slab: Fix comment on #endif
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
7b3c3a50 17#include <linux/proc_fs.h>
81819f0f
CL
18#include <linux/seq_file.h>
19#include <linux/cpu.h>
20#include <linux/cpuset.h>
21#include <linux/mempolicy.h>
22#include <linux/ctype.h>
3ac7fe5a 23#include <linux/debugobjects.h>
81819f0f 24#include <linux/kallsyms.h>
b9049e23 25#include <linux/memory.h>
f8bd2258 26#include <linux/math64.h>
81819f0f
CL
27
28/*
29 * Lock order:
30 * 1. slab_lock(page)
31 * 2. slab->list_lock
32 *
33 * The slab_lock protects operations on the object of a particular
34 * slab and its metadata in the page struct. If the slab lock
35 * has been taken then no allocations nor frees can be performed
36 * on the objects in the slab nor can the slab be added or removed
37 * from the partial or full lists since this would mean modifying
38 * the page_struct of the slab.
39 *
40 * The list_lock protects the partial and full list on each node and
41 * the partial slab counter. If taken then no new slabs may be added or
42 * removed from the lists nor make the number of partial slabs be modified.
43 * (Note that the total number of slabs is an atomic value that may be
44 * modified without taking the list lock).
45 *
46 * The list_lock is a centralized lock and thus we avoid taking it as
47 * much as possible. As long as SLUB does not have to handle partial
48 * slabs, operations can continue without any centralized lock. F.e.
49 * allocating a long series of objects that fill up slabs does not require
50 * the list lock.
51 *
52 * The lock order is sometimes inverted when we are trying to get a slab
53 * off a list. We take the list_lock and then look for a page on the list
54 * to use. While we do that objects in the slabs may be freed. We can
55 * only operate on the slab if we have also taken the slab_lock. So we use
56 * a slab_trylock() on the slab. If trylock was successful then no frees
57 * can occur anymore and we can use the slab for allocations etc. If the
58 * slab_trylock() does not succeed then frees are in progress in the slab and
59 * we must stay away from it for a while since we may cause a bouncing
60 * cacheline if we try to acquire the lock. So go onto the next slab.
61 * If all pages are busy then we may allocate a new slab instead of reusing
62 * a partial slab. A new slab has noone operating on it and thus there is
63 * no danger of cacheline contention.
64 *
65 * Interrupts are disabled during allocation and deallocation in order to
66 * make the slab allocator safe to use in the context of an irq. In addition
67 * interrupts are disabled to ensure that the processor does not change
68 * while handling per_cpu slabs, due to kernel preemption.
69 *
70 * SLUB assigns one slab for allocation to each processor.
71 * Allocations only occur from these slabs called cpu slabs.
72 *
672bba3a
CL
73 * Slabs with free elements are kept on a partial list and during regular
74 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 75 * freed then the slab will show up again on the partial lists.
672bba3a
CL
76 * We track full slabs for debugging purposes though because otherwise we
77 * cannot scan all objects.
81819f0f
CL
78 *
79 * Slabs are freed when they become empty. Teardown and setup is
80 * minimal so we rely on the page allocators per cpu caches for
81 * fast frees and allocs.
82 *
83 * Overloading of page flags that are otherwise used for LRU management.
84 *
4b6f0750
CL
85 * PageActive The slab is frozen and exempt from list processing.
86 * This means that the slab is dedicated to a purpose
87 * such as satisfying allocations for a specific
88 * processor. Objects may be freed in the slab while
89 * it is frozen but slab_free will then skip the usual
90 * list operations. It is up to the processor holding
91 * the slab to integrate the slab into the slab lists
92 * when the slab is no longer needed.
93 *
94 * One use of this flag is to mark slabs that are
95 * used for allocations. Then such a slab becomes a cpu
96 * slab. The cpu slab may be equipped with an additional
dfb4f096 97 * freelist that allows lockless access to
894b8788
CL
98 * free objects in addition to the regular freelist
99 * that requires the slab lock.
81819f0f
CL
100 *
101 * PageError Slab requires special handling due to debug
102 * options set. This moves slab handling out of
894b8788 103 * the fast path and disables lockless freelists.
81819f0f
CL
104 */
105
5577bd8a 106#ifdef CONFIG_SLUB_DEBUG
8a38082d 107#define SLABDEBUG 1
5577bd8a
CL
108#else
109#define SLABDEBUG 0
110#endif
111
81819f0f
CL
112/*
113 * Issues still to be resolved:
114 *
81819f0f
CL
115 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
116 *
81819f0f
CL
117 * - Variable sizing of the per node arrays
118 */
119
120/* Enable to test recovery from slab corruption on boot */
121#undef SLUB_RESILIENCY_TEST
122
2086d26a
CL
123/*
124 * Mininum number of partial slabs. These will be left on the partial
125 * lists even if they are empty. kmem_cache_shrink may reclaim them.
126 */
76be8950 127#define MIN_PARTIAL 5
e95eed57 128
2086d26a
CL
129/*
130 * Maximum number of desirable partial slabs.
131 * The existence of more partial slabs makes kmem_cache_shrink
132 * sort the partial list by the number of objects in the.
133 */
134#define MAX_PARTIAL 10
135
81819f0f
CL
136#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
137 SLAB_POISON | SLAB_STORE_USER)
672bba3a 138
81819f0f
CL
139/*
140 * Set of flags that will prevent slab merging
141 */
142#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
143 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
144
145#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
146 SLAB_CACHE_DMA)
147
148#ifndef ARCH_KMALLOC_MINALIGN
47bfdc0d 149#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
150#endif
151
152#ifndef ARCH_SLAB_MINALIGN
47bfdc0d 153#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
154#endif
155
156/* Internal SLUB flags */
1ceef402
CL
157#define __OBJECT_POISON 0x80000000 /* Poison object */
158#define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
81819f0f
CL
159
160static int kmem_size = sizeof(struct kmem_cache);
161
162#ifdef CONFIG_SMP
163static struct notifier_block slab_notifier;
164#endif
165
166static enum {
167 DOWN, /* No slab functionality available */
168 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
672bba3a 169 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
170 SYSFS /* Sysfs up */
171} slab_state = DOWN;
172
173/* A list of all slab caches on the system */
174static DECLARE_RWSEM(slub_lock);
5af328a5 175static LIST_HEAD(slab_caches);
81819f0f 176
02cbc874
CL
177/*
178 * Tracking user of a slab.
179 */
180struct track {
181 void *addr; /* Called from address */
182 int cpu; /* Was running on cpu */
183 int pid; /* Pid context */
184 unsigned long when; /* When did the operation occur */
185};
186
187enum track_item { TRACK_ALLOC, TRACK_FREE };
188
f6acb635 189#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
190static int sysfs_slab_add(struct kmem_cache *);
191static int sysfs_slab_alias(struct kmem_cache *, const char *);
192static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 193
81819f0f 194#else
0c710013
CL
195static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
196static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
197 { return 0; }
151c602f
CL
198static inline void sysfs_slab_remove(struct kmem_cache *s)
199{
200 kfree(s);
201}
8ff12cfc 202
81819f0f
CL
203#endif
204
8ff12cfc
CL
205static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
206{
207#ifdef CONFIG_SLUB_STATS
208 c->stat[si]++;
209#endif
210}
211
81819f0f
CL
212/********************************************************************
213 * Core slab cache functions
214 *******************************************************************/
215
216int slab_is_available(void)
217{
218 return slab_state >= UP;
219}
220
221static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
222{
223#ifdef CONFIG_NUMA
224 return s->node[node];
225#else
226 return &s->local_node;
227#endif
228}
229
dfb4f096
CL
230static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
231{
4c93c355
CL
232#ifdef CONFIG_SMP
233 return s->cpu_slab[cpu];
234#else
235 return &s->cpu_slab;
236#endif
dfb4f096
CL
237}
238
6446faa2 239/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
240static inline int check_valid_pointer(struct kmem_cache *s,
241 struct page *page, const void *object)
242{
243 void *base;
244
a973e9dd 245 if (!object)
02cbc874
CL
246 return 1;
247
a973e9dd 248 base = page_address(page);
39b26464 249 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
250 (object - base) % s->size) {
251 return 0;
252 }
253
254 return 1;
255}
256
7656c72b
CL
257/*
258 * Slow version of get and set free pointer.
259 *
260 * This version requires touching the cache lines of kmem_cache which
261 * we avoid to do in the fast alloc free paths. There we obtain the offset
262 * from the page struct.
263 */
264static inline void *get_freepointer(struct kmem_cache *s, void *object)
265{
266 return *(void **)(object + s->offset);
267}
268
269static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
270{
271 *(void **)(object + s->offset) = fp;
272}
273
274/* Loop over all objects in a slab */
224a88be
CL
275#define for_each_object(__p, __s, __addr, __objects) \
276 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
277 __p += (__s)->size)
278
279/* Scan freelist */
280#define for_each_free_object(__p, __s, __free) \
a973e9dd 281 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
7656c72b
CL
282
283/* Determine object index from a given position */
284static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
285{
286 return (p - addr) / s->size;
287}
288
834f3d11
CL
289static inline struct kmem_cache_order_objects oo_make(int order,
290 unsigned long size)
291{
292 struct kmem_cache_order_objects x = {
293 (order << 16) + (PAGE_SIZE << order) / size
294 };
295
296 return x;
297}
298
299static inline int oo_order(struct kmem_cache_order_objects x)
300{
301 return x.x >> 16;
302}
303
304static inline int oo_objects(struct kmem_cache_order_objects x)
305{
306 return x.x & ((1 << 16) - 1);
307}
308
41ecc55b
CL
309#ifdef CONFIG_SLUB_DEBUG
310/*
311 * Debug settings:
312 */
f0630fff
CL
313#ifdef CONFIG_SLUB_DEBUG_ON
314static int slub_debug = DEBUG_DEFAULT_FLAGS;
315#else
41ecc55b 316static int slub_debug;
f0630fff 317#endif
41ecc55b
CL
318
319static char *slub_debug_slabs;
320
81819f0f
CL
321/*
322 * Object debugging
323 */
324static void print_section(char *text, u8 *addr, unsigned int length)
325{
326 int i, offset;
327 int newline = 1;
328 char ascii[17];
329
330 ascii[16] = 0;
331
332 for (i = 0; i < length; i++) {
333 if (newline) {
24922684 334 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
335 newline = 0;
336 }
06428780 337 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
338 offset = i % 16;
339 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
340 if (offset == 15) {
06428780 341 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
342 newline = 1;
343 }
344 }
345 if (!newline) {
346 i %= 16;
347 while (i < 16) {
06428780 348 printk(KERN_CONT " ");
81819f0f
CL
349 ascii[i] = ' ';
350 i++;
351 }
06428780 352 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
353 }
354}
355
81819f0f
CL
356static struct track *get_track(struct kmem_cache *s, void *object,
357 enum track_item alloc)
358{
359 struct track *p;
360
361 if (s->offset)
362 p = object + s->offset + sizeof(void *);
363 else
364 p = object + s->inuse;
365
366 return p + alloc;
367}
368
369static void set_track(struct kmem_cache *s, void *object,
370 enum track_item alloc, void *addr)
371{
372 struct track *p;
373
374 if (s->offset)
375 p = object + s->offset + sizeof(void *);
376 else
377 p = object + s->inuse;
378
379 p += alloc;
380 if (addr) {
381 p->addr = addr;
382 p->cpu = smp_processor_id();
88e4ccf2 383 p->pid = current->pid;
81819f0f
CL
384 p->when = jiffies;
385 } else
386 memset(p, 0, sizeof(struct track));
387}
388
81819f0f
CL
389static void init_tracking(struct kmem_cache *s, void *object)
390{
24922684
CL
391 if (!(s->flags & SLAB_STORE_USER))
392 return;
393
394 set_track(s, object, TRACK_FREE, NULL);
395 set_track(s, object, TRACK_ALLOC, NULL);
81819f0f
CL
396}
397
398static void print_track(const char *s, struct track *t)
399{
400 if (!t->addr)
401 return;
402
7daf705f
LT
403 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
404 s, t->addr, jiffies - t->when, t->cpu, t->pid);
24922684
CL
405}
406
407static void print_tracking(struct kmem_cache *s, void *object)
408{
409 if (!(s->flags & SLAB_STORE_USER))
410 return;
411
412 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
413 print_track("Freed", get_track(s, object, TRACK_FREE));
414}
415
416static void print_page_info(struct page *page)
417{
39b26464
CL
418 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
419 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
420
421}
422
423static void slab_bug(struct kmem_cache *s, char *fmt, ...)
424{
425 va_list args;
426 char buf[100];
427
428 va_start(args, fmt);
429 vsnprintf(buf, sizeof(buf), fmt, args);
430 va_end(args);
431 printk(KERN_ERR "========================================"
432 "=====================================\n");
433 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
434 printk(KERN_ERR "----------------------------------------"
435 "-------------------------------------\n\n");
81819f0f
CL
436}
437
24922684
CL
438static void slab_fix(struct kmem_cache *s, char *fmt, ...)
439{
440 va_list args;
441 char buf[100];
442
443 va_start(args, fmt);
444 vsnprintf(buf, sizeof(buf), fmt, args);
445 va_end(args);
446 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
447}
448
449static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
450{
451 unsigned int off; /* Offset of last byte */
a973e9dd 452 u8 *addr = page_address(page);
24922684
CL
453
454 print_tracking(s, p);
455
456 print_page_info(page);
457
458 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
459 p, p - addr, get_freepointer(s, p));
460
461 if (p > addr + 16)
462 print_section("Bytes b4", p - 16, 16);
463
0ebd652b 464 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
81819f0f
CL
465
466 if (s->flags & SLAB_RED_ZONE)
467 print_section("Redzone", p + s->objsize,
468 s->inuse - s->objsize);
469
81819f0f
CL
470 if (s->offset)
471 off = s->offset + sizeof(void *);
472 else
473 off = s->inuse;
474
24922684 475 if (s->flags & SLAB_STORE_USER)
81819f0f 476 off += 2 * sizeof(struct track);
81819f0f
CL
477
478 if (off != s->size)
479 /* Beginning of the filler is the free pointer */
24922684
CL
480 print_section("Padding", p + off, s->size - off);
481
482 dump_stack();
81819f0f
CL
483}
484
485static void object_err(struct kmem_cache *s, struct page *page,
486 u8 *object, char *reason)
487{
3dc50637 488 slab_bug(s, "%s", reason);
24922684 489 print_trailer(s, page, object);
81819f0f
CL
490}
491
24922684 492static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
493{
494 va_list args;
495 char buf[100];
496
24922684
CL
497 va_start(args, fmt);
498 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 499 va_end(args);
3dc50637 500 slab_bug(s, "%s", buf);
24922684 501 print_page_info(page);
81819f0f
CL
502 dump_stack();
503}
504
505static void init_object(struct kmem_cache *s, void *object, int active)
506{
507 u8 *p = object;
508
509 if (s->flags & __OBJECT_POISON) {
510 memset(p, POISON_FREE, s->objsize - 1);
06428780 511 p[s->objsize - 1] = POISON_END;
81819f0f
CL
512 }
513
514 if (s->flags & SLAB_RED_ZONE)
515 memset(p + s->objsize,
516 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
517 s->inuse - s->objsize);
518}
519
24922684 520static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
521{
522 while (bytes) {
523 if (*start != (u8)value)
24922684 524 return start;
81819f0f
CL
525 start++;
526 bytes--;
527 }
24922684
CL
528 return NULL;
529}
530
531static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
532 void *from, void *to)
533{
534 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
535 memset(from, data, to - from);
536}
537
538static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
539 u8 *object, char *what,
06428780 540 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
541{
542 u8 *fault;
543 u8 *end;
544
545 fault = check_bytes(start, value, bytes);
546 if (!fault)
547 return 1;
548
549 end = start + bytes;
550 while (end > fault && end[-1] == value)
551 end--;
552
553 slab_bug(s, "%s overwritten", what);
554 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
555 fault, end - 1, fault[0], value);
556 print_trailer(s, page, object);
557
558 restore_bytes(s, what, value, fault, end);
559 return 0;
81819f0f
CL
560}
561
81819f0f
CL
562/*
563 * Object layout:
564 *
565 * object address
566 * Bytes of the object to be managed.
567 * If the freepointer may overlay the object then the free
568 * pointer is the first word of the object.
672bba3a 569 *
81819f0f
CL
570 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
571 * 0xa5 (POISON_END)
572 *
573 * object + s->objsize
574 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
575 * Padding is extended by another word if Redzoning is enabled and
576 * objsize == inuse.
577 *
81819f0f
CL
578 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
579 * 0xcc (RED_ACTIVE) for objects in use.
580 *
581 * object + s->inuse
672bba3a
CL
582 * Meta data starts here.
583 *
81819f0f
CL
584 * A. Free pointer (if we cannot overwrite object on free)
585 * B. Tracking data for SLAB_STORE_USER
672bba3a 586 * C. Padding to reach required alignment boundary or at mininum
6446faa2 587 * one word if debugging is on to be able to detect writes
672bba3a
CL
588 * before the word boundary.
589 *
590 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
591 *
592 * object + s->size
672bba3a 593 * Nothing is used beyond s->size.
81819f0f 594 *
672bba3a
CL
595 * If slabcaches are merged then the objsize and inuse boundaries are mostly
596 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
597 * may be used with merged slabcaches.
598 */
599
81819f0f
CL
600static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
601{
602 unsigned long off = s->inuse; /* The end of info */
603
604 if (s->offset)
605 /* Freepointer is placed after the object. */
606 off += sizeof(void *);
607
608 if (s->flags & SLAB_STORE_USER)
609 /* We also have user information there */
610 off += 2 * sizeof(struct track);
611
612 if (s->size == off)
613 return 1;
614
24922684
CL
615 return check_bytes_and_report(s, page, p, "Object padding",
616 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
617}
618
39b26464 619/* Check the pad bytes at the end of a slab page */
81819f0f
CL
620static int slab_pad_check(struct kmem_cache *s, struct page *page)
621{
24922684
CL
622 u8 *start;
623 u8 *fault;
624 u8 *end;
625 int length;
626 int remainder;
81819f0f
CL
627
628 if (!(s->flags & SLAB_POISON))
629 return 1;
630
a973e9dd 631 start = page_address(page);
834f3d11 632 length = (PAGE_SIZE << compound_order(page));
39b26464
CL
633 end = start + length;
634 remainder = length % s->size;
81819f0f
CL
635 if (!remainder)
636 return 1;
637
39b26464 638 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
639 if (!fault)
640 return 1;
641 while (end > fault && end[-1] == POISON_INUSE)
642 end--;
643
644 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 645 print_section("Padding", end - remainder, remainder);
24922684
CL
646
647 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
648 return 0;
81819f0f
CL
649}
650
651static int check_object(struct kmem_cache *s, struct page *page,
652 void *object, int active)
653{
654 u8 *p = object;
655 u8 *endobject = object + s->objsize;
656
657 if (s->flags & SLAB_RED_ZONE) {
658 unsigned int red =
659 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
660
24922684
CL
661 if (!check_bytes_and_report(s, page, object, "Redzone",
662 endobject, red, s->inuse - s->objsize))
81819f0f 663 return 0;
81819f0f 664 } else {
3adbefee
IM
665 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
666 check_bytes_and_report(s, page, p, "Alignment padding",
667 endobject, POISON_INUSE, s->inuse - s->objsize);
668 }
81819f0f
CL
669 }
670
671 if (s->flags & SLAB_POISON) {
672 if (!active && (s->flags & __OBJECT_POISON) &&
24922684
CL
673 (!check_bytes_and_report(s, page, p, "Poison", p,
674 POISON_FREE, s->objsize - 1) ||
675 !check_bytes_and_report(s, page, p, "Poison",
06428780 676 p + s->objsize - 1, POISON_END, 1)))
81819f0f 677 return 0;
81819f0f
CL
678 /*
679 * check_pad_bytes cleans up on its own.
680 */
681 check_pad_bytes(s, page, p);
682 }
683
684 if (!s->offset && active)
685 /*
686 * Object and freepointer overlap. Cannot check
687 * freepointer while object is allocated.
688 */
689 return 1;
690
691 /* Check free pointer validity */
692 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
693 object_err(s, page, p, "Freepointer corrupt");
694 /*
695 * No choice but to zap it and thus loose the remainder
696 * of the free objects in this slab. May cause
672bba3a 697 * another error because the object count is now wrong.
81819f0f 698 */
a973e9dd 699 set_freepointer(s, p, NULL);
81819f0f
CL
700 return 0;
701 }
702 return 1;
703}
704
705static int check_slab(struct kmem_cache *s, struct page *page)
706{
39b26464
CL
707 int maxobj;
708
81819f0f
CL
709 VM_BUG_ON(!irqs_disabled());
710
711 if (!PageSlab(page)) {
24922684 712 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
713 return 0;
714 }
39b26464
CL
715
716 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
717 if (page->objects > maxobj) {
718 slab_err(s, page, "objects %u > max %u",
719 s->name, page->objects, maxobj);
720 return 0;
721 }
722 if (page->inuse > page->objects) {
24922684 723 slab_err(s, page, "inuse %u > max %u",
39b26464 724 s->name, page->inuse, page->objects);
81819f0f
CL
725 return 0;
726 }
727 /* Slab_pad_check fixes things up after itself */
728 slab_pad_check(s, page);
729 return 1;
730}
731
732/*
672bba3a
CL
733 * Determine if a certain object on a page is on the freelist. Must hold the
734 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
735 */
736static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
737{
738 int nr = 0;
739 void *fp = page->freelist;
740 void *object = NULL;
224a88be 741 unsigned long max_objects;
81819f0f 742
39b26464 743 while (fp && nr <= page->objects) {
81819f0f
CL
744 if (fp == search)
745 return 1;
746 if (!check_valid_pointer(s, page, fp)) {
747 if (object) {
748 object_err(s, page, object,
749 "Freechain corrupt");
a973e9dd 750 set_freepointer(s, object, NULL);
81819f0f
CL
751 break;
752 } else {
24922684 753 slab_err(s, page, "Freepointer corrupt");
a973e9dd 754 page->freelist = NULL;
39b26464 755 page->inuse = page->objects;
24922684 756 slab_fix(s, "Freelist cleared");
81819f0f
CL
757 return 0;
758 }
759 break;
760 }
761 object = fp;
762 fp = get_freepointer(s, object);
763 nr++;
764 }
765
224a88be
CL
766 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
767 if (max_objects > 65535)
768 max_objects = 65535;
769
770 if (page->objects != max_objects) {
771 slab_err(s, page, "Wrong number of objects. Found %d but "
772 "should be %d", page->objects, max_objects);
773 page->objects = max_objects;
774 slab_fix(s, "Number of objects adjusted.");
775 }
39b26464 776 if (page->inuse != page->objects - nr) {
70d71228 777 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
778 "counted were %d", page->inuse, page->objects - nr);
779 page->inuse = page->objects - nr;
24922684 780 slab_fix(s, "Object count adjusted.");
81819f0f
CL
781 }
782 return search == NULL;
783}
784
0121c619
CL
785static void trace(struct kmem_cache *s, struct page *page, void *object,
786 int alloc)
3ec09742
CL
787{
788 if (s->flags & SLAB_TRACE) {
789 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
790 s->name,
791 alloc ? "alloc" : "free",
792 object, page->inuse,
793 page->freelist);
794
795 if (!alloc)
796 print_section("Object", (void *)object, s->objsize);
797
798 dump_stack();
799 }
800}
801
643b1138 802/*
672bba3a 803 * Tracking of fully allocated slabs for debugging purposes.
643b1138 804 */
e95eed57 805static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 806{
643b1138
CL
807 spin_lock(&n->list_lock);
808 list_add(&page->lru, &n->full);
809 spin_unlock(&n->list_lock);
810}
811
812static void remove_full(struct kmem_cache *s, struct page *page)
813{
814 struct kmem_cache_node *n;
815
816 if (!(s->flags & SLAB_STORE_USER))
817 return;
818
819 n = get_node(s, page_to_nid(page));
820
821 spin_lock(&n->list_lock);
822 list_del(&page->lru);
823 spin_unlock(&n->list_lock);
824}
825
0f389ec6
CL
826/* Tracking of the number of slabs for debugging purposes */
827static inline unsigned long slabs_node(struct kmem_cache *s, int node)
828{
829 struct kmem_cache_node *n = get_node(s, node);
830
831 return atomic_long_read(&n->nr_slabs);
832}
833
205ab99d 834static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
835{
836 struct kmem_cache_node *n = get_node(s, node);
837
838 /*
839 * May be called early in order to allocate a slab for the
840 * kmem_cache_node structure. Solve the chicken-egg
841 * dilemma by deferring the increment of the count during
842 * bootstrap (see early_kmem_cache_node_alloc).
843 */
205ab99d 844 if (!NUMA_BUILD || n) {
0f389ec6 845 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
846 atomic_long_add(objects, &n->total_objects);
847 }
0f389ec6 848}
205ab99d 849static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
850{
851 struct kmem_cache_node *n = get_node(s, node);
852
853 atomic_long_dec(&n->nr_slabs);
205ab99d 854 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
855}
856
857/* Object debug checks for alloc/free paths */
3ec09742
CL
858static void setup_object_debug(struct kmem_cache *s, struct page *page,
859 void *object)
860{
861 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
862 return;
863
864 init_object(s, object, 0);
865 init_tracking(s, object);
866}
867
868static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
869 void *object, void *addr)
81819f0f
CL
870{
871 if (!check_slab(s, page))
872 goto bad;
873
d692ef6d 874 if (!on_freelist(s, page, object)) {
24922684 875 object_err(s, page, object, "Object already allocated");
70d71228 876 goto bad;
81819f0f
CL
877 }
878
879 if (!check_valid_pointer(s, page, object)) {
880 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 881 goto bad;
81819f0f
CL
882 }
883
d692ef6d 884 if (!check_object(s, page, object, 0))
81819f0f 885 goto bad;
81819f0f 886
3ec09742
CL
887 /* Success perform special debug activities for allocs */
888 if (s->flags & SLAB_STORE_USER)
889 set_track(s, object, TRACK_ALLOC, addr);
890 trace(s, page, object, 1);
891 init_object(s, object, 1);
81819f0f 892 return 1;
3ec09742 893
81819f0f
CL
894bad:
895 if (PageSlab(page)) {
896 /*
897 * If this is a slab page then lets do the best we can
898 * to avoid issues in the future. Marking all objects
672bba3a 899 * as used avoids touching the remaining objects.
81819f0f 900 */
24922684 901 slab_fix(s, "Marking all objects used");
39b26464 902 page->inuse = page->objects;
a973e9dd 903 page->freelist = NULL;
81819f0f
CL
904 }
905 return 0;
906}
907
3ec09742
CL
908static int free_debug_processing(struct kmem_cache *s, struct page *page,
909 void *object, void *addr)
81819f0f
CL
910{
911 if (!check_slab(s, page))
912 goto fail;
913
914 if (!check_valid_pointer(s, page, object)) {
70d71228 915 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
916 goto fail;
917 }
918
919 if (on_freelist(s, page, object)) {
24922684 920 object_err(s, page, object, "Object already free");
81819f0f
CL
921 goto fail;
922 }
923
924 if (!check_object(s, page, object, 1))
925 return 0;
926
927 if (unlikely(s != page->slab)) {
3adbefee 928 if (!PageSlab(page)) {
70d71228
CL
929 slab_err(s, page, "Attempt to free object(0x%p) "
930 "outside of slab", object);
3adbefee 931 } else if (!page->slab) {
81819f0f 932 printk(KERN_ERR
70d71228 933 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 934 object);
70d71228 935 dump_stack();
06428780 936 } else
24922684
CL
937 object_err(s, page, object,
938 "page slab pointer corrupt.");
81819f0f
CL
939 goto fail;
940 }
3ec09742
CL
941
942 /* Special debug activities for freeing objects */
8a38082d 943 if (!PageSlubFrozen(page) && !page->freelist)
3ec09742
CL
944 remove_full(s, page);
945 if (s->flags & SLAB_STORE_USER)
946 set_track(s, object, TRACK_FREE, addr);
947 trace(s, page, object, 0);
948 init_object(s, object, 0);
81819f0f 949 return 1;
3ec09742 950
81819f0f 951fail:
24922684 952 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
953 return 0;
954}
955
41ecc55b
CL
956static int __init setup_slub_debug(char *str)
957{
f0630fff
CL
958 slub_debug = DEBUG_DEFAULT_FLAGS;
959 if (*str++ != '=' || !*str)
960 /*
961 * No options specified. Switch on full debugging.
962 */
963 goto out;
964
965 if (*str == ',')
966 /*
967 * No options but restriction on slabs. This means full
968 * debugging for slabs matching a pattern.
969 */
970 goto check_slabs;
971
972 slub_debug = 0;
973 if (*str == '-')
974 /*
975 * Switch off all debugging measures.
976 */
977 goto out;
978
979 /*
980 * Determine which debug features should be switched on
981 */
06428780 982 for (; *str && *str != ','; str++) {
f0630fff
CL
983 switch (tolower(*str)) {
984 case 'f':
985 slub_debug |= SLAB_DEBUG_FREE;
986 break;
987 case 'z':
988 slub_debug |= SLAB_RED_ZONE;
989 break;
990 case 'p':
991 slub_debug |= SLAB_POISON;
992 break;
993 case 'u':
994 slub_debug |= SLAB_STORE_USER;
995 break;
996 case 't':
997 slub_debug |= SLAB_TRACE;
998 break;
999 default:
1000 printk(KERN_ERR "slub_debug option '%c' "
06428780 1001 "unknown. skipped\n", *str);
f0630fff 1002 }
41ecc55b
CL
1003 }
1004
f0630fff 1005check_slabs:
41ecc55b
CL
1006 if (*str == ',')
1007 slub_debug_slabs = str + 1;
f0630fff 1008out:
41ecc55b
CL
1009 return 1;
1010}
1011
1012__setup("slub_debug", setup_slub_debug);
1013
ba0268a8
CL
1014static unsigned long kmem_cache_flags(unsigned long objsize,
1015 unsigned long flags, const char *name,
51cc5068 1016 void (*ctor)(void *))
41ecc55b
CL
1017{
1018 /*
e153362a 1019 * Enable debugging if selected on the kernel commandline.
41ecc55b 1020 */
e153362a
CL
1021 if (slub_debug && (!slub_debug_slabs ||
1022 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1023 flags |= slub_debug;
ba0268a8
CL
1024
1025 return flags;
41ecc55b
CL
1026}
1027#else
3ec09742
CL
1028static inline void setup_object_debug(struct kmem_cache *s,
1029 struct page *page, void *object) {}
41ecc55b 1030
3ec09742
CL
1031static inline int alloc_debug_processing(struct kmem_cache *s,
1032 struct page *page, void *object, void *addr) { return 0; }
41ecc55b 1033
3ec09742
CL
1034static inline int free_debug_processing(struct kmem_cache *s,
1035 struct page *page, void *object, void *addr) { return 0; }
41ecc55b 1036
41ecc55b
CL
1037static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1038 { return 1; }
1039static inline int check_object(struct kmem_cache *s, struct page *page,
1040 void *object, int active) { return 1; }
3ec09742 1041static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1042static inline unsigned long kmem_cache_flags(unsigned long objsize,
1043 unsigned long flags, const char *name,
51cc5068 1044 void (*ctor)(void *))
ba0268a8
CL
1045{
1046 return flags;
1047}
41ecc55b 1048#define slub_debug 0
0f389ec6
CL
1049
1050static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1051 { return 0; }
205ab99d
CL
1052static inline void inc_slabs_node(struct kmem_cache *s, int node,
1053 int objects) {}
1054static inline void dec_slabs_node(struct kmem_cache *s, int node,
1055 int objects) {}
41ecc55b 1056#endif
205ab99d 1057
81819f0f
CL
1058/*
1059 * Slab allocation and freeing
1060 */
65c3376a
CL
1061static inline struct page *alloc_slab_page(gfp_t flags, int node,
1062 struct kmem_cache_order_objects oo)
1063{
1064 int order = oo_order(oo);
1065
1066 if (node == -1)
1067 return alloc_pages(flags, order);
1068 else
1069 return alloc_pages_node(node, flags, order);
1070}
1071
81819f0f
CL
1072static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1073{
06428780 1074 struct page *page;
834f3d11 1075 struct kmem_cache_order_objects oo = s->oo;
81819f0f 1076
b7a49f0d 1077 flags |= s->allocflags;
e12ba74d 1078
65c3376a
CL
1079 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1080 oo);
1081 if (unlikely(!page)) {
1082 oo = s->min;
1083 /*
1084 * Allocation may have failed due to fragmentation.
1085 * Try a lower order alloc if possible
1086 */
1087 page = alloc_slab_page(flags, node, oo);
1088 if (!page)
1089 return NULL;
81819f0f 1090
65c3376a
CL
1091 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1092 }
834f3d11 1093 page->objects = oo_objects(oo);
81819f0f
CL
1094 mod_zone_page_state(page_zone(page),
1095 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1096 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1097 1 << oo_order(oo));
81819f0f
CL
1098
1099 return page;
1100}
1101
1102static void setup_object(struct kmem_cache *s, struct page *page,
1103 void *object)
1104{
3ec09742 1105 setup_object_debug(s, page, object);
4f104934 1106 if (unlikely(s->ctor))
51cc5068 1107 s->ctor(object);
81819f0f
CL
1108}
1109
1110static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1111{
1112 struct page *page;
81819f0f 1113 void *start;
81819f0f
CL
1114 void *last;
1115 void *p;
1116
6cb06229 1117 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1118
6cb06229
CL
1119 page = allocate_slab(s,
1120 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1121 if (!page)
1122 goto out;
1123
205ab99d 1124 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1125 page->slab = s;
1126 page->flags |= 1 << PG_slab;
1127 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1128 SLAB_STORE_USER | SLAB_TRACE))
8a38082d 1129 __SetPageSlubDebug(page);
81819f0f
CL
1130
1131 start = page_address(page);
81819f0f
CL
1132
1133 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1134 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1135
1136 last = start;
224a88be 1137 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1138 setup_object(s, page, last);
1139 set_freepointer(s, last, p);
1140 last = p;
1141 }
1142 setup_object(s, page, last);
a973e9dd 1143 set_freepointer(s, last, NULL);
81819f0f
CL
1144
1145 page->freelist = start;
1146 page->inuse = 0;
1147out:
81819f0f
CL
1148 return page;
1149}
1150
1151static void __free_slab(struct kmem_cache *s, struct page *page)
1152{
834f3d11
CL
1153 int order = compound_order(page);
1154 int pages = 1 << order;
81819f0f 1155
8a38082d 1156 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
81819f0f
CL
1157 void *p;
1158
1159 slab_pad_check(s, page);
224a88be
CL
1160 for_each_object(p, s, page_address(page),
1161 page->objects)
81819f0f 1162 check_object(s, page, p, 0);
8a38082d 1163 __ClearPageSlubDebug(page);
81819f0f
CL
1164 }
1165
1166 mod_zone_page_state(page_zone(page),
1167 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1168 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1169 -pages);
81819f0f 1170
49bd5221
CL
1171 __ClearPageSlab(page);
1172 reset_page_mapcount(page);
834f3d11 1173 __free_pages(page, order);
81819f0f
CL
1174}
1175
1176static void rcu_free_slab(struct rcu_head *h)
1177{
1178 struct page *page;
1179
1180 page = container_of((struct list_head *)h, struct page, lru);
1181 __free_slab(page->slab, page);
1182}
1183
1184static void free_slab(struct kmem_cache *s, struct page *page)
1185{
1186 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1187 /*
1188 * RCU free overloads the RCU head over the LRU
1189 */
1190 struct rcu_head *head = (void *)&page->lru;
1191
1192 call_rcu(head, rcu_free_slab);
1193 } else
1194 __free_slab(s, page);
1195}
1196
1197static void discard_slab(struct kmem_cache *s, struct page *page)
1198{
205ab99d 1199 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1200 free_slab(s, page);
1201}
1202
1203/*
1204 * Per slab locking using the pagelock
1205 */
1206static __always_inline void slab_lock(struct page *page)
1207{
1208 bit_spin_lock(PG_locked, &page->flags);
1209}
1210
1211static __always_inline void slab_unlock(struct page *page)
1212{
a76d3546 1213 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1214}
1215
1216static __always_inline int slab_trylock(struct page *page)
1217{
1218 int rc = 1;
1219
1220 rc = bit_spin_trylock(PG_locked, &page->flags);
1221 return rc;
1222}
1223
1224/*
1225 * Management of partially allocated slabs
1226 */
7c2e132c
CL
1227static void add_partial(struct kmem_cache_node *n,
1228 struct page *page, int tail)
81819f0f 1229{
e95eed57
CL
1230 spin_lock(&n->list_lock);
1231 n->nr_partial++;
7c2e132c
CL
1232 if (tail)
1233 list_add_tail(&page->lru, &n->partial);
1234 else
1235 list_add(&page->lru, &n->partial);
81819f0f
CL
1236 spin_unlock(&n->list_lock);
1237}
1238
0121c619 1239static void remove_partial(struct kmem_cache *s, struct page *page)
81819f0f
CL
1240{
1241 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1242
1243 spin_lock(&n->list_lock);
1244 list_del(&page->lru);
1245 n->nr_partial--;
1246 spin_unlock(&n->list_lock);
1247}
1248
1249/*
672bba3a 1250 * Lock slab and remove from the partial list.
81819f0f 1251 *
672bba3a 1252 * Must hold list_lock.
81819f0f 1253 */
0121c619
CL
1254static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1255 struct page *page)
81819f0f
CL
1256{
1257 if (slab_trylock(page)) {
1258 list_del(&page->lru);
1259 n->nr_partial--;
8a38082d 1260 __SetPageSlubFrozen(page);
81819f0f
CL
1261 return 1;
1262 }
1263 return 0;
1264}
1265
1266/*
672bba3a 1267 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1268 */
1269static struct page *get_partial_node(struct kmem_cache_node *n)
1270{
1271 struct page *page;
1272
1273 /*
1274 * Racy check. If we mistakenly see no partial slabs then we
1275 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1276 * partial slab and there is none available then get_partials()
1277 * will return NULL.
81819f0f
CL
1278 */
1279 if (!n || !n->nr_partial)
1280 return NULL;
1281
1282 spin_lock(&n->list_lock);
1283 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1284 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1285 goto out;
1286 page = NULL;
1287out:
1288 spin_unlock(&n->list_lock);
1289 return page;
1290}
1291
1292/*
672bba3a 1293 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1294 */
1295static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1296{
1297#ifdef CONFIG_NUMA
1298 struct zonelist *zonelist;
dd1a239f 1299 struct zoneref *z;
54a6eb5c
MG
1300 struct zone *zone;
1301 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1302 struct page *page;
1303
1304 /*
672bba3a
CL
1305 * The defrag ratio allows a configuration of the tradeoffs between
1306 * inter node defragmentation and node local allocations. A lower
1307 * defrag_ratio increases the tendency to do local allocations
1308 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1309 *
672bba3a
CL
1310 * If the defrag_ratio is set to 0 then kmalloc() always
1311 * returns node local objects. If the ratio is higher then kmalloc()
1312 * may return off node objects because partial slabs are obtained
1313 * from other nodes and filled up.
81819f0f 1314 *
6446faa2 1315 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1316 * defrag_ratio = 1000) then every (well almost) allocation will
1317 * first attempt to defrag slab caches on other nodes. This means
1318 * scanning over all nodes to look for partial slabs which may be
1319 * expensive if we do it every time we are trying to find a slab
1320 * with available objects.
81819f0f 1321 */
9824601e
CL
1322 if (!s->remote_node_defrag_ratio ||
1323 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1324 return NULL;
1325
0e88460d 1326 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1327 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1328 struct kmem_cache_node *n;
1329
54a6eb5c 1330 n = get_node(s, zone_to_nid(zone));
81819f0f 1331
54a6eb5c 1332 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
5595cffc 1333 n->nr_partial > n->min_partial) {
81819f0f
CL
1334 page = get_partial_node(n);
1335 if (page)
1336 return page;
1337 }
1338 }
1339#endif
1340 return NULL;
1341}
1342
1343/*
1344 * Get a partial page, lock it and return it.
1345 */
1346static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1347{
1348 struct page *page;
1349 int searchnode = (node == -1) ? numa_node_id() : node;
1350
1351 page = get_partial_node(get_node(s, searchnode));
1352 if (page || (flags & __GFP_THISNODE))
1353 return page;
1354
1355 return get_any_partial(s, flags);
1356}
1357
1358/*
1359 * Move a page back to the lists.
1360 *
1361 * Must be called with the slab lock held.
1362 *
1363 * On exit the slab lock will have been dropped.
1364 */
7c2e132c 1365static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
81819f0f 1366{
e95eed57 1367 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
8ff12cfc 1368 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
e95eed57 1369
8a38082d 1370 __ClearPageSlubFrozen(page);
81819f0f 1371 if (page->inuse) {
e95eed57 1372
a973e9dd 1373 if (page->freelist) {
7c2e132c 1374 add_partial(n, page, tail);
8ff12cfc
CL
1375 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1376 } else {
1377 stat(c, DEACTIVATE_FULL);
8a38082d
AW
1378 if (SLABDEBUG && PageSlubDebug(page) &&
1379 (s->flags & SLAB_STORE_USER))
8ff12cfc
CL
1380 add_full(n, page);
1381 }
81819f0f
CL
1382 slab_unlock(page);
1383 } else {
8ff12cfc 1384 stat(c, DEACTIVATE_EMPTY);
5595cffc 1385 if (n->nr_partial < n->min_partial) {
e95eed57 1386 /*
672bba3a
CL
1387 * Adding an empty slab to the partial slabs in order
1388 * to avoid page allocator overhead. This slab needs
1389 * to come after the other slabs with objects in
6446faa2
CL
1390 * so that the others get filled first. That way the
1391 * size of the partial list stays small.
1392 *
0121c619
CL
1393 * kmem_cache_shrink can reclaim any empty slabs from
1394 * the partial list.
e95eed57 1395 */
7c2e132c 1396 add_partial(n, page, 1);
e95eed57
CL
1397 slab_unlock(page);
1398 } else {
1399 slab_unlock(page);
8ff12cfc 1400 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
e95eed57
CL
1401 discard_slab(s, page);
1402 }
81819f0f
CL
1403 }
1404}
1405
1406/*
1407 * Remove the cpu slab
1408 */
dfb4f096 1409static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1410{
dfb4f096 1411 struct page *page = c->page;
7c2e132c 1412 int tail = 1;
8ff12cfc 1413
b773ad73 1414 if (page->freelist)
8ff12cfc 1415 stat(c, DEACTIVATE_REMOTE_FREES);
894b8788 1416 /*
6446faa2 1417 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1418 * because both freelists are empty. So this is unlikely
1419 * to occur.
1420 */
a973e9dd 1421 while (unlikely(c->freelist)) {
894b8788
CL
1422 void **object;
1423
7c2e132c
CL
1424 tail = 0; /* Hot objects. Put the slab first */
1425
894b8788 1426 /* Retrieve object from cpu_freelist */
dfb4f096 1427 object = c->freelist;
b3fba8da 1428 c->freelist = c->freelist[c->offset];
894b8788
CL
1429
1430 /* And put onto the regular freelist */
b3fba8da 1431 object[c->offset] = page->freelist;
894b8788
CL
1432 page->freelist = object;
1433 page->inuse--;
1434 }
dfb4f096 1435 c->page = NULL;
7c2e132c 1436 unfreeze_slab(s, page, tail);
81819f0f
CL
1437}
1438
dfb4f096 1439static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1440{
8ff12cfc 1441 stat(c, CPUSLAB_FLUSH);
dfb4f096
CL
1442 slab_lock(c->page);
1443 deactivate_slab(s, c);
81819f0f
CL
1444}
1445
1446/*
1447 * Flush cpu slab.
6446faa2 1448 *
81819f0f
CL
1449 * Called from IPI handler with interrupts disabled.
1450 */
0c710013 1451static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1452{
dfb4f096 1453 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
81819f0f 1454
dfb4f096
CL
1455 if (likely(c && c->page))
1456 flush_slab(s, c);
81819f0f
CL
1457}
1458
1459static void flush_cpu_slab(void *d)
1460{
1461 struct kmem_cache *s = d;
81819f0f 1462
dfb4f096 1463 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1464}
1465
1466static void flush_all(struct kmem_cache *s)
1467{
15c8b6c1 1468 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
1469}
1470
dfb4f096
CL
1471/*
1472 * Check if the objects in a per cpu structure fit numa
1473 * locality expectations.
1474 */
1475static inline int node_match(struct kmem_cache_cpu *c, int node)
1476{
1477#ifdef CONFIG_NUMA
1478 if (node != -1 && c->node != node)
1479 return 0;
1480#endif
1481 return 1;
1482}
1483
81819f0f 1484/*
894b8788
CL
1485 * Slow path. The lockless freelist is empty or we need to perform
1486 * debugging duties.
1487 *
1488 * Interrupts are disabled.
81819f0f 1489 *
894b8788
CL
1490 * Processing is still very fast if new objects have been freed to the
1491 * regular freelist. In that case we simply take over the regular freelist
1492 * as the lockless freelist and zap the regular freelist.
81819f0f 1493 *
894b8788
CL
1494 * If that is not working then we fall back to the partial lists. We take the
1495 * first element of the freelist as the object to allocate now and move the
1496 * rest of the freelist to the lockless freelist.
81819f0f 1497 *
894b8788 1498 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1499 * we need to allocate a new slab. This is the slowest path since it involves
1500 * a call to the page allocator and the setup of a new slab.
81819f0f 1501 */
894b8788 1502static void *__slab_alloc(struct kmem_cache *s,
dfb4f096 1503 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
81819f0f 1504{
81819f0f 1505 void **object;
dfb4f096 1506 struct page *new;
81819f0f 1507
e72e9c23
LT
1508 /* We handle __GFP_ZERO in the caller */
1509 gfpflags &= ~__GFP_ZERO;
1510
dfb4f096 1511 if (!c->page)
81819f0f
CL
1512 goto new_slab;
1513
dfb4f096
CL
1514 slab_lock(c->page);
1515 if (unlikely(!node_match(c, node)))
81819f0f 1516 goto another_slab;
6446faa2 1517
8ff12cfc 1518 stat(c, ALLOC_REFILL);
6446faa2 1519
894b8788 1520load_freelist:
dfb4f096 1521 object = c->page->freelist;
a973e9dd 1522 if (unlikely(!object))
81819f0f 1523 goto another_slab;
8a38082d 1524 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
81819f0f
CL
1525 goto debug;
1526
b3fba8da 1527 c->freelist = object[c->offset];
39b26464 1528 c->page->inuse = c->page->objects;
a973e9dd 1529 c->page->freelist = NULL;
dfb4f096 1530 c->node = page_to_nid(c->page);
1f84260c 1531unlock_out:
dfb4f096 1532 slab_unlock(c->page);
8ff12cfc 1533 stat(c, ALLOC_SLOWPATH);
81819f0f
CL
1534 return object;
1535
1536another_slab:
dfb4f096 1537 deactivate_slab(s, c);
81819f0f
CL
1538
1539new_slab:
dfb4f096
CL
1540 new = get_partial(s, gfpflags, node);
1541 if (new) {
1542 c->page = new;
8ff12cfc 1543 stat(c, ALLOC_FROM_PARTIAL);
894b8788 1544 goto load_freelist;
81819f0f
CL
1545 }
1546
b811c202
CL
1547 if (gfpflags & __GFP_WAIT)
1548 local_irq_enable();
1549
dfb4f096 1550 new = new_slab(s, gfpflags, node);
b811c202
CL
1551
1552 if (gfpflags & __GFP_WAIT)
1553 local_irq_disable();
1554
dfb4f096
CL
1555 if (new) {
1556 c = get_cpu_slab(s, smp_processor_id());
8ff12cfc 1557 stat(c, ALLOC_SLAB);
05aa3450 1558 if (c->page)
dfb4f096 1559 flush_slab(s, c);
dfb4f096 1560 slab_lock(new);
8a38082d 1561 __SetPageSlubFrozen(new);
dfb4f096 1562 c->page = new;
4b6f0750 1563 goto load_freelist;
81819f0f 1564 }
71c7a06f 1565 return NULL;
81819f0f 1566debug:
dfb4f096 1567 if (!alloc_debug_processing(s, c->page, object, addr))
81819f0f 1568 goto another_slab;
894b8788 1569
dfb4f096 1570 c->page->inuse++;
b3fba8da 1571 c->page->freelist = object[c->offset];
ee3c72a1 1572 c->node = -1;
1f84260c 1573 goto unlock_out;
894b8788
CL
1574}
1575
1576/*
1577 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1578 * have the fastpath folded into their functions. So no function call
1579 * overhead for requests that can be satisfied on the fastpath.
1580 *
1581 * The fastpath works by first checking if the lockless freelist can be used.
1582 * If not then __slab_alloc is called for slow processing.
1583 *
1584 * Otherwise we can simply pick the next object from the lockless free list.
1585 */
06428780 1586static __always_inline void *slab_alloc(struct kmem_cache *s,
ce15fea8 1587 gfp_t gfpflags, int node, void *addr)
894b8788 1588{
894b8788 1589 void **object;
dfb4f096 1590 struct kmem_cache_cpu *c;
1f84260c 1591 unsigned long flags;
bdb21928 1592 unsigned int objsize;
1f84260c 1593
89124d70 1594 might_sleep_if(gfpflags & __GFP_WAIT);
894b8788 1595 local_irq_save(flags);
dfb4f096 1596 c = get_cpu_slab(s, smp_processor_id());
bdb21928 1597 objsize = c->objsize;
a973e9dd 1598 if (unlikely(!c->freelist || !node_match(c, node)))
894b8788 1599
dfb4f096 1600 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1601
1602 else {
dfb4f096 1603 object = c->freelist;
b3fba8da 1604 c->freelist = object[c->offset];
8ff12cfc 1605 stat(c, ALLOC_FASTPATH);
894b8788
CL
1606 }
1607 local_irq_restore(flags);
d07dbea4
CL
1608
1609 if (unlikely((gfpflags & __GFP_ZERO) && object))
bdb21928 1610 memset(object, 0, objsize);
d07dbea4 1611
894b8788 1612 return object;
81819f0f
CL
1613}
1614
1615void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1616{
ce15fea8 1617 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
81819f0f
CL
1618}
1619EXPORT_SYMBOL(kmem_cache_alloc);
1620
1621#ifdef CONFIG_NUMA
1622void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1623{
ce15fea8 1624 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
81819f0f
CL
1625}
1626EXPORT_SYMBOL(kmem_cache_alloc_node);
1627#endif
1628
1629/*
894b8788
CL
1630 * Slow patch handling. This may still be called frequently since objects
1631 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1632 *
894b8788
CL
1633 * So we still attempt to reduce cache line usage. Just take the slab
1634 * lock and free the item. If there is no additional partial page
1635 * handling required then we can return immediately.
81819f0f 1636 */
894b8788 1637static void __slab_free(struct kmem_cache *s, struct page *page,
b3fba8da 1638 void *x, void *addr, unsigned int offset)
81819f0f
CL
1639{
1640 void *prior;
1641 void **object = (void *)x;
8ff12cfc 1642 struct kmem_cache_cpu *c;
81819f0f 1643
8ff12cfc
CL
1644 c = get_cpu_slab(s, raw_smp_processor_id());
1645 stat(c, FREE_SLOWPATH);
81819f0f
CL
1646 slab_lock(page);
1647
8a38082d 1648 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
81819f0f 1649 goto debug;
6446faa2 1650
81819f0f 1651checks_ok:
b3fba8da 1652 prior = object[offset] = page->freelist;
81819f0f
CL
1653 page->freelist = object;
1654 page->inuse--;
1655
8a38082d 1656 if (unlikely(PageSlubFrozen(page))) {
8ff12cfc 1657 stat(c, FREE_FROZEN);
81819f0f 1658 goto out_unlock;
8ff12cfc 1659 }
81819f0f
CL
1660
1661 if (unlikely(!page->inuse))
1662 goto slab_empty;
1663
1664 /*
6446faa2 1665 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
1666 * then add it.
1667 */
a973e9dd 1668 if (unlikely(!prior)) {
7c2e132c 1669 add_partial(get_node(s, page_to_nid(page)), page, 1);
8ff12cfc
CL
1670 stat(c, FREE_ADD_PARTIAL);
1671 }
81819f0f
CL
1672
1673out_unlock:
1674 slab_unlock(page);
81819f0f
CL
1675 return;
1676
1677slab_empty:
a973e9dd 1678 if (prior) {
81819f0f 1679 /*
672bba3a 1680 * Slab still on the partial list.
81819f0f
CL
1681 */
1682 remove_partial(s, page);
8ff12cfc
CL
1683 stat(c, FREE_REMOVE_PARTIAL);
1684 }
81819f0f 1685 slab_unlock(page);
8ff12cfc 1686 stat(c, FREE_SLAB);
81819f0f 1687 discard_slab(s, page);
81819f0f
CL
1688 return;
1689
1690debug:
3ec09742 1691 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 1692 goto out_unlock;
77c5e2d0 1693 goto checks_ok;
81819f0f
CL
1694}
1695
894b8788
CL
1696/*
1697 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1698 * can perform fastpath freeing without additional function calls.
1699 *
1700 * The fastpath is only possible if we are freeing to the current cpu slab
1701 * of this processor. This typically the case if we have just allocated
1702 * the item before.
1703 *
1704 * If fastpath is not possible then fall back to __slab_free where we deal
1705 * with all sorts of special processing.
1706 */
06428780 1707static __always_inline void slab_free(struct kmem_cache *s,
894b8788
CL
1708 struct page *page, void *x, void *addr)
1709{
1710 void **object = (void *)x;
dfb4f096 1711 struct kmem_cache_cpu *c;
1f84260c
CL
1712 unsigned long flags;
1713
894b8788 1714 local_irq_save(flags);
dfb4f096 1715 c = get_cpu_slab(s, smp_processor_id());
27d9e4e9 1716 debug_check_no_locks_freed(object, c->objsize);
3ac7fe5a
TG
1717 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1718 debug_check_no_obj_freed(object, s->objsize);
ee3c72a1 1719 if (likely(page == c->page && c->node >= 0)) {
b3fba8da 1720 object[c->offset] = c->freelist;
dfb4f096 1721 c->freelist = object;
8ff12cfc 1722 stat(c, FREE_FASTPATH);
894b8788 1723 } else
b3fba8da 1724 __slab_free(s, page, x, addr, c->offset);
894b8788
CL
1725
1726 local_irq_restore(flags);
1727}
1728
81819f0f
CL
1729void kmem_cache_free(struct kmem_cache *s, void *x)
1730{
77c5e2d0 1731 struct page *page;
81819f0f 1732
b49af68f 1733 page = virt_to_head_page(x);
81819f0f 1734
77c5e2d0 1735 slab_free(s, page, x, __builtin_return_address(0));
81819f0f
CL
1736}
1737EXPORT_SYMBOL(kmem_cache_free);
1738
1739/* Figure out on which slab object the object resides */
1740static struct page *get_object_page(const void *x)
1741{
b49af68f 1742 struct page *page = virt_to_head_page(x);
81819f0f
CL
1743
1744 if (!PageSlab(page))
1745 return NULL;
1746
1747 return page;
1748}
1749
1750/*
672bba3a
CL
1751 * Object placement in a slab is made very easy because we always start at
1752 * offset 0. If we tune the size of the object to the alignment then we can
1753 * get the required alignment by putting one properly sized object after
1754 * another.
81819f0f
CL
1755 *
1756 * Notice that the allocation order determines the sizes of the per cpu
1757 * caches. Each processor has always one slab available for allocations.
1758 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1759 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1760 * locking overhead.
81819f0f
CL
1761 */
1762
1763/*
1764 * Mininum / Maximum order of slab pages. This influences locking overhead
1765 * and slab fragmentation. A higher order reduces the number of partial slabs
1766 * and increases the number of allocations possible without having to
1767 * take the list_lock.
1768 */
1769static int slub_min_order;
114e9e89 1770static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 1771static int slub_min_objects;
81819f0f
CL
1772
1773/*
1774 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1775 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1776 */
1777static int slub_nomerge;
1778
81819f0f
CL
1779/*
1780 * Calculate the order of allocation given an slab object size.
1781 *
672bba3a
CL
1782 * The order of allocation has significant impact on performance and other
1783 * system components. Generally order 0 allocations should be preferred since
1784 * order 0 does not cause fragmentation in the page allocator. Larger objects
1785 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 1786 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
1787 * would be wasted.
1788 *
1789 * In order to reach satisfactory performance we must ensure that a minimum
1790 * number of objects is in one slab. Otherwise we may generate too much
1791 * activity on the partial lists which requires taking the list_lock. This is
1792 * less a concern for large slabs though which are rarely used.
81819f0f 1793 *
672bba3a
CL
1794 * slub_max_order specifies the order where we begin to stop considering the
1795 * number of objects in a slab as critical. If we reach slub_max_order then
1796 * we try to keep the page order as low as possible. So we accept more waste
1797 * of space in favor of a small page order.
81819f0f 1798 *
672bba3a
CL
1799 * Higher order allocations also allow the placement of more objects in a
1800 * slab and thereby reduce object handling overhead. If the user has
1801 * requested a higher mininum order then we start with that one instead of
1802 * the smallest order which will fit the object.
81819f0f 1803 */
5e6d444e
CL
1804static inline int slab_order(int size, int min_objects,
1805 int max_order, int fract_leftover)
81819f0f
CL
1806{
1807 int order;
1808 int rem;
6300ea75 1809 int min_order = slub_min_order;
81819f0f 1810
39b26464
CL
1811 if ((PAGE_SIZE << min_order) / size > 65535)
1812 return get_order(size * 65535) - 1;
1813
6300ea75 1814 for (order = max(min_order,
5e6d444e
CL
1815 fls(min_objects * size - 1) - PAGE_SHIFT);
1816 order <= max_order; order++) {
81819f0f 1817
5e6d444e 1818 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 1819
5e6d444e 1820 if (slab_size < min_objects * size)
81819f0f
CL
1821 continue;
1822
1823 rem = slab_size % size;
1824
5e6d444e 1825 if (rem <= slab_size / fract_leftover)
81819f0f
CL
1826 break;
1827
1828 }
672bba3a 1829
81819f0f
CL
1830 return order;
1831}
1832
5e6d444e
CL
1833static inline int calculate_order(int size)
1834{
1835 int order;
1836 int min_objects;
1837 int fraction;
1838
1839 /*
1840 * Attempt to find best configuration for a slab. This
1841 * works by first attempting to generate a layout with
1842 * the best configuration and backing off gradually.
1843 *
1844 * First we reduce the acceptable waste in a slab. Then
1845 * we reduce the minimum objects required in a slab.
1846 */
1847 min_objects = slub_min_objects;
9b2cd506
CL
1848 if (!min_objects)
1849 min_objects = 4 * (fls(nr_cpu_ids) + 1);
5e6d444e 1850 while (min_objects > 1) {
c124f5b5 1851 fraction = 16;
5e6d444e
CL
1852 while (fraction >= 4) {
1853 order = slab_order(size, min_objects,
1854 slub_max_order, fraction);
1855 if (order <= slub_max_order)
1856 return order;
1857 fraction /= 2;
1858 }
1859 min_objects /= 2;
1860 }
1861
1862 /*
1863 * We were unable to place multiple objects in a slab. Now
1864 * lets see if we can place a single object there.
1865 */
1866 order = slab_order(size, 1, slub_max_order, 1);
1867 if (order <= slub_max_order)
1868 return order;
1869
1870 /*
1871 * Doh this slab cannot be placed using slub_max_order.
1872 */
1873 order = slab_order(size, 1, MAX_ORDER, 1);
1874 if (order <= MAX_ORDER)
1875 return order;
1876 return -ENOSYS;
1877}
1878
81819f0f 1879/*
672bba3a 1880 * Figure out what the alignment of the objects will be.
81819f0f
CL
1881 */
1882static unsigned long calculate_alignment(unsigned long flags,
1883 unsigned long align, unsigned long size)
1884{
1885 /*
6446faa2
CL
1886 * If the user wants hardware cache aligned objects then follow that
1887 * suggestion if the object is sufficiently large.
81819f0f 1888 *
6446faa2
CL
1889 * The hardware cache alignment cannot override the specified
1890 * alignment though. If that is greater then use it.
81819f0f 1891 */
b6210386
NP
1892 if (flags & SLAB_HWCACHE_ALIGN) {
1893 unsigned long ralign = cache_line_size();
1894 while (size <= ralign / 2)
1895 ralign /= 2;
1896 align = max(align, ralign);
1897 }
81819f0f
CL
1898
1899 if (align < ARCH_SLAB_MINALIGN)
b6210386 1900 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
1901
1902 return ALIGN(align, sizeof(void *));
1903}
1904
dfb4f096
CL
1905static void init_kmem_cache_cpu(struct kmem_cache *s,
1906 struct kmem_cache_cpu *c)
1907{
1908 c->page = NULL;
a973e9dd 1909 c->freelist = NULL;
dfb4f096 1910 c->node = 0;
42a9fdbb
CL
1911 c->offset = s->offset / sizeof(void *);
1912 c->objsize = s->objsize;
62f75532
PE
1913#ifdef CONFIG_SLUB_STATS
1914 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1915#endif
dfb4f096
CL
1916}
1917
5595cffc
PE
1918static void
1919init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
1920{
1921 n->nr_partial = 0;
5595cffc
PE
1922
1923 /*
1924 * The larger the object size is, the more pages we want on the partial
1925 * list to avoid pounding the page allocator excessively.
1926 */
1927 n->min_partial = ilog2(s->size);
1928 if (n->min_partial < MIN_PARTIAL)
1929 n->min_partial = MIN_PARTIAL;
1930 else if (n->min_partial > MAX_PARTIAL)
1931 n->min_partial = MAX_PARTIAL;
1932
81819f0f
CL
1933 spin_lock_init(&n->list_lock);
1934 INIT_LIST_HEAD(&n->partial);
8ab1372f 1935#ifdef CONFIG_SLUB_DEBUG
0f389ec6 1936 atomic_long_set(&n->nr_slabs, 0);
02b71b70 1937 atomic_long_set(&n->total_objects, 0);
643b1138 1938 INIT_LIST_HEAD(&n->full);
8ab1372f 1939#endif
81819f0f
CL
1940}
1941
4c93c355
CL
1942#ifdef CONFIG_SMP
1943/*
1944 * Per cpu array for per cpu structures.
1945 *
1946 * The per cpu array places all kmem_cache_cpu structures from one processor
1947 * close together meaning that it becomes possible that multiple per cpu
1948 * structures are contained in one cacheline. This may be particularly
1949 * beneficial for the kmalloc caches.
1950 *
1951 * A desktop system typically has around 60-80 slabs. With 100 here we are
1952 * likely able to get per cpu structures for all caches from the array defined
1953 * here. We must be able to cover all kmalloc caches during bootstrap.
1954 *
1955 * If the per cpu array is exhausted then fall back to kmalloc
1956 * of individual cachelines. No sharing is possible then.
1957 */
1958#define NR_KMEM_CACHE_CPU 100
1959
1960static DEFINE_PER_CPU(struct kmem_cache_cpu,
1961 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1962
1963static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1964static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1965
1966static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1967 int cpu, gfp_t flags)
1968{
1969 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1970
1971 if (c)
1972 per_cpu(kmem_cache_cpu_free, cpu) =
1973 (void *)c->freelist;
1974 else {
1975 /* Table overflow: So allocate ourselves */
1976 c = kmalloc_node(
1977 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1978 flags, cpu_to_node(cpu));
1979 if (!c)
1980 return NULL;
1981 }
1982
1983 init_kmem_cache_cpu(s, c);
1984 return c;
1985}
1986
1987static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1988{
1989 if (c < per_cpu(kmem_cache_cpu, cpu) ||
1990 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
1991 kfree(c);
1992 return;
1993 }
1994 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
1995 per_cpu(kmem_cache_cpu_free, cpu) = c;
1996}
1997
1998static void free_kmem_cache_cpus(struct kmem_cache *s)
1999{
2000 int cpu;
2001
2002 for_each_online_cpu(cpu) {
2003 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2004
2005 if (c) {
2006 s->cpu_slab[cpu] = NULL;
2007 free_kmem_cache_cpu(c, cpu);
2008 }
2009 }
2010}
2011
2012static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2013{
2014 int cpu;
2015
2016 for_each_online_cpu(cpu) {
2017 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2018
2019 if (c)
2020 continue;
2021
2022 c = alloc_kmem_cache_cpu(s, cpu, flags);
2023 if (!c) {
2024 free_kmem_cache_cpus(s);
2025 return 0;
2026 }
2027 s->cpu_slab[cpu] = c;
2028 }
2029 return 1;
2030}
2031
2032/*
2033 * Initialize the per cpu array.
2034 */
2035static void init_alloc_cpu_cpu(int cpu)
2036{
2037 int i;
2038
2039 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2040 return;
2041
2042 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2043 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2044
2045 cpu_set(cpu, kmem_cach_cpu_free_init_once);
2046}
2047
2048static void __init init_alloc_cpu(void)
2049{
2050 int cpu;
2051
2052 for_each_online_cpu(cpu)
2053 init_alloc_cpu_cpu(cpu);
2054 }
2055
2056#else
2057static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2058static inline void init_alloc_cpu(void) {}
2059
2060static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2061{
2062 init_kmem_cache_cpu(s, &s->cpu_slab);
2063 return 1;
2064}
2065#endif
2066
81819f0f
CL
2067#ifdef CONFIG_NUMA
2068/*
2069 * No kmalloc_node yet so do it by hand. We know that this is the first
2070 * slab on the node for this slabcache. There are no concurrent accesses
2071 * possible.
2072 *
2073 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2074 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2075 * memory on a fresh node that has no slab structures yet.
81819f0f 2076 */
1cd7daa5
AB
2077static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2078 int node)
81819f0f
CL
2079{
2080 struct page *page;
2081 struct kmem_cache_node *n;
ba84c73c 2082 unsigned long flags;
81819f0f
CL
2083
2084 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2085
a2f92ee7 2086 page = new_slab(kmalloc_caches, gfpflags, node);
81819f0f
CL
2087
2088 BUG_ON(!page);
a2f92ee7
CL
2089 if (page_to_nid(page) != node) {
2090 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2091 "node %d\n", node);
2092 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2093 "in order to be able to continue\n");
2094 }
2095
81819f0f
CL
2096 n = page->freelist;
2097 BUG_ON(!n);
2098 page->freelist = get_freepointer(kmalloc_caches, n);
2099 page->inuse++;
2100 kmalloc_caches->node[node] = n;
8ab1372f 2101#ifdef CONFIG_SLUB_DEBUG
d45f39cb
CL
2102 init_object(kmalloc_caches, n, 1);
2103 init_tracking(kmalloc_caches, n);
8ab1372f 2104#endif
5595cffc 2105 init_kmem_cache_node(n, kmalloc_caches);
205ab99d 2106 inc_slabs_node(kmalloc_caches, node, page->objects);
6446faa2 2107
ba84c73c 2108 /*
2109 * lockdep requires consistent irq usage for each lock
2110 * so even though there cannot be a race this early in
2111 * the boot sequence, we still disable irqs.
2112 */
2113 local_irq_save(flags);
7c2e132c 2114 add_partial(n, page, 0);
ba84c73c 2115 local_irq_restore(flags);
81819f0f
CL
2116 return n;
2117}
2118
2119static void free_kmem_cache_nodes(struct kmem_cache *s)
2120{
2121 int node;
2122
f64dc58c 2123 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2124 struct kmem_cache_node *n = s->node[node];
2125 if (n && n != &s->local_node)
2126 kmem_cache_free(kmalloc_caches, n);
2127 s->node[node] = NULL;
2128 }
2129}
2130
2131static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2132{
2133 int node;
2134 int local_node;
2135
2136 if (slab_state >= UP)
2137 local_node = page_to_nid(virt_to_page(s));
2138 else
2139 local_node = 0;
2140
f64dc58c 2141 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2142 struct kmem_cache_node *n;
2143
2144 if (local_node == node)
2145 n = &s->local_node;
2146 else {
2147 if (slab_state == DOWN) {
2148 n = early_kmem_cache_node_alloc(gfpflags,
2149 node);
2150 continue;
2151 }
2152 n = kmem_cache_alloc_node(kmalloc_caches,
2153 gfpflags, node);
2154
2155 if (!n) {
2156 free_kmem_cache_nodes(s);
2157 return 0;
2158 }
2159
2160 }
2161 s->node[node] = n;
5595cffc 2162 init_kmem_cache_node(n, s);
81819f0f
CL
2163 }
2164 return 1;
2165}
2166#else
2167static void free_kmem_cache_nodes(struct kmem_cache *s)
2168{
2169}
2170
2171static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2172{
5595cffc 2173 init_kmem_cache_node(&s->local_node, s);
81819f0f
CL
2174 return 1;
2175}
2176#endif
2177
2178/*
2179 * calculate_sizes() determines the order and the distribution of data within
2180 * a slab object.
2181 */
06b285dc 2182static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2183{
2184 unsigned long flags = s->flags;
2185 unsigned long size = s->objsize;
2186 unsigned long align = s->align;
834f3d11 2187 int order;
81819f0f 2188
d8b42bf5
CL
2189 /*
2190 * Round up object size to the next word boundary. We can only
2191 * place the free pointer at word boundaries and this determines
2192 * the possible location of the free pointer.
2193 */
2194 size = ALIGN(size, sizeof(void *));
2195
2196#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2197 /*
2198 * Determine if we can poison the object itself. If the user of
2199 * the slab may touch the object after free or before allocation
2200 * then we should never poison the object itself.
2201 */
2202 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2203 !s->ctor)
81819f0f
CL
2204 s->flags |= __OBJECT_POISON;
2205 else
2206 s->flags &= ~__OBJECT_POISON;
2207
81819f0f
CL
2208
2209 /*
672bba3a 2210 * If we are Redzoning then check if there is some space between the
81819f0f 2211 * end of the object and the free pointer. If not then add an
672bba3a 2212 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2213 */
2214 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2215 size += sizeof(void *);
41ecc55b 2216#endif
81819f0f
CL
2217
2218 /*
672bba3a
CL
2219 * With that we have determined the number of bytes in actual use
2220 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2221 */
2222 s->inuse = size;
2223
2224 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2225 s->ctor)) {
81819f0f
CL
2226 /*
2227 * Relocate free pointer after the object if it is not
2228 * permitted to overwrite the first word of the object on
2229 * kmem_cache_free.
2230 *
2231 * This is the case if we do RCU, have a constructor or
2232 * destructor or are poisoning the objects.
2233 */
2234 s->offset = size;
2235 size += sizeof(void *);
2236 }
2237
c12b3c62 2238#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2239 if (flags & SLAB_STORE_USER)
2240 /*
2241 * Need to store information about allocs and frees after
2242 * the object.
2243 */
2244 size += 2 * sizeof(struct track);
2245
be7b3fbc 2246 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2247 /*
2248 * Add some empty padding so that we can catch
2249 * overwrites from earlier objects rather than let
2250 * tracking information or the free pointer be
2251 * corrupted if an user writes before the start
2252 * of the object.
2253 */
2254 size += sizeof(void *);
41ecc55b 2255#endif
672bba3a 2256
81819f0f
CL
2257 /*
2258 * Determine the alignment based on various parameters that the
65c02d4c
CL
2259 * user specified and the dynamic determination of cache line size
2260 * on bootup.
81819f0f
CL
2261 */
2262 align = calculate_alignment(flags, align, s->objsize);
2263
2264 /*
2265 * SLUB stores one object immediately after another beginning from
2266 * offset 0. In order to align the objects we have to simply size
2267 * each object to conform to the alignment.
2268 */
2269 size = ALIGN(size, align);
2270 s->size = size;
06b285dc
CL
2271 if (forced_order >= 0)
2272 order = forced_order;
2273 else
2274 order = calculate_order(size);
81819f0f 2275
834f3d11 2276 if (order < 0)
81819f0f
CL
2277 return 0;
2278
b7a49f0d 2279 s->allocflags = 0;
834f3d11 2280 if (order)
b7a49f0d
CL
2281 s->allocflags |= __GFP_COMP;
2282
2283 if (s->flags & SLAB_CACHE_DMA)
2284 s->allocflags |= SLUB_DMA;
2285
2286 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2287 s->allocflags |= __GFP_RECLAIMABLE;
2288
81819f0f
CL
2289 /*
2290 * Determine the number of objects per slab
2291 */
834f3d11 2292 s->oo = oo_make(order, size);
65c3376a 2293 s->min = oo_make(get_order(size), size);
205ab99d
CL
2294 if (oo_objects(s->oo) > oo_objects(s->max))
2295 s->max = s->oo;
81819f0f 2296
834f3d11 2297 return !!oo_objects(s->oo);
81819f0f
CL
2298
2299}
2300
81819f0f
CL
2301static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2302 const char *name, size_t size,
2303 size_t align, unsigned long flags,
51cc5068 2304 void (*ctor)(void *))
81819f0f
CL
2305{
2306 memset(s, 0, kmem_size);
2307 s->name = name;
2308 s->ctor = ctor;
81819f0f 2309 s->objsize = size;
81819f0f 2310 s->align = align;
ba0268a8 2311 s->flags = kmem_cache_flags(size, flags, name, ctor);
81819f0f 2312
06b285dc 2313 if (!calculate_sizes(s, -1))
81819f0f
CL
2314 goto error;
2315
2316 s->refcount = 1;
2317#ifdef CONFIG_NUMA
e2cb96b7 2318 s->remote_node_defrag_ratio = 1000;
81819f0f 2319#endif
dfb4f096
CL
2320 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2321 goto error;
81819f0f 2322
dfb4f096 2323 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
81819f0f 2324 return 1;
4c93c355 2325 free_kmem_cache_nodes(s);
81819f0f
CL
2326error:
2327 if (flags & SLAB_PANIC)
2328 panic("Cannot create slab %s size=%lu realsize=%u "
2329 "order=%u offset=%u flags=%lx\n",
834f3d11 2330 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2331 s->offset, flags);
2332 return 0;
2333}
81819f0f
CL
2334
2335/*
2336 * Check if a given pointer is valid
2337 */
2338int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2339{
06428780 2340 struct page *page;
81819f0f
CL
2341
2342 page = get_object_page(object);
2343
2344 if (!page || s != page->slab)
2345 /* No slab or wrong slab */
2346 return 0;
2347
abcd08a6 2348 if (!check_valid_pointer(s, page, object))
81819f0f
CL
2349 return 0;
2350
2351 /*
2352 * We could also check if the object is on the slabs freelist.
2353 * But this would be too expensive and it seems that the main
6446faa2 2354 * purpose of kmem_ptr_valid() is to check if the object belongs
81819f0f
CL
2355 * to a certain slab.
2356 */
2357 return 1;
2358}
2359EXPORT_SYMBOL(kmem_ptr_validate);
2360
2361/*
2362 * Determine the size of a slab object
2363 */
2364unsigned int kmem_cache_size(struct kmem_cache *s)
2365{
2366 return s->objsize;
2367}
2368EXPORT_SYMBOL(kmem_cache_size);
2369
2370const char *kmem_cache_name(struct kmem_cache *s)
2371{
2372 return s->name;
2373}
2374EXPORT_SYMBOL(kmem_cache_name);
2375
33b12c38
CL
2376static void list_slab_objects(struct kmem_cache *s, struct page *page,
2377 const char *text)
2378{
2379#ifdef CONFIG_SLUB_DEBUG
2380 void *addr = page_address(page);
2381 void *p;
2382 DECLARE_BITMAP(map, page->objects);
2383
2384 bitmap_zero(map, page->objects);
2385 slab_err(s, page, "%s", text);
2386 slab_lock(page);
2387 for_each_free_object(p, s, page->freelist)
2388 set_bit(slab_index(p, s, addr), map);
2389
2390 for_each_object(p, s, addr, page->objects) {
2391
2392 if (!test_bit(slab_index(p, s, addr), map)) {
2393 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2394 p, p - addr);
2395 print_tracking(s, p);
2396 }
2397 }
2398 slab_unlock(page);
2399#endif
2400}
2401
81819f0f 2402/*
599870b1 2403 * Attempt to free all partial slabs on a node.
81819f0f 2404 */
599870b1 2405static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2406{
81819f0f
CL
2407 unsigned long flags;
2408 struct page *page, *h;
2409
2410 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2411 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f
CL
2412 if (!page->inuse) {
2413 list_del(&page->lru);
2414 discard_slab(s, page);
599870b1 2415 n->nr_partial--;
33b12c38
CL
2416 } else {
2417 list_slab_objects(s, page,
2418 "Objects remaining on kmem_cache_close()");
599870b1 2419 }
33b12c38 2420 }
81819f0f 2421 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2422}
2423
2424/*
672bba3a 2425 * Release all resources used by a slab cache.
81819f0f 2426 */
0c710013 2427static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2428{
2429 int node;
2430
2431 flush_all(s);
2432
2433 /* Attempt to free all objects */
4c93c355 2434 free_kmem_cache_cpus(s);
f64dc58c 2435 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2436 struct kmem_cache_node *n = get_node(s, node);
2437
599870b1
CL
2438 free_partial(s, n);
2439 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2440 return 1;
2441 }
2442 free_kmem_cache_nodes(s);
2443 return 0;
2444}
2445
2446/*
2447 * Close a cache and release the kmem_cache structure
2448 * (must be used for caches created using kmem_cache_create)
2449 */
2450void kmem_cache_destroy(struct kmem_cache *s)
2451{
2452 down_write(&slub_lock);
2453 s->refcount--;
2454 if (!s->refcount) {
2455 list_del(&s->list);
a0e1d1be 2456 up_write(&slub_lock);
d629d819
PE
2457 if (kmem_cache_close(s)) {
2458 printk(KERN_ERR "SLUB %s: %s called for cache that "
2459 "still has objects.\n", s->name, __func__);
2460 dump_stack();
2461 }
81819f0f 2462 sysfs_slab_remove(s);
a0e1d1be
CL
2463 } else
2464 up_write(&slub_lock);
81819f0f
CL
2465}
2466EXPORT_SYMBOL(kmem_cache_destroy);
2467
2468/********************************************************************
2469 * Kmalloc subsystem
2470 *******************************************************************/
2471
331dc558 2472struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
81819f0f
CL
2473EXPORT_SYMBOL(kmalloc_caches);
2474
81819f0f
CL
2475static int __init setup_slub_min_order(char *str)
2476{
06428780 2477 get_option(&str, &slub_min_order);
81819f0f
CL
2478
2479 return 1;
2480}
2481
2482__setup("slub_min_order=", setup_slub_min_order);
2483
2484static int __init setup_slub_max_order(char *str)
2485{
06428780 2486 get_option(&str, &slub_max_order);
81819f0f
CL
2487
2488 return 1;
2489}
2490
2491__setup("slub_max_order=", setup_slub_max_order);
2492
2493static int __init setup_slub_min_objects(char *str)
2494{
06428780 2495 get_option(&str, &slub_min_objects);
81819f0f
CL
2496
2497 return 1;
2498}
2499
2500__setup("slub_min_objects=", setup_slub_min_objects);
2501
2502static int __init setup_slub_nomerge(char *str)
2503{
2504 slub_nomerge = 1;
2505 return 1;
2506}
2507
2508__setup("slub_nomerge", setup_slub_nomerge);
2509
81819f0f
CL
2510static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2511 const char *name, int size, gfp_t gfp_flags)
2512{
2513 unsigned int flags = 0;
2514
2515 if (gfp_flags & SLUB_DMA)
2516 flags = SLAB_CACHE_DMA;
2517
2518 down_write(&slub_lock);
2519 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 2520 flags, NULL))
81819f0f
CL
2521 goto panic;
2522
2523 list_add(&s->list, &slab_caches);
2524 up_write(&slub_lock);
2525 if (sysfs_slab_add(s))
2526 goto panic;
2527 return s;
2528
2529panic:
2530 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2531}
2532
2e443fd0 2533#ifdef CONFIG_ZONE_DMA
4097d601 2534static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
1ceef402
CL
2535
2536static void sysfs_add_func(struct work_struct *w)
2537{
2538 struct kmem_cache *s;
2539
2540 down_write(&slub_lock);
2541 list_for_each_entry(s, &slab_caches, list) {
2542 if (s->flags & __SYSFS_ADD_DEFERRED) {
2543 s->flags &= ~__SYSFS_ADD_DEFERRED;
2544 sysfs_slab_add(s);
2545 }
2546 }
2547 up_write(&slub_lock);
2548}
2549
2550static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2551
2e443fd0
CL
2552static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2553{
2554 struct kmem_cache *s;
2e443fd0
CL
2555 char *text;
2556 size_t realsize;
2557
2558 s = kmalloc_caches_dma[index];
2559 if (s)
2560 return s;
2561
2562 /* Dynamically create dma cache */
1ceef402
CL
2563 if (flags & __GFP_WAIT)
2564 down_write(&slub_lock);
2565 else {
2566 if (!down_write_trylock(&slub_lock))
2567 goto out;
2568 }
2569
2570 if (kmalloc_caches_dma[index])
2571 goto unlock_out;
2e443fd0 2572
7b55f620 2573 realsize = kmalloc_caches[index].objsize;
3adbefee
IM
2574 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2575 (unsigned int)realsize);
1ceef402
CL
2576 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2577
2578 if (!s || !text || !kmem_cache_open(s, flags, text,
2579 realsize, ARCH_KMALLOC_MINALIGN,
2580 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2581 kfree(s);
2582 kfree(text);
2583 goto unlock_out;
dfce8648 2584 }
1ceef402
CL
2585
2586 list_add(&s->list, &slab_caches);
2587 kmalloc_caches_dma[index] = s;
2588
2589 schedule_work(&sysfs_add_work);
2590
2591unlock_out:
dfce8648 2592 up_write(&slub_lock);
1ceef402 2593out:
dfce8648 2594 return kmalloc_caches_dma[index];
2e443fd0
CL
2595}
2596#endif
2597
f1b26339
CL
2598/*
2599 * Conversion table for small slabs sizes / 8 to the index in the
2600 * kmalloc array. This is necessary for slabs < 192 since we have non power
2601 * of two cache sizes there. The size of larger slabs can be determined using
2602 * fls.
2603 */
2604static s8 size_index[24] = {
2605 3, /* 8 */
2606 4, /* 16 */
2607 5, /* 24 */
2608 5, /* 32 */
2609 6, /* 40 */
2610 6, /* 48 */
2611 6, /* 56 */
2612 6, /* 64 */
2613 1, /* 72 */
2614 1, /* 80 */
2615 1, /* 88 */
2616 1, /* 96 */
2617 7, /* 104 */
2618 7, /* 112 */
2619 7, /* 120 */
2620 7, /* 128 */
2621 2, /* 136 */
2622 2, /* 144 */
2623 2, /* 152 */
2624 2, /* 160 */
2625 2, /* 168 */
2626 2, /* 176 */
2627 2, /* 184 */
2628 2 /* 192 */
2629};
2630
81819f0f
CL
2631static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2632{
f1b26339 2633 int index;
81819f0f 2634
f1b26339
CL
2635 if (size <= 192) {
2636 if (!size)
2637 return ZERO_SIZE_PTR;
81819f0f 2638
f1b26339 2639 index = size_index[(size - 1) / 8];
aadb4bc4 2640 } else
f1b26339 2641 index = fls(size - 1);
81819f0f
CL
2642
2643#ifdef CONFIG_ZONE_DMA
f1b26339 2644 if (unlikely((flags & SLUB_DMA)))
2e443fd0 2645 return dma_kmalloc_cache(index, flags);
f1b26339 2646
81819f0f
CL
2647#endif
2648 return &kmalloc_caches[index];
2649}
2650
2651void *__kmalloc(size_t size, gfp_t flags)
2652{
aadb4bc4 2653 struct kmem_cache *s;
81819f0f 2654
331dc558 2655 if (unlikely(size > PAGE_SIZE))
eada35ef 2656 return kmalloc_large(size, flags);
aadb4bc4
CL
2657
2658 s = get_slab(size, flags);
2659
2660 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2661 return s;
2662
ce15fea8 2663 return slab_alloc(s, flags, -1, __builtin_return_address(0));
81819f0f
CL
2664}
2665EXPORT_SYMBOL(__kmalloc);
2666
f619cfe1
CL
2667static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2668{
2669 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2670 get_order(size));
2671
2672 if (page)
2673 return page_address(page);
2674 else
2675 return NULL;
2676}
2677
81819f0f
CL
2678#ifdef CONFIG_NUMA
2679void *__kmalloc_node(size_t size, gfp_t flags, int node)
2680{
aadb4bc4 2681 struct kmem_cache *s;
81819f0f 2682
331dc558 2683 if (unlikely(size > PAGE_SIZE))
f619cfe1 2684 return kmalloc_large_node(size, flags, node);
aadb4bc4
CL
2685
2686 s = get_slab(size, flags);
2687
2688 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2689 return s;
2690
ce15fea8 2691 return slab_alloc(s, flags, node, __builtin_return_address(0));
81819f0f
CL
2692}
2693EXPORT_SYMBOL(__kmalloc_node);
2694#endif
2695
2696size_t ksize(const void *object)
2697{
272c1d21 2698 struct page *page;
81819f0f
CL
2699 struct kmem_cache *s;
2700
ef8b4520 2701 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2702 return 0;
2703
294a80a8 2704 page = virt_to_head_page(object);
294a80a8 2705
76994412
PE
2706 if (unlikely(!PageSlab(page))) {
2707 WARN_ON(!PageCompound(page));
294a80a8 2708 return PAGE_SIZE << compound_order(page);
76994412 2709 }
81819f0f 2710 s = page->slab;
81819f0f 2711
ae20bfda 2712#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2713 /*
2714 * Debugging requires use of the padding between object
2715 * and whatever may come after it.
2716 */
2717 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2718 return s->objsize;
2719
ae20bfda 2720#endif
81819f0f
CL
2721 /*
2722 * If we have the need to store the freelist pointer
2723 * back there or track user information then we can
2724 * only use the space before that information.
2725 */
2726 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2727 return s->inuse;
81819f0f
CL
2728 /*
2729 * Else we can use all the padding etc for the allocation
2730 */
2731 return s->size;
2732}
81819f0f
CL
2733
2734void kfree(const void *x)
2735{
81819f0f 2736 struct page *page;
5bb983b0 2737 void *object = (void *)x;
81819f0f 2738
2408c550 2739 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2740 return;
2741
b49af68f 2742 page = virt_to_head_page(x);
aadb4bc4 2743 if (unlikely(!PageSlab(page))) {
0937502a 2744 BUG_ON(!PageCompound(page));
aadb4bc4
CL
2745 put_page(page);
2746 return;
2747 }
5bb983b0 2748 slab_free(page->slab, page, object, __builtin_return_address(0));
81819f0f
CL
2749}
2750EXPORT_SYMBOL(kfree);
2751
2086d26a 2752/*
672bba3a
CL
2753 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2754 * the remaining slabs by the number of items in use. The slabs with the
2755 * most items in use come first. New allocations will then fill those up
2756 * and thus they can be removed from the partial lists.
2757 *
2758 * The slabs with the least items are placed last. This results in them
2759 * being allocated from last increasing the chance that the last objects
2760 * are freed in them.
2086d26a
CL
2761 */
2762int kmem_cache_shrink(struct kmem_cache *s)
2763{
2764 int node;
2765 int i;
2766 struct kmem_cache_node *n;
2767 struct page *page;
2768 struct page *t;
205ab99d 2769 int objects = oo_objects(s->max);
2086d26a 2770 struct list_head *slabs_by_inuse =
834f3d11 2771 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
2772 unsigned long flags;
2773
2774 if (!slabs_by_inuse)
2775 return -ENOMEM;
2776
2777 flush_all(s);
f64dc58c 2778 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
2779 n = get_node(s, node);
2780
2781 if (!n->nr_partial)
2782 continue;
2783
834f3d11 2784 for (i = 0; i < objects; i++)
2086d26a
CL
2785 INIT_LIST_HEAD(slabs_by_inuse + i);
2786
2787 spin_lock_irqsave(&n->list_lock, flags);
2788
2789 /*
672bba3a 2790 * Build lists indexed by the items in use in each slab.
2086d26a 2791 *
672bba3a
CL
2792 * Note that concurrent frees may occur while we hold the
2793 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2794 */
2795 list_for_each_entry_safe(page, t, &n->partial, lru) {
2796 if (!page->inuse && slab_trylock(page)) {
2797 /*
2798 * Must hold slab lock here because slab_free
2799 * may have freed the last object and be
2800 * waiting to release the slab.
2801 */
2802 list_del(&page->lru);
2803 n->nr_partial--;
2804 slab_unlock(page);
2805 discard_slab(s, page);
2806 } else {
fcda3d89
CL
2807 list_move(&page->lru,
2808 slabs_by_inuse + page->inuse);
2086d26a
CL
2809 }
2810 }
2811
2086d26a 2812 /*
672bba3a
CL
2813 * Rebuild the partial list with the slabs filled up most
2814 * first and the least used slabs at the end.
2086d26a 2815 */
834f3d11 2816 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
2817 list_splice(slabs_by_inuse + i, n->partial.prev);
2818
2086d26a
CL
2819 spin_unlock_irqrestore(&n->list_lock, flags);
2820 }
2821
2822 kfree(slabs_by_inuse);
2823 return 0;
2824}
2825EXPORT_SYMBOL(kmem_cache_shrink);
2826
b9049e23
YG
2827#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2828static int slab_mem_going_offline_callback(void *arg)
2829{
2830 struct kmem_cache *s;
2831
2832 down_read(&slub_lock);
2833 list_for_each_entry(s, &slab_caches, list)
2834 kmem_cache_shrink(s);
2835 up_read(&slub_lock);
2836
2837 return 0;
2838}
2839
2840static void slab_mem_offline_callback(void *arg)
2841{
2842 struct kmem_cache_node *n;
2843 struct kmem_cache *s;
2844 struct memory_notify *marg = arg;
2845 int offline_node;
2846
2847 offline_node = marg->status_change_nid;
2848
2849 /*
2850 * If the node still has available memory. we need kmem_cache_node
2851 * for it yet.
2852 */
2853 if (offline_node < 0)
2854 return;
2855
2856 down_read(&slub_lock);
2857 list_for_each_entry(s, &slab_caches, list) {
2858 n = get_node(s, offline_node);
2859 if (n) {
2860 /*
2861 * if n->nr_slabs > 0, slabs still exist on the node
2862 * that is going down. We were unable to free them,
2863 * and offline_pages() function shoudn't call this
2864 * callback. So, we must fail.
2865 */
0f389ec6 2866 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
2867
2868 s->node[offline_node] = NULL;
2869 kmem_cache_free(kmalloc_caches, n);
2870 }
2871 }
2872 up_read(&slub_lock);
2873}
2874
2875static int slab_mem_going_online_callback(void *arg)
2876{
2877 struct kmem_cache_node *n;
2878 struct kmem_cache *s;
2879 struct memory_notify *marg = arg;
2880 int nid = marg->status_change_nid;
2881 int ret = 0;
2882
2883 /*
2884 * If the node's memory is already available, then kmem_cache_node is
2885 * already created. Nothing to do.
2886 */
2887 if (nid < 0)
2888 return 0;
2889
2890 /*
0121c619 2891 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
2892 * allocate a kmem_cache_node structure in order to bring the node
2893 * online.
2894 */
2895 down_read(&slub_lock);
2896 list_for_each_entry(s, &slab_caches, list) {
2897 /*
2898 * XXX: kmem_cache_alloc_node will fallback to other nodes
2899 * since memory is not yet available from the node that
2900 * is brought up.
2901 */
2902 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2903 if (!n) {
2904 ret = -ENOMEM;
2905 goto out;
2906 }
5595cffc 2907 init_kmem_cache_node(n, s);
b9049e23
YG
2908 s->node[nid] = n;
2909 }
2910out:
2911 up_read(&slub_lock);
2912 return ret;
2913}
2914
2915static int slab_memory_callback(struct notifier_block *self,
2916 unsigned long action, void *arg)
2917{
2918 int ret = 0;
2919
2920 switch (action) {
2921 case MEM_GOING_ONLINE:
2922 ret = slab_mem_going_online_callback(arg);
2923 break;
2924 case MEM_GOING_OFFLINE:
2925 ret = slab_mem_going_offline_callback(arg);
2926 break;
2927 case MEM_OFFLINE:
2928 case MEM_CANCEL_ONLINE:
2929 slab_mem_offline_callback(arg);
2930 break;
2931 case MEM_ONLINE:
2932 case MEM_CANCEL_OFFLINE:
2933 break;
2934 }
dc19f9db
KH
2935 if (ret)
2936 ret = notifier_from_errno(ret);
2937 else
2938 ret = NOTIFY_OK;
b9049e23
YG
2939 return ret;
2940}
2941
2942#endif /* CONFIG_MEMORY_HOTPLUG */
2943
81819f0f
CL
2944/********************************************************************
2945 * Basic setup of slabs
2946 *******************************************************************/
2947
2948void __init kmem_cache_init(void)
2949{
2950 int i;
4b356be0 2951 int caches = 0;
81819f0f 2952
4c93c355
CL
2953 init_alloc_cpu();
2954
81819f0f
CL
2955#ifdef CONFIG_NUMA
2956 /*
2957 * Must first have the slab cache available for the allocations of the
672bba3a 2958 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
2959 * kmem_cache_open for slab_state == DOWN.
2960 */
2961 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2962 sizeof(struct kmem_cache_node), GFP_KERNEL);
8ffa6875 2963 kmalloc_caches[0].refcount = -1;
4b356be0 2964 caches++;
b9049e23 2965
0c40ba4f 2966 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
2967#endif
2968
2969 /* Able to allocate the per node structures */
2970 slab_state = PARTIAL;
2971
2972 /* Caches that are not of the two-to-the-power-of size */
4b356be0
CL
2973 if (KMALLOC_MIN_SIZE <= 64) {
2974 create_kmalloc_cache(&kmalloc_caches[1],
81819f0f 2975 "kmalloc-96", 96, GFP_KERNEL);
4b356be0 2976 caches++;
4b356be0 2977 create_kmalloc_cache(&kmalloc_caches[2],
81819f0f 2978 "kmalloc-192", 192, GFP_KERNEL);
4b356be0
CL
2979 caches++;
2980 }
81819f0f 2981
331dc558 2982 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
81819f0f
CL
2983 create_kmalloc_cache(&kmalloc_caches[i],
2984 "kmalloc", 1 << i, GFP_KERNEL);
4b356be0
CL
2985 caches++;
2986 }
81819f0f 2987
f1b26339
CL
2988
2989 /*
2990 * Patch up the size_index table if we have strange large alignment
2991 * requirements for the kmalloc array. This is only the case for
6446faa2 2992 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
2993 *
2994 * Largest permitted alignment is 256 bytes due to the way we
2995 * handle the index determination for the smaller caches.
2996 *
2997 * Make sure that nothing crazy happens if someone starts tinkering
2998 * around with ARCH_KMALLOC_MINALIGN
2999 */
3000 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3001 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3002
12ad6843 3003 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
f1b26339
CL
3004 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3005
41d54d3b
CL
3006 if (KMALLOC_MIN_SIZE == 128) {
3007 /*
3008 * The 192 byte sized cache is not used if the alignment
3009 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3010 * instead.
3011 */
3012 for (i = 128 + 8; i <= 192; i += 8)
3013 size_index[(i - 1) / 8] = 8;
3014 }
3015
81819f0f
CL
3016 slab_state = UP;
3017
3018 /* Provide the correct kmalloc names now that the caches are up */
331dc558 3019 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
81819f0f
CL
3020 kmalloc_caches[i]. name =
3021 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3022
3023#ifdef CONFIG_SMP
3024 register_cpu_notifier(&slab_notifier);
4c93c355
CL
3025 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3026 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3027#else
3028 kmem_size = sizeof(struct kmem_cache);
81819f0f
CL
3029#endif
3030
3adbefee
IM
3031 printk(KERN_INFO
3032 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3033 " CPUs=%d, Nodes=%d\n",
3034 caches, cache_line_size(),
81819f0f
CL
3035 slub_min_order, slub_max_order, slub_min_objects,
3036 nr_cpu_ids, nr_node_ids);
3037}
3038
3039/*
3040 * Find a mergeable slab cache
3041 */
3042static int slab_unmergeable(struct kmem_cache *s)
3043{
3044 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3045 return 1;
3046
c59def9f 3047 if (s->ctor)
81819f0f
CL
3048 return 1;
3049
8ffa6875
CL
3050 /*
3051 * We may have set a slab to be unmergeable during bootstrap.
3052 */
3053 if (s->refcount < 0)
3054 return 1;
3055
81819f0f
CL
3056 return 0;
3057}
3058
3059static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3060 size_t align, unsigned long flags, const char *name,
51cc5068 3061 void (*ctor)(void *))
81819f0f 3062{
5b95a4ac 3063 struct kmem_cache *s;
81819f0f
CL
3064
3065 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3066 return NULL;
3067
c59def9f 3068 if (ctor)
81819f0f
CL
3069 return NULL;
3070
3071 size = ALIGN(size, sizeof(void *));
3072 align = calculate_alignment(flags, align, size);
3073 size = ALIGN(size, align);
ba0268a8 3074 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3075
5b95a4ac 3076 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3077 if (slab_unmergeable(s))
3078 continue;
3079
3080 if (size > s->size)
3081 continue;
3082
ba0268a8 3083 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3084 continue;
3085 /*
3086 * Check if alignment is compatible.
3087 * Courtesy of Adrian Drzewiecki
3088 */
06428780 3089 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3090 continue;
3091
3092 if (s->size - size >= sizeof(void *))
3093 continue;
3094
3095 return s;
3096 }
3097 return NULL;
3098}
3099
3100struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3101 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3102{
3103 struct kmem_cache *s;
3104
3105 down_write(&slub_lock);
ba0268a8 3106 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 3107 if (s) {
42a9fdbb
CL
3108 int cpu;
3109
81819f0f
CL
3110 s->refcount++;
3111 /*
3112 * Adjust the object sizes so that we clear
3113 * the complete object on kzalloc.
3114 */
3115 s->objsize = max(s->objsize, (int)size);
42a9fdbb
CL
3116
3117 /*
3118 * And then we need to update the object size in the
3119 * per cpu structures
3120 */
3121 for_each_online_cpu(cpu)
3122 get_cpu_slab(s, cpu)->objsize = s->objsize;
6446faa2 3123
81819f0f 3124 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
a0e1d1be 3125 up_write(&slub_lock);
6446faa2 3126
81819f0f
CL
3127 if (sysfs_slab_alias(s, name))
3128 goto err;
a0e1d1be
CL
3129 return s;
3130 }
6446faa2 3131
a0e1d1be
CL
3132 s = kmalloc(kmem_size, GFP_KERNEL);
3133 if (s) {
3134 if (kmem_cache_open(s, GFP_KERNEL, name,
c59def9f 3135 size, align, flags, ctor)) {
81819f0f 3136 list_add(&s->list, &slab_caches);
a0e1d1be
CL
3137 up_write(&slub_lock);
3138 if (sysfs_slab_add(s))
3139 goto err;
3140 return s;
3141 }
3142 kfree(s);
81819f0f
CL
3143 }
3144 up_write(&slub_lock);
81819f0f
CL
3145
3146err:
81819f0f
CL
3147 if (flags & SLAB_PANIC)
3148 panic("Cannot create slabcache %s\n", name);
3149 else
3150 s = NULL;
3151 return s;
3152}
3153EXPORT_SYMBOL(kmem_cache_create);
3154
81819f0f 3155#ifdef CONFIG_SMP
81819f0f 3156/*
672bba3a
CL
3157 * Use the cpu notifier to insure that the cpu slabs are flushed when
3158 * necessary.
81819f0f
CL
3159 */
3160static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3161 unsigned long action, void *hcpu)
3162{
3163 long cpu = (long)hcpu;
5b95a4ac
CL
3164 struct kmem_cache *s;
3165 unsigned long flags;
81819f0f
CL
3166
3167 switch (action) {
4c93c355
CL
3168 case CPU_UP_PREPARE:
3169 case CPU_UP_PREPARE_FROZEN:
3170 init_alloc_cpu_cpu(cpu);
3171 down_read(&slub_lock);
3172 list_for_each_entry(s, &slab_caches, list)
3173 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3174 GFP_KERNEL);
3175 up_read(&slub_lock);
3176 break;
3177
81819f0f 3178 case CPU_UP_CANCELED:
8bb78442 3179 case CPU_UP_CANCELED_FROZEN:
81819f0f 3180 case CPU_DEAD:
8bb78442 3181 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3182 down_read(&slub_lock);
3183 list_for_each_entry(s, &slab_caches, list) {
4c93c355
CL
3184 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3185
5b95a4ac
CL
3186 local_irq_save(flags);
3187 __flush_cpu_slab(s, cpu);
3188 local_irq_restore(flags);
4c93c355
CL
3189 free_kmem_cache_cpu(c, cpu);
3190 s->cpu_slab[cpu] = NULL;
5b95a4ac
CL
3191 }
3192 up_read(&slub_lock);
81819f0f
CL
3193 break;
3194 default:
3195 break;
3196 }
3197 return NOTIFY_OK;
3198}
3199
06428780 3200static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3201 .notifier_call = slab_cpuup_callback
06428780 3202};
81819f0f
CL
3203
3204#endif
3205
81819f0f
CL
3206void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3207{
aadb4bc4
CL
3208 struct kmem_cache *s;
3209
331dc558 3210 if (unlikely(size > PAGE_SIZE))
eada35ef
PE
3211 return kmalloc_large(size, gfpflags);
3212
aadb4bc4 3213 s = get_slab(size, gfpflags);
81819f0f 3214
2408c550 3215 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3216 return s;
81819f0f 3217
ce15fea8 3218 return slab_alloc(s, gfpflags, -1, caller);
81819f0f
CL
3219}
3220
3221void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3222 int node, void *caller)
3223{
aadb4bc4
CL
3224 struct kmem_cache *s;
3225
331dc558 3226 if (unlikely(size > PAGE_SIZE))
f619cfe1 3227 return kmalloc_large_node(size, gfpflags, node);
eada35ef 3228
aadb4bc4 3229 s = get_slab(size, gfpflags);
81819f0f 3230
2408c550 3231 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3232 return s;
81819f0f 3233
ce15fea8 3234 return slab_alloc(s, gfpflags, node, caller);
81819f0f
CL
3235}
3236
f6acb635 3237#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
3238static unsigned long count_partial(struct kmem_cache_node *n,
3239 int (*get_count)(struct page *))
5b06c853
CL
3240{
3241 unsigned long flags;
3242 unsigned long x = 0;
3243 struct page *page;
3244
3245 spin_lock_irqsave(&n->list_lock, flags);
3246 list_for_each_entry(page, &n->partial, lru)
205ab99d 3247 x += get_count(page);
5b06c853
CL
3248 spin_unlock_irqrestore(&n->list_lock, flags);
3249 return x;
3250}
205ab99d
CL
3251
3252static int count_inuse(struct page *page)
3253{
3254 return page->inuse;
3255}
3256
3257static int count_total(struct page *page)
3258{
3259 return page->objects;
3260}
3261
3262static int count_free(struct page *page)
3263{
3264 return page->objects - page->inuse;
3265}
5b06c853 3266
434e245d
CL
3267static int validate_slab(struct kmem_cache *s, struct page *page,
3268 unsigned long *map)
53e15af0
CL
3269{
3270 void *p;
a973e9dd 3271 void *addr = page_address(page);
53e15af0
CL
3272
3273 if (!check_slab(s, page) ||
3274 !on_freelist(s, page, NULL))
3275 return 0;
3276
3277 /* Now we know that a valid freelist exists */
39b26464 3278 bitmap_zero(map, page->objects);
53e15af0 3279
7656c72b
CL
3280 for_each_free_object(p, s, page->freelist) {
3281 set_bit(slab_index(p, s, addr), map);
53e15af0
CL
3282 if (!check_object(s, page, p, 0))
3283 return 0;
3284 }
3285
224a88be 3286 for_each_object(p, s, addr, page->objects)
7656c72b 3287 if (!test_bit(slab_index(p, s, addr), map))
53e15af0
CL
3288 if (!check_object(s, page, p, 1))
3289 return 0;
3290 return 1;
3291}
3292
434e245d
CL
3293static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3294 unsigned long *map)
53e15af0
CL
3295{
3296 if (slab_trylock(page)) {
434e245d 3297 validate_slab(s, page, map);
53e15af0
CL
3298 slab_unlock(page);
3299 } else
3300 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3301 s->name, page);
3302
3303 if (s->flags & DEBUG_DEFAULT_FLAGS) {
8a38082d
AW
3304 if (!PageSlubDebug(page))
3305 printk(KERN_ERR "SLUB %s: SlubDebug not set "
53e15af0
CL
3306 "on slab 0x%p\n", s->name, page);
3307 } else {
8a38082d
AW
3308 if (PageSlubDebug(page))
3309 printk(KERN_ERR "SLUB %s: SlubDebug set on "
53e15af0
CL
3310 "slab 0x%p\n", s->name, page);
3311 }
3312}
3313
434e245d
CL
3314static int validate_slab_node(struct kmem_cache *s,
3315 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3316{
3317 unsigned long count = 0;
3318 struct page *page;
3319 unsigned long flags;
3320
3321 spin_lock_irqsave(&n->list_lock, flags);
3322
3323 list_for_each_entry(page, &n->partial, lru) {
434e245d 3324 validate_slab_slab(s, page, map);
53e15af0
CL
3325 count++;
3326 }
3327 if (count != n->nr_partial)
3328 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3329 "counter=%ld\n", s->name, count, n->nr_partial);
3330
3331 if (!(s->flags & SLAB_STORE_USER))
3332 goto out;
3333
3334 list_for_each_entry(page, &n->full, lru) {
434e245d 3335 validate_slab_slab(s, page, map);
53e15af0
CL
3336 count++;
3337 }
3338 if (count != atomic_long_read(&n->nr_slabs))
3339 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3340 "counter=%ld\n", s->name, count,
3341 atomic_long_read(&n->nr_slabs));
3342
3343out:
3344 spin_unlock_irqrestore(&n->list_lock, flags);
3345 return count;
3346}
3347
434e245d 3348static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3349{
3350 int node;
3351 unsigned long count = 0;
205ab99d 3352 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3353 sizeof(unsigned long), GFP_KERNEL);
3354
3355 if (!map)
3356 return -ENOMEM;
53e15af0
CL
3357
3358 flush_all(s);
f64dc58c 3359 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3360 struct kmem_cache_node *n = get_node(s, node);
3361
434e245d 3362 count += validate_slab_node(s, n, map);
53e15af0 3363 }
434e245d 3364 kfree(map);
53e15af0
CL
3365 return count;
3366}
3367
b3459709
CL
3368#ifdef SLUB_RESILIENCY_TEST
3369static void resiliency_test(void)
3370{
3371 u8 *p;
3372
3373 printk(KERN_ERR "SLUB resiliency testing\n");
3374 printk(KERN_ERR "-----------------------\n");
3375 printk(KERN_ERR "A. Corruption after allocation\n");
3376
3377 p = kzalloc(16, GFP_KERNEL);
3378 p[16] = 0x12;
3379 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3380 " 0x12->0x%p\n\n", p + 16);
3381
3382 validate_slab_cache(kmalloc_caches + 4);
3383
3384 /* Hmmm... The next two are dangerous */
3385 p = kzalloc(32, GFP_KERNEL);
3386 p[32 + sizeof(void *)] = 0x34;
3387 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3adbefee
IM
3388 " 0x34 -> -0x%p\n", p);
3389 printk(KERN_ERR
3390 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3391
3392 validate_slab_cache(kmalloc_caches + 5);
3393 p = kzalloc(64, GFP_KERNEL);
3394 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3395 *p = 0x56;
3396 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3397 p);
3adbefee
IM
3398 printk(KERN_ERR
3399 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3400 validate_slab_cache(kmalloc_caches + 6);
3401
3402 printk(KERN_ERR "\nB. Corruption after free\n");
3403 p = kzalloc(128, GFP_KERNEL);
3404 kfree(p);
3405 *p = 0x78;
3406 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3407 validate_slab_cache(kmalloc_caches + 7);
3408
3409 p = kzalloc(256, GFP_KERNEL);
3410 kfree(p);
3411 p[50] = 0x9a;
3adbefee
IM
3412 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3413 p);
b3459709
CL
3414 validate_slab_cache(kmalloc_caches + 8);
3415
3416 p = kzalloc(512, GFP_KERNEL);
3417 kfree(p);
3418 p[512] = 0xab;
3419 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3420 validate_slab_cache(kmalloc_caches + 9);
3421}
3422#else
3423static void resiliency_test(void) {};
3424#endif
3425
88a420e4 3426/*
672bba3a 3427 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3428 * and freed.
3429 */
3430
3431struct location {
3432 unsigned long count;
3433 void *addr;
45edfa58
CL
3434 long long sum_time;
3435 long min_time;
3436 long max_time;
3437 long min_pid;
3438 long max_pid;
3439 cpumask_t cpus;
3440 nodemask_t nodes;
88a420e4
CL
3441};
3442
3443struct loc_track {
3444 unsigned long max;
3445 unsigned long count;
3446 struct location *loc;
3447};
3448
3449static void free_loc_track(struct loc_track *t)
3450{
3451 if (t->max)
3452 free_pages((unsigned long)t->loc,
3453 get_order(sizeof(struct location) * t->max));
3454}
3455
68dff6a9 3456static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3457{
3458 struct location *l;
3459 int order;
3460
88a420e4
CL
3461 order = get_order(sizeof(struct location) * max);
3462
68dff6a9 3463 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3464 if (!l)
3465 return 0;
3466
3467 if (t->count) {
3468 memcpy(l, t->loc, sizeof(struct location) * t->count);
3469 free_loc_track(t);
3470 }
3471 t->max = max;
3472 t->loc = l;
3473 return 1;
3474}
3475
3476static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3477 const struct track *track)
88a420e4
CL
3478{
3479 long start, end, pos;
3480 struct location *l;
3481 void *caddr;
45edfa58 3482 unsigned long age = jiffies - track->when;
88a420e4
CL
3483
3484 start = -1;
3485 end = t->count;
3486
3487 for ( ; ; ) {
3488 pos = start + (end - start + 1) / 2;
3489
3490 /*
3491 * There is nothing at "end". If we end up there
3492 * we need to add something to before end.
3493 */
3494 if (pos == end)
3495 break;
3496
3497 caddr = t->loc[pos].addr;
45edfa58
CL
3498 if (track->addr == caddr) {
3499
3500 l = &t->loc[pos];
3501 l->count++;
3502 if (track->when) {
3503 l->sum_time += age;
3504 if (age < l->min_time)
3505 l->min_time = age;
3506 if (age > l->max_time)
3507 l->max_time = age;
3508
3509 if (track->pid < l->min_pid)
3510 l->min_pid = track->pid;
3511 if (track->pid > l->max_pid)
3512 l->max_pid = track->pid;
3513
3514 cpu_set(track->cpu, l->cpus);
3515 }
3516 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3517 return 1;
3518 }
3519
45edfa58 3520 if (track->addr < caddr)
88a420e4
CL
3521 end = pos;
3522 else
3523 start = pos;
3524 }
3525
3526 /*
672bba3a 3527 * Not found. Insert new tracking element.
88a420e4 3528 */
68dff6a9 3529 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3530 return 0;
3531
3532 l = t->loc + pos;
3533 if (pos < t->count)
3534 memmove(l + 1, l,
3535 (t->count - pos) * sizeof(struct location));
3536 t->count++;
3537 l->count = 1;
45edfa58
CL
3538 l->addr = track->addr;
3539 l->sum_time = age;
3540 l->min_time = age;
3541 l->max_time = age;
3542 l->min_pid = track->pid;
3543 l->max_pid = track->pid;
3544 cpus_clear(l->cpus);
3545 cpu_set(track->cpu, l->cpus);
3546 nodes_clear(l->nodes);
3547 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3548 return 1;
3549}
3550
3551static void process_slab(struct loc_track *t, struct kmem_cache *s,
3552 struct page *page, enum track_item alloc)
3553{
a973e9dd 3554 void *addr = page_address(page);
39b26464 3555 DECLARE_BITMAP(map, page->objects);
88a420e4
CL
3556 void *p;
3557
39b26464 3558 bitmap_zero(map, page->objects);
7656c72b
CL
3559 for_each_free_object(p, s, page->freelist)
3560 set_bit(slab_index(p, s, addr), map);
88a420e4 3561
224a88be 3562 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3563 if (!test_bit(slab_index(p, s, addr), map))
3564 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3565}
3566
3567static int list_locations(struct kmem_cache *s, char *buf,
3568 enum track_item alloc)
3569{
e374d483 3570 int len = 0;
88a420e4 3571 unsigned long i;
68dff6a9 3572 struct loc_track t = { 0, 0, NULL };
88a420e4
CL
3573 int node;
3574
68dff6a9 3575 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
ea3061d2 3576 GFP_TEMPORARY))
68dff6a9 3577 return sprintf(buf, "Out of memory\n");
88a420e4
CL
3578
3579 /* Push back cpu slabs */
3580 flush_all(s);
3581
f64dc58c 3582 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3583 struct kmem_cache_node *n = get_node(s, node);
3584 unsigned long flags;
3585 struct page *page;
3586
9e86943b 3587 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3588 continue;
3589
3590 spin_lock_irqsave(&n->list_lock, flags);
3591 list_for_each_entry(page, &n->partial, lru)
3592 process_slab(&t, s, page, alloc);
3593 list_for_each_entry(page, &n->full, lru)
3594 process_slab(&t, s, page, alloc);
3595 spin_unlock_irqrestore(&n->list_lock, flags);
3596 }
3597
3598 for (i = 0; i < t.count; i++) {
45edfa58 3599 struct location *l = &t.loc[i];
88a420e4 3600
9c246247 3601 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 3602 break;
e374d483 3603 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3604
3605 if (l->addr)
e374d483 3606 len += sprint_symbol(buf + len, (unsigned long)l->addr);
88a420e4 3607 else
e374d483 3608 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3609
3610 if (l->sum_time != l->min_time) {
e374d483 3611 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
3612 l->min_time,
3613 (long)div_u64(l->sum_time, l->count),
3614 l->max_time);
45edfa58 3615 } else
e374d483 3616 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3617 l->min_time);
3618
3619 if (l->min_pid != l->max_pid)
e374d483 3620 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3621 l->min_pid, l->max_pid);
3622 else
e374d483 3623 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3624 l->min_pid);
3625
84966343 3626 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
e374d483
HH
3627 len < PAGE_SIZE - 60) {
3628 len += sprintf(buf + len, " cpus=");
3629 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3630 l->cpus);
3631 }
3632
84966343 3633 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3634 len < PAGE_SIZE - 60) {
3635 len += sprintf(buf + len, " nodes=");
3636 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3637 l->nodes);
3638 }
3639
e374d483 3640 len += sprintf(buf + len, "\n");
88a420e4
CL
3641 }
3642
3643 free_loc_track(&t);
3644 if (!t.count)
e374d483
HH
3645 len += sprintf(buf, "No data\n");
3646 return len;
88a420e4
CL
3647}
3648
81819f0f 3649enum slab_stat_type {
205ab99d
CL
3650 SL_ALL, /* All slabs */
3651 SL_PARTIAL, /* Only partially allocated slabs */
3652 SL_CPU, /* Only slabs used for cpu caches */
3653 SL_OBJECTS, /* Determine allocated objects not slabs */
3654 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
3655};
3656
205ab99d 3657#define SO_ALL (1 << SL_ALL)
81819f0f
CL
3658#define SO_PARTIAL (1 << SL_PARTIAL)
3659#define SO_CPU (1 << SL_CPU)
3660#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 3661#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 3662
62e5c4b4
CG
3663static ssize_t show_slab_objects(struct kmem_cache *s,
3664 char *buf, unsigned long flags)
81819f0f
CL
3665{
3666 unsigned long total = 0;
81819f0f
CL
3667 int node;
3668 int x;
3669 unsigned long *nodes;
3670 unsigned long *per_cpu;
3671
3672 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
3673 if (!nodes)
3674 return -ENOMEM;
81819f0f
CL
3675 per_cpu = nodes + nr_node_ids;
3676
205ab99d
CL
3677 if (flags & SO_CPU) {
3678 int cpu;
81819f0f 3679
205ab99d
CL
3680 for_each_possible_cpu(cpu) {
3681 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
dfb4f096 3682
205ab99d
CL
3683 if (!c || c->node < 0)
3684 continue;
3685
3686 if (c->page) {
3687 if (flags & SO_TOTAL)
3688 x = c->page->objects;
3689 else if (flags & SO_OBJECTS)
3690 x = c->page->inuse;
81819f0f
CL
3691 else
3692 x = 1;
205ab99d 3693
81819f0f 3694 total += x;
205ab99d 3695 nodes[c->node] += x;
81819f0f 3696 }
205ab99d 3697 per_cpu[c->node]++;
81819f0f
CL
3698 }
3699 }
3700
205ab99d
CL
3701 if (flags & SO_ALL) {
3702 for_each_node_state(node, N_NORMAL_MEMORY) {
3703 struct kmem_cache_node *n = get_node(s, node);
3704
3705 if (flags & SO_TOTAL)
3706 x = atomic_long_read(&n->total_objects);
3707 else if (flags & SO_OBJECTS)
3708 x = atomic_long_read(&n->total_objects) -
3709 count_partial(n, count_free);
81819f0f 3710
81819f0f 3711 else
205ab99d 3712 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
3713 total += x;
3714 nodes[node] += x;
3715 }
3716
205ab99d
CL
3717 } else if (flags & SO_PARTIAL) {
3718 for_each_node_state(node, N_NORMAL_MEMORY) {
3719 struct kmem_cache_node *n = get_node(s, node);
81819f0f 3720
205ab99d
CL
3721 if (flags & SO_TOTAL)
3722 x = count_partial(n, count_total);
3723 else if (flags & SO_OBJECTS)
3724 x = count_partial(n, count_inuse);
81819f0f 3725 else
205ab99d 3726 x = n->nr_partial;
81819f0f
CL
3727 total += x;
3728 nodes[node] += x;
3729 }
3730 }
81819f0f
CL
3731 x = sprintf(buf, "%lu", total);
3732#ifdef CONFIG_NUMA
f64dc58c 3733 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
3734 if (nodes[node])
3735 x += sprintf(buf + x, " N%d=%lu",
3736 node, nodes[node]);
3737#endif
3738 kfree(nodes);
3739 return x + sprintf(buf + x, "\n");
3740}
3741
3742static int any_slab_objects(struct kmem_cache *s)
3743{
3744 int node;
81819f0f 3745
dfb4f096 3746 for_each_online_node(node) {
81819f0f
CL
3747 struct kmem_cache_node *n = get_node(s, node);
3748
dfb4f096
CL
3749 if (!n)
3750 continue;
3751
4ea33e2d 3752 if (atomic_long_read(&n->total_objects))
81819f0f
CL
3753 return 1;
3754 }
3755 return 0;
3756}
3757
3758#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3759#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3760
3761struct slab_attribute {
3762 struct attribute attr;
3763 ssize_t (*show)(struct kmem_cache *s, char *buf);
3764 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3765};
3766
3767#define SLAB_ATTR_RO(_name) \
3768 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3769
3770#define SLAB_ATTR(_name) \
3771 static struct slab_attribute _name##_attr = \
3772 __ATTR(_name, 0644, _name##_show, _name##_store)
3773
81819f0f
CL
3774static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3775{
3776 return sprintf(buf, "%d\n", s->size);
3777}
3778SLAB_ATTR_RO(slab_size);
3779
3780static ssize_t align_show(struct kmem_cache *s, char *buf)
3781{
3782 return sprintf(buf, "%d\n", s->align);
3783}
3784SLAB_ATTR_RO(align);
3785
3786static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3787{
3788 return sprintf(buf, "%d\n", s->objsize);
3789}
3790SLAB_ATTR_RO(object_size);
3791
3792static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3793{
834f3d11 3794 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
3795}
3796SLAB_ATTR_RO(objs_per_slab);
3797
06b285dc
CL
3798static ssize_t order_store(struct kmem_cache *s,
3799 const char *buf, size_t length)
3800{
0121c619
CL
3801 unsigned long order;
3802 int err;
3803
3804 err = strict_strtoul(buf, 10, &order);
3805 if (err)
3806 return err;
06b285dc
CL
3807
3808 if (order > slub_max_order || order < slub_min_order)
3809 return -EINVAL;
3810
3811 calculate_sizes(s, order);
3812 return length;
3813}
3814
81819f0f
CL
3815static ssize_t order_show(struct kmem_cache *s, char *buf)
3816{
834f3d11 3817 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 3818}
06b285dc 3819SLAB_ATTR(order);
81819f0f
CL
3820
3821static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3822{
3823 if (s->ctor) {
3824 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3825
3826 return n + sprintf(buf + n, "\n");
3827 }
3828 return 0;
3829}
3830SLAB_ATTR_RO(ctor);
3831
81819f0f
CL
3832static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3833{
3834 return sprintf(buf, "%d\n", s->refcount - 1);
3835}
3836SLAB_ATTR_RO(aliases);
3837
3838static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3839{
205ab99d 3840 return show_slab_objects(s, buf, SO_ALL);
81819f0f
CL
3841}
3842SLAB_ATTR_RO(slabs);
3843
3844static ssize_t partial_show(struct kmem_cache *s, char *buf)
3845{
d9acf4b7 3846 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
3847}
3848SLAB_ATTR_RO(partial);
3849
3850static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3851{
d9acf4b7 3852 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
3853}
3854SLAB_ATTR_RO(cpu_slabs);
3855
3856static ssize_t objects_show(struct kmem_cache *s, char *buf)
3857{
205ab99d 3858 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
3859}
3860SLAB_ATTR_RO(objects);
3861
205ab99d
CL
3862static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3863{
3864 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3865}
3866SLAB_ATTR_RO(objects_partial);
3867
3868static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3869{
3870 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3871}
3872SLAB_ATTR_RO(total_objects);
3873
81819f0f
CL
3874static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3875{
3876 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3877}
3878
3879static ssize_t sanity_checks_store(struct kmem_cache *s,
3880 const char *buf, size_t length)
3881{
3882 s->flags &= ~SLAB_DEBUG_FREE;
3883 if (buf[0] == '1')
3884 s->flags |= SLAB_DEBUG_FREE;
3885 return length;
3886}
3887SLAB_ATTR(sanity_checks);
3888
3889static ssize_t trace_show(struct kmem_cache *s, char *buf)
3890{
3891 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3892}
3893
3894static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3895 size_t length)
3896{
3897 s->flags &= ~SLAB_TRACE;
3898 if (buf[0] == '1')
3899 s->flags |= SLAB_TRACE;
3900 return length;
3901}
3902SLAB_ATTR(trace);
3903
3904static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3905{
3906 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3907}
3908
3909static ssize_t reclaim_account_store(struct kmem_cache *s,
3910 const char *buf, size_t length)
3911{
3912 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3913 if (buf[0] == '1')
3914 s->flags |= SLAB_RECLAIM_ACCOUNT;
3915 return length;
3916}
3917SLAB_ATTR(reclaim_account);
3918
3919static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3920{
5af60839 3921 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
3922}
3923SLAB_ATTR_RO(hwcache_align);
3924
3925#ifdef CONFIG_ZONE_DMA
3926static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3927{
3928 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3929}
3930SLAB_ATTR_RO(cache_dma);
3931#endif
3932
3933static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3934{
3935 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3936}
3937SLAB_ATTR_RO(destroy_by_rcu);
3938
3939static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3940{
3941 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3942}
3943
3944static ssize_t red_zone_store(struct kmem_cache *s,
3945 const char *buf, size_t length)
3946{
3947 if (any_slab_objects(s))
3948 return -EBUSY;
3949
3950 s->flags &= ~SLAB_RED_ZONE;
3951 if (buf[0] == '1')
3952 s->flags |= SLAB_RED_ZONE;
06b285dc 3953 calculate_sizes(s, -1);
81819f0f
CL
3954 return length;
3955}
3956SLAB_ATTR(red_zone);
3957
3958static ssize_t poison_show(struct kmem_cache *s, char *buf)
3959{
3960 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3961}
3962
3963static ssize_t poison_store(struct kmem_cache *s,
3964 const char *buf, size_t length)
3965{
3966 if (any_slab_objects(s))
3967 return -EBUSY;
3968
3969 s->flags &= ~SLAB_POISON;
3970 if (buf[0] == '1')
3971 s->flags |= SLAB_POISON;
06b285dc 3972 calculate_sizes(s, -1);
81819f0f
CL
3973 return length;
3974}
3975SLAB_ATTR(poison);
3976
3977static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3978{
3979 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3980}
3981
3982static ssize_t store_user_store(struct kmem_cache *s,
3983 const char *buf, size_t length)
3984{
3985 if (any_slab_objects(s))
3986 return -EBUSY;
3987
3988 s->flags &= ~SLAB_STORE_USER;
3989 if (buf[0] == '1')
3990 s->flags |= SLAB_STORE_USER;
06b285dc 3991 calculate_sizes(s, -1);
81819f0f
CL
3992 return length;
3993}
3994SLAB_ATTR(store_user);
3995
53e15af0
CL
3996static ssize_t validate_show(struct kmem_cache *s, char *buf)
3997{
3998 return 0;
3999}
4000
4001static ssize_t validate_store(struct kmem_cache *s,
4002 const char *buf, size_t length)
4003{
434e245d
CL
4004 int ret = -EINVAL;
4005
4006 if (buf[0] == '1') {
4007 ret = validate_slab_cache(s);
4008 if (ret >= 0)
4009 ret = length;
4010 }
4011 return ret;
53e15af0
CL
4012}
4013SLAB_ATTR(validate);
4014
2086d26a
CL
4015static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4016{
4017 return 0;
4018}
4019
4020static ssize_t shrink_store(struct kmem_cache *s,
4021 const char *buf, size_t length)
4022{
4023 if (buf[0] == '1') {
4024 int rc = kmem_cache_shrink(s);
4025
4026 if (rc)
4027 return rc;
4028 } else
4029 return -EINVAL;
4030 return length;
4031}
4032SLAB_ATTR(shrink);
4033
88a420e4
CL
4034static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4035{
4036 if (!(s->flags & SLAB_STORE_USER))
4037 return -ENOSYS;
4038 return list_locations(s, buf, TRACK_ALLOC);
4039}
4040SLAB_ATTR_RO(alloc_calls);
4041
4042static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4043{
4044 if (!(s->flags & SLAB_STORE_USER))
4045 return -ENOSYS;
4046 return list_locations(s, buf, TRACK_FREE);
4047}
4048SLAB_ATTR_RO(free_calls);
4049
81819f0f 4050#ifdef CONFIG_NUMA
9824601e 4051static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4052{
9824601e 4053 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4054}
4055
9824601e 4056static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4057 const char *buf, size_t length)
4058{
0121c619
CL
4059 unsigned long ratio;
4060 int err;
4061
4062 err = strict_strtoul(buf, 10, &ratio);
4063 if (err)
4064 return err;
4065
e2cb96b7 4066 if (ratio <= 100)
0121c619 4067 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4068
81819f0f
CL
4069 return length;
4070}
9824601e 4071SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4072#endif
4073
8ff12cfc 4074#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4075static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4076{
4077 unsigned long sum = 0;
4078 int cpu;
4079 int len;
4080 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4081
4082 if (!data)
4083 return -ENOMEM;
4084
4085 for_each_online_cpu(cpu) {
4086 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4087
4088 data[cpu] = x;
4089 sum += x;
4090 }
4091
4092 len = sprintf(buf, "%lu", sum);
4093
50ef37b9 4094#ifdef CONFIG_SMP
8ff12cfc
CL
4095 for_each_online_cpu(cpu) {
4096 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4097 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4098 }
50ef37b9 4099#endif
8ff12cfc
CL
4100 kfree(data);
4101 return len + sprintf(buf + len, "\n");
4102}
4103
4104#define STAT_ATTR(si, text) \
4105static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4106{ \
4107 return show_stat(s, buf, si); \
4108} \
4109SLAB_ATTR_RO(text); \
4110
4111STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4112STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4113STAT_ATTR(FREE_FASTPATH, free_fastpath);
4114STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4115STAT_ATTR(FREE_FROZEN, free_frozen);
4116STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4117STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4118STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4119STAT_ATTR(ALLOC_SLAB, alloc_slab);
4120STAT_ATTR(ALLOC_REFILL, alloc_refill);
4121STAT_ATTR(FREE_SLAB, free_slab);
4122STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4123STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4124STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4125STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4126STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4127STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
65c3376a 4128STAT_ATTR(ORDER_FALLBACK, order_fallback);
8ff12cfc
CL
4129#endif
4130
06428780 4131static struct attribute *slab_attrs[] = {
81819f0f
CL
4132 &slab_size_attr.attr,
4133 &object_size_attr.attr,
4134 &objs_per_slab_attr.attr,
4135 &order_attr.attr,
4136 &objects_attr.attr,
205ab99d
CL
4137 &objects_partial_attr.attr,
4138 &total_objects_attr.attr,
81819f0f
CL
4139 &slabs_attr.attr,
4140 &partial_attr.attr,
4141 &cpu_slabs_attr.attr,
4142 &ctor_attr.attr,
81819f0f
CL
4143 &aliases_attr.attr,
4144 &align_attr.attr,
4145 &sanity_checks_attr.attr,
4146 &trace_attr.attr,
4147 &hwcache_align_attr.attr,
4148 &reclaim_account_attr.attr,
4149 &destroy_by_rcu_attr.attr,
4150 &red_zone_attr.attr,
4151 &poison_attr.attr,
4152 &store_user_attr.attr,
53e15af0 4153 &validate_attr.attr,
2086d26a 4154 &shrink_attr.attr,
88a420e4
CL
4155 &alloc_calls_attr.attr,
4156 &free_calls_attr.attr,
81819f0f
CL
4157#ifdef CONFIG_ZONE_DMA
4158 &cache_dma_attr.attr,
4159#endif
4160#ifdef CONFIG_NUMA
9824601e 4161 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4162#endif
4163#ifdef CONFIG_SLUB_STATS
4164 &alloc_fastpath_attr.attr,
4165 &alloc_slowpath_attr.attr,
4166 &free_fastpath_attr.attr,
4167 &free_slowpath_attr.attr,
4168 &free_frozen_attr.attr,
4169 &free_add_partial_attr.attr,
4170 &free_remove_partial_attr.attr,
4171 &alloc_from_partial_attr.attr,
4172 &alloc_slab_attr.attr,
4173 &alloc_refill_attr.attr,
4174 &free_slab_attr.attr,
4175 &cpuslab_flush_attr.attr,
4176 &deactivate_full_attr.attr,
4177 &deactivate_empty_attr.attr,
4178 &deactivate_to_head_attr.attr,
4179 &deactivate_to_tail_attr.attr,
4180 &deactivate_remote_frees_attr.attr,
65c3376a 4181 &order_fallback_attr.attr,
81819f0f
CL
4182#endif
4183 NULL
4184};
4185
4186static struct attribute_group slab_attr_group = {
4187 .attrs = slab_attrs,
4188};
4189
4190static ssize_t slab_attr_show(struct kobject *kobj,
4191 struct attribute *attr,
4192 char *buf)
4193{
4194 struct slab_attribute *attribute;
4195 struct kmem_cache *s;
4196 int err;
4197
4198 attribute = to_slab_attr(attr);
4199 s = to_slab(kobj);
4200
4201 if (!attribute->show)
4202 return -EIO;
4203
4204 err = attribute->show(s, buf);
4205
4206 return err;
4207}
4208
4209static ssize_t slab_attr_store(struct kobject *kobj,
4210 struct attribute *attr,
4211 const char *buf, size_t len)
4212{
4213 struct slab_attribute *attribute;
4214 struct kmem_cache *s;
4215 int err;
4216
4217 attribute = to_slab_attr(attr);
4218 s = to_slab(kobj);
4219
4220 if (!attribute->store)
4221 return -EIO;
4222
4223 err = attribute->store(s, buf, len);
4224
4225 return err;
4226}
4227
151c602f
CL
4228static void kmem_cache_release(struct kobject *kobj)
4229{
4230 struct kmem_cache *s = to_slab(kobj);
4231
4232 kfree(s);
4233}
4234
81819f0f
CL
4235static struct sysfs_ops slab_sysfs_ops = {
4236 .show = slab_attr_show,
4237 .store = slab_attr_store,
4238};
4239
4240static struct kobj_type slab_ktype = {
4241 .sysfs_ops = &slab_sysfs_ops,
151c602f 4242 .release = kmem_cache_release
81819f0f
CL
4243};
4244
4245static int uevent_filter(struct kset *kset, struct kobject *kobj)
4246{
4247 struct kobj_type *ktype = get_ktype(kobj);
4248
4249 if (ktype == &slab_ktype)
4250 return 1;
4251 return 0;
4252}
4253
4254static struct kset_uevent_ops slab_uevent_ops = {
4255 .filter = uevent_filter,
4256};
4257
27c3a314 4258static struct kset *slab_kset;
81819f0f
CL
4259
4260#define ID_STR_LENGTH 64
4261
4262/* Create a unique string id for a slab cache:
6446faa2
CL
4263 *
4264 * Format :[flags-]size
81819f0f
CL
4265 */
4266static char *create_unique_id(struct kmem_cache *s)
4267{
4268 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4269 char *p = name;
4270
4271 BUG_ON(!name);
4272
4273 *p++ = ':';
4274 /*
4275 * First flags affecting slabcache operations. We will only
4276 * get here for aliasable slabs so we do not need to support
4277 * too many flags. The flags here must cover all flags that
4278 * are matched during merging to guarantee that the id is
4279 * unique.
4280 */
4281 if (s->flags & SLAB_CACHE_DMA)
4282 *p++ = 'd';
4283 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4284 *p++ = 'a';
4285 if (s->flags & SLAB_DEBUG_FREE)
4286 *p++ = 'F';
4287 if (p != name + 1)
4288 *p++ = '-';
4289 p += sprintf(p, "%07d", s->size);
4290 BUG_ON(p > name + ID_STR_LENGTH - 1);
4291 return name;
4292}
4293
4294static int sysfs_slab_add(struct kmem_cache *s)
4295{
4296 int err;
4297 const char *name;
4298 int unmergeable;
4299
4300 if (slab_state < SYSFS)
4301 /* Defer until later */
4302 return 0;
4303
4304 unmergeable = slab_unmergeable(s);
4305 if (unmergeable) {
4306 /*
4307 * Slabcache can never be merged so we can use the name proper.
4308 * This is typically the case for debug situations. In that
4309 * case we can catch duplicate names easily.
4310 */
27c3a314 4311 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4312 name = s->name;
4313 } else {
4314 /*
4315 * Create a unique name for the slab as a target
4316 * for the symlinks.
4317 */
4318 name = create_unique_id(s);
4319 }
4320
27c3a314 4321 s->kobj.kset = slab_kset;
1eada11c
GKH
4322 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4323 if (err) {
4324 kobject_put(&s->kobj);
81819f0f 4325 return err;
1eada11c 4326 }
81819f0f
CL
4327
4328 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4329 if (err)
4330 return err;
4331 kobject_uevent(&s->kobj, KOBJ_ADD);
4332 if (!unmergeable) {
4333 /* Setup first alias */
4334 sysfs_slab_alias(s, s->name);
4335 kfree(name);
4336 }
4337 return 0;
4338}
4339
4340static void sysfs_slab_remove(struct kmem_cache *s)
4341{
4342 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4343 kobject_del(&s->kobj);
151c602f 4344 kobject_put(&s->kobj);
81819f0f
CL
4345}
4346
4347/*
4348 * Need to buffer aliases during bootup until sysfs becomes
4349 * available lest we loose that information.
4350 */
4351struct saved_alias {
4352 struct kmem_cache *s;
4353 const char *name;
4354 struct saved_alias *next;
4355};
4356
5af328a5 4357static struct saved_alias *alias_list;
81819f0f
CL
4358
4359static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4360{
4361 struct saved_alias *al;
4362
4363 if (slab_state == SYSFS) {
4364 /*
4365 * If we have a leftover link then remove it.
4366 */
27c3a314
GKH
4367 sysfs_remove_link(&slab_kset->kobj, name);
4368 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4369 }
4370
4371 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4372 if (!al)
4373 return -ENOMEM;
4374
4375 al->s = s;
4376 al->name = name;
4377 al->next = alias_list;
4378 alias_list = al;
4379 return 0;
4380}
4381
4382static int __init slab_sysfs_init(void)
4383{
5b95a4ac 4384 struct kmem_cache *s;
81819f0f
CL
4385 int err;
4386
0ff21e46 4387 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4388 if (!slab_kset) {
81819f0f
CL
4389 printk(KERN_ERR "Cannot register slab subsystem.\n");
4390 return -ENOSYS;
4391 }
4392
26a7bd03
CL
4393 slab_state = SYSFS;
4394
5b95a4ac 4395 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4396 err = sysfs_slab_add(s);
5d540fb7
CL
4397 if (err)
4398 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4399 " to sysfs\n", s->name);
26a7bd03 4400 }
81819f0f
CL
4401
4402 while (alias_list) {
4403 struct saved_alias *al = alias_list;
4404
4405 alias_list = alias_list->next;
4406 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4407 if (err)
4408 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4409 " %s to sysfs\n", s->name);
81819f0f
CL
4410 kfree(al);
4411 }
4412
4413 resiliency_test();
4414 return 0;
4415}
4416
4417__initcall(slab_sysfs_init);
81819f0f 4418#endif
57ed3eda
PE
4419
4420/*
4421 * The /proc/slabinfo ABI
4422 */
158a9624 4423#ifdef CONFIG_SLABINFO
57ed3eda
PE
4424static void print_slabinfo_header(struct seq_file *m)
4425{
4426 seq_puts(m, "slabinfo - version: 2.1\n");
4427 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4428 "<objperslab> <pagesperslab>");
4429 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4430 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4431 seq_putc(m, '\n');
4432}
4433
4434static void *s_start(struct seq_file *m, loff_t *pos)
4435{
4436 loff_t n = *pos;
4437
4438 down_read(&slub_lock);
4439 if (!n)
4440 print_slabinfo_header(m);
4441
4442 return seq_list_start(&slab_caches, *pos);
4443}
4444
4445static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4446{
4447 return seq_list_next(p, &slab_caches, pos);
4448}
4449
4450static void s_stop(struct seq_file *m, void *p)
4451{
4452 up_read(&slub_lock);
4453}
4454
4455static int s_show(struct seq_file *m, void *p)
4456{
4457 unsigned long nr_partials = 0;
4458 unsigned long nr_slabs = 0;
4459 unsigned long nr_inuse = 0;
205ab99d
CL
4460 unsigned long nr_objs = 0;
4461 unsigned long nr_free = 0;
57ed3eda
PE
4462 struct kmem_cache *s;
4463 int node;
4464
4465 s = list_entry(p, struct kmem_cache, list);
4466
4467 for_each_online_node(node) {
4468 struct kmem_cache_node *n = get_node(s, node);
4469
4470 if (!n)
4471 continue;
4472
4473 nr_partials += n->nr_partial;
4474 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
4475 nr_objs += atomic_long_read(&n->total_objects);
4476 nr_free += count_partial(n, count_free);
57ed3eda
PE
4477 }
4478
205ab99d 4479 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
4480
4481 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
4482 nr_objs, s->size, oo_objects(s->oo),
4483 (1 << oo_order(s->oo)));
57ed3eda
PE
4484 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4485 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4486 0UL);
4487 seq_putc(m, '\n');
4488 return 0;
4489}
4490
7b3c3a50 4491static const struct seq_operations slabinfo_op = {
57ed3eda
PE
4492 .start = s_start,
4493 .next = s_next,
4494 .stop = s_stop,
4495 .show = s_show,
4496};
4497
7b3c3a50
AD
4498static int slabinfo_open(struct inode *inode, struct file *file)
4499{
4500 return seq_open(file, &slabinfo_op);
4501}
4502
4503static const struct file_operations proc_slabinfo_operations = {
4504 .open = slabinfo_open,
4505 .read = seq_read,
4506 .llseek = seq_lseek,
4507 .release = seq_release,
4508};
4509
4510static int __init slab_proc_init(void)
4511{
4512 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4513 return 0;
4514}
4515module_init(slab_proc_init);
158a9624 4516#endif /* CONFIG_SLABINFO */