mm/sl[aou]b: Move duping of slab name to slab_common.c
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
81819f0f 21#include <linux/seq_file.h>
5a896d9e 22#include <linux/kmemcheck.h>
81819f0f
CL
23#include <linux/cpu.h>
24#include <linux/cpuset.h>
25#include <linux/mempolicy.h>
26#include <linux/ctype.h>
3ac7fe5a 27#include <linux/debugobjects.h>
81819f0f 28#include <linux/kallsyms.h>
b9049e23 29#include <linux/memory.h>
f8bd2258 30#include <linux/math64.h>
773ff60e 31#include <linux/fault-inject.h>
bfa71457 32#include <linux/stacktrace.h>
4de900b4 33#include <linux/prefetch.h>
81819f0f 34
4a92379b
RK
35#include <trace/events/kmem.h>
36
072bb0aa
MG
37#include "internal.h"
38
81819f0f
CL
39/*
40 * Lock order:
18004c5d 41 * 1. slab_mutex (Global Mutex)
881db7fb
CL
42 * 2. node->list_lock
43 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 44 *
18004c5d 45 * slab_mutex
881db7fb 46 *
18004c5d 47 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
48 * and to synchronize major metadata changes to slab cache structures.
49 *
50 * The slab_lock is only used for debugging and on arches that do not
51 * have the ability to do a cmpxchg_double. It only protects the second
52 * double word in the page struct. Meaning
53 * A. page->freelist -> List of object free in a page
54 * B. page->counters -> Counters of objects
55 * C. page->frozen -> frozen state
56 *
57 * If a slab is frozen then it is exempt from list management. It is not
58 * on any list. The processor that froze the slab is the one who can
59 * perform list operations on the page. Other processors may put objects
60 * onto the freelist but the processor that froze the slab is the only
61 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
62 *
63 * The list_lock protects the partial and full list on each node and
64 * the partial slab counter. If taken then no new slabs may be added or
65 * removed from the lists nor make the number of partial slabs be modified.
66 * (Note that the total number of slabs is an atomic value that may be
67 * modified without taking the list lock).
68 *
69 * The list_lock is a centralized lock and thus we avoid taking it as
70 * much as possible. As long as SLUB does not have to handle partial
71 * slabs, operations can continue without any centralized lock. F.e.
72 * allocating a long series of objects that fill up slabs does not require
73 * the list lock.
81819f0f
CL
74 * Interrupts are disabled during allocation and deallocation in order to
75 * make the slab allocator safe to use in the context of an irq. In addition
76 * interrupts are disabled to ensure that the processor does not change
77 * while handling per_cpu slabs, due to kernel preemption.
78 *
79 * SLUB assigns one slab for allocation to each processor.
80 * Allocations only occur from these slabs called cpu slabs.
81 *
672bba3a
CL
82 * Slabs with free elements are kept on a partial list and during regular
83 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 84 * freed then the slab will show up again on the partial lists.
672bba3a
CL
85 * We track full slabs for debugging purposes though because otherwise we
86 * cannot scan all objects.
81819f0f
CL
87 *
88 * Slabs are freed when they become empty. Teardown and setup is
89 * minimal so we rely on the page allocators per cpu caches for
90 * fast frees and allocs.
91 *
92 * Overloading of page flags that are otherwise used for LRU management.
93 *
4b6f0750
CL
94 * PageActive The slab is frozen and exempt from list processing.
95 * This means that the slab is dedicated to a purpose
96 * such as satisfying allocations for a specific
97 * processor. Objects may be freed in the slab while
98 * it is frozen but slab_free will then skip the usual
99 * list operations. It is up to the processor holding
100 * the slab to integrate the slab into the slab lists
101 * when the slab is no longer needed.
102 *
103 * One use of this flag is to mark slabs that are
104 * used for allocations. Then such a slab becomes a cpu
105 * slab. The cpu slab may be equipped with an additional
dfb4f096 106 * freelist that allows lockless access to
894b8788
CL
107 * free objects in addition to the regular freelist
108 * that requires the slab lock.
81819f0f
CL
109 *
110 * PageError Slab requires special handling due to debug
111 * options set. This moves slab handling out of
894b8788 112 * the fast path and disables lockless freelists.
81819f0f
CL
113 */
114
af537b0a
CL
115#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
116 SLAB_TRACE | SLAB_DEBUG_FREE)
117
118static inline int kmem_cache_debug(struct kmem_cache *s)
119{
5577bd8a 120#ifdef CONFIG_SLUB_DEBUG
af537b0a 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 122#else
af537b0a 123 return 0;
5577bd8a 124#endif
af537b0a 125}
5577bd8a 126
81819f0f
CL
127/*
128 * Issues still to be resolved:
129 *
81819f0f
CL
130 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
131 *
81819f0f
CL
132 * - Variable sizing of the per node arrays
133 */
134
135/* Enable to test recovery from slab corruption on boot */
136#undef SLUB_RESILIENCY_TEST
137
b789ef51
CL
138/* Enable to log cmpxchg failures */
139#undef SLUB_DEBUG_CMPXCHG
140
2086d26a
CL
141/*
142 * Mininum number of partial slabs. These will be left on the partial
143 * lists even if they are empty. kmem_cache_shrink may reclaim them.
144 */
76be8950 145#define MIN_PARTIAL 5
e95eed57 146
2086d26a
CL
147/*
148 * Maximum number of desirable partial slabs.
149 * The existence of more partial slabs makes kmem_cache_shrink
150 * sort the partial list by the number of objects in the.
151 */
152#define MAX_PARTIAL 10
153
81819f0f
CL
154#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
155 SLAB_POISON | SLAB_STORE_USER)
672bba3a 156
fa5ec8a1 157/*
3de47213
DR
158 * Debugging flags that require metadata to be stored in the slab. These get
159 * disabled when slub_debug=O is used and a cache's min order increases with
160 * metadata.
fa5ec8a1 161 */
3de47213 162#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 163
81819f0f
CL
164/*
165 * Set of flags that will prevent slab merging
166 */
167#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
168 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
169 SLAB_FAILSLAB)
81819f0f
CL
170
171#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 172 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 173
210b5c06
CG
174#define OO_SHIFT 16
175#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 176#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 177
81819f0f 178/* Internal SLUB flags */
f90ec390 179#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 180#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f
CL
181
182static int kmem_size = sizeof(struct kmem_cache);
183
184#ifdef CONFIG_SMP
185static struct notifier_block slab_notifier;
186#endif
187
02cbc874
CL
188/*
189 * Tracking user of a slab.
190 */
d6543e39 191#define TRACK_ADDRS_COUNT 16
02cbc874 192struct track {
ce71e27c 193 unsigned long addr; /* Called from address */
d6543e39
BG
194#ifdef CONFIG_STACKTRACE
195 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
196#endif
02cbc874
CL
197 int cpu; /* Was running on cpu */
198 int pid; /* Pid context */
199 unsigned long when; /* When did the operation occur */
200};
201
202enum track_item { TRACK_ALLOC, TRACK_FREE };
203
ab4d5ed5 204#ifdef CONFIG_SYSFS
81819f0f
CL
205static int sysfs_slab_add(struct kmem_cache *);
206static int sysfs_slab_alias(struct kmem_cache *, const char *);
207static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 208
81819f0f 209#else
0c710013
CL
210static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
211static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
212 { return 0; }
db265eca 213static inline void sysfs_slab_remove(struct kmem_cache *s) { }
8ff12cfc 214
81819f0f
CL
215#endif
216
4fdccdfb 217static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
218{
219#ifdef CONFIG_SLUB_STATS
84e554e6 220 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
221#endif
222}
223
81819f0f
CL
224/********************************************************************
225 * Core slab cache functions
226 *******************************************************************/
227
81819f0f
CL
228static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
229{
81819f0f 230 return s->node[node];
81819f0f
CL
231}
232
6446faa2 233/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
234static inline int check_valid_pointer(struct kmem_cache *s,
235 struct page *page, const void *object)
236{
237 void *base;
238
a973e9dd 239 if (!object)
02cbc874
CL
240 return 1;
241
a973e9dd 242 base = page_address(page);
39b26464 243 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
244 (object - base) % s->size) {
245 return 0;
246 }
247
248 return 1;
249}
250
7656c72b
CL
251static inline void *get_freepointer(struct kmem_cache *s, void *object)
252{
253 return *(void **)(object + s->offset);
254}
255
0ad9500e
ED
256static void prefetch_freepointer(const struct kmem_cache *s, void *object)
257{
258 prefetch(object + s->offset);
259}
260
1393d9a1
CL
261static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
262{
263 void *p;
264
265#ifdef CONFIG_DEBUG_PAGEALLOC
266 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
267#else
268 p = get_freepointer(s, object);
269#endif
270 return p;
271}
272
7656c72b
CL
273static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
274{
275 *(void **)(object + s->offset) = fp;
276}
277
278/* Loop over all objects in a slab */
224a88be
CL
279#define for_each_object(__p, __s, __addr, __objects) \
280 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
281 __p += (__s)->size)
282
7656c72b
CL
283/* Determine object index from a given position */
284static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
285{
286 return (p - addr) / s->size;
287}
288
d71f606f
MK
289static inline size_t slab_ksize(const struct kmem_cache *s)
290{
291#ifdef CONFIG_SLUB_DEBUG
292 /*
293 * Debugging requires use of the padding between object
294 * and whatever may come after it.
295 */
296 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
3b0efdfa 297 return s->object_size;
d71f606f
MK
298
299#endif
300 /*
301 * If we have the need to store the freelist pointer
302 * back there or track user information then we can
303 * only use the space before that information.
304 */
305 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
306 return s->inuse;
307 /*
308 * Else we can use all the padding etc for the allocation
309 */
310 return s->size;
311}
312
ab9a0f19
LJ
313static inline int order_objects(int order, unsigned long size, int reserved)
314{
315 return ((PAGE_SIZE << order) - reserved) / size;
316}
317
834f3d11 318static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 319 unsigned long size, int reserved)
834f3d11
CL
320{
321 struct kmem_cache_order_objects x = {
ab9a0f19 322 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
323 };
324
325 return x;
326}
327
328static inline int oo_order(struct kmem_cache_order_objects x)
329{
210b5c06 330 return x.x >> OO_SHIFT;
834f3d11
CL
331}
332
333static inline int oo_objects(struct kmem_cache_order_objects x)
334{
210b5c06 335 return x.x & OO_MASK;
834f3d11
CL
336}
337
881db7fb
CL
338/*
339 * Per slab locking using the pagelock
340 */
341static __always_inline void slab_lock(struct page *page)
342{
343 bit_spin_lock(PG_locked, &page->flags);
344}
345
346static __always_inline void slab_unlock(struct page *page)
347{
348 __bit_spin_unlock(PG_locked, &page->flags);
349}
350
1d07171c
CL
351/* Interrupts must be disabled (for the fallback code to work right) */
352static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
353 void *freelist_old, unsigned long counters_old,
354 void *freelist_new, unsigned long counters_new,
355 const char *n)
356{
357 VM_BUG_ON(!irqs_disabled());
2565409f
HC
358#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
359 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 360 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 361 if (cmpxchg_double(&page->freelist, &page->counters,
1d07171c
CL
362 freelist_old, counters_old,
363 freelist_new, counters_new))
364 return 1;
365 } else
366#endif
367 {
368 slab_lock(page);
369 if (page->freelist == freelist_old && page->counters == counters_old) {
370 page->freelist = freelist_new;
371 page->counters = counters_new;
372 slab_unlock(page);
373 return 1;
374 }
375 slab_unlock(page);
376 }
377
378 cpu_relax();
379 stat(s, CMPXCHG_DOUBLE_FAIL);
380
381#ifdef SLUB_DEBUG_CMPXCHG
382 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
383#endif
384
385 return 0;
386}
387
b789ef51
CL
388static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
389 void *freelist_old, unsigned long counters_old,
390 void *freelist_new, unsigned long counters_new,
391 const char *n)
392{
2565409f
HC
393#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
394 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 395 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 396 if (cmpxchg_double(&page->freelist, &page->counters,
b789ef51
CL
397 freelist_old, counters_old,
398 freelist_new, counters_new))
399 return 1;
400 } else
401#endif
402 {
1d07171c
CL
403 unsigned long flags;
404
405 local_irq_save(flags);
881db7fb 406 slab_lock(page);
b789ef51
CL
407 if (page->freelist == freelist_old && page->counters == counters_old) {
408 page->freelist = freelist_new;
409 page->counters = counters_new;
881db7fb 410 slab_unlock(page);
1d07171c 411 local_irq_restore(flags);
b789ef51
CL
412 return 1;
413 }
881db7fb 414 slab_unlock(page);
1d07171c 415 local_irq_restore(flags);
b789ef51
CL
416 }
417
418 cpu_relax();
419 stat(s, CMPXCHG_DOUBLE_FAIL);
420
421#ifdef SLUB_DEBUG_CMPXCHG
422 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
423#endif
424
425 return 0;
426}
427
41ecc55b 428#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
429/*
430 * Determine a map of object in use on a page.
431 *
881db7fb 432 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
433 * not vanish from under us.
434 */
435static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
436{
437 void *p;
438 void *addr = page_address(page);
439
440 for (p = page->freelist; p; p = get_freepointer(s, p))
441 set_bit(slab_index(p, s, addr), map);
442}
443
41ecc55b
CL
444/*
445 * Debug settings:
446 */
f0630fff
CL
447#ifdef CONFIG_SLUB_DEBUG_ON
448static int slub_debug = DEBUG_DEFAULT_FLAGS;
449#else
41ecc55b 450static int slub_debug;
f0630fff 451#endif
41ecc55b
CL
452
453static char *slub_debug_slabs;
fa5ec8a1 454static int disable_higher_order_debug;
41ecc55b 455
81819f0f
CL
456/*
457 * Object debugging
458 */
459static void print_section(char *text, u8 *addr, unsigned int length)
460{
ffc79d28
SAS
461 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
462 length, 1);
81819f0f
CL
463}
464
81819f0f
CL
465static struct track *get_track(struct kmem_cache *s, void *object,
466 enum track_item alloc)
467{
468 struct track *p;
469
470 if (s->offset)
471 p = object + s->offset + sizeof(void *);
472 else
473 p = object + s->inuse;
474
475 return p + alloc;
476}
477
478static void set_track(struct kmem_cache *s, void *object,
ce71e27c 479 enum track_item alloc, unsigned long addr)
81819f0f 480{
1a00df4a 481 struct track *p = get_track(s, object, alloc);
81819f0f 482
81819f0f 483 if (addr) {
d6543e39
BG
484#ifdef CONFIG_STACKTRACE
485 struct stack_trace trace;
486 int i;
487
488 trace.nr_entries = 0;
489 trace.max_entries = TRACK_ADDRS_COUNT;
490 trace.entries = p->addrs;
491 trace.skip = 3;
492 save_stack_trace(&trace);
493
494 /* See rant in lockdep.c */
495 if (trace.nr_entries != 0 &&
496 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
497 trace.nr_entries--;
498
499 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
500 p->addrs[i] = 0;
501#endif
81819f0f
CL
502 p->addr = addr;
503 p->cpu = smp_processor_id();
88e4ccf2 504 p->pid = current->pid;
81819f0f
CL
505 p->when = jiffies;
506 } else
507 memset(p, 0, sizeof(struct track));
508}
509
81819f0f
CL
510static void init_tracking(struct kmem_cache *s, void *object)
511{
24922684
CL
512 if (!(s->flags & SLAB_STORE_USER))
513 return;
514
ce71e27c
EGM
515 set_track(s, object, TRACK_FREE, 0UL);
516 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
517}
518
519static void print_track(const char *s, struct track *t)
520{
521 if (!t->addr)
522 return;
523
7daf705f 524 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 525 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
526#ifdef CONFIG_STACKTRACE
527 {
528 int i;
529 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
530 if (t->addrs[i])
531 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
532 else
533 break;
534 }
535#endif
24922684
CL
536}
537
538static void print_tracking(struct kmem_cache *s, void *object)
539{
540 if (!(s->flags & SLAB_STORE_USER))
541 return;
542
543 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
544 print_track("Freed", get_track(s, object, TRACK_FREE));
545}
546
547static void print_page_info(struct page *page)
548{
39b26464
CL
549 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
550 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
551
552}
553
554static void slab_bug(struct kmem_cache *s, char *fmt, ...)
555{
556 va_list args;
557 char buf[100];
558
559 va_start(args, fmt);
560 vsnprintf(buf, sizeof(buf), fmt, args);
561 va_end(args);
562 printk(KERN_ERR "========================================"
563 "=====================================\n");
265d47e7 564 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
24922684
CL
565 printk(KERN_ERR "----------------------------------------"
566 "-------------------------------------\n\n");
81819f0f
CL
567}
568
24922684
CL
569static void slab_fix(struct kmem_cache *s, char *fmt, ...)
570{
571 va_list args;
572 char buf[100];
573
574 va_start(args, fmt);
575 vsnprintf(buf, sizeof(buf), fmt, args);
576 va_end(args);
577 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
578}
579
580static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
581{
582 unsigned int off; /* Offset of last byte */
a973e9dd 583 u8 *addr = page_address(page);
24922684
CL
584
585 print_tracking(s, p);
586
587 print_page_info(page);
588
589 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
590 p, p - addr, get_freepointer(s, p));
591
592 if (p > addr + 16)
ffc79d28 593 print_section("Bytes b4 ", p - 16, 16);
81819f0f 594
3b0efdfa 595 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 596 PAGE_SIZE));
81819f0f 597 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
598 print_section("Redzone ", p + s->object_size,
599 s->inuse - s->object_size);
81819f0f 600
81819f0f
CL
601 if (s->offset)
602 off = s->offset + sizeof(void *);
603 else
604 off = s->inuse;
605
24922684 606 if (s->flags & SLAB_STORE_USER)
81819f0f 607 off += 2 * sizeof(struct track);
81819f0f
CL
608
609 if (off != s->size)
610 /* Beginning of the filler is the free pointer */
ffc79d28 611 print_section("Padding ", p + off, s->size - off);
24922684
CL
612
613 dump_stack();
81819f0f
CL
614}
615
616static void object_err(struct kmem_cache *s, struct page *page,
617 u8 *object, char *reason)
618{
3dc50637 619 slab_bug(s, "%s", reason);
24922684 620 print_trailer(s, page, object);
81819f0f
CL
621}
622
945cf2b6 623static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...)
81819f0f
CL
624{
625 va_list args;
626 char buf[100];
627
24922684
CL
628 va_start(args, fmt);
629 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 630 va_end(args);
3dc50637 631 slab_bug(s, "%s", buf);
24922684 632 print_page_info(page);
81819f0f
CL
633 dump_stack();
634}
635
f7cb1933 636static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
637{
638 u8 *p = object;
639
640 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
641 memset(p, POISON_FREE, s->object_size - 1);
642 p[s->object_size - 1] = POISON_END;
81819f0f
CL
643 }
644
645 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 646 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
647}
648
24922684
CL
649static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
650 void *from, void *to)
651{
652 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
653 memset(from, data, to - from);
654}
655
656static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
657 u8 *object, char *what,
06428780 658 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
659{
660 u8 *fault;
661 u8 *end;
662
79824820 663 fault = memchr_inv(start, value, bytes);
24922684
CL
664 if (!fault)
665 return 1;
666
667 end = start + bytes;
668 while (end > fault && end[-1] == value)
669 end--;
670
671 slab_bug(s, "%s overwritten", what);
672 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
673 fault, end - 1, fault[0], value);
674 print_trailer(s, page, object);
675
676 restore_bytes(s, what, value, fault, end);
677 return 0;
81819f0f
CL
678}
679
81819f0f
CL
680/*
681 * Object layout:
682 *
683 * object address
684 * Bytes of the object to be managed.
685 * If the freepointer may overlay the object then the free
686 * pointer is the first word of the object.
672bba3a 687 *
81819f0f
CL
688 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
689 * 0xa5 (POISON_END)
690 *
3b0efdfa 691 * object + s->object_size
81819f0f 692 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 693 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 694 * object_size == inuse.
672bba3a 695 *
81819f0f
CL
696 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
697 * 0xcc (RED_ACTIVE) for objects in use.
698 *
699 * object + s->inuse
672bba3a
CL
700 * Meta data starts here.
701 *
81819f0f
CL
702 * A. Free pointer (if we cannot overwrite object on free)
703 * B. Tracking data for SLAB_STORE_USER
672bba3a 704 * C. Padding to reach required alignment boundary or at mininum
6446faa2 705 * one word if debugging is on to be able to detect writes
672bba3a
CL
706 * before the word boundary.
707 *
708 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
709 *
710 * object + s->size
672bba3a 711 * Nothing is used beyond s->size.
81819f0f 712 *
3b0efdfa 713 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 714 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
715 * may be used with merged slabcaches.
716 */
717
81819f0f
CL
718static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
719{
720 unsigned long off = s->inuse; /* The end of info */
721
722 if (s->offset)
723 /* Freepointer is placed after the object. */
724 off += sizeof(void *);
725
726 if (s->flags & SLAB_STORE_USER)
727 /* We also have user information there */
728 off += 2 * sizeof(struct track);
729
730 if (s->size == off)
731 return 1;
732
24922684
CL
733 return check_bytes_and_report(s, page, p, "Object padding",
734 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
735}
736
39b26464 737/* Check the pad bytes at the end of a slab page */
81819f0f
CL
738static int slab_pad_check(struct kmem_cache *s, struct page *page)
739{
24922684
CL
740 u8 *start;
741 u8 *fault;
742 u8 *end;
743 int length;
744 int remainder;
81819f0f
CL
745
746 if (!(s->flags & SLAB_POISON))
747 return 1;
748
a973e9dd 749 start = page_address(page);
ab9a0f19 750 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
751 end = start + length;
752 remainder = length % s->size;
81819f0f
CL
753 if (!remainder)
754 return 1;
755
79824820 756 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
24922684
CL
757 if (!fault)
758 return 1;
759 while (end > fault && end[-1] == POISON_INUSE)
760 end--;
761
762 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 763 print_section("Padding ", end - remainder, remainder);
24922684 764
8a3d271d 765 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 766 return 0;
81819f0f
CL
767}
768
769static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 770 void *object, u8 val)
81819f0f
CL
771{
772 u8 *p = object;
3b0efdfa 773 u8 *endobject = object + s->object_size;
81819f0f
CL
774
775 if (s->flags & SLAB_RED_ZONE) {
24922684 776 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 777 endobject, val, s->inuse - s->object_size))
81819f0f 778 return 0;
81819f0f 779 } else {
3b0efdfa 780 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 781 check_bytes_and_report(s, page, p, "Alignment padding",
3b0efdfa 782 endobject, POISON_INUSE, s->inuse - s->object_size);
3adbefee 783 }
81819f0f
CL
784 }
785
786 if (s->flags & SLAB_POISON) {
f7cb1933 787 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 788 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 789 POISON_FREE, s->object_size - 1) ||
24922684 790 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 791 p + s->object_size - 1, POISON_END, 1)))
81819f0f 792 return 0;
81819f0f
CL
793 /*
794 * check_pad_bytes cleans up on its own.
795 */
796 check_pad_bytes(s, page, p);
797 }
798
f7cb1933 799 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
800 /*
801 * Object and freepointer overlap. Cannot check
802 * freepointer while object is allocated.
803 */
804 return 1;
805
806 /* Check free pointer validity */
807 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
808 object_err(s, page, p, "Freepointer corrupt");
809 /*
9f6c708e 810 * No choice but to zap it and thus lose the remainder
81819f0f 811 * of the free objects in this slab. May cause
672bba3a 812 * another error because the object count is now wrong.
81819f0f 813 */
a973e9dd 814 set_freepointer(s, p, NULL);
81819f0f
CL
815 return 0;
816 }
817 return 1;
818}
819
820static int check_slab(struct kmem_cache *s, struct page *page)
821{
39b26464
CL
822 int maxobj;
823
81819f0f
CL
824 VM_BUG_ON(!irqs_disabled());
825
826 if (!PageSlab(page)) {
24922684 827 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
828 return 0;
829 }
39b26464 830
ab9a0f19 831 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
832 if (page->objects > maxobj) {
833 slab_err(s, page, "objects %u > max %u",
834 s->name, page->objects, maxobj);
835 return 0;
836 }
837 if (page->inuse > page->objects) {
24922684 838 slab_err(s, page, "inuse %u > max %u",
39b26464 839 s->name, page->inuse, page->objects);
81819f0f
CL
840 return 0;
841 }
842 /* Slab_pad_check fixes things up after itself */
843 slab_pad_check(s, page);
844 return 1;
845}
846
847/*
672bba3a
CL
848 * Determine if a certain object on a page is on the freelist. Must hold the
849 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
850 */
851static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
852{
853 int nr = 0;
881db7fb 854 void *fp;
81819f0f 855 void *object = NULL;
224a88be 856 unsigned long max_objects;
81819f0f 857
881db7fb 858 fp = page->freelist;
39b26464 859 while (fp && nr <= page->objects) {
81819f0f
CL
860 if (fp == search)
861 return 1;
862 if (!check_valid_pointer(s, page, fp)) {
863 if (object) {
864 object_err(s, page, object,
865 "Freechain corrupt");
a973e9dd 866 set_freepointer(s, object, NULL);
81819f0f
CL
867 break;
868 } else {
24922684 869 slab_err(s, page, "Freepointer corrupt");
a973e9dd 870 page->freelist = NULL;
39b26464 871 page->inuse = page->objects;
24922684 872 slab_fix(s, "Freelist cleared");
81819f0f
CL
873 return 0;
874 }
875 break;
876 }
877 object = fp;
878 fp = get_freepointer(s, object);
879 nr++;
880 }
881
ab9a0f19 882 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
883 if (max_objects > MAX_OBJS_PER_PAGE)
884 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
885
886 if (page->objects != max_objects) {
887 slab_err(s, page, "Wrong number of objects. Found %d but "
888 "should be %d", page->objects, max_objects);
889 page->objects = max_objects;
890 slab_fix(s, "Number of objects adjusted.");
891 }
39b26464 892 if (page->inuse != page->objects - nr) {
70d71228 893 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
894 "counted were %d", page->inuse, page->objects - nr);
895 page->inuse = page->objects - nr;
24922684 896 slab_fix(s, "Object count adjusted.");
81819f0f
CL
897 }
898 return search == NULL;
899}
900
0121c619
CL
901static void trace(struct kmem_cache *s, struct page *page, void *object,
902 int alloc)
3ec09742
CL
903{
904 if (s->flags & SLAB_TRACE) {
905 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
906 s->name,
907 alloc ? "alloc" : "free",
908 object, page->inuse,
909 page->freelist);
910
911 if (!alloc)
3b0efdfa 912 print_section("Object ", (void *)object, s->object_size);
3ec09742
CL
913
914 dump_stack();
915 }
916}
917
c016b0bd
CL
918/*
919 * Hooks for other subsystems that check memory allocations. In a typical
920 * production configuration these hooks all should produce no code at all.
921 */
922static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
923{
c1d50836 924 flags &= gfp_allowed_mask;
c016b0bd
CL
925 lockdep_trace_alloc(flags);
926 might_sleep_if(flags & __GFP_WAIT);
927
3b0efdfa 928 return should_failslab(s->object_size, flags, s->flags);
c016b0bd
CL
929}
930
931static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
932{
c1d50836 933 flags &= gfp_allowed_mask;
b3d41885 934 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
3b0efdfa 935 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
c016b0bd
CL
936}
937
938static inline void slab_free_hook(struct kmem_cache *s, void *x)
939{
940 kmemleak_free_recursive(x, s->flags);
c016b0bd 941
d3f661d6
CL
942 /*
943 * Trouble is that we may no longer disable interupts in the fast path
944 * So in order to make the debug calls that expect irqs to be
945 * disabled we need to disable interrupts temporarily.
946 */
947#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
948 {
949 unsigned long flags;
950
951 local_irq_save(flags);
3b0efdfa
CL
952 kmemcheck_slab_free(s, x, s->object_size);
953 debug_check_no_locks_freed(x, s->object_size);
d3f661d6
CL
954 local_irq_restore(flags);
955 }
956#endif
f9b615de 957 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3b0efdfa 958 debug_check_no_obj_freed(x, s->object_size);
c016b0bd
CL
959}
960
643b1138 961/*
672bba3a 962 * Tracking of fully allocated slabs for debugging purposes.
5cc6eee8
CL
963 *
964 * list_lock must be held.
643b1138 965 */
5cc6eee8
CL
966static void add_full(struct kmem_cache *s,
967 struct kmem_cache_node *n, struct page *page)
643b1138 968{
5cc6eee8
CL
969 if (!(s->flags & SLAB_STORE_USER))
970 return;
971
643b1138 972 list_add(&page->lru, &n->full);
643b1138
CL
973}
974
5cc6eee8
CL
975/*
976 * list_lock must be held.
977 */
643b1138
CL
978static void remove_full(struct kmem_cache *s, struct page *page)
979{
643b1138
CL
980 if (!(s->flags & SLAB_STORE_USER))
981 return;
982
643b1138 983 list_del(&page->lru);
643b1138
CL
984}
985
0f389ec6
CL
986/* Tracking of the number of slabs for debugging purposes */
987static inline unsigned long slabs_node(struct kmem_cache *s, int node)
988{
989 struct kmem_cache_node *n = get_node(s, node);
990
991 return atomic_long_read(&n->nr_slabs);
992}
993
26c02cf0
AB
994static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
995{
996 return atomic_long_read(&n->nr_slabs);
997}
998
205ab99d 999static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1000{
1001 struct kmem_cache_node *n = get_node(s, node);
1002
1003 /*
1004 * May be called early in order to allocate a slab for the
1005 * kmem_cache_node structure. Solve the chicken-egg
1006 * dilemma by deferring the increment of the count during
1007 * bootstrap (see early_kmem_cache_node_alloc).
1008 */
7340cc84 1009 if (n) {
0f389ec6 1010 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1011 atomic_long_add(objects, &n->total_objects);
1012 }
0f389ec6 1013}
205ab99d 1014static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1015{
1016 struct kmem_cache_node *n = get_node(s, node);
1017
1018 atomic_long_dec(&n->nr_slabs);
205ab99d 1019 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1020}
1021
1022/* Object debug checks for alloc/free paths */
3ec09742
CL
1023static void setup_object_debug(struct kmem_cache *s, struct page *page,
1024 void *object)
1025{
1026 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1027 return;
1028
f7cb1933 1029 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1030 init_tracking(s, object);
1031}
1032
1537066c 1033static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 1034 void *object, unsigned long addr)
81819f0f
CL
1035{
1036 if (!check_slab(s, page))
1037 goto bad;
1038
81819f0f
CL
1039 if (!check_valid_pointer(s, page, object)) {
1040 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1041 goto bad;
81819f0f
CL
1042 }
1043
f7cb1933 1044 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1045 goto bad;
81819f0f 1046
3ec09742
CL
1047 /* Success perform special debug activities for allocs */
1048 if (s->flags & SLAB_STORE_USER)
1049 set_track(s, object, TRACK_ALLOC, addr);
1050 trace(s, page, object, 1);
f7cb1933 1051 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1052 return 1;
3ec09742 1053
81819f0f
CL
1054bad:
1055 if (PageSlab(page)) {
1056 /*
1057 * If this is a slab page then lets do the best we can
1058 * to avoid issues in the future. Marking all objects
672bba3a 1059 * as used avoids touching the remaining objects.
81819f0f 1060 */
24922684 1061 slab_fix(s, "Marking all objects used");
39b26464 1062 page->inuse = page->objects;
a973e9dd 1063 page->freelist = NULL;
81819f0f
CL
1064 }
1065 return 0;
1066}
1067
19c7ff9e
CL
1068static noinline struct kmem_cache_node *free_debug_processing(
1069 struct kmem_cache *s, struct page *page, void *object,
1070 unsigned long addr, unsigned long *flags)
81819f0f 1071{
19c7ff9e 1072 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
5c2e4bbb 1073
19c7ff9e 1074 spin_lock_irqsave(&n->list_lock, *flags);
881db7fb
CL
1075 slab_lock(page);
1076
81819f0f
CL
1077 if (!check_slab(s, page))
1078 goto fail;
1079
1080 if (!check_valid_pointer(s, page, object)) {
70d71228 1081 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1082 goto fail;
1083 }
1084
1085 if (on_freelist(s, page, object)) {
24922684 1086 object_err(s, page, object, "Object already free");
81819f0f
CL
1087 goto fail;
1088 }
1089
f7cb1933 1090 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1091 goto out;
81819f0f
CL
1092
1093 if (unlikely(s != page->slab)) {
3adbefee 1094 if (!PageSlab(page)) {
70d71228
CL
1095 slab_err(s, page, "Attempt to free object(0x%p) "
1096 "outside of slab", object);
3adbefee 1097 } else if (!page->slab) {
81819f0f 1098 printk(KERN_ERR
70d71228 1099 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1100 object);
70d71228 1101 dump_stack();
06428780 1102 } else
24922684
CL
1103 object_err(s, page, object,
1104 "page slab pointer corrupt.");
81819f0f
CL
1105 goto fail;
1106 }
3ec09742 1107
3ec09742
CL
1108 if (s->flags & SLAB_STORE_USER)
1109 set_track(s, object, TRACK_FREE, addr);
1110 trace(s, page, object, 0);
f7cb1933 1111 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb 1112out:
881db7fb 1113 slab_unlock(page);
19c7ff9e
CL
1114 /*
1115 * Keep node_lock to preserve integrity
1116 * until the object is actually freed
1117 */
1118 return n;
3ec09742 1119
81819f0f 1120fail:
19c7ff9e
CL
1121 slab_unlock(page);
1122 spin_unlock_irqrestore(&n->list_lock, *flags);
24922684 1123 slab_fix(s, "Object at 0x%p not freed", object);
19c7ff9e 1124 return NULL;
81819f0f
CL
1125}
1126
41ecc55b
CL
1127static int __init setup_slub_debug(char *str)
1128{
f0630fff
CL
1129 slub_debug = DEBUG_DEFAULT_FLAGS;
1130 if (*str++ != '=' || !*str)
1131 /*
1132 * No options specified. Switch on full debugging.
1133 */
1134 goto out;
1135
1136 if (*str == ',')
1137 /*
1138 * No options but restriction on slabs. This means full
1139 * debugging for slabs matching a pattern.
1140 */
1141 goto check_slabs;
1142
fa5ec8a1
DR
1143 if (tolower(*str) == 'o') {
1144 /*
1145 * Avoid enabling debugging on caches if its minimum order
1146 * would increase as a result.
1147 */
1148 disable_higher_order_debug = 1;
1149 goto out;
1150 }
1151
f0630fff
CL
1152 slub_debug = 0;
1153 if (*str == '-')
1154 /*
1155 * Switch off all debugging measures.
1156 */
1157 goto out;
1158
1159 /*
1160 * Determine which debug features should be switched on
1161 */
06428780 1162 for (; *str && *str != ','; str++) {
f0630fff
CL
1163 switch (tolower(*str)) {
1164 case 'f':
1165 slub_debug |= SLAB_DEBUG_FREE;
1166 break;
1167 case 'z':
1168 slub_debug |= SLAB_RED_ZONE;
1169 break;
1170 case 'p':
1171 slub_debug |= SLAB_POISON;
1172 break;
1173 case 'u':
1174 slub_debug |= SLAB_STORE_USER;
1175 break;
1176 case 't':
1177 slub_debug |= SLAB_TRACE;
1178 break;
4c13dd3b
DM
1179 case 'a':
1180 slub_debug |= SLAB_FAILSLAB;
1181 break;
f0630fff
CL
1182 default:
1183 printk(KERN_ERR "slub_debug option '%c' "
06428780 1184 "unknown. skipped\n", *str);
f0630fff 1185 }
41ecc55b
CL
1186 }
1187
f0630fff 1188check_slabs:
41ecc55b
CL
1189 if (*str == ',')
1190 slub_debug_slabs = str + 1;
f0630fff 1191out:
41ecc55b
CL
1192 return 1;
1193}
1194
1195__setup("slub_debug", setup_slub_debug);
1196
3b0efdfa 1197static unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1198 unsigned long flags, const char *name,
51cc5068 1199 void (*ctor)(void *))
41ecc55b
CL
1200{
1201 /*
e153362a 1202 * Enable debugging if selected on the kernel commandline.
41ecc55b 1203 */
e153362a 1204 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1205 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1206 flags |= slub_debug;
ba0268a8
CL
1207
1208 return flags;
41ecc55b
CL
1209}
1210#else
3ec09742
CL
1211static inline void setup_object_debug(struct kmem_cache *s,
1212 struct page *page, void *object) {}
41ecc55b 1213
3ec09742 1214static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1215 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1216
19c7ff9e
CL
1217static inline struct kmem_cache_node *free_debug_processing(
1218 struct kmem_cache *s, struct page *page, void *object,
1219 unsigned long addr, unsigned long *flags) { return NULL; }
41ecc55b 1220
41ecc55b
CL
1221static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1222 { return 1; }
1223static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1224 void *object, u8 val) { return 1; }
5cc6eee8
CL
1225static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1226 struct page *page) {}
2cfb7455 1227static inline void remove_full(struct kmem_cache *s, struct page *page) {}
3b0efdfa 1228static inline unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1229 unsigned long flags, const char *name,
51cc5068 1230 void (*ctor)(void *))
ba0268a8
CL
1231{
1232 return flags;
1233}
41ecc55b 1234#define slub_debug 0
0f389ec6 1235
fdaa45e9
IM
1236#define disable_higher_order_debug 0
1237
0f389ec6
CL
1238static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1239 { return 0; }
26c02cf0
AB
1240static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1241 { return 0; }
205ab99d
CL
1242static inline void inc_slabs_node(struct kmem_cache *s, int node,
1243 int objects) {}
1244static inline void dec_slabs_node(struct kmem_cache *s, int node,
1245 int objects) {}
7d550c56
CL
1246
1247static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1248 { return 0; }
1249
1250static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1251 void *object) {}
1252
1253static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1254
ab4d5ed5 1255#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1256
81819f0f
CL
1257/*
1258 * Slab allocation and freeing
1259 */
65c3376a
CL
1260static inline struct page *alloc_slab_page(gfp_t flags, int node,
1261 struct kmem_cache_order_objects oo)
1262{
1263 int order = oo_order(oo);
1264
b1eeab67
VN
1265 flags |= __GFP_NOTRACK;
1266
2154a336 1267 if (node == NUMA_NO_NODE)
65c3376a
CL
1268 return alloc_pages(flags, order);
1269 else
6b65aaf3 1270 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1271}
1272
81819f0f
CL
1273static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1274{
06428780 1275 struct page *page;
834f3d11 1276 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1277 gfp_t alloc_gfp;
81819f0f 1278
7e0528da
CL
1279 flags &= gfp_allowed_mask;
1280
1281 if (flags & __GFP_WAIT)
1282 local_irq_enable();
1283
b7a49f0d 1284 flags |= s->allocflags;
e12ba74d 1285
ba52270d
PE
1286 /*
1287 * Let the initial higher-order allocation fail under memory pressure
1288 * so we fall-back to the minimum order allocation.
1289 */
1290 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1291
1292 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1293 if (unlikely(!page)) {
1294 oo = s->min;
1295 /*
1296 * Allocation may have failed due to fragmentation.
1297 * Try a lower order alloc if possible
1298 */
1299 page = alloc_slab_page(flags, node, oo);
81819f0f 1300
7e0528da
CL
1301 if (page)
1302 stat(s, ORDER_FALLBACK);
65c3376a 1303 }
5a896d9e 1304
737b719e 1305 if (kmemcheck_enabled && page
5086c389 1306 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1307 int pages = 1 << oo_order(oo);
1308
1309 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1310
1311 /*
1312 * Objects from caches that have a constructor don't get
1313 * cleared when they're allocated, so we need to do it here.
1314 */
1315 if (s->ctor)
1316 kmemcheck_mark_uninitialized_pages(page, pages);
1317 else
1318 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1319 }
1320
737b719e
DR
1321 if (flags & __GFP_WAIT)
1322 local_irq_disable();
1323 if (!page)
1324 return NULL;
1325
834f3d11 1326 page->objects = oo_objects(oo);
81819f0f
CL
1327 mod_zone_page_state(page_zone(page),
1328 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1329 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1330 1 << oo_order(oo));
81819f0f
CL
1331
1332 return page;
1333}
1334
1335static void setup_object(struct kmem_cache *s, struct page *page,
1336 void *object)
1337{
3ec09742 1338 setup_object_debug(s, page, object);
4f104934 1339 if (unlikely(s->ctor))
51cc5068 1340 s->ctor(object);
81819f0f
CL
1341}
1342
1343static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1344{
1345 struct page *page;
81819f0f 1346 void *start;
81819f0f
CL
1347 void *last;
1348 void *p;
1349
6cb06229 1350 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1351
6cb06229
CL
1352 page = allocate_slab(s,
1353 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1354 if (!page)
1355 goto out;
1356
205ab99d 1357 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f 1358 page->slab = s;
c03f94cc 1359 __SetPageSlab(page);
072bb0aa
MG
1360 if (page->pfmemalloc)
1361 SetPageSlabPfmemalloc(page);
81819f0f
CL
1362
1363 start = page_address(page);
81819f0f
CL
1364
1365 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1366 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1367
1368 last = start;
224a88be 1369 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1370 setup_object(s, page, last);
1371 set_freepointer(s, last, p);
1372 last = p;
1373 }
1374 setup_object(s, page, last);
a973e9dd 1375 set_freepointer(s, last, NULL);
81819f0f
CL
1376
1377 page->freelist = start;
e6e82ea1 1378 page->inuse = page->objects;
8cb0a506 1379 page->frozen = 1;
81819f0f 1380out:
81819f0f
CL
1381 return page;
1382}
1383
1384static void __free_slab(struct kmem_cache *s, struct page *page)
1385{
834f3d11
CL
1386 int order = compound_order(page);
1387 int pages = 1 << order;
81819f0f 1388
af537b0a 1389 if (kmem_cache_debug(s)) {
81819f0f
CL
1390 void *p;
1391
1392 slab_pad_check(s, page);
224a88be
CL
1393 for_each_object(p, s, page_address(page),
1394 page->objects)
f7cb1933 1395 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1396 }
1397
b1eeab67 1398 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1399
81819f0f
CL
1400 mod_zone_page_state(page_zone(page),
1401 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1402 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1403 -pages);
81819f0f 1404
072bb0aa 1405 __ClearPageSlabPfmemalloc(page);
49bd5221
CL
1406 __ClearPageSlab(page);
1407 reset_page_mapcount(page);
1eb5ac64
NP
1408 if (current->reclaim_state)
1409 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1410 __free_pages(page, order);
81819f0f
CL
1411}
1412
da9a638c
LJ
1413#define need_reserve_slab_rcu \
1414 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1415
81819f0f
CL
1416static void rcu_free_slab(struct rcu_head *h)
1417{
1418 struct page *page;
1419
da9a638c
LJ
1420 if (need_reserve_slab_rcu)
1421 page = virt_to_head_page(h);
1422 else
1423 page = container_of((struct list_head *)h, struct page, lru);
1424
81819f0f
CL
1425 __free_slab(page->slab, page);
1426}
1427
1428static void free_slab(struct kmem_cache *s, struct page *page)
1429{
1430 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1431 struct rcu_head *head;
1432
1433 if (need_reserve_slab_rcu) {
1434 int order = compound_order(page);
1435 int offset = (PAGE_SIZE << order) - s->reserved;
1436
1437 VM_BUG_ON(s->reserved != sizeof(*head));
1438 head = page_address(page) + offset;
1439 } else {
1440 /*
1441 * RCU free overloads the RCU head over the LRU
1442 */
1443 head = (void *)&page->lru;
1444 }
81819f0f
CL
1445
1446 call_rcu(head, rcu_free_slab);
1447 } else
1448 __free_slab(s, page);
1449}
1450
1451static void discard_slab(struct kmem_cache *s, struct page *page)
1452{
205ab99d 1453 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1454 free_slab(s, page);
1455}
1456
1457/*
5cc6eee8
CL
1458 * Management of partially allocated slabs.
1459 *
1460 * list_lock must be held.
81819f0f 1461 */
5cc6eee8 1462static inline void add_partial(struct kmem_cache_node *n,
7c2e132c 1463 struct page *page, int tail)
81819f0f 1464{
e95eed57 1465 n->nr_partial++;
136333d1 1466 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1467 list_add_tail(&page->lru, &n->partial);
1468 else
1469 list_add(&page->lru, &n->partial);
81819f0f
CL
1470}
1471
5cc6eee8
CL
1472/*
1473 * list_lock must be held.
1474 */
1475static inline void remove_partial(struct kmem_cache_node *n,
62e346a8
CL
1476 struct page *page)
1477{
1478 list_del(&page->lru);
1479 n->nr_partial--;
1480}
1481
81819f0f 1482/*
7ced3719
CL
1483 * Remove slab from the partial list, freeze it and
1484 * return the pointer to the freelist.
81819f0f 1485 *
497b66f2
CL
1486 * Returns a list of objects or NULL if it fails.
1487 *
7ced3719 1488 * Must hold list_lock since we modify the partial list.
81819f0f 1489 */
497b66f2 1490static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1491 struct kmem_cache_node *n, struct page *page,
49e22585 1492 int mode)
81819f0f 1493{
2cfb7455
CL
1494 void *freelist;
1495 unsigned long counters;
1496 struct page new;
1497
2cfb7455
CL
1498 /*
1499 * Zap the freelist and set the frozen bit.
1500 * The old freelist is the list of objects for the
1501 * per cpu allocation list.
1502 */
7ced3719
CL
1503 freelist = page->freelist;
1504 counters = page->counters;
1505 new.counters = counters;
23910c50 1506 if (mode) {
7ced3719 1507 new.inuse = page->objects;
23910c50
PE
1508 new.freelist = NULL;
1509 } else {
1510 new.freelist = freelist;
1511 }
2cfb7455 1512
7ced3719
CL
1513 VM_BUG_ON(new.frozen);
1514 new.frozen = 1;
2cfb7455 1515
7ced3719 1516 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1517 freelist, counters,
02d7633f 1518 new.freelist, new.counters,
7ced3719 1519 "acquire_slab"))
7ced3719 1520 return NULL;
2cfb7455
CL
1521
1522 remove_partial(n, page);
7ced3719 1523 WARN_ON(!freelist);
49e22585 1524 return freelist;
81819f0f
CL
1525}
1526
49e22585
CL
1527static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1528
81819f0f 1529/*
672bba3a 1530 * Try to allocate a partial slab from a specific node.
81819f0f 1531 */
497b66f2 1532static void *get_partial_node(struct kmem_cache *s,
acd19fd1 1533 struct kmem_cache_node *n, struct kmem_cache_cpu *c)
81819f0f 1534{
49e22585
CL
1535 struct page *page, *page2;
1536 void *object = NULL;
81819f0f
CL
1537
1538 /*
1539 * Racy check. If we mistakenly see no partial slabs then we
1540 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1541 * partial slab and there is none available then get_partials()
1542 * will return NULL.
81819f0f
CL
1543 */
1544 if (!n || !n->nr_partial)
1545 return NULL;
1546
1547 spin_lock(&n->list_lock);
49e22585 1548 list_for_each_entry_safe(page, page2, &n->partial, lru) {
12d79634 1549 void *t = acquire_slab(s, n, page, object == NULL);
49e22585
CL
1550 int available;
1551
1552 if (!t)
1553 break;
1554
12d79634 1555 if (!object) {
49e22585 1556 c->page = page;
49e22585 1557 stat(s, ALLOC_FROM_PARTIAL);
49e22585
CL
1558 object = t;
1559 available = page->objects - page->inuse;
1560 } else {
49e22585 1561 available = put_cpu_partial(s, page, 0);
8028dcea 1562 stat(s, CPU_PARTIAL_NODE);
49e22585
CL
1563 }
1564 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1565 break;
1566
497b66f2 1567 }
81819f0f 1568 spin_unlock(&n->list_lock);
497b66f2 1569 return object;
81819f0f
CL
1570}
1571
1572/*
672bba3a 1573 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1574 */
de3ec035 1575static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1576 struct kmem_cache_cpu *c)
81819f0f
CL
1577{
1578#ifdef CONFIG_NUMA
1579 struct zonelist *zonelist;
dd1a239f 1580 struct zoneref *z;
54a6eb5c
MG
1581 struct zone *zone;
1582 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1583 void *object;
cc9a6c87 1584 unsigned int cpuset_mems_cookie;
81819f0f
CL
1585
1586 /*
672bba3a
CL
1587 * The defrag ratio allows a configuration of the tradeoffs between
1588 * inter node defragmentation and node local allocations. A lower
1589 * defrag_ratio increases the tendency to do local allocations
1590 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1591 *
672bba3a
CL
1592 * If the defrag_ratio is set to 0 then kmalloc() always
1593 * returns node local objects. If the ratio is higher then kmalloc()
1594 * may return off node objects because partial slabs are obtained
1595 * from other nodes and filled up.
81819f0f 1596 *
6446faa2 1597 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1598 * defrag_ratio = 1000) then every (well almost) allocation will
1599 * first attempt to defrag slab caches on other nodes. This means
1600 * scanning over all nodes to look for partial slabs which may be
1601 * expensive if we do it every time we are trying to find a slab
1602 * with available objects.
81819f0f 1603 */
9824601e
CL
1604 if (!s->remote_node_defrag_ratio ||
1605 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1606 return NULL;
1607
cc9a6c87
MG
1608 do {
1609 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 1610 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87
MG
1611 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1612 struct kmem_cache_node *n;
1613
1614 n = get_node(s, zone_to_nid(zone));
1615
1616 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1617 n->nr_partial > s->min_partial) {
1618 object = get_partial_node(s, n, c);
1619 if (object) {
1620 /*
1621 * Return the object even if
1622 * put_mems_allowed indicated that
1623 * the cpuset mems_allowed was
1624 * updated in parallel. It's a
1625 * harmless race between the alloc
1626 * and the cpuset update.
1627 */
1628 put_mems_allowed(cpuset_mems_cookie);
1629 return object;
1630 }
c0ff7453 1631 }
81819f0f 1632 }
cc9a6c87 1633 } while (!put_mems_allowed(cpuset_mems_cookie));
81819f0f
CL
1634#endif
1635 return NULL;
1636}
1637
1638/*
1639 * Get a partial page, lock it and return it.
1640 */
497b66f2 1641static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1642 struct kmem_cache_cpu *c)
81819f0f 1643{
497b66f2 1644 void *object;
2154a336 1645 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f 1646
497b66f2
CL
1647 object = get_partial_node(s, get_node(s, searchnode), c);
1648 if (object || node != NUMA_NO_NODE)
1649 return object;
81819f0f 1650
acd19fd1 1651 return get_any_partial(s, flags, c);
81819f0f
CL
1652}
1653
8a5ec0ba
CL
1654#ifdef CONFIG_PREEMPT
1655/*
1656 * Calculate the next globally unique transaction for disambiguiation
1657 * during cmpxchg. The transactions start with the cpu number and are then
1658 * incremented by CONFIG_NR_CPUS.
1659 */
1660#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1661#else
1662/*
1663 * No preemption supported therefore also no need to check for
1664 * different cpus.
1665 */
1666#define TID_STEP 1
1667#endif
1668
1669static inline unsigned long next_tid(unsigned long tid)
1670{
1671 return tid + TID_STEP;
1672}
1673
1674static inline unsigned int tid_to_cpu(unsigned long tid)
1675{
1676 return tid % TID_STEP;
1677}
1678
1679static inline unsigned long tid_to_event(unsigned long tid)
1680{
1681 return tid / TID_STEP;
1682}
1683
1684static inline unsigned int init_tid(int cpu)
1685{
1686 return cpu;
1687}
1688
1689static inline void note_cmpxchg_failure(const char *n,
1690 const struct kmem_cache *s, unsigned long tid)
1691{
1692#ifdef SLUB_DEBUG_CMPXCHG
1693 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1694
1695 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1696
1697#ifdef CONFIG_PREEMPT
1698 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1699 printk("due to cpu change %d -> %d\n",
1700 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1701 else
1702#endif
1703 if (tid_to_event(tid) != tid_to_event(actual_tid))
1704 printk("due to cpu running other code. Event %ld->%ld\n",
1705 tid_to_event(tid), tid_to_event(actual_tid));
1706 else
1707 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1708 actual_tid, tid, next_tid(tid));
1709#endif
4fdccdfb 1710 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1711}
1712
8a5ec0ba
CL
1713void init_kmem_cache_cpus(struct kmem_cache *s)
1714{
8a5ec0ba
CL
1715 int cpu;
1716
1717 for_each_possible_cpu(cpu)
1718 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1719}
2cfb7455 1720
81819f0f
CL
1721/*
1722 * Remove the cpu slab
1723 */
c17dda40 1724static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
81819f0f 1725{
2cfb7455 1726 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1727 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1728 int lock = 0;
1729 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1730 void *nextfree;
136333d1 1731 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1732 struct page new;
1733 struct page old;
1734
1735 if (page->freelist) {
84e554e6 1736 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1737 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1738 }
1739
894b8788 1740 /*
2cfb7455
CL
1741 * Stage one: Free all available per cpu objects back
1742 * to the page freelist while it is still frozen. Leave the
1743 * last one.
1744 *
1745 * There is no need to take the list->lock because the page
1746 * is still frozen.
1747 */
1748 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1749 void *prior;
1750 unsigned long counters;
1751
1752 do {
1753 prior = page->freelist;
1754 counters = page->counters;
1755 set_freepointer(s, freelist, prior);
1756 new.counters = counters;
1757 new.inuse--;
1758 VM_BUG_ON(!new.frozen);
1759
1d07171c 1760 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1761 prior, counters,
1762 freelist, new.counters,
1763 "drain percpu freelist"));
1764
1765 freelist = nextfree;
1766 }
1767
894b8788 1768 /*
2cfb7455
CL
1769 * Stage two: Ensure that the page is unfrozen while the
1770 * list presence reflects the actual number of objects
1771 * during unfreeze.
1772 *
1773 * We setup the list membership and then perform a cmpxchg
1774 * with the count. If there is a mismatch then the page
1775 * is not unfrozen but the page is on the wrong list.
1776 *
1777 * Then we restart the process which may have to remove
1778 * the page from the list that we just put it on again
1779 * because the number of objects in the slab may have
1780 * changed.
894b8788 1781 */
2cfb7455 1782redo:
894b8788 1783
2cfb7455
CL
1784 old.freelist = page->freelist;
1785 old.counters = page->counters;
1786 VM_BUG_ON(!old.frozen);
7c2e132c 1787
2cfb7455
CL
1788 /* Determine target state of the slab */
1789 new.counters = old.counters;
1790 if (freelist) {
1791 new.inuse--;
1792 set_freepointer(s, freelist, old.freelist);
1793 new.freelist = freelist;
1794 } else
1795 new.freelist = old.freelist;
1796
1797 new.frozen = 0;
1798
81107188 1799 if (!new.inuse && n->nr_partial > s->min_partial)
2cfb7455
CL
1800 m = M_FREE;
1801 else if (new.freelist) {
1802 m = M_PARTIAL;
1803 if (!lock) {
1804 lock = 1;
1805 /*
1806 * Taking the spinlock removes the possiblity
1807 * that acquire_slab() will see a slab page that
1808 * is frozen
1809 */
1810 spin_lock(&n->list_lock);
1811 }
1812 } else {
1813 m = M_FULL;
1814 if (kmem_cache_debug(s) && !lock) {
1815 lock = 1;
1816 /*
1817 * This also ensures that the scanning of full
1818 * slabs from diagnostic functions will not see
1819 * any frozen slabs.
1820 */
1821 spin_lock(&n->list_lock);
1822 }
1823 }
1824
1825 if (l != m) {
1826
1827 if (l == M_PARTIAL)
1828
1829 remove_partial(n, page);
1830
1831 else if (l == M_FULL)
894b8788 1832
2cfb7455
CL
1833 remove_full(s, page);
1834
1835 if (m == M_PARTIAL) {
1836
1837 add_partial(n, page, tail);
136333d1 1838 stat(s, tail);
2cfb7455
CL
1839
1840 } else if (m == M_FULL) {
894b8788 1841
2cfb7455
CL
1842 stat(s, DEACTIVATE_FULL);
1843 add_full(s, n, page);
1844
1845 }
1846 }
1847
1848 l = m;
1d07171c 1849 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1850 old.freelist, old.counters,
1851 new.freelist, new.counters,
1852 "unfreezing slab"))
1853 goto redo;
1854
2cfb7455
CL
1855 if (lock)
1856 spin_unlock(&n->list_lock);
1857
1858 if (m == M_FREE) {
1859 stat(s, DEACTIVATE_EMPTY);
1860 discard_slab(s, page);
1861 stat(s, FREE_SLAB);
894b8788 1862 }
81819f0f
CL
1863}
1864
d24ac77f
JK
1865/*
1866 * Unfreeze all the cpu partial slabs.
1867 *
1868 * This function must be called with interrupt disabled.
1869 */
49e22585
CL
1870static void unfreeze_partials(struct kmem_cache *s)
1871{
43d77867 1872 struct kmem_cache_node *n = NULL, *n2 = NULL;
49e22585 1873 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
9ada1934 1874 struct page *page, *discard_page = NULL;
49e22585
CL
1875
1876 while ((page = c->partial)) {
49e22585
CL
1877 struct page new;
1878 struct page old;
1879
1880 c->partial = page->next;
43d77867
JK
1881
1882 n2 = get_node(s, page_to_nid(page));
1883 if (n != n2) {
1884 if (n)
1885 spin_unlock(&n->list_lock);
1886
1887 n = n2;
1888 spin_lock(&n->list_lock);
1889 }
49e22585
CL
1890
1891 do {
1892
1893 old.freelist = page->freelist;
1894 old.counters = page->counters;
1895 VM_BUG_ON(!old.frozen);
1896
1897 new.counters = old.counters;
1898 new.freelist = old.freelist;
1899
1900 new.frozen = 0;
1901
d24ac77f 1902 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
1903 old.freelist, old.counters,
1904 new.freelist, new.counters,
1905 "unfreezing slab"));
1906
43d77867 1907 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
9ada1934
SL
1908 page->next = discard_page;
1909 discard_page = page;
43d77867
JK
1910 } else {
1911 add_partial(n, page, DEACTIVATE_TO_TAIL);
1912 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
1913 }
1914 }
1915
1916 if (n)
1917 spin_unlock(&n->list_lock);
9ada1934
SL
1918
1919 while (discard_page) {
1920 page = discard_page;
1921 discard_page = discard_page->next;
1922
1923 stat(s, DEACTIVATE_EMPTY);
1924 discard_slab(s, page);
1925 stat(s, FREE_SLAB);
1926 }
49e22585
CL
1927}
1928
1929/*
1930 * Put a page that was just frozen (in __slab_free) into a partial page
1931 * slot if available. This is done without interrupts disabled and without
1932 * preemption disabled. The cmpxchg is racy and may put the partial page
1933 * onto a random cpus partial slot.
1934 *
1935 * If we did not find a slot then simply move all the partials to the
1936 * per node partial list.
1937 */
1938int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1939{
1940 struct page *oldpage;
1941 int pages;
1942 int pobjects;
1943
1944 do {
1945 pages = 0;
1946 pobjects = 0;
1947 oldpage = this_cpu_read(s->cpu_slab->partial);
1948
1949 if (oldpage) {
1950 pobjects = oldpage->pobjects;
1951 pages = oldpage->pages;
1952 if (drain && pobjects > s->cpu_partial) {
1953 unsigned long flags;
1954 /*
1955 * partial array is full. Move the existing
1956 * set to the per node partial list.
1957 */
1958 local_irq_save(flags);
1959 unfreeze_partials(s);
1960 local_irq_restore(flags);
e24fc410 1961 oldpage = NULL;
49e22585
CL
1962 pobjects = 0;
1963 pages = 0;
8028dcea 1964 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
1965 }
1966 }
1967
1968 pages++;
1969 pobjects += page->objects - page->inuse;
1970
1971 page->pages = pages;
1972 page->pobjects = pobjects;
1973 page->next = oldpage;
1974
933393f5 1975 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
49e22585
CL
1976 return pobjects;
1977}
1978
dfb4f096 1979static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1980{
84e554e6 1981 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
1982 deactivate_slab(s, c->page, c->freelist);
1983
1984 c->tid = next_tid(c->tid);
1985 c->page = NULL;
1986 c->freelist = NULL;
81819f0f
CL
1987}
1988
1989/*
1990 * Flush cpu slab.
6446faa2 1991 *
81819f0f
CL
1992 * Called from IPI handler with interrupts disabled.
1993 */
0c710013 1994static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1995{
9dfc6e68 1996 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 1997
49e22585
CL
1998 if (likely(c)) {
1999 if (c->page)
2000 flush_slab(s, c);
2001
2002 unfreeze_partials(s);
2003 }
81819f0f
CL
2004}
2005
2006static void flush_cpu_slab(void *d)
2007{
2008 struct kmem_cache *s = d;
81819f0f 2009
dfb4f096 2010 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2011}
2012
a8364d55
GBY
2013static bool has_cpu_slab(int cpu, void *info)
2014{
2015 struct kmem_cache *s = info;
2016 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2017
02e1a9cd 2018 return c->page || c->partial;
a8364d55
GBY
2019}
2020
81819f0f
CL
2021static void flush_all(struct kmem_cache *s)
2022{
a8364d55 2023 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2024}
2025
dfb4f096
CL
2026/*
2027 * Check if the objects in a per cpu structure fit numa
2028 * locality expectations.
2029 */
57d437d2 2030static inline int node_match(struct page *page, int node)
dfb4f096
CL
2031{
2032#ifdef CONFIG_NUMA
57d437d2 2033 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2034 return 0;
2035#endif
2036 return 1;
2037}
2038
781b2ba6
PE
2039static int count_free(struct page *page)
2040{
2041 return page->objects - page->inuse;
2042}
2043
2044static unsigned long count_partial(struct kmem_cache_node *n,
2045 int (*get_count)(struct page *))
2046{
2047 unsigned long flags;
2048 unsigned long x = 0;
2049 struct page *page;
2050
2051 spin_lock_irqsave(&n->list_lock, flags);
2052 list_for_each_entry(page, &n->partial, lru)
2053 x += get_count(page);
2054 spin_unlock_irqrestore(&n->list_lock, flags);
2055 return x;
2056}
2057
26c02cf0
AB
2058static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2059{
2060#ifdef CONFIG_SLUB_DEBUG
2061 return atomic_long_read(&n->total_objects);
2062#else
2063 return 0;
2064#endif
2065}
2066
781b2ba6
PE
2067static noinline void
2068slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2069{
2070 int node;
2071
2072 printk(KERN_WARNING
2073 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2074 nid, gfpflags);
2075 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
3b0efdfa 2076 "default order: %d, min order: %d\n", s->name, s->object_size,
781b2ba6
PE
2077 s->size, oo_order(s->oo), oo_order(s->min));
2078
3b0efdfa 2079 if (oo_order(s->min) > get_order(s->object_size))
fa5ec8a1
DR
2080 printk(KERN_WARNING " %s debugging increased min order, use "
2081 "slub_debug=O to disable.\n", s->name);
2082
781b2ba6
PE
2083 for_each_online_node(node) {
2084 struct kmem_cache_node *n = get_node(s, node);
2085 unsigned long nr_slabs;
2086 unsigned long nr_objs;
2087 unsigned long nr_free;
2088
2089 if (!n)
2090 continue;
2091
26c02cf0
AB
2092 nr_free = count_partial(n, count_free);
2093 nr_slabs = node_nr_slabs(n);
2094 nr_objs = node_nr_objs(n);
781b2ba6
PE
2095
2096 printk(KERN_WARNING
2097 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2098 node, nr_slabs, nr_objs, nr_free);
2099 }
2100}
2101
497b66f2
CL
2102static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2103 int node, struct kmem_cache_cpu **pc)
2104{
6faa6833 2105 void *freelist;
188fd063
CL
2106 struct kmem_cache_cpu *c = *pc;
2107 struct page *page;
497b66f2 2108
188fd063 2109 freelist = get_partial(s, flags, node, c);
497b66f2 2110
188fd063
CL
2111 if (freelist)
2112 return freelist;
2113
2114 page = new_slab(s, flags, node);
497b66f2
CL
2115 if (page) {
2116 c = __this_cpu_ptr(s->cpu_slab);
2117 if (c->page)
2118 flush_slab(s, c);
2119
2120 /*
2121 * No other reference to the page yet so we can
2122 * muck around with it freely without cmpxchg
2123 */
6faa6833 2124 freelist = page->freelist;
497b66f2
CL
2125 page->freelist = NULL;
2126
2127 stat(s, ALLOC_SLAB);
497b66f2
CL
2128 c->page = page;
2129 *pc = c;
2130 } else
6faa6833 2131 freelist = NULL;
497b66f2 2132
6faa6833 2133 return freelist;
497b66f2
CL
2134}
2135
072bb0aa
MG
2136static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2137{
2138 if (unlikely(PageSlabPfmemalloc(page)))
2139 return gfp_pfmemalloc_allowed(gfpflags);
2140
2141 return true;
2142}
2143
213eeb9f
CL
2144/*
2145 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2146 * or deactivate the page.
2147 *
2148 * The page is still frozen if the return value is not NULL.
2149 *
2150 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2151 *
2152 * This function must be called with interrupt disabled.
213eeb9f
CL
2153 */
2154static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2155{
2156 struct page new;
2157 unsigned long counters;
2158 void *freelist;
2159
2160 do {
2161 freelist = page->freelist;
2162 counters = page->counters;
6faa6833 2163
213eeb9f
CL
2164 new.counters = counters;
2165 VM_BUG_ON(!new.frozen);
2166
2167 new.inuse = page->objects;
2168 new.frozen = freelist != NULL;
2169
d24ac77f 2170 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2171 freelist, counters,
2172 NULL, new.counters,
2173 "get_freelist"));
2174
2175 return freelist;
2176}
2177
81819f0f 2178/*
894b8788
CL
2179 * Slow path. The lockless freelist is empty or we need to perform
2180 * debugging duties.
2181 *
894b8788
CL
2182 * Processing is still very fast if new objects have been freed to the
2183 * regular freelist. In that case we simply take over the regular freelist
2184 * as the lockless freelist and zap the regular freelist.
81819f0f 2185 *
894b8788
CL
2186 * If that is not working then we fall back to the partial lists. We take the
2187 * first element of the freelist as the object to allocate now and move the
2188 * rest of the freelist to the lockless freelist.
81819f0f 2189 *
894b8788 2190 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2191 * we need to allocate a new slab. This is the slowest path since it involves
2192 * a call to the page allocator and the setup of a new slab.
81819f0f 2193 */
ce71e27c
EGM
2194static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2195 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2196{
6faa6833 2197 void *freelist;
f6e7def7 2198 struct page *page;
8a5ec0ba
CL
2199 unsigned long flags;
2200
2201 local_irq_save(flags);
2202#ifdef CONFIG_PREEMPT
2203 /*
2204 * We may have been preempted and rescheduled on a different
2205 * cpu before disabling interrupts. Need to reload cpu area
2206 * pointer.
2207 */
2208 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2209#endif
81819f0f 2210
f6e7def7
CL
2211 page = c->page;
2212 if (!page)
81819f0f 2213 goto new_slab;
49e22585 2214redo:
6faa6833 2215
57d437d2 2216 if (unlikely(!node_match(page, node))) {
e36a2652 2217 stat(s, ALLOC_NODE_MISMATCH);
f6e7def7 2218 deactivate_slab(s, page, c->freelist);
c17dda40
CL
2219 c->page = NULL;
2220 c->freelist = NULL;
fc59c053
CL
2221 goto new_slab;
2222 }
6446faa2 2223
072bb0aa
MG
2224 /*
2225 * By rights, we should be searching for a slab page that was
2226 * PFMEMALLOC but right now, we are losing the pfmemalloc
2227 * information when the page leaves the per-cpu allocator
2228 */
2229 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2230 deactivate_slab(s, page, c->freelist);
2231 c->page = NULL;
2232 c->freelist = NULL;
2233 goto new_slab;
2234 }
2235
73736e03 2236 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2237 freelist = c->freelist;
2238 if (freelist)
73736e03 2239 goto load_freelist;
03e404af 2240
2cfb7455 2241 stat(s, ALLOC_SLOWPATH);
03e404af 2242
f6e7def7 2243 freelist = get_freelist(s, page);
6446faa2 2244
6faa6833 2245 if (!freelist) {
03e404af
CL
2246 c->page = NULL;
2247 stat(s, DEACTIVATE_BYPASS);
fc59c053 2248 goto new_slab;
03e404af 2249 }
6446faa2 2250
84e554e6 2251 stat(s, ALLOC_REFILL);
6446faa2 2252
894b8788 2253load_freelist:
507effea
CL
2254 /*
2255 * freelist is pointing to the list of objects to be used.
2256 * page is pointing to the page from which the objects are obtained.
2257 * That page must be frozen for per cpu allocations to work.
2258 */
2259 VM_BUG_ON(!c->page->frozen);
6faa6833 2260 c->freelist = get_freepointer(s, freelist);
8a5ec0ba
CL
2261 c->tid = next_tid(c->tid);
2262 local_irq_restore(flags);
6faa6833 2263 return freelist;
81819f0f 2264
81819f0f 2265new_slab:
2cfb7455 2266
49e22585 2267 if (c->partial) {
f6e7def7
CL
2268 page = c->page = c->partial;
2269 c->partial = page->next;
49e22585
CL
2270 stat(s, CPU_PARTIAL_ALLOC);
2271 c->freelist = NULL;
2272 goto redo;
81819f0f
CL
2273 }
2274
188fd063 2275 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2276
f4697436
CL
2277 if (unlikely(!freelist)) {
2278 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2279 slab_out_of_memory(s, gfpflags, node);
2cfb7455 2280
f4697436
CL
2281 local_irq_restore(flags);
2282 return NULL;
81819f0f 2283 }
2cfb7455 2284
f6e7def7 2285 page = c->page;
5091b74a 2286 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2287 goto load_freelist;
2cfb7455 2288
497b66f2 2289 /* Only entered in the debug case */
5091b74a 2290 if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2291 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2292
f6e7def7 2293 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2294 c->page = NULL;
2295 c->freelist = NULL;
a71ae47a 2296 local_irq_restore(flags);
6faa6833 2297 return freelist;
894b8788
CL
2298}
2299
2300/*
2301 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2302 * have the fastpath folded into their functions. So no function call
2303 * overhead for requests that can be satisfied on the fastpath.
2304 *
2305 * The fastpath works by first checking if the lockless freelist can be used.
2306 * If not then __slab_alloc is called for slow processing.
2307 *
2308 * Otherwise we can simply pick the next object from the lockless free list.
2309 */
06428780 2310static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 2311 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2312{
894b8788 2313 void **object;
dfb4f096 2314 struct kmem_cache_cpu *c;
57d437d2 2315 struct page *page;
8a5ec0ba 2316 unsigned long tid;
1f84260c 2317
c016b0bd 2318 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2319 return NULL;
1f84260c 2320
8a5ec0ba 2321redo:
8a5ec0ba
CL
2322
2323 /*
2324 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2325 * enabled. We may switch back and forth between cpus while
2326 * reading from one cpu area. That does not matter as long
2327 * as we end up on the original cpu again when doing the cmpxchg.
2328 */
9dfc6e68 2329 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2330
8a5ec0ba
CL
2331 /*
2332 * The transaction ids are globally unique per cpu and per operation on
2333 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2334 * occurs on the right processor and that there was no operation on the
2335 * linked list in between.
2336 */
2337 tid = c->tid;
2338 barrier();
8a5ec0ba 2339
9dfc6e68 2340 object = c->freelist;
57d437d2 2341 page = c->page;
5091b74a 2342 if (unlikely(!object || !node_match(page, node)))
dfb4f096 2343 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
2344
2345 else {
0ad9500e
ED
2346 void *next_object = get_freepointer_safe(s, object);
2347
8a5ec0ba 2348 /*
25985edc 2349 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2350 * operation and if we are on the right processor.
2351 *
2352 * The cmpxchg does the following atomically (without lock semantics!)
2353 * 1. Relocate first pointer to the current per cpu area.
2354 * 2. Verify that tid and freelist have not been changed
2355 * 3. If they were not changed replace tid and freelist
2356 *
2357 * Since this is without lock semantics the protection is only against
2358 * code executing on this cpu *not* from access by other cpus.
2359 */
933393f5 2360 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2361 s->cpu_slab->freelist, s->cpu_slab->tid,
2362 object, tid,
0ad9500e 2363 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2364
2365 note_cmpxchg_failure("slab_alloc", s, tid);
2366 goto redo;
2367 }
0ad9500e 2368 prefetch_freepointer(s, next_object);
84e554e6 2369 stat(s, ALLOC_FASTPATH);
894b8788 2370 }
8a5ec0ba 2371
74e2134f 2372 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2373 memset(object, 0, s->object_size);
d07dbea4 2374
c016b0bd 2375 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2376
894b8788 2377 return object;
81819f0f
CL
2378}
2379
2380void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2381{
2154a336 2382 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2383
3b0efdfa 2384 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
5b882be4
EGM
2385
2386 return ret;
81819f0f
CL
2387}
2388EXPORT_SYMBOL(kmem_cache_alloc);
2389
0f24f128 2390#ifdef CONFIG_TRACING
4a92379b
RK
2391void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2392{
2393 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2394 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2395 return ret;
2396}
2397EXPORT_SYMBOL(kmem_cache_alloc_trace);
2398
2399void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 2400{
4a92379b
RK
2401 void *ret = kmalloc_order(size, flags, order);
2402 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2403 return ret;
5b882be4 2404}
4a92379b 2405EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
2406#endif
2407
81819f0f
CL
2408#ifdef CONFIG_NUMA
2409void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2410{
5b882be4
EGM
2411 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2412
ca2b84cb 2413 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2414 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2415
2416 return ret;
81819f0f
CL
2417}
2418EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2419
0f24f128 2420#ifdef CONFIG_TRACING
4a92379b 2421void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2422 gfp_t gfpflags,
4a92379b 2423 int node, size_t size)
5b882be4 2424{
4a92379b
RK
2425 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2426
2427 trace_kmalloc_node(_RET_IP_, ret,
2428 size, s->size, gfpflags, node);
2429 return ret;
5b882be4 2430}
4a92379b 2431EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2432#endif
5d1f57e4 2433#endif
5b882be4 2434
81819f0f 2435/*
894b8788
CL
2436 * Slow patch handling. This may still be called frequently since objects
2437 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2438 *
894b8788
CL
2439 * So we still attempt to reduce cache line usage. Just take the slab
2440 * lock and free the item. If there is no additional partial page
2441 * handling required then we can return immediately.
81819f0f 2442 */
894b8788 2443static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2444 void *x, unsigned long addr)
81819f0f
CL
2445{
2446 void *prior;
2447 void **object = (void *)x;
2cfb7455
CL
2448 int was_frozen;
2449 int inuse;
2450 struct page new;
2451 unsigned long counters;
2452 struct kmem_cache_node *n = NULL;
61728d1e 2453 unsigned long uninitialized_var(flags);
81819f0f 2454
8a5ec0ba 2455 stat(s, FREE_SLOWPATH);
81819f0f 2456
19c7ff9e
CL
2457 if (kmem_cache_debug(s) &&
2458 !(n = free_debug_processing(s, page, x, addr, &flags)))
80f08c19 2459 return;
6446faa2 2460
2cfb7455
CL
2461 do {
2462 prior = page->freelist;
2463 counters = page->counters;
2464 set_freepointer(s, object, prior);
2465 new.counters = counters;
2466 was_frozen = new.frozen;
2467 new.inuse--;
2468 if ((!new.inuse || !prior) && !was_frozen && !n) {
49e22585
CL
2469
2470 if (!kmem_cache_debug(s) && !prior)
2471
2472 /*
2473 * Slab was on no list before and will be partially empty
2474 * We can defer the list move and instead freeze it.
2475 */
2476 new.frozen = 1;
2477
2478 else { /* Needs to be taken off a list */
2479
2480 n = get_node(s, page_to_nid(page));
2481 /*
2482 * Speculatively acquire the list_lock.
2483 * If the cmpxchg does not succeed then we may
2484 * drop the list_lock without any processing.
2485 *
2486 * Otherwise the list_lock will synchronize with
2487 * other processors updating the list of slabs.
2488 */
2489 spin_lock_irqsave(&n->list_lock, flags);
2490
2491 }
2cfb7455
CL
2492 }
2493 inuse = new.inuse;
81819f0f 2494
2cfb7455
CL
2495 } while (!cmpxchg_double_slab(s, page,
2496 prior, counters,
2497 object, new.counters,
2498 "__slab_free"));
81819f0f 2499
2cfb7455 2500 if (likely(!n)) {
49e22585
CL
2501
2502 /*
2503 * If we just froze the page then put it onto the
2504 * per cpu partial list.
2505 */
8028dcea 2506 if (new.frozen && !was_frozen) {
49e22585 2507 put_cpu_partial(s, page, 1);
8028dcea
AS
2508 stat(s, CPU_PARTIAL_FREE);
2509 }
49e22585 2510 /*
2cfb7455
CL
2511 * The list lock was not taken therefore no list
2512 * activity can be necessary.
2513 */
2514 if (was_frozen)
2515 stat(s, FREE_FROZEN);
80f08c19 2516 return;
2cfb7455 2517 }
81819f0f
CL
2518
2519 /*
2cfb7455
CL
2520 * was_frozen may have been set after we acquired the list_lock in
2521 * an earlier loop. So we need to check it here again.
81819f0f 2522 */
2cfb7455
CL
2523 if (was_frozen)
2524 stat(s, FREE_FROZEN);
2525 else {
2526 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2527 goto slab_empty;
81819f0f 2528
2cfb7455
CL
2529 /*
2530 * Objects left in the slab. If it was not on the partial list before
2531 * then add it.
2532 */
2533 if (unlikely(!prior)) {
2534 remove_full(s, page);
136333d1 2535 add_partial(n, page, DEACTIVATE_TO_TAIL);
2cfb7455
CL
2536 stat(s, FREE_ADD_PARTIAL);
2537 }
8ff12cfc 2538 }
80f08c19 2539 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2540 return;
2541
2542slab_empty:
a973e9dd 2543 if (prior) {
81819f0f 2544 /*
6fbabb20 2545 * Slab on the partial list.
81819f0f 2546 */
5cc6eee8 2547 remove_partial(n, page);
84e554e6 2548 stat(s, FREE_REMOVE_PARTIAL);
6fbabb20
CL
2549 } else
2550 /* Slab must be on the full list */
2551 remove_full(s, page);
2cfb7455 2552
80f08c19 2553 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2554 stat(s, FREE_SLAB);
81819f0f 2555 discard_slab(s, page);
81819f0f
CL
2556}
2557
894b8788
CL
2558/*
2559 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2560 * can perform fastpath freeing without additional function calls.
2561 *
2562 * The fastpath is only possible if we are freeing to the current cpu slab
2563 * of this processor. This typically the case if we have just allocated
2564 * the item before.
2565 *
2566 * If fastpath is not possible then fall back to __slab_free where we deal
2567 * with all sorts of special processing.
2568 */
06428780 2569static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2570 struct page *page, void *x, unsigned long addr)
894b8788
CL
2571{
2572 void **object = (void *)x;
dfb4f096 2573 struct kmem_cache_cpu *c;
8a5ec0ba 2574 unsigned long tid;
1f84260c 2575
c016b0bd
CL
2576 slab_free_hook(s, x);
2577
8a5ec0ba
CL
2578redo:
2579 /*
2580 * Determine the currently cpus per cpu slab.
2581 * The cpu may change afterward. However that does not matter since
2582 * data is retrieved via this pointer. If we are on the same cpu
2583 * during the cmpxchg then the free will succedd.
2584 */
9dfc6e68 2585 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2586
8a5ec0ba
CL
2587 tid = c->tid;
2588 barrier();
c016b0bd 2589
442b06bc 2590 if (likely(page == c->page)) {
ff12059e 2591 set_freepointer(s, object, c->freelist);
8a5ec0ba 2592
933393f5 2593 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2594 s->cpu_slab->freelist, s->cpu_slab->tid,
2595 c->freelist, tid,
2596 object, next_tid(tid)))) {
2597
2598 note_cmpxchg_failure("slab_free", s, tid);
2599 goto redo;
2600 }
84e554e6 2601 stat(s, FREE_FASTPATH);
894b8788 2602 } else
ff12059e 2603 __slab_free(s, page, x, addr);
894b8788 2604
894b8788
CL
2605}
2606
81819f0f
CL
2607void kmem_cache_free(struct kmem_cache *s, void *x)
2608{
77c5e2d0 2609 struct page *page;
81819f0f 2610
b49af68f 2611 page = virt_to_head_page(x);
81819f0f 2612
79576102
CL
2613 if (kmem_cache_debug(s) && page->slab != s) {
2614 pr_err("kmem_cache_free: Wrong slab cache. %s but object"
2615 " is from %s\n", page->slab->name, s->name);
2616 WARN_ON_ONCE(1);
2617 return;
2618 }
2619
ce71e27c 2620 slab_free(s, page, x, _RET_IP_);
5b882be4 2621
ca2b84cb 2622 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2623}
2624EXPORT_SYMBOL(kmem_cache_free);
2625
81819f0f 2626/*
672bba3a
CL
2627 * Object placement in a slab is made very easy because we always start at
2628 * offset 0. If we tune the size of the object to the alignment then we can
2629 * get the required alignment by putting one properly sized object after
2630 * another.
81819f0f
CL
2631 *
2632 * Notice that the allocation order determines the sizes of the per cpu
2633 * caches. Each processor has always one slab available for allocations.
2634 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2635 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2636 * locking overhead.
81819f0f
CL
2637 */
2638
2639/*
2640 * Mininum / Maximum order of slab pages. This influences locking overhead
2641 * and slab fragmentation. A higher order reduces the number of partial slabs
2642 * and increases the number of allocations possible without having to
2643 * take the list_lock.
2644 */
2645static int slub_min_order;
114e9e89 2646static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2647static int slub_min_objects;
81819f0f
CL
2648
2649/*
2650 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2651 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2652 */
2653static int slub_nomerge;
2654
81819f0f
CL
2655/*
2656 * Calculate the order of allocation given an slab object size.
2657 *
672bba3a
CL
2658 * The order of allocation has significant impact on performance and other
2659 * system components. Generally order 0 allocations should be preferred since
2660 * order 0 does not cause fragmentation in the page allocator. Larger objects
2661 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2662 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2663 * would be wasted.
2664 *
2665 * In order to reach satisfactory performance we must ensure that a minimum
2666 * number of objects is in one slab. Otherwise we may generate too much
2667 * activity on the partial lists which requires taking the list_lock. This is
2668 * less a concern for large slabs though which are rarely used.
81819f0f 2669 *
672bba3a
CL
2670 * slub_max_order specifies the order where we begin to stop considering the
2671 * number of objects in a slab as critical. If we reach slub_max_order then
2672 * we try to keep the page order as low as possible. So we accept more waste
2673 * of space in favor of a small page order.
81819f0f 2674 *
672bba3a
CL
2675 * Higher order allocations also allow the placement of more objects in a
2676 * slab and thereby reduce object handling overhead. If the user has
2677 * requested a higher mininum order then we start with that one instead of
2678 * the smallest order which will fit the object.
81819f0f 2679 */
5e6d444e 2680static inline int slab_order(int size, int min_objects,
ab9a0f19 2681 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2682{
2683 int order;
2684 int rem;
6300ea75 2685 int min_order = slub_min_order;
81819f0f 2686
ab9a0f19 2687 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2688 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2689
6300ea75 2690 for (order = max(min_order,
5e6d444e
CL
2691 fls(min_objects * size - 1) - PAGE_SHIFT);
2692 order <= max_order; order++) {
81819f0f 2693
5e6d444e 2694 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2695
ab9a0f19 2696 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2697 continue;
2698
ab9a0f19 2699 rem = (slab_size - reserved) % size;
81819f0f 2700
5e6d444e 2701 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2702 break;
2703
2704 }
672bba3a 2705
81819f0f
CL
2706 return order;
2707}
2708
ab9a0f19 2709static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2710{
2711 int order;
2712 int min_objects;
2713 int fraction;
e8120ff1 2714 int max_objects;
5e6d444e
CL
2715
2716 /*
2717 * Attempt to find best configuration for a slab. This
2718 * works by first attempting to generate a layout with
2719 * the best configuration and backing off gradually.
2720 *
2721 * First we reduce the acceptable waste in a slab. Then
2722 * we reduce the minimum objects required in a slab.
2723 */
2724 min_objects = slub_min_objects;
9b2cd506
CL
2725 if (!min_objects)
2726 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2727 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2728 min_objects = min(min_objects, max_objects);
2729
5e6d444e 2730 while (min_objects > 1) {
c124f5b5 2731 fraction = 16;
5e6d444e
CL
2732 while (fraction >= 4) {
2733 order = slab_order(size, min_objects,
ab9a0f19 2734 slub_max_order, fraction, reserved);
5e6d444e
CL
2735 if (order <= slub_max_order)
2736 return order;
2737 fraction /= 2;
2738 }
5086c389 2739 min_objects--;
5e6d444e
CL
2740 }
2741
2742 /*
2743 * We were unable to place multiple objects in a slab. Now
2744 * lets see if we can place a single object there.
2745 */
ab9a0f19 2746 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2747 if (order <= slub_max_order)
2748 return order;
2749
2750 /*
2751 * Doh this slab cannot be placed using slub_max_order.
2752 */
ab9a0f19 2753 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2754 if (order < MAX_ORDER)
5e6d444e
CL
2755 return order;
2756 return -ENOSYS;
2757}
2758
81819f0f 2759/*
672bba3a 2760 * Figure out what the alignment of the objects will be.
81819f0f
CL
2761 */
2762static unsigned long calculate_alignment(unsigned long flags,
2763 unsigned long align, unsigned long size)
2764{
2765 /*
6446faa2
CL
2766 * If the user wants hardware cache aligned objects then follow that
2767 * suggestion if the object is sufficiently large.
81819f0f 2768 *
6446faa2
CL
2769 * The hardware cache alignment cannot override the specified
2770 * alignment though. If that is greater then use it.
81819f0f 2771 */
b6210386
NP
2772 if (flags & SLAB_HWCACHE_ALIGN) {
2773 unsigned long ralign = cache_line_size();
2774 while (size <= ralign / 2)
2775 ralign /= 2;
2776 align = max(align, ralign);
2777 }
81819f0f
CL
2778
2779 if (align < ARCH_SLAB_MINALIGN)
b6210386 2780 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2781
2782 return ALIGN(align, sizeof(void *));
2783}
2784
5595cffc 2785static void
4053497d 2786init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
2787{
2788 n->nr_partial = 0;
81819f0f
CL
2789 spin_lock_init(&n->list_lock);
2790 INIT_LIST_HEAD(&n->partial);
8ab1372f 2791#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2792 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2793 atomic_long_set(&n->total_objects, 0);
643b1138 2794 INIT_LIST_HEAD(&n->full);
8ab1372f 2795#endif
81819f0f
CL
2796}
2797
55136592 2798static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2799{
6c182dc0
CL
2800 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2801 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2802
8a5ec0ba 2803 /*
d4d84fef
CM
2804 * Must align to double word boundary for the double cmpxchg
2805 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2806 */
d4d84fef
CM
2807 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2808 2 * sizeof(void *));
8a5ec0ba
CL
2809
2810 if (!s->cpu_slab)
2811 return 0;
2812
2813 init_kmem_cache_cpus(s);
4c93c355 2814
8a5ec0ba 2815 return 1;
4c93c355 2816}
4c93c355 2817
51df1142
CL
2818static struct kmem_cache *kmem_cache_node;
2819
81819f0f
CL
2820/*
2821 * No kmalloc_node yet so do it by hand. We know that this is the first
2822 * slab on the node for this slabcache. There are no concurrent accesses
2823 * possible.
2824 *
2825 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2826 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2827 * memory on a fresh node that has no slab structures yet.
81819f0f 2828 */
55136592 2829static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2830{
2831 struct page *page;
2832 struct kmem_cache_node *n;
2833
51df1142 2834 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2835
51df1142 2836 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2837
2838 BUG_ON(!page);
a2f92ee7
CL
2839 if (page_to_nid(page) != node) {
2840 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2841 "node %d\n", node);
2842 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2843 "in order to be able to continue\n");
2844 }
2845
81819f0f
CL
2846 n = page->freelist;
2847 BUG_ON(!n);
51df1142 2848 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2849 page->inuse = 1;
8cb0a506 2850 page->frozen = 0;
51df1142 2851 kmem_cache_node->node[node] = n;
8ab1372f 2852#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2853 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2854 init_tracking(kmem_cache_node, n);
8ab1372f 2855#endif
4053497d 2856 init_kmem_cache_node(n);
51df1142 2857 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2858
136333d1 2859 add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2860}
2861
2862static void free_kmem_cache_nodes(struct kmem_cache *s)
2863{
2864 int node;
2865
f64dc58c 2866 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2867 struct kmem_cache_node *n = s->node[node];
51df1142 2868
73367bd8 2869 if (n)
51df1142
CL
2870 kmem_cache_free(kmem_cache_node, n);
2871
81819f0f
CL
2872 s->node[node] = NULL;
2873 }
2874}
2875
55136592 2876static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2877{
2878 int node;
81819f0f 2879
f64dc58c 2880 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2881 struct kmem_cache_node *n;
2882
73367bd8 2883 if (slab_state == DOWN) {
55136592 2884 early_kmem_cache_node_alloc(node);
73367bd8
AD
2885 continue;
2886 }
51df1142 2887 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2888 GFP_KERNEL, node);
81819f0f 2889
73367bd8
AD
2890 if (!n) {
2891 free_kmem_cache_nodes(s);
2892 return 0;
81819f0f 2893 }
73367bd8 2894
81819f0f 2895 s->node[node] = n;
4053497d 2896 init_kmem_cache_node(n);
81819f0f
CL
2897 }
2898 return 1;
2899}
81819f0f 2900
c0bdb232 2901static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2902{
2903 if (min < MIN_PARTIAL)
2904 min = MIN_PARTIAL;
2905 else if (min > MAX_PARTIAL)
2906 min = MAX_PARTIAL;
2907 s->min_partial = min;
2908}
2909
81819f0f
CL
2910/*
2911 * calculate_sizes() determines the order and the distribution of data within
2912 * a slab object.
2913 */
06b285dc 2914static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2915{
2916 unsigned long flags = s->flags;
3b0efdfa 2917 unsigned long size = s->object_size;
81819f0f 2918 unsigned long align = s->align;
834f3d11 2919 int order;
81819f0f 2920
d8b42bf5
CL
2921 /*
2922 * Round up object size to the next word boundary. We can only
2923 * place the free pointer at word boundaries and this determines
2924 * the possible location of the free pointer.
2925 */
2926 size = ALIGN(size, sizeof(void *));
2927
2928#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2929 /*
2930 * Determine if we can poison the object itself. If the user of
2931 * the slab may touch the object after free or before allocation
2932 * then we should never poison the object itself.
2933 */
2934 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2935 !s->ctor)
81819f0f
CL
2936 s->flags |= __OBJECT_POISON;
2937 else
2938 s->flags &= ~__OBJECT_POISON;
2939
81819f0f
CL
2940
2941 /*
672bba3a 2942 * If we are Redzoning then check if there is some space between the
81819f0f 2943 * end of the object and the free pointer. If not then add an
672bba3a 2944 * additional word to have some bytes to store Redzone information.
81819f0f 2945 */
3b0efdfa 2946 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 2947 size += sizeof(void *);
41ecc55b 2948#endif
81819f0f
CL
2949
2950 /*
672bba3a
CL
2951 * With that we have determined the number of bytes in actual use
2952 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2953 */
2954 s->inuse = size;
2955
2956 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2957 s->ctor)) {
81819f0f
CL
2958 /*
2959 * Relocate free pointer after the object if it is not
2960 * permitted to overwrite the first word of the object on
2961 * kmem_cache_free.
2962 *
2963 * This is the case if we do RCU, have a constructor or
2964 * destructor or are poisoning the objects.
2965 */
2966 s->offset = size;
2967 size += sizeof(void *);
2968 }
2969
c12b3c62 2970#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2971 if (flags & SLAB_STORE_USER)
2972 /*
2973 * Need to store information about allocs and frees after
2974 * the object.
2975 */
2976 size += 2 * sizeof(struct track);
2977
be7b3fbc 2978 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2979 /*
2980 * Add some empty padding so that we can catch
2981 * overwrites from earlier objects rather than let
2982 * tracking information or the free pointer be
0211a9c8 2983 * corrupted if a user writes before the start
81819f0f
CL
2984 * of the object.
2985 */
2986 size += sizeof(void *);
41ecc55b 2987#endif
672bba3a 2988
81819f0f
CL
2989 /*
2990 * Determine the alignment based on various parameters that the
65c02d4c
CL
2991 * user specified and the dynamic determination of cache line size
2992 * on bootup.
81819f0f 2993 */
3b0efdfa 2994 align = calculate_alignment(flags, align, s->object_size);
dcb0ce1b 2995 s->align = align;
81819f0f
CL
2996
2997 /*
2998 * SLUB stores one object immediately after another beginning from
2999 * offset 0. In order to align the objects we have to simply size
3000 * each object to conform to the alignment.
3001 */
3002 size = ALIGN(size, align);
3003 s->size = size;
06b285dc
CL
3004 if (forced_order >= 0)
3005 order = forced_order;
3006 else
ab9a0f19 3007 order = calculate_order(size, s->reserved);
81819f0f 3008
834f3d11 3009 if (order < 0)
81819f0f
CL
3010 return 0;
3011
b7a49f0d 3012 s->allocflags = 0;
834f3d11 3013 if (order)
b7a49f0d
CL
3014 s->allocflags |= __GFP_COMP;
3015
3016 if (s->flags & SLAB_CACHE_DMA)
3017 s->allocflags |= SLUB_DMA;
3018
3019 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3020 s->allocflags |= __GFP_RECLAIMABLE;
3021
81819f0f
CL
3022 /*
3023 * Determine the number of objects per slab
3024 */
ab9a0f19
LJ
3025 s->oo = oo_make(order, size, s->reserved);
3026 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3027 if (oo_objects(s->oo) > oo_objects(s->max))
3028 s->max = s->oo;
81819f0f 3029
834f3d11 3030 return !!oo_objects(s->oo);
81819f0f
CL
3031
3032}
3033
55136592 3034static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
3035 const char *name, size_t size,
3036 size_t align, unsigned long flags,
51cc5068 3037 void (*ctor)(void *))
81819f0f
CL
3038{
3039 memset(s, 0, kmem_size);
3040 s->name = name;
3041 s->ctor = ctor;
3b0efdfa 3042 s->object_size = size;
81819f0f 3043 s->align = align;
ba0268a8 3044 s->flags = kmem_cache_flags(size, flags, name, ctor);
ab9a0f19 3045 s->reserved = 0;
81819f0f 3046
da9a638c
LJ
3047 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3048 s->reserved = sizeof(struct rcu_head);
81819f0f 3049
06b285dc 3050 if (!calculate_sizes(s, -1))
81819f0f 3051 goto error;
3de47213
DR
3052 if (disable_higher_order_debug) {
3053 /*
3054 * Disable debugging flags that store metadata if the min slab
3055 * order increased.
3056 */
3b0efdfa 3057 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3058 s->flags &= ~DEBUG_METADATA_FLAGS;
3059 s->offset = 0;
3060 if (!calculate_sizes(s, -1))
3061 goto error;
3062 }
3063 }
81819f0f 3064
2565409f
HC
3065#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3066 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3067 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3068 /* Enable fast mode */
3069 s->flags |= __CMPXCHG_DOUBLE;
3070#endif
3071
3b89d7d8
DR
3072 /*
3073 * The larger the object size is, the more pages we want on the partial
3074 * list to avoid pounding the page allocator excessively.
3075 */
49e22585
CL
3076 set_min_partial(s, ilog2(s->size) / 2);
3077
3078 /*
3079 * cpu_partial determined the maximum number of objects kept in the
3080 * per cpu partial lists of a processor.
3081 *
3082 * Per cpu partial lists mainly contain slabs that just have one
3083 * object freed. If they are used for allocation then they can be
3084 * filled up again with minimal effort. The slab will never hit the
3085 * per node partial lists and therefore no locking will be required.
3086 *
3087 * This setting also determines
3088 *
3089 * A) The number of objects from per cpu partial slabs dumped to the
3090 * per node list when we reach the limit.
9f264904 3091 * B) The number of objects in cpu partial slabs to extract from the
49e22585
CL
3092 * per node list when we run out of per cpu objects. We only fetch 50%
3093 * to keep some capacity around for frees.
3094 */
8f1e33da
CL
3095 if (kmem_cache_debug(s))
3096 s->cpu_partial = 0;
3097 else if (s->size >= PAGE_SIZE)
49e22585
CL
3098 s->cpu_partial = 2;
3099 else if (s->size >= 1024)
3100 s->cpu_partial = 6;
3101 else if (s->size >= 256)
3102 s->cpu_partial = 13;
3103 else
3104 s->cpu_partial = 30;
3105
81819f0f
CL
3106 s->refcount = 1;
3107#ifdef CONFIG_NUMA
e2cb96b7 3108 s->remote_node_defrag_ratio = 1000;
81819f0f 3109#endif
55136592 3110 if (!init_kmem_cache_nodes(s))
dfb4f096 3111 goto error;
81819f0f 3112
55136592 3113 if (alloc_kmem_cache_cpus(s))
81819f0f 3114 return 1;
ff12059e 3115
4c93c355 3116 free_kmem_cache_nodes(s);
81819f0f
CL
3117error:
3118 if (flags & SLAB_PANIC)
3119 panic("Cannot create slab %s size=%lu realsize=%u "
3120 "order=%u offset=%u flags=%lx\n",
834f3d11 3121 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
3122 s->offset, flags);
3123 return 0;
3124}
81819f0f 3125
81819f0f
CL
3126/*
3127 * Determine the size of a slab object
3128 */
3129unsigned int kmem_cache_size(struct kmem_cache *s)
3130{
3b0efdfa 3131 return s->object_size;
81819f0f
CL
3132}
3133EXPORT_SYMBOL(kmem_cache_size);
3134
33b12c38
CL
3135static void list_slab_objects(struct kmem_cache *s, struct page *page,
3136 const char *text)
3137{
3138#ifdef CONFIG_SLUB_DEBUG
3139 void *addr = page_address(page);
3140 void *p;
a5dd5c11
NK
3141 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3142 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3143 if (!map)
3144 return;
945cf2b6 3145 slab_err(s, page, text, s->name);
33b12c38 3146 slab_lock(page);
33b12c38 3147
5f80b13a 3148 get_map(s, page, map);
33b12c38
CL
3149 for_each_object(p, s, addr, page->objects) {
3150
3151 if (!test_bit(slab_index(p, s, addr), map)) {
3152 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3153 p, p - addr);
3154 print_tracking(s, p);
3155 }
3156 }
3157 slab_unlock(page);
bbd7d57b 3158 kfree(map);
33b12c38
CL
3159#endif
3160}
3161
81819f0f 3162/*
599870b1 3163 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3164 * This is called from kmem_cache_close(). We must be the last thread
3165 * using the cache and therefore we do not need to lock anymore.
81819f0f 3166 */
599870b1 3167static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3168{
81819f0f
CL
3169 struct page *page, *h;
3170
33b12c38 3171 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3172 if (!page->inuse) {
5cc6eee8 3173 remove_partial(n, page);
81819f0f 3174 discard_slab(s, page);
33b12c38
CL
3175 } else {
3176 list_slab_objects(s, page,
945cf2b6 3177 "Objects remaining in %s on kmem_cache_close()");
599870b1 3178 }
33b12c38 3179 }
81819f0f
CL
3180}
3181
3182/*
672bba3a 3183 * Release all resources used by a slab cache.
81819f0f 3184 */
0c710013 3185static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3186{
3187 int node;
3188
3189 flush_all(s);
81819f0f 3190 /* Attempt to free all objects */
f64dc58c 3191 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3192 struct kmem_cache_node *n = get_node(s, node);
3193
599870b1
CL
3194 free_partial(s, n);
3195 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3196 return 1;
3197 }
945cf2b6 3198 free_percpu(s->cpu_slab);
81819f0f
CL
3199 free_kmem_cache_nodes(s);
3200 return 0;
3201}
3202
945cf2b6
CL
3203int __kmem_cache_shutdown(struct kmem_cache *s)
3204{
12c3667f 3205 int rc = kmem_cache_close(s);
945cf2b6 3206
12c3667f
CL
3207 if (!rc)
3208 sysfs_slab_remove(s);
3209
3210 return rc;
81819f0f 3211}
81819f0f
CL
3212
3213/********************************************************************
3214 * Kmalloc subsystem
3215 *******************************************************************/
3216
51df1142 3217struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
3218EXPORT_SYMBOL(kmalloc_caches);
3219
55136592 3220#ifdef CONFIG_ZONE_DMA
51df1142 3221static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
3222#endif
3223
81819f0f
CL
3224static int __init setup_slub_min_order(char *str)
3225{
06428780 3226 get_option(&str, &slub_min_order);
81819f0f
CL
3227
3228 return 1;
3229}
3230
3231__setup("slub_min_order=", setup_slub_min_order);
3232
3233static int __init setup_slub_max_order(char *str)
3234{
06428780 3235 get_option(&str, &slub_max_order);
818cf590 3236 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3237
3238 return 1;
3239}
3240
3241__setup("slub_max_order=", setup_slub_max_order);
3242
3243static int __init setup_slub_min_objects(char *str)
3244{
06428780 3245 get_option(&str, &slub_min_objects);
81819f0f
CL
3246
3247 return 1;
3248}
3249
3250__setup("slub_min_objects=", setup_slub_min_objects);
3251
3252static int __init setup_slub_nomerge(char *str)
3253{
3254 slub_nomerge = 1;
3255 return 1;
3256}
3257
3258__setup("slub_nomerge", setup_slub_nomerge);
3259
51df1142
CL
3260static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3261 int size, unsigned int flags)
81819f0f 3262{
51df1142
CL
3263 struct kmem_cache *s;
3264
3265 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3266
83b519e8
PE
3267 /*
3268 * This function is called with IRQs disabled during early-boot on
18004c5d 3269 * single CPU so there's no need to take slab_mutex here.
83b519e8 3270 */
55136592 3271 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 3272 flags, NULL))
81819f0f
CL
3273 goto panic;
3274
3275 list_add(&s->list, &slab_caches);
51df1142 3276 return s;
81819f0f
CL
3277
3278panic:
3279 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 3280 return NULL;
81819f0f
CL
3281}
3282
f1b26339
CL
3283/*
3284 * Conversion table for small slabs sizes / 8 to the index in the
3285 * kmalloc array. This is necessary for slabs < 192 since we have non power
3286 * of two cache sizes there. The size of larger slabs can be determined using
3287 * fls.
3288 */
3289static s8 size_index[24] = {
3290 3, /* 8 */
3291 4, /* 16 */
3292 5, /* 24 */
3293 5, /* 32 */
3294 6, /* 40 */
3295 6, /* 48 */
3296 6, /* 56 */
3297 6, /* 64 */
3298 1, /* 72 */
3299 1, /* 80 */
3300 1, /* 88 */
3301 1, /* 96 */
3302 7, /* 104 */
3303 7, /* 112 */
3304 7, /* 120 */
3305 7, /* 128 */
3306 2, /* 136 */
3307 2, /* 144 */
3308 2, /* 152 */
3309 2, /* 160 */
3310 2, /* 168 */
3311 2, /* 176 */
3312 2, /* 184 */
3313 2 /* 192 */
3314};
3315
acdfcd04
AK
3316static inline int size_index_elem(size_t bytes)
3317{
3318 return (bytes - 1) / 8;
3319}
3320
81819f0f
CL
3321static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3322{
f1b26339 3323 int index;
81819f0f 3324
f1b26339
CL
3325 if (size <= 192) {
3326 if (!size)
3327 return ZERO_SIZE_PTR;
81819f0f 3328
acdfcd04 3329 index = size_index[size_index_elem(size)];
aadb4bc4 3330 } else
f1b26339 3331 index = fls(size - 1);
81819f0f
CL
3332
3333#ifdef CONFIG_ZONE_DMA
f1b26339 3334 if (unlikely((flags & SLUB_DMA)))
51df1142 3335 return kmalloc_dma_caches[index];
f1b26339 3336
81819f0f 3337#endif
51df1142 3338 return kmalloc_caches[index];
81819f0f
CL
3339}
3340
3341void *__kmalloc(size_t size, gfp_t flags)
3342{
aadb4bc4 3343 struct kmem_cache *s;
5b882be4 3344 void *ret;
81819f0f 3345
ffadd4d0 3346 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 3347 return kmalloc_large(size, flags);
aadb4bc4
CL
3348
3349 s = get_slab(size, flags);
3350
3351 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3352 return s;
3353
2154a336 3354 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 3355
ca2b84cb 3356 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3357
3358 return ret;
81819f0f
CL
3359}
3360EXPORT_SYMBOL(__kmalloc);
3361
5d1f57e4 3362#ifdef CONFIG_NUMA
f619cfe1
CL
3363static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3364{
b1eeab67 3365 struct page *page;
e4f7c0b4 3366 void *ptr = NULL;
f619cfe1 3367
b1eeab67
VN
3368 flags |= __GFP_COMP | __GFP_NOTRACK;
3369 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3370 if (page)
e4f7c0b4
CM
3371 ptr = page_address(page);
3372
3373 kmemleak_alloc(ptr, size, 1, flags);
3374 return ptr;
f619cfe1
CL
3375}
3376
81819f0f
CL
3377void *__kmalloc_node(size_t size, gfp_t flags, int node)
3378{
aadb4bc4 3379 struct kmem_cache *s;
5b882be4 3380 void *ret;
81819f0f 3381
057685cf 3382 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
3383 ret = kmalloc_large_node(size, flags, node);
3384
ca2b84cb
EGM
3385 trace_kmalloc_node(_RET_IP_, ret,
3386 size, PAGE_SIZE << get_order(size),
3387 flags, node);
5b882be4
EGM
3388
3389 return ret;
3390 }
aadb4bc4
CL
3391
3392 s = get_slab(size, flags);
3393
3394 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3395 return s;
3396
5b882be4
EGM
3397 ret = slab_alloc(s, flags, node, _RET_IP_);
3398
ca2b84cb 3399 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3400
3401 return ret;
81819f0f
CL
3402}
3403EXPORT_SYMBOL(__kmalloc_node);
3404#endif
3405
3406size_t ksize(const void *object)
3407{
272c1d21 3408 struct page *page;
81819f0f 3409
ef8b4520 3410 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3411 return 0;
3412
294a80a8 3413 page = virt_to_head_page(object);
294a80a8 3414
76994412
PE
3415 if (unlikely(!PageSlab(page))) {
3416 WARN_ON(!PageCompound(page));
294a80a8 3417 return PAGE_SIZE << compound_order(page);
76994412 3418 }
81819f0f 3419
b3d41885 3420 return slab_ksize(page->slab);
81819f0f 3421}
b1aabecd 3422EXPORT_SYMBOL(ksize);
81819f0f 3423
d18a90dd
BG
3424#ifdef CONFIG_SLUB_DEBUG
3425bool verify_mem_not_deleted(const void *x)
3426{
3427 struct page *page;
3428 void *object = (void *)x;
3429 unsigned long flags;
3430 bool rv;
3431
3432 if (unlikely(ZERO_OR_NULL_PTR(x)))
3433 return false;
3434
3435 local_irq_save(flags);
3436
3437 page = virt_to_head_page(x);
3438 if (unlikely(!PageSlab(page))) {
3439 /* maybe it was from stack? */
3440 rv = true;
3441 goto out_unlock;
3442 }
3443
3444 slab_lock(page);
3445 if (on_freelist(page->slab, page, object)) {
3446 object_err(page->slab, page, object, "Object is on free-list");
3447 rv = false;
3448 } else {
3449 rv = true;
3450 }
3451 slab_unlock(page);
3452
3453out_unlock:
3454 local_irq_restore(flags);
3455 return rv;
3456}
3457EXPORT_SYMBOL(verify_mem_not_deleted);
3458#endif
3459
81819f0f
CL
3460void kfree(const void *x)
3461{
81819f0f 3462 struct page *page;
5bb983b0 3463 void *object = (void *)x;
81819f0f 3464
2121db74
PE
3465 trace_kfree(_RET_IP_, x);
3466
2408c550 3467 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3468 return;
3469
b49af68f 3470 page = virt_to_head_page(x);
aadb4bc4 3471 if (unlikely(!PageSlab(page))) {
0937502a 3472 BUG_ON(!PageCompound(page));
e4f7c0b4 3473 kmemleak_free(x);
d9b7f226 3474 __free_pages(page, compound_order(page));
aadb4bc4
CL
3475 return;
3476 }
ce71e27c 3477 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
3478}
3479EXPORT_SYMBOL(kfree);
3480
2086d26a 3481/*
672bba3a
CL
3482 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3483 * the remaining slabs by the number of items in use. The slabs with the
3484 * most items in use come first. New allocations will then fill those up
3485 * and thus they can be removed from the partial lists.
3486 *
3487 * The slabs with the least items are placed last. This results in them
3488 * being allocated from last increasing the chance that the last objects
3489 * are freed in them.
2086d26a
CL
3490 */
3491int kmem_cache_shrink(struct kmem_cache *s)
3492{
3493 int node;
3494 int i;
3495 struct kmem_cache_node *n;
3496 struct page *page;
3497 struct page *t;
205ab99d 3498 int objects = oo_objects(s->max);
2086d26a 3499 struct list_head *slabs_by_inuse =
834f3d11 3500 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3501 unsigned long flags;
3502
3503 if (!slabs_by_inuse)
3504 return -ENOMEM;
3505
3506 flush_all(s);
f64dc58c 3507 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3508 n = get_node(s, node);
3509
3510 if (!n->nr_partial)
3511 continue;
3512
834f3d11 3513 for (i = 0; i < objects; i++)
2086d26a
CL
3514 INIT_LIST_HEAD(slabs_by_inuse + i);
3515
3516 spin_lock_irqsave(&n->list_lock, flags);
3517
3518 /*
672bba3a 3519 * Build lists indexed by the items in use in each slab.
2086d26a 3520 *
672bba3a
CL
3521 * Note that concurrent frees may occur while we hold the
3522 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3523 */
3524 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3525 list_move(&page->lru, slabs_by_inuse + page->inuse);
3526 if (!page->inuse)
3527 n->nr_partial--;
2086d26a
CL
3528 }
3529
2086d26a 3530 /*
672bba3a
CL
3531 * Rebuild the partial list with the slabs filled up most
3532 * first and the least used slabs at the end.
2086d26a 3533 */
69cb8e6b 3534 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3535 list_splice(slabs_by_inuse + i, n->partial.prev);
3536
2086d26a 3537 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3538
3539 /* Release empty slabs */
3540 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3541 discard_slab(s, page);
2086d26a
CL
3542 }
3543
3544 kfree(slabs_by_inuse);
3545 return 0;
3546}
3547EXPORT_SYMBOL(kmem_cache_shrink);
3548
92a5bbc1 3549#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
3550static int slab_mem_going_offline_callback(void *arg)
3551{
3552 struct kmem_cache *s;
3553
18004c5d 3554 mutex_lock(&slab_mutex);
b9049e23
YG
3555 list_for_each_entry(s, &slab_caches, list)
3556 kmem_cache_shrink(s);
18004c5d 3557 mutex_unlock(&slab_mutex);
b9049e23
YG
3558
3559 return 0;
3560}
3561
3562static void slab_mem_offline_callback(void *arg)
3563{
3564 struct kmem_cache_node *n;
3565 struct kmem_cache *s;
3566 struct memory_notify *marg = arg;
3567 int offline_node;
3568
3569 offline_node = marg->status_change_nid;
3570
3571 /*
3572 * If the node still has available memory. we need kmem_cache_node
3573 * for it yet.
3574 */
3575 if (offline_node < 0)
3576 return;
3577
18004c5d 3578 mutex_lock(&slab_mutex);
b9049e23
YG
3579 list_for_each_entry(s, &slab_caches, list) {
3580 n = get_node(s, offline_node);
3581 if (n) {
3582 /*
3583 * if n->nr_slabs > 0, slabs still exist on the node
3584 * that is going down. We were unable to free them,
c9404c9c 3585 * and offline_pages() function shouldn't call this
b9049e23
YG
3586 * callback. So, we must fail.
3587 */
0f389ec6 3588 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3589
3590 s->node[offline_node] = NULL;
8de66a0c 3591 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3592 }
3593 }
18004c5d 3594 mutex_unlock(&slab_mutex);
b9049e23
YG
3595}
3596
3597static int slab_mem_going_online_callback(void *arg)
3598{
3599 struct kmem_cache_node *n;
3600 struct kmem_cache *s;
3601 struct memory_notify *marg = arg;
3602 int nid = marg->status_change_nid;
3603 int ret = 0;
3604
3605 /*
3606 * If the node's memory is already available, then kmem_cache_node is
3607 * already created. Nothing to do.
3608 */
3609 if (nid < 0)
3610 return 0;
3611
3612 /*
0121c619 3613 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3614 * allocate a kmem_cache_node structure in order to bring the node
3615 * online.
3616 */
18004c5d 3617 mutex_lock(&slab_mutex);
b9049e23
YG
3618 list_for_each_entry(s, &slab_caches, list) {
3619 /*
3620 * XXX: kmem_cache_alloc_node will fallback to other nodes
3621 * since memory is not yet available from the node that
3622 * is brought up.
3623 */
8de66a0c 3624 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3625 if (!n) {
3626 ret = -ENOMEM;
3627 goto out;
3628 }
4053497d 3629 init_kmem_cache_node(n);
b9049e23
YG
3630 s->node[nid] = n;
3631 }
3632out:
18004c5d 3633 mutex_unlock(&slab_mutex);
b9049e23
YG
3634 return ret;
3635}
3636
3637static int slab_memory_callback(struct notifier_block *self,
3638 unsigned long action, void *arg)
3639{
3640 int ret = 0;
3641
3642 switch (action) {
3643 case MEM_GOING_ONLINE:
3644 ret = slab_mem_going_online_callback(arg);
3645 break;
3646 case MEM_GOING_OFFLINE:
3647 ret = slab_mem_going_offline_callback(arg);
3648 break;
3649 case MEM_OFFLINE:
3650 case MEM_CANCEL_ONLINE:
3651 slab_mem_offline_callback(arg);
3652 break;
3653 case MEM_ONLINE:
3654 case MEM_CANCEL_OFFLINE:
3655 break;
3656 }
dc19f9db
KH
3657 if (ret)
3658 ret = notifier_from_errno(ret);
3659 else
3660 ret = NOTIFY_OK;
b9049e23
YG
3661 return ret;
3662}
3663
3664#endif /* CONFIG_MEMORY_HOTPLUG */
3665
81819f0f
CL
3666/********************************************************************
3667 * Basic setup of slabs
3668 *******************************************************************/
3669
51df1142
CL
3670/*
3671 * Used for early kmem_cache structures that were allocated using
3672 * the page allocator
3673 */
3674
3675static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3676{
3677 int node;
3678
3679 list_add(&s->list, &slab_caches);
3680 s->refcount = -1;
3681
3682 for_each_node_state(node, N_NORMAL_MEMORY) {
3683 struct kmem_cache_node *n = get_node(s, node);
3684 struct page *p;
3685
3686 if (n) {
3687 list_for_each_entry(p, &n->partial, lru)
3688 p->slab = s;
3689
607bf324 3690#ifdef CONFIG_SLUB_DEBUG
51df1142
CL
3691 list_for_each_entry(p, &n->full, lru)
3692 p->slab = s;
3693#endif
3694 }
3695 }
3696}
3697
81819f0f
CL
3698void __init kmem_cache_init(void)
3699{
3700 int i;
4b356be0 3701 int caches = 0;
51df1142
CL
3702 struct kmem_cache *temp_kmem_cache;
3703 int order;
51df1142
CL
3704 struct kmem_cache *temp_kmem_cache_node;
3705 unsigned long kmalloc_size;
3706
fc8d8620
SG
3707 if (debug_guardpage_minorder())
3708 slub_max_order = 0;
3709
51df1142
CL
3710 kmem_size = offsetof(struct kmem_cache, node) +
3711 nr_node_ids * sizeof(struct kmem_cache_node *);
3712
3713 /* Allocate two kmem_caches from the page allocator */
3714 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3715 order = get_order(2 * kmalloc_size);
3716 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3717
81819f0f
CL
3718 /*
3719 * Must first have the slab cache available for the allocations of the
672bba3a 3720 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3721 * kmem_cache_open for slab_state == DOWN.
3722 */
51df1142
CL
3723 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3724
3725 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3726 sizeof(struct kmem_cache_node),
3727 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3728
0c40ba4f 3729 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3730
3731 /* Able to allocate the per node structures */
3732 slab_state = PARTIAL;
3733
51df1142
CL
3734 temp_kmem_cache = kmem_cache;
3735 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3736 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3737 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3738 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3739
51df1142
CL
3740 /*
3741 * Allocate kmem_cache_node properly from the kmem_cache slab.
3742 * kmem_cache_node is separately allocated so no need to
3743 * update any list pointers.
3744 */
3745 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3746
51df1142
CL
3747 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3748 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3749
3750 kmem_cache_bootstrap_fixup(kmem_cache_node);
3751
3752 caches++;
51df1142
CL
3753 kmem_cache_bootstrap_fixup(kmem_cache);
3754 caches++;
3755 /* Free temporary boot structure */
3756 free_pages((unsigned long)temp_kmem_cache, order);
3757
3758 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3759
3760 /*
3761 * Patch up the size_index table if we have strange large alignment
3762 * requirements for the kmalloc array. This is only the case for
6446faa2 3763 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3764 *
3765 * Largest permitted alignment is 256 bytes due to the way we
3766 * handle the index determination for the smaller caches.
3767 *
3768 * Make sure that nothing crazy happens if someone starts tinkering
3769 * around with ARCH_KMALLOC_MINALIGN
3770 */
3771 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3772 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3773
acdfcd04
AK
3774 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3775 int elem = size_index_elem(i);
3776 if (elem >= ARRAY_SIZE(size_index))
3777 break;
3778 size_index[elem] = KMALLOC_SHIFT_LOW;
3779 }
f1b26339 3780
acdfcd04
AK
3781 if (KMALLOC_MIN_SIZE == 64) {
3782 /*
3783 * The 96 byte size cache is not used if the alignment
3784 * is 64 byte.
3785 */
3786 for (i = 64 + 8; i <= 96; i += 8)
3787 size_index[size_index_elem(i)] = 7;
3788 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3789 /*
3790 * The 192 byte sized cache is not used if the alignment
3791 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3792 * instead.
3793 */
3794 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3795 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3796 }
3797
51df1142
CL
3798 /* Caches that are not of the two-to-the-power-of size */
3799 if (KMALLOC_MIN_SIZE <= 32) {
3800 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3801 caches++;
3802 }
3803
3804 if (KMALLOC_MIN_SIZE <= 64) {
3805 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3806 caches++;
3807 }
3808
3809 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3810 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3811 caches++;
3812 }
3813
81819f0f
CL
3814 slab_state = UP;
3815
3816 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3817 if (KMALLOC_MIN_SIZE <= 32) {
3818 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3819 BUG_ON(!kmalloc_caches[1]->name);
3820 }
3821
3822 if (KMALLOC_MIN_SIZE <= 64) {
3823 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3824 BUG_ON(!kmalloc_caches[2]->name);
3825 }
3826
d7278bd7
CL
3827 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3828 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3829
3830 BUG_ON(!s);
51df1142 3831 kmalloc_caches[i]->name = s;
d7278bd7 3832 }
81819f0f
CL
3833
3834#ifdef CONFIG_SMP
3835 register_cpu_notifier(&slab_notifier);
9dfc6e68 3836#endif
81819f0f 3837
55136592 3838#ifdef CONFIG_ZONE_DMA
51df1142
CL
3839 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3840 struct kmem_cache *s = kmalloc_caches[i];
55136592 3841
51df1142 3842 if (s && s->size) {
55136592 3843 char *name = kasprintf(GFP_NOWAIT,
3b0efdfa 3844 "dma-kmalloc-%d", s->object_size);
55136592
CL
3845
3846 BUG_ON(!name);
51df1142 3847 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3b0efdfa 3848 s->object_size, SLAB_CACHE_DMA);
55136592
CL
3849 }
3850 }
3851#endif
3adbefee
IM
3852 printk(KERN_INFO
3853 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3854 " CPUs=%d, Nodes=%d\n",
3855 caches, cache_line_size(),
81819f0f
CL
3856 slub_min_order, slub_max_order, slub_min_objects,
3857 nr_cpu_ids, nr_node_ids);
3858}
3859
7e85ee0c
PE
3860void __init kmem_cache_init_late(void)
3861{
7e85ee0c
PE
3862}
3863
81819f0f
CL
3864/*
3865 * Find a mergeable slab cache
3866 */
3867static int slab_unmergeable(struct kmem_cache *s)
3868{
3869 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3870 return 1;
3871
c59def9f 3872 if (s->ctor)
81819f0f
CL
3873 return 1;
3874
8ffa6875
CL
3875 /*
3876 * We may have set a slab to be unmergeable during bootstrap.
3877 */
3878 if (s->refcount < 0)
3879 return 1;
3880
81819f0f
CL
3881 return 0;
3882}
3883
3884static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3885 size_t align, unsigned long flags, const char *name,
51cc5068 3886 void (*ctor)(void *))
81819f0f 3887{
5b95a4ac 3888 struct kmem_cache *s;
81819f0f
CL
3889
3890 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3891 return NULL;
3892
c59def9f 3893 if (ctor)
81819f0f
CL
3894 return NULL;
3895
3896 size = ALIGN(size, sizeof(void *));
3897 align = calculate_alignment(flags, align, size);
3898 size = ALIGN(size, align);
ba0268a8 3899 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3900
5b95a4ac 3901 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3902 if (slab_unmergeable(s))
3903 continue;
3904
3905 if (size > s->size)
3906 continue;
3907
ba0268a8 3908 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3909 continue;
3910 /*
3911 * Check if alignment is compatible.
3912 * Courtesy of Adrian Drzewiecki
3913 */
06428780 3914 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3915 continue;
3916
3917 if (s->size - size >= sizeof(void *))
3918 continue;
3919
3920 return s;
3921 }
3922 return NULL;
3923}
3924
039363f3 3925struct kmem_cache *__kmem_cache_create(const char *name, size_t size,
51cc5068 3926 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3927{
3928 struct kmem_cache *s;
3929
ba0268a8 3930 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3931 if (s) {
3932 s->refcount++;
3933 /*
3934 * Adjust the object sizes so that we clear
3935 * the complete object on kzalloc.
3936 */
3b0efdfa 3937 s->object_size = max(s->object_size, (int)size);
81819f0f 3938 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3939
7b8f3b66 3940 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3941 s->refcount--;
20cea968 3942 return NULL;
7b8f3b66 3943 }
a0e1d1be
CL
3944 return s;
3945 }
6446faa2 3946
208c4358 3947 s = kmem_cache_alloc(kmem_cache, GFP_KERNEL);
a0e1d1be 3948 if (s) {
db265eca 3949 if (kmem_cache_open(s, name,
c59def9f 3950 size, align, flags, ctor)) {
20cea968
CL
3951 int r;
3952
18004c5d 3953 mutex_unlock(&slab_mutex);
20cea968
CL
3954 r = sysfs_slab_add(s);
3955 mutex_lock(&slab_mutex);
3956
3957 if (!r)
3958 return s;
3959
20cea968 3960 kmem_cache_close(s);
a0e1d1be 3961 }
208c4358 3962 kmem_cache_free(kmem_cache, s);
81819f0f 3963 }
20cea968 3964 return NULL;
81819f0f 3965}
81819f0f 3966
81819f0f 3967#ifdef CONFIG_SMP
81819f0f 3968/*
672bba3a
CL
3969 * Use the cpu notifier to insure that the cpu slabs are flushed when
3970 * necessary.
81819f0f
CL
3971 */
3972static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3973 unsigned long action, void *hcpu)
3974{
3975 long cpu = (long)hcpu;
5b95a4ac
CL
3976 struct kmem_cache *s;
3977 unsigned long flags;
81819f0f
CL
3978
3979 switch (action) {
3980 case CPU_UP_CANCELED:
8bb78442 3981 case CPU_UP_CANCELED_FROZEN:
81819f0f 3982 case CPU_DEAD:
8bb78442 3983 case CPU_DEAD_FROZEN:
18004c5d 3984 mutex_lock(&slab_mutex);
5b95a4ac
CL
3985 list_for_each_entry(s, &slab_caches, list) {
3986 local_irq_save(flags);
3987 __flush_cpu_slab(s, cpu);
3988 local_irq_restore(flags);
3989 }
18004c5d 3990 mutex_unlock(&slab_mutex);
81819f0f
CL
3991 break;
3992 default:
3993 break;
3994 }
3995 return NOTIFY_OK;
3996}
3997
06428780 3998static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3999 .notifier_call = slab_cpuup_callback
06428780 4000};
81819f0f
CL
4001
4002#endif
4003
ce71e27c 4004void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4005{
aadb4bc4 4006 struct kmem_cache *s;
94b528d0 4007 void *ret;
aadb4bc4 4008
ffadd4d0 4009 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
4010 return kmalloc_large(size, gfpflags);
4011
aadb4bc4 4012 s = get_slab(size, gfpflags);
81819f0f 4013
2408c550 4014 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4015 return s;
81819f0f 4016
2154a336 4017 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0 4018
25985edc 4019 /* Honor the call site pointer we received. */
ca2b84cb 4020 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4021
4022 return ret;
81819f0f
CL
4023}
4024
5d1f57e4 4025#ifdef CONFIG_NUMA
81819f0f 4026void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4027 int node, unsigned long caller)
81819f0f 4028{
aadb4bc4 4029 struct kmem_cache *s;
94b528d0 4030 void *ret;
aadb4bc4 4031
d3e14aa3
XF
4032 if (unlikely(size > SLUB_MAX_SIZE)) {
4033 ret = kmalloc_large_node(size, gfpflags, node);
4034
4035 trace_kmalloc_node(caller, ret,
4036 size, PAGE_SIZE << get_order(size),
4037 gfpflags, node);
4038
4039 return ret;
4040 }
eada35ef 4041
aadb4bc4 4042 s = get_slab(size, gfpflags);
81819f0f 4043
2408c550 4044 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4045 return s;
81819f0f 4046
94b528d0
EGM
4047 ret = slab_alloc(s, gfpflags, node, caller);
4048
25985edc 4049 /* Honor the call site pointer we received. */
ca2b84cb 4050 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4051
4052 return ret;
81819f0f 4053}
5d1f57e4 4054#endif
81819f0f 4055
ab4d5ed5 4056#ifdef CONFIG_SYSFS
205ab99d
CL
4057static int count_inuse(struct page *page)
4058{
4059 return page->inuse;
4060}
4061
4062static int count_total(struct page *page)
4063{
4064 return page->objects;
4065}
ab4d5ed5 4066#endif
205ab99d 4067
ab4d5ed5 4068#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4069static int validate_slab(struct kmem_cache *s, struct page *page,
4070 unsigned long *map)
53e15af0
CL
4071{
4072 void *p;
a973e9dd 4073 void *addr = page_address(page);
53e15af0
CL
4074
4075 if (!check_slab(s, page) ||
4076 !on_freelist(s, page, NULL))
4077 return 0;
4078
4079 /* Now we know that a valid freelist exists */
39b26464 4080 bitmap_zero(map, page->objects);
53e15af0 4081
5f80b13a
CL
4082 get_map(s, page, map);
4083 for_each_object(p, s, addr, page->objects) {
4084 if (test_bit(slab_index(p, s, addr), map))
4085 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4086 return 0;
53e15af0
CL
4087 }
4088
224a88be 4089 for_each_object(p, s, addr, page->objects)
7656c72b 4090 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4091 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4092 return 0;
4093 return 1;
4094}
4095
434e245d
CL
4096static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4097 unsigned long *map)
53e15af0 4098{
881db7fb
CL
4099 slab_lock(page);
4100 validate_slab(s, page, map);
4101 slab_unlock(page);
53e15af0
CL
4102}
4103
434e245d
CL
4104static int validate_slab_node(struct kmem_cache *s,
4105 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4106{
4107 unsigned long count = 0;
4108 struct page *page;
4109 unsigned long flags;
4110
4111 spin_lock_irqsave(&n->list_lock, flags);
4112
4113 list_for_each_entry(page, &n->partial, lru) {
434e245d 4114 validate_slab_slab(s, page, map);
53e15af0
CL
4115 count++;
4116 }
4117 if (count != n->nr_partial)
4118 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4119 "counter=%ld\n", s->name, count, n->nr_partial);
4120
4121 if (!(s->flags & SLAB_STORE_USER))
4122 goto out;
4123
4124 list_for_each_entry(page, &n->full, lru) {
434e245d 4125 validate_slab_slab(s, page, map);
53e15af0
CL
4126 count++;
4127 }
4128 if (count != atomic_long_read(&n->nr_slabs))
4129 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4130 "counter=%ld\n", s->name, count,
4131 atomic_long_read(&n->nr_slabs));
4132
4133out:
4134 spin_unlock_irqrestore(&n->list_lock, flags);
4135 return count;
4136}
4137
434e245d 4138static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4139{
4140 int node;
4141 unsigned long count = 0;
205ab99d 4142 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
4143 sizeof(unsigned long), GFP_KERNEL);
4144
4145 if (!map)
4146 return -ENOMEM;
53e15af0
CL
4147
4148 flush_all(s);
f64dc58c 4149 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
4150 struct kmem_cache_node *n = get_node(s, node);
4151
434e245d 4152 count += validate_slab_node(s, n, map);
53e15af0 4153 }
434e245d 4154 kfree(map);
53e15af0
CL
4155 return count;
4156}
88a420e4 4157/*
672bba3a 4158 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4159 * and freed.
4160 */
4161
4162struct location {
4163 unsigned long count;
ce71e27c 4164 unsigned long addr;
45edfa58
CL
4165 long long sum_time;
4166 long min_time;
4167 long max_time;
4168 long min_pid;
4169 long max_pid;
174596a0 4170 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4171 nodemask_t nodes;
88a420e4
CL
4172};
4173
4174struct loc_track {
4175 unsigned long max;
4176 unsigned long count;
4177 struct location *loc;
4178};
4179
4180static void free_loc_track(struct loc_track *t)
4181{
4182 if (t->max)
4183 free_pages((unsigned long)t->loc,
4184 get_order(sizeof(struct location) * t->max));
4185}
4186
68dff6a9 4187static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4188{
4189 struct location *l;
4190 int order;
4191
88a420e4
CL
4192 order = get_order(sizeof(struct location) * max);
4193
68dff6a9 4194 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4195 if (!l)
4196 return 0;
4197
4198 if (t->count) {
4199 memcpy(l, t->loc, sizeof(struct location) * t->count);
4200 free_loc_track(t);
4201 }
4202 t->max = max;
4203 t->loc = l;
4204 return 1;
4205}
4206
4207static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4208 const struct track *track)
88a420e4
CL
4209{
4210 long start, end, pos;
4211 struct location *l;
ce71e27c 4212 unsigned long caddr;
45edfa58 4213 unsigned long age = jiffies - track->when;
88a420e4
CL
4214
4215 start = -1;
4216 end = t->count;
4217
4218 for ( ; ; ) {
4219 pos = start + (end - start + 1) / 2;
4220
4221 /*
4222 * There is nothing at "end". If we end up there
4223 * we need to add something to before end.
4224 */
4225 if (pos == end)
4226 break;
4227
4228 caddr = t->loc[pos].addr;
45edfa58
CL
4229 if (track->addr == caddr) {
4230
4231 l = &t->loc[pos];
4232 l->count++;
4233 if (track->when) {
4234 l->sum_time += age;
4235 if (age < l->min_time)
4236 l->min_time = age;
4237 if (age > l->max_time)
4238 l->max_time = age;
4239
4240 if (track->pid < l->min_pid)
4241 l->min_pid = track->pid;
4242 if (track->pid > l->max_pid)
4243 l->max_pid = track->pid;
4244
174596a0
RR
4245 cpumask_set_cpu(track->cpu,
4246 to_cpumask(l->cpus));
45edfa58
CL
4247 }
4248 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4249 return 1;
4250 }
4251
45edfa58 4252 if (track->addr < caddr)
88a420e4
CL
4253 end = pos;
4254 else
4255 start = pos;
4256 }
4257
4258 /*
672bba3a 4259 * Not found. Insert new tracking element.
88a420e4 4260 */
68dff6a9 4261 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4262 return 0;
4263
4264 l = t->loc + pos;
4265 if (pos < t->count)
4266 memmove(l + 1, l,
4267 (t->count - pos) * sizeof(struct location));
4268 t->count++;
4269 l->count = 1;
45edfa58
CL
4270 l->addr = track->addr;
4271 l->sum_time = age;
4272 l->min_time = age;
4273 l->max_time = age;
4274 l->min_pid = track->pid;
4275 l->max_pid = track->pid;
174596a0
RR
4276 cpumask_clear(to_cpumask(l->cpus));
4277 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4278 nodes_clear(l->nodes);
4279 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4280 return 1;
4281}
4282
4283static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4284 struct page *page, enum track_item alloc,
a5dd5c11 4285 unsigned long *map)
88a420e4 4286{
a973e9dd 4287 void *addr = page_address(page);
88a420e4
CL
4288 void *p;
4289
39b26464 4290 bitmap_zero(map, page->objects);
5f80b13a 4291 get_map(s, page, map);
88a420e4 4292
224a88be 4293 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4294 if (!test_bit(slab_index(p, s, addr), map))
4295 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4296}
4297
4298static int list_locations(struct kmem_cache *s, char *buf,
4299 enum track_item alloc)
4300{
e374d483 4301 int len = 0;
88a420e4 4302 unsigned long i;
68dff6a9 4303 struct loc_track t = { 0, 0, NULL };
88a420e4 4304 int node;
bbd7d57b
ED
4305 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4306 sizeof(unsigned long), GFP_KERNEL);
88a420e4 4307
bbd7d57b
ED
4308 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4309 GFP_TEMPORARY)) {
4310 kfree(map);
68dff6a9 4311 return sprintf(buf, "Out of memory\n");
bbd7d57b 4312 }
88a420e4
CL
4313 /* Push back cpu slabs */
4314 flush_all(s);
4315
f64dc58c 4316 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
4317 struct kmem_cache_node *n = get_node(s, node);
4318 unsigned long flags;
4319 struct page *page;
4320
9e86943b 4321 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4322 continue;
4323
4324 spin_lock_irqsave(&n->list_lock, flags);
4325 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4326 process_slab(&t, s, page, alloc, map);
88a420e4 4327 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4328 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4329 spin_unlock_irqrestore(&n->list_lock, flags);
4330 }
4331
4332 for (i = 0; i < t.count; i++) {
45edfa58 4333 struct location *l = &t.loc[i];
88a420e4 4334
9c246247 4335 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4336 break;
e374d483 4337 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4338
4339 if (l->addr)
62c70bce 4340 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4341 else
e374d483 4342 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4343
4344 if (l->sum_time != l->min_time) {
e374d483 4345 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4346 l->min_time,
4347 (long)div_u64(l->sum_time, l->count),
4348 l->max_time);
45edfa58 4349 } else
e374d483 4350 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4351 l->min_time);
4352
4353 if (l->min_pid != l->max_pid)
e374d483 4354 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4355 l->min_pid, l->max_pid);
4356 else
e374d483 4357 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4358 l->min_pid);
4359
174596a0
RR
4360 if (num_online_cpus() > 1 &&
4361 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4362 len < PAGE_SIZE - 60) {
4363 len += sprintf(buf + len, " cpus=");
4364 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 4365 to_cpumask(l->cpus));
45edfa58
CL
4366 }
4367
62bc62a8 4368 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4369 len < PAGE_SIZE - 60) {
4370 len += sprintf(buf + len, " nodes=");
4371 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
4372 l->nodes);
4373 }
4374
e374d483 4375 len += sprintf(buf + len, "\n");
88a420e4
CL
4376 }
4377
4378 free_loc_track(&t);
bbd7d57b 4379 kfree(map);
88a420e4 4380 if (!t.count)
e374d483
HH
4381 len += sprintf(buf, "No data\n");
4382 return len;
88a420e4 4383}
ab4d5ed5 4384#endif
88a420e4 4385
a5a84755
CL
4386#ifdef SLUB_RESILIENCY_TEST
4387static void resiliency_test(void)
4388{
4389 u8 *p;
4390
4391 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4392
4393 printk(KERN_ERR "SLUB resiliency testing\n");
4394 printk(KERN_ERR "-----------------------\n");
4395 printk(KERN_ERR "A. Corruption after allocation\n");
4396
4397 p = kzalloc(16, GFP_KERNEL);
4398 p[16] = 0x12;
4399 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4400 " 0x12->0x%p\n\n", p + 16);
4401
4402 validate_slab_cache(kmalloc_caches[4]);
4403
4404 /* Hmmm... The next two are dangerous */
4405 p = kzalloc(32, GFP_KERNEL);
4406 p[32 + sizeof(void *)] = 0x34;
4407 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4408 " 0x34 -> -0x%p\n", p);
4409 printk(KERN_ERR
4410 "If allocated object is overwritten then not detectable\n\n");
4411
4412 validate_slab_cache(kmalloc_caches[5]);
4413 p = kzalloc(64, GFP_KERNEL);
4414 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4415 *p = 0x56;
4416 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4417 p);
4418 printk(KERN_ERR
4419 "If allocated object is overwritten then not detectable\n\n");
4420 validate_slab_cache(kmalloc_caches[6]);
4421
4422 printk(KERN_ERR "\nB. Corruption after free\n");
4423 p = kzalloc(128, GFP_KERNEL);
4424 kfree(p);
4425 *p = 0x78;
4426 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4427 validate_slab_cache(kmalloc_caches[7]);
4428
4429 p = kzalloc(256, GFP_KERNEL);
4430 kfree(p);
4431 p[50] = 0x9a;
4432 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4433 p);
4434 validate_slab_cache(kmalloc_caches[8]);
4435
4436 p = kzalloc(512, GFP_KERNEL);
4437 kfree(p);
4438 p[512] = 0xab;
4439 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4440 validate_slab_cache(kmalloc_caches[9]);
4441}
4442#else
4443#ifdef CONFIG_SYSFS
4444static void resiliency_test(void) {};
4445#endif
4446#endif
4447
ab4d5ed5 4448#ifdef CONFIG_SYSFS
81819f0f 4449enum slab_stat_type {
205ab99d
CL
4450 SL_ALL, /* All slabs */
4451 SL_PARTIAL, /* Only partially allocated slabs */
4452 SL_CPU, /* Only slabs used for cpu caches */
4453 SL_OBJECTS, /* Determine allocated objects not slabs */
4454 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4455};
4456
205ab99d 4457#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4458#define SO_PARTIAL (1 << SL_PARTIAL)
4459#define SO_CPU (1 << SL_CPU)
4460#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4461#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4462
62e5c4b4
CG
4463static ssize_t show_slab_objects(struct kmem_cache *s,
4464 char *buf, unsigned long flags)
81819f0f
CL
4465{
4466 unsigned long total = 0;
81819f0f
CL
4467 int node;
4468 int x;
4469 unsigned long *nodes;
4470 unsigned long *per_cpu;
4471
4472 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4473 if (!nodes)
4474 return -ENOMEM;
81819f0f
CL
4475 per_cpu = nodes + nr_node_ids;
4476
205ab99d
CL
4477 if (flags & SO_CPU) {
4478 int cpu;
81819f0f 4479
205ab99d 4480 for_each_possible_cpu(cpu) {
9dfc6e68 4481 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
ec3ab083 4482 int node;
49e22585 4483 struct page *page;
dfb4f096 4484
bc6697d8 4485 page = ACCESS_ONCE(c->page);
ec3ab083
CL
4486 if (!page)
4487 continue;
205ab99d 4488
ec3ab083
CL
4489 node = page_to_nid(page);
4490 if (flags & SO_TOTAL)
4491 x = page->objects;
4492 else if (flags & SO_OBJECTS)
4493 x = page->inuse;
4494 else
4495 x = 1;
49e22585 4496
ec3ab083
CL
4497 total += x;
4498 nodes[node] += x;
4499
4500 page = ACCESS_ONCE(c->partial);
49e22585
CL
4501 if (page) {
4502 x = page->pobjects;
bc6697d8
ED
4503 total += x;
4504 nodes[node] += x;
49e22585 4505 }
ec3ab083 4506
bc6697d8 4507 per_cpu[node]++;
81819f0f
CL
4508 }
4509 }
4510
04d94879 4511 lock_memory_hotplug();
ab4d5ed5 4512#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4513 if (flags & SO_ALL) {
4514 for_each_node_state(node, N_NORMAL_MEMORY) {
4515 struct kmem_cache_node *n = get_node(s, node);
4516
4517 if (flags & SO_TOTAL)
4518 x = atomic_long_read(&n->total_objects);
4519 else if (flags & SO_OBJECTS)
4520 x = atomic_long_read(&n->total_objects) -
4521 count_partial(n, count_free);
81819f0f 4522
81819f0f 4523 else
205ab99d 4524 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4525 total += x;
4526 nodes[node] += x;
4527 }
4528
ab4d5ed5
CL
4529 } else
4530#endif
4531 if (flags & SO_PARTIAL) {
205ab99d
CL
4532 for_each_node_state(node, N_NORMAL_MEMORY) {
4533 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4534
205ab99d
CL
4535 if (flags & SO_TOTAL)
4536 x = count_partial(n, count_total);
4537 else if (flags & SO_OBJECTS)
4538 x = count_partial(n, count_inuse);
81819f0f 4539 else
205ab99d 4540 x = n->nr_partial;
81819f0f
CL
4541 total += x;
4542 nodes[node] += x;
4543 }
4544 }
81819f0f
CL
4545 x = sprintf(buf, "%lu", total);
4546#ifdef CONFIG_NUMA
f64dc58c 4547 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4548 if (nodes[node])
4549 x += sprintf(buf + x, " N%d=%lu",
4550 node, nodes[node]);
4551#endif
04d94879 4552 unlock_memory_hotplug();
81819f0f
CL
4553 kfree(nodes);
4554 return x + sprintf(buf + x, "\n");
4555}
4556
ab4d5ed5 4557#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4558static int any_slab_objects(struct kmem_cache *s)
4559{
4560 int node;
81819f0f 4561
dfb4f096 4562 for_each_online_node(node) {
81819f0f
CL
4563 struct kmem_cache_node *n = get_node(s, node);
4564
dfb4f096
CL
4565 if (!n)
4566 continue;
4567
4ea33e2d 4568 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4569 return 1;
4570 }
4571 return 0;
4572}
ab4d5ed5 4573#endif
81819f0f
CL
4574
4575#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4576#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4577
4578struct slab_attribute {
4579 struct attribute attr;
4580 ssize_t (*show)(struct kmem_cache *s, char *buf);
4581 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4582};
4583
4584#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4585 static struct slab_attribute _name##_attr = \
4586 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4587
4588#define SLAB_ATTR(_name) \
4589 static struct slab_attribute _name##_attr = \
ab067e99 4590 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4591
81819f0f
CL
4592static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4593{
4594 return sprintf(buf, "%d\n", s->size);
4595}
4596SLAB_ATTR_RO(slab_size);
4597
4598static ssize_t align_show(struct kmem_cache *s, char *buf)
4599{
4600 return sprintf(buf, "%d\n", s->align);
4601}
4602SLAB_ATTR_RO(align);
4603
4604static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4605{
3b0efdfa 4606 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4607}
4608SLAB_ATTR_RO(object_size);
4609
4610static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4611{
834f3d11 4612 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4613}
4614SLAB_ATTR_RO(objs_per_slab);
4615
06b285dc
CL
4616static ssize_t order_store(struct kmem_cache *s,
4617 const char *buf, size_t length)
4618{
0121c619
CL
4619 unsigned long order;
4620 int err;
4621
4622 err = strict_strtoul(buf, 10, &order);
4623 if (err)
4624 return err;
06b285dc
CL
4625
4626 if (order > slub_max_order || order < slub_min_order)
4627 return -EINVAL;
4628
4629 calculate_sizes(s, order);
4630 return length;
4631}
4632
81819f0f
CL
4633static ssize_t order_show(struct kmem_cache *s, char *buf)
4634{
834f3d11 4635 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4636}
06b285dc 4637SLAB_ATTR(order);
81819f0f 4638
73d342b1
DR
4639static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4640{
4641 return sprintf(buf, "%lu\n", s->min_partial);
4642}
4643
4644static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4645 size_t length)
4646{
4647 unsigned long min;
4648 int err;
4649
4650 err = strict_strtoul(buf, 10, &min);
4651 if (err)
4652 return err;
4653
c0bdb232 4654 set_min_partial(s, min);
73d342b1
DR
4655 return length;
4656}
4657SLAB_ATTR(min_partial);
4658
49e22585
CL
4659static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4660{
4661 return sprintf(buf, "%u\n", s->cpu_partial);
4662}
4663
4664static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4665 size_t length)
4666{
4667 unsigned long objects;
4668 int err;
4669
4670 err = strict_strtoul(buf, 10, &objects);
4671 if (err)
4672 return err;
74ee4ef1
DR
4673 if (objects && kmem_cache_debug(s))
4674 return -EINVAL;
49e22585
CL
4675
4676 s->cpu_partial = objects;
4677 flush_all(s);
4678 return length;
4679}
4680SLAB_ATTR(cpu_partial);
4681
81819f0f
CL
4682static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4683{
62c70bce
JP
4684 if (!s->ctor)
4685 return 0;
4686 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4687}
4688SLAB_ATTR_RO(ctor);
4689
81819f0f
CL
4690static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4691{
4692 return sprintf(buf, "%d\n", s->refcount - 1);
4693}
4694SLAB_ATTR_RO(aliases);
4695
81819f0f
CL
4696static ssize_t partial_show(struct kmem_cache *s, char *buf)
4697{
d9acf4b7 4698 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4699}
4700SLAB_ATTR_RO(partial);
4701
4702static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4703{
d9acf4b7 4704 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4705}
4706SLAB_ATTR_RO(cpu_slabs);
4707
4708static ssize_t objects_show(struct kmem_cache *s, char *buf)
4709{
205ab99d 4710 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4711}
4712SLAB_ATTR_RO(objects);
4713
205ab99d
CL
4714static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4715{
4716 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4717}
4718SLAB_ATTR_RO(objects_partial);
4719
49e22585
CL
4720static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4721{
4722 int objects = 0;
4723 int pages = 0;
4724 int cpu;
4725 int len;
4726
4727 for_each_online_cpu(cpu) {
4728 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4729
4730 if (page) {
4731 pages += page->pages;
4732 objects += page->pobjects;
4733 }
4734 }
4735
4736 len = sprintf(buf, "%d(%d)", objects, pages);
4737
4738#ifdef CONFIG_SMP
4739 for_each_online_cpu(cpu) {
4740 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4741
4742 if (page && len < PAGE_SIZE - 20)
4743 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4744 page->pobjects, page->pages);
4745 }
4746#endif
4747 return len + sprintf(buf + len, "\n");
4748}
4749SLAB_ATTR_RO(slabs_cpu_partial);
4750
a5a84755
CL
4751static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4752{
4753 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4754}
4755
4756static ssize_t reclaim_account_store(struct kmem_cache *s,
4757 const char *buf, size_t length)
4758{
4759 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4760 if (buf[0] == '1')
4761 s->flags |= SLAB_RECLAIM_ACCOUNT;
4762 return length;
4763}
4764SLAB_ATTR(reclaim_account);
4765
4766static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4767{
4768 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4769}
4770SLAB_ATTR_RO(hwcache_align);
4771
4772#ifdef CONFIG_ZONE_DMA
4773static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4774{
4775 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4776}
4777SLAB_ATTR_RO(cache_dma);
4778#endif
4779
4780static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4781{
4782 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4783}
4784SLAB_ATTR_RO(destroy_by_rcu);
4785
ab9a0f19
LJ
4786static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4787{
4788 return sprintf(buf, "%d\n", s->reserved);
4789}
4790SLAB_ATTR_RO(reserved);
4791
ab4d5ed5 4792#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4793static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4794{
4795 return show_slab_objects(s, buf, SO_ALL);
4796}
4797SLAB_ATTR_RO(slabs);
4798
205ab99d
CL
4799static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4800{
4801 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4802}
4803SLAB_ATTR_RO(total_objects);
4804
81819f0f
CL
4805static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4806{
4807 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4808}
4809
4810static ssize_t sanity_checks_store(struct kmem_cache *s,
4811 const char *buf, size_t length)
4812{
4813 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4814 if (buf[0] == '1') {
4815 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4816 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4817 }
81819f0f
CL
4818 return length;
4819}
4820SLAB_ATTR(sanity_checks);
4821
4822static ssize_t trace_show(struct kmem_cache *s, char *buf)
4823{
4824 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4825}
4826
4827static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4828 size_t length)
4829{
4830 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4831 if (buf[0] == '1') {
4832 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4833 s->flags |= SLAB_TRACE;
b789ef51 4834 }
81819f0f
CL
4835 return length;
4836}
4837SLAB_ATTR(trace);
4838
81819f0f
CL
4839static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4840{
4841 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4842}
4843
4844static ssize_t red_zone_store(struct kmem_cache *s,
4845 const char *buf, size_t length)
4846{
4847 if (any_slab_objects(s))
4848 return -EBUSY;
4849
4850 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4851 if (buf[0] == '1') {
4852 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4853 s->flags |= SLAB_RED_ZONE;
b789ef51 4854 }
06b285dc 4855 calculate_sizes(s, -1);
81819f0f
CL
4856 return length;
4857}
4858SLAB_ATTR(red_zone);
4859
4860static ssize_t poison_show(struct kmem_cache *s, char *buf)
4861{
4862 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4863}
4864
4865static ssize_t poison_store(struct kmem_cache *s,
4866 const char *buf, size_t length)
4867{
4868 if (any_slab_objects(s))
4869 return -EBUSY;
4870
4871 s->flags &= ~SLAB_POISON;
b789ef51
CL
4872 if (buf[0] == '1') {
4873 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4874 s->flags |= SLAB_POISON;
b789ef51 4875 }
06b285dc 4876 calculate_sizes(s, -1);
81819f0f
CL
4877 return length;
4878}
4879SLAB_ATTR(poison);
4880
4881static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4882{
4883 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4884}
4885
4886static ssize_t store_user_store(struct kmem_cache *s,
4887 const char *buf, size_t length)
4888{
4889 if (any_slab_objects(s))
4890 return -EBUSY;
4891
4892 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4893 if (buf[0] == '1') {
4894 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4895 s->flags |= SLAB_STORE_USER;
b789ef51 4896 }
06b285dc 4897 calculate_sizes(s, -1);
81819f0f
CL
4898 return length;
4899}
4900SLAB_ATTR(store_user);
4901
53e15af0
CL
4902static ssize_t validate_show(struct kmem_cache *s, char *buf)
4903{
4904 return 0;
4905}
4906
4907static ssize_t validate_store(struct kmem_cache *s,
4908 const char *buf, size_t length)
4909{
434e245d
CL
4910 int ret = -EINVAL;
4911
4912 if (buf[0] == '1') {
4913 ret = validate_slab_cache(s);
4914 if (ret >= 0)
4915 ret = length;
4916 }
4917 return ret;
53e15af0
CL
4918}
4919SLAB_ATTR(validate);
a5a84755
CL
4920
4921static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4922{
4923 if (!(s->flags & SLAB_STORE_USER))
4924 return -ENOSYS;
4925 return list_locations(s, buf, TRACK_ALLOC);
4926}
4927SLAB_ATTR_RO(alloc_calls);
4928
4929static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4930{
4931 if (!(s->flags & SLAB_STORE_USER))
4932 return -ENOSYS;
4933 return list_locations(s, buf, TRACK_FREE);
4934}
4935SLAB_ATTR_RO(free_calls);
4936#endif /* CONFIG_SLUB_DEBUG */
4937
4938#ifdef CONFIG_FAILSLAB
4939static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4940{
4941 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4942}
4943
4944static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4945 size_t length)
4946{
4947 s->flags &= ~SLAB_FAILSLAB;
4948 if (buf[0] == '1')
4949 s->flags |= SLAB_FAILSLAB;
4950 return length;
4951}
4952SLAB_ATTR(failslab);
ab4d5ed5 4953#endif
53e15af0 4954
2086d26a
CL
4955static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4956{
4957 return 0;
4958}
4959
4960static ssize_t shrink_store(struct kmem_cache *s,
4961 const char *buf, size_t length)
4962{
4963 if (buf[0] == '1') {
4964 int rc = kmem_cache_shrink(s);
4965
4966 if (rc)
4967 return rc;
4968 } else
4969 return -EINVAL;
4970 return length;
4971}
4972SLAB_ATTR(shrink);
4973
81819f0f 4974#ifdef CONFIG_NUMA
9824601e 4975static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4976{
9824601e 4977 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4978}
4979
9824601e 4980static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4981 const char *buf, size_t length)
4982{
0121c619
CL
4983 unsigned long ratio;
4984 int err;
4985
4986 err = strict_strtoul(buf, 10, &ratio);
4987 if (err)
4988 return err;
4989
e2cb96b7 4990 if (ratio <= 100)
0121c619 4991 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4992
81819f0f
CL
4993 return length;
4994}
9824601e 4995SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4996#endif
4997
8ff12cfc 4998#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4999static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5000{
5001 unsigned long sum = 0;
5002 int cpu;
5003 int len;
5004 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5005
5006 if (!data)
5007 return -ENOMEM;
5008
5009 for_each_online_cpu(cpu) {
9dfc6e68 5010 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5011
5012 data[cpu] = x;
5013 sum += x;
5014 }
5015
5016 len = sprintf(buf, "%lu", sum);
5017
50ef37b9 5018#ifdef CONFIG_SMP
8ff12cfc
CL
5019 for_each_online_cpu(cpu) {
5020 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5021 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5022 }
50ef37b9 5023#endif
8ff12cfc
CL
5024 kfree(data);
5025 return len + sprintf(buf + len, "\n");
5026}
5027
78eb00cc
DR
5028static void clear_stat(struct kmem_cache *s, enum stat_item si)
5029{
5030 int cpu;
5031
5032 for_each_online_cpu(cpu)
9dfc6e68 5033 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5034}
5035
8ff12cfc
CL
5036#define STAT_ATTR(si, text) \
5037static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5038{ \
5039 return show_stat(s, buf, si); \
5040} \
78eb00cc
DR
5041static ssize_t text##_store(struct kmem_cache *s, \
5042 const char *buf, size_t length) \
5043{ \
5044 if (buf[0] != '0') \
5045 return -EINVAL; \
5046 clear_stat(s, si); \
5047 return length; \
5048} \
5049SLAB_ATTR(text); \
8ff12cfc
CL
5050
5051STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5052STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5053STAT_ATTR(FREE_FASTPATH, free_fastpath);
5054STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5055STAT_ATTR(FREE_FROZEN, free_frozen);
5056STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5057STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5058STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5059STAT_ATTR(ALLOC_SLAB, alloc_slab);
5060STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5061STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5062STAT_ATTR(FREE_SLAB, free_slab);
5063STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5064STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5065STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5066STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5067STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5068STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5069STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5070STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5071STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5072STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5073STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5074STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5075STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5076STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
5077#endif
5078
06428780 5079static struct attribute *slab_attrs[] = {
81819f0f
CL
5080 &slab_size_attr.attr,
5081 &object_size_attr.attr,
5082 &objs_per_slab_attr.attr,
5083 &order_attr.attr,
73d342b1 5084 &min_partial_attr.attr,
49e22585 5085 &cpu_partial_attr.attr,
81819f0f 5086 &objects_attr.attr,
205ab99d 5087 &objects_partial_attr.attr,
81819f0f
CL
5088 &partial_attr.attr,
5089 &cpu_slabs_attr.attr,
5090 &ctor_attr.attr,
81819f0f
CL
5091 &aliases_attr.attr,
5092 &align_attr.attr,
81819f0f
CL
5093 &hwcache_align_attr.attr,
5094 &reclaim_account_attr.attr,
5095 &destroy_by_rcu_attr.attr,
a5a84755 5096 &shrink_attr.attr,
ab9a0f19 5097 &reserved_attr.attr,
49e22585 5098 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5099#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5100 &total_objects_attr.attr,
5101 &slabs_attr.attr,
5102 &sanity_checks_attr.attr,
5103 &trace_attr.attr,
81819f0f
CL
5104 &red_zone_attr.attr,
5105 &poison_attr.attr,
5106 &store_user_attr.attr,
53e15af0 5107 &validate_attr.attr,
88a420e4
CL
5108 &alloc_calls_attr.attr,
5109 &free_calls_attr.attr,
ab4d5ed5 5110#endif
81819f0f
CL
5111#ifdef CONFIG_ZONE_DMA
5112 &cache_dma_attr.attr,
5113#endif
5114#ifdef CONFIG_NUMA
9824601e 5115 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5116#endif
5117#ifdef CONFIG_SLUB_STATS
5118 &alloc_fastpath_attr.attr,
5119 &alloc_slowpath_attr.attr,
5120 &free_fastpath_attr.attr,
5121 &free_slowpath_attr.attr,
5122 &free_frozen_attr.attr,
5123 &free_add_partial_attr.attr,
5124 &free_remove_partial_attr.attr,
5125 &alloc_from_partial_attr.attr,
5126 &alloc_slab_attr.attr,
5127 &alloc_refill_attr.attr,
e36a2652 5128 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5129 &free_slab_attr.attr,
5130 &cpuslab_flush_attr.attr,
5131 &deactivate_full_attr.attr,
5132 &deactivate_empty_attr.attr,
5133 &deactivate_to_head_attr.attr,
5134 &deactivate_to_tail_attr.attr,
5135 &deactivate_remote_frees_attr.attr,
03e404af 5136 &deactivate_bypass_attr.attr,
65c3376a 5137 &order_fallback_attr.attr,
b789ef51
CL
5138 &cmpxchg_double_fail_attr.attr,
5139 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5140 &cpu_partial_alloc_attr.attr,
5141 &cpu_partial_free_attr.attr,
8028dcea
AS
5142 &cpu_partial_node_attr.attr,
5143 &cpu_partial_drain_attr.attr,
81819f0f 5144#endif
4c13dd3b
DM
5145#ifdef CONFIG_FAILSLAB
5146 &failslab_attr.attr,
5147#endif
5148
81819f0f
CL
5149 NULL
5150};
5151
5152static struct attribute_group slab_attr_group = {
5153 .attrs = slab_attrs,
5154};
5155
5156static ssize_t slab_attr_show(struct kobject *kobj,
5157 struct attribute *attr,
5158 char *buf)
5159{
5160 struct slab_attribute *attribute;
5161 struct kmem_cache *s;
5162 int err;
5163
5164 attribute = to_slab_attr(attr);
5165 s = to_slab(kobj);
5166
5167 if (!attribute->show)
5168 return -EIO;
5169
5170 err = attribute->show(s, buf);
5171
5172 return err;
5173}
5174
5175static ssize_t slab_attr_store(struct kobject *kobj,
5176 struct attribute *attr,
5177 const char *buf, size_t len)
5178{
5179 struct slab_attribute *attribute;
5180 struct kmem_cache *s;
5181 int err;
5182
5183 attribute = to_slab_attr(attr);
5184 s = to_slab(kobj);
5185
5186 if (!attribute->store)
5187 return -EIO;
5188
5189 err = attribute->store(s, buf, len);
5190
5191 return err;
5192}
5193
52cf25d0 5194static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5195 .show = slab_attr_show,
5196 .store = slab_attr_store,
5197};
5198
5199static struct kobj_type slab_ktype = {
5200 .sysfs_ops = &slab_sysfs_ops,
5201};
5202
5203static int uevent_filter(struct kset *kset, struct kobject *kobj)
5204{
5205 struct kobj_type *ktype = get_ktype(kobj);
5206
5207 if (ktype == &slab_ktype)
5208 return 1;
5209 return 0;
5210}
5211
9cd43611 5212static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5213 .filter = uevent_filter,
5214};
5215
27c3a314 5216static struct kset *slab_kset;
81819f0f
CL
5217
5218#define ID_STR_LENGTH 64
5219
5220/* Create a unique string id for a slab cache:
6446faa2
CL
5221 *
5222 * Format :[flags-]size
81819f0f
CL
5223 */
5224static char *create_unique_id(struct kmem_cache *s)
5225{
5226 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5227 char *p = name;
5228
5229 BUG_ON(!name);
5230
5231 *p++ = ':';
5232 /*
5233 * First flags affecting slabcache operations. We will only
5234 * get here for aliasable slabs so we do not need to support
5235 * too many flags. The flags here must cover all flags that
5236 * are matched during merging to guarantee that the id is
5237 * unique.
5238 */
5239 if (s->flags & SLAB_CACHE_DMA)
5240 *p++ = 'd';
5241 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5242 *p++ = 'a';
5243 if (s->flags & SLAB_DEBUG_FREE)
5244 *p++ = 'F';
5a896d9e
VN
5245 if (!(s->flags & SLAB_NOTRACK))
5246 *p++ = 't';
81819f0f
CL
5247 if (p != name + 1)
5248 *p++ = '-';
5249 p += sprintf(p, "%07d", s->size);
5250 BUG_ON(p > name + ID_STR_LENGTH - 1);
5251 return name;
5252}
5253
5254static int sysfs_slab_add(struct kmem_cache *s)
5255{
5256 int err;
5257 const char *name;
5258 int unmergeable;
5259
97d06609 5260 if (slab_state < FULL)
81819f0f
CL
5261 /* Defer until later */
5262 return 0;
5263
5264 unmergeable = slab_unmergeable(s);
5265 if (unmergeable) {
5266 /*
5267 * Slabcache can never be merged so we can use the name proper.
5268 * This is typically the case for debug situations. In that
5269 * case we can catch duplicate names easily.
5270 */
27c3a314 5271 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5272 name = s->name;
5273 } else {
5274 /*
5275 * Create a unique name for the slab as a target
5276 * for the symlinks.
5277 */
5278 name = create_unique_id(s);
5279 }
5280
27c3a314 5281 s->kobj.kset = slab_kset;
1eada11c
GKH
5282 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5283 if (err) {
5284 kobject_put(&s->kobj);
81819f0f 5285 return err;
1eada11c 5286 }
81819f0f
CL
5287
5288 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
5289 if (err) {
5290 kobject_del(&s->kobj);
5291 kobject_put(&s->kobj);
81819f0f 5292 return err;
5788d8ad 5293 }
81819f0f
CL
5294 kobject_uevent(&s->kobj, KOBJ_ADD);
5295 if (!unmergeable) {
5296 /* Setup first alias */
5297 sysfs_slab_alias(s, s->name);
5298 kfree(name);
5299 }
5300 return 0;
5301}
5302
5303static void sysfs_slab_remove(struct kmem_cache *s)
5304{
97d06609 5305 if (slab_state < FULL)
2bce6485
CL
5306 /*
5307 * Sysfs has not been setup yet so no need to remove the
5308 * cache from sysfs.
5309 */
5310 return;
5311
81819f0f
CL
5312 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5313 kobject_del(&s->kobj);
151c602f 5314 kobject_put(&s->kobj);
81819f0f
CL
5315}
5316
5317/*
5318 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5319 * available lest we lose that information.
81819f0f
CL
5320 */
5321struct saved_alias {
5322 struct kmem_cache *s;
5323 const char *name;
5324 struct saved_alias *next;
5325};
5326
5af328a5 5327static struct saved_alias *alias_list;
81819f0f
CL
5328
5329static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5330{
5331 struct saved_alias *al;
5332
97d06609 5333 if (slab_state == FULL) {
81819f0f
CL
5334 /*
5335 * If we have a leftover link then remove it.
5336 */
27c3a314
GKH
5337 sysfs_remove_link(&slab_kset->kobj, name);
5338 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5339 }
5340
5341 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5342 if (!al)
5343 return -ENOMEM;
5344
5345 al->s = s;
5346 al->name = name;
5347 al->next = alias_list;
5348 alias_list = al;
5349 return 0;
5350}
5351
5352static int __init slab_sysfs_init(void)
5353{
5b95a4ac 5354 struct kmem_cache *s;
81819f0f
CL
5355 int err;
5356
18004c5d 5357 mutex_lock(&slab_mutex);
2bce6485 5358
0ff21e46 5359 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5360 if (!slab_kset) {
18004c5d 5361 mutex_unlock(&slab_mutex);
81819f0f
CL
5362 printk(KERN_ERR "Cannot register slab subsystem.\n");
5363 return -ENOSYS;
5364 }
5365
97d06609 5366 slab_state = FULL;
26a7bd03 5367
5b95a4ac 5368 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5369 err = sysfs_slab_add(s);
5d540fb7
CL
5370 if (err)
5371 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5372 " to sysfs\n", s->name);
26a7bd03 5373 }
81819f0f
CL
5374
5375 while (alias_list) {
5376 struct saved_alias *al = alias_list;
5377
5378 alias_list = alias_list->next;
5379 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
5380 if (err)
5381 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
068ce415 5382 " %s to sysfs\n", al->name);
81819f0f
CL
5383 kfree(al);
5384 }
5385
18004c5d 5386 mutex_unlock(&slab_mutex);
81819f0f
CL
5387 resiliency_test();
5388 return 0;
5389}
5390
5391__initcall(slab_sysfs_init);
ab4d5ed5 5392#endif /* CONFIG_SYSFS */
57ed3eda
PE
5393
5394/*
5395 * The /proc/slabinfo ABI
5396 */
158a9624 5397#ifdef CONFIG_SLABINFO
57ed3eda
PE
5398static void print_slabinfo_header(struct seq_file *m)
5399{
5400 seq_puts(m, "slabinfo - version: 2.1\n");
3b0efdfa 5401 seq_puts(m, "# name <active_objs> <num_objs> <object_size> "
57ed3eda
PE
5402 "<objperslab> <pagesperslab>");
5403 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5404 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5405 seq_putc(m, '\n');
5406}
5407
5408static void *s_start(struct seq_file *m, loff_t *pos)
5409{
5410 loff_t n = *pos;
5411
18004c5d 5412 mutex_lock(&slab_mutex);
57ed3eda
PE
5413 if (!n)
5414 print_slabinfo_header(m);
5415
5416 return seq_list_start(&slab_caches, *pos);
5417}
5418
5419static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5420{
5421 return seq_list_next(p, &slab_caches, pos);
5422}
5423
5424static void s_stop(struct seq_file *m, void *p)
5425{
18004c5d 5426 mutex_unlock(&slab_mutex);
57ed3eda
PE
5427}
5428
5429static int s_show(struct seq_file *m, void *p)
5430{
5431 unsigned long nr_partials = 0;
5432 unsigned long nr_slabs = 0;
5433 unsigned long nr_inuse = 0;
205ab99d
CL
5434 unsigned long nr_objs = 0;
5435 unsigned long nr_free = 0;
57ed3eda
PE
5436 struct kmem_cache *s;
5437 int node;
5438
5439 s = list_entry(p, struct kmem_cache, list);
5440
5441 for_each_online_node(node) {
5442 struct kmem_cache_node *n = get_node(s, node);
5443
5444 if (!n)
5445 continue;
5446
5447 nr_partials += n->nr_partial;
5448 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
5449 nr_objs += atomic_long_read(&n->total_objects);
5450 nr_free += count_partial(n, count_free);
57ed3eda
PE
5451 }
5452
205ab99d 5453 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
5454
5455 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
5456 nr_objs, s->size, oo_objects(s->oo),
5457 (1 << oo_order(s->oo)));
57ed3eda
PE
5458 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5459 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5460 0UL);
5461 seq_putc(m, '\n');
5462 return 0;
5463}
5464
7b3c3a50 5465static const struct seq_operations slabinfo_op = {
57ed3eda
PE
5466 .start = s_start,
5467 .next = s_next,
5468 .stop = s_stop,
5469 .show = s_show,
5470};
5471
7b3c3a50
AD
5472static int slabinfo_open(struct inode *inode, struct file *file)
5473{
5474 return seq_open(file, &slabinfo_op);
5475}
5476
5477static const struct file_operations proc_slabinfo_operations = {
5478 .open = slabinfo_open,
5479 .read = seq_read,
5480 .llseek = seq_lseek,
5481 .release = seq_release,
5482};
5483
5484static int __init slab_proc_init(void)
5485{
ab067e99 5486 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
5487 return 0;
5488}
5489module_init(slab_proc_init);
158a9624 5490#endif /* CONFIG_SLABINFO */