mm: Use __do_krealloc to do the krealloc job
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
81819f0f 21#include <linux/seq_file.h>
5a896d9e 22#include <linux/kmemcheck.h>
81819f0f
CL
23#include <linux/cpu.h>
24#include <linux/cpuset.h>
25#include <linux/mempolicy.h>
26#include <linux/ctype.h>
3ac7fe5a 27#include <linux/debugobjects.h>
81819f0f 28#include <linux/kallsyms.h>
b9049e23 29#include <linux/memory.h>
f8bd2258 30#include <linux/math64.h>
773ff60e 31#include <linux/fault-inject.h>
bfa71457 32#include <linux/stacktrace.h>
4de900b4 33#include <linux/prefetch.h>
81819f0f 34
4a92379b
RK
35#include <trace/events/kmem.h>
36
072bb0aa
MG
37#include "internal.h"
38
81819f0f
CL
39/*
40 * Lock order:
18004c5d 41 * 1. slab_mutex (Global Mutex)
881db7fb
CL
42 * 2. node->list_lock
43 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 44 *
18004c5d 45 * slab_mutex
881db7fb 46 *
18004c5d 47 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
48 * and to synchronize major metadata changes to slab cache structures.
49 *
50 * The slab_lock is only used for debugging and on arches that do not
51 * have the ability to do a cmpxchg_double. It only protects the second
52 * double word in the page struct. Meaning
53 * A. page->freelist -> List of object free in a page
54 * B. page->counters -> Counters of objects
55 * C. page->frozen -> frozen state
56 *
57 * If a slab is frozen then it is exempt from list management. It is not
58 * on any list. The processor that froze the slab is the one who can
59 * perform list operations on the page. Other processors may put objects
60 * onto the freelist but the processor that froze the slab is the only
61 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
62 *
63 * The list_lock protects the partial and full list on each node and
64 * the partial slab counter. If taken then no new slabs may be added or
65 * removed from the lists nor make the number of partial slabs be modified.
66 * (Note that the total number of slabs is an atomic value that may be
67 * modified without taking the list lock).
68 *
69 * The list_lock is a centralized lock and thus we avoid taking it as
70 * much as possible. As long as SLUB does not have to handle partial
71 * slabs, operations can continue without any centralized lock. F.e.
72 * allocating a long series of objects that fill up slabs does not require
73 * the list lock.
81819f0f
CL
74 * Interrupts are disabled during allocation and deallocation in order to
75 * make the slab allocator safe to use in the context of an irq. In addition
76 * interrupts are disabled to ensure that the processor does not change
77 * while handling per_cpu slabs, due to kernel preemption.
78 *
79 * SLUB assigns one slab for allocation to each processor.
80 * Allocations only occur from these slabs called cpu slabs.
81 *
672bba3a
CL
82 * Slabs with free elements are kept on a partial list and during regular
83 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 84 * freed then the slab will show up again on the partial lists.
672bba3a
CL
85 * We track full slabs for debugging purposes though because otherwise we
86 * cannot scan all objects.
81819f0f
CL
87 *
88 * Slabs are freed when they become empty. Teardown and setup is
89 * minimal so we rely on the page allocators per cpu caches for
90 * fast frees and allocs.
91 *
92 * Overloading of page flags that are otherwise used for LRU management.
93 *
4b6f0750
CL
94 * PageActive The slab is frozen and exempt from list processing.
95 * This means that the slab is dedicated to a purpose
96 * such as satisfying allocations for a specific
97 * processor. Objects may be freed in the slab while
98 * it is frozen but slab_free will then skip the usual
99 * list operations. It is up to the processor holding
100 * the slab to integrate the slab into the slab lists
101 * when the slab is no longer needed.
102 *
103 * One use of this flag is to mark slabs that are
104 * used for allocations. Then such a slab becomes a cpu
105 * slab. The cpu slab may be equipped with an additional
dfb4f096 106 * freelist that allows lockless access to
894b8788
CL
107 * free objects in addition to the regular freelist
108 * that requires the slab lock.
81819f0f
CL
109 *
110 * PageError Slab requires special handling due to debug
111 * options set. This moves slab handling out of
894b8788 112 * the fast path and disables lockless freelists.
81819f0f
CL
113 */
114
af537b0a
CL
115#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
116 SLAB_TRACE | SLAB_DEBUG_FREE)
117
118static inline int kmem_cache_debug(struct kmem_cache *s)
119{
5577bd8a 120#ifdef CONFIG_SLUB_DEBUG
af537b0a 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 122#else
af537b0a 123 return 0;
5577bd8a 124#endif
af537b0a 125}
5577bd8a 126
81819f0f
CL
127/*
128 * Issues still to be resolved:
129 *
81819f0f
CL
130 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
131 *
81819f0f
CL
132 * - Variable sizing of the per node arrays
133 */
134
135/* Enable to test recovery from slab corruption on boot */
136#undef SLUB_RESILIENCY_TEST
137
b789ef51
CL
138/* Enable to log cmpxchg failures */
139#undef SLUB_DEBUG_CMPXCHG
140
2086d26a
CL
141/*
142 * Mininum number of partial slabs. These will be left on the partial
143 * lists even if they are empty. kmem_cache_shrink may reclaim them.
144 */
76be8950 145#define MIN_PARTIAL 5
e95eed57 146
2086d26a
CL
147/*
148 * Maximum number of desirable partial slabs.
149 * The existence of more partial slabs makes kmem_cache_shrink
150 * sort the partial list by the number of objects in the.
151 */
152#define MAX_PARTIAL 10
153
81819f0f
CL
154#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
155 SLAB_POISON | SLAB_STORE_USER)
672bba3a 156
fa5ec8a1 157/*
3de47213
DR
158 * Debugging flags that require metadata to be stored in the slab. These get
159 * disabled when slub_debug=O is used and a cache's min order increases with
160 * metadata.
fa5ec8a1 161 */
3de47213 162#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 163
81819f0f
CL
164/*
165 * Set of flags that will prevent slab merging
166 */
167#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
168 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
169 SLAB_FAILSLAB)
81819f0f
CL
170
171#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 172 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 173
210b5c06
CG
174#define OO_SHIFT 16
175#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 176#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 177
81819f0f 178/* Internal SLUB flags */
f90ec390 179#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 180#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f
CL
181
182static int kmem_size = sizeof(struct kmem_cache);
183
184#ifdef CONFIG_SMP
185static struct notifier_block slab_notifier;
186#endif
187
02cbc874
CL
188/*
189 * Tracking user of a slab.
190 */
d6543e39 191#define TRACK_ADDRS_COUNT 16
02cbc874 192struct track {
ce71e27c 193 unsigned long addr; /* Called from address */
d6543e39
BG
194#ifdef CONFIG_STACKTRACE
195 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
196#endif
02cbc874
CL
197 int cpu; /* Was running on cpu */
198 int pid; /* Pid context */
199 unsigned long when; /* When did the operation occur */
200};
201
202enum track_item { TRACK_ALLOC, TRACK_FREE };
203
ab4d5ed5 204#ifdef CONFIG_SYSFS
81819f0f
CL
205static int sysfs_slab_add(struct kmem_cache *);
206static int sysfs_slab_alias(struct kmem_cache *, const char *);
207static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 208
81819f0f 209#else
0c710013
CL
210static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
211static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
212 { return 0; }
151c602f
CL
213static inline void sysfs_slab_remove(struct kmem_cache *s)
214{
84c1cf62 215 kfree(s->name);
151c602f
CL
216 kfree(s);
217}
8ff12cfc 218
81819f0f
CL
219#endif
220
4fdccdfb 221static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
222{
223#ifdef CONFIG_SLUB_STATS
84e554e6 224 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
225#endif
226}
227
81819f0f
CL
228/********************************************************************
229 * Core slab cache functions
230 *******************************************************************/
231
81819f0f
CL
232static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
233{
81819f0f 234 return s->node[node];
81819f0f
CL
235}
236
6446faa2 237/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
238static inline int check_valid_pointer(struct kmem_cache *s,
239 struct page *page, const void *object)
240{
241 void *base;
242
a973e9dd 243 if (!object)
02cbc874
CL
244 return 1;
245
a973e9dd 246 base = page_address(page);
39b26464 247 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
248 (object - base) % s->size) {
249 return 0;
250 }
251
252 return 1;
253}
254
7656c72b
CL
255static inline void *get_freepointer(struct kmem_cache *s, void *object)
256{
257 return *(void **)(object + s->offset);
258}
259
0ad9500e
ED
260static void prefetch_freepointer(const struct kmem_cache *s, void *object)
261{
262 prefetch(object + s->offset);
263}
264
1393d9a1
CL
265static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
266{
267 void *p;
268
269#ifdef CONFIG_DEBUG_PAGEALLOC
270 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
271#else
272 p = get_freepointer(s, object);
273#endif
274 return p;
275}
276
7656c72b
CL
277static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
278{
279 *(void **)(object + s->offset) = fp;
280}
281
282/* Loop over all objects in a slab */
224a88be
CL
283#define for_each_object(__p, __s, __addr, __objects) \
284 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
285 __p += (__s)->size)
286
7656c72b
CL
287/* Determine object index from a given position */
288static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
289{
290 return (p - addr) / s->size;
291}
292
d71f606f
MK
293static inline size_t slab_ksize(const struct kmem_cache *s)
294{
295#ifdef CONFIG_SLUB_DEBUG
296 /*
297 * Debugging requires use of the padding between object
298 * and whatever may come after it.
299 */
300 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
3b0efdfa 301 return s->object_size;
d71f606f
MK
302
303#endif
304 /*
305 * If we have the need to store the freelist pointer
306 * back there or track user information then we can
307 * only use the space before that information.
308 */
309 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
310 return s->inuse;
311 /*
312 * Else we can use all the padding etc for the allocation
313 */
314 return s->size;
315}
316
ab9a0f19
LJ
317static inline int order_objects(int order, unsigned long size, int reserved)
318{
319 return ((PAGE_SIZE << order) - reserved) / size;
320}
321
834f3d11 322static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 323 unsigned long size, int reserved)
834f3d11
CL
324{
325 struct kmem_cache_order_objects x = {
ab9a0f19 326 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
327 };
328
329 return x;
330}
331
332static inline int oo_order(struct kmem_cache_order_objects x)
333{
210b5c06 334 return x.x >> OO_SHIFT;
834f3d11
CL
335}
336
337static inline int oo_objects(struct kmem_cache_order_objects x)
338{
210b5c06 339 return x.x & OO_MASK;
834f3d11
CL
340}
341
881db7fb
CL
342/*
343 * Per slab locking using the pagelock
344 */
345static __always_inline void slab_lock(struct page *page)
346{
347 bit_spin_lock(PG_locked, &page->flags);
348}
349
350static __always_inline void slab_unlock(struct page *page)
351{
352 __bit_spin_unlock(PG_locked, &page->flags);
353}
354
1d07171c
CL
355/* Interrupts must be disabled (for the fallback code to work right) */
356static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
357 void *freelist_old, unsigned long counters_old,
358 void *freelist_new, unsigned long counters_new,
359 const char *n)
360{
361 VM_BUG_ON(!irqs_disabled());
2565409f
HC
362#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
363 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 364 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 365 if (cmpxchg_double(&page->freelist, &page->counters,
1d07171c
CL
366 freelist_old, counters_old,
367 freelist_new, counters_new))
368 return 1;
369 } else
370#endif
371 {
372 slab_lock(page);
373 if (page->freelist == freelist_old && page->counters == counters_old) {
374 page->freelist = freelist_new;
375 page->counters = counters_new;
376 slab_unlock(page);
377 return 1;
378 }
379 slab_unlock(page);
380 }
381
382 cpu_relax();
383 stat(s, CMPXCHG_DOUBLE_FAIL);
384
385#ifdef SLUB_DEBUG_CMPXCHG
386 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
387#endif
388
389 return 0;
390}
391
b789ef51
CL
392static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
393 void *freelist_old, unsigned long counters_old,
394 void *freelist_new, unsigned long counters_new,
395 const char *n)
396{
2565409f
HC
397#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
398 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 399 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 400 if (cmpxchg_double(&page->freelist, &page->counters,
b789ef51
CL
401 freelist_old, counters_old,
402 freelist_new, counters_new))
403 return 1;
404 } else
405#endif
406 {
1d07171c
CL
407 unsigned long flags;
408
409 local_irq_save(flags);
881db7fb 410 slab_lock(page);
b789ef51
CL
411 if (page->freelist == freelist_old && page->counters == counters_old) {
412 page->freelist = freelist_new;
413 page->counters = counters_new;
881db7fb 414 slab_unlock(page);
1d07171c 415 local_irq_restore(flags);
b789ef51
CL
416 return 1;
417 }
881db7fb 418 slab_unlock(page);
1d07171c 419 local_irq_restore(flags);
b789ef51
CL
420 }
421
422 cpu_relax();
423 stat(s, CMPXCHG_DOUBLE_FAIL);
424
425#ifdef SLUB_DEBUG_CMPXCHG
426 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
427#endif
428
429 return 0;
430}
431
41ecc55b 432#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
433/*
434 * Determine a map of object in use on a page.
435 *
881db7fb 436 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
437 * not vanish from under us.
438 */
439static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
440{
441 void *p;
442 void *addr = page_address(page);
443
444 for (p = page->freelist; p; p = get_freepointer(s, p))
445 set_bit(slab_index(p, s, addr), map);
446}
447
41ecc55b
CL
448/*
449 * Debug settings:
450 */
f0630fff
CL
451#ifdef CONFIG_SLUB_DEBUG_ON
452static int slub_debug = DEBUG_DEFAULT_FLAGS;
453#else
41ecc55b 454static int slub_debug;
f0630fff 455#endif
41ecc55b
CL
456
457static char *slub_debug_slabs;
fa5ec8a1 458static int disable_higher_order_debug;
41ecc55b 459
81819f0f
CL
460/*
461 * Object debugging
462 */
463static void print_section(char *text, u8 *addr, unsigned int length)
464{
ffc79d28
SAS
465 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
466 length, 1);
81819f0f
CL
467}
468
81819f0f
CL
469static struct track *get_track(struct kmem_cache *s, void *object,
470 enum track_item alloc)
471{
472 struct track *p;
473
474 if (s->offset)
475 p = object + s->offset + sizeof(void *);
476 else
477 p = object + s->inuse;
478
479 return p + alloc;
480}
481
482static void set_track(struct kmem_cache *s, void *object,
ce71e27c 483 enum track_item alloc, unsigned long addr)
81819f0f 484{
1a00df4a 485 struct track *p = get_track(s, object, alloc);
81819f0f 486
81819f0f 487 if (addr) {
d6543e39
BG
488#ifdef CONFIG_STACKTRACE
489 struct stack_trace trace;
490 int i;
491
492 trace.nr_entries = 0;
493 trace.max_entries = TRACK_ADDRS_COUNT;
494 trace.entries = p->addrs;
495 trace.skip = 3;
496 save_stack_trace(&trace);
497
498 /* See rant in lockdep.c */
499 if (trace.nr_entries != 0 &&
500 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
501 trace.nr_entries--;
502
503 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
504 p->addrs[i] = 0;
505#endif
81819f0f
CL
506 p->addr = addr;
507 p->cpu = smp_processor_id();
88e4ccf2 508 p->pid = current->pid;
81819f0f
CL
509 p->when = jiffies;
510 } else
511 memset(p, 0, sizeof(struct track));
512}
513
81819f0f
CL
514static void init_tracking(struct kmem_cache *s, void *object)
515{
24922684
CL
516 if (!(s->flags & SLAB_STORE_USER))
517 return;
518
ce71e27c
EGM
519 set_track(s, object, TRACK_FREE, 0UL);
520 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
521}
522
523static void print_track(const char *s, struct track *t)
524{
525 if (!t->addr)
526 return;
527
7daf705f 528 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 529 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
530#ifdef CONFIG_STACKTRACE
531 {
532 int i;
533 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
534 if (t->addrs[i])
535 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
536 else
537 break;
538 }
539#endif
24922684
CL
540}
541
542static void print_tracking(struct kmem_cache *s, void *object)
543{
544 if (!(s->flags & SLAB_STORE_USER))
545 return;
546
547 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
548 print_track("Freed", get_track(s, object, TRACK_FREE));
549}
550
551static void print_page_info(struct page *page)
552{
39b26464
CL
553 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
554 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
555
556}
557
558static void slab_bug(struct kmem_cache *s, char *fmt, ...)
559{
560 va_list args;
561 char buf[100];
562
563 va_start(args, fmt);
564 vsnprintf(buf, sizeof(buf), fmt, args);
565 va_end(args);
566 printk(KERN_ERR "========================================"
567 "=====================================\n");
265d47e7 568 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
24922684
CL
569 printk(KERN_ERR "----------------------------------------"
570 "-------------------------------------\n\n");
81819f0f
CL
571}
572
24922684
CL
573static void slab_fix(struct kmem_cache *s, char *fmt, ...)
574{
575 va_list args;
576 char buf[100];
577
578 va_start(args, fmt);
579 vsnprintf(buf, sizeof(buf), fmt, args);
580 va_end(args);
581 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
582}
583
584static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
585{
586 unsigned int off; /* Offset of last byte */
a973e9dd 587 u8 *addr = page_address(page);
24922684
CL
588
589 print_tracking(s, p);
590
591 print_page_info(page);
592
593 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
594 p, p - addr, get_freepointer(s, p));
595
596 if (p > addr + 16)
ffc79d28 597 print_section("Bytes b4 ", p - 16, 16);
81819f0f 598
3b0efdfa 599 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 600 PAGE_SIZE));
81819f0f 601 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
602 print_section("Redzone ", p + s->object_size,
603 s->inuse - s->object_size);
81819f0f 604
81819f0f
CL
605 if (s->offset)
606 off = s->offset + sizeof(void *);
607 else
608 off = s->inuse;
609
24922684 610 if (s->flags & SLAB_STORE_USER)
81819f0f 611 off += 2 * sizeof(struct track);
81819f0f
CL
612
613 if (off != s->size)
614 /* Beginning of the filler is the free pointer */
ffc79d28 615 print_section("Padding ", p + off, s->size - off);
24922684
CL
616
617 dump_stack();
81819f0f
CL
618}
619
620static void object_err(struct kmem_cache *s, struct page *page,
621 u8 *object, char *reason)
622{
3dc50637 623 slab_bug(s, "%s", reason);
24922684 624 print_trailer(s, page, object);
81819f0f
CL
625}
626
24922684 627static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
628{
629 va_list args;
630 char buf[100];
631
24922684
CL
632 va_start(args, fmt);
633 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 634 va_end(args);
3dc50637 635 slab_bug(s, "%s", buf);
24922684 636 print_page_info(page);
81819f0f
CL
637 dump_stack();
638}
639
f7cb1933 640static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
641{
642 u8 *p = object;
643
644 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
645 memset(p, POISON_FREE, s->object_size - 1);
646 p[s->object_size - 1] = POISON_END;
81819f0f
CL
647 }
648
649 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 650 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
651}
652
24922684
CL
653static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
654 void *from, void *to)
655{
656 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
657 memset(from, data, to - from);
658}
659
660static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
661 u8 *object, char *what,
06428780 662 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
663{
664 u8 *fault;
665 u8 *end;
666
79824820 667 fault = memchr_inv(start, value, bytes);
24922684
CL
668 if (!fault)
669 return 1;
670
671 end = start + bytes;
672 while (end > fault && end[-1] == value)
673 end--;
674
675 slab_bug(s, "%s overwritten", what);
676 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
677 fault, end - 1, fault[0], value);
678 print_trailer(s, page, object);
679
680 restore_bytes(s, what, value, fault, end);
681 return 0;
81819f0f
CL
682}
683
81819f0f
CL
684/*
685 * Object layout:
686 *
687 * object address
688 * Bytes of the object to be managed.
689 * If the freepointer may overlay the object then the free
690 * pointer is the first word of the object.
672bba3a 691 *
81819f0f
CL
692 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
693 * 0xa5 (POISON_END)
694 *
3b0efdfa 695 * object + s->object_size
81819f0f 696 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 697 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 698 * object_size == inuse.
672bba3a 699 *
81819f0f
CL
700 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
701 * 0xcc (RED_ACTIVE) for objects in use.
702 *
703 * object + s->inuse
672bba3a
CL
704 * Meta data starts here.
705 *
81819f0f
CL
706 * A. Free pointer (if we cannot overwrite object on free)
707 * B. Tracking data for SLAB_STORE_USER
672bba3a 708 * C. Padding to reach required alignment boundary or at mininum
6446faa2 709 * one word if debugging is on to be able to detect writes
672bba3a
CL
710 * before the word boundary.
711 *
712 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
713 *
714 * object + s->size
672bba3a 715 * Nothing is used beyond s->size.
81819f0f 716 *
3b0efdfa 717 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 718 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
719 * may be used with merged slabcaches.
720 */
721
81819f0f
CL
722static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
723{
724 unsigned long off = s->inuse; /* The end of info */
725
726 if (s->offset)
727 /* Freepointer is placed after the object. */
728 off += sizeof(void *);
729
730 if (s->flags & SLAB_STORE_USER)
731 /* We also have user information there */
732 off += 2 * sizeof(struct track);
733
734 if (s->size == off)
735 return 1;
736
24922684
CL
737 return check_bytes_and_report(s, page, p, "Object padding",
738 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
739}
740
39b26464 741/* Check the pad bytes at the end of a slab page */
81819f0f
CL
742static int slab_pad_check(struct kmem_cache *s, struct page *page)
743{
24922684
CL
744 u8 *start;
745 u8 *fault;
746 u8 *end;
747 int length;
748 int remainder;
81819f0f
CL
749
750 if (!(s->flags & SLAB_POISON))
751 return 1;
752
a973e9dd 753 start = page_address(page);
ab9a0f19 754 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
755 end = start + length;
756 remainder = length % s->size;
81819f0f
CL
757 if (!remainder)
758 return 1;
759
79824820 760 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
24922684
CL
761 if (!fault)
762 return 1;
763 while (end > fault && end[-1] == POISON_INUSE)
764 end--;
765
766 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 767 print_section("Padding ", end - remainder, remainder);
24922684 768
8a3d271d 769 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 770 return 0;
81819f0f
CL
771}
772
773static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 774 void *object, u8 val)
81819f0f
CL
775{
776 u8 *p = object;
3b0efdfa 777 u8 *endobject = object + s->object_size;
81819f0f
CL
778
779 if (s->flags & SLAB_RED_ZONE) {
24922684 780 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 781 endobject, val, s->inuse - s->object_size))
81819f0f 782 return 0;
81819f0f 783 } else {
3b0efdfa 784 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 785 check_bytes_and_report(s, page, p, "Alignment padding",
3b0efdfa 786 endobject, POISON_INUSE, s->inuse - s->object_size);
3adbefee 787 }
81819f0f
CL
788 }
789
790 if (s->flags & SLAB_POISON) {
f7cb1933 791 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 792 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 793 POISON_FREE, s->object_size - 1) ||
24922684 794 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 795 p + s->object_size - 1, POISON_END, 1)))
81819f0f 796 return 0;
81819f0f
CL
797 /*
798 * check_pad_bytes cleans up on its own.
799 */
800 check_pad_bytes(s, page, p);
801 }
802
f7cb1933 803 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
804 /*
805 * Object and freepointer overlap. Cannot check
806 * freepointer while object is allocated.
807 */
808 return 1;
809
810 /* Check free pointer validity */
811 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
812 object_err(s, page, p, "Freepointer corrupt");
813 /*
9f6c708e 814 * No choice but to zap it and thus lose the remainder
81819f0f 815 * of the free objects in this slab. May cause
672bba3a 816 * another error because the object count is now wrong.
81819f0f 817 */
a973e9dd 818 set_freepointer(s, p, NULL);
81819f0f
CL
819 return 0;
820 }
821 return 1;
822}
823
824static int check_slab(struct kmem_cache *s, struct page *page)
825{
39b26464
CL
826 int maxobj;
827
81819f0f
CL
828 VM_BUG_ON(!irqs_disabled());
829
830 if (!PageSlab(page)) {
24922684 831 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
832 return 0;
833 }
39b26464 834
ab9a0f19 835 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
836 if (page->objects > maxobj) {
837 slab_err(s, page, "objects %u > max %u",
838 s->name, page->objects, maxobj);
839 return 0;
840 }
841 if (page->inuse > page->objects) {
24922684 842 slab_err(s, page, "inuse %u > max %u",
39b26464 843 s->name, page->inuse, page->objects);
81819f0f
CL
844 return 0;
845 }
846 /* Slab_pad_check fixes things up after itself */
847 slab_pad_check(s, page);
848 return 1;
849}
850
851/*
672bba3a
CL
852 * Determine if a certain object on a page is on the freelist. Must hold the
853 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
854 */
855static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
856{
857 int nr = 0;
881db7fb 858 void *fp;
81819f0f 859 void *object = NULL;
224a88be 860 unsigned long max_objects;
81819f0f 861
881db7fb 862 fp = page->freelist;
39b26464 863 while (fp && nr <= page->objects) {
81819f0f
CL
864 if (fp == search)
865 return 1;
866 if (!check_valid_pointer(s, page, fp)) {
867 if (object) {
868 object_err(s, page, object,
869 "Freechain corrupt");
a973e9dd 870 set_freepointer(s, object, NULL);
81819f0f
CL
871 break;
872 } else {
24922684 873 slab_err(s, page, "Freepointer corrupt");
a973e9dd 874 page->freelist = NULL;
39b26464 875 page->inuse = page->objects;
24922684 876 slab_fix(s, "Freelist cleared");
81819f0f
CL
877 return 0;
878 }
879 break;
880 }
881 object = fp;
882 fp = get_freepointer(s, object);
883 nr++;
884 }
885
ab9a0f19 886 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
887 if (max_objects > MAX_OBJS_PER_PAGE)
888 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
889
890 if (page->objects != max_objects) {
891 slab_err(s, page, "Wrong number of objects. Found %d but "
892 "should be %d", page->objects, max_objects);
893 page->objects = max_objects;
894 slab_fix(s, "Number of objects adjusted.");
895 }
39b26464 896 if (page->inuse != page->objects - nr) {
70d71228 897 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
898 "counted were %d", page->inuse, page->objects - nr);
899 page->inuse = page->objects - nr;
24922684 900 slab_fix(s, "Object count adjusted.");
81819f0f
CL
901 }
902 return search == NULL;
903}
904
0121c619
CL
905static void trace(struct kmem_cache *s, struct page *page, void *object,
906 int alloc)
3ec09742
CL
907{
908 if (s->flags & SLAB_TRACE) {
909 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
910 s->name,
911 alloc ? "alloc" : "free",
912 object, page->inuse,
913 page->freelist);
914
915 if (!alloc)
3b0efdfa 916 print_section("Object ", (void *)object, s->object_size);
3ec09742
CL
917
918 dump_stack();
919 }
920}
921
c016b0bd
CL
922/*
923 * Hooks for other subsystems that check memory allocations. In a typical
924 * production configuration these hooks all should produce no code at all.
925 */
926static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
927{
c1d50836 928 flags &= gfp_allowed_mask;
c016b0bd
CL
929 lockdep_trace_alloc(flags);
930 might_sleep_if(flags & __GFP_WAIT);
931
3b0efdfa 932 return should_failslab(s->object_size, flags, s->flags);
c016b0bd
CL
933}
934
935static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
936{
c1d50836 937 flags &= gfp_allowed_mask;
b3d41885 938 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
3b0efdfa 939 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
c016b0bd
CL
940}
941
942static inline void slab_free_hook(struct kmem_cache *s, void *x)
943{
944 kmemleak_free_recursive(x, s->flags);
c016b0bd 945
d3f661d6
CL
946 /*
947 * Trouble is that we may no longer disable interupts in the fast path
948 * So in order to make the debug calls that expect irqs to be
949 * disabled we need to disable interrupts temporarily.
950 */
951#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
952 {
953 unsigned long flags;
954
955 local_irq_save(flags);
3b0efdfa
CL
956 kmemcheck_slab_free(s, x, s->object_size);
957 debug_check_no_locks_freed(x, s->object_size);
d3f661d6
CL
958 local_irq_restore(flags);
959 }
960#endif
f9b615de 961 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3b0efdfa 962 debug_check_no_obj_freed(x, s->object_size);
c016b0bd
CL
963}
964
643b1138 965/*
672bba3a 966 * Tracking of fully allocated slabs for debugging purposes.
5cc6eee8
CL
967 *
968 * list_lock must be held.
643b1138 969 */
5cc6eee8
CL
970static void add_full(struct kmem_cache *s,
971 struct kmem_cache_node *n, struct page *page)
643b1138 972{
5cc6eee8
CL
973 if (!(s->flags & SLAB_STORE_USER))
974 return;
975
643b1138 976 list_add(&page->lru, &n->full);
643b1138
CL
977}
978
5cc6eee8
CL
979/*
980 * list_lock must be held.
981 */
643b1138
CL
982static void remove_full(struct kmem_cache *s, struct page *page)
983{
643b1138
CL
984 if (!(s->flags & SLAB_STORE_USER))
985 return;
986
643b1138 987 list_del(&page->lru);
643b1138
CL
988}
989
0f389ec6
CL
990/* Tracking of the number of slabs for debugging purposes */
991static inline unsigned long slabs_node(struct kmem_cache *s, int node)
992{
993 struct kmem_cache_node *n = get_node(s, node);
994
995 return atomic_long_read(&n->nr_slabs);
996}
997
26c02cf0
AB
998static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
999{
1000 return atomic_long_read(&n->nr_slabs);
1001}
1002
205ab99d 1003static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1004{
1005 struct kmem_cache_node *n = get_node(s, node);
1006
1007 /*
1008 * May be called early in order to allocate a slab for the
1009 * kmem_cache_node structure. Solve the chicken-egg
1010 * dilemma by deferring the increment of the count during
1011 * bootstrap (see early_kmem_cache_node_alloc).
1012 */
7340cc84 1013 if (n) {
0f389ec6 1014 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1015 atomic_long_add(objects, &n->total_objects);
1016 }
0f389ec6 1017}
205ab99d 1018static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1019{
1020 struct kmem_cache_node *n = get_node(s, node);
1021
1022 atomic_long_dec(&n->nr_slabs);
205ab99d 1023 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1024}
1025
1026/* Object debug checks for alloc/free paths */
3ec09742
CL
1027static void setup_object_debug(struct kmem_cache *s, struct page *page,
1028 void *object)
1029{
1030 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1031 return;
1032
f7cb1933 1033 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1034 init_tracking(s, object);
1035}
1036
1537066c 1037static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 1038 void *object, unsigned long addr)
81819f0f
CL
1039{
1040 if (!check_slab(s, page))
1041 goto bad;
1042
81819f0f
CL
1043 if (!check_valid_pointer(s, page, object)) {
1044 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1045 goto bad;
81819f0f
CL
1046 }
1047
f7cb1933 1048 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1049 goto bad;
81819f0f 1050
3ec09742
CL
1051 /* Success perform special debug activities for allocs */
1052 if (s->flags & SLAB_STORE_USER)
1053 set_track(s, object, TRACK_ALLOC, addr);
1054 trace(s, page, object, 1);
f7cb1933 1055 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1056 return 1;
3ec09742 1057
81819f0f
CL
1058bad:
1059 if (PageSlab(page)) {
1060 /*
1061 * If this is a slab page then lets do the best we can
1062 * to avoid issues in the future. Marking all objects
672bba3a 1063 * as used avoids touching the remaining objects.
81819f0f 1064 */
24922684 1065 slab_fix(s, "Marking all objects used");
39b26464 1066 page->inuse = page->objects;
a973e9dd 1067 page->freelist = NULL;
81819f0f
CL
1068 }
1069 return 0;
1070}
1071
19c7ff9e
CL
1072static noinline struct kmem_cache_node *free_debug_processing(
1073 struct kmem_cache *s, struct page *page, void *object,
1074 unsigned long addr, unsigned long *flags)
81819f0f 1075{
19c7ff9e 1076 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
5c2e4bbb 1077
19c7ff9e 1078 spin_lock_irqsave(&n->list_lock, *flags);
881db7fb
CL
1079 slab_lock(page);
1080
81819f0f
CL
1081 if (!check_slab(s, page))
1082 goto fail;
1083
1084 if (!check_valid_pointer(s, page, object)) {
70d71228 1085 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1086 goto fail;
1087 }
1088
1089 if (on_freelist(s, page, object)) {
24922684 1090 object_err(s, page, object, "Object already free");
81819f0f
CL
1091 goto fail;
1092 }
1093
f7cb1933 1094 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1095 goto out;
81819f0f
CL
1096
1097 if (unlikely(s != page->slab)) {
3adbefee 1098 if (!PageSlab(page)) {
70d71228
CL
1099 slab_err(s, page, "Attempt to free object(0x%p) "
1100 "outside of slab", object);
3adbefee 1101 } else if (!page->slab) {
81819f0f 1102 printk(KERN_ERR
70d71228 1103 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1104 object);
70d71228 1105 dump_stack();
06428780 1106 } else
24922684
CL
1107 object_err(s, page, object,
1108 "page slab pointer corrupt.");
81819f0f
CL
1109 goto fail;
1110 }
3ec09742 1111
3ec09742
CL
1112 if (s->flags & SLAB_STORE_USER)
1113 set_track(s, object, TRACK_FREE, addr);
1114 trace(s, page, object, 0);
f7cb1933 1115 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb 1116out:
881db7fb 1117 slab_unlock(page);
19c7ff9e
CL
1118 /*
1119 * Keep node_lock to preserve integrity
1120 * until the object is actually freed
1121 */
1122 return n;
3ec09742 1123
81819f0f 1124fail:
19c7ff9e
CL
1125 slab_unlock(page);
1126 spin_unlock_irqrestore(&n->list_lock, *flags);
24922684 1127 slab_fix(s, "Object at 0x%p not freed", object);
19c7ff9e 1128 return NULL;
81819f0f
CL
1129}
1130
41ecc55b
CL
1131static int __init setup_slub_debug(char *str)
1132{
f0630fff
CL
1133 slub_debug = DEBUG_DEFAULT_FLAGS;
1134 if (*str++ != '=' || !*str)
1135 /*
1136 * No options specified. Switch on full debugging.
1137 */
1138 goto out;
1139
1140 if (*str == ',')
1141 /*
1142 * No options but restriction on slabs. This means full
1143 * debugging for slabs matching a pattern.
1144 */
1145 goto check_slabs;
1146
fa5ec8a1
DR
1147 if (tolower(*str) == 'o') {
1148 /*
1149 * Avoid enabling debugging on caches if its minimum order
1150 * would increase as a result.
1151 */
1152 disable_higher_order_debug = 1;
1153 goto out;
1154 }
1155
f0630fff
CL
1156 slub_debug = 0;
1157 if (*str == '-')
1158 /*
1159 * Switch off all debugging measures.
1160 */
1161 goto out;
1162
1163 /*
1164 * Determine which debug features should be switched on
1165 */
06428780 1166 for (; *str && *str != ','; str++) {
f0630fff
CL
1167 switch (tolower(*str)) {
1168 case 'f':
1169 slub_debug |= SLAB_DEBUG_FREE;
1170 break;
1171 case 'z':
1172 slub_debug |= SLAB_RED_ZONE;
1173 break;
1174 case 'p':
1175 slub_debug |= SLAB_POISON;
1176 break;
1177 case 'u':
1178 slub_debug |= SLAB_STORE_USER;
1179 break;
1180 case 't':
1181 slub_debug |= SLAB_TRACE;
1182 break;
4c13dd3b
DM
1183 case 'a':
1184 slub_debug |= SLAB_FAILSLAB;
1185 break;
f0630fff
CL
1186 default:
1187 printk(KERN_ERR "slub_debug option '%c' "
06428780 1188 "unknown. skipped\n", *str);
f0630fff 1189 }
41ecc55b
CL
1190 }
1191
f0630fff 1192check_slabs:
41ecc55b
CL
1193 if (*str == ',')
1194 slub_debug_slabs = str + 1;
f0630fff 1195out:
41ecc55b
CL
1196 return 1;
1197}
1198
1199__setup("slub_debug", setup_slub_debug);
1200
3b0efdfa 1201static unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1202 unsigned long flags, const char *name,
51cc5068 1203 void (*ctor)(void *))
41ecc55b
CL
1204{
1205 /*
e153362a 1206 * Enable debugging if selected on the kernel commandline.
41ecc55b 1207 */
e153362a 1208 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1209 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1210 flags |= slub_debug;
ba0268a8
CL
1211
1212 return flags;
41ecc55b
CL
1213}
1214#else
3ec09742
CL
1215static inline void setup_object_debug(struct kmem_cache *s,
1216 struct page *page, void *object) {}
41ecc55b 1217
3ec09742 1218static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1219 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1220
19c7ff9e
CL
1221static inline struct kmem_cache_node *free_debug_processing(
1222 struct kmem_cache *s, struct page *page, void *object,
1223 unsigned long addr, unsigned long *flags) { return NULL; }
41ecc55b 1224
41ecc55b
CL
1225static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1226 { return 1; }
1227static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1228 void *object, u8 val) { return 1; }
5cc6eee8
CL
1229static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1230 struct page *page) {}
2cfb7455 1231static inline void remove_full(struct kmem_cache *s, struct page *page) {}
3b0efdfa 1232static inline unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1233 unsigned long flags, const char *name,
51cc5068 1234 void (*ctor)(void *))
ba0268a8
CL
1235{
1236 return flags;
1237}
41ecc55b 1238#define slub_debug 0
0f389ec6 1239
fdaa45e9
IM
1240#define disable_higher_order_debug 0
1241
0f389ec6
CL
1242static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1243 { return 0; }
26c02cf0
AB
1244static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1245 { return 0; }
205ab99d
CL
1246static inline void inc_slabs_node(struct kmem_cache *s, int node,
1247 int objects) {}
1248static inline void dec_slabs_node(struct kmem_cache *s, int node,
1249 int objects) {}
7d550c56
CL
1250
1251static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1252 { return 0; }
1253
1254static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1255 void *object) {}
1256
1257static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1258
ab4d5ed5 1259#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1260
81819f0f
CL
1261/*
1262 * Slab allocation and freeing
1263 */
65c3376a
CL
1264static inline struct page *alloc_slab_page(gfp_t flags, int node,
1265 struct kmem_cache_order_objects oo)
1266{
1267 int order = oo_order(oo);
1268
b1eeab67
VN
1269 flags |= __GFP_NOTRACK;
1270
2154a336 1271 if (node == NUMA_NO_NODE)
65c3376a
CL
1272 return alloc_pages(flags, order);
1273 else
6b65aaf3 1274 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1275}
1276
81819f0f
CL
1277static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1278{
06428780 1279 struct page *page;
834f3d11 1280 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1281 gfp_t alloc_gfp;
81819f0f 1282
7e0528da
CL
1283 flags &= gfp_allowed_mask;
1284
1285 if (flags & __GFP_WAIT)
1286 local_irq_enable();
1287
b7a49f0d 1288 flags |= s->allocflags;
e12ba74d 1289
ba52270d
PE
1290 /*
1291 * Let the initial higher-order allocation fail under memory pressure
1292 * so we fall-back to the minimum order allocation.
1293 */
1294 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1295
1296 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1297 if (unlikely(!page)) {
1298 oo = s->min;
1299 /*
1300 * Allocation may have failed due to fragmentation.
1301 * Try a lower order alloc if possible
1302 */
1303 page = alloc_slab_page(flags, node, oo);
81819f0f 1304
7e0528da
CL
1305 if (page)
1306 stat(s, ORDER_FALLBACK);
65c3376a 1307 }
5a896d9e 1308
737b719e 1309 if (kmemcheck_enabled && page
5086c389 1310 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1311 int pages = 1 << oo_order(oo);
1312
1313 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1314
1315 /*
1316 * Objects from caches that have a constructor don't get
1317 * cleared when they're allocated, so we need to do it here.
1318 */
1319 if (s->ctor)
1320 kmemcheck_mark_uninitialized_pages(page, pages);
1321 else
1322 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1323 }
1324
737b719e
DR
1325 if (flags & __GFP_WAIT)
1326 local_irq_disable();
1327 if (!page)
1328 return NULL;
1329
834f3d11 1330 page->objects = oo_objects(oo);
81819f0f
CL
1331 mod_zone_page_state(page_zone(page),
1332 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1333 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1334 1 << oo_order(oo));
81819f0f
CL
1335
1336 return page;
1337}
1338
1339static void setup_object(struct kmem_cache *s, struct page *page,
1340 void *object)
1341{
3ec09742 1342 setup_object_debug(s, page, object);
4f104934 1343 if (unlikely(s->ctor))
51cc5068 1344 s->ctor(object);
81819f0f
CL
1345}
1346
1347static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1348{
1349 struct page *page;
81819f0f 1350 void *start;
81819f0f
CL
1351 void *last;
1352 void *p;
1353
6cb06229 1354 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1355
6cb06229
CL
1356 page = allocate_slab(s,
1357 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1358 if (!page)
1359 goto out;
1360
205ab99d 1361 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f 1362 page->slab = s;
c03f94cc 1363 __SetPageSlab(page);
072bb0aa
MG
1364 if (page->pfmemalloc)
1365 SetPageSlabPfmemalloc(page);
81819f0f
CL
1366
1367 start = page_address(page);
81819f0f
CL
1368
1369 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1370 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1371
1372 last = start;
224a88be 1373 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1374 setup_object(s, page, last);
1375 set_freepointer(s, last, p);
1376 last = p;
1377 }
1378 setup_object(s, page, last);
a973e9dd 1379 set_freepointer(s, last, NULL);
81819f0f
CL
1380
1381 page->freelist = start;
e6e82ea1 1382 page->inuse = page->objects;
8cb0a506 1383 page->frozen = 1;
81819f0f 1384out:
81819f0f
CL
1385 return page;
1386}
1387
1388static void __free_slab(struct kmem_cache *s, struct page *page)
1389{
834f3d11
CL
1390 int order = compound_order(page);
1391 int pages = 1 << order;
81819f0f 1392
af537b0a 1393 if (kmem_cache_debug(s)) {
81819f0f
CL
1394 void *p;
1395
1396 slab_pad_check(s, page);
224a88be
CL
1397 for_each_object(p, s, page_address(page),
1398 page->objects)
f7cb1933 1399 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1400 }
1401
b1eeab67 1402 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1403
81819f0f
CL
1404 mod_zone_page_state(page_zone(page),
1405 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1406 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1407 -pages);
81819f0f 1408
072bb0aa 1409 __ClearPageSlabPfmemalloc(page);
49bd5221
CL
1410 __ClearPageSlab(page);
1411 reset_page_mapcount(page);
1eb5ac64
NP
1412 if (current->reclaim_state)
1413 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1414 __free_pages(page, order);
81819f0f
CL
1415}
1416
da9a638c
LJ
1417#define need_reserve_slab_rcu \
1418 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1419
81819f0f
CL
1420static void rcu_free_slab(struct rcu_head *h)
1421{
1422 struct page *page;
1423
da9a638c
LJ
1424 if (need_reserve_slab_rcu)
1425 page = virt_to_head_page(h);
1426 else
1427 page = container_of((struct list_head *)h, struct page, lru);
1428
81819f0f
CL
1429 __free_slab(page->slab, page);
1430}
1431
1432static void free_slab(struct kmem_cache *s, struct page *page)
1433{
1434 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1435 struct rcu_head *head;
1436
1437 if (need_reserve_slab_rcu) {
1438 int order = compound_order(page);
1439 int offset = (PAGE_SIZE << order) - s->reserved;
1440
1441 VM_BUG_ON(s->reserved != sizeof(*head));
1442 head = page_address(page) + offset;
1443 } else {
1444 /*
1445 * RCU free overloads the RCU head over the LRU
1446 */
1447 head = (void *)&page->lru;
1448 }
81819f0f
CL
1449
1450 call_rcu(head, rcu_free_slab);
1451 } else
1452 __free_slab(s, page);
1453}
1454
1455static void discard_slab(struct kmem_cache *s, struct page *page)
1456{
205ab99d 1457 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1458 free_slab(s, page);
1459}
1460
1461/*
5cc6eee8
CL
1462 * Management of partially allocated slabs.
1463 *
1464 * list_lock must be held.
81819f0f 1465 */
5cc6eee8 1466static inline void add_partial(struct kmem_cache_node *n,
7c2e132c 1467 struct page *page, int tail)
81819f0f 1468{
e95eed57 1469 n->nr_partial++;
136333d1 1470 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1471 list_add_tail(&page->lru, &n->partial);
1472 else
1473 list_add(&page->lru, &n->partial);
81819f0f
CL
1474}
1475
5cc6eee8
CL
1476/*
1477 * list_lock must be held.
1478 */
1479static inline void remove_partial(struct kmem_cache_node *n,
62e346a8
CL
1480 struct page *page)
1481{
1482 list_del(&page->lru);
1483 n->nr_partial--;
1484}
1485
81819f0f 1486/*
7ced3719
CL
1487 * Remove slab from the partial list, freeze it and
1488 * return the pointer to the freelist.
81819f0f 1489 *
497b66f2
CL
1490 * Returns a list of objects or NULL if it fails.
1491 *
7ced3719 1492 * Must hold list_lock since we modify the partial list.
81819f0f 1493 */
497b66f2 1494static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1495 struct kmem_cache_node *n, struct page *page,
49e22585 1496 int mode)
81819f0f 1497{
2cfb7455
CL
1498 void *freelist;
1499 unsigned long counters;
1500 struct page new;
1501
2cfb7455
CL
1502 /*
1503 * Zap the freelist and set the frozen bit.
1504 * The old freelist is the list of objects for the
1505 * per cpu allocation list.
1506 */
7ced3719
CL
1507 freelist = page->freelist;
1508 counters = page->counters;
1509 new.counters = counters;
23910c50 1510 if (mode) {
7ced3719 1511 new.inuse = page->objects;
23910c50
PE
1512 new.freelist = NULL;
1513 } else {
1514 new.freelist = freelist;
1515 }
2cfb7455 1516
7ced3719
CL
1517 VM_BUG_ON(new.frozen);
1518 new.frozen = 1;
2cfb7455 1519
7ced3719 1520 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1521 freelist, counters,
02d7633f 1522 new.freelist, new.counters,
7ced3719 1523 "acquire_slab"))
7ced3719 1524 return NULL;
2cfb7455
CL
1525
1526 remove_partial(n, page);
7ced3719 1527 WARN_ON(!freelist);
49e22585 1528 return freelist;
81819f0f
CL
1529}
1530
49e22585
CL
1531static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1532
81819f0f 1533/*
672bba3a 1534 * Try to allocate a partial slab from a specific node.
81819f0f 1535 */
497b66f2 1536static void *get_partial_node(struct kmem_cache *s,
acd19fd1 1537 struct kmem_cache_node *n, struct kmem_cache_cpu *c)
81819f0f 1538{
49e22585
CL
1539 struct page *page, *page2;
1540 void *object = NULL;
81819f0f
CL
1541
1542 /*
1543 * Racy check. If we mistakenly see no partial slabs then we
1544 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1545 * partial slab and there is none available then get_partials()
1546 * will return NULL.
81819f0f
CL
1547 */
1548 if (!n || !n->nr_partial)
1549 return NULL;
1550
1551 spin_lock(&n->list_lock);
49e22585 1552 list_for_each_entry_safe(page, page2, &n->partial, lru) {
12d79634 1553 void *t = acquire_slab(s, n, page, object == NULL);
49e22585
CL
1554 int available;
1555
1556 if (!t)
1557 break;
1558
12d79634 1559 if (!object) {
49e22585 1560 c->page = page;
49e22585 1561 stat(s, ALLOC_FROM_PARTIAL);
49e22585
CL
1562 object = t;
1563 available = page->objects - page->inuse;
1564 } else {
49e22585 1565 available = put_cpu_partial(s, page, 0);
8028dcea 1566 stat(s, CPU_PARTIAL_NODE);
49e22585
CL
1567 }
1568 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1569 break;
1570
497b66f2 1571 }
81819f0f 1572 spin_unlock(&n->list_lock);
497b66f2 1573 return object;
81819f0f
CL
1574}
1575
1576/*
672bba3a 1577 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1578 */
de3ec035 1579static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1580 struct kmem_cache_cpu *c)
81819f0f
CL
1581{
1582#ifdef CONFIG_NUMA
1583 struct zonelist *zonelist;
dd1a239f 1584 struct zoneref *z;
54a6eb5c
MG
1585 struct zone *zone;
1586 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1587 void *object;
cc9a6c87 1588 unsigned int cpuset_mems_cookie;
81819f0f
CL
1589
1590 /*
672bba3a
CL
1591 * The defrag ratio allows a configuration of the tradeoffs between
1592 * inter node defragmentation and node local allocations. A lower
1593 * defrag_ratio increases the tendency to do local allocations
1594 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1595 *
672bba3a
CL
1596 * If the defrag_ratio is set to 0 then kmalloc() always
1597 * returns node local objects. If the ratio is higher then kmalloc()
1598 * may return off node objects because partial slabs are obtained
1599 * from other nodes and filled up.
81819f0f 1600 *
6446faa2 1601 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1602 * defrag_ratio = 1000) then every (well almost) allocation will
1603 * first attempt to defrag slab caches on other nodes. This means
1604 * scanning over all nodes to look for partial slabs which may be
1605 * expensive if we do it every time we are trying to find a slab
1606 * with available objects.
81819f0f 1607 */
9824601e
CL
1608 if (!s->remote_node_defrag_ratio ||
1609 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1610 return NULL;
1611
cc9a6c87
MG
1612 do {
1613 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 1614 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87
MG
1615 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1616 struct kmem_cache_node *n;
1617
1618 n = get_node(s, zone_to_nid(zone));
1619
1620 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1621 n->nr_partial > s->min_partial) {
1622 object = get_partial_node(s, n, c);
1623 if (object) {
1624 /*
1625 * Return the object even if
1626 * put_mems_allowed indicated that
1627 * the cpuset mems_allowed was
1628 * updated in parallel. It's a
1629 * harmless race between the alloc
1630 * and the cpuset update.
1631 */
1632 put_mems_allowed(cpuset_mems_cookie);
1633 return object;
1634 }
c0ff7453 1635 }
81819f0f 1636 }
cc9a6c87 1637 } while (!put_mems_allowed(cpuset_mems_cookie));
81819f0f
CL
1638#endif
1639 return NULL;
1640}
1641
1642/*
1643 * Get a partial page, lock it and return it.
1644 */
497b66f2 1645static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1646 struct kmem_cache_cpu *c)
81819f0f 1647{
497b66f2 1648 void *object;
2154a336 1649 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f 1650
497b66f2
CL
1651 object = get_partial_node(s, get_node(s, searchnode), c);
1652 if (object || node != NUMA_NO_NODE)
1653 return object;
81819f0f 1654
acd19fd1 1655 return get_any_partial(s, flags, c);
81819f0f
CL
1656}
1657
8a5ec0ba
CL
1658#ifdef CONFIG_PREEMPT
1659/*
1660 * Calculate the next globally unique transaction for disambiguiation
1661 * during cmpxchg. The transactions start with the cpu number and are then
1662 * incremented by CONFIG_NR_CPUS.
1663 */
1664#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1665#else
1666/*
1667 * No preemption supported therefore also no need to check for
1668 * different cpus.
1669 */
1670#define TID_STEP 1
1671#endif
1672
1673static inline unsigned long next_tid(unsigned long tid)
1674{
1675 return tid + TID_STEP;
1676}
1677
1678static inline unsigned int tid_to_cpu(unsigned long tid)
1679{
1680 return tid % TID_STEP;
1681}
1682
1683static inline unsigned long tid_to_event(unsigned long tid)
1684{
1685 return tid / TID_STEP;
1686}
1687
1688static inline unsigned int init_tid(int cpu)
1689{
1690 return cpu;
1691}
1692
1693static inline void note_cmpxchg_failure(const char *n,
1694 const struct kmem_cache *s, unsigned long tid)
1695{
1696#ifdef SLUB_DEBUG_CMPXCHG
1697 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1698
1699 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1700
1701#ifdef CONFIG_PREEMPT
1702 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1703 printk("due to cpu change %d -> %d\n",
1704 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1705 else
1706#endif
1707 if (tid_to_event(tid) != tid_to_event(actual_tid))
1708 printk("due to cpu running other code. Event %ld->%ld\n",
1709 tid_to_event(tid), tid_to_event(actual_tid));
1710 else
1711 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1712 actual_tid, tid, next_tid(tid));
1713#endif
4fdccdfb 1714 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1715}
1716
8a5ec0ba
CL
1717void init_kmem_cache_cpus(struct kmem_cache *s)
1718{
8a5ec0ba
CL
1719 int cpu;
1720
1721 for_each_possible_cpu(cpu)
1722 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1723}
2cfb7455 1724
81819f0f
CL
1725/*
1726 * Remove the cpu slab
1727 */
c17dda40 1728static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
81819f0f 1729{
2cfb7455 1730 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1731 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1732 int lock = 0;
1733 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1734 void *nextfree;
136333d1 1735 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1736 struct page new;
1737 struct page old;
1738
1739 if (page->freelist) {
84e554e6 1740 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1741 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1742 }
1743
894b8788 1744 /*
2cfb7455
CL
1745 * Stage one: Free all available per cpu objects back
1746 * to the page freelist while it is still frozen. Leave the
1747 * last one.
1748 *
1749 * There is no need to take the list->lock because the page
1750 * is still frozen.
1751 */
1752 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1753 void *prior;
1754 unsigned long counters;
1755
1756 do {
1757 prior = page->freelist;
1758 counters = page->counters;
1759 set_freepointer(s, freelist, prior);
1760 new.counters = counters;
1761 new.inuse--;
1762 VM_BUG_ON(!new.frozen);
1763
1d07171c 1764 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1765 prior, counters,
1766 freelist, new.counters,
1767 "drain percpu freelist"));
1768
1769 freelist = nextfree;
1770 }
1771
894b8788 1772 /*
2cfb7455
CL
1773 * Stage two: Ensure that the page is unfrozen while the
1774 * list presence reflects the actual number of objects
1775 * during unfreeze.
1776 *
1777 * We setup the list membership and then perform a cmpxchg
1778 * with the count. If there is a mismatch then the page
1779 * is not unfrozen but the page is on the wrong list.
1780 *
1781 * Then we restart the process which may have to remove
1782 * the page from the list that we just put it on again
1783 * because the number of objects in the slab may have
1784 * changed.
894b8788 1785 */
2cfb7455 1786redo:
894b8788 1787
2cfb7455
CL
1788 old.freelist = page->freelist;
1789 old.counters = page->counters;
1790 VM_BUG_ON(!old.frozen);
7c2e132c 1791
2cfb7455
CL
1792 /* Determine target state of the slab */
1793 new.counters = old.counters;
1794 if (freelist) {
1795 new.inuse--;
1796 set_freepointer(s, freelist, old.freelist);
1797 new.freelist = freelist;
1798 } else
1799 new.freelist = old.freelist;
1800
1801 new.frozen = 0;
1802
81107188 1803 if (!new.inuse && n->nr_partial > s->min_partial)
2cfb7455
CL
1804 m = M_FREE;
1805 else if (new.freelist) {
1806 m = M_PARTIAL;
1807 if (!lock) {
1808 lock = 1;
1809 /*
1810 * Taking the spinlock removes the possiblity
1811 * that acquire_slab() will see a slab page that
1812 * is frozen
1813 */
1814 spin_lock(&n->list_lock);
1815 }
1816 } else {
1817 m = M_FULL;
1818 if (kmem_cache_debug(s) && !lock) {
1819 lock = 1;
1820 /*
1821 * This also ensures that the scanning of full
1822 * slabs from diagnostic functions will not see
1823 * any frozen slabs.
1824 */
1825 spin_lock(&n->list_lock);
1826 }
1827 }
1828
1829 if (l != m) {
1830
1831 if (l == M_PARTIAL)
1832
1833 remove_partial(n, page);
1834
1835 else if (l == M_FULL)
894b8788 1836
2cfb7455
CL
1837 remove_full(s, page);
1838
1839 if (m == M_PARTIAL) {
1840
1841 add_partial(n, page, tail);
136333d1 1842 stat(s, tail);
2cfb7455
CL
1843
1844 } else if (m == M_FULL) {
894b8788 1845
2cfb7455
CL
1846 stat(s, DEACTIVATE_FULL);
1847 add_full(s, n, page);
1848
1849 }
1850 }
1851
1852 l = m;
1d07171c 1853 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1854 old.freelist, old.counters,
1855 new.freelist, new.counters,
1856 "unfreezing slab"))
1857 goto redo;
1858
2cfb7455
CL
1859 if (lock)
1860 spin_unlock(&n->list_lock);
1861
1862 if (m == M_FREE) {
1863 stat(s, DEACTIVATE_EMPTY);
1864 discard_slab(s, page);
1865 stat(s, FREE_SLAB);
894b8788 1866 }
81819f0f
CL
1867}
1868
d24ac77f
JK
1869/*
1870 * Unfreeze all the cpu partial slabs.
1871 *
1872 * This function must be called with interrupt disabled.
1873 */
49e22585
CL
1874static void unfreeze_partials(struct kmem_cache *s)
1875{
43d77867 1876 struct kmem_cache_node *n = NULL, *n2 = NULL;
49e22585 1877 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
9ada1934 1878 struct page *page, *discard_page = NULL;
49e22585
CL
1879
1880 while ((page = c->partial)) {
49e22585
CL
1881 struct page new;
1882 struct page old;
1883
1884 c->partial = page->next;
43d77867
JK
1885
1886 n2 = get_node(s, page_to_nid(page));
1887 if (n != n2) {
1888 if (n)
1889 spin_unlock(&n->list_lock);
1890
1891 n = n2;
1892 spin_lock(&n->list_lock);
1893 }
49e22585
CL
1894
1895 do {
1896
1897 old.freelist = page->freelist;
1898 old.counters = page->counters;
1899 VM_BUG_ON(!old.frozen);
1900
1901 new.counters = old.counters;
1902 new.freelist = old.freelist;
1903
1904 new.frozen = 0;
1905
d24ac77f 1906 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
1907 old.freelist, old.counters,
1908 new.freelist, new.counters,
1909 "unfreezing slab"));
1910
43d77867 1911 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
9ada1934
SL
1912 page->next = discard_page;
1913 discard_page = page;
43d77867
JK
1914 } else {
1915 add_partial(n, page, DEACTIVATE_TO_TAIL);
1916 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
1917 }
1918 }
1919
1920 if (n)
1921 spin_unlock(&n->list_lock);
9ada1934
SL
1922
1923 while (discard_page) {
1924 page = discard_page;
1925 discard_page = discard_page->next;
1926
1927 stat(s, DEACTIVATE_EMPTY);
1928 discard_slab(s, page);
1929 stat(s, FREE_SLAB);
1930 }
49e22585
CL
1931}
1932
1933/*
1934 * Put a page that was just frozen (in __slab_free) into a partial page
1935 * slot if available. This is done without interrupts disabled and without
1936 * preemption disabled. The cmpxchg is racy and may put the partial page
1937 * onto a random cpus partial slot.
1938 *
1939 * If we did not find a slot then simply move all the partials to the
1940 * per node partial list.
1941 */
1942int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1943{
1944 struct page *oldpage;
1945 int pages;
1946 int pobjects;
1947
1948 do {
1949 pages = 0;
1950 pobjects = 0;
1951 oldpage = this_cpu_read(s->cpu_slab->partial);
1952
1953 if (oldpage) {
1954 pobjects = oldpage->pobjects;
1955 pages = oldpage->pages;
1956 if (drain && pobjects > s->cpu_partial) {
1957 unsigned long flags;
1958 /*
1959 * partial array is full. Move the existing
1960 * set to the per node partial list.
1961 */
1962 local_irq_save(flags);
1963 unfreeze_partials(s);
1964 local_irq_restore(flags);
e24fc410 1965 oldpage = NULL;
49e22585
CL
1966 pobjects = 0;
1967 pages = 0;
8028dcea 1968 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
1969 }
1970 }
1971
1972 pages++;
1973 pobjects += page->objects - page->inuse;
1974
1975 page->pages = pages;
1976 page->pobjects = pobjects;
1977 page->next = oldpage;
1978
933393f5 1979 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
49e22585
CL
1980 return pobjects;
1981}
1982
dfb4f096 1983static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1984{
84e554e6 1985 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
1986 deactivate_slab(s, c->page, c->freelist);
1987
1988 c->tid = next_tid(c->tid);
1989 c->page = NULL;
1990 c->freelist = NULL;
81819f0f
CL
1991}
1992
1993/*
1994 * Flush cpu slab.
6446faa2 1995 *
81819f0f
CL
1996 * Called from IPI handler with interrupts disabled.
1997 */
0c710013 1998static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1999{
9dfc6e68 2000 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2001
49e22585
CL
2002 if (likely(c)) {
2003 if (c->page)
2004 flush_slab(s, c);
2005
2006 unfreeze_partials(s);
2007 }
81819f0f
CL
2008}
2009
2010static void flush_cpu_slab(void *d)
2011{
2012 struct kmem_cache *s = d;
81819f0f 2013
dfb4f096 2014 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2015}
2016
a8364d55
GBY
2017static bool has_cpu_slab(int cpu, void *info)
2018{
2019 struct kmem_cache *s = info;
2020 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2021
02e1a9cd 2022 return c->page || c->partial;
a8364d55
GBY
2023}
2024
81819f0f
CL
2025static void flush_all(struct kmem_cache *s)
2026{
a8364d55 2027 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2028}
2029
dfb4f096
CL
2030/*
2031 * Check if the objects in a per cpu structure fit numa
2032 * locality expectations.
2033 */
57d437d2 2034static inline int node_match(struct page *page, int node)
dfb4f096
CL
2035{
2036#ifdef CONFIG_NUMA
57d437d2 2037 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2038 return 0;
2039#endif
2040 return 1;
2041}
2042
781b2ba6
PE
2043static int count_free(struct page *page)
2044{
2045 return page->objects - page->inuse;
2046}
2047
2048static unsigned long count_partial(struct kmem_cache_node *n,
2049 int (*get_count)(struct page *))
2050{
2051 unsigned long flags;
2052 unsigned long x = 0;
2053 struct page *page;
2054
2055 spin_lock_irqsave(&n->list_lock, flags);
2056 list_for_each_entry(page, &n->partial, lru)
2057 x += get_count(page);
2058 spin_unlock_irqrestore(&n->list_lock, flags);
2059 return x;
2060}
2061
26c02cf0
AB
2062static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2063{
2064#ifdef CONFIG_SLUB_DEBUG
2065 return atomic_long_read(&n->total_objects);
2066#else
2067 return 0;
2068#endif
2069}
2070
781b2ba6
PE
2071static noinline void
2072slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2073{
2074 int node;
2075
2076 printk(KERN_WARNING
2077 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2078 nid, gfpflags);
2079 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
3b0efdfa 2080 "default order: %d, min order: %d\n", s->name, s->object_size,
781b2ba6
PE
2081 s->size, oo_order(s->oo), oo_order(s->min));
2082
3b0efdfa 2083 if (oo_order(s->min) > get_order(s->object_size))
fa5ec8a1
DR
2084 printk(KERN_WARNING " %s debugging increased min order, use "
2085 "slub_debug=O to disable.\n", s->name);
2086
781b2ba6
PE
2087 for_each_online_node(node) {
2088 struct kmem_cache_node *n = get_node(s, node);
2089 unsigned long nr_slabs;
2090 unsigned long nr_objs;
2091 unsigned long nr_free;
2092
2093 if (!n)
2094 continue;
2095
26c02cf0
AB
2096 nr_free = count_partial(n, count_free);
2097 nr_slabs = node_nr_slabs(n);
2098 nr_objs = node_nr_objs(n);
781b2ba6
PE
2099
2100 printk(KERN_WARNING
2101 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2102 node, nr_slabs, nr_objs, nr_free);
2103 }
2104}
2105
497b66f2
CL
2106static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2107 int node, struct kmem_cache_cpu **pc)
2108{
6faa6833 2109 void *freelist;
188fd063
CL
2110 struct kmem_cache_cpu *c = *pc;
2111 struct page *page;
497b66f2 2112
188fd063 2113 freelist = get_partial(s, flags, node, c);
497b66f2 2114
188fd063
CL
2115 if (freelist)
2116 return freelist;
2117
2118 page = new_slab(s, flags, node);
497b66f2
CL
2119 if (page) {
2120 c = __this_cpu_ptr(s->cpu_slab);
2121 if (c->page)
2122 flush_slab(s, c);
2123
2124 /*
2125 * No other reference to the page yet so we can
2126 * muck around with it freely without cmpxchg
2127 */
6faa6833 2128 freelist = page->freelist;
497b66f2
CL
2129 page->freelist = NULL;
2130
2131 stat(s, ALLOC_SLAB);
497b66f2
CL
2132 c->page = page;
2133 *pc = c;
2134 } else
6faa6833 2135 freelist = NULL;
497b66f2 2136
6faa6833 2137 return freelist;
497b66f2
CL
2138}
2139
072bb0aa
MG
2140static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2141{
2142 if (unlikely(PageSlabPfmemalloc(page)))
2143 return gfp_pfmemalloc_allowed(gfpflags);
2144
2145 return true;
2146}
2147
213eeb9f
CL
2148/*
2149 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2150 * or deactivate the page.
2151 *
2152 * The page is still frozen if the return value is not NULL.
2153 *
2154 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2155 *
2156 * This function must be called with interrupt disabled.
213eeb9f
CL
2157 */
2158static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2159{
2160 struct page new;
2161 unsigned long counters;
2162 void *freelist;
2163
2164 do {
2165 freelist = page->freelist;
2166 counters = page->counters;
6faa6833 2167
213eeb9f
CL
2168 new.counters = counters;
2169 VM_BUG_ON(!new.frozen);
2170
2171 new.inuse = page->objects;
2172 new.frozen = freelist != NULL;
2173
d24ac77f 2174 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2175 freelist, counters,
2176 NULL, new.counters,
2177 "get_freelist"));
2178
2179 return freelist;
2180}
2181
81819f0f 2182/*
894b8788
CL
2183 * Slow path. The lockless freelist is empty or we need to perform
2184 * debugging duties.
2185 *
894b8788
CL
2186 * Processing is still very fast if new objects have been freed to the
2187 * regular freelist. In that case we simply take over the regular freelist
2188 * as the lockless freelist and zap the regular freelist.
81819f0f 2189 *
894b8788
CL
2190 * If that is not working then we fall back to the partial lists. We take the
2191 * first element of the freelist as the object to allocate now and move the
2192 * rest of the freelist to the lockless freelist.
81819f0f 2193 *
894b8788 2194 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2195 * we need to allocate a new slab. This is the slowest path since it involves
2196 * a call to the page allocator and the setup of a new slab.
81819f0f 2197 */
ce71e27c
EGM
2198static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2199 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2200{
6faa6833 2201 void *freelist;
f6e7def7 2202 struct page *page;
8a5ec0ba
CL
2203 unsigned long flags;
2204
2205 local_irq_save(flags);
2206#ifdef CONFIG_PREEMPT
2207 /*
2208 * We may have been preempted and rescheduled on a different
2209 * cpu before disabling interrupts. Need to reload cpu area
2210 * pointer.
2211 */
2212 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2213#endif
81819f0f 2214
f6e7def7
CL
2215 page = c->page;
2216 if (!page)
81819f0f 2217 goto new_slab;
49e22585 2218redo:
6faa6833 2219
57d437d2 2220 if (unlikely(!node_match(page, node))) {
e36a2652 2221 stat(s, ALLOC_NODE_MISMATCH);
f6e7def7 2222 deactivate_slab(s, page, c->freelist);
c17dda40
CL
2223 c->page = NULL;
2224 c->freelist = NULL;
fc59c053
CL
2225 goto new_slab;
2226 }
6446faa2 2227
072bb0aa
MG
2228 /*
2229 * By rights, we should be searching for a slab page that was
2230 * PFMEMALLOC but right now, we are losing the pfmemalloc
2231 * information when the page leaves the per-cpu allocator
2232 */
2233 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2234 deactivate_slab(s, page, c->freelist);
2235 c->page = NULL;
2236 c->freelist = NULL;
2237 goto new_slab;
2238 }
2239
73736e03 2240 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2241 freelist = c->freelist;
2242 if (freelist)
73736e03 2243 goto load_freelist;
03e404af 2244
2cfb7455 2245 stat(s, ALLOC_SLOWPATH);
03e404af 2246
f6e7def7 2247 freelist = get_freelist(s, page);
6446faa2 2248
6faa6833 2249 if (!freelist) {
03e404af
CL
2250 c->page = NULL;
2251 stat(s, DEACTIVATE_BYPASS);
fc59c053 2252 goto new_slab;
03e404af 2253 }
6446faa2 2254
84e554e6 2255 stat(s, ALLOC_REFILL);
6446faa2 2256
894b8788 2257load_freelist:
507effea
CL
2258 /*
2259 * freelist is pointing to the list of objects to be used.
2260 * page is pointing to the page from which the objects are obtained.
2261 * That page must be frozen for per cpu allocations to work.
2262 */
2263 VM_BUG_ON(!c->page->frozen);
6faa6833 2264 c->freelist = get_freepointer(s, freelist);
8a5ec0ba
CL
2265 c->tid = next_tid(c->tid);
2266 local_irq_restore(flags);
6faa6833 2267 return freelist;
81819f0f 2268
81819f0f 2269new_slab:
2cfb7455 2270
49e22585 2271 if (c->partial) {
f6e7def7
CL
2272 page = c->page = c->partial;
2273 c->partial = page->next;
49e22585
CL
2274 stat(s, CPU_PARTIAL_ALLOC);
2275 c->freelist = NULL;
2276 goto redo;
81819f0f
CL
2277 }
2278
188fd063 2279 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2280
f4697436
CL
2281 if (unlikely(!freelist)) {
2282 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2283 slab_out_of_memory(s, gfpflags, node);
2cfb7455 2284
f4697436
CL
2285 local_irq_restore(flags);
2286 return NULL;
81819f0f 2287 }
2cfb7455 2288
f6e7def7 2289 page = c->page;
5091b74a 2290 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2291 goto load_freelist;
2cfb7455 2292
497b66f2 2293 /* Only entered in the debug case */
5091b74a 2294 if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2295 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2296
f6e7def7 2297 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2298 c->page = NULL;
2299 c->freelist = NULL;
a71ae47a 2300 local_irq_restore(flags);
6faa6833 2301 return freelist;
894b8788
CL
2302}
2303
2304/*
2305 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2306 * have the fastpath folded into their functions. So no function call
2307 * overhead for requests that can be satisfied on the fastpath.
2308 *
2309 * The fastpath works by first checking if the lockless freelist can be used.
2310 * If not then __slab_alloc is called for slow processing.
2311 *
2312 * Otherwise we can simply pick the next object from the lockless free list.
2313 */
06428780 2314static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 2315 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2316{
894b8788 2317 void **object;
dfb4f096 2318 struct kmem_cache_cpu *c;
57d437d2 2319 struct page *page;
8a5ec0ba 2320 unsigned long tid;
1f84260c 2321
c016b0bd 2322 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2323 return NULL;
1f84260c 2324
8a5ec0ba 2325redo:
8a5ec0ba
CL
2326
2327 /*
2328 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2329 * enabled. We may switch back and forth between cpus while
2330 * reading from one cpu area. That does not matter as long
2331 * as we end up on the original cpu again when doing the cmpxchg.
2332 */
9dfc6e68 2333 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2334
8a5ec0ba
CL
2335 /*
2336 * The transaction ids are globally unique per cpu and per operation on
2337 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2338 * occurs on the right processor and that there was no operation on the
2339 * linked list in between.
2340 */
2341 tid = c->tid;
2342 barrier();
8a5ec0ba 2343
9dfc6e68 2344 object = c->freelist;
57d437d2 2345 page = c->page;
5091b74a 2346 if (unlikely(!object || !node_match(page, node)))
dfb4f096 2347 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
2348
2349 else {
0ad9500e
ED
2350 void *next_object = get_freepointer_safe(s, object);
2351
8a5ec0ba 2352 /*
25985edc 2353 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2354 * operation and if we are on the right processor.
2355 *
2356 * The cmpxchg does the following atomically (without lock semantics!)
2357 * 1. Relocate first pointer to the current per cpu area.
2358 * 2. Verify that tid and freelist have not been changed
2359 * 3. If they were not changed replace tid and freelist
2360 *
2361 * Since this is without lock semantics the protection is only against
2362 * code executing on this cpu *not* from access by other cpus.
2363 */
933393f5 2364 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2365 s->cpu_slab->freelist, s->cpu_slab->tid,
2366 object, tid,
0ad9500e 2367 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2368
2369 note_cmpxchg_failure("slab_alloc", s, tid);
2370 goto redo;
2371 }
0ad9500e 2372 prefetch_freepointer(s, next_object);
84e554e6 2373 stat(s, ALLOC_FASTPATH);
894b8788 2374 }
8a5ec0ba 2375
74e2134f 2376 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2377 memset(object, 0, s->object_size);
d07dbea4 2378
c016b0bd 2379 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2380
894b8788 2381 return object;
81819f0f
CL
2382}
2383
2384void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2385{
2154a336 2386 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2387
3b0efdfa 2388 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
5b882be4
EGM
2389
2390 return ret;
81819f0f
CL
2391}
2392EXPORT_SYMBOL(kmem_cache_alloc);
2393
0f24f128 2394#ifdef CONFIG_TRACING
4a92379b
RK
2395void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2396{
2397 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2398 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2399 return ret;
2400}
2401EXPORT_SYMBOL(kmem_cache_alloc_trace);
2402
2403void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 2404{
4a92379b
RK
2405 void *ret = kmalloc_order(size, flags, order);
2406 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2407 return ret;
5b882be4 2408}
4a92379b 2409EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
2410#endif
2411
81819f0f
CL
2412#ifdef CONFIG_NUMA
2413void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2414{
5b882be4
EGM
2415 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2416
ca2b84cb 2417 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2418 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2419
2420 return ret;
81819f0f
CL
2421}
2422EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2423
0f24f128 2424#ifdef CONFIG_TRACING
4a92379b 2425void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2426 gfp_t gfpflags,
4a92379b 2427 int node, size_t size)
5b882be4 2428{
4a92379b
RK
2429 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2430
2431 trace_kmalloc_node(_RET_IP_, ret,
2432 size, s->size, gfpflags, node);
2433 return ret;
5b882be4 2434}
4a92379b 2435EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2436#endif
5d1f57e4 2437#endif
5b882be4 2438
81819f0f 2439/*
894b8788
CL
2440 * Slow patch handling. This may still be called frequently since objects
2441 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2442 *
894b8788
CL
2443 * So we still attempt to reduce cache line usage. Just take the slab
2444 * lock and free the item. If there is no additional partial page
2445 * handling required then we can return immediately.
81819f0f 2446 */
894b8788 2447static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2448 void *x, unsigned long addr)
81819f0f
CL
2449{
2450 void *prior;
2451 void **object = (void *)x;
2cfb7455
CL
2452 int was_frozen;
2453 int inuse;
2454 struct page new;
2455 unsigned long counters;
2456 struct kmem_cache_node *n = NULL;
61728d1e 2457 unsigned long uninitialized_var(flags);
81819f0f 2458
8a5ec0ba 2459 stat(s, FREE_SLOWPATH);
81819f0f 2460
19c7ff9e
CL
2461 if (kmem_cache_debug(s) &&
2462 !(n = free_debug_processing(s, page, x, addr, &flags)))
80f08c19 2463 return;
6446faa2 2464
2cfb7455
CL
2465 do {
2466 prior = page->freelist;
2467 counters = page->counters;
2468 set_freepointer(s, object, prior);
2469 new.counters = counters;
2470 was_frozen = new.frozen;
2471 new.inuse--;
2472 if ((!new.inuse || !prior) && !was_frozen && !n) {
49e22585
CL
2473
2474 if (!kmem_cache_debug(s) && !prior)
2475
2476 /*
2477 * Slab was on no list before and will be partially empty
2478 * We can defer the list move and instead freeze it.
2479 */
2480 new.frozen = 1;
2481
2482 else { /* Needs to be taken off a list */
2483
2484 n = get_node(s, page_to_nid(page));
2485 /*
2486 * Speculatively acquire the list_lock.
2487 * If the cmpxchg does not succeed then we may
2488 * drop the list_lock without any processing.
2489 *
2490 * Otherwise the list_lock will synchronize with
2491 * other processors updating the list of slabs.
2492 */
2493 spin_lock_irqsave(&n->list_lock, flags);
2494
2495 }
2cfb7455
CL
2496 }
2497 inuse = new.inuse;
81819f0f 2498
2cfb7455
CL
2499 } while (!cmpxchg_double_slab(s, page,
2500 prior, counters,
2501 object, new.counters,
2502 "__slab_free"));
81819f0f 2503
2cfb7455 2504 if (likely(!n)) {
49e22585
CL
2505
2506 /*
2507 * If we just froze the page then put it onto the
2508 * per cpu partial list.
2509 */
8028dcea 2510 if (new.frozen && !was_frozen) {
49e22585 2511 put_cpu_partial(s, page, 1);
8028dcea
AS
2512 stat(s, CPU_PARTIAL_FREE);
2513 }
49e22585 2514 /*
2cfb7455
CL
2515 * The list lock was not taken therefore no list
2516 * activity can be necessary.
2517 */
2518 if (was_frozen)
2519 stat(s, FREE_FROZEN);
80f08c19 2520 return;
2cfb7455 2521 }
81819f0f
CL
2522
2523 /*
2cfb7455
CL
2524 * was_frozen may have been set after we acquired the list_lock in
2525 * an earlier loop. So we need to check it here again.
81819f0f 2526 */
2cfb7455
CL
2527 if (was_frozen)
2528 stat(s, FREE_FROZEN);
2529 else {
2530 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2531 goto slab_empty;
81819f0f 2532
2cfb7455
CL
2533 /*
2534 * Objects left in the slab. If it was not on the partial list before
2535 * then add it.
2536 */
2537 if (unlikely(!prior)) {
2538 remove_full(s, page);
136333d1 2539 add_partial(n, page, DEACTIVATE_TO_TAIL);
2cfb7455
CL
2540 stat(s, FREE_ADD_PARTIAL);
2541 }
8ff12cfc 2542 }
80f08c19 2543 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2544 return;
2545
2546slab_empty:
a973e9dd 2547 if (prior) {
81819f0f 2548 /*
6fbabb20 2549 * Slab on the partial list.
81819f0f 2550 */
5cc6eee8 2551 remove_partial(n, page);
84e554e6 2552 stat(s, FREE_REMOVE_PARTIAL);
6fbabb20
CL
2553 } else
2554 /* Slab must be on the full list */
2555 remove_full(s, page);
2cfb7455 2556
80f08c19 2557 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2558 stat(s, FREE_SLAB);
81819f0f 2559 discard_slab(s, page);
81819f0f
CL
2560}
2561
894b8788
CL
2562/*
2563 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2564 * can perform fastpath freeing without additional function calls.
2565 *
2566 * The fastpath is only possible if we are freeing to the current cpu slab
2567 * of this processor. This typically the case if we have just allocated
2568 * the item before.
2569 *
2570 * If fastpath is not possible then fall back to __slab_free where we deal
2571 * with all sorts of special processing.
2572 */
06428780 2573static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2574 struct page *page, void *x, unsigned long addr)
894b8788
CL
2575{
2576 void **object = (void *)x;
dfb4f096 2577 struct kmem_cache_cpu *c;
8a5ec0ba 2578 unsigned long tid;
1f84260c 2579
c016b0bd
CL
2580 slab_free_hook(s, x);
2581
8a5ec0ba
CL
2582redo:
2583 /*
2584 * Determine the currently cpus per cpu slab.
2585 * The cpu may change afterward. However that does not matter since
2586 * data is retrieved via this pointer. If we are on the same cpu
2587 * during the cmpxchg then the free will succedd.
2588 */
9dfc6e68 2589 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2590
8a5ec0ba
CL
2591 tid = c->tid;
2592 barrier();
c016b0bd 2593
442b06bc 2594 if (likely(page == c->page)) {
ff12059e 2595 set_freepointer(s, object, c->freelist);
8a5ec0ba 2596
933393f5 2597 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2598 s->cpu_slab->freelist, s->cpu_slab->tid,
2599 c->freelist, tid,
2600 object, next_tid(tid)))) {
2601
2602 note_cmpxchg_failure("slab_free", s, tid);
2603 goto redo;
2604 }
84e554e6 2605 stat(s, FREE_FASTPATH);
894b8788 2606 } else
ff12059e 2607 __slab_free(s, page, x, addr);
894b8788 2608
894b8788
CL
2609}
2610
81819f0f
CL
2611void kmem_cache_free(struct kmem_cache *s, void *x)
2612{
77c5e2d0 2613 struct page *page;
81819f0f 2614
b49af68f 2615 page = virt_to_head_page(x);
81819f0f 2616
ce71e27c 2617 slab_free(s, page, x, _RET_IP_);
5b882be4 2618
ca2b84cb 2619 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2620}
2621EXPORT_SYMBOL(kmem_cache_free);
2622
81819f0f 2623/*
672bba3a
CL
2624 * Object placement in a slab is made very easy because we always start at
2625 * offset 0. If we tune the size of the object to the alignment then we can
2626 * get the required alignment by putting one properly sized object after
2627 * another.
81819f0f
CL
2628 *
2629 * Notice that the allocation order determines the sizes of the per cpu
2630 * caches. Each processor has always one slab available for allocations.
2631 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2632 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2633 * locking overhead.
81819f0f
CL
2634 */
2635
2636/*
2637 * Mininum / Maximum order of slab pages. This influences locking overhead
2638 * and slab fragmentation. A higher order reduces the number of partial slabs
2639 * and increases the number of allocations possible without having to
2640 * take the list_lock.
2641 */
2642static int slub_min_order;
114e9e89 2643static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2644static int slub_min_objects;
81819f0f
CL
2645
2646/*
2647 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2648 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2649 */
2650static int slub_nomerge;
2651
81819f0f
CL
2652/*
2653 * Calculate the order of allocation given an slab object size.
2654 *
672bba3a
CL
2655 * The order of allocation has significant impact on performance and other
2656 * system components. Generally order 0 allocations should be preferred since
2657 * order 0 does not cause fragmentation in the page allocator. Larger objects
2658 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2659 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2660 * would be wasted.
2661 *
2662 * In order to reach satisfactory performance we must ensure that a minimum
2663 * number of objects is in one slab. Otherwise we may generate too much
2664 * activity on the partial lists which requires taking the list_lock. This is
2665 * less a concern for large slabs though which are rarely used.
81819f0f 2666 *
672bba3a
CL
2667 * slub_max_order specifies the order where we begin to stop considering the
2668 * number of objects in a slab as critical. If we reach slub_max_order then
2669 * we try to keep the page order as low as possible. So we accept more waste
2670 * of space in favor of a small page order.
81819f0f 2671 *
672bba3a
CL
2672 * Higher order allocations also allow the placement of more objects in a
2673 * slab and thereby reduce object handling overhead. If the user has
2674 * requested a higher mininum order then we start with that one instead of
2675 * the smallest order which will fit the object.
81819f0f 2676 */
5e6d444e 2677static inline int slab_order(int size, int min_objects,
ab9a0f19 2678 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2679{
2680 int order;
2681 int rem;
6300ea75 2682 int min_order = slub_min_order;
81819f0f 2683
ab9a0f19 2684 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2685 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2686
6300ea75 2687 for (order = max(min_order,
5e6d444e
CL
2688 fls(min_objects * size - 1) - PAGE_SHIFT);
2689 order <= max_order; order++) {
81819f0f 2690
5e6d444e 2691 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2692
ab9a0f19 2693 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2694 continue;
2695
ab9a0f19 2696 rem = (slab_size - reserved) % size;
81819f0f 2697
5e6d444e 2698 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2699 break;
2700
2701 }
672bba3a 2702
81819f0f
CL
2703 return order;
2704}
2705
ab9a0f19 2706static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2707{
2708 int order;
2709 int min_objects;
2710 int fraction;
e8120ff1 2711 int max_objects;
5e6d444e
CL
2712
2713 /*
2714 * Attempt to find best configuration for a slab. This
2715 * works by first attempting to generate a layout with
2716 * the best configuration and backing off gradually.
2717 *
2718 * First we reduce the acceptable waste in a slab. Then
2719 * we reduce the minimum objects required in a slab.
2720 */
2721 min_objects = slub_min_objects;
9b2cd506
CL
2722 if (!min_objects)
2723 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2724 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2725 min_objects = min(min_objects, max_objects);
2726
5e6d444e 2727 while (min_objects > 1) {
c124f5b5 2728 fraction = 16;
5e6d444e
CL
2729 while (fraction >= 4) {
2730 order = slab_order(size, min_objects,
ab9a0f19 2731 slub_max_order, fraction, reserved);
5e6d444e
CL
2732 if (order <= slub_max_order)
2733 return order;
2734 fraction /= 2;
2735 }
5086c389 2736 min_objects--;
5e6d444e
CL
2737 }
2738
2739 /*
2740 * We were unable to place multiple objects in a slab. Now
2741 * lets see if we can place a single object there.
2742 */
ab9a0f19 2743 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2744 if (order <= slub_max_order)
2745 return order;
2746
2747 /*
2748 * Doh this slab cannot be placed using slub_max_order.
2749 */
ab9a0f19 2750 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2751 if (order < MAX_ORDER)
5e6d444e
CL
2752 return order;
2753 return -ENOSYS;
2754}
2755
81819f0f 2756/*
672bba3a 2757 * Figure out what the alignment of the objects will be.
81819f0f
CL
2758 */
2759static unsigned long calculate_alignment(unsigned long flags,
2760 unsigned long align, unsigned long size)
2761{
2762 /*
6446faa2
CL
2763 * If the user wants hardware cache aligned objects then follow that
2764 * suggestion if the object is sufficiently large.
81819f0f 2765 *
6446faa2
CL
2766 * The hardware cache alignment cannot override the specified
2767 * alignment though. If that is greater then use it.
81819f0f 2768 */
b6210386
NP
2769 if (flags & SLAB_HWCACHE_ALIGN) {
2770 unsigned long ralign = cache_line_size();
2771 while (size <= ralign / 2)
2772 ralign /= 2;
2773 align = max(align, ralign);
2774 }
81819f0f
CL
2775
2776 if (align < ARCH_SLAB_MINALIGN)
b6210386 2777 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2778
2779 return ALIGN(align, sizeof(void *));
2780}
2781
5595cffc 2782static void
4053497d 2783init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
2784{
2785 n->nr_partial = 0;
81819f0f
CL
2786 spin_lock_init(&n->list_lock);
2787 INIT_LIST_HEAD(&n->partial);
8ab1372f 2788#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2789 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2790 atomic_long_set(&n->total_objects, 0);
643b1138 2791 INIT_LIST_HEAD(&n->full);
8ab1372f 2792#endif
81819f0f
CL
2793}
2794
55136592 2795static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2796{
6c182dc0
CL
2797 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2798 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2799
8a5ec0ba 2800 /*
d4d84fef
CM
2801 * Must align to double word boundary for the double cmpxchg
2802 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2803 */
d4d84fef
CM
2804 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2805 2 * sizeof(void *));
8a5ec0ba
CL
2806
2807 if (!s->cpu_slab)
2808 return 0;
2809
2810 init_kmem_cache_cpus(s);
4c93c355 2811
8a5ec0ba 2812 return 1;
4c93c355 2813}
4c93c355 2814
51df1142
CL
2815static struct kmem_cache *kmem_cache_node;
2816
81819f0f
CL
2817/*
2818 * No kmalloc_node yet so do it by hand. We know that this is the first
2819 * slab on the node for this slabcache. There are no concurrent accesses
2820 * possible.
2821 *
2822 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2823 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2824 * memory on a fresh node that has no slab structures yet.
81819f0f 2825 */
55136592 2826static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2827{
2828 struct page *page;
2829 struct kmem_cache_node *n;
2830
51df1142 2831 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2832
51df1142 2833 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2834
2835 BUG_ON(!page);
a2f92ee7
CL
2836 if (page_to_nid(page) != node) {
2837 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2838 "node %d\n", node);
2839 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2840 "in order to be able to continue\n");
2841 }
2842
81819f0f
CL
2843 n = page->freelist;
2844 BUG_ON(!n);
51df1142 2845 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2846 page->inuse = 1;
8cb0a506 2847 page->frozen = 0;
51df1142 2848 kmem_cache_node->node[node] = n;
8ab1372f 2849#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2850 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2851 init_tracking(kmem_cache_node, n);
8ab1372f 2852#endif
4053497d 2853 init_kmem_cache_node(n);
51df1142 2854 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2855
136333d1 2856 add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2857}
2858
2859static void free_kmem_cache_nodes(struct kmem_cache *s)
2860{
2861 int node;
2862
f64dc58c 2863 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2864 struct kmem_cache_node *n = s->node[node];
51df1142 2865
73367bd8 2866 if (n)
51df1142
CL
2867 kmem_cache_free(kmem_cache_node, n);
2868
81819f0f
CL
2869 s->node[node] = NULL;
2870 }
2871}
2872
55136592 2873static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2874{
2875 int node;
81819f0f 2876
f64dc58c 2877 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2878 struct kmem_cache_node *n;
2879
73367bd8 2880 if (slab_state == DOWN) {
55136592 2881 early_kmem_cache_node_alloc(node);
73367bd8
AD
2882 continue;
2883 }
51df1142 2884 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2885 GFP_KERNEL, node);
81819f0f 2886
73367bd8
AD
2887 if (!n) {
2888 free_kmem_cache_nodes(s);
2889 return 0;
81819f0f 2890 }
73367bd8 2891
81819f0f 2892 s->node[node] = n;
4053497d 2893 init_kmem_cache_node(n);
81819f0f
CL
2894 }
2895 return 1;
2896}
81819f0f 2897
c0bdb232 2898static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2899{
2900 if (min < MIN_PARTIAL)
2901 min = MIN_PARTIAL;
2902 else if (min > MAX_PARTIAL)
2903 min = MAX_PARTIAL;
2904 s->min_partial = min;
2905}
2906
81819f0f
CL
2907/*
2908 * calculate_sizes() determines the order and the distribution of data within
2909 * a slab object.
2910 */
06b285dc 2911static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2912{
2913 unsigned long flags = s->flags;
3b0efdfa 2914 unsigned long size = s->object_size;
81819f0f 2915 unsigned long align = s->align;
834f3d11 2916 int order;
81819f0f 2917
d8b42bf5
CL
2918 /*
2919 * Round up object size to the next word boundary. We can only
2920 * place the free pointer at word boundaries and this determines
2921 * the possible location of the free pointer.
2922 */
2923 size = ALIGN(size, sizeof(void *));
2924
2925#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2926 /*
2927 * Determine if we can poison the object itself. If the user of
2928 * the slab may touch the object after free or before allocation
2929 * then we should never poison the object itself.
2930 */
2931 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2932 !s->ctor)
81819f0f
CL
2933 s->flags |= __OBJECT_POISON;
2934 else
2935 s->flags &= ~__OBJECT_POISON;
2936
81819f0f
CL
2937
2938 /*
672bba3a 2939 * If we are Redzoning then check if there is some space between the
81819f0f 2940 * end of the object and the free pointer. If not then add an
672bba3a 2941 * additional word to have some bytes to store Redzone information.
81819f0f 2942 */
3b0efdfa 2943 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 2944 size += sizeof(void *);
41ecc55b 2945#endif
81819f0f
CL
2946
2947 /*
672bba3a
CL
2948 * With that we have determined the number of bytes in actual use
2949 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2950 */
2951 s->inuse = size;
2952
2953 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2954 s->ctor)) {
81819f0f
CL
2955 /*
2956 * Relocate free pointer after the object if it is not
2957 * permitted to overwrite the first word of the object on
2958 * kmem_cache_free.
2959 *
2960 * This is the case if we do RCU, have a constructor or
2961 * destructor or are poisoning the objects.
2962 */
2963 s->offset = size;
2964 size += sizeof(void *);
2965 }
2966
c12b3c62 2967#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2968 if (flags & SLAB_STORE_USER)
2969 /*
2970 * Need to store information about allocs and frees after
2971 * the object.
2972 */
2973 size += 2 * sizeof(struct track);
2974
be7b3fbc 2975 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2976 /*
2977 * Add some empty padding so that we can catch
2978 * overwrites from earlier objects rather than let
2979 * tracking information or the free pointer be
0211a9c8 2980 * corrupted if a user writes before the start
81819f0f
CL
2981 * of the object.
2982 */
2983 size += sizeof(void *);
41ecc55b 2984#endif
672bba3a 2985
81819f0f
CL
2986 /*
2987 * Determine the alignment based on various parameters that the
65c02d4c
CL
2988 * user specified and the dynamic determination of cache line size
2989 * on bootup.
81819f0f 2990 */
3b0efdfa 2991 align = calculate_alignment(flags, align, s->object_size);
dcb0ce1b 2992 s->align = align;
81819f0f
CL
2993
2994 /*
2995 * SLUB stores one object immediately after another beginning from
2996 * offset 0. In order to align the objects we have to simply size
2997 * each object to conform to the alignment.
2998 */
2999 size = ALIGN(size, align);
3000 s->size = size;
06b285dc
CL
3001 if (forced_order >= 0)
3002 order = forced_order;
3003 else
ab9a0f19 3004 order = calculate_order(size, s->reserved);
81819f0f 3005
834f3d11 3006 if (order < 0)
81819f0f
CL
3007 return 0;
3008
b7a49f0d 3009 s->allocflags = 0;
834f3d11 3010 if (order)
b7a49f0d
CL
3011 s->allocflags |= __GFP_COMP;
3012
3013 if (s->flags & SLAB_CACHE_DMA)
3014 s->allocflags |= SLUB_DMA;
3015
3016 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3017 s->allocflags |= __GFP_RECLAIMABLE;
3018
81819f0f
CL
3019 /*
3020 * Determine the number of objects per slab
3021 */
ab9a0f19
LJ
3022 s->oo = oo_make(order, size, s->reserved);
3023 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3024 if (oo_objects(s->oo) > oo_objects(s->max))
3025 s->max = s->oo;
81819f0f 3026
834f3d11 3027 return !!oo_objects(s->oo);
81819f0f
CL
3028
3029}
3030
55136592 3031static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
3032 const char *name, size_t size,
3033 size_t align, unsigned long flags,
51cc5068 3034 void (*ctor)(void *))
81819f0f
CL
3035{
3036 memset(s, 0, kmem_size);
3037 s->name = name;
3038 s->ctor = ctor;
3b0efdfa 3039 s->object_size = size;
81819f0f 3040 s->align = align;
ba0268a8 3041 s->flags = kmem_cache_flags(size, flags, name, ctor);
ab9a0f19 3042 s->reserved = 0;
81819f0f 3043
da9a638c
LJ
3044 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3045 s->reserved = sizeof(struct rcu_head);
81819f0f 3046
06b285dc 3047 if (!calculate_sizes(s, -1))
81819f0f 3048 goto error;
3de47213
DR
3049 if (disable_higher_order_debug) {
3050 /*
3051 * Disable debugging flags that store metadata if the min slab
3052 * order increased.
3053 */
3b0efdfa 3054 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3055 s->flags &= ~DEBUG_METADATA_FLAGS;
3056 s->offset = 0;
3057 if (!calculate_sizes(s, -1))
3058 goto error;
3059 }
3060 }
81819f0f 3061
2565409f
HC
3062#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3063 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3064 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3065 /* Enable fast mode */
3066 s->flags |= __CMPXCHG_DOUBLE;
3067#endif
3068
3b89d7d8
DR
3069 /*
3070 * The larger the object size is, the more pages we want on the partial
3071 * list to avoid pounding the page allocator excessively.
3072 */
49e22585
CL
3073 set_min_partial(s, ilog2(s->size) / 2);
3074
3075 /*
3076 * cpu_partial determined the maximum number of objects kept in the
3077 * per cpu partial lists of a processor.
3078 *
3079 * Per cpu partial lists mainly contain slabs that just have one
3080 * object freed. If they are used for allocation then they can be
3081 * filled up again with minimal effort. The slab will never hit the
3082 * per node partial lists and therefore no locking will be required.
3083 *
3084 * This setting also determines
3085 *
3086 * A) The number of objects from per cpu partial slabs dumped to the
3087 * per node list when we reach the limit.
9f264904 3088 * B) The number of objects in cpu partial slabs to extract from the
49e22585
CL
3089 * per node list when we run out of per cpu objects. We only fetch 50%
3090 * to keep some capacity around for frees.
3091 */
8f1e33da
CL
3092 if (kmem_cache_debug(s))
3093 s->cpu_partial = 0;
3094 else if (s->size >= PAGE_SIZE)
49e22585
CL
3095 s->cpu_partial = 2;
3096 else if (s->size >= 1024)
3097 s->cpu_partial = 6;
3098 else if (s->size >= 256)
3099 s->cpu_partial = 13;
3100 else
3101 s->cpu_partial = 30;
3102
81819f0f
CL
3103 s->refcount = 1;
3104#ifdef CONFIG_NUMA
e2cb96b7 3105 s->remote_node_defrag_ratio = 1000;
81819f0f 3106#endif
55136592 3107 if (!init_kmem_cache_nodes(s))
dfb4f096 3108 goto error;
81819f0f 3109
55136592 3110 if (alloc_kmem_cache_cpus(s))
81819f0f 3111 return 1;
ff12059e 3112
4c93c355 3113 free_kmem_cache_nodes(s);
81819f0f
CL
3114error:
3115 if (flags & SLAB_PANIC)
3116 panic("Cannot create slab %s size=%lu realsize=%u "
3117 "order=%u offset=%u flags=%lx\n",
834f3d11 3118 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
3119 s->offset, flags);
3120 return 0;
3121}
81819f0f 3122
81819f0f
CL
3123/*
3124 * Determine the size of a slab object
3125 */
3126unsigned int kmem_cache_size(struct kmem_cache *s)
3127{
3b0efdfa 3128 return s->object_size;
81819f0f
CL
3129}
3130EXPORT_SYMBOL(kmem_cache_size);
3131
33b12c38
CL
3132static void list_slab_objects(struct kmem_cache *s, struct page *page,
3133 const char *text)
3134{
3135#ifdef CONFIG_SLUB_DEBUG
3136 void *addr = page_address(page);
3137 void *p;
a5dd5c11
NK
3138 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3139 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3140 if (!map)
3141 return;
33b12c38
CL
3142 slab_err(s, page, "%s", text);
3143 slab_lock(page);
33b12c38 3144
5f80b13a 3145 get_map(s, page, map);
33b12c38
CL
3146 for_each_object(p, s, addr, page->objects) {
3147
3148 if (!test_bit(slab_index(p, s, addr), map)) {
3149 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3150 p, p - addr);
3151 print_tracking(s, p);
3152 }
3153 }
3154 slab_unlock(page);
bbd7d57b 3155 kfree(map);
33b12c38
CL
3156#endif
3157}
3158
81819f0f 3159/*
599870b1 3160 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3161 * This is called from kmem_cache_close(). We must be the last thread
3162 * using the cache and therefore we do not need to lock anymore.
81819f0f 3163 */
599870b1 3164static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3165{
81819f0f
CL
3166 struct page *page, *h;
3167
33b12c38 3168 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3169 if (!page->inuse) {
5cc6eee8 3170 remove_partial(n, page);
81819f0f 3171 discard_slab(s, page);
33b12c38
CL
3172 } else {
3173 list_slab_objects(s, page,
3174 "Objects remaining on kmem_cache_close()");
599870b1 3175 }
33b12c38 3176 }
81819f0f
CL
3177}
3178
3179/*
672bba3a 3180 * Release all resources used by a slab cache.
81819f0f 3181 */
0c710013 3182static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3183{
3184 int node;
3185
3186 flush_all(s);
9dfc6e68 3187 free_percpu(s->cpu_slab);
81819f0f 3188 /* Attempt to free all objects */
f64dc58c 3189 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3190 struct kmem_cache_node *n = get_node(s, node);
3191
599870b1
CL
3192 free_partial(s, n);
3193 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3194 return 1;
3195 }
3196 free_kmem_cache_nodes(s);
3197 return 0;
3198}
3199
3200/*
3201 * Close a cache and release the kmem_cache structure
3202 * (must be used for caches created using kmem_cache_create)
3203 */
3204void kmem_cache_destroy(struct kmem_cache *s)
3205{
18004c5d 3206 mutex_lock(&slab_mutex);
81819f0f
CL
3207 s->refcount--;
3208 if (!s->refcount) {
3209 list_del(&s->list);
18004c5d 3210 mutex_unlock(&slab_mutex);
d629d819
PE
3211 if (kmem_cache_close(s)) {
3212 printk(KERN_ERR "SLUB %s: %s called for cache that "
3213 "still has objects.\n", s->name, __func__);
3214 dump_stack();
3215 }
d76b1590
ED
3216 if (s->flags & SLAB_DESTROY_BY_RCU)
3217 rcu_barrier();
81819f0f 3218 sysfs_slab_remove(s);
69cb8e6b 3219 } else
18004c5d 3220 mutex_unlock(&slab_mutex);
81819f0f
CL
3221}
3222EXPORT_SYMBOL(kmem_cache_destroy);
3223
3224/********************************************************************
3225 * Kmalloc subsystem
3226 *******************************************************************/
3227
51df1142 3228struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
3229EXPORT_SYMBOL(kmalloc_caches);
3230
51df1142
CL
3231static struct kmem_cache *kmem_cache;
3232
55136592 3233#ifdef CONFIG_ZONE_DMA
51df1142 3234static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
3235#endif
3236
81819f0f
CL
3237static int __init setup_slub_min_order(char *str)
3238{
06428780 3239 get_option(&str, &slub_min_order);
81819f0f
CL
3240
3241 return 1;
3242}
3243
3244__setup("slub_min_order=", setup_slub_min_order);
3245
3246static int __init setup_slub_max_order(char *str)
3247{
06428780 3248 get_option(&str, &slub_max_order);
818cf590 3249 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3250
3251 return 1;
3252}
3253
3254__setup("slub_max_order=", setup_slub_max_order);
3255
3256static int __init setup_slub_min_objects(char *str)
3257{
06428780 3258 get_option(&str, &slub_min_objects);
81819f0f
CL
3259
3260 return 1;
3261}
3262
3263__setup("slub_min_objects=", setup_slub_min_objects);
3264
3265static int __init setup_slub_nomerge(char *str)
3266{
3267 slub_nomerge = 1;
3268 return 1;
3269}
3270
3271__setup("slub_nomerge", setup_slub_nomerge);
3272
51df1142
CL
3273static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3274 int size, unsigned int flags)
81819f0f 3275{
51df1142
CL
3276 struct kmem_cache *s;
3277
3278 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3279
83b519e8
PE
3280 /*
3281 * This function is called with IRQs disabled during early-boot on
18004c5d 3282 * single CPU so there's no need to take slab_mutex here.
83b519e8 3283 */
55136592 3284 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 3285 flags, NULL))
81819f0f
CL
3286 goto panic;
3287
3288 list_add(&s->list, &slab_caches);
51df1142 3289 return s;
81819f0f
CL
3290
3291panic:
3292 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 3293 return NULL;
81819f0f
CL
3294}
3295
f1b26339
CL
3296/*
3297 * Conversion table for small slabs sizes / 8 to the index in the
3298 * kmalloc array. This is necessary for slabs < 192 since we have non power
3299 * of two cache sizes there. The size of larger slabs can be determined using
3300 * fls.
3301 */
3302static s8 size_index[24] = {
3303 3, /* 8 */
3304 4, /* 16 */
3305 5, /* 24 */
3306 5, /* 32 */
3307 6, /* 40 */
3308 6, /* 48 */
3309 6, /* 56 */
3310 6, /* 64 */
3311 1, /* 72 */
3312 1, /* 80 */
3313 1, /* 88 */
3314 1, /* 96 */
3315 7, /* 104 */
3316 7, /* 112 */
3317 7, /* 120 */
3318 7, /* 128 */
3319 2, /* 136 */
3320 2, /* 144 */
3321 2, /* 152 */
3322 2, /* 160 */
3323 2, /* 168 */
3324 2, /* 176 */
3325 2, /* 184 */
3326 2 /* 192 */
3327};
3328
acdfcd04
AK
3329static inline int size_index_elem(size_t bytes)
3330{
3331 return (bytes - 1) / 8;
3332}
3333
81819f0f
CL
3334static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3335{
f1b26339 3336 int index;
81819f0f 3337
f1b26339
CL
3338 if (size <= 192) {
3339 if (!size)
3340 return ZERO_SIZE_PTR;
81819f0f 3341
acdfcd04 3342 index = size_index[size_index_elem(size)];
aadb4bc4 3343 } else
f1b26339 3344 index = fls(size - 1);
81819f0f
CL
3345
3346#ifdef CONFIG_ZONE_DMA
f1b26339 3347 if (unlikely((flags & SLUB_DMA)))
51df1142 3348 return kmalloc_dma_caches[index];
f1b26339 3349
81819f0f 3350#endif
51df1142 3351 return kmalloc_caches[index];
81819f0f
CL
3352}
3353
3354void *__kmalloc(size_t size, gfp_t flags)
3355{
aadb4bc4 3356 struct kmem_cache *s;
5b882be4 3357 void *ret;
81819f0f 3358
ffadd4d0 3359 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 3360 return kmalloc_large(size, flags);
aadb4bc4
CL
3361
3362 s = get_slab(size, flags);
3363
3364 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3365 return s;
3366
2154a336 3367 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 3368
ca2b84cb 3369 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3370
3371 return ret;
81819f0f
CL
3372}
3373EXPORT_SYMBOL(__kmalloc);
3374
5d1f57e4 3375#ifdef CONFIG_NUMA
f619cfe1
CL
3376static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3377{
b1eeab67 3378 struct page *page;
e4f7c0b4 3379 void *ptr = NULL;
f619cfe1 3380
b1eeab67
VN
3381 flags |= __GFP_COMP | __GFP_NOTRACK;
3382 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3383 if (page)
e4f7c0b4
CM
3384 ptr = page_address(page);
3385
3386 kmemleak_alloc(ptr, size, 1, flags);
3387 return ptr;
f619cfe1
CL
3388}
3389
81819f0f
CL
3390void *__kmalloc_node(size_t size, gfp_t flags, int node)
3391{
aadb4bc4 3392 struct kmem_cache *s;
5b882be4 3393 void *ret;
81819f0f 3394
057685cf 3395 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
3396 ret = kmalloc_large_node(size, flags, node);
3397
ca2b84cb
EGM
3398 trace_kmalloc_node(_RET_IP_, ret,
3399 size, PAGE_SIZE << get_order(size),
3400 flags, node);
5b882be4
EGM
3401
3402 return ret;
3403 }
aadb4bc4
CL
3404
3405 s = get_slab(size, flags);
3406
3407 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3408 return s;
3409
5b882be4
EGM
3410 ret = slab_alloc(s, flags, node, _RET_IP_);
3411
ca2b84cb 3412 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3413
3414 return ret;
81819f0f
CL
3415}
3416EXPORT_SYMBOL(__kmalloc_node);
3417#endif
3418
3419size_t ksize(const void *object)
3420{
272c1d21 3421 struct page *page;
81819f0f 3422
ef8b4520 3423 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3424 return 0;
3425
294a80a8 3426 page = virt_to_head_page(object);
294a80a8 3427
76994412
PE
3428 if (unlikely(!PageSlab(page))) {
3429 WARN_ON(!PageCompound(page));
294a80a8 3430 return PAGE_SIZE << compound_order(page);
76994412 3431 }
81819f0f 3432
b3d41885 3433 return slab_ksize(page->slab);
81819f0f 3434}
b1aabecd 3435EXPORT_SYMBOL(ksize);
81819f0f 3436
d18a90dd
BG
3437#ifdef CONFIG_SLUB_DEBUG
3438bool verify_mem_not_deleted(const void *x)
3439{
3440 struct page *page;
3441 void *object = (void *)x;
3442 unsigned long flags;
3443 bool rv;
3444
3445 if (unlikely(ZERO_OR_NULL_PTR(x)))
3446 return false;
3447
3448 local_irq_save(flags);
3449
3450 page = virt_to_head_page(x);
3451 if (unlikely(!PageSlab(page))) {
3452 /* maybe it was from stack? */
3453 rv = true;
3454 goto out_unlock;
3455 }
3456
3457 slab_lock(page);
3458 if (on_freelist(page->slab, page, object)) {
3459 object_err(page->slab, page, object, "Object is on free-list");
3460 rv = false;
3461 } else {
3462 rv = true;
3463 }
3464 slab_unlock(page);
3465
3466out_unlock:
3467 local_irq_restore(flags);
3468 return rv;
3469}
3470EXPORT_SYMBOL(verify_mem_not_deleted);
3471#endif
3472
81819f0f
CL
3473void kfree(const void *x)
3474{
81819f0f 3475 struct page *page;
5bb983b0 3476 void *object = (void *)x;
81819f0f 3477
2121db74
PE
3478 trace_kfree(_RET_IP_, x);
3479
2408c550 3480 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3481 return;
3482
b49af68f 3483 page = virt_to_head_page(x);
aadb4bc4 3484 if (unlikely(!PageSlab(page))) {
0937502a 3485 BUG_ON(!PageCompound(page));
e4f7c0b4 3486 kmemleak_free(x);
d9b7f226 3487 __free_pages(page, compound_order(page));
aadb4bc4
CL
3488 return;
3489 }
ce71e27c 3490 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
3491}
3492EXPORT_SYMBOL(kfree);
3493
2086d26a 3494/*
672bba3a
CL
3495 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3496 * the remaining slabs by the number of items in use. The slabs with the
3497 * most items in use come first. New allocations will then fill those up
3498 * and thus they can be removed from the partial lists.
3499 *
3500 * The slabs with the least items are placed last. This results in them
3501 * being allocated from last increasing the chance that the last objects
3502 * are freed in them.
2086d26a
CL
3503 */
3504int kmem_cache_shrink(struct kmem_cache *s)
3505{
3506 int node;
3507 int i;
3508 struct kmem_cache_node *n;
3509 struct page *page;
3510 struct page *t;
205ab99d 3511 int objects = oo_objects(s->max);
2086d26a 3512 struct list_head *slabs_by_inuse =
834f3d11 3513 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3514 unsigned long flags;
3515
3516 if (!slabs_by_inuse)
3517 return -ENOMEM;
3518
3519 flush_all(s);
f64dc58c 3520 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3521 n = get_node(s, node);
3522
3523 if (!n->nr_partial)
3524 continue;
3525
834f3d11 3526 for (i = 0; i < objects; i++)
2086d26a
CL
3527 INIT_LIST_HEAD(slabs_by_inuse + i);
3528
3529 spin_lock_irqsave(&n->list_lock, flags);
3530
3531 /*
672bba3a 3532 * Build lists indexed by the items in use in each slab.
2086d26a 3533 *
672bba3a
CL
3534 * Note that concurrent frees may occur while we hold the
3535 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3536 */
3537 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3538 list_move(&page->lru, slabs_by_inuse + page->inuse);
3539 if (!page->inuse)
3540 n->nr_partial--;
2086d26a
CL
3541 }
3542
2086d26a 3543 /*
672bba3a
CL
3544 * Rebuild the partial list with the slabs filled up most
3545 * first and the least used slabs at the end.
2086d26a 3546 */
69cb8e6b 3547 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3548 list_splice(slabs_by_inuse + i, n->partial.prev);
3549
2086d26a 3550 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3551
3552 /* Release empty slabs */
3553 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3554 discard_slab(s, page);
2086d26a
CL
3555 }
3556
3557 kfree(slabs_by_inuse);
3558 return 0;
3559}
3560EXPORT_SYMBOL(kmem_cache_shrink);
3561
92a5bbc1 3562#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
3563static int slab_mem_going_offline_callback(void *arg)
3564{
3565 struct kmem_cache *s;
3566
18004c5d 3567 mutex_lock(&slab_mutex);
b9049e23
YG
3568 list_for_each_entry(s, &slab_caches, list)
3569 kmem_cache_shrink(s);
18004c5d 3570 mutex_unlock(&slab_mutex);
b9049e23
YG
3571
3572 return 0;
3573}
3574
3575static void slab_mem_offline_callback(void *arg)
3576{
3577 struct kmem_cache_node *n;
3578 struct kmem_cache *s;
3579 struct memory_notify *marg = arg;
3580 int offline_node;
3581
3582 offline_node = marg->status_change_nid;
3583
3584 /*
3585 * If the node still has available memory. we need kmem_cache_node
3586 * for it yet.
3587 */
3588 if (offline_node < 0)
3589 return;
3590
18004c5d 3591 mutex_lock(&slab_mutex);
b9049e23
YG
3592 list_for_each_entry(s, &slab_caches, list) {
3593 n = get_node(s, offline_node);
3594 if (n) {
3595 /*
3596 * if n->nr_slabs > 0, slabs still exist on the node
3597 * that is going down. We were unable to free them,
c9404c9c 3598 * and offline_pages() function shouldn't call this
b9049e23
YG
3599 * callback. So, we must fail.
3600 */
0f389ec6 3601 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3602
3603 s->node[offline_node] = NULL;
8de66a0c 3604 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3605 }
3606 }
18004c5d 3607 mutex_unlock(&slab_mutex);
b9049e23
YG
3608}
3609
3610static int slab_mem_going_online_callback(void *arg)
3611{
3612 struct kmem_cache_node *n;
3613 struct kmem_cache *s;
3614 struct memory_notify *marg = arg;
3615 int nid = marg->status_change_nid;
3616 int ret = 0;
3617
3618 /*
3619 * If the node's memory is already available, then kmem_cache_node is
3620 * already created. Nothing to do.
3621 */
3622 if (nid < 0)
3623 return 0;
3624
3625 /*
0121c619 3626 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3627 * allocate a kmem_cache_node structure in order to bring the node
3628 * online.
3629 */
18004c5d 3630 mutex_lock(&slab_mutex);
b9049e23
YG
3631 list_for_each_entry(s, &slab_caches, list) {
3632 /*
3633 * XXX: kmem_cache_alloc_node will fallback to other nodes
3634 * since memory is not yet available from the node that
3635 * is brought up.
3636 */
8de66a0c 3637 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3638 if (!n) {
3639 ret = -ENOMEM;
3640 goto out;
3641 }
4053497d 3642 init_kmem_cache_node(n);
b9049e23
YG
3643 s->node[nid] = n;
3644 }
3645out:
18004c5d 3646 mutex_unlock(&slab_mutex);
b9049e23
YG
3647 return ret;
3648}
3649
3650static int slab_memory_callback(struct notifier_block *self,
3651 unsigned long action, void *arg)
3652{
3653 int ret = 0;
3654
3655 switch (action) {
3656 case MEM_GOING_ONLINE:
3657 ret = slab_mem_going_online_callback(arg);
3658 break;
3659 case MEM_GOING_OFFLINE:
3660 ret = slab_mem_going_offline_callback(arg);
3661 break;
3662 case MEM_OFFLINE:
3663 case MEM_CANCEL_ONLINE:
3664 slab_mem_offline_callback(arg);
3665 break;
3666 case MEM_ONLINE:
3667 case MEM_CANCEL_OFFLINE:
3668 break;
3669 }
dc19f9db
KH
3670 if (ret)
3671 ret = notifier_from_errno(ret);
3672 else
3673 ret = NOTIFY_OK;
b9049e23
YG
3674 return ret;
3675}
3676
3677#endif /* CONFIG_MEMORY_HOTPLUG */
3678
81819f0f
CL
3679/********************************************************************
3680 * Basic setup of slabs
3681 *******************************************************************/
3682
51df1142
CL
3683/*
3684 * Used for early kmem_cache structures that were allocated using
3685 * the page allocator
3686 */
3687
3688static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3689{
3690 int node;
3691
3692 list_add(&s->list, &slab_caches);
3693 s->refcount = -1;
3694
3695 for_each_node_state(node, N_NORMAL_MEMORY) {
3696 struct kmem_cache_node *n = get_node(s, node);
3697 struct page *p;
3698
3699 if (n) {
3700 list_for_each_entry(p, &n->partial, lru)
3701 p->slab = s;
3702
607bf324 3703#ifdef CONFIG_SLUB_DEBUG
51df1142
CL
3704 list_for_each_entry(p, &n->full, lru)
3705 p->slab = s;
3706#endif
3707 }
3708 }
3709}
3710
81819f0f
CL
3711void __init kmem_cache_init(void)
3712{
3713 int i;
4b356be0 3714 int caches = 0;
51df1142
CL
3715 struct kmem_cache *temp_kmem_cache;
3716 int order;
51df1142
CL
3717 struct kmem_cache *temp_kmem_cache_node;
3718 unsigned long kmalloc_size;
3719
fc8d8620
SG
3720 if (debug_guardpage_minorder())
3721 slub_max_order = 0;
3722
51df1142
CL
3723 kmem_size = offsetof(struct kmem_cache, node) +
3724 nr_node_ids * sizeof(struct kmem_cache_node *);
3725
3726 /* Allocate two kmem_caches from the page allocator */
3727 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3728 order = get_order(2 * kmalloc_size);
3729 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3730
81819f0f
CL
3731 /*
3732 * Must first have the slab cache available for the allocations of the
672bba3a 3733 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3734 * kmem_cache_open for slab_state == DOWN.
3735 */
51df1142
CL
3736 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3737
3738 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3739 sizeof(struct kmem_cache_node),
3740 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3741
0c40ba4f 3742 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3743
3744 /* Able to allocate the per node structures */
3745 slab_state = PARTIAL;
3746
51df1142
CL
3747 temp_kmem_cache = kmem_cache;
3748 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3749 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3750 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3751 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3752
51df1142
CL
3753 /*
3754 * Allocate kmem_cache_node properly from the kmem_cache slab.
3755 * kmem_cache_node is separately allocated so no need to
3756 * update any list pointers.
3757 */
3758 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3759
51df1142
CL
3760 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3761 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3762
3763 kmem_cache_bootstrap_fixup(kmem_cache_node);
3764
3765 caches++;
51df1142
CL
3766 kmem_cache_bootstrap_fixup(kmem_cache);
3767 caches++;
3768 /* Free temporary boot structure */
3769 free_pages((unsigned long)temp_kmem_cache, order);
3770
3771 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3772
3773 /*
3774 * Patch up the size_index table if we have strange large alignment
3775 * requirements for the kmalloc array. This is only the case for
6446faa2 3776 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3777 *
3778 * Largest permitted alignment is 256 bytes due to the way we
3779 * handle the index determination for the smaller caches.
3780 *
3781 * Make sure that nothing crazy happens if someone starts tinkering
3782 * around with ARCH_KMALLOC_MINALIGN
3783 */
3784 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3785 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3786
acdfcd04
AK
3787 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3788 int elem = size_index_elem(i);
3789 if (elem >= ARRAY_SIZE(size_index))
3790 break;
3791 size_index[elem] = KMALLOC_SHIFT_LOW;
3792 }
f1b26339 3793
acdfcd04
AK
3794 if (KMALLOC_MIN_SIZE == 64) {
3795 /*
3796 * The 96 byte size cache is not used if the alignment
3797 * is 64 byte.
3798 */
3799 for (i = 64 + 8; i <= 96; i += 8)
3800 size_index[size_index_elem(i)] = 7;
3801 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3802 /*
3803 * The 192 byte sized cache is not used if the alignment
3804 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3805 * instead.
3806 */
3807 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3808 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3809 }
3810
51df1142
CL
3811 /* Caches that are not of the two-to-the-power-of size */
3812 if (KMALLOC_MIN_SIZE <= 32) {
3813 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3814 caches++;
3815 }
3816
3817 if (KMALLOC_MIN_SIZE <= 64) {
3818 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3819 caches++;
3820 }
3821
3822 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3823 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3824 caches++;
3825 }
3826
81819f0f
CL
3827 slab_state = UP;
3828
3829 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3830 if (KMALLOC_MIN_SIZE <= 32) {
3831 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3832 BUG_ON(!kmalloc_caches[1]->name);
3833 }
3834
3835 if (KMALLOC_MIN_SIZE <= 64) {
3836 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3837 BUG_ON(!kmalloc_caches[2]->name);
3838 }
3839
d7278bd7
CL
3840 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3841 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3842
3843 BUG_ON(!s);
51df1142 3844 kmalloc_caches[i]->name = s;
d7278bd7 3845 }
81819f0f
CL
3846
3847#ifdef CONFIG_SMP
3848 register_cpu_notifier(&slab_notifier);
9dfc6e68 3849#endif
81819f0f 3850
55136592 3851#ifdef CONFIG_ZONE_DMA
51df1142
CL
3852 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3853 struct kmem_cache *s = kmalloc_caches[i];
55136592 3854
51df1142 3855 if (s && s->size) {
55136592 3856 char *name = kasprintf(GFP_NOWAIT,
3b0efdfa 3857 "dma-kmalloc-%d", s->object_size);
55136592
CL
3858
3859 BUG_ON(!name);
51df1142 3860 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3b0efdfa 3861 s->object_size, SLAB_CACHE_DMA);
55136592
CL
3862 }
3863 }
3864#endif
3adbefee
IM
3865 printk(KERN_INFO
3866 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3867 " CPUs=%d, Nodes=%d\n",
3868 caches, cache_line_size(),
81819f0f
CL
3869 slub_min_order, slub_max_order, slub_min_objects,
3870 nr_cpu_ids, nr_node_ids);
3871}
3872
7e85ee0c
PE
3873void __init kmem_cache_init_late(void)
3874{
7e85ee0c
PE
3875}
3876
81819f0f
CL
3877/*
3878 * Find a mergeable slab cache
3879 */
3880static int slab_unmergeable(struct kmem_cache *s)
3881{
3882 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3883 return 1;
3884
c59def9f 3885 if (s->ctor)
81819f0f
CL
3886 return 1;
3887
8ffa6875
CL
3888 /*
3889 * We may have set a slab to be unmergeable during bootstrap.
3890 */
3891 if (s->refcount < 0)
3892 return 1;
3893
81819f0f
CL
3894 return 0;
3895}
3896
3897static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3898 size_t align, unsigned long flags, const char *name,
51cc5068 3899 void (*ctor)(void *))
81819f0f 3900{
5b95a4ac 3901 struct kmem_cache *s;
81819f0f
CL
3902
3903 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3904 return NULL;
3905
c59def9f 3906 if (ctor)
81819f0f
CL
3907 return NULL;
3908
3909 size = ALIGN(size, sizeof(void *));
3910 align = calculate_alignment(flags, align, size);
3911 size = ALIGN(size, align);
ba0268a8 3912 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3913
5b95a4ac 3914 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3915 if (slab_unmergeable(s))
3916 continue;
3917
3918 if (size > s->size)
3919 continue;
3920
ba0268a8 3921 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3922 continue;
3923 /*
3924 * Check if alignment is compatible.
3925 * Courtesy of Adrian Drzewiecki
3926 */
06428780 3927 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3928 continue;
3929
3930 if (s->size - size >= sizeof(void *))
3931 continue;
3932
3933 return s;
3934 }
3935 return NULL;
3936}
3937
039363f3 3938struct kmem_cache *__kmem_cache_create(const char *name, size_t size,
51cc5068 3939 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3940{
3941 struct kmem_cache *s;
84c1cf62 3942 char *n;
81819f0f 3943
ba0268a8 3944 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3945 if (s) {
3946 s->refcount++;
3947 /*
3948 * Adjust the object sizes so that we clear
3949 * the complete object on kzalloc.
3950 */
3b0efdfa 3951 s->object_size = max(s->object_size, (int)size);
81819f0f 3952 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3953
7b8f3b66 3954 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3955 s->refcount--;
20cea968 3956 return NULL;
7b8f3b66 3957 }
a0e1d1be
CL
3958 return s;
3959 }
6446faa2 3960
84c1cf62
PE
3961 n = kstrdup(name, GFP_KERNEL);
3962 if (!n)
20cea968 3963 return NULL;
84c1cf62 3964
a0e1d1be
CL
3965 s = kmalloc(kmem_size, GFP_KERNEL);
3966 if (s) {
84c1cf62 3967 if (kmem_cache_open(s, n,
c59def9f 3968 size, align, flags, ctor)) {
20cea968
CL
3969 int r;
3970
81819f0f 3971 list_add(&s->list, &slab_caches);
18004c5d 3972 mutex_unlock(&slab_mutex);
20cea968
CL
3973 r = sysfs_slab_add(s);
3974 mutex_lock(&slab_mutex);
3975
3976 if (!r)
3977 return s;
3978
3979 list_del(&s->list);
3980 kmem_cache_close(s);
a0e1d1be
CL
3981 }
3982 kfree(s);
81819f0f 3983 }
601d39d0 3984 kfree(n);
20cea968 3985 return NULL;
81819f0f 3986}
81819f0f 3987
81819f0f 3988#ifdef CONFIG_SMP
81819f0f 3989/*
672bba3a
CL
3990 * Use the cpu notifier to insure that the cpu slabs are flushed when
3991 * necessary.
81819f0f
CL
3992 */
3993static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3994 unsigned long action, void *hcpu)
3995{
3996 long cpu = (long)hcpu;
5b95a4ac
CL
3997 struct kmem_cache *s;
3998 unsigned long flags;
81819f0f
CL
3999
4000 switch (action) {
4001 case CPU_UP_CANCELED:
8bb78442 4002 case CPU_UP_CANCELED_FROZEN:
81819f0f 4003 case CPU_DEAD:
8bb78442 4004 case CPU_DEAD_FROZEN:
18004c5d 4005 mutex_lock(&slab_mutex);
5b95a4ac
CL
4006 list_for_each_entry(s, &slab_caches, list) {
4007 local_irq_save(flags);
4008 __flush_cpu_slab(s, cpu);
4009 local_irq_restore(flags);
4010 }
18004c5d 4011 mutex_unlock(&slab_mutex);
81819f0f
CL
4012 break;
4013 default:
4014 break;
4015 }
4016 return NOTIFY_OK;
4017}
4018
06428780 4019static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 4020 .notifier_call = slab_cpuup_callback
06428780 4021};
81819f0f
CL
4022
4023#endif
4024
ce71e27c 4025void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4026{
aadb4bc4 4027 struct kmem_cache *s;
94b528d0 4028 void *ret;
aadb4bc4 4029
ffadd4d0 4030 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
4031 return kmalloc_large(size, gfpflags);
4032
aadb4bc4 4033 s = get_slab(size, gfpflags);
81819f0f 4034
2408c550 4035 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4036 return s;
81819f0f 4037
2154a336 4038 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0 4039
25985edc 4040 /* Honor the call site pointer we received. */
ca2b84cb 4041 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4042
4043 return ret;
81819f0f
CL
4044}
4045
5d1f57e4 4046#ifdef CONFIG_NUMA
81819f0f 4047void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4048 int node, unsigned long caller)
81819f0f 4049{
aadb4bc4 4050 struct kmem_cache *s;
94b528d0 4051 void *ret;
aadb4bc4 4052
d3e14aa3
XF
4053 if (unlikely(size > SLUB_MAX_SIZE)) {
4054 ret = kmalloc_large_node(size, gfpflags, node);
4055
4056 trace_kmalloc_node(caller, ret,
4057 size, PAGE_SIZE << get_order(size),
4058 gfpflags, node);
4059
4060 return ret;
4061 }
eada35ef 4062
aadb4bc4 4063 s = get_slab(size, gfpflags);
81819f0f 4064
2408c550 4065 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4066 return s;
81819f0f 4067
94b528d0
EGM
4068 ret = slab_alloc(s, gfpflags, node, caller);
4069
25985edc 4070 /* Honor the call site pointer we received. */
ca2b84cb 4071 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4072
4073 return ret;
81819f0f 4074}
5d1f57e4 4075#endif
81819f0f 4076
ab4d5ed5 4077#ifdef CONFIG_SYSFS
205ab99d
CL
4078static int count_inuse(struct page *page)
4079{
4080 return page->inuse;
4081}
4082
4083static int count_total(struct page *page)
4084{
4085 return page->objects;
4086}
ab4d5ed5 4087#endif
205ab99d 4088
ab4d5ed5 4089#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4090static int validate_slab(struct kmem_cache *s, struct page *page,
4091 unsigned long *map)
53e15af0
CL
4092{
4093 void *p;
a973e9dd 4094 void *addr = page_address(page);
53e15af0
CL
4095
4096 if (!check_slab(s, page) ||
4097 !on_freelist(s, page, NULL))
4098 return 0;
4099
4100 /* Now we know that a valid freelist exists */
39b26464 4101 bitmap_zero(map, page->objects);
53e15af0 4102
5f80b13a
CL
4103 get_map(s, page, map);
4104 for_each_object(p, s, addr, page->objects) {
4105 if (test_bit(slab_index(p, s, addr), map))
4106 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4107 return 0;
53e15af0
CL
4108 }
4109
224a88be 4110 for_each_object(p, s, addr, page->objects)
7656c72b 4111 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4112 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4113 return 0;
4114 return 1;
4115}
4116
434e245d
CL
4117static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4118 unsigned long *map)
53e15af0 4119{
881db7fb
CL
4120 slab_lock(page);
4121 validate_slab(s, page, map);
4122 slab_unlock(page);
53e15af0
CL
4123}
4124
434e245d
CL
4125static int validate_slab_node(struct kmem_cache *s,
4126 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4127{
4128 unsigned long count = 0;
4129 struct page *page;
4130 unsigned long flags;
4131
4132 spin_lock_irqsave(&n->list_lock, flags);
4133
4134 list_for_each_entry(page, &n->partial, lru) {
434e245d 4135 validate_slab_slab(s, page, map);
53e15af0
CL
4136 count++;
4137 }
4138 if (count != n->nr_partial)
4139 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4140 "counter=%ld\n", s->name, count, n->nr_partial);
4141
4142 if (!(s->flags & SLAB_STORE_USER))
4143 goto out;
4144
4145 list_for_each_entry(page, &n->full, lru) {
434e245d 4146 validate_slab_slab(s, page, map);
53e15af0
CL
4147 count++;
4148 }
4149 if (count != atomic_long_read(&n->nr_slabs))
4150 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4151 "counter=%ld\n", s->name, count,
4152 atomic_long_read(&n->nr_slabs));
4153
4154out:
4155 spin_unlock_irqrestore(&n->list_lock, flags);
4156 return count;
4157}
4158
434e245d 4159static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4160{
4161 int node;
4162 unsigned long count = 0;
205ab99d 4163 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
4164 sizeof(unsigned long), GFP_KERNEL);
4165
4166 if (!map)
4167 return -ENOMEM;
53e15af0
CL
4168
4169 flush_all(s);
f64dc58c 4170 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
4171 struct kmem_cache_node *n = get_node(s, node);
4172
434e245d 4173 count += validate_slab_node(s, n, map);
53e15af0 4174 }
434e245d 4175 kfree(map);
53e15af0
CL
4176 return count;
4177}
88a420e4 4178/*
672bba3a 4179 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4180 * and freed.
4181 */
4182
4183struct location {
4184 unsigned long count;
ce71e27c 4185 unsigned long addr;
45edfa58
CL
4186 long long sum_time;
4187 long min_time;
4188 long max_time;
4189 long min_pid;
4190 long max_pid;
174596a0 4191 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4192 nodemask_t nodes;
88a420e4
CL
4193};
4194
4195struct loc_track {
4196 unsigned long max;
4197 unsigned long count;
4198 struct location *loc;
4199};
4200
4201static void free_loc_track(struct loc_track *t)
4202{
4203 if (t->max)
4204 free_pages((unsigned long)t->loc,
4205 get_order(sizeof(struct location) * t->max));
4206}
4207
68dff6a9 4208static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4209{
4210 struct location *l;
4211 int order;
4212
88a420e4
CL
4213 order = get_order(sizeof(struct location) * max);
4214
68dff6a9 4215 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4216 if (!l)
4217 return 0;
4218
4219 if (t->count) {
4220 memcpy(l, t->loc, sizeof(struct location) * t->count);
4221 free_loc_track(t);
4222 }
4223 t->max = max;
4224 t->loc = l;
4225 return 1;
4226}
4227
4228static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4229 const struct track *track)
88a420e4
CL
4230{
4231 long start, end, pos;
4232 struct location *l;
ce71e27c 4233 unsigned long caddr;
45edfa58 4234 unsigned long age = jiffies - track->when;
88a420e4
CL
4235
4236 start = -1;
4237 end = t->count;
4238
4239 for ( ; ; ) {
4240 pos = start + (end - start + 1) / 2;
4241
4242 /*
4243 * There is nothing at "end". If we end up there
4244 * we need to add something to before end.
4245 */
4246 if (pos == end)
4247 break;
4248
4249 caddr = t->loc[pos].addr;
45edfa58
CL
4250 if (track->addr == caddr) {
4251
4252 l = &t->loc[pos];
4253 l->count++;
4254 if (track->when) {
4255 l->sum_time += age;
4256 if (age < l->min_time)
4257 l->min_time = age;
4258 if (age > l->max_time)
4259 l->max_time = age;
4260
4261 if (track->pid < l->min_pid)
4262 l->min_pid = track->pid;
4263 if (track->pid > l->max_pid)
4264 l->max_pid = track->pid;
4265
174596a0
RR
4266 cpumask_set_cpu(track->cpu,
4267 to_cpumask(l->cpus));
45edfa58
CL
4268 }
4269 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4270 return 1;
4271 }
4272
45edfa58 4273 if (track->addr < caddr)
88a420e4
CL
4274 end = pos;
4275 else
4276 start = pos;
4277 }
4278
4279 /*
672bba3a 4280 * Not found. Insert new tracking element.
88a420e4 4281 */
68dff6a9 4282 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4283 return 0;
4284
4285 l = t->loc + pos;
4286 if (pos < t->count)
4287 memmove(l + 1, l,
4288 (t->count - pos) * sizeof(struct location));
4289 t->count++;
4290 l->count = 1;
45edfa58
CL
4291 l->addr = track->addr;
4292 l->sum_time = age;
4293 l->min_time = age;
4294 l->max_time = age;
4295 l->min_pid = track->pid;
4296 l->max_pid = track->pid;
174596a0
RR
4297 cpumask_clear(to_cpumask(l->cpus));
4298 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4299 nodes_clear(l->nodes);
4300 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4301 return 1;
4302}
4303
4304static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4305 struct page *page, enum track_item alloc,
a5dd5c11 4306 unsigned long *map)
88a420e4 4307{
a973e9dd 4308 void *addr = page_address(page);
88a420e4
CL
4309 void *p;
4310
39b26464 4311 bitmap_zero(map, page->objects);
5f80b13a 4312 get_map(s, page, map);
88a420e4 4313
224a88be 4314 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4315 if (!test_bit(slab_index(p, s, addr), map))
4316 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4317}
4318
4319static int list_locations(struct kmem_cache *s, char *buf,
4320 enum track_item alloc)
4321{
e374d483 4322 int len = 0;
88a420e4 4323 unsigned long i;
68dff6a9 4324 struct loc_track t = { 0, 0, NULL };
88a420e4 4325 int node;
bbd7d57b
ED
4326 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4327 sizeof(unsigned long), GFP_KERNEL);
88a420e4 4328
bbd7d57b
ED
4329 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4330 GFP_TEMPORARY)) {
4331 kfree(map);
68dff6a9 4332 return sprintf(buf, "Out of memory\n");
bbd7d57b 4333 }
88a420e4
CL
4334 /* Push back cpu slabs */
4335 flush_all(s);
4336
f64dc58c 4337 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
4338 struct kmem_cache_node *n = get_node(s, node);
4339 unsigned long flags;
4340 struct page *page;
4341
9e86943b 4342 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4343 continue;
4344
4345 spin_lock_irqsave(&n->list_lock, flags);
4346 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4347 process_slab(&t, s, page, alloc, map);
88a420e4 4348 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4349 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4350 spin_unlock_irqrestore(&n->list_lock, flags);
4351 }
4352
4353 for (i = 0; i < t.count; i++) {
45edfa58 4354 struct location *l = &t.loc[i];
88a420e4 4355
9c246247 4356 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4357 break;
e374d483 4358 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4359
4360 if (l->addr)
62c70bce 4361 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4362 else
e374d483 4363 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4364
4365 if (l->sum_time != l->min_time) {
e374d483 4366 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4367 l->min_time,
4368 (long)div_u64(l->sum_time, l->count),
4369 l->max_time);
45edfa58 4370 } else
e374d483 4371 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4372 l->min_time);
4373
4374 if (l->min_pid != l->max_pid)
e374d483 4375 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4376 l->min_pid, l->max_pid);
4377 else
e374d483 4378 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4379 l->min_pid);
4380
174596a0
RR
4381 if (num_online_cpus() > 1 &&
4382 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4383 len < PAGE_SIZE - 60) {
4384 len += sprintf(buf + len, " cpus=");
4385 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 4386 to_cpumask(l->cpus));
45edfa58
CL
4387 }
4388
62bc62a8 4389 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4390 len < PAGE_SIZE - 60) {
4391 len += sprintf(buf + len, " nodes=");
4392 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
4393 l->nodes);
4394 }
4395
e374d483 4396 len += sprintf(buf + len, "\n");
88a420e4
CL
4397 }
4398
4399 free_loc_track(&t);
bbd7d57b 4400 kfree(map);
88a420e4 4401 if (!t.count)
e374d483
HH
4402 len += sprintf(buf, "No data\n");
4403 return len;
88a420e4 4404}
ab4d5ed5 4405#endif
88a420e4 4406
a5a84755
CL
4407#ifdef SLUB_RESILIENCY_TEST
4408static void resiliency_test(void)
4409{
4410 u8 *p;
4411
4412 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4413
4414 printk(KERN_ERR "SLUB resiliency testing\n");
4415 printk(KERN_ERR "-----------------------\n");
4416 printk(KERN_ERR "A. Corruption after allocation\n");
4417
4418 p = kzalloc(16, GFP_KERNEL);
4419 p[16] = 0x12;
4420 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4421 " 0x12->0x%p\n\n", p + 16);
4422
4423 validate_slab_cache(kmalloc_caches[4]);
4424
4425 /* Hmmm... The next two are dangerous */
4426 p = kzalloc(32, GFP_KERNEL);
4427 p[32 + sizeof(void *)] = 0x34;
4428 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4429 " 0x34 -> -0x%p\n", p);
4430 printk(KERN_ERR
4431 "If allocated object is overwritten then not detectable\n\n");
4432
4433 validate_slab_cache(kmalloc_caches[5]);
4434 p = kzalloc(64, GFP_KERNEL);
4435 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4436 *p = 0x56;
4437 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4438 p);
4439 printk(KERN_ERR
4440 "If allocated object is overwritten then not detectable\n\n");
4441 validate_slab_cache(kmalloc_caches[6]);
4442
4443 printk(KERN_ERR "\nB. Corruption after free\n");
4444 p = kzalloc(128, GFP_KERNEL);
4445 kfree(p);
4446 *p = 0x78;
4447 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4448 validate_slab_cache(kmalloc_caches[7]);
4449
4450 p = kzalloc(256, GFP_KERNEL);
4451 kfree(p);
4452 p[50] = 0x9a;
4453 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4454 p);
4455 validate_slab_cache(kmalloc_caches[8]);
4456
4457 p = kzalloc(512, GFP_KERNEL);
4458 kfree(p);
4459 p[512] = 0xab;
4460 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4461 validate_slab_cache(kmalloc_caches[9]);
4462}
4463#else
4464#ifdef CONFIG_SYSFS
4465static void resiliency_test(void) {};
4466#endif
4467#endif
4468
ab4d5ed5 4469#ifdef CONFIG_SYSFS
81819f0f 4470enum slab_stat_type {
205ab99d
CL
4471 SL_ALL, /* All slabs */
4472 SL_PARTIAL, /* Only partially allocated slabs */
4473 SL_CPU, /* Only slabs used for cpu caches */
4474 SL_OBJECTS, /* Determine allocated objects not slabs */
4475 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4476};
4477
205ab99d 4478#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4479#define SO_PARTIAL (1 << SL_PARTIAL)
4480#define SO_CPU (1 << SL_CPU)
4481#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4482#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4483
62e5c4b4
CG
4484static ssize_t show_slab_objects(struct kmem_cache *s,
4485 char *buf, unsigned long flags)
81819f0f
CL
4486{
4487 unsigned long total = 0;
81819f0f
CL
4488 int node;
4489 int x;
4490 unsigned long *nodes;
4491 unsigned long *per_cpu;
4492
4493 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4494 if (!nodes)
4495 return -ENOMEM;
81819f0f
CL
4496 per_cpu = nodes + nr_node_ids;
4497
205ab99d
CL
4498 if (flags & SO_CPU) {
4499 int cpu;
81819f0f 4500
205ab99d 4501 for_each_possible_cpu(cpu) {
9dfc6e68 4502 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
ec3ab083 4503 int node;
49e22585 4504 struct page *page;
dfb4f096 4505
bc6697d8 4506 page = ACCESS_ONCE(c->page);
ec3ab083
CL
4507 if (!page)
4508 continue;
205ab99d 4509
ec3ab083
CL
4510 node = page_to_nid(page);
4511 if (flags & SO_TOTAL)
4512 x = page->objects;
4513 else if (flags & SO_OBJECTS)
4514 x = page->inuse;
4515 else
4516 x = 1;
49e22585 4517
ec3ab083
CL
4518 total += x;
4519 nodes[node] += x;
4520
4521 page = ACCESS_ONCE(c->partial);
49e22585
CL
4522 if (page) {
4523 x = page->pobjects;
bc6697d8
ED
4524 total += x;
4525 nodes[node] += x;
49e22585 4526 }
ec3ab083 4527
bc6697d8 4528 per_cpu[node]++;
81819f0f
CL
4529 }
4530 }
4531
04d94879 4532 lock_memory_hotplug();
ab4d5ed5 4533#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4534 if (flags & SO_ALL) {
4535 for_each_node_state(node, N_NORMAL_MEMORY) {
4536 struct kmem_cache_node *n = get_node(s, node);
4537
4538 if (flags & SO_TOTAL)
4539 x = atomic_long_read(&n->total_objects);
4540 else if (flags & SO_OBJECTS)
4541 x = atomic_long_read(&n->total_objects) -
4542 count_partial(n, count_free);
81819f0f 4543
81819f0f 4544 else
205ab99d 4545 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4546 total += x;
4547 nodes[node] += x;
4548 }
4549
ab4d5ed5
CL
4550 } else
4551#endif
4552 if (flags & SO_PARTIAL) {
205ab99d
CL
4553 for_each_node_state(node, N_NORMAL_MEMORY) {
4554 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4555
205ab99d
CL
4556 if (flags & SO_TOTAL)
4557 x = count_partial(n, count_total);
4558 else if (flags & SO_OBJECTS)
4559 x = count_partial(n, count_inuse);
81819f0f 4560 else
205ab99d 4561 x = n->nr_partial;
81819f0f
CL
4562 total += x;
4563 nodes[node] += x;
4564 }
4565 }
81819f0f
CL
4566 x = sprintf(buf, "%lu", total);
4567#ifdef CONFIG_NUMA
f64dc58c 4568 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4569 if (nodes[node])
4570 x += sprintf(buf + x, " N%d=%lu",
4571 node, nodes[node]);
4572#endif
04d94879 4573 unlock_memory_hotplug();
81819f0f
CL
4574 kfree(nodes);
4575 return x + sprintf(buf + x, "\n");
4576}
4577
ab4d5ed5 4578#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4579static int any_slab_objects(struct kmem_cache *s)
4580{
4581 int node;
81819f0f 4582
dfb4f096 4583 for_each_online_node(node) {
81819f0f
CL
4584 struct kmem_cache_node *n = get_node(s, node);
4585
dfb4f096
CL
4586 if (!n)
4587 continue;
4588
4ea33e2d 4589 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4590 return 1;
4591 }
4592 return 0;
4593}
ab4d5ed5 4594#endif
81819f0f
CL
4595
4596#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4597#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4598
4599struct slab_attribute {
4600 struct attribute attr;
4601 ssize_t (*show)(struct kmem_cache *s, char *buf);
4602 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4603};
4604
4605#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4606 static struct slab_attribute _name##_attr = \
4607 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4608
4609#define SLAB_ATTR(_name) \
4610 static struct slab_attribute _name##_attr = \
ab067e99 4611 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4612
81819f0f
CL
4613static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4614{
4615 return sprintf(buf, "%d\n", s->size);
4616}
4617SLAB_ATTR_RO(slab_size);
4618
4619static ssize_t align_show(struct kmem_cache *s, char *buf)
4620{
4621 return sprintf(buf, "%d\n", s->align);
4622}
4623SLAB_ATTR_RO(align);
4624
4625static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4626{
3b0efdfa 4627 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4628}
4629SLAB_ATTR_RO(object_size);
4630
4631static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4632{
834f3d11 4633 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4634}
4635SLAB_ATTR_RO(objs_per_slab);
4636
06b285dc
CL
4637static ssize_t order_store(struct kmem_cache *s,
4638 const char *buf, size_t length)
4639{
0121c619
CL
4640 unsigned long order;
4641 int err;
4642
4643 err = strict_strtoul(buf, 10, &order);
4644 if (err)
4645 return err;
06b285dc
CL
4646
4647 if (order > slub_max_order || order < slub_min_order)
4648 return -EINVAL;
4649
4650 calculate_sizes(s, order);
4651 return length;
4652}
4653
81819f0f
CL
4654static ssize_t order_show(struct kmem_cache *s, char *buf)
4655{
834f3d11 4656 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4657}
06b285dc 4658SLAB_ATTR(order);
81819f0f 4659
73d342b1
DR
4660static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4661{
4662 return sprintf(buf, "%lu\n", s->min_partial);
4663}
4664
4665static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4666 size_t length)
4667{
4668 unsigned long min;
4669 int err;
4670
4671 err = strict_strtoul(buf, 10, &min);
4672 if (err)
4673 return err;
4674
c0bdb232 4675 set_min_partial(s, min);
73d342b1
DR
4676 return length;
4677}
4678SLAB_ATTR(min_partial);
4679
49e22585
CL
4680static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4681{
4682 return sprintf(buf, "%u\n", s->cpu_partial);
4683}
4684
4685static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4686 size_t length)
4687{
4688 unsigned long objects;
4689 int err;
4690
4691 err = strict_strtoul(buf, 10, &objects);
4692 if (err)
4693 return err;
74ee4ef1
DR
4694 if (objects && kmem_cache_debug(s))
4695 return -EINVAL;
49e22585
CL
4696
4697 s->cpu_partial = objects;
4698 flush_all(s);
4699 return length;
4700}
4701SLAB_ATTR(cpu_partial);
4702
81819f0f
CL
4703static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4704{
62c70bce
JP
4705 if (!s->ctor)
4706 return 0;
4707 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4708}
4709SLAB_ATTR_RO(ctor);
4710
81819f0f
CL
4711static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4712{
4713 return sprintf(buf, "%d\n", s->refcount - 1);
4714}
4715SLAB_ATTR_RO(aliases);
4716
81819f0f
CL
4717static ssize_t partial_show(struct kmem_cache *s, char *buf)
4718{
d9acf4b7 4719 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4720}
4721SLAB_ATTR_RO(partial);
4722
4723static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4724{
d9acf4b7 4725 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4726}
4727SLAB_ATTR_RO(cpu_slabs);
4728
4729static ssize_t objects_show(struct kmem_cache *s, char *buf)
4730{
205ab99d 4731 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4732}
4733SLAB_ATTR_RO(objects);
4734
205ab99d
CL
4735static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4736{
4737 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4738}
4739SLAB_ATTR_RO(objects_partial);
4740
49e22585
CL
4741static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4742{
4743 int objects = 0;
4744 int pages = 0;
4745 int cpu;
4746 int len;
4747
4748 for_each_online_cpu(cpu) {
4749 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4750
4751 if (page) {
4752 pages += page->pages;
4753 objects += page->pobjects;
4754 }
4755 }
4756
4757 len = sprintf(buf, "%d(%d)", objects, pages);
4758
4759#ifdef CONFIG_SMP
4760 for_each_online_cpu(cpu) {
4761 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4762
4763 if (page && len < PAGE_SIZE - 20)
4764 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4765 page->pobjects, page->pages);
4766 }
4767#endif
4768 return len + sprintf(buf + len, "\n");
4769}
4770SLAB_ATTR_RO(slabs_cpu_partial);
4771
a5a84755
CL
4772static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4773{
4774 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4775}
4776
4777static ssize_t reclaim_account_store(struct kmem_cache *s,
4778 const char *buf, size_t length)
4779{
4780 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4781 if (buf[0] == '1')
4782 s->flags |= SLAB_RECLAIM_ACCOUNT;
4783 return length;
4784}
4785SLAB_ATTR(reclaim_account);
4786
4787static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4788{
4789 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4790}
4791SLAB_ATTR_RO(hwcache_align);
4792
4793#ifdef CONFIG_ZONE_DMA
4794static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4795{
4796 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4797}
4798SLAB_ATTR_RO(cache_dma);
4799#endif
4800
4801static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4802{
4803 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4804}
4805SLAB_ATTR_RO(destroy_by_rcu);
4806
ab9a0f19
LJ
4807static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4808{
4809 return sprintf(buf, "%d\n", s->reserved);
4810}
4811SLAB_ATTR_RO(reserved);
4812
ab4d5ed5 4813#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4814static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4815{
4816 return show_slab_objects(s, buf, SO_ALL);
4817}
4818SLAB_ATTR_RO(slabs);
4819
205ab99d
CL
4820static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4821{
4822 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4823}
4824SLAB_ATTR_RO(total_objects);
4825
81819f0f
CL
4826static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4827{
4828 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4829}
4830
4831static ssize_t sanity_checks_store(struct kmem_cache *s,
4832 const char *buf, size_t length)
4833{
4834 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4835 if (buf[0] == '1') {
4836 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4837 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4838 }
81819f0f
CL
4839 return length;
4840}
4841SLAB_ATTR(sanity_checks);
4842
4843static ssize_t trace_show(struct kmem_cache *s, char *buf)
4844{
4845 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4846}
4847
4848static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4849 size_t length)
4850{
4851 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4852 if (buf[0] == '1') {
4853 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4854 s->flags |= SLAB_TRACE;
b789ef51 4855 }
81819f0f
CL
4856 return length;
4857}
4858SLAB_ATTR(trace);
4859
81819f0f
CL
4860static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4861{
4862 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4863}
4864
4865static ssize_t red_zone_store(struct kmem_cache *s,
4866 const char *buf, size_t length)
4867{
4868 if (any_slab_objects(s))
4869 return -EBUSY;
4870
4871 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4872 if (buf[0] == '1') {
4873 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4874 s->flags |= SLAB_RED_ZONE;
b789ef51 4875 }
06b285dc 4876 calculate_sizes(s, -1);
81819f0f
CL
4877 return length;
4878}
4879SLAB_ATTR(red_zone);
4880
4881static ssize_t poison_show(struct kmem_cache *s, char *buf)
4882{
4883 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4884}
4885
4886static ssize_t poison_store(struct kmem_cache *s,
4887 const char *buf, size_t length)
4888{
4889 if (any_slab_objects(s))
4890 return -EBUSY;
4891
4892 s->flags &= ~SLAB_POISON;
b789ef51
CL
4893 if (buf[0] == '1') {
4894 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4895 s->flags |= SLAB_POISON;
b789ef51 4896 }
06b285dc 4897 calculate_sizes(s, -1);
81819f0f
CL
4898 return length;
4899}
4900SLAB_ATTR(poison);
4901
4902static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4903{
4904 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4905}
4906
4907static ssize_t store_user_store(struct kmem_cache *s,
4908 const char *buf, size_t length)
4909{
4910 if (any_slab_objects(s))
4911 return -EBUSY;
4912
4913 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4914 if (buf[0] == '1') {
4915 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4916 s->flags |= SLAB_STORE_USER;
b789ef51 4917 }
06b285dc 4918 calculate_sizes(s, -1);
81819f0f
CL
4919 return length;
4920}
4921SLAB_ATTR(store_user);
4922
53e15af0
CL
4923static ssize_t validate_show(struct kmem_cache *s, char *buf)
4924{
4925 return 0;
4926}
4927
4928static ssize_t validate_store(struct kmem_cache *s,
4929 const char *buf, size_t length)
4930{
434e245d
CL
4931 int ret = -EINVAL;
4932
4933 if (buf[0] == '1') {
4934 ret = validate_slab_cache(s);
4935 if (ret >= 0)
4936 ret = length;
4937 }
4938 return ret;
53e15af0
CL
4939}
4940SLAB_ATTR(validate);
a5a84755
CL
4941
4942static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4943{
4944 if (!(s->flags & SLAB_STORE_USER))
4945 return -ENOSYS;
4946 return list_locations(s, buf, TRACK_ALLOC);
4947}
4948SLAB_ATTR_RO(alloc_calls);
4949
4950static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4951{
4952 if (!(s->flags & SLAB_STORE_USER))
4953 return -ENOSYS;
4954 return list_locations(s, buf, TRACK_FREE);
4955}
4956SLAB_ATTR_RO(free_calls);
4957#endif /* CONFIG_SLUB_DEBUG */
4958
4959#ifdef CONFIG_FAILSLAB
4960static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4961{
4962 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4963}
4964
4965static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4966 size_t length)
4967{
4968 s->flags &= ~SLAB_FAILSLAB;
4969 if (buf[0] == '1')
4970 s->flags |= SLAB_FAILSLAB;
4971 return length;
4972}
4973SLAB_ATTR(failslab);
ab4d5ed5 4974#endif
53e15af0 4975
2086d26a
CL
4976static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4977{
4978 return 0;
4979}
4980
4981static ssize_t shrink_store(struct kmem_cache *s,
4982 const char *buf, size_t length)
4983{
4984 if (buf[0] == '1') {
4985 int rc = kmem_cache_shrink(s);
4986
4987 if (rc)
4988 return rc;
4989 } else
4990 return -EINVAL;
4991 return length;
4992}
4993SLAB_ATTR(shrink);
4994
81819f0f 4995#ifdef CONFIG_NUMA
9824601e 4996static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4997{
9824601e 4998 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4999}
5000
9824601e 5001static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5002 const char *buf, size_t length)
5003{
0121c619
CL
5004 unsigned long ratio;
5005 int err;
5006
5007 err = strict_strtoul(buf, 10, &ratio);
5008 if (err)
5009 return err;
5010
e2cb96b7 5011 if (ratio <= 100)
0121c619 5012 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5013
81819f0f
CL
5014 return length;
5015}
9824601e 5016SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5017#endif
5018
8ff12cfc 5019#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5020static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5021{
5022 unsigned long sum = 0;
5023 int cpu;
5024 int len;
5025 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5026
5027 if (!data)
5028 return -ENOMEM;
5029
5030 for_each_online_cpu(cpu) {
9dfc6e68 5031 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5032
5033 data[cpu] = x;
5034 sum += x;
5035 }
5036
5037 len = sprintf(buf, "%lu", sum);
5038
50ef37b9 5039#ifdef CONFIG_SMP
8ff12cfc
CL
5040 for_each_online_cpu(cpu) {
5041 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5042 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5043 }
50ef37b9 5044#endif
8ff12cfc
CL
5045 kfree(data);
5046 return len + sprintf(buf + len, "\n");
5047}
5048
78eb00cc
DR
5049static void clear_stat(struct kmem_cache *s, enum stat_item si)
5050{
5051 int cpu;
5052
5053 for_each_online_cpu(cpu)
9dfc6e68 5054 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5055}
5056
8ff12cfc
CL
5057#define STAT_ATTR(si, text) \
5058static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5059{ \
5060 return show_stat(s, buf, si); \
5061} \
78eb00cc
DR
5062static ssize_t text##_store(struct kmem_cache *s, \
5063 const char *buf, size_t length) \
5064{ \
5065 if (buf[0] != '0') \
5066 return -EINVAL; \
5067 clear_stat(s, si); \
5068 return length; \
5069} \
5070SLAB_ATTR(text); \
8ff12cfc
CL
5071
5072STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5073STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5074STAT_ATTR(FREE_FASTPATH, free_fastpath);
5075STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5076STAT_ATTR(FREE_FROZEN, free_frozen);
5077STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5078STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5079STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5080STAT_ATTR(ALLOC_SLAB, alloc_slab);
5081STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5082STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5083STAT_ATTR(FREE_SLAB, free_slab);
5084STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5085STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5086STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5087STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5088STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5089STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5090STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5091STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5092STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5093STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5094STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5095STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5096STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5097STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
5098#endif
5099
06428780 5100static struct attribute *slab_attrs[] = {
81819f0f
CL
5101 &slab_size_attr.attr,
5102 &object_size_attr.attr,
5103 &objs_per_slab_attr.attr,
5104 &order_attr.attr,
73d342b1 5105 &min_partial_attr.attr,
49e22585 5106 &cpu_partial_attr.attr,
81819f0f 5107 &objects_attr.attr,
205ab99d 5108 &objects_partial_attr.attr,
81819f0f
CL
5109 &partial_attr.attr,
5110 &cpu_slabs_attr.attr,
5111 &ctor_attr.attr,
81819f0f
CL
5112 &aliases_attr.attr,
5113 &align_attr.attr,
81819f0f
CL
5114 &hwcache_align_attr.attr,
5115 &reclaim_account_attr.attr,
5116 &destroy_by_rcu_attr.attr,
a5a84755 5117 &shrink_attr.attr,
ab9a0f19 5118 &reserved_attr.attr,
49e22585 5119 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5120#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5121 &total_objects_attr.attr,
5122 &slabs_attr.attr,
5123 &sanity_checks_attr.attr,
5124 &trace_attr.attr,
81819f0f
CL
5125 &red_zone_attr.attr,
5126 &poison_attr.attr,
5127 &store_user_attr.attr,
53e15af0 5128 &validate_attr.attr,
88a420e4
CL
5129 &alloc_calls_attr.attr,
5130 &free_calls_attr.attr,
ab4d5ed5 5131#endif
81819f0f
CL
5132#ifdef CONFIG_ZONE_DMA
5133 &cache_dma_attr.attr,
5134#endif
5135#ifdef CONFIG_NUMA
9824601e 5136 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5137#endif
5138#ifdef CONFIG_SLUB_STATS
5139 &alloc_fastpath_attr.attr,
5140 &alloc_slowpath_attr.attr,
5141 &free_fastpath_attr.attr,
5142 &free_slowpath_attr.attr,
5143 &free_frozen_attr.attr,
5144 &free_add_partial_attr.attr,
5145 &free_remove_partial_attr.attr,
5146 &alloc_from_partial_attr.attr,
5147 &alloc_slab_attr.attr,
5148 &alloc_refill_attr.attr,
e36a2652 5149 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5150 &free_slab_attr.attr,
5151 &cpuslab_flush_attr.attr,
5152 &deactivate_full_attr.attr,
5153 &deactivate_empty_attr.attr,
5154 &deactivate_to_head_attr.attr,
5155 &deactivate_to_tail_attr.attr,
5156 &deactivate_remote_frees_attr.attr,
03e404af 5157 &deactivate_bypass_attr.attr,
65c3376a 5158 &order_fallback_attr.attr,
b789ef51
CL
5159 &cmpxchg_double_fail_attr.attr,
5160 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5161 &cpu_partial_alloc_attr.attr,
5162 &cpu_partial_free_attr.attr,
8028dcea
AS
5163 &cpu_partial_node_attr.attr,
5164 &cpu_partial_drain_attr.attr,
81819f0f 5165#endif
4c13dd3b
DM
5166#ifdef CONFIG_FAILSLAB
5167 &failslab_attr.attr,
5168#endif
5169
81819f0f
CL
5170 NULL
5171};
5172
5173static struct attribute_group slab_attr_group = {
5174 .attrs = slab_attrs,
5175};
5176
5177static ssize_t slab_attr_show(struct kobject *kobj,
5178 struct attribute *attr,
5179 char *buf)
5180{
5181 struct slab_attribute *attribute;
5182 struct kmem_cache *s;
5183 int err;
5184
5185 attribute = to_slab_attr(attr);
5186 s = to_slab(kobj);
5187
5188 if (!attribute->show)
5189 return -EIO;
5190
5191 err = attribute->show(s, buf);
5192
5193 return err;
5194}
5195
5196static ssize_t slab_attr_store(struct kobject *kobj,
5197 struct attribute *attr,
5198 const char *buf, size_t len)
5199{
5200 struct slab_attribute *attribute;
5201 struct kmem_cache *s;
5202 int err;
5203
5204 attribute = to_slab_attr(attr);
5205 s = to_slab(kobj);
5206
5207 if (!attribute->store)
5208 return -EIO;
5209
5210 err = attribute->store(s, buf, len);
5211
5212 return err;
5213}
5214
151c602f
CL
5215static void kmem_cache_release(struct kobject *kobj)
5216{
5217 struct kmem_cache *s = to_slab(kobj);
5218
84c1cf62 5219 kfree(s->name);
151c602f
CL
5220 kfree(s);
5221}
5222
52cf25d0 5223static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5224 .show = slab_attr_show,
5225 .store = slab_attr_store,
5226};
5227
5228static struct kobj_type slab_ktype = {
5229 .sysfs_ops = &slab_sysfs_ops,
151c602f 5230 .release = kmem_cache_release
81819f0f
CL
5231};
5232
5233static int uevent_filter(struct kset *kset, struct kobject *kobj)
5234{
5235 struct kobj_type *ktype = get_ktype(kobj);
5236
5237 if (ktype == &slab_ktype)
5238 return 1;
5239 return 0;
5240}
5241
9cd43611 5242static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5243 .filter = uevent_filter,
5244};
5245
27c3a314 5246static struct kset *slab_kset;
81819f0f
CL
5247
5248#define ID_STR_LENGTH 64
5249
5250/* Create a unique string id for a slab cache:
6446faa2
CL
5251 *
5252 * Format :[flags-]size
81819f0f
CL
5253 */
5254static char *create_unique_id(struct kmem_cache *s)
5255{
5256 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5257 char *p = name;
5258
5259 BUG_ON(!name);
5260
5261 *p++ = ':';
5262 /*
5263 * First flags affecting slabcache operations. We will only
5264 * get here for aliasable slabs so we do not need to support
5265 * too many flags. The flags here must cover all flags that
5266 * are matched during merging to guarantee that the id is
5267 * unique.
5268 */
5269 if (s->flags & SLAB_CACHE_DMA)
5270 *p++ = 'd';
5271 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5272 *p++ = 'a';
5273 if (s->flags & SLAB_DEBUG_FREE)
5274 *p++ = 'F';
5a896d9e
VN
5275 if (!(s->flags & SLAB_NOTRACK))
5276 *p++ = 't';
81819f0f
CL
5277 if (p != name + 1)
5278 *p++ = '-';
5279 p += sprintf(p, "%07d", s->size);
5280 BUG_ON(p > name + ID_STR_LENGTH - 1);
5281 return name;
5282}
5283
5284static int sysfs_slab_add(struct kmem_cache *s)
5285{
5286 int err;
5287 const char *name;
5288 int unmergeable;
5289
97d06609 5290 if (slab_state < FULL)
81819f0f
CL
5291 /* Defer until later */
5292 return 0;
5293
5294 unmergeable = slab_unmergeable(s);
5295 if (unmergeable) {
5296 /*
5297 * Slabcache can never be merged so we can use the name proper.
5298 * This is typically the case for debug situations. In that
5299 * case we can catch duplicate names easily.
5300 */
27c3a314 5301 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5302 name = s->name;
5303 } else {
5304 /*
5305 * Create a unique name for the slab as a target
5306 * for the symlinks.
5307 */
5308 name = create_unique_id(s);
5309 }
5310
27c3a314 5311 s->kobj.kset = slab_kset;
1eada11c
GKH
5312 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5313 if (err) {
5314 kobject_put(&s->kobj);
81819f0f 5315 return err;
1eada11c 5316 }
81819f0f
CL
5317
5318 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
5319 if (err) {
5320 kobject_del(&s->kobj);
5321 kobject_put(&s->kobj);
81819f0f 5322 return err;
5788d8ad 5323 }
81819f0f
CL
5324 kobject_uevent(&s->kobj, KOBJ_ADD);
5325 if (!unmergeable) {
5326 /* Setup first alias */
5327 sysfs_slab_alias(s, s->name);
5328 kfree(name);
5329 }
5330 return 0;
5331}
5332
5333static void sysfs_slab_remove(struct kmem_cache *s)
5334{
97d06609 5335 if (slab_state < FULL)
2bce6485
CL
5336 /*
5337 * Sysfs has not been setup yet so no need to remove the
5338 * cache from sysfs.
5339 */
5340 return;
5341
81819f0f
CL
5342 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5343 kobject_del(&s->kobj);
151c602f 5344 kobject_put(&s->kobj);
81819f0f
CL
5345}
5346
5347/*
5348 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5349 * available lest we lose that information.
81819f0f
CL
5350 */
5351struct saved_alias {
5352 struct kmem_cache *s;
5353 const char *name;
5354 struct saved_alias *next;
5355};
5356
5af328a5 5357static struct saved_alias *alias_list;
81819f0f
CL
5358
5359static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5360{
5361 struct saved_alias *al;
5362
97d06609 5363 if (slab_state == FULL) {
81819f0f
CL
5364 /*
5365 * If we have a leftover link then remove it.
5366 */
27c3a314
GKH
5367 sysfs_remove_link(&slab_kset->kobj, name);
5368 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5369 }
5370
5371 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5372 if (!al)
5373 return -ENOMEM;
5374
5375 al->s = s;
5376 al->name = name;
5377 al->next = alias_list;
5378 alias_list = al;
5379 return 0;
5380}
5381
5382static int __init slab_sysfs_init(void)
5383{
5b95a4ac 5384 struct kmem_cache *s;
81819f0f
CL
5385 int err;
5386
18004c5d 5387 mutex_lock(&slab_mutex);
2bce6485 5388
0ff21e46 5389 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5390 if (!slab_kset) {
18004c5d 5391 mutex_unlock(&slab_mutex);
81819f0f
CL
5392 printk(KERN_ERR "Cannot register slab subsystem.\n");
5393 return -ENOSYS;
5394 }
5395
97d06609 5396 slab_state = FULL;
26a7bd03 5397
5b95a4ac 5398 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5399 err = sysfs_slab_add(s);
5d540fb7
CL
5400 if (err)
5401 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5402 " to sysfs\n", s->name);
26a7bd03 5403 }
81819f0f
CL
5404
5405 while (alias_list) {
5406 struct saved_alias *al = alias_list;
5407
5408 alias_list = alias_list->next;
5409 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
5410 if (err)
5411 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
068ce415 5412 " %s to sysfs\n", al->name);
81819f0f
CL
5413 kfree(al);
5414 }
5415
18004c5d 5416 mutex_unlock(&slab_mutex);
81819f0f
CL
5417 resiliency_test();
5418 return 0;
5419}
5420
5421__initcall(slab_sysfs_init);
ab4d5ed5 5422#endif /* CONFIG_SYSFS */
57ed3eda
PE
5423
5424/*
5425 * The /proc/slabinfo ABI
5426 */
158a9624 5427#ifdef CONFIG_SLABINFO
57ed3eda
PE
5428static void print_slabinfo_header(struct seq_file *m)
5429{
5430 seq_puts(m, "slabinfo - version: 2.1\n");
3b0efdfa 5431 seq_puts(m, "# name <active_objs> <num_objs> <object_size> "
57ed3eda
PE
5432 "<objperslab> <pagesperslab>");
5433 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5434 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5435 seq_putc(m, '\n');
5436}
5437
5438static void *s_start(struct seq_file *m, loff_t *pos)
5439{
5440 loff_t n = *pos;
5441
18004c5d 5442 mutex_lock(&slab_mutex);
57ed3eda
PE
5443 if (!n)
5444 print_slabinfo_header(m);
5445
5446 return seq_list_start(&slab_caches, *pos);
5447}
5448
5449static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5450{
5451 return seq_list_next(p, &slab_caches, pos);
5452}
5453
5454static void s_stop(struct seq_file *m, void *p)
5455{
18004c5d 5456 mutex_unlock(&slab_mutex);
57ed3eda
PE
5457}
5458
5459static int s_show(struct seq_file *m, void *p)
5460{
5461 unsigned long nr_partials = 0;
5462 unsigned long nr_slabs = 0;
5463 unsigned long nr_inuse = 0;
205ab99d
CL
5464 unsigned long nr_objs = 0;
5465 unsigned long nr_free = 0;
57ed3eda
PE
5466 struct kmem_cache *s;
5467 int node;
5468
5469 s = list_entry(p, struct kmem_cache, list);
5470
5471 for_each_online_node(node) {
5472 struct kmem_cache_node *n = get_node(s, node);
5473
5474 if (!n)
5475 continue;
5476
5477 nr_partials += n->nr_partial;
5478 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
5479 nr_objs += atomic_long_read(&n->total_objects);
5480 nr_free += count_partial(n, count_free);
57ed3eda
PE
5481 }
5482
205ab99d 5483 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
5484
5485 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
5486 nr_objs, s->size, oo_objects(s->oo),
5487 (1 << oo_order(s->oo)));
57ed3eda
PE
5488 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5489 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5490 0UL);
5491 seq_putc(m, '\n');
5492 return 0;
5493}
5494
7b3c3a50 5495static const struct seq_operations slabinfo_op = {
57ed3eda
PE
5496 .start = s_start,
5497 .next = s_next,
5498 .stop = s_stop,
5499 .show = s_show,
5500};
5501
7b3c3a50
AD
5502static int slabinfo_open(struct inode *inode, struct file *file)
5503{
5504 return seq_open(file, &slabinfo_op);
5505}
5506
5507static const struct file_operations proc_slabinfo_operations = {
5508 .open = slabinfo_open,
5509 .read = seq_read,
5510 .llseek = seq_lseek,
5511 .release = seq_release,
5512};
5513
5514static int __init slab_proc_init(void)
5515{
ab067e99 5516 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
5517 return 0;
5518}
5519module_init(slab_proc_init);
158a9624 5520#endif /* CONFIG_SLABINFO */