab_objects(s, buf, SO_ALL);
4410}
4411SLAB_ATTR_RO(slabs);
4412
205ab99d
CL
4413static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4414{
4415 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4416}
4417SLAB_ATTR_RO(total_objects);
4418
81819f0f
CL
4419static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4420{
4421 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4422}
4423
4424static ssize_t sanity_checks_store(struct kmem_cache *s,
4425 const char *buf, size_t length)
4426{
4427 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4428 if (buf[0] == '1') {
4429 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4430 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4431 }
81819f0f
CL
4432 return length;
4433}
4434SLAB_ATTR(sanity_checks);
4435
4436static ssize_t trace_show(struct kmem_cache *s, char *buf)
4437{
4438 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4439}
4440
4441static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4442 size_t length)
4443{
4444 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4445 if (buf[0] == '1') {
4446 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4447 s->flags |= SLAB_TRACE;
b789ef51 4448 }
81819f0f
CL
4449 return length;
4450}
4451SLAB_ATTR(trace);
4452
81819f0f
CL
4453static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4454{
4455 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4456}
4457
4458static ssize_t red_zone_store(struct kmem_cache *s,
4459 const char *buf, size_t length)
4460{
4461 if (any_slab_objects(s))
4462 return -EBUSY;
4463
4464 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4465 if (buf[0] == '1') {
4466 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4467 s->flags |= SLAB_RED_ZONE;
b789ef51 4468 }
06b285dc 4469 calculate_sizes(s, -1);
81819f0f
CL
4470 return length;
4471}
4472SLAB_ATTR(red_zone);
4473
4474static ssize_t poison_show(struct kmem_cache *s, char *buf)
4475{
4476 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4477}
4478
4479static ssize_t poison_store(struct kmem_cache *s,
4480 const char *buf, size_t length)
4481{
4482 if (any_slab_objects(s))
4483 return -EBUSY;
4484
4485 s->flags &= ~SLAB_POISON;
b789ef51
CL
4486 if (buf[0] == '1') {
4487 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4488 s->flags |= SLAB_POISON;
b789ef51 4489 }
06b285dc 4490 calculate_sizes(s, -1);
81819f0f
CL
4491 return length;
4492}
4493SLAB_ATTR(poison);
4494
4495static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4496{
4497 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4498}
4499
4500static ssize_t store_user_store(struct kmem_cache *s,
4501 const char *buf, size_t length)
4502{
4503 if (any_slab_objects(s))
4504 return -EBUSY;
4505
4506 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4507 if (buf[0] == '1') {
4508 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4509 s->flags |= SLAB_STORE_USER;
b789ef51 4510 }
06b285dc 4511 calculate_sizes(s, -1);
81819f0f
CL
4512 return length;
4513}
4514SLAB_ATTR(store_user);
4515
53e15af0
CL
4516static ssize_t validate_show(struct kmem_cache *s, char *buf)
4517{
4518 return 0;
4519}
4520
4521static ssize_t validate_store(struct kmem_cache *s,
4522 const char *buf, size_t length)
4523{
434e245d
CL
4524 int ret = -EINVAL;
4525
4526 if (buf[0] == '1') {
4527 ret = validate_slab_cache(s);
4528 if (ret >= 0)
4529 ret = length;
4530 }
4531 return ret;
53e15af0
CL
4532}
4533SLAB_ATTR(validate);
a5a84755
CL
4534
4535static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4536{
4537 if (!(s->flags & SLAB_STORE_USER))
4538 return -ENOSYS;
4539 return list_locations(s, buf, TRACK_ALLOC);
4540}
4541SLAB_ATTR_RO(alloc_calls);
4542
4543static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4544{
4545 if (!(s->flags & SLAB_STORE_USER))
4546 return -ENOSYS;
4547 return list_locations(s, buf, TRACK_FREE);
4548}
4549SLAB_ATTR_RO(free_calls);
4550#endif /* CONFIG_SLUB_DEBUG */
4551
4552#ifdef CONFIG_FAILSLAB
4553static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4554{
4555 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4556}
4557
4558static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4559 size_t length)
4560{
4561 s->flags &= ~SLAB_FAILSLAB;
4562 if (buf[0] == '1')
4563 s->flags |= SLAB_FAILSLAB;
4564 return length;
4565}
4566SLAB_ATTR(failslab);
ab4d5ed5 4567#endif
53e15af0 4568
2086d26a
CL
4569static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4570{
4571 return 0;
4572}
4573
4574static ssize_t shrink_store(struct kmem_cache *s,
4575 const char *buf, size_t length)
4576{
4577 if (buf[0] == '1') {
4578 int rc = kmem_cache_shrink(s);
4579
4580 if (rc)
4581 return rc;
4582 } else
4583 return -EINVAL;
4584 return length;
4585}
4586SLAB_ATTR(shrink);
4587
81819f0f 4588#ifdef CONFIG_NUMA
9824601e 4589static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4590{
9824601e 4591 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4592}
4593
9824601e 4594static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4595 const char *buf, size_t length)
4596{
0121c619
CL
4597 unsigned long ratio;
4598 int err;
4599
4600 err = strict_strtoul(buf, 10, &ratio);
4601 if (err)
4602 return err;
4603
e2cb96b7 4604 if (ratio <= 100)
0121c619 4605 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4606
81819f0f
CL
4607 return length;
4608}
9824601e 4609SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4610#endif
4611
8ff12cfc 4612#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4613static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4614{
4615 unsigned long sum = 0;
4616 int cpu;
4617 int len;
4618 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4619
4620 if (!data)
4621 return -ENOMEM;
4622
4623 for_each_online_cpu(cpu) {
9dfc6e68 4624 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4625
4626 data[cpu] = x;
4627 sum += x;
4628 }
4629
4630 len = sprintf(buf, "%lu", sum);
4631
50ef37b9 4632#ifdef CONFIG_SMP
8ff12cfc
CL
4633 for_each_online_cpu(cpu) {
4634 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4635 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4636 }
50ef37b9 4637#endif
8ff12cfc
CL
4638 kfree(data);
4639 return len + sprintf(buf + len, "\n");
4640}
4641
78eb00cc
DR
4642static void clear_stat(struct kmem_cache *s, enum stat_item si)
4643{
4644 int cpu;
4645
4646 for_each_online_cpu(cpu)
9dfc6e68 4647 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4648}
4649
8ff12cfc
CL
4650#define STAT_ATTR(si, text) \
4651static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4652{ \
4653 return show_stat(s, buf, si); \
4654} \
78eb00cc
DR
4655static ssize_t text##_store(struct kmem_cache *s, \
4656 const char *buf, size_t length) \
4657{ \
4658 if (buf[0] != '0') \
4659 return -EINVAL; \
4660 clear_stat(s, si); \
4661 return length; \
4662} \
4663SLAB_ATTR(text); \
8ff12cfc
CL
4664
4665STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4666STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4667STAT_ATTR(FREE_FASTPATH, free_fastpath);
4668STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4669STAT_ATTR(FREE_FROZEN, free_frozen);
4670STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4671STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4672STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4673STAT_ATTR(ALLOC_SLAB, alloc_slab);
4674STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 4675STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
4676STAT_ATTR(FREE_SLAB, free_slab);
4677STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4678STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4679STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4680STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4681STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4682STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
65c3376a 4683STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
4684STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4685STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
8ff12cfc
CL
4686#endif
4687
06428780 4688static struct attribute *slab_attrs[] = {
81819f0f
CL
4689 &slab_size_attr.attr,
4690 &object_size_attr.attr,
4691 &objs_per_slab_attr.attr,
4692 &order_attr.attr,
73d342b1 4693 &min_partial_attr.attr,
81819f0f 4694 &objects_attr.attr,
205ab99d 4695 &objects_partial_attr.attr,
81819f0f
CL
4696 &partial_attr.attr,
4697 &cpu_slabs_attr.attr,
4698 &ctor_attr.attr,
81819f0f
CL
4699 &aliases_attr.attr,
4700 &align_attr.attr,
81819f0f
CL
4701 &hwcache_align_attr.attr,
4702 &reclaim_account_attr.attr,
4703 &destroy_by_rcu_attr.attr,
a5a84755 4704 &shrink_attr.attr,
ab9a0f19 4705 &reserved_attr.attr,
ab4d5ed5 4706#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4707 &total_objects_attr.attr,
4708 &slabs_attr.attr,
4709 &sanity_checks_attr.attr,
4710 &trace_attr.attr,
81819f0f
CL
4711 &red_zone_attr.attr,
4712 &poison_attr.attr,
4713 &store_user_attr.attr,
53e15af0 4714 &validate_attr.attr,
88a420e4
CL
4715 &alloc_calls_attr.attr,
4716 &free_calls_attr.attr,
ab4d5ed5 4717#endif
81819f0f
CL
4718#ifdef CONFIG_ZONE_DMA
4719 &cache_dma_attr.attr,
4720#endif
4721#ifdef CONFIG_NUMA
9824601e 4722 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4723#endif
4724#ifdef CONFIG_SLUB_STATS
4725 &alloc_fastpath_attr.attr,
4726 &alloc_slowpath_attr.attr,
4727 &free_fastpath_attr.attr,
4728 &free_slowpath_attr.attr,
4729 &free_frozen_attr.attr,
4730 &free_add_partial_attr.attr,
4731 &free_remove_partial_attr.attr,
4732 &alloc_from_partial_attr.attr,
4733 &alloc_slab_attr.attr,
4734 &alloc_refill_attr.attr,
e36a2652 4735 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
4736 &free_slab_attr.attr,
4737 &cpuslab_flush_attr.attr,
4738 &deactivate_full_attr.attr,
4739 &deactivate_empty_attr.attr,
4740 &deactivate_to_head_attr.attr,
4741 &deactivate_to_tail_attr.attr,
4742 &deactivate_remote_frees_attr.attr,
65c3376a 4743 &order_fallback_attr.attr,
b789ef51
CL
4744 &cmpxchg_double_fail_attr.attr,
4745 &cmpxchg_double_cpu_fail_attr.attr,
81819f0f 4746#endif
4c13dd3b
DM
4747#ifdef CONFIG_FAILSLAB
4748 &failslab_attr.attr,
4749#endif
4750
81819f0f
CL
4751 NULL
4752};
4753
4754static struct attribute_group slab_attr_group = {
4755 .attrs = slab_attrs,
4756};
4757
4758static ssize_t slab_attr_show(struct kobject *kobj,
4759 struct attribute *attr,
4760 char *buf)
4761{
4762 struct slab_attribute *attribute;
4763 struct kmem_cache *s;
4764 int err;
4765
4766 attribute = to_slab_attr(attr);
4767 s = to_slab(kobj);
4768
4769 if (!attribute->show)
4770 return -EIO;
4771
4772 err = attribute->show(s, buf);
4773
4774 return err;
4775}
4776
4777static ssize_t slab_attr_store(struct kobject *kobj,
4778 struct attribute *attr,
4779 const char *buf, size_t len)
4780{
4781 struct slab_attribute *attribute;
4782 struct kmem_cache *s;
4783 int err;
4784
4785 attribute = to_slab_attr(attr);
4786 s = to_slab(kobj);
4787
4788 if (!attribute->store)
4789 return -EIO;
4790
4791 err = attribute->store(s, buf, len);
4792
4793 return err;
4794}
4795
151c602f
CL
4796static void kmem_cache_release(struct kobject *kobj)
4797{
4798 struct kmem_cache *s = to_slab(kobj);
4799
84c1cf62 4800 kfree(s->name);
151c602f
CL
4801 kfree(s);
4802}
4803
52cf25d0 4804static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
4805 .show = slab_attr_show,
4806 .store = slab_attr_store,
4807};
4808
4809static struct kobj_type slab_ktype = {
4810 .sysfs_ops = &slab_sysfs_ops,
151c602f 4811 .release = kmem_cache_release
81819f0f
CL
4812};
4813
4814static int uevent_filter(struct kset *kset, struct kobject *kobj)
4815{
4816 struct kobj_type *ktype = get_ktype(kobj);
4817
4818 if (ktype == &slab_ktype)
4819 return 1;
4820 return 0;
4821}
4822
9cd43611 4823static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
4824 .filter = uevent_filter,
4825};
4826
27c3a314 4827static struct kset *slab_kset;
81819f0f
CL
4828
4829#define ID_STR_LENGTH 64
4830
4831/* Create a unique string id for a slab cache:
6446faa2
CL
4832 *
4833 * Format :[flags-]size
81819f0f
CL
4834 */
4835static char *create_unique_id(struct kmem_cache *s)
4836{
4837 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4838 char *p = name;
4839
4840 BUG_ON(!name);
4841
4842 *p++ = ':';
4843 /*
4844 * First flags affecting slabcache operations. We will only
4845 * get here for aliasable slabs so we do not need to support
4846 * too many flags. The flags here must cover all flags that
4847 * are matched during merging to guarantee that the id is
4848 * unique.
4849 */
4850 if (s->flags & SLAB_CACHE_DMA)
4851 *p++ = 'd';
4852 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4853 *p++ = 'a';
4854 if (s->flags & SLAB_DEBUG_FREE)
4855 *p++ = 'F';
5a896d9e
VN
4856 if (!(s->flags & SLAB_NOTRACK))
4857 *p++ = 't';
81819f0f
CL
4858 if (p != name + 1)
4859 *p++ = '-';
4860 p += sprintf(p, "%07d", s->size);
4861 BUG_ON(p > name + ID_STR_LENGTH - 1);
4862 return name;
4863}
4864
4865static int sysfs_slab_add(struct kmem_cache *s)
4866{
4867 int err;
4868 const char *name;
4869 int unmergeable;
4870
4871 if (slab_state < SYSFS)
4872 /* Defer until later */
4873 return 0;
4874
4875 unmergeable = slab_unmergeable(s);
4876 if (unmergeable) {
4877 /*
4878 * Slabcache can never be merged so we can use the name proper.
4879 * This is typically the case for debug situations. In that
4880 * case we can catch duplicate names easily.
4881 */
27c3a314 4882 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4883 name = s->name;
4884 } else {
4885 /*
4886 * Create a unique name for the slab as a target
4887 * for the symlinks.
4888 */
4889 name = create_unique_id(s);
4890 }
4891
27c3a314 4892 s->kobj.kset = slab_kset;
1eada11c
GKH
4893 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4894 if (err) {
4895 kobject_put(&s->kobj);
81819f0f 4896 return err;
1eada11c 4897 }
81819f0f
CL
4898
4899 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
4900 if (err) {
4901 kobject_del(&s->kobj);
4902 kobject_put(&s->kobj);
81819f0f 4903 return err;
5788d8ad 4904 }
81819f0f
CL
4905 kobject_uevent(&s->kobj, KOBJ_ADD);
4906 if (!unmergeable) {
4907 /* Setup first alias */
4908 sysfs_slab_alias(s, s->name);
4909 kfree(name);
4910 }
4911 return 0;
4912}
4913
4914static void sysfs_slab_remove(struct kmem_cache *s)
4915{
2bce6485
CL
4916 if (slab_state < SYSFS)
4917 /*
4918 * Sysfs has not been setup yet so no need to remove the
4919 * cache from sysfs.
4920 */
4921 return;
4922
81819f0f
CL
4923 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4924 kobject_del(&s->kobj);
151c602f 4925 kobject_put(&s->kobj);
81819f0f
CL
4926}
4927
4928/*
4929 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 4930 * available lest we lose that information.
81819f0f
CL
4931 */
4932struct saved_alias {
4933 struct kmem_cache *s;
4934 const char *name;
4935 struct saved_alias *next;
4936};
4937
5af328a5 4938static struct saved_alias *alias_list;
81819f0f
CL
4939
4940static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4941{
4942 struct saved_alias *al;
4943
4944 if (slab_state == SYSFS) {
4945 /*
4946 * If we have a leftover link then remove it.
4947 */
27c3a314
GKH
4948 sysfs_remove_link(&slab_kset->kobj, name);
4949 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4950 }
4951
4952 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4953 if (!al)
4954 return -ENOMEM;
4955
4956 al->s = s;
4957 al->name = name;
4958 al->next = alias_list;
4959 alias_list = al;
4960 return 0;
4961}
4962
4963static int __init slab_sysfs_init(void)
4964{
5b95a4ac 4965 struct kmem_cache *s;
81819f0f
CL
4966 int err;
4967
2bce6485
CL
4968 down_write(&slub_lock);
4969
0ff21e46 4970 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4971 if (!slab_kset) {
2bce6485 4972 up_write(&slub_lock);
81819f0f
CL
4973 printk(KERN_ERR "Cannot register slab subsystem.\n");
4974 return -ENOSYS;
4975 }
4976
26a7bd03
CL
4977 slab_state = SYSFS;
4978
5b95a4ac 4979 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4980 err = sysfs_slab_add(s);
5d540fb7
CL
4981 if (err)
4982 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4983 " to sysfs\n", s->name);
26a7bd03 4984 }
81819f0f
CL
4985
4986 while (alias_list) {
4987 struct saved_alias *al = alias_list;
4988
4989 alias_list = alias_list->next;
4990 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4991 if (err)
4992 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4993 " %s to sysfs\n", s->name);
81819f0f
CL
4994 kfree(al);
4995 }
4996
2bce6485 4997 up_write(&slub_lock);
81819f0f
CL
4998 resiliency_test();
4999 return 0;
5000}
5001
5002__initcall(slab_sysfs_init);
ab4d5ed5 5003#endif /* CONFIG_SYSFS */
57ed3eda
PE
5004
5005/*
5006 * The /proc/slabinfo ABI
5007 */
158a9624 5008#ifdef CONFIG_SLABINFO
57ed3eda
PE
5009static void print_slabinfo_header(struct seq_file *m)
5010{
5011 seq_puts(m, "slabinfo - version: 2.1\n");
5012 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
5013 "<objperslab> <pagesperslab>");
5014 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5015 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5016 seq_putc(m, '\n');
5017}
5018
5019static void *s_start(struct seq_file *m, loff_t *pos)
5020{
5021 loff_t n = *pos;
5022
5023 down_read(&slub_lock);
5024 if (!n)
5025 print_slabinfo_header(m);
5026
5027 return seq_list_start(&slab_caches, *pos);
5028}
5029
5030static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5031{
5032 return seq_list_next(p, &slab_caches, pos);
5033}
5034
5035static void s_stop(struct seq_file *m, void *p)
5036{
5037 up_read(&slub_lock);
5038}
5039
5040static int s_show(struct seq_file *m, void *p)
5041{
5042 unsigned long nr_partials = 0;
5043 unsigned long nr_slabs = 0;
5044 unsigned long nr_inuse = 0;
205ab99d
CL
5045 unsigned long nr_objs = 0;
5046 unsigned long nr_free = 0;
57ed3eda
PE
5047 struct kmem_cache *s;
5048 int node;
5049
5050 s = list_entry(p, struct kmem_cache, list);
5051
5052 for_each_online_node(node) {
5053 struct kmem_cache_node *n = get_node(s, node);
5054
5055 if (!n)
5056 continue;
5057
5058 nr_partials += n->nr_partial;
5059 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
5060 nr_objs += atomic_long_read(&n->total_objects);
5061 nr_free += count_partial(n, count_free);
57ed3eda
PE
5062 }
5063
205ab99d 5064 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
5065
5066 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
5067 nr_objs, s->size, oo_objects(s->oo),
5068 (1 << oo_order(s->oo)));
57ed3eda
PE
5069 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5070 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5071 0UL);
5072 seq_putc(m, '\n');
5073 return 0;
5074}
5075
7b3c3a50 5076static const struct seq_operations slabinfo_op = {
57ed3eda
PE
5077 .start = s_start,
5078 .next = s_next,
5079 .stop = s_stop,
5080 .show = s_show,
5081};
5082
7b3c3a50
AD
5083static int slabinfo_open(struct inode *inode, struct file *file)
5084{
5085 return seq_open(file, &slabinfo_op);
5086}
5087
5088static const struct file_operations proc_slabinfo_operations = {
5089 .open = slabinfo_open,
5090 .read = seq_read,
5091 .llseek = seq_lseek,
5092 .release = seq_release,
5093};
5094
5095static int __init slab_proc_init(void)
5096{
cf5d1131 5097 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
5098 return 0;
5099}
5100module_init(slab_proc_init);
158a9624 5101#endif /* CONFIG_SLABINFO */