Slub: UP bandaid
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
9 */
10
11#include <linux/mm.h>
1eb5ac64 12#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
13#include <linux/module.h>
14#include <linux/bit_spinlock.h>
15#include <linux/interrupt.h>
16#include <linux/bitops.h>
17#include <linux/slab.h>
7b3c3a50 18#include <linux/proc_fs.h>
81819f0f 19#include <linux/seq_file.h>
5a896d9e 20#include <linux/kmemcheck.h>
81819f0f
CL
21#include <linux/cpu.h>
22#include <linux/cpuset.h>
23#include <linux/mempolicy.h>
24#include <linux/ctype.h>
3ac7fe5a 25#include <linux/debugobjects.h>
81819f0f 26#include <linux/kallsyms.h>
b9049e23 27#include <linux/memory.h>
f8bd2258 28#include <linux/math64.h>
773ff60e 29#include <linux/fault-inject.h>
81819f0f
CL
30
31/*
32 * Lock order:
33 * 1. slab_lock(page)
34 * 2. slab->list_lock
35 *
36 * The slab_lock protects operations on the object of a particular
37 * slab and its metadata in the page struct. If the slab lock
38 * has been taken then no allocations nor frees can be performed
39 * on the objects in the slab nor can the slab be added or removed
40 * from the partial or full lists since this would mean modifying
41 * the page_struct of the slab.
42 *
43 * The list_lock protects the partial and full list on each node and
44 * the partial slab counter. If taken then no new slabs may be added or
45 * removed from the lists nor make the number of partial slabs be modified.
46 * (Note that the total number of slabs is an atomic value that may be
47 * modified without taking the list lock).
48 *
49 * The list_lock is a centralized lock and thus we avoid taking it as
50 * much as possible. As long as SLUB does not have to handle partial
51 * slabs, operations can continue without any centralized lock. F.e.
52 * allocating a long series of objects that fill up slabs does not require
53 * the list lock.
54 *
55 * The lock order is sometimes inverted when we are trying to get a slab
56 * off a list. We take the list_lock and then look for a page on the list
57 * to use. While we do that objects in the slabs may be freed. We can
58 * only operate on the slab if we have also taken the slab_lock. So we use
59 * a slab_trylock() on the slab. If trylock was successful then no frees
60 * can occur anymore and we can use the slab for allocations etc. If the
61 * slab_trylock() does not succeed then frees are in progress in the slab and
62 * we must stay away from it for a while since we may cause a bouncing
63 * cacheline if we try to acquire the lock. So go onto the next slab.
64 * If all pages are busy then we may allocate a new slab instead of reusing
65 * a partial slab. A new slab has noone operating on it and thus there is
66 * no danger of cacheline contention.
67 *
68 * Interrupts are disabled during allocation and deallocation in order to
69 * make the slab allocator safe to use in the context of an irq. In addition
70 * interrupts are disabled to ensure that the processor does not change
71 * while handling per_cpu slabs, due to kernel preemption.
72 *
73 * SLUB assigns one slab for allocation to each processor.
74 * Allocations only occur from these slabs called cpu slabs.
75 *
672bba3a
CL
76 * Slabs with free elements are kept on a partial list and during regular
77 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 78 * freed then the slab will show up again on the partial lists.
672bba3a
CL
79 * We track full slabs for debugging purposes though because otherwise we
80 * cannot scan all objects.
81819f0f
CL
81 *
82 * Slabs are freed when they become empty. Teardown and setup is
83 * minimal so we rely on the page allocators per cpu caches for
84 * fast frees and allocs.
85 *
86 * Overloading of page flags that are otherwise used for LRU management.
87 *
4b6f0750
CL
88 * PageActive The slab is frozen and exempt from list processing.
89 * This means that the slab is dedicated to a purpose
90 * such as satisfying allocations for a specific
91 * processor. Objects may be freed in the slab while
92 * it is frozen but slab_free will then skip the usual
93 * list operations. It is up to the processor holding
94 * the slab to integrate the slab into the slab lists
95 * when the slab is no longer needed.
96 *
97 * One use of this flag is to mark slabs that are
98 * used for allocations. Then such a slab becomes a cpu
99 * slab. The cpu slab may be equipped with an additional
dfb4f096 100 * freelist that allows lockless access to
894b8788
CL
101 * free objects in addition to the regular freelist
102 * that requires the slab lock.
81819f0f
CL
103 *
104 * PageError Slab requires special handling due to debug
105 * options set. This moves slab handling out of
894b8788 106 * the fast path and disables lockless freelists.
81819f0f
CL
107 */
108
af537b0a
CL
109#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
110 SLAB_TRACE | SLAB_DEBUG_FREE)
111
112static inline int kmem_cache_debug(struct kmem_cache *s)
113{
5577bd8a 114#ifdef CONFIG_SLUB_DEBUG
af537b0a 115 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 116#else
af537b0a 117 return 0;
5577bd8a 118#endif
af537b0a 119}
5577bd8a 120
81819f0f
CL
121/*
122 * Issues still to be resolved:
123 *
81819f0f
CL
124 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
125 *
81819f0f
CL
126 * - Variable sizing of the per node arrays
127 */
128
129/* Enable to test recovery from slab corruption on boot */
130#undef SLUB_RESILIENCY_TEST
131
2086d26a
CL
132/*
133 * Mininum number of partial slabs. These will be left on the partial
134 * lists even if they are empty. kmem_cache_shrink may reclaim them.
135 */
76be8950 136#define MIN_PARTIAL 5
e95eed57 137
2086d26a
CL
138/*
139 * Maximum number of desirable partial slabs.
140 * The existence of more partial slabs makes kmem_cache_shrink
141 * sort the partial list by the number of objects in the.
142 */
143#define MAX_PARTIAL 10
144
81819f0f
CL
145#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
146 SLAB_POISON | SLAB_STORE_USER)
672bba3a 147
fa5ec8a1 148/*
3de47213
DR
149 * Debugging flags that require metadata to be stored in the slab. These get
150 * disabled when slub_debug=O is used and a cache's min order increases with
151 * metadata.
fa5ec8a1 152 */
3de47213 153#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 154
81819f0f
CL
155/*
156 * Set of flags that will prevent slab merging
157 */
158#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
159 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
160 SLAB_FAILSLAB)
81819f0f
CL
161
162#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 163 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 164
210b5c06
CG
165#define OO_SHIFT 16
166#define OO_MASK ((1 << OO_SHIFT) - 1)
167#define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
168
81819f0f 169/* Internal SLUB flags */
f90ec390 170#define __OBJECT_POISON 0x80000000UL /* Poison object */
81819f0f
CL
171
172static int kmem_size = sizeof(struct kmem_cache);
173
174#ifdef CONFIG_SMP
175static struct notifier_block slab_notifier;
176#endif
177
178static enum {
179 DOWN, /* No slab functionality available */
51df1142 180 PARTIAL, /* Kmem_cache_node works */
672bba3a 181 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
182 SYSFS /* Sysfs up */
183} slab_state = DOWN;
184
185/* A list of all slab caches on the system */
186static DECLARE_RWSEM(slub_lock);
5af328a5 187static LIST_HEAD(slab_caches);
81819f0f 188
02cbc874
CL
189/*
190 * Tracking user of a slab.
191 */
192struct track {
ce71e27c 193 unsigned long addr; /* Called from address */
02cbc874
CL
194 int cpu; /* Was running on cpu */
195 int pid; /* Pid context */
196 unsigned long when; /* When did the operation occur */
197};
198
199enum track_item { TRACK_ALLOC, TRACK_FREE };
200
f6acb635 201#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
202static int sysfs_slab_add(struct kmem_cache *);
203static int sysfs_slab_alias(struct kmem_cache *, const char *);
204static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 205
81819f0f 206#else
0c710013
CL
207static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
208static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
209 { return 0; }
151c602f
CL
210static inline void sysfs_slab_remove(struct kmem_cache *s)
211{
212 kfree(s);
213}
8ff12cfc 214
81819f0f
CL
215#endif
216
84e554e6 217static inline void stat(struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
218{
219#ifdef CONFIG_SLUB_STATS
84e554e6 220 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
221#endif
222}
223
81819f0f
CL
224/********************************************************************
225 * Core slab cache functions
226 *******************************************************************/
227
228int slab_is_available(void)
229{
230 return slab_state >= UP;
231}
232
233static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
234{
235#ifdef CONFIG_NUMA
236 return s->node[node];
237#else
238 return &s->local_node;
239#endif
240}
241
6446faa2 242/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
243static inline int check_valid_pointer(struct kmem_cache *s,
244 struct page *page, const void *object)
245{
246 void *base;
247
a973e9dd 248 if (!object)
02cbc874
CL
249 return 1;
250
a973e9dd 251 base = page_address(page);
39b26464 252 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
253 (object - base) % s->size) {
254 return 0;
255 }
256
257 return 1;
258}
259
7656c72b
CL
260static inline void *get_freepointer(struct kmem_cache *s, void *object)
261{
262 return *(void **)(object + s->offset);
263}
264
265static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
266{
267 *(void **)(object + s->offset) = fp;
268}
269
270/* Loop over all objects in a slab */
224a88be
CL
271#define for_each_object(__p, __s, __addr, __objects) \
272 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
273 __p += (__s)->size)
274
275/* Scan freelist */
276#define for_each_free_object(__p, __s, __free) \
a973e9dd 277 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
7656c72b
CL
278
279/* Determine object index from a given position */
280static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
281{
282 return (p - addr) / s->size;
283}
284
834f3d11
CL
285static inline struct kmem_cache_order_objects oo_make(int order,
286 unsigned long size)
287{
288 struct kmem_cache_order_objects x = {
210b5c06 289 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
834f3d11
CL
290 };
291
292 return x;
293}
294
295static inline int oo_order(struct kmem_cache_order_objects x)
296{
210b5c06 297 return x.x >> OO_SHIFT;
834f3d11
CL
298}
299
300static inline int oo_objects(struct kmem_cache_order_objects x)
301{
210b5c06 302 return x.x & OO_MASK;
834f3d11
CL
303}
304
41ecc55b
CL
305#ifdef CONFIG_SLUB_DEBUG
306/*
307 * Debug settings:
308 */
f0630fff
CL
309#ifdef CONFIG_SLUB_DEBUG_ON
310static int slub_debug = DEBUG_DEFAULT_FLAGS;
311#else
41ecc55b 312static int slub_debug;
f0630fff 313#endif
41ecc55b
CL
314
315static char *slub_debug_slabs;
fa5ec8a1 316static int disable_higher_order_debug;
41ecc55b 317
81819f0f
CL
318/*
319 * Object debugging
320 */
321static void print_section(char *text, u8 *addr, unsigned int length)
322{
323 int i, offset;
324 int newline = 1;
325 char ascii[17];
326
327 ascii[16] = 0;
328
329 for (i = 0; i < length; i++) {
330 if (newline) {
24922684 331 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
332 newline = 0;
333 }
06428780 334 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
335 offset = i % 16;
336 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
337 if (offset == 15) {
06428780 338 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
339 newline = 1;
340 }
341 }
342 if (!newline) {
343 i %= 16;
344 while (i < 16) {
06428780 345 printk(KERN_CONT " ");
81819f0f
CL
346 ascii[i] = ' ';
347 i++;
348 }
06428780 349 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
350 }
351}
352
81819f0f
CL
353static struct track *get_track(struct kmem_cache *s, void *object,
354 enum track_item alloc)
355{
356 struct track *p;
357
358 if (s->offset)
359 p = object + s->offset + sizeof(void *);
360 else
361 p = object + s->inuse;
362
363 return p + alloc;
364}
365
366static void set_track(struct kmem_cache *s, void *object,
ce71e27c 367 enum track_item alloc, unsigned long addr)
81819f0f 368{
1a00df4a 369 struct track *p = get_track(s, object, alloc);
81819f0f 370
81819f0f
CL
371 if (addr) {
372 p->addr = addr;
373 p->cpu = smp_processor_id();
88e4ccf2 374 p->pid = current->pid;
81819f0f
CL
375 p->when = jiffies;
376 } else
377 memset(p, 0, sizeof(struct track));
378}
379
81819f0f
CL
380static void init_tracking(struct kmem_cache *s, void *object)
381{
24922684
CL
382 if (!(s->flags & SLAB_STORE_USER))
383 return;
384
ce71e27c
EGM
385 set_track(s, object, TRACK_FREE, 0UL);
386 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
387}
388
389static void print_track(const char *s, struct track *t)
390{
391 if (!t->addr)
392 return;
393
7daf705f 394 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 395 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
24922684
CL
396}
397
398static void print_tracking(struct kmem_cache *s, void *object)
399{
400 if (!(s->flags & SLAB_STORE_USER))
401 return;
402
403 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
404 print_track("Freed", get_track(s, object, TRACK_FREE));
405}
406
407static void print_page_info(struct page *page)
408{
39b26464
CL
409 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
410 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
411
412}
413
414static void slab_bug(struct kmem_cache *s, char *fmt, ...)
415{
416 va_list args;
417 char buf[100];
418
419 va_start(args, fmt);
420 vsnprintf(buf, sizeof(buf), fmt, args);
421 va_end(args);
422 printk(KERN_ERR "========================================"
423 "=====================================\n");
424 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
425 printk(KERN_ERR "----------------------------------------"
426 "-------------------------------------\n\n");
81819f0f
CL
427}
428
24922684
CL
429static void slab_fix(struct kmem_cache *s, char *fmt, ...)
430{
431 va_list args;
432 char buf[100];
433
434 va_start(args, fmt);
435 vsnprintf(buf, sizeof(buf), fmt, args);
436 va_end(args);
437 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
438}
439
440static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
441{
442 unsigned int off; /* Offset of last byte */
a973e9dd 443 u8 *addr = page_address(page);
24922684
CL
444
445 print_tracking(s, p);
446
447 print_page_info(page);
448
449 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
450 p, p - addr, get_freepointer(s, p));
451
452 if (p > addr + 16)
453 print_section("Bytes b4", p - 16, 16);
454
0ebd652b 455 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
81819f0f
CL
456
457 if (s->flags & SLAB_RED_ZONE)
458 print_section("Redzone", p + s->objsize,
459 s->inuse - s->objsize);
460
81819f0f
CL
461 if (s->offset)
462 off = s->offset + sizeof(void *);
463 else
464 off = s->inuse;
465
24922684 466 if (s->flags & SLAB_STORE_USER)
81819f0f 467 off += 2 * sizeof(struct track);
81819f0f
CL
468
469 if (off != s->size)
470 /* Beginning of the filler is the free pointer */
24922684
CL
471 print_section("Padding", p + off, s->size - off);
472
473 dump_stack();
81819f0f
CL
474}
475
476static void object_err(struct kmem_cache *s, struct page *page,
477 u8 *object, char *reason)
478{
3dc50637 479 slab_bug(s, "%s", reason);
24922684 480 print_trailer(s, page, object);
81819f0f
CL
481}
482
24922684 483static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
484{
485 va_list args;
486 char buf[100];
487
24922684
CL
488 va_start(args, fmt);
489 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 490 va_end(args);
3dc50637 491 slab_bug(s, "%s", buf);
24922684 492 print_page_info(page);
81819f0f
CL
493 dump_stack();
494}
495
496static void init_object(struct kmem_cache *s, void *object, int active)
497{
498 u8 *p = object;
499
500 if (s->flags & __OBJECT_POISON) {
501 memset(p, POISON_FREE, s->objsize - 1);
06428780 502 p[s->objsize - 1] = POISON_END;
81819f0f
CL
503 }
504
505 if (s->flags & SLAB_RED_ZONE)
506 memset(p + s->objsize,
507 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
508 s->inuse - s->objsize);
509}
510
24922684 511static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
512{
513 while (bytes) {
514 if (*start != (u8)value)
24922684 515 return start;
81819f0f
CL
516 start++;
517 bytes--;
518 }
24922684
CL
519 return NULL;
520}
521
522static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
523 void *from, void *to)
524{
525 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
526 memset(from, data, to - from);
527}
528
529static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
530 u8 *object, char *what,
06428780 531 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
532{
533 u8 *fault;
534 u8 *end;
535
536 fault = check_bytes(start, value, bytes);
537 if (!fault)
538 return 1;
539
540 end = start + bytes;
541 while (end > fault && end[-1] == value)
542 end--;
543
544 slab_bug(s, "%s overwritten", what);
545 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
546 fault, end - 1, fault[0], value);
547 print_trailer(s, page, object);
548
549 restore_bytes(s, what, value, fault, end);
550 return 0;
81819f0f
CL
551}
552
81819f0f
CL
553/*
554 * Object layout:
555 *
556 * object address
557 * Bytes of the object to be managed.
558 * If the freepointer may overlay the object then the free
559 * pointer is the first word of the object.
672bba3a 560 *
81819f0f
CL
561 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
562 * 0xa5 (POISON_END)
563 *
564 * object + s->objsize
565 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
566 * Padding is extended by another word if Redzoning is enabled and
567 * objsize == inuse.
568 *
81819f0f
CL
569 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
570 * 0xcc (RED_ACTIVE) for objects in use.
571 *
572 * object + s->inuse
672bba3a
CL
573 * Meta data starts here.
574 *
81819f0f
CL
575 * A. Free pointer (if we cannot overwrite object on free)
576 * B. Tracking data for SLAB_STORE_USER
672bba3a 577 * C. Padding to reach required alignment boundary or at mininum
6446faa2 578 * one word if debugging is on to be able to detect writes
672bba3a
CL
579 * before the word boundary.
580 *
581 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
582 *
583 * object + s->size
672bba3a 584 * Nothing is used beyond s->size.
81819f0f 585 *
672bba3a
CL
586 * If slabcaches are merged then the objsize and inuse boundaries are mostly
587 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
588 * may be used with merged slabcaches.
589 */
590
81819f0f
CL
591static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
592{
593 unsigned long off = s->inuse; /* The end of info */
594
595 if (s->offset)
596 /* Freepointer is placed after the object. */
597 off += sizeof(void *);
598
599 if (s->flags & SLAB_STORE_USER)
600 /* We also have user information there */
601 off += 2 * sizeof(struct track);
602
603 if (s->size == off)
604 return 1;
605
24922684
CL
606 return check_bytes_and_report(s, page, p, "Object padding",
607 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
608}
609
39b26464 610/* Check the pad bytes at the end of a slab page */
81819f0f
CL
611static int slab_pad_check(struct kmem_cache *s, struct page *page)
612{
24922684
CL
613 u8 *start;
614 u8 *fault;
615 u8 *end;
616 int length;
617 int remainder;
81819f0f
CL
618
619 if (!(s->flags & SLAB_POISON))
620 return 1;
621
a973e9dd 622 start = page_address(page);
834f3d11 623 length = (PAGE_SIZE << compound_order(page));
39b26464
CL
624 end = start + length;
625 remainder = length % s->size;
81819f0f
CL
626 if (!remainder)
627 return 1;
628
39b26464 629 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
630 if (!fault)
631 return 1;
632 while (end > fault && end[-1] == POISON_INUSE)
633 end--;
634
635 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 636 print_section("Padding", end - remainder, remainder);
24922684 637
8a3d271d 638 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 639 return 0;
81819f0f
CL
640}
641
642static int check_object(struct kmem_cache *s, struct page *page,
643 void *object, int active)
644{
645 u8 *p = object;
646 u8 *endobject = object + s->objsize;
647
648 if (s->flags & SLAB_RED_ZONE) {
649 unsigned int red =
650 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
651
24922684
CL
652 if (!check_bytes_and_report(s, page, object, "Redzone",
653 endobject, red, s->inuse - s->objsize))
81819f0f 654 return 0;
81819f0f 655 } else {
3adbefee
IM
656 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
657 check_bytes_and_report(s, page, p, "Alignment padding",
658 endobject, POISON_INUSE, s->inuse - s->objsize);
659 }
81819f0f
CL
660 }
661
662 if (s->flags & SLAB_POISON) {
663 if (!active && (s->flags & __OBJECT_POISON) &&
24922684
CL
664 (!check_bytes_and_report(s, page, p, "Poison", p,
665 POISON_FREE, s->objsize - 1) ||
666 !check_bytes_and_report(s, page, p, "Poison",
06428780 667 p + s->objsize - 1, POISON_END, 1)))
81819f0f 668 return 0;
81819f0f
CL
669 /*
670 * check_pad_bytes cleans up on its own.
671 */
672 check_pad_bytes(s, page, p);
673 }
674
675 if (!s->offset && active)
676 /*
677 * Object and freepointer overlap. Cannot check
678 * freepointer while object is allocated.
679 */
680 return 1;
681
682 /* Check free pointer validity */
683 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
684 object_err(s, page, p, "Freepointer corrupt");
685 /*
9f6c708e 686 * No choice but to zap it and thus lose the remainder
81819f0f 687 * of the free objects in this slab. May cause
672bba3a 688 * another error because the object count is now wrong.
81819f0f 689 */
a973e9dd 690 set_freepointer(s, p, NULL);
81819f0f
CL
691 return 0;
692 }
693 return 1;
694}
695
696static int check_slab(struct kmem_cache *s, struct page *page)
697{
39b26464
CL
698 int maxobj;
699
81819f0f
CL
700 VM_BUG_ON(!irqs_disabled());
701
702 if (!PageSlab(page)) {
24922684 703 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
704 return 0;
705 }
39b26464
CL
706
707 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
708 if (page->objects > maxobj) {
709 slab_err(s, page, "objects %u > max %u",
710 s->name, page->objects, maxobj);
711 return 0;
712 }
713 if (page->inuse > page->objects) {
24922684 714 slab_err(s, page, "inuse %u > max %u",
39b26464 715 s->name, page->inuse, page->objects);
81819f0f
CL
716 return 0;
717 }
718 /* Slab_pad_check fixes things up after itself */
719 slab_pad_check(s, page);
720 return 1;
721}
722
723/*
672bba3a
CL
724 * Determine if a certain object on a page is on the freelist. Must hold the
725 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
726 */
727static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
728{
729 int nr = 0;
730 void *fp = page->freelist;
731 void *object = NULL;
224a88be 732 unsigned long max_objects;
81819f0f 733
39b26464 734 while (fp && nr <= page->objects) {
81819f0f
CL
735 if (fp == search)
736 return 1;
737 if (!check_valid_pointer(s, page, fp)) {
738 if (object) {
739 object_err(s, page, object,
740 "Freechain corrupt");
a973e9dd 741 set_freepointer(s, object, NULL);
81819f0f
CL
742 break;
743 } else {
24922684 744 slab_err(s, page, "Freepointer corrupt");
a973e9dd 745 page->freelist = NULL;
39b26464 746 page->inuse = page->objects;
24922684 747 slab_fix(s, "Freelist cleared");
81819f0f
CL
748 return 0;
749 }
750 break;
751 }
752 object = fp;
753 fp = get_freepointer(s, object);
754 nr++;
755 }
756
224a88be 757 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
210b5c06
CG
758 if (max_objects > MAX_OBJS_PER_PAGE)
759 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
760
761 if (page->objects != max_objects) {
762 slab_err(s, page, "Wrong number of objects. Found %d but "
763 "should be %d", page->objects, max_objects);
764 page->objects = max_objects;
765 slab_fix(s, "Number of objects adjusted.");
766 }
39b26464 767 if (page->inuse != page->objects - nr) {
70d71228 768 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
769 "counted were %d", page->inuse, page->objects - nr);
770 page->inuse = page->objects - nr;
24922684 771 slab_fix(s, "Object count adjusted.");
81819f0f
CL
772 }
773 return search == NULL;
774}
775
0121c619
CL
776static void trace(struct kmem_cache *s, struct page *page, void *object,
777 int alloc)
3ec09742
CL
778{
779 if (s->flags & SLAB_TRACE) {
780 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
781 s->name,
782 alloc ? "alloc" : "free",
783 object, page->inuse,
784 page->freelist);
785
786 if (!alloc)
787 print_section("Object", (void *)object, s->objsize);
788
789 dump_stack();
790 }
791}
792
c016b0bd
CL
793/*
794 * Hooks for other subsystems that check memory allocations. In a typical
795 * production configuration these hooks all should produce no code at all.
796 */
797static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
798{
c1d50836 799 flags &= gfp_allowed_mask;
c016b0bd
CL
800 lockdep_trace_alloc(flags);
801 might_sleep_if(flags & __GFP_WAIT);
802
803 return should_failslab(s->objsize, flags, s->flags);
804}
805
806static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
807{
c1d50836 808 flags &= gfp_allowed_mask;
c016b0bd
CL
809 kmemcheck_slab_alloc(s, flags, object, s->objsize);
810 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
811}
812
813static inline void slab_free_hook(struct kmem_cache *s, void *x)
814{
815 kmemleak_free_recursive(x, s->flags);
816}
817
818static inline void slab_free_hook_irq(struct kmem_cache *s, void *object)
819{
820 kmemcheck_slab_free(s, object, s->objsize);
821 debug_check_no_locks_freed(object, s->objsize);
822 if (!(s->flags & SLAB_DEBUG_OBJECTS))
823 debug_check_no_obj_freed(object, s->objsize);
824}
825
643b1138 826/*
672bba3a 827 * Tracking of fully allocated slabs for debugging purposes.
643b1138 828 */
e95eed57 829static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 830{
643b1138
CL
831 spin_lock(&n->list_lock);
832 list_add(&page->lru, &n->full);
833 spin_unlock(&n->list_lock);
834}
835
836static void remove_full(struct kmem_cache *s, struct page *page)
837{
838 struct kmem_cache_node *n;
839
840 if (!(s->flags & SLAB_STORE_USER))
841 return;
842
843 n = get_node(s, page_to_nid(page));
844
845 spin_lock(&n->list_lock);
846 list_del(&page->lru);
847 spin_unlock(&n->list_lock);
848}
849
0f389ec6
CL
850/* Tracking of the number of slabs for debugging purposes */
851static inline unsigned long slabs_node(struct kmem_cache *s, int node)
852{
853 struct kmem_cache_node *n = get_node(s, node);
854
855 return atomic_long_read(&n->nr_slabs);
856}
857
26c02cf0
AB
858static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
859{
860 return atomic_long_read(&n->nr_slabs);
861}
862
205ab99d 863static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
864{
865 struct kmem_cache_node *n = get_node(s, node);
866
867 /*
868 * May be called early in order to allocate a slab for the
869 * kmem_cache_node structure. Solve the chicken-egg
870 * dilemma by deferring the increment of the count during
871 * bootstrap (see early_kmem_cache_node_alloc).
872 */
205ab99d 873 if (!NUMA_BUILD || n) {
0f389ec6 874 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
875 atomic_long_add(objects, &n->total_objects);
876 }
0f389ec6 877}
205ab99d 878static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
879{
880 struct kmem_cache_node *n = get_node(s, node);
881
882 atomic_long_dec(&n->nr_slabs);
205ab99d 883 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
884}
885
886/* Object debug checks for alloc/free paths */
3ec09742
CL
887static void setup_object_debug(struct kmem_cache *s, struct page *page,
888 void *object)
889{
890 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
891 return;
892
893 init_object(s, object, 0);
894 init_tracking(s, object);
895}
896
1537066c 897static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 898 void *object, unsigned long addr)
81819f0f
CL
899{
900 if (!check_slab(s, page))
901 goto bad;
902
d692ef6d 903 if (!on_freelist(s, page, object)) {
24922684 904 object_err(s, page, object, "Object already allocated");
70d71228 905 goto bad;
81819f0f
CL
906 }
907
908 if (!check_valid_pointer(s, page, object)) {
909 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 910 goto bad;
81819f0f
CL
911 }
912
d692ef6d 913 if (!check_object(s, page, object, 0))
81819f0f 914 goto bad;
81819f0f 915
3ec09742
CL
916 /* Success perform special debug activities for allocs */
917 if (s->flags & SLAB_STORE_USER)
918 set_track(s, object, TRACK_ALLOC, addr);
919 trace(s, page, object, 1);
920 init_object(s, object, 1);
81819f0f 921 return 1;
3ec09742 922
81819f0f
CL
923bad:
924 if (PageSlab(page)) {
925 /*
926 * If this is a slab page then lets do the best we can
927 * to avoid issues in the future. Marking all objects
672bba3a 928 * as used avoids touching the remaining objects.
81819f0f 929 */
24922684 930 slab_fix(s, "Marking all objects used");
39b26464 931 page->inuse = page->objects;
a973e9dd 932 page->freelist = NULL;
81819f0f
CL
933 }
934 return 0;
935}
936
1537066c
CL
937static noinline int free_debug_processing(struct kmem_cache *s,
938 struct page *page, void *object, unsigned long addr)
81819f0f
CL
939{
940 if (!check_slab(s, page))
941 goto fail;
942
943 if (!check_valid_pointer(s, page, object)) {
70d71228 944 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
945 goto fail;
946 }
947
948 if (on_freelist(s, page, object)) {
24922684 949 object_err(s, page, object, "Object already free");
81819f0f
CL
950 goto fail;
951 }
952
953 if (!check_object(s, page, object, 1))
954 return 0;
955
956 if (unlikely(s != page->slab)) {
3adbefee 957 if (!PageSlab(page)) {
70d71228
CL
958 slab_err(s, page, "Attempt to free object(0x%p) "
959 "outside of slab", object);
3adbefee 960 } else if (!page->slab) {
81819f0f 961 printk(KERN_ERR
70d71228 962 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 963 object);
70d71228 964 dump_stack();
06428780 965 } else
24922684
CL
966 object_err(s, page, object,
967 "page slab pointer corrupt.");
81819f0f
CL
968 goto fail;
969 }
3ec09742
CL
970
971 /* Special debug activities for freeing objects */
8a38082d 972 if (!PageSlubFrozen(page) && !page->freelist)
3ec09742
CL
973 remove_full(s, page);
974 if (s->flags & SLAB_STORE_USER)
975 set_track(s, object, TRACK_FREE, addr);
976 trace(s, page, object, 0);
977 init_object(s, object, 0);
81819f0f 978 return 1;
3ec09742 979
81819f0f 980fail:
24922684 981 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
982 return 0;
983}
984
41ecc55b
CL
985static int __init setup_slub_debug(char *str)
986{
f0630fff
CL
987 slub_debug = DEBUG_DEFAULT_FLAGS;
988 if (*str++ != '=' || !*str)
989 /*
990 * No options specified. Switch on full debugging.
991 */
992 goto out;
993
994 if (*str == ',')
995 /*
996 * No options but restriction on slabs. This means full
997 * debugging for slabs matching a pattern.
998 */
999 goto check_slabs;
1000
fa5ec8a1
DR
1001 if (tolower(*str) == 'o') {
1002 /*
1003 * Avoid enabling debugging on caches if its minimum order
1004 * would increase as a result.
1005 */
1006 disable_higher_order_debug = 1;
1007 goto out;
1008 }
1009
f0630fff
CL
1010 slub_debug = 0;
1011 if (*str == '-')
1012 /*
1013 * Switch off all debugging measures.
1014 */
1015 goto out;
1016
1017 /*
1018 * Determine which debug features should be switched on
1019 */
06428780 1020 for (; *str && *str != ','; str++) {
f0630fff
CL
1021 switch (tolower(*str)) {
1022 case 'f':
1023 slub_debug |= SLAB_DEBUG_FREE;
1024 break;
1025 case 'z':
1026 slub_debug |= SLAB_RED_ZONE;
1027 break;
1028 case 'p':
1029 slub_debug |= SLAB_POISON;
1030 break;
1031 case 'u':
1032 slub_debug |= SLAB_STORE_USER;
1033 break;
1034 case 't':
1035 slub_debug |= SLAB_TRACE;
1036 break;
4c13dd3b
DM
1037 case 'a':
1038 slub_debug |= SLAB_FAILSLAB;
1039 break;
f0630fff
CL
1040 default:
1041 printk(KERN_ERR "slub_debug option '%c' "
06428780 1042 "unknown. skipped\n", *str);
f0630fff 1043 }
41ecc55b
CL
1044 }
1045
f0630fff 1046check_slabs:
41ecc55b
CL
1047 if (*str == ',')
1048 slub_debug_slabs = str + 1;
f0630fff 1049out:
41ecc55b
CL
1050 return 1;
1051}
1052
1053__setup("slub_debug", setup_slub_debug);
1054
ba0268a8
CL
1055static unsigned long kmem_cache_flags(unsigned long objsize,
1056 unsigned long flags, const char *name,
51cc5068 1057 void (*ctor)(void *))
41ecc55b
CL
1058{
1059 /*
e153362a 1060 * Enable debugging if selected on the kernel commandline.
41ecc55b 1061 */
e153362a 1062 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1063 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1064 flags |= slub_debug;
ba0268a8
CL
1065
1066 return flags;
41ecc55b
CL
1067}
1068#else
3ec09742
CL
1069static inline void setup_object_debug(struct kmem_cache *s,
1070 struct page *page, void *object) {}
41ecc55b 1071
3ec09742 1072static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1073 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1074
3ec09742 1075static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1076 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1077
41ecc55b
CL
1078static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1079 { return 1; }
1080static inline int check_object(struct kmem_cache *s, struct page *page,
1081 void *object, int active) { return 1; }
3ec09742 1082static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1083static inline unsigned long kmem_cache_flags(unsigned long objsize,
1084 unsigned long flags, const char *name,
51cc5068 1085 void (*ctor)(void *))
ba0268a8
CL
1086{
1087 return flags;
1088}
41ecc55b 1089#define slub_debug 0
0f389ec6 1090
fdaa45e9
IM
1091#define disable_higher_order_debug 0
1092
0f389ec6
CL
1093static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1094 { return 0; }
26c02cf0
AB
1095static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1096 { return 0; }
205ab99d
CL
1097static inline void inc_slabs_node(struct kmem_cache *s, int node,
1098 int objects) {}
1099static inline void dec_slabs_node(struct kmem_cache *s, int node,
1100 int objects) {}
7d550c56
CL
1101
1102static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1103 { return 0; }
1104
1105static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1106 void *object) {}
1107
1108static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1109
1110static inline void slab_free_hook_irq(struct kmem_cache *s,
1111 void *object) {}
1112
41ecc55b 1113#endif
205ab99d 1114
81819f0f
CL
1115/*
1116 * Slab allocation and freeing
1117 */
65c3376a
CL
1118static inline struct page *alloc_slab_page(gfp_t flags, int node,
1119 struct kmem_cache_order_objects oo)
1120{
1121 int order = oo_order(oo);
1122
b1eeab67
VN
1123 flags |= __GFP_NOTRACK;
1124
2154a336 1125 if (node == NUMA_NO_NODE)
65c3376a
CL
1126 return alloc_pages(flags, order);
1127 else
6b65aaf3 1128 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1129}
1130
81819f0f
CL
1131static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1132{
06428780 1133 struct page *page;
834f3d11 1134 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1135 gfp_t alloc_gfp;
81819f0f 1136
b7a49f0d 1137 flags |= s->allocflags;
e12ba74d 1138
ba52270d
PE
1139 /*
1140 * Let the initial higher-order allocation fail under memory pressure
1141 * so we fall-back to the minimum order allocation.
1142 */
1143 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1144
1145 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1146 if (unlikely(!page)) {
1147 oo = s->min;
1148 /*
1149 * Allocation may have failed due to fragmentation.
1150 * Try a lower order alloc if possible
1151 */
1152 page = alloc_slab_page(flags, node, oo);
1153 if (!page)
1154 return NULL;
81819f0f 1155
84e554e6 1156 stat(s, ORDER_FALLBACK);
65c3376a 1157 }
5a896d9e
VN
1158
1159 if (kmemcheck_enabled
5086c389 1160 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1161 int pages = 1 << oo_order(oo);
1162
1163 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1164
1165 /*
1166 * Objects from caches that have a constructor don't get
1167 * cleared when they're allocated, so we need to do it here.
1168 */
1169 if (s->ctor)
1170 kmemcheck_mark_uninitialized_pages(page, pages);
1171 else
1172 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1173 }
1174
834f3d11 1175 page->objects = oo_objects(oo);
81819f0f
CL
1176 mod_zone_page_state(page_zone(page),
1177 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1178 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1179 1 << oo_order(oo));
81819f0f
CL
1180
1181 return page;
1182}
1183
1184static void setup_object(struct kmem_cache *s, struct page *page,
1185 void *object)
1186{
3ec09742 1187 setup_object_debug(s, page, object);
4f104934 1188 if (unlikely(s->ctor))
51cc5068 1189 s->ctor(object);
81819f0f
CL
1190}
1191
1192static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1193{
1194 struct page *page;
81819f0f 1195 void *start;
81819f0f
CL
1196 void *last;
1197 void *p;
1198
6cb06229 1199 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1200
6cb06229
CL
1201 page = allocate_slab(s,
1202 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1203 if (!page)
1204 goto out;
1205
205ab99d 1206 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1207 page->slab = s;
1208 page->flags |= 1 << PG_slab;
81819f0f
CL
1209
1210 start = page_address(page);
81819f0f
CL
1211
1212 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1213 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1214
1215 last = start;
224a88be 1216 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1217 setup_object(s, page, last);
1218 set_freepointer(s, last, p);
1219 last = p;
1220 }
1221 setup_object(s, page, last);
a973e9dd 1222 set_freepointer(s, last, NULL);
81819f0f
CL
1223
1224 page->freelist = start;
1225 page->inuse = 0;
1226out:
81819f0f
CL
1227 return page;
1228}
1229
1230static void __free_slab(struct kmem_cache *s, struct page *page)
1231{
834f3d11
CL
1232 int order = compound_order(page);
1233 int pages = 1 << order;
81819f0f 1234
af537b0a 1235 if (kmem_cache_debug(s)) {
81819f0f
CL
1236 void *p;
1237
1238 slab_pad_check(s, page);
224a88be
CL
1239 for_each_object(p, s, page_address(page),
1240 page->objects)
81819f0f 1241 check_object(s, page, p, 0);
81819f0f
CL
1242 }
1243
b1eeab67 1244 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1245
81819f0f
CL
1246 mod_zone_page_state(page_zone(page),
1247 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1248 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1249 -pages);
81819f0f 1250
49bd5221
CL
1251 __ClearPageSlab(page);
1252 reset_page_mapcount(page);
1eb5ac64
NP
1253 if (current->reclaim_state)
1254 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1255 __free_pages(page, order);
81819f0f
CL
1256}
1257
1258static void rcu_free_slab(struct rcu_head *h)
1259{
1260 struct page *page;
1261
1262 page = container_of((struct list_head *)h, struct page, lru);
1263 __free_slab(page->slab, page);
1264}
1265
1266static void free_slab(struct kmem_cache *s, struct page *page)
1267{
1268 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1269 /*
1270 * RCU free overloads the RCU head over the LRU
1271 */
1272 struct rcu_head *head = (void *)&page->lru;
1273
1274 call_rcu(head, rcu_free_slab);
1275 } else
1276 __free_slab(s, page);
1277}
1278
1279static void discard_slab(struct kmem_cache *s, struct page *page)
1280{
205ab99d 1281 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1282 free_slab(s, page);
1283}
1284
1285/*
1286 * Per slab locking using the pagelock
1287 */
1288static __always_inline void slab_lock(struct page *page)
1289{
1290 bit_spin_lock(PG_locked, &page->flags);
1291}
1292
1293static __always_inline void slab_unlock(struct page *page)
1294{
a76d3546 1295 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1296}
1297
1298static __always_inline int slab_trylock(struct page *page)
1299{
1300 int rc = 1;
1301
1302 rc = bit_spin_trylock(PG_locked, &page->flags);
1303 return rc;
1304}
1305
1306/*
1307 * Management of partially allocated slabs
1308 */
7c2e132c
CL
1309static void add_partial(struct kmem_cache_node *n,
1310 struct page *page, int tail)
81819f0f 1311{
e95eed57
CL
1312 spin_lock(&n->list_lock);
1313 n->nr_partial++;
7c2e132c
CL
1314 if (tail)
1315 list_add_tail(&page->lru, &n->partial);
1316 else
1317 list_add(&page->lru, &n->partial);
81819f0f
CL
1318 spin_unlock(&n->list_lock);
1319}
1320
0121c619 1321static void remove_partial(struct kmem_cache *s, struct page *page)
81819f0f
CL
1322{
1323 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1324
1325 spin_lock(&n->list_lock);
1326 list_del(&page->lru);
1327 n->nr_partial--;
1328 spin_unlock(&n->list_lock);
1329}
1330
1331/*
672bba3a 1332 * Lock slab and remove from the partial list.
81819f0f 1333 *
672bba3a 1334 * Must hold list_lock.
81819f0f 1335 */
0121c619
CL
1336static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1337 struct page *page)
81819f0f
CL
1338{
1339 if (slab_trylock(page)) {
1340 list_del(&page->lru);
1341 n->nr_partial--;
8a38082d 1342 __SetPageSlubFrozen(page);
81819f0f
CL
1343 return 1;
1344 }
1345 return 0;
1346}
1347
1348/*
672bba3a 1349 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1350 */
1351static struct page *get_partial_node(struct kmem_cache_node *n)
1352{
1353 struct page *page;
1354
1355 /*
1356 * Racy check. If we mistakenly see no partial slabs then we
1357 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1358 * partial slab and there is none available then get_partials()
1359 * will return NULL.
81819f0f
CL
1360 */
1361 if (!n || !n->nr_partial)
1362 return NULL;
1363
1364 spin_lock(&n->list_lock);
1365 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1366 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1367 goto out;
1368 page = NULL;
1369out:
1370 spin_unlock(&n->list_lock);
1371 return page;
1372}
1373
1374/*
672bba3a 1375 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1376 */
1377static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1378{
1379#ifdef CONFIG_NUMA
1380 struct zonelist *zonelist;
dd1a239f 1381 struct zoneref *z;
54a6eb5c
MG
1382 struct zone *zone;
1383 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1384 struct page *page;
1385
1386 /*
672bba3a
CL
1387 * The defrag ratio allows a configuration of the tradeoffs between
1388 * inter node defragmentation and node local allocations. A lower
1389 * defrag_ratio increases the tendency to do local allocations
1390 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1391 *
672bba3a
CL
1392 * If the defrag_ratio is set to 0 then kmalloc() always
1393 * returns node local objects. If the ratio is higher then kmalloc()
1394 * may return off node objects because partial slabs are obtained
1395 * from other nodes and filled up.
81819f0f 1396 *
6446faa2 1397 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1398 * defrag_ratio = 1000) then every (well almost) allocation will
1399 * first attempt to defrag slab caches on other nodes. This means
1400 * scanning over all nodes to look for partial slabs which may be
1401 * expensive if we do it every time we are trying to find a slab
1402 * with available objects.
81819f0f 1403 */
9824601e
CL
1404 if (!s->remote_node_defrag_ratio ||
1405 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1406 return NULL;
1407
c0ff7453 1408 get_mems_allowed();
0e88460d 1409 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1410 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1411 struct kmem_cache_node *n;
1412
54a6eb5c 1413 n = get_node(s, zone_to_nid(zone));
81819f0f 1414
54a6eb5c 1415 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1416 n->nr_partial > s->min_partial) {
81819f0f 1417 page = get_partial_node(n);
c0ff7453
MX
1418 if (page) {
1419 put_mems_allowed();
81819f0f 1420 return page;
c0ff7453 1421 }
81819f0f
CL
1422 }
1423 }
c0ff7453 1424 put_mems_allowed();
81819f0f
CL
1425#endif
1426 return NULL;
1427}
1428
1429/*
1430 * Get a partial page, lock it and return it.
1431 */
1432static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1433{
1434 struct page *page;
2154a336 1435 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f
CL
1436
1437 page = get_partial_node(get_node(s, searchnode));
bc6488e9 1438 if (page || node != -1)
81819f0f
CL
1439 return page;
1440
1441 return get_any_partial(s, flags);
1442}
1443
1444/*
1445 * Move a page back to the lists.
1446 *
1447 * Must be called with the slab lock held.
1448 *
1449 * On exit the slab lock will have been dropped.
1450 */
7c2e132c 1451static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
81819f0f 1452{
e95eed57
CL
1453 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1454
8a38082d 1455 __ClearPageSlubFrozen(page);
81819f0f 1456 if (page->inuse) {
e95eed57 1457
a973e9dd 1458 if (page->freelist) {
7c2e132c 1459 add_partial(n, page, tail);
84e554e6 1460 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
8ff12cfc 1461 } else {
84e554e6 1462 stat(s, DEACTIVATE_FULL);
af537b0a 1463 if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
8ff12cfc
CL
1464 add_full(n, page);
1465 }
81819f0f
CL
1466 slab_unlock(page);
1467 } else {
84e554e6 1468 stat(s, DEACTIVATE_EMPTY);
3b89d7d8 1469 if (n->nr_partial < s->min_partial) {
e95eed57 1470 /*
672bba3a
CL
1471 * Adding an empty slab to the partial slabs in order
1472 * to avoid page allocator overhead. This slab needs
1473 * to come after the other slabs with objects in
6446faa2
CL
1474 * so that the others get filled first. That way the
1475 * size of the partial list stays small.
1476 *
0121c619
CL
1477 * kmem_cache_shrink can reclaim any empty slabs from
1478 * the partial list.
e95eed57 1479 */
7c2e132c 1480 add_partial(n, page, 1);
e95eed57
CL
1481 slab_unlock(page);
1482 } else {
1483 slab_unlock(page);
84e554e6 1484 stat(s, FREE_SLAB);
e95eed57
CL
1485 discard_slab(s, page);
1486 }
81819f0f
CL
1487 }
1488}
1489
1490/*
1491 * Remove the cpu slab
1492 */
dfb4f096 1493static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1494{
dfb4f096 1495 struct page *page = c->page;
7c2e132c 1496 int tail = 1;
8ff12cfc 1497
b773ad73 1498 if (page->freelist)
84e554e6 1499 stat(s, DEACTIVATE_REMOTE_FREES);
894b8788 1500 /*
6446faa2 1501 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1502 * because both freelists are empty. So this is unlikely
1503 * to occur.
1504 */
a973e9dd 1505 while (unlikely(c->freelist)) {
894b8788
CL
1506 void **object;
1507
7c2e132c
CL
1508 tail = 0; /* Hot objects. Put the slab first */
1509
894b8788 1510 /* Retrieve object from cpu_freelist */
dfb4f096 1511 object = c->freelist;
ff12059e 1512 c->freelist = get_freepointer(s, c->freelist);
894b8788
CL
1513
1514 /* And put onto the regular freelist */
ff12059e 1515 set_freepointer(s, object, page->freelist);
894b8788
CL
1516 page->freelist = object;
1517 page->inuse--;
1518 }
dfb4f096 1519 c->page = NULL;
7c2e132c 1520 unfreeze_slab(s, page, tail);
81819f0f
CL
1521}
1522
dfb4f096 1523static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1524{
84e554e6 1525 stat(s, CPUSLAB_FLUSH);
dfb4f096
CL
1526 slab_lock(c->page);
1527 deactivate_slab(s, c);
81819f0f
CL
1528}
1529
1530/*
1531 * Flush cpu slab.
6446faa2 1532 *
81819f0f
CL
1533 * Called from IPI handler with interrupts disabled.
1534 */
0c710013 1535static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1536{
9dfc6e68 1537 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 1538
dfb4f096
CL
1539 if (likely(c && c->page))
1540 flush_slab(s, c);
81819f0f
CL
1541}
1542
1543static void flush_cpu_slab(void *d)
1544{
1545 struct kmem_cache *s = d;
81819f0f 1546
dfb4f096 1547 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1548}
1549
1550static void flush_all(struct kmem_cache *s)
1551{
15c8b6c1 1552 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
1553}
1554
dfb4f096
CL
1555/*
1556 * Check if the objects in a per cpu structure fit numa
1557 * locality expectations.
1558 */
1559static inline int node_match(struct kmem_cache_cpu *c, int node)
1560{
1561#ifdef CONFIG_NUMA
2154a336 1562 if (node != NUMA_NO_NODE && c->node != node)
dfb4f096
CL
1563 return 0;
1564#endif
1565 return 1;
1566}
1567
781b2ba6
PE
1568static int count_free(struct page *page)
1569{
1570 return page->objects - page->inuse;
1571}
1572
1573static unsigned long count_partial(struct kmem_cache_node *n,
1574 int (*get_count)(struct page *))
1575{
1576 unsigned long flags;
1577 unsigned long x = 0;
1578 struct page *page;
1579
1580 spin_lock_irqsave(&n->list_lock, flags);
1581 list_for_each_entry(page, &n->partial, lru)
1582 x += get_count(page);
1583 spin_unlock_irqrestore(&n->list_lock, flags);
1584 return x;
1585}
1586
26c02cf0
AB
1587static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1588{
1589#ifdef CONFIG_SLUB_DEBUG
1590 return atomic_long_read(&n->total_objects);
1591#else
1592 return 0;
1593#endif
1594}
1595
781b2ba6
PE
1596static noinline void
1597slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1598{
1599 int node;
1600
1601 printk(KERN_WARNING
1602 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1603 nid, gfpflags);
1604 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1605 "default order: %d, min order: %d\n", s->name, s->objsize,
1606 s->size, oo_order(s->oo), oo_order(s->min));
1607
fa5ec8a1
DR
1608 if (oo_order(s->min) > get_order(s->objsize))
1609 printk(KERN_WARNING " %s debugging increased min order, use "
1610 "slub_debug=O to disable.\n", s->name);
1611
781b2ba6
PE
1612 for_each_online_node(node) {
1613 struct kmem_cache_node *n = get_node(s, node);
1614 unsigned long nr_slabs;
1615 unsigned long nr_objs;
1616 unsigned long nr_free;
1617
1618 if (!n)
1619 continue;
1620
26c02cf0
AB
1621 nr_free = count_partial(n, count_free);
1622 nr_slabs = node_nr_slabs(n);
1623 nr_objs = node_nr_objs(n);
781b2ba6
PE
1624
1625 printk(KERN_WARNING
1626 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1627 node, nr_slabs, nr_objs, nr_free);
1628 }
1629}
1630
81819f0f 1631/*
894b8788
CL
1632 * Slow path. The lockless freelist is empty or we need to perform
1633 * debugging duties.
1634 *
1635 * Interrupts are disabled.
81819f0f 1636 *
894b8788
CL
1637 * Processing is still very fast if new objects have been freed to the
1638 * regular freelist. In that case we simply take over the regular freelist
1639 * as the lockless freelist and zap the regular freelist.
81819f0f 1640 *
894b8788
CL
1641 * If that is not working then we fall back to the partial lists. We take the
1642 * first element of the freelist as the object to allocate now and move the
1643 * rest of the freelist to the lockless freelist.
81819f0f 1644 *
894b8788 1645 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1646 * we need to allocate a new slab. This is the slowest path since it involves
1647 * a call to the page allocator and the setup of a new slab.
81819f0f 1648 */
ce71e27c
EGM
1649static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1650 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 1651{
81819f0f 1652 void **object;
dfb4f096 1653 struct page *new;
81819f0f 1654
e72e9c23
LT
1655 /* We handle __GFP_ZERO in the caller */
1656 gfpflags &= ~__GFP_ZERO;
1657
dfb4f096 1658 if (!c->page)
81819f0f
CL
1659 goto new_slab;
1660
dfb4f096
CL
1661 slab_lock(c->page);
1662 if (unlikely(!node_match(c, node)))
81819f0f 1663 goto another_slab;
6446faa2 1664
84e554e6 1665 stat(s, ALLOC_REFILL);
6446faa2 1666
894b8788 1667load_freelist:
dfb4f096 1668 object = c->page->freelist;
a973e9dd 1669 if (unlikely(!object))
81819f0f 1670 goto another_slab;
af537b0a 1671 if (kmem_cache_debug(s))
81819f0f
CL
1672 goto debug;
1673
ff12059e 1674 c->freelist = get_freepointer(s, object);
39b26464 1675 c->page->inuse = c->page->objects;
a973e9dd 1676 c->page->freelist = NULL;
dfb4f096 1677 c->node = page_to_nid(c->page);
1f84260c 1678unlock_out:
dfb4f096 1679 slab_unlock(c->page);
84e554e6 1680 stat(s, ALLOC_SLOWPATH);
81819f0f
CL
1681 return object;
1682
1683another_slab:
dfb4f096 1684 deactivate_slab(s, c);
81819f0f
CL
1685
1686new_slab:
dfb4f096
CL
1687 new = get_partial(s, gfpflags, node);
1688 if (new) {
1689 c->page = new;
84e554e6 1690 stat(s, ALLOC_FROM_PARTIAL);
894b8788 1691 goto load_freelist;
81819f0f
CL
1692 }
1693
c1d50836 1694 gfpflags &= gfp_allowed_mask;
b811c202
CL
1695 if (gfpflags & __GFP_WAIT)
1696 local_irq_enable();
1697
dfb4f096 1698 new = new_slab(s, gfpflags, node);
b811c202
CL
1699
1700 if (gfpflags & __GFP_WAIT)
1701 local_irq_disable();
1702
dfb4f096 1703 if (new) {
9dfc6e68 1704 c = __this_cpu_ptr(s->cpu_slab);
84e554e6 1705 stat(s, ALLOC_SLAB);
05aa3450 1706 if (c->page)
dfb4f096 1707 flush_slab(s, c);
dfb4f096 1708 slab_lock(new);
8a38082d 1709 __SetPageSlubFrozen(new);
dfb4f096 1710 c->page = new;
4b6f0750 1711 goto load_freelist;
81819f0f 1712 }
95f85989
PE
1713 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1714 slab_out_of_memory(s, gfpflags, node);
71c7a06f 1715 return NULL;
81819f0f 1716debug:
dfb4f096 1717 if (!alloc_debug_processing(s, c->page, object, addr))
81819f0f 1718 goto another_slab;
894b8788 1719
dfb4f096 1720 c->page->inuse++;
ff12059e 1721 c->page->freelist = get_freepointer(s, object);
ee3c72a1 1722 c->node = -1;
1f84260c 1723 goto unlock_out;
894b8788
CL
1724}
1725
1726/*
1727 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1728 * have the fastpath folded into their functions. So no function call
1729 * overhead for requests that can be satisfied on the fastpath.
1730 *
1731 * The fastpath works by first checking if the lockless freelist can be used.
1732 * If not then __slab_alloc is called for slow processing.
1733 *
1734 * Otherwise we can simply pick the next object from the lockless free list.
1735 */
06428780 1736static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 1737 gfp_t gfpflags, int node, unsigned long addr)
894b8788 1738{
894b8788 1739 void **object;
dfb4f096 1740 struct kmem_cache_cpu *c;
1f84260c
CL
1741 unsigned long flags;
1742
c016b0bd 1743 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 1744 return NULL;
1f84260c 1745
894b8788 1746 local_irq_save(flags);
9dfc6e68
CL
1747 c = __this_cpu_ptr(s->cpu_slab);
1748 object = c->freelist;
9dfc6e68 1749 if (unlikely(!object || !node_match(c, node)))
894b8788 1750
dfb4f096 1751 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1752
1753 else {
ff12059e 1754 c->freelist = get_freepointer(s, object);
84e554e6 1755 stat(s, ALLOC_FASTPATH);
894b8788
CL
1756 }
1757 local_irq_restore(flags);
d07dbea4 1758
74e2134f 1759 if (unlikely(gfpflags & __GFP_ZERO) && object)
ff12059e 1760 memset(object, 0, s->objsize);
d07dbea4 1761
c016b0bd 1762 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 1763
894b8788 1764 return object;
81819f0f
CL
1765}
1766
1767void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1768{
2154a336 1769 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 1770
ca2b84cb 1771 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
1772
1773 return ret;
81819f0f
CL
1774}
1775EXPORT_SYMBOL(kmem_cache_alloc);
1776
0f24f128 1777#ifdef CONFIG_TRACING
5b882be4
EGM
1778void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1779{
2154a336 1780 return slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4
EGM
1781}
1782EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1783#endif
1784
81819f0f
CL
1785#ifdef CONFIG_NUMA
1786void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1787{
5b882be4
EGM
1788 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1789
ca2b84cb
EGM
1790 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1791 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
1792
1793 return ret;
81819f0f
CL
1794}
1795EXPORT_SYMBOL(kmem_cache_alloc_node);
1796#endif
1797
0f24f128 1798#ifdef CONFIG_TRACING
5b882be4
EGM
1799void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1800 gfp_t gfpflags,
1801 int node)
1802{
1803 return slab_alloc(s, gfpflags, node, _RET_IP_);
1804}
1805EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1806#endif
1807
81819f0f 1808/*
894b8788
CL
1809 * Slow patch handling. This may still be called frequently since objects
1810 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1811 *
894b8788
CL
1812 * So we still attempt to reduce cache line usage. Just take the slab
1813 * lock and free the item. If there is no additional partial page
1814 * handling required then we can return immediately.
81819f0f 1815 */
894b8788 1816static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 1817 void *x, unsigned long addr)
81819f0f
CL
1818{
1819 void *prior;
1820 void **object = (void *)x;
81819f0f 1821
84e554e6 1822 stat(s, FREE_SLOWPATH);
81819f0f
CL
1823 slab_lock(page);
1824
af537b0a 1825 if (kmem_cache_debug(s))
81819f0f 1826 goto debug;
6446faa2 1827
81819f0f 1828checks_ok:
ff12059e
CL
1829 prior = page->freelist;
1830 set_freepointer(s, object, prior);
81819f0f
CL
1831 page->freelist = object;
1832 page->inuse--;
1833
8a38082d 1834 if (unlikely(PageSlubFrozen(page))) {
84e554e6 1835 stat(s, FREE_FROZEN);
81819f0f 1836 goto out_unlock;
8ff12cfc 1837 }
81819f0f
CL
1838
1839 if (unlikely(!page->inuse))
1840 goto slab_empty;
1841
1842 /*
6446faa2 1843 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
1844 * then add it.
1845 */
a973e9dd 1846 if (unlikely(!prior)) {
7c2e132c 1847 add_partial(get_node(s, page_to_nid(page)), page, 1);
84e554e6 1848 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 1849 }
81819f0f
CL
1850
1851out_unlock:
1852 slab_unlock(page);
81819f0f
CL
1853 return;
1854
1855slab_empty:
a973e9dd 1856 if (prior) {
81819f0f 1857 /*
672bba3a 1858 * Slab still on the partial list.
81819f0f
CL
1859 */
1860 remove_partial(s, page);
84e554e6 1861 stat(s, FREE_REMOVE_PARTIAL);
8ff12cfc 1862 }
81819f0f 1863 slab_unlock(page);
84e554e6 1864 stat(s, FREE_SLAB);
81819f0f 1865 discard_slab(s, page);
81819f0f
CL
1866 return;
1867
1868debug:
3ec09742 1869 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 1870 goto out_unlock;
77c5e2d0 1871 goto checks_ok;
81819f0f
CL
1872}
1873
894b8788
CL
1874/*
1875 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1876 * can perform fastpath freeing without additional function calls.
1877 *
1878 * The fastpath is only possible if we are freeing to the current cpu slab
1879 * of this processor. This typically the case if we have just allocated
1880 * the item before.
1881 *
1882 * If fastpath is not possible then fall back to __slab_free where we deal
1883 * with all sorts of special processing.
1884 */
06428780 1885static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 1886 struct page *page, void *x, unsigned long addr)
894b8788
CL
1887{
1888 void **object = (void *)x;
dfb4f096 1889 struct kmem_cache_cpu *c;
1f84260c
CL
1890 unsigned long flags;
1891
c016b0bd
CL
1892 slab_free_hook(s, x);
1893
894b8788 1894 local_irq_save(flags);
9dfc6e68 1895 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd
CL
1896
1897 slab_free_hook_irq(s, x);
1898
ee3c72a1 1899 if (likely(page == c->page && c->node >= 0)) {
ff12059e 1900 set_freepointer(s, object, c->freelist);
dfb4f096 1901 c->freelist = object;
84e554e6 1902 stat(s, FREE_FASTPATH);
894b8788 1903 } else
ff12059e 1904 __slab_free(s, page, x, addr);
894b8788
CL
1905
1906 local_irq_restore(flags);
1907}
1908
81819f0f
CL
1909void kmem_cache_free(struct kmem_cache *s, void *x)
1910{
77c5e2d0 1911 struct page *page;
81819f0f 1912
b49af68f 1913 page = virt_to_head_page(x);
81819f0f 1914
ce71e27c 1915 slab_free(s, page, x, _RET_IP_);
5b882be4 1916
ca2b84cb 1917 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
1918}
1919EXPORT_SYMBOL(kmem_cache_free);
1920
e9beef18 1921/* Figure out on which slab page the object resides */
81819f0f
CL
1922static struct page *get_object_page(const void *x)
1923{
b49af68f 1924 struct page *page = virt_to_head_page(x);
81819f0f
CL
1925
1926 if (!PageSlab(page))
1927 return NULL;
1928
1929 return page;
1930}
1931
1932/*
672bba3a
CL
1933 * Object placement in a slab is made very easy because we always start at
1934 * offset 0. If we tune the size of the object to the alignment then we can
1935 * get the required alignment by putting one properly sized object after
1936 * another.
81819f0f
CL
1937 *
1938 * Notice that the allocation order determines the sizes of the per cpu
1939 * caches. Each processor has always one slab available for allocations.
1940 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1941 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1942 * locking overhead.
81819f0f
CL
1943 */
1944
1945/*
1946 * Mininum / Maximum order of slab pages. This influences locking overhead
1947 * and slab fragmentation. A higher order reduces the number of partial slabs
1948 * and increases the number of allocations possible without having to
1949 * take the list_lock.
1950 */
1951static int slub_min_order;
114e9e89 1952static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 1953static int slub_min_objects;
81819f0f
CL
1954
1955/*
1956 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1957 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1958 */
1959static int slub_nomerge;
1960
81819f0f
CL
1961/*
1962 * Calculate the order of allocation given an slab object size.
1963 *
672bba3a
CL
1964 * The order of allocation has significant impact on performance and other
1965 * system components. Generally order 0 allocations should be preferred since
1966 * order 0 does not cause fragmentation in the page allocator. Larger objects
1967 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 1968 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
1969 * would be wasted.
1970 *
1971 * In order to reach satisfactory performance we must ensure that a minimum
1972 * number of objects is in one slab. Otherwise we may generate too much
1973 * activity on the partial lists which requires taking the list_lock. This is
1974 * less a concern for large slabs though which are rarely used.
81819f0f 1975 *
672bba3a
CL
1976 * slub_max_order specifies the order where we begin to stop considering the
1977 * number of objects in a slab as critical. If we reach slub_max_order then
1978 * we try to keep the page order as low as possible. So we accept more waste
1979 * of space in favor of a small page order.
81819f0f 1980 *
672bba3a
CL
1981 * Higher order allocations also allow the placement of more objects in a
1982 * slab and thereby reduce object handling overhead. If the user has
1983 * requested a higher mininum order then we start with that one instead of
1984 * the smallest order which will fit the object.
81819f0f 1985 */
5e6d444e
CL
1986static inline int slab_order(int size, int min_objects,
1987 int max_order, int fract_leftover)
81819f0f
CL
1988{
1989 int order;
1990 int rem;
6300ea75 1991 int min_order = slub_min_order;
81819f0f 1992
210b5c06
CG
1993 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1994 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 1995
6300ea75 1996 for (order = max(min_order,
5e6d444e
CL
1997 fls(min_objects * size - 1) - PAGE_SHIFT);
1998 order <= max_order; order++) {
81819f0f 1999
5e6d444e 2000 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2001
5e6d444e 2002 if (slab_size < min_objects * size)
81819f0f
CL
2003 continue;
2004
2005 rem = slab_size % size;
2006
5e6d444e 2007 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2008 break;
2009
2010 }
672bba3a 2011
81819f0f
CL
2012 return order;
2013}
2014
5e6d444e
CL
2015static inline int calculate_order(int size)
2016{
2017 int order;
2018 int min_objects;
2019 int fraction;
e8120ff1 2020 int max_objects;
5e6d444e
CL
2021
2022 /*
2023 * Attempt to find best configuration for a slab. This
2024 * works by first attempting to generate a layout with
2025 * the best configuration and backing off gradually.
2026 *
2027 * First we reduce the acceptable waste in a slab. Then
2028 * we reduce the minimum objects required in a slab.
2029 */
2030 min_objects = slub_min_objects;
9b2cd506
CL
2031 if (!min_objects)
2032 min_objects = 4 * (fls(nr_cpu_ids) + 1);
e8120ff1
ZY
2033 max_objects = (PAGE_SIZE << slub_max_order)/size;
2034 min_objects = min(min_objects, max_objects);
2035
5e6d444e 2036 while (min_objects > 1) {
c124f5b5 2037 fraction = 16;
5e6d444e
CL
2038 while (fraction >= 4) {
2039 order = slab_order(size, min_objects,
2040 slub_max_order, fraction);
2041 if (order <= slub_max_order)
2042 return order;
2043 fraction /= 2;
2044 }
5086c389 2045 min_objects--;
5e6d444e
CL
2046 }
2047
2048 /*
2049 * We were unable to place multiple objects in a slab. Now
2050 * lets see if we can place a single object there.
2051 */
2052 order = slab_order(size, 1, slub_max_order, 1);
2053 if (order <= slub_max_order)
2054 return order;
2055
2056 /*
2057 * Doh this slab cannot be placed using slub_max_order.
2058 */
2059 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 2060 if (order < MAX_ORDER)
5e6d444e
CL
2061 return order;
2062 return -ENOSYS;
2063}
2064
81819f0f 2065/*
672bba3a 2066 * Figure out what the alignment of the objects will be.
81819f0f
CL
2067 */
2068static unsigned long calculate_alignment(unsigned long flags,
2069 unsigned long align, unsigned long size)
2070{
2071 /*
6446faa2
CL
2072 * If the user wants hardware cache aligned objects then follow that
2073 * suggestion if the object is sufficiently large.
81819f0f 2074 *
6446faa2
CL
2075 * The hardware cache alignment cannot override the specified
2076 * alignment though. If that is greater then use it.
81819f0f 2077 */
b6210386
NP
2078 if (flags & SLAB_HWCACHE_ALIGN) {
2079 unsigned long ralign = cache_line_size();
2080 while (size <= ralign / 2)
2081 ralign /= 2;
2082 align = max(align, ralign);
2083 }
81819f0f
CL
2084
2085 if (align < ARCH_SLAB_MINALIGN)
b6210386 2086 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2087
2088 return ALIGN(align, sizeof(void *));
2089}
2090
5595cffc
PE
2091static void
2092init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2093{
2094 n->nr_partial = 0;
81819f0f
CL
2095 spin_lock_init(&n->list_lock);
2096 INIT_LIST_HEAD(&n->partial);
8ab1372f 2097#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2098 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2099 atomic_long_set(&n->total_objects, 0);
643b1138 2100 INIT_LIST_HEAD(&n->full);
8ab1372f 2101#endif
81819f0f
CL
2102}
2103
55136592 2104static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2105{
db210e70
CL
2106#ifdef CONFIG_SMP
2107 /*
2108 * Will use reserve that does not require slab operation during
2109 * early boot.
2110 */
6c182dc0
CL
2111 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2112 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
db210e70
CL
2113#else
2114 /*
2115 * Special hack for UP mode. allocpercpu() falls back to kmalloc
2116 * operations. So we cannot use that before the slab allocator is up
2117 * Simply get the smallest possible compound page. The page will be
2118 * released via kfree() when the cpu caches are resized later.
2119 */
2120 if (slab_state < UP)
2121 s->cpu_slab = (__percpu void *)kmalloc_large(PAGE_SIZE << 1, GFP_NOWAIT);
2122 else
2123#endif
4c93c355 2124
6c182dc0 2125 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
4c93c355 2126
6c182dc0 2127 return s->cpu_slab != NULL;
4c93c355 2128}
4c93c355 2129
81819f0f 2130#ifdef CONFIG_NUMA
51df1142
CL
2131static struct kmem_cache *kmem_cache_node;
2132
81819f0f
CL
2133/*
2134 * No kmalloc_node yet so do it by hand. We know that this is the first
2135 * slab on the node for this slabcache. There are no concurrent accesses
2136 * possible.
2137 *
2138 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2139 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2140 * memory on a fresh node that has no slab structures yet.
81819f0f 2141 */
55136592 2142static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2143{
2144 struct page *page;
2145 struct kmem_cache_node *n;
ba84c73c 2146 unsigned long flags;
81819f0f 2147
51df1142 2148 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2149
51df1142 2150 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2151
2152 BUG_ON(!page);
a2f92ee7
CL
2153 if (page_to_nid(page) != node) {
2154 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2155 "node %d\n", node);
2156 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2157 "in order to be able to continue\n");
2158 }
2159
81819f0f
CL
2160 n = page->freelist;
2161 BUG_ON(!n);
51df1142 2162 page->freelist = get_freepointer(kmem_cache_node, n);
81819f0f 2163 page->inuse++;
51df1142 2164 kmem_cache_node->node[node] = n;
8ab1372f 2165#ifdef CONFIG_SLUB_DEBUG
51df1142
CL
2166 init_object(kmem_cache_node, n, 1);
2167 init_tracking(kmem_cache_node, n);
8ab1372f 2168#endif
51df1142
CL
2169 init_kmem_cache_node(n, kmem_cache_node);
2170 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2171
ba84c73c 2172 /*
2173 * lockdep requires consistent irq usage for each lock
2174 * so even though there cannot be a race this early in
2175 * the boot sequence, we still disable irqs.
2176 */
2177 local_irq_save(flags);
7c2e132c 2178 add_partial(n, page, 0);
ba84c73c 2179 local_irq_restore(flags);
81819f0f
CL
2180}
2181
2182static void free_kmem_cache_nodes(struct kmem_cache *s)
2183{
2184 int node;
2185
f64dc58c 2186 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2187 struct kmem_cache_node *n = s->node[node];
51df1142 2188
73367bd8 2189 if (n)
51df1142
CL
2190 kmem_cache_free(kmem_cache_node, n);
2191
81819f0f
CL
2192 s->node[node] = NULL;
2193 }
2194}
2195
55136592 2196static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2197{
2198 int node;
81819f0f 2199
f64dc58c 2200 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2201 struct kmem_cache_node *n;
2202
73367bd8 2203 if (slab_state == DOWN) {
55136592 2204 early_kmem_cache_node_alloc(node);
73367bd8
AD
2205 continue;
2206 }
51df1142 2207 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2208 GFP_KERNEL, node);
81819f0f 2209
73367bd8
AD
2210 if (!n) {
2211 free_kmem_cache_nodes(s);
2212 return 0;
81819f0f 2213 }
73367bd8 2214
81819f0f 2215 s->node[node] = n;
5595cffc 2216 init_kmem_cache_node(n, s);
81819f0f
CL
2217 }
2218 return 1;
2219}
2220#else
2221static void free_kmem_cache_nodes(struct kmem_cache *s)
2222{
2223}
2224
55136592 2225static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f 2226{
5595cffc 2227 init_kmem_cache_node(&s->local_node, s);
81819f0f
CL
2228 return 1;
2229}
2230#endif
2231
c0bdb232 2232static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2233{
2234 if (min < MIN_PARTIAL)
2235 min = MIN_PARTIAL;
2236 else if (min > MAX_PARTIAL)
2237 min = MAX_PARTIAL;
2238 s->min_partial = min;
2239}
2240
81819f0f
CL
2241/*
2242 * calculate_sizes() determines the order and the distribution of data within
2243 * a slab object.
2244 */
06b285dc 2245static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2246{
2247 unsigned long flags = s->flags;
2248 unsigned long size = s->objsize;
2249 unsigned long align = s->align;
834f3d11 2250 int order;
81819f0f 2251
d8b42bf5
CL
2252 /*
2253 * Round up object size to the next word boundary. We can only
2254 * place the free pointer at word boundaries and this determines
2255 * the possible location of the free pointer.
2256 */
2257 size = ALIGN(size, sizeof(void *));
2258
2259#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2260 /*
2261 * Determine if we can poison the object itself. If the user of
2262 * the slab may touch the object after free or before allocation
2263 * then we should never poison the object itself.
2264 */
2265 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2266 !s->ctor)
81819f0f
CL
2267 s->flags |= __OBJECT_POISON;
2268 else
2269 s->flags &= ~__OBJECT_POISON;
2270
81819f0f
CL
2271
2272 /*
672bba3a 2273 * If we are Redzoning then check if there is some space between the
81819f0f 2274 * end of the object and the free pointer. If not then add an
672bba3a 2275 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2276 */
2277 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2278 size += sizeof(void *);
41ecc55b 2279#endif
81819f0f
CL
2280
2281 /*
672bba3a
CL
2282 * With that we have determined the number of bytes in actual use
2283 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2284 */
2285 s->inuse = size;
2286
2287 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2288 s->ctor)) {
81819f0f
CL
2289 /*
2290 * Relocate free pointer after the object if it is not
2291 * permitted to overwrite the first word of the object on
2292 * kmem_cache_free.
2293 *
2294 * This is the case if we do RCU, have a constructor or
2295 * destructor or are poisoning the objects.
2296 */
2297 s->offset = size;
2298 size += sizeof(void *);
2299 }
2300
c12b3c62 2301#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2302 if (flags & SLAB_STORE_USER)
2303 /*
2304 * Need to store information about allocs and frees after
2305 * the object.
2306 */
2307 size += 2 * sizeof(struct track);
2308
be7b3fbc 2309 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2310 /*
2311 * Add some empty padding so that we can catch
2312 * overwrites from earlier objects rather than let
2313 * tracking information or the free pointer be
0211a9c8 2314 * corrupted if a user writes before the start
81819f0f
CL
2315 * of the object.
2316 */
2317 size += sizeof(void *);
41ecc55b 2318#endif
672bba3a 2319
81819f0f
CL
2320 /*
2321 * Determine the alignment based on various parameters that the
65c02d4c
CL
2322 * user specified and the dynamic determination of cache line size
2323 * on bootup.
81819f0f
CL
2324 */
2325 align = calculate_alignment(flags, align, s->objsize);
dcb0ce1b 2326 s->align = align;
81819f0f
CL
2327
2328 /*
2329 * SLUB stores one object immediately after another beginning from
2330 * offset 0. In order to align the objects we have to simply size
2331 * each object to conform to the alignment.
2332 */
2333 size = ALIGN(size, align);
2334 s->size = size;
06b285dc
CL
2335 if (forced_order >= 0)
2336 order = forced_order;
2337 else
2338 order = calculate_order(size);
81819f0f 2339
834f3d11 2340 if (order < 0)
81819f0f
CL
2341 return 0;
2342
b7a49f0d 2343 s->allocflags = 0;
834f3d11 2344 if (order)
b7a49f0d
CL
2345 s->allocflags |= __GFP_COMP;
2346
2347 if (s->flags & SLAB_CACHE_DMA)
2348 s->allocflags |= SLUB_DMA;
2349
2350 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2351 s->allocflags |= __GFP_RECLAIMABLE;
2352
81819f0f
CL
2353 /*
2354 * Determine the number of objects per slab
2355 */
834f3d11 2356 s->oo = oo_make(order, size);
65c3376a 2357 s->min = oo_make(get_order(size), size);
205ab99d
CL
2358 if (oo_objects(s->oo) > oo_objects(s->max))
2359 s->max = s->oo;
81819f0f 2360
834f3d11 2361 return !!oo_objects(s->oo);
81819f0f
CL
2362
2363}
2364
55136592 2365static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
2366 const char *name, size_t size,
2367 size_t align, unsigned long flags,
51cc5068 2368 void (*ctor)(void *))
81819f0f
CL
2369{
2370 memset(s, 0, kmem_size);
2371 s->name = name;
2372 s->ctor = ctor;
81819f0f 2373 s->objsize = size;
81819f0f 2374 s->align = align;
ba0268a8 2375 s->flags = kmem_cache_flags(size, flags, name, ctor);
81819f0f 2376
06b285dc 2377 if (!calculate_sizes(s, -1))
81819f0f 2378 goto error;
3de47213
DR
2379 if (disable_higher_order_debug) {
2380 /*
2381 * Disable debugging flags that store metadata if the min slab
2382 * order increased.
2383 */
2384 if (get_order(s->size) > get_order(s->objsize)) {
2385 s->flags &= ~DEBUG_METADATA_FLAGS;
2386 s->offset = 0;
2387 if (!calculate_sizes(s, -1))
2388 goto error;
2389 }
2390 }
81819f0f 2391
3b89d7d8
DR
2392 /*
2393 * The larger the object size is, the more pages we want on the partial
2394 * list to avoid pounding the page allocator excessively.
2395 */
c0bdb232 2396 set_min_partial(s, ilog2(s->size));
81819f0f
CL
2397 s->refcount = 1;
2398#ifdef CONFIG_NUMA
e2cb96b7 2399 s->remote_node_defrag_ratio = 1000;
81819f0f 2400#endif
55136592 2401 if (!init_kmem_cache_nodes(s))
dfb4f096 2402 goto error;
81819f0f 2403
55136592 2404 if (alloc_kmem_cache_cpus(s))
81819f0f 2405 return 1;
ff12059e 2406
4c93c355 2407 free_kmem_cache_nodes(s);
81819f0f
CL
2408error:
2409 if (flags & SLAB_PANIC)
2410 panic("Cannot create slab %s size=%lu realsize=%u "
2411 "order=%u offset=%u flags=%lx\n",
834f3d11 2412 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2413 s->offset, flags);
2414 return 0;
2415}
81819f0f
CL
2416
2417/*
2418 * Check if a given pointer is valid
2419 */
2420int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2421{
06428780 2422 struct page *page;
81819f0f 2423
d3e06e2b
PE
2424 if (!kern_ptr_validate(object, s->size))
2425 return 0;
2426
81819f0f
CL
2427 page = get_object_page(object);
2428
2429 if (!page || s != page->slab)
2430 /* No slab or wrong slab */
2431 return 0;
2432
abcd08a6 2433 if (!check_valid_pointer(s, page, object))
81819f0f
CL
2434 return 0;
2435
2436 /*
2437 * We could also check if the object is on the slabs freelist.
2438 * But this would be too expensive and it seems that the main
6446faa2 2439 * purpose of kmem_ptr_valid() is to check if the object belongs
81819f0f
CL
2440 * to a certain slab.
2441 */
2442 return 1;
2443}
2444EXPORT_SYMBOL(kmem_ptr_validate);
2445
2446/*
2447 * Determine the size of a slab object
2448 */
2449unsigned int kmem_cache_size(struct kmem_cache *s)
2450{
2451 return s->objsize;
2452}
2453EXPORT_SYMBOL(kmem_cache_size);
2454
2455const char *kmem_cache_name(struct kmem_cache *s)
2456{
2457 return s->name;
2458}
2459EXPORT_SYMBOL(kmem_cache_name);
2460
33b12c38
CL
2461static void list_slab_objects(struct kmem_cache *s, struct page *page,
2462 const char *text)
2463{
2464#ifdef CONFIG_SLUB_DEBUG
2465 void *addr = page_address(page);
2466 void *p;
bbd7d57b
ED
2467 long *map = kzalloc(BITS_TO_LONGS(page->objects) * sizeof(long),
2468 GFP_ATOMIC);
33b12c38 2469
bbd7d57b
ED
2470 if (!map)
2471 return;
33b12c38
CL
2472 slab_err(s, page, "%s", text);
2473 slab_lock(page);
2474 for_each_free_object(p, s, page->freelist)
2475 set_bit(slab_index(p, s, addr), map);
2476
2477 for_each_object(p, s, addr, page->objects) {
2478
2479 if (!test_bit(slab_index(p, s, addr), map)) {
2480 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2481 p, p - addr);
2482 print_tracking(s, p);
2483 }
2484 }
2485 slab_unlock(page);
bbd7d57b 2486 kfree(map);
33b12c38
CL
2487#endif
2488}
2489
81819f0f 2490/*
599870b1 2491 * Attempt to free all partial slabs on a node.
81819f0f 2492 */
599870b1 2493static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2494{
81819f0f
CL
2495 unsigned long flags;
2496 struct page *page, *h;
2497
2498 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2499 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f
CL
2500 if (!page->inuse) {
2501 list_del(&page->lru);
2502 discard_slab(s, page);
599870b1 2503 n->nr_partial--;
33b12c38
CL
2504 } else {
2505 list_slab_objects(s, page,
2506 "Objects remaining on kmem_cache_close()");
599870b1 2507 }
33b12c38 2508 }
81819f0f 2509 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2510}
2511
2512/*
672bba3a 2513 * Release all resources used by a slab cache.
81819f0f 2514 */
0c710013 2515static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2516{
2517 int node;
2518
2519 flush_all(s);
9dfc6e68 2520 free_percpu(s->cpu_slab);
81819f0f 2521 /* Attempt to free all objects */
f64dc58c 2522 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2523 struct kmem_cache_node *n = get_node(s, node);
2524
599870b1
CL
2525 free_partial(s, n);
2526 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2527 return 1;
2528 }
2529 free_kmem_cache_nodes(s);
2530 return 0;
2531}
2532
2533/*
2534 * Close a cache and release the kmem_cache structure
2535 * (must be used for caches created using kmem_cache_create)
2536 */
2537void kmem_cache_destroy(struct kmem_cache *s)
2538{
2539 down_write(&slub_lock);
2540 s->refcount--;
2541 if (!s->refcount) {
2542 list_del(&s->list);
d629d819
PE
2543 if (kmem_cache_close(s)) {
2544 printk(KERN_ERR "SLUB %s: %s called for cache that "
2545 "still has objects.\n", s->name, __func__);
2546 dump_stack();
2547 }
d76b1590
ED
2548 if (s->flags & SLAB_DESTROY_BY_RCU)
2549 rcu_barrier();
81819f0f 2550 sysfs_slab_remove(s);
2bce6485
CL
2551 }
2552 up_write(&slub_lock);
81819f0f
CL
2553}
2554EXPORT_SYMBOL(kmem_cache_destroy);
2555
2556/********************************************************************
2557 * Kmalloc subsystem
2558 *******************************************************************/
2559
51df1142 2560struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
2561EXPORT_SYMBOL(kmalloc_caches);
2562
51df1142
CL
2563static struct kmem_cache *kmem_cache;
2564
55136592 2565#ifdef CONFIG_ZONE_DMA
51df1142 2566static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
2567#endif
2568
81819f0f
CL
2569static int __init setup_slub_min_order(char *str)
2570{
06428780 2571 get_option(&str, &slub_min_order);
81819f0f
CL
2572
2573 return 1;
2574}
2575
2576__setup("slub_min_order=", setup_slub_min_order);
2577
2578static int __init setup_slub_max_order(char *str)
2579{
06428780 2580 get_option(&str, &slub_max_order);
818cf590 2581 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
2582
2583 return 1;
2584}
2585
2586__setup("slub_max_order=", setup_slub_max_order);
2587
2588static int __init setup_slub_min_objects(char *str)
2589{
06428780 2590 get_option(&str, &slub_min_objects);
81819f0f
CL
2591
2592 return 1;
2593}
2594
2595__setup("slub_min_objects=", setup_slub_min_objects);
2596
2597static int __init setup_slub_nomerge(char *str)
2598{
2599 slub_nomerge = 1;
2600 return 1;
2601}
2602
2603__setup("slub_nomerge", setup_slub_nomerge);
2604
51df1142
CL
2605static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2606 int size, unsigned int flags)
81819f0f 2607{
51df1142
CL
2608 struct kmem_cache *s;
2609
2610 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2611
83b519e8
PE
2612 /*
2613 * This function is called with IRQs disabled during early-boot on
2614 * single CPU so there's no need to take slub_lock here.
2615 */
55136592 2616 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 2617 flags, NULL))
81819f0f
CL
2618 goto panic;
2619
2620 list_add(&s->list, &slab_caches);
51df1142 2621 return s;
81819f0f
CL
2622
2623panic:
2624 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 2625 return NULL;
81819f0f
CL
2626}
2627
f1b26339
CL
2628/*
2629 * Conversion table for small slabs sizes / 8 to the index in the
2630 * kmalloc array. This is necessary for slabs < 192 since we have non power
2631 * of two cache sizes there. The size of larger slabs can be determined using
2632 * fls.
2633 */
2634static s8 size_index[24] = {
2635 3, /* 8 */
2636 4, /* 16 */
2637 5, /* 24 */
2638 5, /* 32 */
2639 6, /* 40 */
2640 6, /* 48 */
2641 6, /* 56 */
2642 6, /* 64 */
2643 1, /* 72 */
2644 1, /* 80 */
2645 1, /* 88 */
2646 1, /* 96 */
2647 7, /* 104 */
2648 7, /* 112 */
2649 7, /* 120 */
2650 7, /* 128 */
2651 2, /* 136 */
2652 2, /* 144 */
2653 2, /* 152 */
2654 2, /* 160 */
2655 2, /* 168 */
2656 2, /* 176 */
2657 2, /* 184 */
2658 2 /* 192 */
2659};
2660
acdfcd04
AK
2661static inline int size_index_elem(size_t bytes)
2662{
2663 return (bytes - 1) / 8;
2664}
2665
81819f0f
CL
2666static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2667{
f1b26339 2668 int index;
81819f0f 2669
f1b26339
CL
2670 if (size <= 192) {
2671 if (!size)
2672 return ZERO_SIZE_PTR;
81819f0f 2673
acdfcd04 2674 index = size_index[size_index_elem(size)];
aadb4bc4 2675 } else
f1b26339 2676 index = fls(size - 1);
81819f0f
CL
2677
2678#ifdef CONFIG_ZONE_DMA
f1b26339 2679 if (unlikely((flags & SLUB_DMA)))
51df1142 2680 return kmalloc_dma_caches[index];
f1b26339 2681
81819f0f 2682#endif
51df1142 2683 return kmalloc_caches[index];
81819f0f
CL
2684}
2685
2686void *__kmalloc(size_t size, gfp_t flags)
2687{
aadb4bc4 2688 struct kmem_cache *s;
5b882be4 2689 void *ret;
81819f0f 2690
ffadd4d0 2691 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 2692 return kmalloc_large(size, flags);
aadb4bc4
CL
2693
2694 s = get_slab(size, flags);
2695
2696 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2697 return s;
2698
2154a336 2699 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2700
ca2b84cb 2701 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
2702
2703 return ret;
81819f0f
CL
2704}
2705EXPORT_SYMBOL(__kmalloc);
2706
f619cfe1
CL
2707static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2708{
b1eeab67 2709 struct page *page;
e4f7c0b4 2710 void *ptr = NULL;
f619cfe1 2711
b1eeab67
VN
2712 flags |= __GFP_COMP | __GFP_NOTRACK;
2713 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 2714 if (page)
e4f7c0b4
CM
2715 ptr = page_address(page);
2716
2717 kmemleak_alloc(ptr, size, 1, flags);
2718 return ptr;
f619cfe1
CL
2719}
2720
81819f0f
CL
2721#ifdef CONFIG_NUMA
2722void *__kmalloc_node(size_t size, gfp_t flags, int node)
2723{
aadb4bc4 2724 struct kmem_cache *s;
5b882be4 2725 void *ret;
81819f0f 2726
057685cf 2727 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
2728 ret = kmalloc_large_node(size, flags, node);
2729
ca2b84cb
EGM
2730 trace_kmalloc_node(_RET_IP_, ret,
2731 size, PAGE_SIZE << get_order(size),
2732 flags, node);
5b882be4
EGM
2733
2734 return ret;
2735 }
aadb4bc4
CL
2736
2737 s = get_slab(size, flags);
2738
2739 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2740 return s;
2741
5b882be4
EGM
2742 ret = slab_alloc(s, flags, node, _RET_IP_);
2743
ca2b84cb 2744 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
2745
2746 return ret;
81819f0f
CL
2747}
2748EXPORT_SYMBOL(__kmalloc_node);
2749#endif
2750
2751size_t ksize(const void *object)
2752{
272c1d21 2753 struct page *page;
81819f0f
CL
2754 struct kmem_cache *s;
2755
ef8b4520 2756 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2757 return 0;
2758
294a80a8 2759 page = virt_to_head_page(object);
294a80a8 2760
76994412
PE
2761 if (unlikely(!PageSlab(page))) {
2762 WARN_ON(!PageCompound(page));
294a80a8 2763 return PAGE_SIZE << compound_order(page);
76994412 2764 }
81819f0f 2765 s = page->slab;
81819f0f 2766
ae20bfda 2767#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2768 /*
2769 * Debugging requires use of the padding between object
2770 * and whatever may come after it.
2771 */
2772 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2773 return s->objsize;
2774
ae20bfda 2775#endif
81819f0f
CL
2776 /*
2777 * If we have the need to store the freelist pointer
2778 * back there or track user information then we can
2779 * only use the space before that information.
2780 */
2781 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2782 return s->inuse;
81819f0f
CL
2783 /*
2784 * Else we can use all the padding etc for the allocation
2785 */
2786 return s->size;
2787}
b1aabecd 2788EXPORT_SYMBOL(ksize);
81819f0f
CL
2789
2790void kfree(const void *x)
2791{
81819f0f 2792 struct page *page;
5bb983b0 2793 void *object = (void *)x;
81819f0f 2794
2121db74
PE
2795 trace_kfree(_RET_IP_, x);
2796
2408c550 2797 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2798 return;
2799
b49af68f 2800 page = virt_to_head_page(x);
aadb4bc4 2801 if (unlikely(!PageSlab(page))) {
0937502a 2802 BUG_ON(!PageCompound(page));
e4f7c0b4 2803 kmemleak_free(x);
aadb4bc4
CL
2804 put_page(page);
2805 return;
2806 }
ce71e27c 2807 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
2808}
2809EXPORT_SYMBOL(kfree);
2810
2086d26a 2811/*
672bba3a
CL
2812 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2813 * the remaining slabs by the number of items in use. The slabs with the
2814 * most items in use come first. New allocations will then fill those up
2815 * and thus they can be removed from the partial lists.
2816 *
2817 * The slabs with the least items are placed last. This results in them
2818 * being allocated from last increasing the chance that the last objects
2819 * are freed in them.
2086d26a
CL
2820 */
2821int kmem_cache_shrink(struct kmem_cache *s)
2822{
2823 int node;
2824 int i;
2825 struct kmem_cache_node *n;
2826 struct page *page;
2827 struct page *t;
205ab99d 2828 int objects = oo_objects(s->max);
2086d26a 2829 struct list_head *slabs_by_inuse =
834f3d11 2830 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
2831 unsigned long flags;
2832
2833 if (!slabs_by_inuse)
2834 return -ENOMEM;
2835
2836 flush_all(s);
f64dc58c 2837 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
2838 n = get_node(s, node);
2839
2840 if (!n->nr_partial)
2841 continue;
2842
834f3d11 2843 for (i = 0; i < objects; i++)
2086d26a
CL
2844 INIT_LIST_HEAD(slabs_by_inuse + i);
2845
2846 spin_lock_irqsave(&n->list_lock, flags);
2847
2848 /*
672bba3a 2849 * Build lists indexed by the items in use in each slab.
2086d26a 2850 *
672bba3a
CL
2851 * Note that concurrent frees may occur while we hold the
2852 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2853 */
2854 list_for_each_entry_safe(page, t, &n->partial, lru) {
2855 if (!page->inuse && slab_trylock(page)) {
2856 /*
2857 * Must hold slab lock here because slab_free
2858 * may have freed the last object and be
2859 * waiting to release the slab.
2860 */
2861 list_del(&page->lru);
2862 n->nr_partial--;
2863 slab_unlock(page);
2864 discard_slab(s, page);
2865 } else {
fcda3d89
CL
2866 list_move(&page->lru,
2867 slabs_by_inuse + page->inuse);
2086d26a
CL
2868 }
2869 }
2870
2086d26a 2871 /*
672bba3a
CL
2872 * Rebuild the partial list with the slabs filled up most
2873 * first and the least used slabs at the end.
2086d26a 2874 */
834f3d11 2875 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
2876 list_splice(slabs_by_inuse + i, n->partial.prev);
2877
2086d26a
CL
2878 spin_unlock_irqrestore(&n->list_lock, flags);
2879 }
2880
2881 kfree(slabs_by_inuse);
2882 return 0;
2883}
2884EXPORT_SYMBOL(kmem_cache_shrink);
2885
b9049e23
YG
2886#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2887static int slab_mem_going_offline_callback(void *arg)
2888{
2889 struct kmem_cache *s;
2890
2891 down_read(&slub_lock);
2892 list_for_each_entry(s, &slab_caches, list)
2893 kmem_cache_shrink(s);
2894 up_read(&slub_lock);
2895
2896 return 0;
2897}
2898
2899static void slab_mem_offline_callback(void *arg)
2900{
2901 struct kmem_cache_node *n;
2902 struct kmem_cache *s;
2903 struct memory_notify *marg = arg;
2904 int offline_node;
2905
2906 offline_node = marg->status_change_nid;
2907
2908 /*
2909 * If the node still has available memory. we need kmem_cache_node
2910 * for it yet.
2911 */
2912 if (offline_node < 0)
2913 return;
2914
2915 down_read(&slub_lock);
2916 list_for_each_entry(s, &slab_caches, list) {
2917 n = get_node(s, offline_node);
2918 if (n) {
2919 /*
2920 * if n->nr_slabs > 0, slabs still exist on the node
2921 * that is going down. We were unable to free them,
c9404c9c 2922 * and offline_pages() function shouldn't call this
b9049e23
YG
2923 * callback. So, we must fail.
2924 */
0f389ec6 2925 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
2926
2927 s->node[offline_node] = NULL;
8de66a0c 2928 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
2929 }
2930 }
2931 up_read(&slub_lock);
2932}
2933
2934static int slab_mem_going_online_callback(void *arg)
2935{
2936 struct kmem_cache_node *n;
2937 struct kmem_cache *s;
2938 struct memory_notify *marg = arg;
2939 int nid = marg->status_change_nid;
2940 int ret = 0;
2941
2942 /*
2943 * If the node's memory is already available, then kmem_cache_node is
2944 * already created. Nothing to do.
2945 */
2946 if (nid < 0)
2947 return 0;
2948
2949 /*
0121c619 2950 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
2951 * allocate a kmem_cache_node structure in order to bring the node
2952 * online.
2953 */
2954 down_read(&slub_lock);
2955 list_for_each_entry(s, &slab_caches, list) {
2956 /*
2957 * XXX: kmem_cache_alloc_node will fallback to other nodes
2958 * since memory is not yet available from the node that
2959 * is brought up.
2960 */
8de66a0c 2961 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
2962 if (!n) {
2963 ret = -ENOMEM;
2964 goto out;
2965 }
5595cffc 2966 init_kmem_cache_node(n, s);
b9049e23
YG
2967 s->node[nid] = n;
2968 }
2969out:
2970 up_read(&slub_lock);
2971 return ret;
2972}
2973
2974static int slab_memory_callback(struct notifier_block *self,
2975 unsigned long action, void *arg)
2976{
2977 int ret = 0;
2978
2979 switch (action) {
2980 case MEM_GOING_ONLINE:
2981 ret = slab_mem_going_online_callback(arg);
2982 break;
2983 case MEM_GOING_OFFLINE:
2984 ret = slab_mem_going_offline_callback(arg);
2985 break;
2986 case MEM_OFFLINE:
2987 case MEM_CANCEL_ONLINE:
2988 slab_mem_offline_callback(arg);
2989 break;
2990 case MEM_ONLINE:
2991 case MEM_CANCEL_OFFLINE:
2992 break;
2993 }
dc19f9db
KH
2994 if (ret)
2995 ret = notifier_from_errno(ret);
2996 else
2997 ret = NOTIFY_OK;
b9049e23
YG
2998 return ret;
2999}
3000
3001#endif /* CONFIG_MEMORY_HOTPLUG */
3002
81819f0f
CL
3003/********************************************************************
3004 * Basic setup of slabs
3005 *******************************************************************/
3006
51df1142
CL
3007/*
3008 * Used for early kmem_cache structures that were allocated using
3009 * the page allocator
3010 */
3011
3012static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3013{
3014 int node;
3015
3016 list_add(&s->list, &slab_caches);
3017 s->refcount = -1;
3018
3019 for_each_node_state(node, N_NORMAL_MEMORY) {
3020 struct kmem_cache_node *n = get_node(s, node);
3021 struct page *p;
3022
3023 if (n) {
3024 list_for_each_entry(p, &n->partial, lru)
3025 p->slab = s;
3026
3027#ifdef CONFIG_SLAB_DEBUG
3028 list_for_each_entry(p, &n->full, lru)
3029 p->slab = s;
3030#endif
3031 }
3032 }
3033}
3034
81819f0f
CL
3035void __init kmem_cache_init(void)
3036{
3037 int i;
4b356be0 3038 int caches = 0;
51df1142
CL
3039 struct kmem_cache *temp_kmem_cache;
3040 int order;
81819f0f
CL
3041
3042#ifdef CONFIG_NUMA
51df1142
CL
3043 struct kmem_cache *temp_kmem_cache_node;
3044 unsigned long kmalloc_size;
3045
3046 kmem_size = offsetof(struct kmem_cache, node) +
3047 nr_node_ids * sizeof(struct kmem_cache_node *);
3048
3049 /* Allocate two kmem_caches from the page allocator */
3050 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3051 order = get_order(2 * kmalloc_size);
3052 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3053
81819f0f
CL
3054 /*
3055 * Must first have the slab cache available for the allocations of the
672bba3a 3056 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3057 * kmem_cache_open for slab_state == DOWN.
3058 */
51df1142
CL
3059 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3060
3061 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3062 sizeof(struct kmem_cache_node),
3063 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3064
0c40ba4f 3065 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
51df1142
CL
3066#else
3067 /* Allocate a single kmem_cache from the page allocator */
3068 kmem_size = sizeof(struct kmem_cache);
3069 order = get_order(kmem_size);
3070 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
81819f0f
CL
3071#endif
3072
3073 /* Able to allocate the per node structures */
3074 slab_state = PARTIAL;
3075
51df1142
CL
3076 temp_kmem_cache = kmem_cache;
3077 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3078 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3079 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3080 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3081
51df1142
CL
3082#ifdef CONFIG_NUMA
3083 /*
3084 * Allocate kmem_cache_node properly from the kmem_cache slab.
3085 * kmem_cache_node is separately allocated so no need to
3086 * update any list pointers.
3087 */
3088 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3089
51df1142
CL
3090 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3091 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3092
3093 kmem_cache_bootstrap_fixup(kmem_cache_node);
3094
3095 caches++;
3096#else
3097 /*
3098 * kmem_cache has kmem_cache_node embedded and we moved it!
3099 * Update the list heads
3100 */
3101 INIT_LIST_HEAD(&kmem_cache->local_node.partial);
3102 list_splice(&temp_kmem_cache->local_node.partial, &kmem_cache->local_node.partial);
3103#ifdef CONFIG_SLUB_DEBUG
3104 INIT_LIST_HEAD(&kmem_cache->local_node.full);
3105 list_splice(&temp_kmem_cache->local_node.full, &kmem_cache->local_node.full);
3106#endif
3107#endif
3108 kmem_cache_bootstrap_fixup(kmem_cache);
3109 caches++;
3110 /* Free temporary boot structure */
3111 free_pages((unsigned long)temp_kmem_cache, order);
3112
3113 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3114
3115 /*
3116 * Patch up the size_index table if we have strange large alignment
3117 * requirements for the kmalloc array. This is only the case for
6446faa2 3118 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3119 *
3120 * Largest permitted alignment is 256 bytes due to the way we
3121 * handle the index determination for the smaller caches.
3122 *
3123 * Make sure that nothing crazy happens if someone starts tinkering
3124 * around with ARCH_KMALLOC_MINALIGN
3125 */
3126 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3127 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3128
acdfcd04
AK
3129 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3130 int elem = size_index_elem(i);
3131 if (elem >= ARRAY_SIZE(size_index))
3132 break;
3133 size_index[elem] = KMALLOC_SHIFT_LOW;
3134 }
f1b26339 3135
acdfcd04
AK
3136 if (KMALLOC_MIN_SIZE == 64) {
3137 /*
3138 * The 96 byte size cache is not used if the alignment
3139 * is 64 byte.
3140 */
3141 for (i = 64 + 8; i <= 96; i += 8)
3142 size_index[size_index_elem(i)] = 7;
3143 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3144 /*
3145 * The 192 byte sized cache is not used if the alignment
3146 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3147 * instead.
3148 */
3149 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3150 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3151 }
3152
51df1142
CL
3153 /* Caches that are not of the two-to-the-power-of size */
3154 if (KMALLOC_MIN_SIZE <= 32) {
3155 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3156 caches++;
3157 }
3158
3159 if (KMALLOC_MIN_SIZE <= 64) {
3160 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3161 caches++;
3162 }
3163
3164 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3165 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3166 caches++;
3167 }
3168
81819f0f
CL
3169 slab_state = UP;
3170
3171 /* Provide the correct kmalloc names now that the caches are up */
d7278bd7
CL
3172 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3173 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3174
3175 BUG_ON(!s);
51df1142 3176 kmalloc_caches[i]->name = s;
d7278bd7 3177 }
81819f0f
CL
3178
3179#ifdef CONFIG_SMP
3180 register_cpu_notifier(&slab_notifier);
9dfc6e68 3181#endif
81819f0f 3182
55136592 3183#ifdef CONFIG_ZONE_DMA
51df1142
CL
3184 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3185 struct kmem_cache *s = kmalloc_caches[i];
55136592 3186
51df1142 3187 if (s && s->size) {
55136592
CL
3188 char *name = kasprintf(GFP_NOWAIT,
3189 "dma-kmalloc-%d", s->objsize);
3190
3191 BUG_ON(!name);
51df1142
CL
3192 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3193 s->objsize, SLAB_CACHE_DMA);
55136592
CL
3194 }
3195 }
3196#endif
3adbefee
IM
3197 printk(KERN_INFO
3198 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3199 " CPUs=%d, Nodes=%d\n",
3200 caches, cache_line_size(),
81819f0f
CL
3201 slub_min_order, slub_max_order, slub_min_objects,
3202 nr_cpu_ids, nr_node_ids);
3203}
3204
7e85ee0c
PE
3205void __init kmem_cache_init_late(void)
3206{
7e85ee0c
PE
3207}
3208
81819f0f
CL
3209/*
3210 * Find a mergeable slab cache
3211 */
3212static int slab_unmergeable(struct kmem_cache *s)
3213{
3214 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3215 return 1;
3216
c59def9f 3217 if (s->ctor)
81819f0f
CL
3218 return 1;
3219
8ffa6875
CL
3220 /*
3221 * We may have set a slab to be unmergeable during bootstrap.
3222 */
3223 if (s->refcount < 0)
3224 return 1;
3225
81819f0f
CL
3226 return 0;
3227}
3228
3229static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3230 size_t align, unsigned long flags, const char *name,
51cc5068 3231 void (*ctor)(void *))
81819f0f 3232{
5b95a4ac 3233 struct kmem_cache *s;
81819f0f
CL
3234
3235 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3236 return NULL;
3237
c59def9f 3238 if (ctor)
81819f0f
CL
3239 return NULL;
3240
3241 size = ALIGN(size, sizeof(void *));
3242 align = calculate_alignment(flags, align, size);
3243 size = ALIGN(size, align);
ba0268a8 3244 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3245
5b95a4ac 3246 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3247 if (slab_unmergeable(s))
3248 continue;
3249
3250 if (size > s->size)
3251 continue;
3252
ba0268a8 3253 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3254 continue;
3255 /*
3256 * Check if alignment is compatible.
3257 * Courtesy of Adrian Drzewiecki
3258 */
06428780 3259 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3260 continue;
3261
3262 if (s->size - size >= sizeof(void *))
3263 continue;
3264
3265 return s;
3266 }
3267 return NULL;
3268}
3269
3270struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3271 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3272{
3273 struct kmem_cache *s;
3274
fe1ff49d
BH
3275 if (WARN_ON(!name))
3276 return NULL;
3277
81819f0f 3278 down_write(&slub_lock);
ba0268a8 3279 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3280 if (s) {
3281 s->refcount++;
3282 /*
3283 * Adjust the object sizes so that we clear
3284 * the complete object on kzalloc.
3285 */
3286 s->objsize = max(s->objsize, (int)size);
3287 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3288
7b8f3b66 3289 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3290 s->refcount--;
81819f0f 3291 goto err;
7b8f3b66 3292 }
2bce6485 3293 up_write(&slub_lock);
a0e1d1be
CL
3294 return s;
3295 }
6446faa2 3296
a0e1d1be
CL
3297 s = kmalloc(kmem_size, GFP_KERNEL);
3298 if (s) {
55136592 3299 if (kmem_cache_open(s, name,
c59def9f 3300 size, align, flags, ctor)) {
81819f0f 3301 list_add(&s->list, &slab_caches);
7b8f3b66 3302 if (sysfs_slab_add(s)) {
7b8f3b66 3303 list_del(&s->list);
7b8f3b66 3304 kfree(s);
a0e1d1be 3305 goto err;
7b8f3b66 3306 }
2bce6485 3307 up_write(&slub_lock);
a0e1d1be
CL
3308 return s;
3309 }
3310 kfree(s);
81819f0f
CL
3311 }
3312 up_write(&slub_lock);
81819f0f
CL
3313
3314err:
81819f0f
CL
3315 if (flags & SLAB_PANIC)
3316 panic("Cannot create slabcache %s\n", name);
3317 else
3318 s = NULL;
3319 return s;
3320}
3321EXPORT_SYMBOL(kmem_cache_create);
3322
81819f0f 3323#ifdef CONFIG_SMP
81819f0f 3324/*
672bba3a
CL
3325 * Use the cpu notifier to insure that the cpu slabs are flushed when
3326 * necessary.
81819f0f
CL
3327 */
3328static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3329 unsigned long action, void *hcpu)
3330{
3331 long cpu = (long)hcpu;
5b95a4ac
CL
3332 struct kmem_cache *s;
3333 unsigned long flags;
81819f0f
CL
3334
3335 switch (action) {
3336 case CPU_UP_CANCELED:
8bb78442 3337 case CPU_UP_CANCELED_FROZEN:
81819f0f 3338 case CPU_DEAD:
8bb78442 3339 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3340 down_read(&slub_lock);
3341 list_for_each_entry(s, &slab_caches, list) {
3342 local_irq_save(flags);
3343 __flush_cpu_slab(s, cpu);
3344 local_irq_restore(flags);
3345 }
3346 up_read(&slub_lock);
81819f0f
CL
3347 break;
3348 default:
3349 break;
3350 }
3351 return NOTIFY_OK;
3352}
3353
06428780 3354static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3355 .notifier_call = slab_cpuup_callback
06428780 3356};
81819f0f
CL
3357
3358#endif
3359
ce71e27c 3360void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3361{
aadb4bc4 3362 struct kmem_cache *s;
94b528d0 3363 void *ret;
aadb4bc4 3364
ffadd4d0 3365 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3366 return kmalloc_large(size, gfpflags);
3367
aadb4bc4 3368 s = get_slab(size, gfpflags);
81819f0f 3369
2408c550 3370 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3371 return s;
81819f0f 3372
2154a336 3373 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0
EGM
3374
3375 /* Honor the call site pointer we recieved. */
ca2b84cb 3376 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3377
3378 return ret;
81819f0f
CL
3379}
3380
3381void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3382 int node, unsigned long caller)
81819f0f 3383{
aadb4bc4 3384 struct kmem_cache *s;
94b528d0 3385 void *ret;
aadb4bc4 3386
d3e14aa3
XF
3387 if (unlikely(size > SLUB_MAX_SIZE)) {
3388 ret = kmalloc_large_node(size, gfpflags, node);
3389
3390 trace_kmalloc_node(caller, ret,
3391 size, PAGE_SIZE << get_order(size),
3392 gfpflags, node);
3393
3394 return ret;
3395 }
eada35ef 3396
aadb4bc4 3397 s = get_slab(size, gfpflags);
81819f0f 3398
2408c550 3399 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3400 return s;
81819f0f 3401
94b528d0
EGM
3402 ret = slab_alloc(s, gfpflags, node, caller);
3403
3404 /* Honor the call site pointer we recieved. */
ca2b84cb 3405 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3406
3407 return ret;
81819f0f
CL
3408}
3409
f6acb635 3410#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
3411static int count_inuse(struct page *page)
3412{
3413 return page->inuse;
3414}
3415
3416static int count_total(struct page *page)
3417{
3418 return page->objects;
3419}
3420
434e245d
CL
3421static int validate_slab(struct kmem_cache *s, struct page *page,
3422 unsigned long *map)
53e15af0
CL
3423{
3424 void *p;
a973e9dd 3425 void *addr = page_address(page);
53e15af0
CL
3426
3427 if (!check_slab(s, page) ||
3428 !on_freelist(s, page, NULL))
3429 return 0;
3430
3431 /* Now we know that a valid freelist exists */
39b26464 3432 bitmap_zero(map, page->objects);
53e15af0 3433
7656c72b
CL
3434 for_each_free_object(p, s, page->freelist) {
3435 set_bit(slab_index(p, s, addr), map);
53e15af0
CL
3436 if (!check_object(s, page, p, 0))
3437 return 0;
3438 }
3439
224a88be 3440 for_each_object(p, s, addr, page->objects)
7656c72b 3441 if (!test_bit(slab_index(p, s, addr), map))
53e15af0
CL
3442 if (!check_object(s, page, p, 1))
3443 return 0;
3444 return 1;
3445}
3446
434e245d
CL
3447static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3448 unsigned long *map)
53e15af0
CL
3449{
3450 if (slab_trylock(page)) {
434e245d 3451 validate_slab(s, page, map);
53e15af0
CL
3452 slab_unlock(page);
3453 } else
3454 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3455 s->name, page);
53e15af0
CL
3456}
3457
434e245d
CL
3458static int validate_slab_node(struct kmem_cache *s,
3459 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3460{
3461 unsigned long count = 0;
3462 struct page *page;
3463 unsigned long flags;
3464
3465 spin_lock_irqsave(&n->list_lock, flags);
3466
3467 list_for_each_entry(page, &n->partial, lru) {
434e245d 3468 validate_slab_slab(s, page, map);
53e15af0
CL
3469 count++;
3470 }
3471 if (count != n->nr_partial)
3472 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3473 "counter=%ld\n", s->name, count, n->nr_partial);
3474
3475 if (!(s->flags & SLAB_STORE_USER))
3476 goto out;
3477
3478 list_for_each_entry(page, &n->full, lru) {
434e245d 3479 validate_slab_slab(s, page, map);
53e15af0
CL
3480 count++;
3481 }
3482 if (count != atomic_long_read(&n->nr_slabs))
3483 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3484 "counter=%ld\n", s->name, count,
3485 atomic_long_read(&n->nr_slabs));
3486
3487out:
3488 spin_unlock_irqrestore(&n->list_lock, flags);
3489 return count;
3490}
3491
434e245d 3492static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3493{
3494 int node;
3495 unsigned long count = 0;
205ab99d 3496 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3497 sizeof(unsigned long), GFP_KERNEL);
3498
3499 if (!map)
3500 return -ENOMEM;
53e15af0
CL
3501
3502 flush_all(s);
f64dc58c 3503 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3504 struct kmem_cache_node *n = get_node(s, node);
3505
434e245d 3506 count += validate_slab_node(s, n, map);
53e15af0 3507 }
434e245d 3508 kfree(map);
53e15af0
CL
3509 return count;
3510}
3511
b3459709
CL
3512#ifdef SLUB_RESILIENCY_TEST
3513static void resiliency_test(void)
3514{
3515 u8 *p;
3516
a016471a
DR
3517 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
3518
b3459709
CL
3519 printk(KERN_ERR "SLUB resiliency testing\n");
3520 printk(KERN_ERR "-----------------------\n");
3521 printk(KERN_ERR "A. Corruption after allocation\n");
3522
3523 p = kzalloc(16, GFP_KERNEL);
3524 p[16] = 0x12;
3525 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3526 " 0x12->0x%p\n\n", p + 16);
3527
a016471a 3528 validate_slab_cache(kmalloc_caches[4]);
b3459709
CL
3529
3530 /* Hmmm... The next two are dangerous */
3531 p = kzalloc(32, GFP_KERNEL);
3532 p[32 + sizeof(void *)] = 0x34;
3533 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3adbefee
IM
3534 " 0x34 -> -0x%p\n", p);
3535 printk(KERN_ERR
3536 "If allocated object is overwritten then not detectable\n\n");
b3459709 3537
a016471a 3538 validate_slab_cache(kmalloc_caches[5]);
b3459709
CL
3539 p = kzalloc(64, GFP_KERNEL);
3540 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3541 *p = 0x56;
3542 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3543 p);
3adbefee
IM
3544 printk(KERN_ERR
3545 "If allocated object is overwritten then not detectable\n\n");
a016471a 3546 validate_slab_cache(kmalloc_caches[6]);
b3459709
CL
3547
3548 printk(KERN_ERR "\nB. Corruption after free\n");
3549 p = kzalloc(128, GFP_KERNEL);
3550 kfree(p);
3551 *p = 0x78;
3552 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a016471a 3553 validate_slab_cache(kmalloc_caches[7]);
b3459709
CL
3554
3555 p = kzalloc(256, GFP_KERNEL);
3556 kfree(p);
3557 p[50] = 0x9a;
3adbefee
IM
3558 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3559 p);
a016471a 3560 validate_slab_cache(kmalloc_caches[8]);
b3459709
CL
3561
3562 p = kzalloc(512, GFP_KERNEL);
3563 kfree(p);
3564 p[512] = 0xab;
3565 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a016471a 3566 validate_slab_cache(kmalloc_caches[9]);
b3459709
CL
3567}
3568#else
3569static void resiliency_test(void) {};
3570#endif
3571
88a420e4 3572/*
672bba3a 3573 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3574 * and freed.
3575 */
3576
3577struct location {
3578 unsigned long count;
ce71e27c 3579 unsigned long addr;
45edfa58
CL
3580 long long sum_time;
3581 long min_time;
3582 long max_time;
3583 long min_pid;
3584 long max_pid;
174596a0 3585 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3586 nodemask_t nodes;
88a420e4
CL
3587};
3588
3589struct loc_track {
3590 unsigned long max;
3591 unsigned long count;
3592 struct location *loc;
3593};
3594
3595static void free_loc_track(struct loc_track *t)
3596{
3597 if (t->max)
3598 free_pages((unsigned long)t->loc,
3599 get_order(sizeof(struct location) * t->max));
3600}
3601
68dff6a9 3602static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3603{
3604 struct location *l;
3605 int order;
3606
88a420e4
CL
3607 order = get_order(sizeof(struct location) * max);
3608
68dff6a9 3609 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3610 if (!l)
3611 return 0;
3612
3613 if (t->count) {
3614 memcpy(l, t->loc, sizeof(struct location) * t->count);
3615 free_loc_track(t);
3616 }
3617 t->max = max;
3618 t->loc = l;
3619 return 1;
3620}
3621
3622static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3623 const struct track *track)
88a420e4
CL
3624{
3625 long start, end, pos;
3626 struct location *l;
ce71e27c 3627 unsigned long caddr;
45edfa58 3628 unsigned long age = jiffies - track->when;
88a420e4
CL
3629
3630 start = -1;
3631 end = t->count;
3632
3633 for ( ; ; ) {
3634 pos = start + (end - start + 1) / 2;
3635
3636 /*
3637 * There is nothing at "end". If we end up there
3638 * we need to add something to before end.
3639 */
3640 if (pos == end)
3641 break;
3642
3643 caddr = t->loc[pos].addr;
45edfa58
CL
3644 if (track->addr == caddr) {
3645
3646 l = &t->loc[pos];
3647 l->count++;
3648 if (track->when) {
3649 l->sum_time += age;
3650 if (age < l->min_time)
3651 l->min_time = age;
3652 if (age > l->max_time)
3653 l->max_time = age;
3654
3655 if (track->pid < l->min_pid)
3656 l->min_pid = track->pid;
3657 if (track->pid > l->max_pid)
3658 l->max_pid = track->pid;
3659
174596a0
RR
3660 cpumask_set_cpu(track->cpu,
3661 to_cpumask(l->cpus));
45edfa58
CL
3662 }
3663 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3664 return 1;
3665 }
3666
45edfa58 3667 if (track->addr < caddr)
88a420e4
CL
3668 end = pos;
3669 else
3670 start = pos;
3671 }
3672
3673 /*
672bba3a 3674 * Not found. Insert new tracking element.
88a420e4 3675 */
68dff6a9 3676 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3677 return 0;
3678
3679 l = t->loc + pos;
3680 if (pos < t->count)
3681 memmove(l + 1, l,
3682 (t->count - pos) * sizeof(struct location));
3683 t->count++;
3684 l->count = 1;
45edfa58
CL
3685 l->addr = track->addr;
3686 l->sum_time = age;
3687 l->min_time = age;
3688 l->max_time = age;
3689 l->min_pid = track->pid;
3690 l->max_pid = track->pid;
174596a0
RR
3691 cpumask_clear(to_cpumask(l->cpus));
3692 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
3693 nodes_clear(l->nodes);
3694 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3695 return 1;
3696}
3697
3698static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b
ED
3699 struct page *page, enum track_item alloc,
3700 long *map)
88a420e4 3701{
a973e9dd 3702 void *addr = page_address(page);
88a420e4
CL
3703 void *p;
3704
39b26464 3705 bitmap_zero(map, page->objects);
7656c72b
CL
3706 for_each_free_object(p, s, page->freelist)
3707 set_bit(slab_index(p, s, addr), map);
88a420e4 3708
224a88be 3709 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3710 if (!test_bit(slab_index(p, s, addr), map))
3711 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3712}
3713
3714static int list_locations(struct kmem_cache *s, char *buf,
3715 enum track_item alloc)
3716{
e374d483 3717 int len = 0;
88a420e4 3718 unsigned long i;
68dff6a9 3719 struct loc_track t = { 0, 0, NULL };
88a420e4 3720 int node;
bbd7d57b
ED
3721 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3722 sizeof(unsigned long), GFP_KERNEL);
88a420e4 3723
bbd7d57b
ED
3724 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3725 GFP_TEMPORARY)) {
3726 kfree(map);
68dff6a9 3727 return sprintf(buf, "Out of memory\n");
bbd7d57b 3728 }
88a420e4
CL
3729 /* Push back cpu slabs */
3730 flush_all(s);
3731
f64dc58c 3732 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3733 struct kmem_cache_node *n = get_node(s, node);
3734 unsigned long flags;
3735 struct page *page;
3736
9e86943b 3737 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3738 continue;
3739
3740 spin_lock_irqsave(&n->list_lock, flags);
3741 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 3742 process_slab(&t, s, page, alloc, map);
88a420e4 3743 list_for_each_entry(page, &n->full, lru)
bbd7d57b 3744 process_slab(&t, s, page, alloc, map);
88a420e4
CL
3745 spin_unlock_irqrestore(&n->list_lock, flags);
3746 }
3747
3748 for (i = 0; i < t.count; i++) {
45edfa58 3749 struct location *l = &t.loc[i];
88a420e4 3750
9c246247 3751 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 3752 break;
e374d483 3753 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3754
3755 if (l->addr)
e374d483 3756 len += sprint_symbol(buf + len, (unsigned long)l->addr);
88a420e4 3757 else
e374d483 3758 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3759
3760 if (l->sum_time != l->min_time) {
e374d483 3761 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
3762 l->min_time,
3763 (long)div_u64(l->sum_time, l->count),
3764 l->max_time);
45edfa58 3765 } else
e374d483 3766 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3767 l->min_time);
3768
3769 if (l->min_pid != l->max_pid)
e374d483 3770 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3771 l->min_pid, l->max_pid);
3772 else
e374d483 3773 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3774 l->min_pid);
3775
174596a0
RR
3776 if (num_online_cpus() > 1 &&
3777 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
3778 len < PAGE_SIZE - 60) {
3779 len += sprintf(buf + len, " cpus=");
3780 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 3781 to_cpumask(l->cpus));
45edfa58
CL
3782 }
3783
62bc62a8 3784 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3785 len < PAGE_SIZE - 60) {
3786 len += sprintf(buf + len, " nodes=");
3787 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3788 l->nodes);
3789 }
3790
e374d483 3791 len += sprintf(buf + len, "\n");
88a420e4
CL
3792 }
3793
3794 free_loc_track(&t);
bbd7d57b 3795 kfree(map);
88a420e4 3796 if (!t.count)
e374d483
HH
3797 len += sprintf(buf, "No data\n");
3798 return len;
88a420e4
CL
3799}
3800
81819f0f 3801enum slab_stat_type {
205ab99d
CL
3802 SL_ALL, /* All slabs */
3803 SL_PARTIAL, /* Only partially allocated slabs */
3804 SL_CPU, /* Only slabs used for cpu caches */
3805 SL_OBJECTS, /* Determine allocated objects not slabs */
3806 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
3807};
3808
205ab99d 3809#define SO_ALL (1 << SL_ALL)
81819f0f
CL
3810#define SO_PARTIAL (1 << SL_PARTIAL)
3811#define SO_CPU (1 << SL_CPU)
3812#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 3813#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 3814
62e5c4b4
CG
3815static ssize_t show_slab_objects(struct kmem_cache *s,
3816 char *buf, unsigned long flags)
81819f0f
CL
3817{
3818 unsigned long total = 0;
81819f0f
CL
3819 int node;
3820 int x;
3821 unsigned long *nodes;
3822 unsigned long *per_cpu;
3823
3824 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
3825 if (!nodes)
3826 return -ENOMEM;
81819f0f
CL
3827 per_cpu = nodes + nr_node_ids;
3828
205ab99d
CL
3829 if (flags & SO_CPU) {
3830 int cpu;
81819f0f 3831
205ab99d 3832 for_each_possible_cpu(cpu) {
9dfc6e68 3833 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
dfb4f096 3834
205ab99d
CL
3835 if (!c || c->node < 0)
3836 continue;
3837
3838 if (c->page) {
3839 if (flags & SO_TOTAL)
3840 x = c->page->objects;
3841 else if (flags & SO_OBJECTS)
3842 x = c->page->inuse;
81819f0f
CL
3843 else
3844 x = 1;
205ab99d 3845
81819f0f 3846 total += x;
205ab99d 3847 nodes[c->node] += x;
81819f0f 3848 }
205ab99d 3849 per_cpu[c->node]++;
81819f0f
CL
3850 }
3851 }
3852
205ab99d
CL
3853 if (flags & SO_ALL) {
3854 for_each_node_state(node, N_NORMAL_MEMORY) {
3855 struct kmem_cache_node *n = get_node(s, node);
3856
3857 if (flags & SO_TOTAL)
3858 x = atomic_long_read(&n->total_objects);
3859 else if (flags & SO_OBJECTS)
3860 x = atomic_long_read(&n->total_objects) -
3861 count_partial(n, count_free);
81819f0f 3862
81819f0f 3863 else
205ab99d 3864 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
3865 total += x;
3866 nodes[node] += x;
3867 }
3868
205ab99d
CL
3869 } else if (flags & SO_PARTIAL) {
3870 for_each_node_state(node, N_NORMAL_MEMORY) {
3871 struct kmem_cache_node *n = get_node(s, node);
81819f0f 3872
205ab99d
CL
3873 if (flags & SO_TOTAL)
3874 x = count_partial(n, count_total);
3875 else if (flags & SO_OBJECTS)
3876 x = count_partial(n, count_inuse);
81819f0f 3877 else
205ab99d 3878 x = n->nr_partial;
81819f0f
CL
3879 total += x;
3880 nodes[node] += x;
3881 }
3882 }
81819f0f
CL
3883 x = sprintf(buf, "%lu", total);
3884#ifdef CONFIG_NUMA
f64dc58c 3885 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
3886 if (nodes[node])
3887 x += sprintf(buf + x, " N%d=%lu",
3888 node, nodes[node]);
3889#endif
3890 kfree(nodes);
3891 return x + sprintf(buf + x, "\n");
3892}
3893
3894static int any_slab_objects(struct kmem_cache *s)
3895{
3896 int node;
81819f0f 3897
dfb4f096 3898 for_each_online_node(node) {
81819f0f
CL
3899 struct kmem_cache_node *n = get_node(s, node);
3900
dfb4f096
CL
3901 if (!n)
3902 continue;
3903
4ea33e2d 3904 if (atomic_long_read(&n->total_objects))
81819f0f
CL
3905 return 1;
3906 }
3907 return 0;
3908}
3909
3910#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3911#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3912
3913struct slab_attribute {
3914 struct attribute attr;
3915 ssize_t (*show)(struct kmem_cache *s, char *buf);
3916 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3917};
3918
3919#define SLAB_ATTR_RO(_name) \
3920 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3921
3922#define SLAB_ATTR(_name) \
3923 static struct slab_attribute _name##_attr = \
3924 __ATTR(_name, 0644, _name##_show, _name##_store)
3925
81819f0f
CL
3926static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3927{
3928 return sprintf(buf, "%d\n", s->size);
3929}
3930SLAB_ATTR_RO(slab_size);
3931
3932static ssize_t align_show(struct kmem_cache *s, char *buf)
3933{
3934 return sprintf(buf, "%d\n", s->align);
3935}
3936SLAB_ATTR_RO(align);
3937
3938static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3939{
3940 return sprintf(buf, "%d\n", s->objsize);
3941}
3942SLAB_ATTR_RO(object_size);
3943
3944static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3945{
834f3d11 3946 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
3947}
3948SLAB_ATTR_RO(objs_per_slab);
3949
06b285dc
CL
3950static ssize_t order_store(struct kmem_cache *s,
3951 const char *buf, size_t length)
3952{
0121c619
CL
3953 unsigned long order;
3954 int err;
3955
3956 err = strict_strtoul(buf, 10, &order);
3957 if (err)
3958 return err;
06b285dc
CL
3959
3960 if (order > slub_max_order || order < slub_min_order)
3961 return -EINVAL;
3962
3963 calculate_sizes(s, order);
3964 return length;
3965}
3966
81819f0f
CL
3967static ssize_t order_show(struct kmem_cache *s, char *buf)
3968{
834f3d11 3969 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 3970}
06b285dc 3971SLAB_ATTR(order);
81819f0f 3972
73d342b1
DR
3973static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3974{
3975 return sprintf(buf, "%lu\n", s->min_partial);
3976}
3977
3978static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3979 size_t length)
3980{
3981 unsigned long min;
3982 int err;
3983
3984 err = strict_strtoul(buf, 10, &min);
3985 if (err)
3986 return err;
3987
c0bdb232 3988 set_min_partial(s, min);
73d342b1
DR
3989 return length;
3990}
3991SLAB_ATTR(min_partial);
3992
81819f0f
CL
3993static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3994{
3995 if (s->ctor) {
3996 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3997
3998 return n + sprintf(buf + n, "\n");
3999 }
4000 return 0;
4001}
4002SLAB_ATTR_RO(ctor);
4003
81819f0f
CL
4004static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4005{
4006 return sprintf(buf, "%d\n", s->refcount - 1);
4007}
4008SLAB_ATTR_RO(aliases);
4009
4010static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4011{
205ab99d 4012 return show_slab_objects(s, buf, SO_ALL);
81819f0f
CL
4013}
4014SLAB_ATTR_RO(slabs);
4015
4016static ssize_t partial_show(struct kmem_cache *s, char *buf)
4017{
d9acf4b7 4018 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4019}
4020SLAB_ATTR_RO(partial);
4021
4022static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4023{
d9acf4b7 4024 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4025}
4026SLAB_ATTR_RO(cpu_slabs);
4027
4028static ssize_t objects_show(struct kmem_cache *s, char *buf)
4029{
205ab99d 4030 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4031}
4032SLAB_ATTR_RO(objects);
4033
205ab99d
CL
4034static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4035{
4036 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4037}
4038SLAB_ATTR_RO(objects_partial);
4039
4040static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4041{
4042 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4043}
4044SLAB_ATTR_RO(total_objects);
4045
81819f0f
CL
4046static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4047{
4048 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4049}
4050
4051static ssize_t sanity_checks_store(struct kmem_cache *s,
4052 const char *buf, size_t length)
4053{
4054 s->flags &= ~SLAB_DEBUG_FREE;
4055 if (buf[0] == '1')
4056 s->flags |= SLAB_DEBUG_FREE;
4057 return length;
4058}
4059SLAB_ATTR(sanity_checks);
4060
4061static ssize_t trace_show(struct kmem_cache *s, char *buf)
4062{
4063 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4064}
4065
4066static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4067 size_t length)
4068{
4069 s->flags &= ~SLAB_TRACE;
4070 if (buf[0] == '1')
4071 s->flags |= SLAB_TRACE;
4072 return length;
4073}
4074SLAB_ATTR(trace);
4075
4c13dd3b
DM
4076#ifdef CONFIG_FAILSLAB
4077static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4078{
4079 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4080}
4081
4082static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4083 size_t length)
4084{
4085 s->flags &= ~SLAB_FAILSLAB;
4086 if (buf[0] == '1')
4087 s->flags |= SLAB_FAILSLAB;
4088 return length;
4089}
4090SLAB_ATTR(failslab);
4091#endif
4092
81819f0f
CL
4093static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4094{
4095 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4096}
4097
4098static ssize_t reclaim_account_store(struct kmem_cache *s,
4099 const char *buf, size_t length)
4100{
4101 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4102 if (buf[0] == '1')
4103 s->flags |= SLAB_RECLAIM_ACCOUNT;
4104 return length;
4105}
4106SLAB_ATTR(reclaim_account);
4107
4108static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4109{
5af60839 4110 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
4111}
4112SLAB_ATTR_RO(hwcache_align);
4113
4114#ifdef CONFIG_ZONE_DMA
4115static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4116{
4117 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4118}
4119SLAB_ATTR_RO(cache_dma);
4120#endif
4121
4122static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4123{
4124 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4125}
4126SLAB_ATTR_RO(destroy_by_rcu);
4127
4128static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4129{
4130 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4131}
4132
4133static ssize_t red_zone_store(struct kmem_cache *s,
4134 const char *buf, size_t length)
4135{
4136 if (any_slab_objects(s))
4137 return -EBUSY;
4138
4139 s->flags &= ~SLAB_RED_ZONE;
4140 if (buf[0] == '1')
4141 s->flags |= SLAB_RED_ZONE;
06b285dc 4142 calculate_sizes(s, -1);
81819f0f
CL
4143 return length;
4144}
4145SLAB_ATTR(red_zone);
4146
4147static ssize_t poison_show(struct kmem_cache *s, char *buf)
4148{
4149 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4150}
4151
4152static ssize_t poison_store(struct kmem_cache *s,
4153 const char *buf, size_t length)
4154{
4155 if (any_slab_objects(s))
4156 return -EBUSY;
4157
4158 s->flags &= ~SLAB_POISON;
4159 if (buf[0] == '1')
4160 s->flags |= SLAB_POISON;
06b285dc 4161 calculate_sizes(s, -1);
81819f0f
CL
4162 return length;
4163}
4164SLAB_ATTR(poison);
4165
4166static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4167{
4168 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4169}
4170
4171static ssize_t store_user_store(struct kmem_cache *s,
4172 const char *buf, size_t length)
4173{
4174 if (any_slab_objects(s))
4175 return -EBUSY;
4176
4177 s->flags &= ~SLAB_STORE_USER;
4178 if (buf[0] == '1')
4179 s->flags |= SLAB_STORE_USER;
06b285dc 4180 calculate_sizes(s, -1);
81819f0f
CL
4181 return length;
4182}
4183SLAB_ATTR(store_user);
4184
53e15af0
CL
4185static ssize_t validate_show(struct kmem_cache *s, char *buf)
4186{
4187 return 0;
4188}
4189
4190static ssize_t validate_store(struct kmem_cache *s,
4191 const char *buf, size_t length)
4192{
434e245d
CL
4193 int ret = -EINVAL;
4194
4195 if (buf[0] == '1') {
4196 ret = validate_slab_cache(s);
4197 if (ret >= 0)
4198 ret = length;
4199 }
4200 return ret;
53e15af0
CL
4201}
4202SLAB_ATTR(validate);
4203
2086d26a
CL
4204static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4205{
4206 return 0;
4207}
4208
4209static ssize_t shrink_store(struct kmem_cache *s,
4210 const char *buf, size_t length)
4211{
4212 if (buf[0] == '1') {
4213 int rc = kmem_cache_shrink(s);
4214
4215 if (rc)
4216 return rc;
4217 } else
4218 return -EINVAL;
4219 return length;
4220}
4221SLAB_ATTR(shrink);
4222
88a420e4
CL
4223static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4224{
4225 if (!(s->flags & SLAB_STORE_USER))
4226 return -ENOSYS;
4227 return list_locations(s, buf, TRACK_ALLOC);
4228}
4229SLAB_ATTR_RO(alloc_calls);
4230
4231static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4232{
4233 if (!(s->flags & SLAB_STORE_USER))
4234 return -ENOSYS;
4235 return list_locations(s, buf, TRACK_FREE);
4236}
4237SLAB_ATTR_RO(free_calls);
4238
81819f0f 4239#ifdef CONFIG_NUMA
9824601e 4240static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4241{
9824601e 4242 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4243}
4244
9824601e 4245static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4246 const char *buf, size_t length)
4247{
0121c619
CL
4248 unsigned long ratio;
4249 int err;
4250
4251 err = strict_strtoul(buf, 10, &ratio);
4252 if (err)
4253 return err;
4254
e2cb96b7 4255 if (ratio <= 100)
0121c619 4256 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4257
81819f0f
CL
4258 return length;
4259}
9824601e 4260SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4261#endif
4262
8ff12cfc 4263#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4264static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4265{
4266 unsigned long sum = 0;
4267 int cpu;
4268 int len;
4269 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4270
4271 if (!data)
4272 return -ENOMEM;
4273
4274 for_each_online_cpu(cpu) {
9dfc6e68 4275 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4276
4277 data[cpu] = x;
4278 sum += x;
4279 }
4280
4281 len = sprintf(buf, "%lu", sum);
4282
50ef37b9 4283#ifdef CONFIG_SMP
8ff12cfc
CL
4284 for_each_online_cpu(cpu) {
4285 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4286 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4287 }
50ef37b9 4288#endif
8ff12cfc
CL
4289 kfree(data);
4290 return len + sprintf(buf + len, "\n");
4291}
4292
78eb00cc
DR
4293static void clear_stat(struct kmem_cache *s, enum stat_item si)
4294{
4295 int cpu;
4296
4297 for_each_online_cpu(cpu)
9dfc6e68 4298 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4299}
4300
8ff12cfc
CL
4301#define STAT_ATTR(si, text) \
4302static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4303{ \
4304 return show_stat(s, buf, si); \
4305} \
78eb00cc
DR
4306static ssize_t text##_store(struct kmem_cache *s, \
4307 const char *buf, size_t length) \
4308{ \
4309 if (buf[0] != '0') \
4310 return -EINVAL; \
4311 clear_stat(s, si); \
4312 return length; \
4313} \
4314SLAB_ATTR(text); \
8ff12cfc
CL
4315
4316STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4317STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4318STAT_ATTR(FREE_FASTPATH, free_fastpath);
4319STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4320STAT_ATTR(FREE_FROZEN, free_frozen);
4321STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4322STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4323STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4324STAT_ATTR(ALLOC_SLAB, alloc_slab);
4325STAT_ATTR(ALLOC_REFILL, alloc_refill);
4326STAT_ATTR(FREE_SLAB, free_slab);
4327STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4328STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4329STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4330STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4331STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4332STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
65c3376a 4333STAT_ATTR(ORDER_FALLBACK, order_fallback);
8ff12cfc
CL
4334#endif
4335
06428780 4336static struct attribute *slab_attrs[] = {
81819f0f
CL
4337 &slab_size_attr.attr,
4338 &object_size_attr.attr,
4339 &objs_per_slab_attr.attr,
4340 &order_attr.attr,
73d342b1 4341 &min_partial_attr.attr,
81819f0f 4342 &objects_attr.attr,
205ab99d
CL
4343 &objects_partial_attr.attr,
4344 &total_objects_attr.attr,
81819f0f
CL
4345 &slabs_attr.attr,
4346 &partial_attr.attr,
4347 &cpu_slabs_attr.attr,
4348 &ctor_attr.attr,
81819f0f
CL
4349 &aliases_attr.attr,
4350 &align_attr.attr,
4351 &sanity_checks_attr.attr,
4352 &trace_attr.attr,
4353 &hwcache_align_attr.attr,
4354 &reclaim_account_attr.attr,
4355 &destroy_by_rcu_attr.attr,
4356 &red_zone_attr.attr,
4357 &poison_attr.attr,
4358 &store_user_attr.attr,
53e15af0 4359 &validate_attr.attr,
2086d26a 4360 &shrink_attr.attr,
88a420e4
CL
4361 &alloc_calls_attr.attr,
4362 &free_calls_attr.attr,
81819f0f
CL
4363#ifdef CONFIG_ZONE_DMA
4364 &cache_dma_attr.attr,
4365#endif
4366#ifdef CONFIG_NUMA
9824601e 4367 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4368#endif
4369#ifdef CONFIG_SLUB_STATS
4370 &alloc_fastpath_attr.attr,
4371 &alloc_slowpath_attr.attr,
4372 &free_fastpath_attr.attr,
4373 &free_slowpath_attr.attr,
4374 &free_frozen_attr.attr,
4375 &free_add_partial_attr.attr,
4376 &free_remove_partial_attr.attr,
4377 &alloc_from_partial_attr.attr,
4378 &alloc_slab_attr.attr,
4379 &alloc_refill_attr.attr,
4380 &free_slab_attr.attr,
4381 &cpuslab_flush_attr.attr,
4382 &deactivate_full_attr.attr,
4383 &deactivate_empty_attr.attr,
4384 &deactivate_to_head_attr.attr,
4385 &deactivate_to_tail_attr.attr,
4386 &deactivate_remote_frees_attr.attr,
65c3376a 4387 &order_fallback_attr.attr,
81819f0f 4388#endif
4c13dd3b
DM
4389#ifdef CONFIG_FAILSLAB
4390 &failslab_attr.attr,
4391#endif
4392
81819f0f
CL
4393 NULL
4394};
4395
4396static struct attribute_group slab_attr_group = {
4397 .attrs = slab_attrs,
4398};
4399
4400static ssize_t slab_attr_show(struct kobject *kobj,
4401 struct attribute *attr,
4402 char *buf)
4403{
4404 struct slab_attribute *attribute;
4405 struct kmem_cache *s;
4406 int err;
4407
4408 attribute = to_slab_attr(attr);
4409 s = to_slab(kobj);
4410
4411 if (!attribute->show)
4412 return -EIO;
4413
4414 err = attribute->show(s, buf);
4415
4416 return err;
4417}
4418
4419static ssize_t slab_attr_store(struct kobject *kobj,
4420 struct attribute *attr,
4421 const char *buf, size_t len)
4422{
4423 struct slab_attribute *attribute;
4424 struct kmem_cache *s;
4425 int err;
4426
4427 attribute = to_slab_attr(attr);
4428 s = to_slab(kobj);
4429
4430 if (!attribute->store)
4431 return -EIO;
4432
4433 err = attribute->store(s, buf, len);
4434
4435 return err;
4436}
4437
151c602f
CL
4438static void kmem_cache_release(struct kobject *kobj)
4439{
4440 struct kmem_cache *s = to_slab(kobj);
4441
4442 kfree(s);
4443}
4444
52cf25d0 4445static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
4446 .show = slab_attr_show,
4447 .store = slab_attr_store,
4448};
4449
4450static struct kobj_type slab_ktype = {
4451 .sysfs_ops = &slab_sysfs_ops,
151c602f 4452 .release = kmem_cache_release
81819f0f
CL
4453};
4454
4455static int uevent_filter(struct kset *kset, struct kobject *kobj)
4456{
4457 struct kobj_type *ktype = get_ktype(kobj);
4458
4459 if (ktype == &slab_ktype)
4460 return 1;
4461 return 0;
4462}
4463
9cd43611 4464static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
4465 .filter = uevent_filter,
4466};
4467
27c3a314 4468static struct kset *slab_kset;
81819f0f
CL
4469
4470#define ID_STR_LENGTH 64
4471
4472/* Create a unique string id for a slab cache:
6446faa2
CL
4473 *
4474 * Format :[flags-]size
81819f0f
CL
4475 */
4476static char *create_unique_id(struct kmem_cache *s)
4477{
4478 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4479 char *p = name;
4480
4481 BUG_ON(!name);
4482
4483 *p++ = ':';
4484 /*
4485 * First flags affecting slabcache operations. We will only
4486 * get here for aliasable slabs so we do not need to support
4487 * too many flags. The flags here must cover all flags that
4488 * are matched during merging to guarantee that the id is
4489 * unique.
4490 */
4491 if (s->flags & SLAB_CACHE_DMA)
4492 *p++ = 'd';
4493 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4494 *p++ = 'a';
4495 if (s->flags & SLAB_DEBUG_FREE)
4496 *p++ = 'F';
5a896d9e
VN
4497 if (!(s->flags & SLAB_NOTRACK))
4498 *p++ = 't';
81819f0f
CL
4499 if (p != name + 1)
4500 *p++ = '-';
4501 p += sprintf(p, "%07d", s->size);
4502 BUG_ON(p > name + ID_STR_LENGTH - 1);
4503 return name;
4504}
4505
4506static int sysfs_slab_add(struct kmem_cache *s)
4507{
4508 int err;
4509 const char *name;
4510 int unmergeable;
4511
4512 if (slab_state < SYSFS)
4513 /* Defer until later */
4514 return 0;
4515
4516 unmergeable = slab_unmergeable(s);
4517 if (unmergeable) {
4518 /*
4519 * Slabcache can never be merged so we can use the name proper.
4520 * This is typically the case for debug situations. In that
4521 * case we can catch duplicate names easily.
4522 */
27c3a314 4523 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4524 name = s->name;
4525 } else {
4526 /*
4527 * Create a unique name for the slab as a target
4528 * for the symlinks.
4529 */
4530 name = create_unique_id(s);
4531 }
4532
27c3a314 4533 s->kobj.kset = slab_kset;
1eada11c
GKH
4534 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4535 if (err) {
4536 kobject_put(&s->kobj);
81819f0f 4537 return err;
1eada11c 4538 }
81819f0f
CL
4539
4540 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
4541 if (err) {
4542 kobject_del(&s->kobj);
4543 kobject_put(&s->kobj);
81819f0f 4544 return err;
5788d8ad 4545 }
81819f0f
CL
4546 kobject_uevent(&s->kobj, KOBJ_ADD);
4547 if (!unmergeable) {
4548 /* Setup first alias */
4549 sysfs_slab_alias(s, s->name);
4550 kfree(name);
4551 }
4552 return 0;
4553}
4554
4555static void sysfs_slab_remove(struct kmem_cache *s)
4556{
2bce6485
CL
4557 if (slab_state < SYSFS)
4558 /*
4559 * Sysfs has not been setup yet so no need to remove the
4560 * cache from sysfs.
4561 */
4562 return;
4563
81819f0f
CL
4564 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4565 kobject_del(&s->kobj);
151c602f 4566 kobject_put(&s->kobj);
81819f0f
CL
4567}
4568
4569/*
4570 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 4571 * available lest we lose that information.
81819f0f
CL
4572 */
4573struct saved_alias {
4574 struct kmem_cache *s;
4575 const char *name;
4576 struct saved_alias *next;
4577};
4578
5af328a5 4579static struct saved_alias *alias_list;
81819f0f
CL
4580
4581static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4582{
4583 struct saved_alias *al;
4584
4585 if (slab_state == SYSFS) {
4586 /*
4587 * If we have a leftover link then remove it.
4588 */
27c3a314
GKH
4589 sysfs_remove_link(&slab_kset->kobj, name);
4590 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4591 }
4592
4593 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4594 if (!al)
4595 return -ENOMEM;
4596
4597 al->s = s;
4598 al->name = name;
4599 al->next = alias_list;
4600 alias_list = al;
4601 return 0;
4602}
4603
4604static int __init slab_sysfs_init(void)
4605{
5b95a4ac 4606 struct kmem_cache *s;
81819f0f
CL
4607 int err;
4608
2bce6485
CL
4609 down_write(&slub_lock);
4610
0ff21e46 4611 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4612 if (!slab_kset) {
2bce6485 4613 up_write(&slub_lock);
81819f0f
CL
4614 printk(KERN_ERR "Cannot register slab subsystem.\n");
4615 return -ENOSYS;
4616 }
4617
26a7bd03
CL
4618 slab_state = SYSFS;
4619
5b95a4ac 4620 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4621 err = sysfs_slab_add(s);
5d540fb7
CL
4622 if (err)
4623 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4624 " to sysfs\n", s->name);
26a7bd03 4625 }
81819f0f
CL
4626
4627 while (alias_list) {
4628 struct saved_alias *al = alias_list;
4629
4630 alias_list = alias_list->next;
4631 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4632 if (err)
4633 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4634 " %s to sysfs\n", s->name);
81819f0f
CL
4635 kfree(al);
4636 }
4637
2bce6485 4638 up_write(&slub_lock);
81819f0f
CL
4639 resiliency_test();
4640 return 0;
4641}
4642
4643__initcall(slab_sysfs_init);
81819f0f 4644#endif
57ed3eda
PE
4645
4646/*
4647 * The /proc/slabinfo ABI
4648 */
158a9624 4649#ifdef CONFIG_SLABINFO
57ed3eda
PE
4650static void print_slabinfo_header(struct seq_file *m)
4651{
4652 seq_puts(m, "slabinfo - version: 2.1\n");
4653 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4654 "<objperslab> <pagesperslab>");
4655 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4656 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4657 seq_putc(m, '\n');
4658}
4659
4660static void *s_start(struct seq_file *m, loff_t *pos)
4661{
4662 loff_t n = *pos;
4663
4664 down_read(&slub_lock);
4665 if (!n)
4666 print_slabinfo_header(m);
4667
4668 return seq_list_start(&slab_caches, *pos);
4669}
4670
4671static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4672{
4673 return seq_list_next(p, &slab_caches, pos);
4674}
4675
4676static void s_stop(struct seq_file *m, void *p)
4677{
4678 up_read(&slub_lock);
4679}
4680
4681static int s_show(struct seq_file *m, void *p)
4682{
4683 unsigned long nr_partials = 0;
4684 unsigned long nr_slabs = 0;
4685 unsigned long nr_inuse = 0;
205ab99d
CL
4686 unsigned long nr_objs = 0;
4687 unsigned long nr_free = 0;
57ed3eda
PE
4688 struct kmem_cache *s;
4689 int node;
4690
4691 s = list_entry(p, struct kmem_cache, list);
4692
4693 for_each_online_node(node) {
4694 struct kmem_cache_node *n = get_node(s, node);
4695
4696 if (!n)
4697 continue;
4698
4699 nr_partials += n->nr_partial;
4700 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
4701 nr_objs += atomic_long_read(&n->total_objects);
4702 nr_free += count_partial(n, count_free);
57ed3eda
PE
4703 }
4704
205ab99d 4705 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
4706
4707 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
4708 nr_objs, s->size, oo_objects(s->oo),
4709 (1 << oo_order(s->oo)));
57ed3eda
PE
4710 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4711 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4712 0UL);
4713 seq_putc(m, '\n');
4714 return 0;
4715}
4716
7b3c3a50 4717static const struct seq_operations slabinfo_op = {
57ed3eda
PE
4718 .start = s_start,
4719 .next = s_next,
4720 .stop = s_stop,
4721 .show = s_show,
4722};
4723
7b3c3a50
AD
4724static int slabinfo_open(struct inode *inode, struct file *file)
4725{
4726 return seq_open(file, &slabinfo_op);
4727}
4728
4729static const struct file_operations proc_slabinfo_operations = {
4730 .open = slabinfo_open,
4731 .read = seq_read,
4732 .llseek = seq_lseek,
4733 .release = seq_release,
4734};
4735
4736static int __init slab_proc_init(void)
4737{
cf5d1131 4738 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
4739 return 0;
4740}
4741module_init(slab_proc_init);
158a9624 4742#endif /* CONFIG_SLABINFO */