slub: optimize bulk slowpath free by detached freelist
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
3ac38faa 21#include <linux/notifier.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
5a896d9e 24#include <linux/kmemcheck.h>
81819f0f
CL
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
3ac7fe5a 29#include <linux/debugobjects.h>
81819f0f 30#include <linux/kallsyms.h>
b9049e23 31#include <linux/memory.h>
f8bd2258 32#include <linux/math64.h>
773ff60e 33#include <linux/fault-inject.h>
bfa71457 34#include <linux/stacktrace.h>
4de900b4 35#include <linux/prefetch.h>
2633d7a0 36#include <linux/memcontrol.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
65 *
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
71 *
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
81819f0f
CL
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
81 *
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
84 *
672bba3a
CL
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 87 * freed then the slab will show up again on the partial lists.
672bba3a
CL
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
81819f0f
CL
90 *
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
94 *
95 * Overloading of page flags that are otherwise used for LRU management.
96 *
4b6f0750
CL
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
dfb4f096 109 * freelist that allows lockless access to
894b8788
CL
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
81819f0f
CL
112 *
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
894b8788 115 * the fast path and disables lockless freelists.
81819f0f
CL
116 */
117
af537b0a
CL
118static inline int kmem_cache_debug(struct kmem_cache *s)
119{
5577bd8a 120#ifdef CONFIG_SLUB_DEBUG
af537b0a 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 122#else
af537b0a 123 return 0;
5577bd8a 124#endif
af537b0a 125}
5577bd8a 126
345c905d
JK
127static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
128{
129#ifdef CONFIG_SLUB_CPU_PARTIAL
130 return !kmem_cache_debug(s);
131#else
132 return false;
133#endif
134}
135
81819f0f
CL
136/*
137 * Issues still to be resolved:
138 *
81819f0f
CL
139 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
140 *
81819f0f
CL
141 * - Variable sizing of the per node arrays
142 */
143
144/* Enable to test recovery from slab corruption on boot */
145#undef SLUB_RESILIENCY_TEST
146
b789ef51
CL
147/* Enable to log cmpxchg failures */
148#undef SLUB_DEBUG_CMPXCHG
149
2086d26a
CL
150/*
151 * Mininum number of partial slabs. These will be left on the partial
152 * lists even if they are empty. kmem_cache_shrink may reclaim them.
153 */
76be8950 154#define MIN_PARTIAL 5
e95eed57 155
2086d26a
CL
156/*
157 * Maximum number of desirable partial slabs.
158 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 159 * sort the partial list by the number of objects in use.
2086d26a
CL
160 */
161#define MAX_PARTIAL 10
162
81819f0f
CL
163#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
164 SLAB_POISON | SLAB_STORE_USER)
672bba3a 165
fa5ec8a1 166/*
3de47213
DR
167 * Debugging flags that require metadata to be stored in the slab. These get
168 * disabled when slub_debug=O is used and a cache's min order increases with
169 * metadata.
fa5ec8a1 170 */
3de47213 171#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 172
210b5c06
CG
173#define OO_SHIFT 16
174#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 175#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 176
81819f0f 177/* Internal SLUB flags */
f90ec390 178#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 179#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 180
81819f0f
CL
181#ifdef CONFIG_SMP
182static struct notifier_block slab_notifier;
183#endif
184
02cbc874
CL
185/*
186 * Tracking user of a slab.
187 */
d6543e39 188#define TRACK_ADDRS_COUNT 16
02cbc874 189struct track {
ce71e27c 190 unsigned long addr; /* Called from address */
d6543e39
BG
191#ifdef CONFIG_STACKTRACE
192 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
193#endif
02cbc874
CL
194 int cpu; /* Was running on cpu */
195 int pid; /* Pid context */
196 unsigned long when; /* When did the operation occur */
197};
198
199enum track_item { TRACK_ALLOC, TRACK_FREE };
200
ab4d5ed5 201#ifdef CONFIG_SYSFS
81819f0f
CL
202static int sysfs_slab_add(struct kmem_cache *);
203static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 204static void memcg_propagate_slab_attrs(struct kmem_cache *s);
81819f0f 205#else
0c710013
CL
206static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
207static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
208 { return 0; }
107dab5c 209static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
81819f0f
CL
210#endif
211
4fdccdfb 212static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
213{
214#ifdef CONFIG_SLUB_STATS
88da03a6
CL
215 /*
216 * The rmw is racy on a preemptible kernel but this is acceptable, so
217 * avoid this_cpu_add()'s irq-disable overhead.
218 */
219 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
220#endif
221}
222
81819f0f
CL
223/********************************************************************
224 * Core slab cache functions
225 *******************************************************************/
226
6446faa2 227/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
228static inline int check_valid_pointer(struct kmem_cache *s,
229 struct page *page, const void *object)
230{
231 void *base;
232
a973e9dd 233 if (!object)
02cbc874
CL
234 return 1;
235
a973e9dd 236 base = page_address(page);
39b26464 237 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
238 (object - base) % s->size) {
239 return 0;
240 }
241
242 return 1;
243}
244
7656c72b
CL
245static inline void *get_freepointer(struct kmem_cache *s, void *object)
246{
247 return *(void **)(object + s->offset);
248}
249
0ad9500e
ED
250static void prefetch_freepointer(const struct kmem_cache *s, void *object)
251{
252 prefetch(object + s->offset);
253}
254
1393d9a1
CL
255static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
256{
257 void *p;
258
259#ifdef CONFIG_DEBUG_PAGEALLOC
260 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
261#else
262 p = get_freepointer(s, object);
263#endif
264 return p;
265}
266
7656c72b
CL
267static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
268{
269 *(void **)(object + s->offset) = fp;
270}
271
272/* Loop over all objects in a slab */
224a88be
CL
273#define for_each_object(__p, __s, __addr, __objects) \
274 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
275 __p += (__s)->size)
276
54266640
WY
277#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
278 for (__p = (__addr), __idx = 1; __idx <= __objects;\
279 __p += (__s)->size, __idx++)
280
7656c72b
CL
281/* Determine object index from a given position */
282static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
283{
284 return (p - addr) / s->size;
285}
286
d71f606f
MK
287static inline size_t slab_ksize(const struct kmem_cache *s)
288{
289#ifdef CONFIG_SLUB_DEBUG
290 /*
291 * Debugging requires use of the padding between object
292 * and whatever may come after it.
293 */
294 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
3b0efdfa 295 return s->object_size;
d71f606f
MK
296
297#endif
298 /*
299 * If we have the need to store the freelist pointer
300 * back there or track user information then we can
301 * only use the space before that information.
302 */
303 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
304 return s->inuse;
305 /*
306 * Else we can use all the padding etc for the allocation
307 */
308 return s->size;
309}
310
ab9a0f19
LJ
311static inline int order_objects(int order, unsigned long size, int reserved)
312{
313 return ((PAGE_SIZE << order) - reserved) / size;
314}
315
834f3d11 316static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 317 unsigned long size, int reserved)
834f3d11
CL
318{
319 struct kmem_cache_order_objects x = {
ab9a0f19 320 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
321 };
322
323 return x;
324}
325
326static inline int oo_order(struct kmem_cache_order_objects x)
327{
210b5c06 328 return x.x >> OO_SHIFT;
834f3d11
CL
329}
330
331static inline int oo_objects(struct kmem_cache_order_objects x)
332{
210b5c06 333 return x.x & OO_MASK;
834f3d11
CL
334}
335
881db7fb
CL
336/*
337 * Per slab locking using the pagelock
338 */
339static __always_inline void slab_lock(struct page *page)
340{
341 bit_spin_lock(PG_locked, &page->flags);
342}
343
344static __always_inline void slab_unlock(struct page *page)
345{
346 __bit_spin_unlock(PG_locked, &page->flags);
347}
348
a0320865
DH
349static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
350{
351 struct page tmp;
352 tmp.counters = counters_new;
353 /*
354 * page->counters can cover frozen/inuse/objects as well
355 * as page->_count. If we assign to ->counters directly
356 * we run the risk of losing updates to page->_count, so
357 * be careful and only assign to the fields we need.
358 */
359 page->frozen = tmp.frozen;
360 page->inuse = tmp.inuse;
361 page->objects = tmp.objects;
362}
363
1d07171c
CL
364/* Interrupts must be disabled (for the fallback code to work right) */
365static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
366 void *freelist_old, unsigned long counters_old,
367 void *freelist_new, unsigned long counters_new,
368 const char *n)
369{
370 VM_BUG_ON(!irqs_disabled());
2565409f
HC
371#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
372 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 373 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 374 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
375 freelist_old, counters_old,
376 freelist_new, counters_new))
6f6528a1 377 return true;
1d07171c
CL
378 } else
379#endif
380 {
381 slab_lock(page);
d0e0ac97
CG
382 if (page->freelist == freelist_old &&
383 page->counters == counters_old) {
1d07171c 384 page->freelist = freelist_new;
a0320865 385 set_page_slub_counters(page, counters_new);
1d07171c 386 slab_unlock(page);
6f6528a1 387 return true;
1d07171c
CL
388 }
389 slab_unlock(page);
390 }
391
392 cpu_relax();
393 stat(s, CMPXCHG_DOUBLE_FAIL);
394
395#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 396 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
397#endif
398
6f6528a1 399 return false;
1d07171c
CL
400}
401
b789ef51
CL
402static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
403 void *freelist_old, unsigned long counters_old,
404 void *freelist_new, unsigned long counters_new,
405 const char *n)
406{
2565409f
HC
407#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
408 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 409 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 410 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
411 freelist_old, counters_old,
412 freelist_new, counters_new))
6f6528a1 413 return true;
b789ef51
CL
414 } else
415#endif
416 {
1d07171c
CL
417 unsigned long flags;
418
419 local_irq_save(flags);
881db7fb 420 slab_lock(page);
d0e0ac97
CG
421 if (page->freelist == freelist_old &&
422 page->counters == counters_old) {
b789ef51 423 page->freelist = freelist_new;
a0320865 424 set_page_slub_counters(page, counters_new);
881db7fb 425 slab_unlock(page);
1d07171c 426 local_irq_restore(flags);
6f6528a1 427 return true;
b789ef51 428 }
881db7fb 429 slab_unlock(page);
1d07171c 430 local_irq_restore(flags);
b789ef51
CL
431 }
432
433 cpu_relax();
434 stat(s, CMPXCHG_DOUBLE_FAIL);
435
436#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 437 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
438#endif
439
6f6528a1 440 return false;
b789ef51
CL
441}
442
41ecc55b 443#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
444/*
445 * Determine a map of object in use on a page.
446 *
881db7fb 447 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
448 * not vanish from under us.
449 */
450static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
451{
452 void *p;
453 void *addr = page_address(page);
454
455 for (p = page->freelist; p; p = get_freepointer(s, p))
456 set_bit(slab_index(p, s, addr), map);
457}
458
41ecc55b
CL
459/*
460 * Debug settings:
461 */
89d3c87e 462#if defined(CONFIG_SLUB_DEBUG_ON)
f0630fff 463static int slub_debug = DEBUG_DEFAULT_FLAGS;
89d3c87e
AR
464#elif defined(CONFIG_KASAN)
465static int slub_debug = SLAB_STORE_USER;
f0630fff 466#else
41ecc55b 467static int slub_debug;
f0630fff 468#endif
41ecc55b
CL
469
470static char *slub_debug_slabs;
fa5ec8a1 471static int disable_higher_order_debug;
41ecc55b 472
a79316c6
AR
473/*
474 * slub is about to manipulate internal object metadata. This memory lies
475 * outside the range of the allocated object, so accessing it would normally
476 * be reported by kasan as a bounds error. metadata_access_enable() is used
477 * to tell kasan that these accesses are OK.
478 */
479static inline void metadata_access_enable(void)
480{
481 kasan_disable_current();
482}
483
484static inline void metadata_access_disable(void)
485{
486 kasan_enable_current();
487}
488
81819f0f
CL
489/*
490 * Object debugging
491 */
492static void print_section(char *text, u8 *addr, unsigned int length)
493{
a79316c6 494 metadata_access_enable();
ffc79d28
SAS
495 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
496 length, 1);
a79316c6 497 metadata_access_disable();
81819f0f
CL
498}
499
81819f0f
CL
500static struct track *get_track(struct kmem_cache *s, void *object,
501 enum track_item alloc)
502{
503 struct track *p;
504
505 if (s->offset)
506 p = object + s->offset + sizeof(void *);
507 else
508 p = object + s->inuse;
509
510 return p + alloc;
511}
512
513static void set_track(struct kmem_cache *s, void *object,
ce71e27c 514 enum track_item alloc, unsigned long addr)
81819f0f 515{
1a00df4a 516 struct track *p = get_track(s, object, alloc);
81819f0f 517
81819f0f 518 if (addr) {
d6543e39
BG
519#ifdef CONFIG_STACKTRACE
520 struct stack_trace trace;
521 int i;
522
523 trace.nr_entries = 0;
524 trace.max_entries = TRACK_ADDRS_COUNT;
525 trace.entries = p->addrs;
526 trace.skip = 3;
a79316c6 527 metadata_access_enable();
d6543e39 528 save_stack_trace(&trace);
a79316c6 529 metadata_access_disable();
d6543e39
BG
530
531 /* See rant in lockdep.c */
532 if (trace.nr_entries != 0 &&
533 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
534 trace.nr_entries--;
535
536 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
537 p->addrs[i] = 0;
538#endif
81819f0f
CL
539 p->addr = addr;
540 p->cpu = smp_processor_id();
88e4ccf2 541 p->pid = current->pid;
81819f0f
CL
542 p->when = jiffies;
543 } else
544 memset(p, 0, sizeof(struct track));
545}
546
81819f0f
CL
547static void init_tracking(struct kmem_cache *s, void *object)
548{
24922684
CL
549 if (!(s->flags & SLAB_STORE_USER))
550 return;
551
ce71e27c
EGM
552 set_track(s, object, TRACK_FREE, 0UL);
553 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
554}
555
556static void print_track(const char *s, struct track *t)
557{
558 if (!t->addr)
559 return;
560
f9f58285
FF
561 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
562 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
563#ifdef CONFIG_STACKTRACE
564 {
565 int i;
566 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
567 if (t->addrs[i])
f9f58285 568 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
569 else
570 break;
571 }
572#endif
24922684
CL
573}
574
575static void print_tracking(struct kmem_cache *s, void *object)
576{
577 if (!(s->flags & SLAB_STORE_USER))
578 return;
579
580 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
581 print_track("Freed", get_track(s, object, TRACK_FREE));
582}
583
584static void print_page_info(struct page *page)
585{
f9f58285 586 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 587 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
588
589}
590
591static void slab_bug(struct kmem_cache *s, char *fmt, ...)
592{
ecc42fbe 593 struct va_format vaf;
24922684 594 va_list args;
24922684
CL
595
596 va_start(args, fmt);
ecc42fbe
FF
597 vaf.fmt = fmt;
598 vaf.va = &args;
f9f58285 599 pr_err("=============================================================================\n");
ecc42fbe 600 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 601 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 602
373d4d09 603 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 604 va_end(args);
81819f0f
CL
605}
606
24922684
CL
607static void slab_fix(struct kmem_cache *s, char *fmt, ...)
608{
ecc42fbe 609 struct va_format vaf;
24922684 610 va_list args;
24922684
CL
611
612 va_start(args, fmt);
ecc42fbe
FF
613 vaf.fmt = fmt;
614 vaf.va = &args;
615 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 616 va_end(args);
24922684
CL
617}
618
619static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
620{
621 unsigned int off; /* Offset of last byte */
a973e9dd 622 u8 *addr = page_address(page);
24922684
CL
623
624 print_tracking(s, p);
625
626 print_page_info(page);
627
f9f58285
FF
628 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
629 p, p - addr, get_freepointer(s, p));
24922684
CL
630
631 if (p > addr + 16)
ffc79d28 632 print_section("Bytes b4 ", p - 16, 16);
81819f0f 633
3b0efdfa 634 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 635 PAGE_SIZE));
81819f0f 636 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
637 print_section("Redzone ", p + s->object_size,
638 s->inuse - s->object_size);
81819f0f 639
81819f0f
CL
640 if (s->offset)
641 off = s->offset + sizeof(void *);
642 else
643 off = s->inuse;
644
24922684 645 if (s->flags & SLAB_STORE_USER)
81819f0f 646 off += 2 * sizeof(struct track);
81819f0f
CL
647
648 if (off != s->size)
649 /* Beginning of the filler is the free pointer */
ffc79d28 650 print_section("Padding ", p + off, s->size - off);
24922684
CL
651
652 dump_stack();
81819f0f
CL
653}
654
75c66def 655void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
656 u8 *object, char *reason)
657{
3dc50637 658 slab_bug(s, "%s", reason);
24922684 659 print_trailer(s, page, object);
81819f0f
CL
660}
661
d0e0ac97
CG
662static void slab_err(struct kmem_cache *s, struct page *page,
663 const char *fmt, ...)
81819f0f
CL
664{
665 va_list args;
666 char buf[100];
667
24922684
CL
668 va_start(args, fmt);
669 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 670 va_end(args);
3dc50637 671 slab_bug(s, "%s", buf);
24922684 672 print_page_info(page);
81819f0f
CL
673 dump_stack();
674}
675
f7cb1933 676static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
677{
678 u8 *p = object;
679
680 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
681 memset(p, POISON_FREE, s->object_size - 1);
682 p[s->object_size - 1] = POISON_END;
81819f0f
CL
683 }
684
685 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 686 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
687}
688
24922684
CL
689static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
690 void *from, void *to)
691{
692 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
693 memset(from, data, to - from);
694}
695
696static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
697 u8 *object, char *what,
06428780 698 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
699{
700 u8 *fault;
701 u8 *end;
702
a79316c6 703 metadata_access_enable();
79824820 704 fault = memchr_inv(start, value, bytes);
a79316c6 705 metadata_access_disable();
24922684
CL
706 if (!fault)
707 return 1;
708
709 end = start + bytes;
710 while (end > fault && end[-1] == value)
711 end--;
712
713 slab_bug(s, "%s overwritten", what);
f9f58285 714 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
715 fault, end - 1, fault[0], value);
716 print_trailer(s, page, object);
717
718 restore_bytes(s, what, value, fault, end);
719 return 0;
81819f0f
CL
720}
721
81819f0f
CL
722/*
723 * Object layout:
724 *
725 * object address
726 * Bytes of the object to be managed.
727 * If the freepointer may overlay the object then the free
728 * pointer is the first word of the object.
672bba3a 729 *
81819f0f
CL
730 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
731 * 0xa5 (POISON_END)
732 *
3b0efdfa 733 * object + s->object_size
81819f0f 734 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 735 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 736 * object_size == inuse.
672bba3a 737 *
81819f0f
CL
738 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
739 * 0xcc (RED_ACTIVE) for objects in use.
740 *
741 * object + s->inuse
672bba3a
CL
742 * Meta data starts here.
743 *
81819f0f
CL
744 * A. Free pointer (if we cannot overwrite object on free)
745 * B. Tracking data for SLAB_STORE_USER
672bba3a 746 * C. Padding to reach required alignment boundary or at mininum
6446faa2 747 * one word if debugging is on to be able to detect writes
672bba3a
CL
748 * before the word boundary.
749 *
750 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
751 *
752 * object + s->size
672bba3a 753 * Nothing is used beyond s->size.
81819f0f 754 *
3b0efdfa 755 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 756 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
757 * may be used with merged slabcaches.
758 */
759
81819f0f
CL
760static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
761{
762 unsigned long off = s->inuse; /* The end of info */
763
764 if (s->offset)
765 /* Freepointer is placed after the object. */
766 off += sizeof(void *);
767
768 if (s->flags & SLAB_STORE_USER)
769 /* We also have user information there */
770 off += 2 * sizeof(struct track);
771
772 if (s->size == off)
773 return 1;
774
24922684
CL
775 return check_bytes_and_report(s, page, p, "Object padding",
776 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
777}
778
39b26464 779/* Check the pad bytes at the end of a slab page */
81819f0f
CL
780static int slab_pad_check(struct kmem_cache *s, struct page *page)
781{
24922684
CL
782 u8 *start;
783 u8 *fault;
784 u8 *end;
785 int length;
786 int remainder;
81819f0f
CL
787
788 if (!(s->flags & SLAB_POISON))
789 return 1;
790
a973e9dd 791 start = page_address(page);
ab9a0f19 792 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
793 end = start + length;
794 remainder = length % s->size;
81819f0f
CL
795 if (!remainder)
796 return 1;
797
a79316c6 798 metadata_access_enable();
79824820 799 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
a79316c6 800 metadata_access_disable();
24922684
CL
801 if (!fault)
802 return 1;
803 while (end > fault && end[-1] == POISON_INUSE)
804 end--;
805
806 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 807 print_section("Padding ", end - remainder, remainder);
24922684 808
8a3d271d 809 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 810 return 0;
81819f0f
CL
811}
812
813static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 814 void *object, u8 val)
81819f0f
CL
815{
816 u8 *p = object;
3b0efdfa 817 u8 *endobject = object + s->object_size;
81819f0f
CL
818
819 if (s->flags & SLAB_RED_ZONE) {
24922684 820 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 821 endobject, val, s->inuse - s->object_size))
81819f0f 822 return 0;
81819f0f 823 } else {
3b0efdfa 824 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 825 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
826 endobject, POISON_INUSE,
827 s->inuse - s->object_size);
3adbefee 828 }
81819f0f
CL
829 }
830
831 if (s->flags & SLAB_POISON) {
f7cb1933 832 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 833 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 834 POISON_FREE, s->object_size - 1) ||
24922684 835 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 836 p + s->object_size - 1, POISON_END, 1)))
81819f0f 837 return 0;
81819f0f
CL
838 /*
839 * check_pad_bytes cleans up on its own.
840 */
841 check_pad_bytes(s, page, p);
842 }
843
f7cb1933 844 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
845 /*
846 * Object and freepointer overlap. Cannot check
847 * freepointer while object is allocated.
848 */
849 return 1;
850
851 /* Check free pointer validity */
852 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
853 object_err(s, page, p, "Freepointer corrupt");
854 /*
9f6c708e 855 * No choice but to zap it and thus lose the remainder
81819f0f 856 * of the free objects in this slab. May cause
672bba3a 857 * another error because the object count is now wrong.
81819f0f 858 */
a973e9dd 859 set_freepointer(s, p, NULL);
81819f0f
CL
860 return 0;
861 }
862 return 1;
863}
864
865static int check_slab(struct kmem_cache *s, struct page *page)
866{
39b26464
CL
867 int maxobj;
868
81819f0f
CL
869 VM_BUG_ON(!irqs_disabled());
870
871 if (!PageSlab(page)) {
24922684 872 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
873 return 0;
874 }
39b26464 875
ab9a0f19 876 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
877 if (page->objects > maxobj) {
878 slab_err(s, page, "objects %u > max %u",
f6edde9c 879 page->objects, maxobj);
39b26464
CL
880 return 0;
881 }
882 if (page->inuse > page->objects) {
24922684 883 slab_err(s, page, "inuse %u > max %u",
f6edde9c 884 page->inuse, page->objects);
81819f0f
CL
885 return 0;
886 }
887 /* Slab_pad_check fixes things up after itself */
888 slab_pad_check(s, page);
889 return 1;
890}
891
892/*
672bba3a
CL
893 * Determine if a certain object on a page is on the freelist. Must hold the
894 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
895 */
896static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
897{
898 int nr = 0;
881db7fb 899 void *fp;
81819f0f 900 void *object = NULL;
f6edde9c 901 int max_objects;
81819f0f 902
881db7fb 903 fp = page->freelist;
39b26464 904 while (fp && nr <= page->objects) {
81819f0f
CL
905 if (fp == search)
906 return 1;
907 if (!check_valid_pointer(s, page, fp)) {
908 if (object) {
909 object_err(s, page, object,
910 "Freechain corrupt");
a973e9dd 911 set_freepointer(s, object, NULL);
81819f0f 912 } else {
24922684 913 slab_err(s, page, "Freepointer corrupt");
a973e9dd 914 page->freelist = NULL;
39b26464 915 page->inuse = page->objects;
24922684 916 slab_fix(s, "Freelist cleared");
81819f0f
CL
917 return 0;
918 }
919 break;
920 }
921 object = fp;
922 fp = get_freepointer(s, object);
923 nr++;
924 }
925
ab9a0f19 926 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
927 if (max_objects > MAX_OBJS_PER_PAGE)
928 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
929
930 if (page->objects != max_objects) {
931 slab_err(s, page, "Wrong number of objects. Found %d but "
932 "should be %d", page->objects, max_objects);
933 page->objects = max_objects;
934 slab_fix(s, "Number of objects adjusted.");
935 }
39b26464 936 if (page->inuse != page->objects - nr) {
70d71228 937 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
938 "counted were %d", page->inuse, page->objects - nr);
939 page->inuse = page->objects - nr;
24922684 940 slab_fix(s, "Object count adjusted.");
81819f0f
CL
941 }
942 return search == NULL;
943}
944
0121c619
CL
945static void trace(struct kmem_cache *s, struct page *page, void *object,
946 int alloc)
3ec09742
CL
947{
948 if (s->flags & SLAB_TRACE) {
f9f58285 949 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
950 s->name,
951 alloc ? "alloc" : "free",
952 object, page->inuse,
953 page->freelist);
954
955 if (!alloc)
d0e0ac97
CG
956 print_section("Object ", (void *)object,
957 s->object_size);
3ec09742
CL
958
959 dump_stack();
960 }
961}
962
643b1138 963/*
672bba3a 964 * Tracking of fully allocated slabs for debugging purposes.
643b1138 965 */
5cc6eee8
CL
966static void add_full(struct kmem_cache *s,
967 struct kmem_cache_node *n, struct page *page)
643b1138 968{
5cc6eee8
CL
969 if (!(s->flags & SLAB_STORE_USER))
970 return;
971
255d0884 972 lockdep_assert_held(&n->list_lock);
643b1138 973 list_add(&page->lru, &n->full);
643b1138
CL
974}
975
c65c1877 976static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 977{
643b1138
CL
978 if (!(s->flags & SLAB_STORE_USER))
979 return;
980
255d0884 981 lockdep_assert_held(&n->list_lock);
643b1138 982 list_del(&page->lru);
643b1138
CL
983}
984
0f389ec6
CL
985/* Tracking of the number of slabs for debugging purposes */
986static inline unsigned long slabs_node(struct kmem_cache *s, int node)
987{
988 struct kmem_cache_node *n = get_node(s, node);
989
990 return atomic_long_read(&n->nr_slabs);
991}
992
26c02cf0
AB
993static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
994{
995 return atomic_long_read(&n->nr_slabs);
996}
997
205ab99d 998static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
999{
1000 struct kmem_cache_node *n = get_node(s, node);
1001
1002 /*
1003 * May be called early in order to allocate a slab for the
1004 * kmem_cache_node structure. Solve the chicken-egg
1005 * dilemma by deferring the increment of the count during
1006 * bootstrap (see early_kmem_cache_node_alloc).
1007 */
338b2642 1008 if (likely(n)) {
0f389ec6 1009 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1010 atomic_long_add(objects, &n->total_objects);
1011 }
0f389ec6 1012}
205ab99d 1013static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1014{
1015 struct kmem_cache_node *n = get_node(s, node);
1016
1017 atomic_long_dec(&n->nr_slabs);
205ab99d 1018 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1019}
1020
1021/* Object debug checks for alloc/free paths */
3ec09742
CL
1022static void setup_object_debug(struct kmem_cache *s, struct page *page,
1023 void *object)
1024{
1025 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1026 return;
1027
f7cb1933 1028 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1029 init_tracking(s, object);
1030}
1031
d0e0ac97
CG
1032static noinline int alloc_debug_processing(struct kmem_cache *s,
1033 struct page *page,
ce71e27c 1034 void *object, unsigned long addr)
81819f0f
CL
1035{
1036 if (!check_slab(s, page))
1037 goto bad;
1038
81819f0f
CL
1039 if (!check_valid_pointer(s, page, object)) {
1040 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1041 goto bad;
81819f0f
CL
1042 }
1043
f7cb1933 1044 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1045 goto bad;
81819f0f 1046
3ec09742
CL
1047 /* Success perform special debug activities for allocs */
1048 if (s->flags & SLAB_STORE_USER)
1049 set_track(s, object, TRACK_ALLOC, addr);
1050 trace(s, page, object, 1);
f7cb1933 1051 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1052 return 1;
3ec09742 1053
81819f0f
CL
1054bad:
1055 if (PageSlab(page)) {
1056 /*
1057 * If this is a slab page then lets do the best we can
1058 * to avoid issues in the future. Marking all objects
672bba3a 1059 * as used avoids touching the remaining objects.
81819f0f 1060 */
24922684 1061 slab_fix(s, "Marking all objects used");
39b26464 1062 page->inuse = page->objects;
a973e9dd 1063 page->freelist = NULL;
81819f0f
CL
1064 }
1065 return 0;
1066}
1067
81084651 1068/* Supports checking bulk free of a constructed freelist */
19c7ff9e 1069static noinline struct kmem_cache_node *free_debug_processing(
81084651
JDB
1070 struct kmem_cache *s, struct page *page,
1071 void *head, void *tail, int bulk_cnt,
19c7ff9e 1072 unsigned long addr, unsigned long *flags)
81819f0f 1073{
19c7ff9e 1074 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
81084651
JDB
1075 void *object = head;
1076 int cnt = 0;
5c2e4bbb 1077
19c7ff9e 1078 spin_lock_irqsave(&n->list_lock, *flags);
881db7fb
CL
1079 slab_lock(page);
1080
81819f0f
CL
1081 if (!check_slab(s, page))
1082 goto fail;
1083
81084651
JDB
1084next_object:
1085 cnt++;
1086
81819f0f 1087 if (!check_valid_pointer(s, page, object)) {
70d71228 1088 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1089 goto fail;
1090 }
1091
1092 if (on_freelist(s, page, object)) {
24922684 1093 object_err(s, page, object, "Object already free");
81819f0f
CL
1094 goto fail;
1095 }
1096
f7cb1933 1097 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1098 goto out;
81819f0f 1099
1b4f59e3 1100 if (unlikely(s != page->slab_cache)) {
3adbefee 1101 if (!PageSlab(page)) {
70d71228
CL
1102 slab_err(s, page, "Attempt to free object(0x%p) "
1103 "outside of slab", object);
1b4f59e3 1104 } else if (!page->slab_cache) {
f9f58285
FF
1105 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1106 object);
70d71228 1107 dump_stack();
06428780 1108 } else
24922684
CL
1109 object_err(s, page, object,
1110 "page slab pointer corrupt.");
81819f0f
CL
1111 goto fail;
1112 }
3ec09742 1113
3ec09742
CL
1114 if (s->flags & SLAB_STORE_USER)
1115 set_track(s, object, TRACK_FREE, addr);
1116 trace(s, page, object, 0);
81084651 1117 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1118 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1119
1120 /* Reached end of constructed freelist yet? */
1121 if (object != tail) {
1122 object = get_freepointer(s, object);
1123 goto next_object;
1124 }
5c2e4bbb 1125out:
81084651
JDB
1126 if (cnt != bulk_cnt)
1127 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1128 bulk_cnt, cnt);
1129
881db7fb 1130 slab_unlock(page);
19c7ff9e
CL
1131 /*
1132 * Keep node_lock to preserve integrity
1133 * until the object is actually freed
1134 */
1135 return n;
3ec09742 1136
81819f0f 1137fail:
19c7ff9e
CL
1138 slab_unlock(page);
1139 spin_unlock_irqrestore(&n->list_lock, *flags);
24922684 1140 slab_fix(s, "Object at 0x%p not freed", object);
19c7ff9e 1141 return NULL;
81819f0f
CL
1142}
1143
41ecc55b
CL
1144static int __init setup_slub_debug(char *str)
1145{
f0630fff
CL
1146 slub_debug = DEBUG_DEFAULT_FLAGS;
1147 if (*str++ != '=' || !*str)
1148 /*
1149 * No options specified. Switch on full debugging.
1150 */
1151 goto out;
1152
1153 if (*str == ',')
1154 /*
1155 * No options but restriction on slabs. This means full
1156 * debugging for slabs matching a pattern.
1157 */
1158 goto check_slabs;
1159
1160 slub_debug = 0;
1161 if (*str == '-')
1162 /*
1163 * Switch off all debugging measures.
1164 */
1165 goto out;
1166
1167 /*
1168 * Determine which debug features should be switched on
1169 */
06428780 1170 for (; *str && *str != ','; str++) {
f0630fff
CL
1171 switch (tolower(*str)) {
1172 case 'f':
1173 slub_debug |= SLAB_DEBUG_FREE;
1174 break;
1175 case 'z':
1176 slub_debug |= SLAB_RED_ZONE;
1177 break;
1178 case 'p':
1179 slub_debug |= SLAB_POISON;
1180 break;
1181 case 'u':
1182 slub_debug |= SLAB_STORE_USER;
1183 break;
1184 case 't':
1185 slub_debug |= SLAB_TRACE;
1186 break;
4c13dd3b
DM
1187 case 'a':
1188 slub_debug |= SLAB_FAILSLAB;
1189 break;
08303a73
CA
1190 case 'o':
1191 /*
1192 * Avoid enabling debugging on caches if its minimum
1193 * order would increase as a result.
1194 */
1195 disable_higher_order_debug = 1;
1196 break;
f0630fff 1197 default:
f9f58285
FF
1198 pr_err("slub_debug option '%c' unknown. skipped\n",
1199 *str);
f0630fff 1200 }
41ecc55b
CL
1201 }
1202
f0630fff 1203check_slabs:
41ecc55b
CL
1204 if (*str == ',')
1205 slub_debug_slabs = str + 1;
f0630fff 1206out:
41ecc55b
CL
1207 return 1;
1208}
1209
1210__setup("slub_debug", setup_slub_debug);
1211
423c929c 1212unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1213 unsigned long flags, const char *name,
51cc5068 1214 void (*ctor)(void *))
41ecc55b
CL
1215{
1216 /*
e153362a 1217 * Enable debugging if selected on the kernel commandline.
41ecc55b 1218 */
c6f58d9b
CL
1219 if (slub_debug && (!slub_debug_slabs || (name &&
1220 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1221 flags |= slub_debug;
ba0268a8
CL
1222
1223 return flags;
41ecc55b 1224}
b4a64718 1225#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1226static inline void setup_object_debug(struct kmem_cache *s,
1227 struct page *page, void *object) {}
41ecc55b 1228
3ec09742 1229static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1230 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1231
19c7ff9e 1232static inline struct kmem_cache_node *free_debug_processing(
81084651
JDB
1233 struct kmem_cache *s, struct page *page,
1234 void *head, void *tail, int bulk_cnt,
19c7ff9e 1235 unsigned long addr, unsigned long *flags) { return NULL; }
41ecc55b 1236
41ecc55b
CL
1237static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1238 { return 1; }
1239static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1240 void *object, u8 val) { return 1; }
5cc6eee8
CL
1241static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1242 struct page *page) {}
c65c1877
PZ
1243static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1244 struct page *page) {}
423c929c 1245unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1246 unsigned long flags, const char *name,
51cc5068 1247 void (*ctor)(void *))
ba0268a8
CL
1248{
1249 return flags;
1250}
41ecc55b 1251#define slub_debug 0
0f389ec6 1252
fdaa45e9
IM
1253#define disable_higher_order_debug 0
1254
0f389ec6
CL
1255static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1256 { return 0; }
26c02cf0
AB
1257static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1258 { return 0; }
205ab99d
CL
1259static inline void inc_slabs_node(struct kmem_cache *s, int node,
1260 int objects) {}
1261static inline void dec_slabs_node(struct kmem_cache *s, int node,
1262 int objects) {}
7d550c56 1263
02e72cc6
AR
1264#endif /* CONFIG_SLUB_DEBUG */
1265
1266/*
1267 * Hooks for other subsystems that check memory allocations. In a typical
1268 * production configuration these hooks all should produce no code at all.
1269 */
d56791b3
RB
1270static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1271{
1272 kmemleak_alloc(ptr, size, 1, flags);
0316bec2 1273 kasan_kmalloc_large(ptr, size);
d56791b3
RB
1274}
1275
1276static inline void kfree_hook(const void *x)
1277{
1278 kmemleak_free(x);
0316bec2 1279 kasan_kfree_large(x);
d56791b3
RB
1280}
1281
8135be5a
VD
1282static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
1283 gfp_t flags)
02e72cc6
AR
1284{
1285 flags &= gfp_allowed_mask;
1286 lockdep_trace_alloc(flags);
d0164adc 1287 might_sleep_if(gfpflags_allow_blocking(flags));
7d550c56 1288
8135be5a
VD
1289 if (should_failslab(s->object_size, flags, s->flags))
1290 return NULL;
1291
1292 return memcg_kmem_get_cache(s, flags);
02e72cc6
AR
1293}
1294
1295static inline void slab_post_alloc_hook(struct kmem_cache *s,
1296 gfp_t flags, void *object)
d56791b3 1297{
02e72cc6
AR
1298 flags &= gfp_allowed_mask;
1299 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1300 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
8135be5a 1301 memcg_kmem_put_cache(s);
0316bec2 1302 kasan_slab_alloc(s, object);
d56791b3 1303}
7d550c56 1304
d56791b3
RB
1305static inline void slab_free_hook(struct kmem_cache *s, void *x)
1306{
1307 kmemleak_free_recursive(x, s->flags);
7d550c56 1308
02e72cc6
AR
1309 /*
1310 * Trouble is that we may no longer disable interrupts in the fast path
1311 * So in order to make the debug calls that expect irqs to be
1312 * disabled we need to disable interrupts temporarily.
1313 */
1314#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1315 {
1316 unsigned long flags;
1317
1318 local_irq_save(flags);
1319 kmemcheck_slab_free(s, x, s->object_size);
1320 debug_check_no_locks_freed(x, s->object_size);
1321 local_irq_restore(flags);
1322 }
1323#endif
1324 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1325 debug_check_no_obj_freed(x, s->object_size);
0316bec2
AR
1326
1327 kasan_slab_free(s, x);
02e72cc6 1328}
205ab99d 1329
81084651
JDB
1330static inline void slab_free_freelist_hook(struct kmem_cache *s,
1331 void *head, void *tail)
1332{
1333/*
1334 * Compiler cannot detect this function can be removed if slab_free_hook()
1335 * evaluates to nothing. Thus, catch all relevant config debug options here.
1336 */
1337#if defined(CONFIG_KMEMCHECK) || \
1338 defined(CONFIG_LOCKDEP) || \
1339 defined(CONFIG_DEBUG_KMEMLEAK) || \
1340 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1341 defined(CONFIG_KASAN)
1342
1343 void *object = head;
1344 void *tail_obj = tail ? : head;
1345
1346 do {
1347 slab_free_hook(s, object);
1348 } while ((object != tail_obj) &&
1349 (object = get_freepointer(s, object)));
1350#endif
1351}
1352
588f8ba9
TG
1353static void setup_object(struct kmem_cache *s, struct page *page,
1354 void *object)
1355{
1356 setup_object_debug(s, page, object);
1357 if (unlikely(s->ctor)) {
1358 kasan_unpoison_object_data(s, object);
1359 s->ctor(object);
1360 kasan_poison_object_data(s, object);
1361 }
1362}
1363
81819f0f
CL
1364/*
1365 * Slab allocation and freeing
1366 */
5dfb4175
VD
1367static inline struct page *alloc_slab_page(struct kmem_cache *s,
1368 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1369{
5dfb4175 1370 struct page *page;
65c3376a
CL
1371 int order = oo_order(oo);
1372
b1eeab67
VN
1373 flags |= __GFP_NOTRACK;
1374
2154a336 1375 if (node == NUMA_NO_NODE)
5dfb4175 1376 page = alloc_pages(flags, order);
65c3376a 1377 else
96db800f 1378 page = __alloc_pages_node(node, flags, order);
5dfb4175 1379
f3ccb2c4
VD
1380 if (page && memcg_charge_slab(page, flags, order, s)) {
1381 __free_pages(page, order);
1382 page = NULL;
1383 }
5dfb4175
VD
1384
1385 return page;
65c3376a
CL
1386}
1387
81819f0f
CL
1388static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1389{
06428780 1390 struct page *page;
834f3d11 1391 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1392 gfp_t alloc_gfp;
588f8ba9
TG
1393 void *start, *p;
1394 int idx, order;
81819f0f 1395
7e0528da
CL
1396 flags &= gfp_allowed_mask;
1397
d0164adc 1398 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1399 local_irq_enable();
1400
b7a49f0d 1401 flags |= s->allocflags;
e12ba74d 1402
ba52270d
PE
1403 /*
1404 * Let the initial higher-order allocation fail under memory pressure
1405 * so we fall-back to the minimum order allocation.
1406 */
1407 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc
MG
1408 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1409 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_DIRECT_RECLAIM;
ba52270d 1410
5dfb4175 1411 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1412 if (unlikely(!page)) {
1413 oo = s->min;
80c3a998 1414 alloc_gfp = flags;
65c3376a
CL
1415 /*
1416 * Allocation may have failed due to fragmentation.
1417 * Try a lower order alloc if possible
1418 */
5dfb4175 1419 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1420 if (unlikely(!page))
1421 goto out;
1422 stat(s, ORDER_FALLBACK);
65c3376a 1423 }
5a896d9e 1424
588f8ba9
TG
1425 if (kmemcheck_enabled &&
1426 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1427 int pages = 1 << oo_order(oo);
1428
80c3a998 1429 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
b1eeab67
VN
1430
1431 /*
1432 * Objects from caches that have a constructor don't get
1433 * cleared when they're allocated, so we need to do it here.
1434 */
1435 if (s->ctor)
1436 kmemcheck_mark_uninitialized_pages(page, pages);
1437 else
1438 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1439 }
1440
834f3d11 1441 page->objects = oo_objects(oo);
81819f0f 1442
1f458cbf 1443 order = compound_order(page);
1b4f59e3 1444 page->slab_cache = s;
c03f94cc 1445 __SetPageSlab(page);
2f064f34 1446 if (page_is_pfmemalloc(page))
072bb0aa 1447 SetPageSlabPfmemalloc(page);
81819f0f
CL
1448
1449 start = page_address(page);
81819f0f
CL
1450
1451 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1452 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f 1453
0316bec2
AR
1454 kasan_poison_slab(page);
1455
54266640
WY
1456 for_each_object_idx(p, idx, s, start, page->objects) {
1457 setup_object(s, page, p);
1458 if (likely(idx < page->objects))
1459 set_freepointer(s, p, p + s->size);
1460 else
1461 set_freepointer(s, p, NULL);
81819f0f 1462 }
81819f0f
CL
1463
1464 page->freelist = start;
e6e82ea1 1465 page->inuse = page->objects;
8cb0a506 1466 page->frozen = 1;
588f8ba9 1467
81819f0f 1468out:
d0164adc 1469 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1470 local_irq_disable();
1471 if (!page)
1472 return NULL;
1473
1474 mod_zone_page_state(page_zone(page),
1475 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1476 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1477 1 << oo_order(oo));
1478
1479 inc_slabs_node(s, page_to_nid(page), page->objects);
1480
81819f0f
CL
1481 return page;
1482}
1483
588f8ba9
TG
1484static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1485{
1486 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1487 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1488 BUG();
1489 }
1490
1491 return allocate_slab(s,
1492 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1493}
1494
81819f0f
CL
1495static void __free_slab(struct kmem_cache *s, struct page *page)
1496{
834f3d11
CL
1497 int order = compound_order(page);
1498 int pages = 1 << order;
81819f0f 1499
af537b0a 1500 if (kmem_cache_debug(s)) {
81819f0f
CL
1501 void *p;
1502
1503 slab_pad_check(s, page);
224a88be
CL
1504 for_each_object(p, s, page_address(page),
1505 page->objects)
f7cb1933 1506 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1507 }
1508
b1eeab67 1509 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1510
81819f0f
CL
1511 mod_zone_page_state(page_zone(page),
1512 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1513 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1514 -pages);
81819f0f 1515
072bb0aa 1516 __ClearPageSlabPfmemalloc(page);
49bd5221 1517 __ClearPageSlab(page);
1f458cbf 1518
22b751c3 1519 page_mapcount_reset(page);
1eb5ac64
NP
1520 if (current->reclaim_state)
1521 current->reclaim_state->reclaimed_slab += pages;
f3ccb2c4 1522 __free_kmem_pages(page, order);
81819f0f
CL
1523}
1524
da9a638c
LJ
1525#define need_reserve_slab_rcu \
1526 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1527
81819f0f
CL
1528static void rcu_free_slab(struct rcu_head *h)
1529{
1530 struct page *page;
1531
da9a638c
LJ
1532 if (need_reserve_slab_rcu)
1533 page = virt_to_head_page(h);
1534 else
1535 page = container_of((struct list_head *)h, struct page, lru);
1536
1b4f59e3 1537 __free_slab(page->slab_cache, page);
81819f0f
CL
1538}
1539
1540static void free_slab(struct kmem_cache *s, struct page *page)
1541{
1542 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1543 struct rcu_head *head;
1544
1545 if (need_reserve_slab_rcu) {
1546 int order = compound_order(page);
1547 int offset = (PAGE_SIZE << order) - s->reserved;
1548
1549 VM_BUG_ON(s->reserved != sizeof(*head));
1550 head = page_address(page) + offset;
1551 } else {
bc4f610d 1552 head = &page->rcu_head;
da9a638c 1553 }
81819f0f
CL
1554
1555 call_rcu(head, rcu_free_slab);
1556 } else
1557 __free_slab(s, page);
1558}
1559
1560static void discard_slab(struct kmem_cache *s, struct page *page)
1561{
205ab99d 1562 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1563 free_slab(s, page);
1564}
1565
1566/*
5cc6eee8 1567 * Management of partially allocated slabs.
81819f0f 1568 */
1e4dd946
SR
1569static inline void
1570__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1571{
e95eed57 1572 n->nr_partial++;
136333d1 1573 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1574 list_add_tail(&page->lru, &n->partial);
1575 else
1576 list_add(&page->lru, &n->partial);
81819f0f
CL
1577}
1578
1e4dd946
SR
1579static inline void add_partial(struct kmem_cache_node *n,
1580 struct page *page, int tail)
62e346a8 1581{
c65c1877 1582 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1583 __add_partial(n, page, tail);
1584}
c65c1877 1585
1e4dd946
SR
1586static inline void
1587__remove_partial(struct kmem_cache_node *n, struct page *page)
1588{
62e346a8
CL
1589 list_del(&page->lru);
1590 n->nr_partial--;
1591}
1592
1e4dd946
SR
1593static inline void remove_partial(struct kmem_cache_node *n,
1594 struct page *page)
1595{
1596 lockdep_assert_held(&n->list_lock);
1597 __remove_partial(n, page);
1598}
1599
81819f0f 1600/*
7ced3719
CL
1601 * Remove slab from the partial list, freeze it and
1602 * return the pointer to the freelist.
81819f0f 1603 *
497b66f2 1604 * Returns a list of objects or NULL if it fails.
81819f0f 1605 */
497b66f2 1606static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1607 struct kmem_cache_node *n, struct page *page,
633b0764 1608 int mode, int *objects)
81819f0f 1609{
2cfb7455
CL
1610 void *freelist;
1611 unsigned long counters;
1612 struct page new;
1613
c65c1877
PZ
1614 lockdep_assert_held(&n->list_lock);
1615
2cfb7455
CL
1616 /*
1617 * Zap the freelist and set the frozen bit.
1618 * The old freelist is the list of objects for the
1619 * per cpu allocation list.
1620 */
7ced3719
CL
1621 freelist = page->freelist;
1622 counters = page->counters;
1623 new.counters = counters;
633b0764 1624 *objects = new.objects - new.inuse;
23910c50 1625 if (mode) {
7ced3719 1626 new.inuse = page->objects;
23910c50
PE
1627 new.freelist = NULL;
1628 } else {
1629 new.freelist = freelist;
1630 }
2cfb7455 1631
a0132ac0 1632 VM_BUG_ON(new.frozen);
7ced3719 1633 new.frozen = 1;
2cfb7455 1634
7ced3719 1635 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1636 freelist, counters,
02d7633f 1637 new.freelist, new.counters,
7ced3719 1638 "acquire_slab"))
7ced3719 1639 return NULL;
2cfb7455
CL
1640
1641 remove_partial(n, page);
7ced3719 1642 WARN_ON(!freelist);
49e22585 1643 return freelist;
81819f0f
CL
1644}
1645
633b0764 1646static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1647static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1648
81819f0f 1649/*
672bba3a 1650 * Try to allocate a partial slab from a specific node.
81819f0f 1651 */
8ba00bb6
JK
1652static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1653 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1654{
49e22585
CL
1655 struct page *page, *page2;
1656 void *object = NULL;
633b0764
JK
1657 int available = 0;
1658 int objects;
81819f0f
CL
1659
1660 /*
1661 * Racy check. If we mistakenly see no partial slabs then we
1662 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1663 * partial slab and there is none available then get_partials()
1664 * will return NULL.
81819f0f
CL
1665 */
1666 if (!n || !n->nr_partial)
1667 return NULL;
1668
1669 spin_lock(&n->list_lock);
49e22585 1670 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1671 void *t;
49e22585 1672
8ba00bb6
JK
1673 if (!pfmemalloc_match(page, flags))
1674 continue;
1675
633b0764 1676 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1677 if (!t)
1678 break;
1679
633b0764 1680 available += objects;
12d79634 1681 if (!object) {
49e22585 1682 c->page = page;
49e22585 1683 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1684 object = t;
49e22585 1685 } else {
633b0764 1686 put_cpu_partial(s, page, 0);
8028dcea 1687 stat(s, CPU_PARTIAL_NODE);
49e22585 1688 }
345c905d
JK
1689 if (!kmem_cache_has_cpu_partial(s)
1690 || available > s->cpu_partial / 2)
49e22585
CL
1691 break;
1692
497b66f2 1693 }
81819f0f 1694 spin_unlock(&n->list_lock);
497b66f2 1695 return object;
81819f0f
CL
1696}
1697
1698/*
672bba3a 1699 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1700 */
de3ec035 1701static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1702 struct kmem_cache_cpu *c)
81819f0f
CL
1703{
1704#ifdef CONFIG_NUMA
1705 struct zonelist *zonelist;
dd1a239f 1706 struct zoneref *z;
54a6eb5c
MG
1707 struct zone *zone;
1708 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1709 void *object;
cc9a6c87 1710 unsigned int cpuset_mems_cookie;
81819f0f
CL
1711
1712 /*
672bba3a
CL
1713 * The defrag ratio allows a configuration of the tradeoffs between
1714 * inter node defragmentation and node local allocations. A lower
1715 * defrag_ratio increases the tendency to do local allocations
1716 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1717 *
672bba3a
CL
1718 * If the defrag_ratio is set to 0 then kmalloc() always
1719 * returns node local objects. If the ratio is higher then kmalloc()
1720 * may return off node objects because partial slabs are obtained
1721 * from other nodes and filled up.
81819f0f 1722 *
6446faa2 1723 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1724 * defrag_ratio = 1000) then every (well almost) allocation will
1725 * first attempt to defrag slab caches on other nodes. This means
1726 * scanning over all nodes to look for partial slabs which may be
1727 * expensive if we do it every time we are trying to find a slab
1728 * with available objects.
81819f0f 1729 */
9824601e
CL
1730 if (!s->remote_node_defrag_ratio ||
1731 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1732 return NULL;
1733
cc9a6c87 1734 do {
d26914d1 1735 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1736 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1737 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1738 struct kmem_cache_node *n;
1739
1740 n = get_node(s, zone_to_nid(zone));
1741
dee2f8aa 1742 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1743 n->nr_partial > s->min_partial) {
8ba00bb6 1744 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1745 if (object) {
1746 /*
d26914d1
MG
1747 * Don't check read_mems_allowed_retry()
1748 * here - if mems_allowed was updated in
1749 * parallel, that was a harmless race
1750 * between allocation and the cpuset
1751 * update
cc9a6c87 1752 */
cc9a6c87
MG
1753 return object;
1754 }
c0ff7453 1755 }
81819f0f 1756 }
d26914d1 1757 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1758#endif
1759 return NULL;
1760}
1761
1762/*
1763 * Get a partial page, lock it and return it.
1764 */
497b66f2 1765static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1766 struct kmem_cache_cpu *c)
81819f0f 1767{
497b66f2 1768 void *object;
a561ce00
JK
1769 int searchnode = node;
1770
1771 if (node == NUMA_NO_NODE)
1772 searchnode = numa_mem_id();
1773 else if (!node_present_pages(node))
1774 searchnode = node_to_mem_node(node);
81819f0f 1775
8ba00bb6 1776 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1777 if (object || node != NUMA_NO_NODE)
1778 return object;
81819f0f 1779
acd19fd1 1780 return get_any_partial(s, flags, c);
81819f0f
CL
1781}
1782
8a5ec0ba
CL
1783#ifdef CONFIG_PREEMPT
1784/*
1785 * Calculate the next globally unique transaction for disambiguiation
1786 * during cmpxchg. The transactions start with the cpu number and are then
1787 * incremented by CONFIG_NR_CPUS.
1788 */
1789#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1790#else
1791/*
1792 * No preemption supported therefore also no need to check for
1793 * different cpus.
1794 */
1795#define TID_STEP 1
1796#endif
1797
1798static inline unsigned long next_tid(unsigned long tid)
1799{
1800 return tid + TID_STEP;
1801}
1802
1803static inline unsigned int tid_to_cpu(unsigned long tid)
1804{
1805 return tid % TID_STEP;
1806}
1807
1808static inline unsigned long tid_to_event(unsigned long tid)
1809{
1810 return tid / TID_STEP;
1811}
1812
1813static inline unsigned int init_tid(int cpu)
1814{
1815 return cpu;
1816}
1817
1818static inline void note_cmpxchg_failure(const char *n,
1819 const struct kmem_cache *s, unsigned long tid)
1820{
1821#ifdef SLUB_DEBUG_CMPXCHG
1822 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1823
f9f58285 1824 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
1825
1826#ifdef CONFIG_PREEMPT
1827 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 1828 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
1829 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1830 else
1831#endif
1832 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 1833 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
1834 tid_to_event(tid), tid_to_event(actual_tid));
1835 else
f9f58285 1836 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
1837 actual_tid, tid, next_tid(tid));
1838#endif
4fdccdfb 1839 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1840}
1841
788e1aad 1842static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1843{
8a5ec0ba
CL
1844 int cpu;
1845
1846 for_each_possible_cpu(cpu)
1847 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1848}
2cfb7455 1849
81819f0f
CL
1850/*
1851 * Remove the cpu slab
1852 */
d0e0ac97
CG
1853static void deactivate_slab(struct kmem_cache *s, struct page *page,
1854 void *freelist)
81819f0f 1855{
2cfb7455 1856 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1857 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1858 int lock = 0;
1859 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1860 void *nextfree;
136333d1 1861 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1862 struct page new;
1863 struct page old;
1864
1865 if (page->freelist) {
84e554e6 1866 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1867 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1868 }
1869
894b8788 1870 /*
2cfb7455
CL
1871 * Stage one: Free all available per cpu objects back
1872 * to the page freelist while it is still frozen. Leave the
1873 * last one.
1874 *
1875 * There is no need to take the list->lock because the page
1876 * is still frozen.
1877 */
1878 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1879 void *prior;
1880 unsigned long counters;
1881
1882 do {
1883 prior = page->freelist;
1884 counters = page->counters;
1885 set_freepointer(s, freelist, prior);
1886 new.counters = counters;
1887 new.inuse--;
a0132ac0 1888 VM_BUG_ON(!new.frozen);
2cfb7455 1889
1d07171c 1890 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1891 prior, counters,
1892 freelist, new.counters,
1893 "drain percpu freelist"));
1894
1895 freelist = nextfree;
1896 }
1897
894b8788 1898 /*
2cfb7455
CL
1899 * Stage two: Ensure that the page is unfrozen while the
1900 * list presence reflects the actual number of objects
1901 * during unfreeze.
1902 *
1903 * We setup the list membership and then perform a cmpxchg
1904 * with the count. If there is a mismatch then the page
1905 * is not unfrozen but the page is on the wrong list.
1906 *
1907 * Then we restart the process which may have to remove
1908 * the page from the list that we just put it on again
1909 * because the number of objects in the slab may have
1910 * changed.
894b8788 1911 */
2cfb7455 1912redo:
894b8788 1913
2cfb7455
CL
1914 old.freelist = page->freelist;
1915 old.counters = page->counters;
a0132ac0 1916 VM_BUG_ON(!old.frozen);
7c2e132c 1917
2cfb7455
CL
1918 /* Determine target state of the slab */
1919 new.counters = old.counters;
1920 if (freelist) {
1921 new.inuse--;
1922 set_freepointer(s, freelist, old.freelist);
1923 new.freelist = freelist;
1924 } else
1925 new.freelist = old.freelist;
1926
1927 new.frozen = 0;
1928
8a5b20ae 1929 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
1930 m = M_FREE;
1931 else if (new.freelist) {
1932 m = M_PARTIAL;
1933 if (!lock) {
1934 lock = 1;
1935 /*
1936 * Taking the spinlock removes the possiblity
1937 * that acquire_slab() will see a slab page that
1938 * is frozen
1939 */
1940 spin_lock(&n->list_lock);
1941 }
1942 } else {
1943 m = M_FULL;
1944 if (kmem_cache_debug(s) && !lock) {
1945 lock = 1;
1946 /*
1947 * This also ensures that the scanning of full
1948 * slabs from diagnostic functions will not see
1949 * any frozen slabs.
1950 */
1951 spin_lock(&n->list_lock);
1952 }
1953 }
1954
1955 if (l != m) {
1956
1957 if (l == M_PARTIAL)
1958
1959 remove_partial(n, page);
1960
1961 else if (l == M_FULL)
894b8788 1962
c65c1877 1963 remove_full(s, n, page);
2cfb7455
CL
1964
1965 if (m == M_PARTIAL) {
1966
1967 add_partial(n, page, tail);
136333d1 1968 stat(s, tail);
2cfb7455
CL
1969
1970 } else if (m == M_FULL) {
894b8788 1971
2cfb7455
CL
1972 stat(s, DEACTIVATE_FULL);
1973 add_full(s, n, page);
1974
1975 }
1976 }
1977
1978 l = m;
1d07171c 1979 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1980 old.freelist, old.counters,
1981 new.freelist, new.counters,
1982 "unfreezing slab"))
1983 goto redo;
1984
2cfb7455
CL
1985 if (lock)
1986 spin_unlock(&n->list_lock);
1987
1988 if (m == M_FREE) {
1989 stat(s, DEACTIVATE_EMPTY);
1990 discard_slab(s, page);
1991 stat(s, FREE_SLAB);
894b8788 1992 }
81819f0f
CL
1993}
1994
d24ac77f
JK
1995/*
1996 * Unfreeze all the cpu partial slabs.
1997 *
59a09917
CL
1998 * This function must be called with interrupts disabled
1999 * for the cpu using c (or some other guarantee must be there
2000 * to guarantee no concurrent accesses).
d24ac77f 2001 */
59a09917
CL
2002static void unfreeze_partials(struct kmem_cache *s,
2003 struct kmem_cache_cpu *c)
49e22585 2004{
345c905d 2005#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2006 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2007 struct page *page, *discard_page = NULL;
49e22585
CL
2008
2009 while ((page = c->partial)) {
49e22585
CL
2010 struct page new;
2011 struct page old;
2012
2013 c->partial = page->next;
43d77867
JK
2014
2015 n2 = get_node(s, page_to_nid(page));
2016 if (n != n2) {
2017 if (n)
2018 spin_unlock(&n->list_lock);
2019
2020 n = n2;
2021 spin_lock(&n->list_lock);
2022 }
49e22585
CL
2023
2024 do {
2025
2026 old.freelist = page->freelist;
2027 old.counters = page->counters;
a0132ac0 2028 VM_BUG_ON(!old.frozen);
49e22585
CL
2029
2030 new.counters = old.counters;
2031 new.freelist = old.freelist;
2032
2033 new.frozen = 0;
2034
d24ac77f 2035 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2036 old.freelist, old.counters,
2037 new.freelist, new.counters,
2038 "unfreezing slab"));
2039
8a5b20ae 2040 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2041 page->next = discard_page;
2042 discard_page = page;
43d77867
JK
2043 } else {
2044 add_partial(n, page, DEACTIVATE_TO_TAIL);
2045 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2046 }
2047 }
2048
2049 if (n)
2050 spin_unlock(&n->list_lock);
9ada1934
SL
2051
2052 while (discard_page) {
2053 page = discard_page;
2054 discard_page = discard_page->next;
2055
2056 stat(s, DEACTIVATE_EMPTY);
2057 discard_slab(s, page);
2058 stat(s, FREE_SLAB);
2059 }
345c905d 2060#endif
49e22585
CL
2061}
2062
2063/*
2064 * Put a page that was just frozen (in __slab_free) into a partial page
2065 * slot if available. This is done without interrupts disabled and without
2066 * preemption disabled. The cmpxchg is racy and may put the partial page
2067 * onto a random cpus partial slot.
2068 *
2069 * If we did not find a slot then simply move all the partials to the
2070 * per node partial list.
2071 */
633b0764 2072static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2073{
345c905d 2074#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2075 struct page *oldpage;
2076 int pages;
2077 int pobjects;
2078
d6e0b7fa 2079 preempt_disable();
49e22585
CL
2080 do {
2081 pages = 0;
2082 pobjects = 0;
2083 oldpage = this_cpu_read(s->cpu_slab->partial);
2084
2085 if (oldpage) {
2086 pobjects = oldpage->pobjects;
2087 pages = oldpage->pages;
2088 if (drain && pobjects > s->cpu_partial) {
2089 unsigned long flags;
2090 /*
2091 * partial array is full. Move the existing
2092 * set to the per node partial list.
2093 */
2094 local_irq_save(flags);
59a09917 2095 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2096 local_irq_restore(flags);
e24fc410 2097 oldpage = NULL;
49e22585
CL
2098 pobjects = 0;
2099 pages = 0;
8028dcea 2100 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2101 }
2102 }
2103
2104 pages++;
2105 pobjects += page->objects - page->inuse;
2106
2107 page->pages = pages;
2108 page->pobjects = pobjects;
2109 page->next = oldpage;
2110
d0e0ac97
CG
2111 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2112 != oldpage);
d6e0b7fa
VD
2113 if (unlikely(!s->cpu_partial)) {
2114 unsigned long flags;
2115
2116 local_irq_save(flags);
2117 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2118 local_irq_restore(flags);
2119 }
2120 preempt_enable();
345c905d 2121#endif
49e22585
CL
2122}
2123
dfb4f096 2124static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2125{
84e554e6 2126 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
2127 deactivate_slab(s, c->page, c->freelist);
2128
2129 c->tid = next_tid(c->tid);
2130 c->page = NULL;
2131 c->freelist = NULL;
81819f0f
CL
2132}
2133
2134/*
2135 * Flush cpu slab.
6446faa2 2136 *
81819f0f
CL
2137 * Called from IPI handler with interrupts disabled.
2138 */
0c710013 2139static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2140{
9dfc6e68 2141 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2142
49e22585
CL
2143 if (likely(c)) {
2144 if (c->page)
2145 flush_slab(s, c);
2146
59a09917 2147 unfreeze_partials(s, c);
49e22585 2148 }
81819f0f
CL
2149}
2150
2151static void flush_cpu_slab(void *d)
2152{
2153 struct kmem_cache *s = d;
81819f0f 2154
dfb4f096 2155 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2156}
2157
a8364d55
GBY
2158static bool has_cpu_slab(int cpu, void *info)
2159{
2160 struct kmem_cache *s = info;
2161 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2162
02e1a9cd 2163 return c->page || c->partial;
a8364d55
GBY
2164}
2165
81819f0f
CL
2166static void flush_all(struct kmem_cache *s)
2167{
a8364d55 2168 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2169}
2170
dfb4f096
CL
2171/*
2172 * Check if the objects in a per cpu structure fit numa
2173 * locality expectations.
2174 */
57d437d2 2175static inline int node_match(struct page *page, int node)
dfb4f096
CL
2176{
2177#ifdef CONFIG_NUMA
4d7868e6 2178 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2179 return 0;
2180#endif
2181 return 1;
2182}
2183
9a02d699 2184#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2185static int count_free(struct page *page)
2186{
2187 return page->objects - page->inuse;
2188}
2189
9a02d699
DR
2190static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2191{
2192 return atomic_long_read(&n->total_objects);
2193}
2194#endif /* CONFIG_SLUB_DEBUG */
2195
2196#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2197static unsigned long count_partial(struct kmem_cache_node *n,
2198 int (*get_count)(struct page *))
2199{
2200 unsigned long flags;
2201 unsigned long x = 0;
2202 struct page *page;
2203
2204 spin_lock_irqsave(&n->list_lock, flags);
2205 list_for_each_entry(page, &n->partial, lru)
2206 x += get_count(page);
2207 spin_unlock_irqrestore(&n->list_lock, flags);
2208 return x;
2209}
9a02d699 2210#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2211
781b2ba6
PE
2212static noinline void
2213slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2214{
9a02d699
DR
2215#ifdef CONFIG_SLUB_DEBUG
2216 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2217 DEFAULT_RATELIMIT_BURST);
781b2ba6 2218 int node;
fa45dc25 2219 struct kmem_cache_node *n;
781b2ba6 2220
9a02d699
DR
2221 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2222 return;
2223
f9f58285 2224 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
781b2ba6 2225 nid, gfpflags);
f9f58285
FF
2226 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2227 s->name, s->object_size, s->size, oo_order(s->oo),
2228 oo_order(s->min));
781b2ba6 2229
3b0efdfa 2230 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2231 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2232 s->name);
fa5ec8a1 2233
fa45dc25 2234 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2235 unsigned long nr_slabs;
2236 unsigned long nr_objs;
2237 unsigned long nr_free;
2238
26c02cf0
AB
2239 nr_free = count_partial(n, count_free);
2240 nr_slabs = node_nr_slabs(n);
2241 nr_objs = node_nr_objs(n);
781b2ba6 2242
f9f58285 2243 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2244 node, nr_slabs, nr_objs, nr_free);
2245 }
9a02d699 2246#endif
781b2ba6
PE
2247}
2248
497b66f2
CL
2249static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2250 int node, struct kmem_cache_cpu **pc)
2251{
6faa6833 2252 void *freelist;
188fd063
CL
2253 struct kmem_cache_cpu *c = *pc;
2254 struct page *page;
497b66f2 2255
188fd063 2256 freelist = get_partial(s, flags, node, c);
497b66f2 2257
188fd063
CL
2258 if (freelist)
2259 return freelist;
2260
2261 page = new_slab(s, flags, node);
497b66f2 2262 if (page) {
7c8e0181 2263 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2264 if (c->page)
2265 flush_slab(s, c);
2266
2267 /*
2268 * No other reference to the page yet so we can
2269 * muck around with it freely without cmpxchg
2270 */
6faa6833 2271 freelist = page->freelist;
497b66f2
CL
2272 page->freelist = NULL;
2273
2274 stat(s, ALLOC_SLAB);
497b66f2
CL
2275 c->page = page;
2276 *pc = c;
2277 } else
6faa6833 2278 freelist = NULL;
497b66f2 2279
6faa6833 2280 return freelist;
497b66f2
CL
2281}
2282
072bb0aa
MG
2283static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2284{
2285 if (unlikely(PageSlabPfmemalloc(page)))
2286 return gfp_pfmemalloc_allowed(gfpflags);
2287
2288 return true;
2289}
2290
213eeb9f 2291/*
d0e0ac97
CG
2292 * Check the page->freelist of a page and either transfer the freelist to the
2293 * per cpu freelist or deactivate the page.
213eeb9f
CL
2294 *
2295 * The page is still frozen if the return value is not NULL.
2296 *
2297 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2298 *
2299 * This function must be called with interrupt disabled.
213eeb9f
CL
2300 */
2301static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2302{
2303 struct page new;
2304 unsigned long counters;
2305 void *freelist;
2306
2307 do {
2308 freelist = page->freelist;
2309 counters = page->counters;
6faa6833 2310
213eeb9f 2311 new.counters = counters;
a0132ac0 2312 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2313
2314 new.inuse = page->objects;
2315 new.frozen = freelist != NULL;
2316
d24ac77f 2317 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2318 freelist, counters,
2319 NULL, new.counters,
2320 "get_freelist"));
2321
2322 return freelist;
2323}
2324
81819f0f 2325/*
894b8788
CL
2326 * Slow path. The lockless freelist is empty or we need to perform
2327 * debugging duties.
2328 *
894b8788
CL
2329 * Processing is still very fast if new objects have been freed to the
2330 * regular freelist. In that case we simply take over the regular freelist
2331 * as the lockless freelist and zap the regular freelist.
81819f0f 2332 *
894b8788
CL
2333 * If that is not working then we fall back to the partial lists. We take the
2334 * first element of the freelist as the object to allocate now and move the
2335 * rest of the freelist to the lockless freelist.
81819f0f 2336 *
894b8788 2337 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2338 * we need to allocate a new slab. This is the slowest path since it involves
2339 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2340 *
2341 * Version of __slab_alloc to use when we know that interrupts are
2342 * already disabled (which is the case for bulk allocation).
81819f0f 2343 */
a380a3c7 2344static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2345 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2346{
6faa6833 2347 void *freelist;
f6e7def7 2348 struct page *page;
81819f0f 2349
f6e7def7
CL
2350 page = c->page;
2351 if (!page)
81819f0f 2352 goto new_slab;
49e22585 2353redo:
6faa6833 2354
57d437d2 2355 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2356 int searchnode = node;
2357
2358 if (node != NUMA_NO_NODE && !node_present_pages(node))
2359 searchnode = node_to_mem_node(node);
2360
2361 if (unlikely(!node_match(page, searchnode))) {
2362 stat(s, ALLOC_NODE_MISMATCH);
2363 deactivate_slab(s, page, c->freelist);
2364 c->page = NULL;
2365 c->freelist = NULL;
2366 goto new_slab;
2367 }
fc59c053 2368 }
6446faa2 2369
072bb0aa
MG
2370 /*
2371 * By rights, we should be searching for a slab page that was
2372 * PFMEMALLOC but right now, we are losing the pfmemalloc
2373 * information when the page leaves the per-cpu allocator
2374 */
2375 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2376 deactivate_slab(s, page, c->freelist);
2377 c->page = NULL;
2378 c->freelist = NULL;
2379 goto new_slab;
2380 }
2381
73736e03 2382 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2383 freelist = c->freelist;
2384 if (freelist)
73736e03 2385 goto load_freelist;
03e404af 2386
f6e7def7 2387 freelist = get_freelist(s, page);
6446faa2 2388
6faa6833 2389 if (!freelist) {
03e404af
CL
2390 c->page = NULL;
2391 stat(s, DEACTIVATE_BYPASS);
fc59c053 2392 goto new_slab;
03e404af 2393 }
6446faa2 2394
84e554e6 2395 stat(s, ALLOC_REFILL);
6446faa2 2396
894b8788 2397load_freelist:
507effea
CL
2398 /*
2399 * freelist is pointing to the list of objects to be used.
2400 * page is pointing to the page from which the objects are obtained.
2401 * That page must be frozen for per cpu allocations to work.
2402 */
a0132ac0 2403 VM_BUG_ON(!c->page->frozen);
6faa6833 2404 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2405 c->tid = next_tid(c->tid);
6faa6833 2406 return freelist;
81819f0f 2407
81819f0f 2408new_slab:
2cfb7455 2409
49e22585 2410 if (c->partial) {
f6e7def7
CL
2411 page = c->page = c->partial;
2412 c->partial = page->next;
49e22585
CL
2413 stat(s, CPU_PARTIAL_ALLOC);
2414 c->freelist = NULL;
2415 goto redo;
81819f0f
CL
2416 }
2417
188fd063 2418 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2419
f4697436 2420 if (unlikely(!freelist)) {
9a02d699 2421 slab_out_of_memory(s, gfpflags, node);
f4697436 2422 return NULL;
81819f0f 2423 }
2cfb7455 2424
f6e7def7 2425 page = c->page;
5091b74a 2426 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2427 goto load_freelist;
2cfb7455 2428
497b66f2 2429 /* Only entered in the debug case */
d0e0ac97
CG
2430 if (kmem_cache_debug(s) &&
2431 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2432 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2433
f6e7def7 2434 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2435 c->page = NULL;
2436 c->freelist = NULL;
6faa6833 2437 return freelist;
894b8788
CL
2438}
2439
a380a3c7
CL
2440/*
2441 * Another one that disabled interrupt and compensates for possible
2442 * cpu changes by refetching the per cpu area pointer.
2443 */
2444static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2445 unsigned long addr, struct kmem_cache_cpu *c)
2446{
2447 void *p;
2448 unsigned long flags;
2449
2450 local_irq_save(flags);
2451#ifdef CONFIG_PREEMPT
2452 /*
2453 * We may have been preempted and rescheduled on a different
2454 * cpu before disabling interrupts. Need to reload cpu area
2455 * pointer.
2456 */
2457 c = this_cpu_ptr(s->cpu_slab);
2458#endif
2459
2460 p = ___slab_alloc(s, gfpflags, node, addr, c);
2461 local_irq_restore(flags);
2462 return p;
2463}
2464
894b8788
CL
2465/*
2466 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2467 * have the fastpath folded into their functions. So no function call
2468 * overhead for requests that can be satisfied on the fastpath.
2469 *
2470 * The fastpath works by first checking if the lockless freelist can be used.
2471 * If not then __slab_alloc is called for slow processing.
2472 *
2473 * Otherwise we can simply pick the next object from the lockless free list.
2474 */
2b847c3c 2475static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2476 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2477{
894b8788 2478 void **object;
dfb4f096 2479 struct kmem_cache_cpu *c;
57d437d2 2480 struct page *page;
8a5ec0ba 2481 unsigned long tid;
1f84260c 2482
8135be5a
VD
2483 s = slab_pre_alloc_hook(s, gfpflags);
2484 if (!s)
773ff60e 2485 return NULL;
8a5ec0ba 2486redo:
8a5ec0ba
CL
2487 /*
2488 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2489 * enabled. We may switch back and forth between cpus while
2490 * reading from one cpu area. That does not matter as long
2491 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2492 *
9aabf810
JK
2493 * We should guarantee that tid and kmem_cache are retrieved on
2494 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2495 * to check if it is matched or not.
8a5ec0ba 2496 */
9aabf810
JK
2497 do {
2498 tid = this_cpu_read(s->cpu_slab->tid);
2499 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2500 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2501 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2502
2503 /*
2504 * Irqless object alloc/free algorithm used here depends on sequence
2505 * of fetching cpu_slab's data. tid should be fetched before anything
2506 * on c to guarantee that object and page associated with previous tid
2507 * won't be used with current tid. If we fetch tid first, object and
2508 * page could be one associated with next tid and our alloc/free
2509 * request will be failed. In this case, we will retry. So, no problem.
2510 */
2511 barrier();
8a5ec0ba 2512
8a5ec0ba
CL
2513 /*
2514 * The transaction ids are globally unique per cpu and per operation on
2515 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2516 * occurs on the right processor and that there was no operation on the
2517 * linked list in between.
2518 */
8a5ec0ba 2519
9dfc6e68 2520 object = c->freelist;
57d437d2 2521 page = c->page;
8eae1492 2522 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2523 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2524 stat(s, ALLOC_SLOWPATH);
2525 } else {
0ad9500e
ED
2526 void *next_object = get_freepointer_safe(s, object);
2527
8a5ec0ba 2528 /*
25985edc 2529 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2530 * operation and if we are on the right processor.
2531 *
d0e0ac97
CG
2532 * The cmpxchg does the following atomically (without lock
2533 * semantics!)
8a5ec0ba
CL
2534 * 1. Relocate first pointer to the current per cpu area.
2535 * 2. Verify that tid and freelist have not been changed
2536 * 3. If they were not changed replace tid and freelist
2537 *
d0e0ac97
CG
2538 * Since this is without lock semantics the protection is only
2539 * against code executing on this cpu *not* from access by
2540 * other cpus.
8a5ec0ba 2541 */
933393f5 2542 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2543 s->cpu_slab->freelist, s->cpu_slab->tid,
2544 object, tid,
0ad9500e 2545 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2546
2547 note_cmpxchg_failure("slab_alloc", s, tid);
2548 goto redo;
2549 }
0ad9500e 2550 prefetch_freepointer(s, next_object);
84e554e6 2551 stat(s, ALLOC_FASTPATH);
894b8788 2552 }
8a5ec0ba 2553
74e2134f 2554 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2555 memset(object, 0, s->object_size);
d07dbea4 2556
c016b0bd 2557 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2558
894b8788 2559 return object;
81819f0f
CL
2560}
2561
2b847c3c
EG
2562static __always_inline void *slab_alloc(struct kmem_cache *s,
2563 gfp_t gfpflags, unsigned long addr)
2564{
2565 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2566}
2567
81819f0f
CL
2568void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2569{
2b847c3c 2570 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2571
d0e0ac97
CG
2572 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2573 s->size, gfpflags);
5b882be4
EGM
2574
2575 return ret;
81819f0f
CL
2576}
2577EXPORT_SYMBOL(kmem_cache_alloc);
2578
0f24f128 2579#ifdef CONFIG_TRACING
4a92379b
RK
2580void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2581{
2b847c3c 2582 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2583 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0316bec2 2584 kasan_kmalloc(s, ret, size);
4a92379b
RK
2585 return ret;
2586}
2587EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2588#endif
2589
81819f0f
CL
2590#ifdef CONFIG_NUMA
2591void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2592{
2b847c3c 2593 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2594
ca2b84cb 2595 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2596 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2597
2598 return ret;
81819f0f
CL
2599}
2600EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2601
0f24f128 2602#ifdef CONFIG_TRACING
4a92379b 2603void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2604 gfp_t gfpflags,
4a92379b 2605 int node, size_t size)
5b882be4 2606{
2b847c3c 2607 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2608
2609 trace_kmalloc_node(_RET_IP_, ret,
2610 size, s->size, gfpflags, node);
0316bec2
AR
2611
2612 kasan_kmalloc(s, ret, size);
4a92379b 2613 return ret;
5b882be4 2614}
4a92379b 2615EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2616#endif
5d1f57e4 2617#endif
5b882be4 2618
81819f0f 2619/*
94e4d712 2620 * Slow path handling. This may still be called frequently since objects
894b8788 2621 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2622 *
894b8788
CL
2623 * So we still attempt to reduce cache line usage. Just take the slab
2624 * lock and free the item. If there is no additional partial page
2625 * handling required then we can return immediately.
81819f0f 2626 */
894b8788 2627static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2628 void *head, void *tail, int cnt,
2629 unsigned long addr)
2630
81819f0f
CL
2631{
2632 void *prior;
2cfb7455 2633 int was_frozen;
2cfb7455
CL
2634 struct page new;
2635 unsigned long counters;
2636 struct kmem_cache_node *n = NULL;
61728d1e 2637 unsigned long uninitialized_var(flags);
81819f0f 2638
8a5ec0ba 2639 stat(s, FREE_SLOWPATH);
81819f0f 2640
19c7ff9e 2641 if (kmem_cache_debug(s) &&
81084651
JDB
2642 !(n = free_debug_processing(s, page, head, tail, cnt,
2643 addr, &flags)))
80f08c19 2644 return;
6446faa2 2645
2cfb7455 2646 do {
837d678d
JK
2647 if (unlikely(n)) {
2648 spin_unlock_irqrestore(&n->list_lock, flags);
2649 n = NULL;
2650 }
2cfb7455
CL
2651 prior = page->freelist;
2652 counters = page->counters;
81084651 2653 set_freepointer(s, tail, prior);
2cfb7455
CL
2654 new.counters = counters;
2655 was_frozen = new.frozen;
81084651 2656 new.inuse -= cnt;
837d678d 2657 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2658
c65c1877 2659 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2660
2661 /*
d0e0ac97
CG
2662 * Slab was on no list before and will be
2663 * partially empty
2664 * We can defer the list move and instead
2665 * freeze it.
49e22585
CL
2666 */
2667 new.frozen = 1;
2668
c65c1877 2669 } else { /* Needs to be taken off a list */
49e22585 2670
b455def2 2671 n = get_node(s, page_to_nid(page));
49e22585
CL
2672 /*
2673 * Speculatively acquire the list_lock.
2674 * If the cmpxchg does not succeed then we may
2675 * drop the list_lock without any processing.
2676 *
2677 * Otherwise the list_lock will synchronize with
2678 * other processors updating the list of slabs.
2679 */
2680 spin_lock_irqsave(&n->list_lock, flags);
2681
2682 }
2cfb7455 2683 }
81819f0f 2684
2cfb7455
CL
2685 } while (!cmpxchg_double_slab(s, page,
2686 prior, counters,
81084651 2687 head, new.counters,
2cfb7455 2688 "__slab_free"));
81819f0f 2689
2cfb7455 2690 if (likely(!n)) {
49e22585
CL
2691
2692 /*
2693 * If we just froze the page then put it onto the
2694 * per cpu partial list.
2695 */
8028dcea 2696 if (new.frozen && !was_frozen) {
49e22585 2697 put_cpu_partial(s, page, 1);
8028dcea
AS
2698 stat(s, CPU_PARTIAL_FREE);
2699 }
49e22585 2700 /*
2cfb7455
CL
2701 * The list lock was not taken therefore no list
2702 * activity can be necessary.
2703 */
b455def2
L
2704 if (was_frozen)
2705 stat(s, FREE_FROZEN);
2706 return;
2707 }
81819f0f 2708
8a5b20ae 2709 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2710 goto slab_empty;
2711
81819f0f 2712 /*
837d678d
JK
2713 * Objects left in the slab. If it was not on the partial list before
2714 * then add it.
81819f0f 2715 */
345c905d
JK
2716 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2717 if (kmem_cache_debug(s))
c65c1877 2718 remove_full(s, n, page);
837d678d
JK
2719 add_partial(n, page, DEACTIVATE_TO_TAIL);
2720 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2721 }
80f08c19 2722 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2723 return;
2724
2725slab_empty:
a973e9dd 2726 if (prior) {
81819f0f 2727 /*
6fbabb20 2728 * Slab on the partial list.
81819f0f 2729 */
5cc6eee8 2730 remove_partial(n, page);
84e554e6 2731 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2732 } else {
6fbabb20 2733 /* Slab must be on the full list */
c65c1877
PZ
2734 remove_full(s, n, page);
2735 }
2cfb7455 2736
80f08c19 2737 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2738 stat(s, FREE_SLAB);
81819f0f 2739 discard_slab(s, page);
81819f0f
CL
2740}
2741
894b8788
CL
2742/*
2743 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2744 * can perform fastpath freeing without additional function calls.
2745 *
2746 * The fastpath is only possible if we are freeing to the current cpu slab
2747 * of this processor. This typically the case if we have just allocated
2748 * the item before.
2749 *
2750 * If fastpath is not possible then fall back to __slab_free where we deal
2751 * with all sorts of special processing.
81084651
JDB
2752 *
2753 * Bulk free of a freelist with several objects (all pointing to the
2754 * same page) possible by specifying head and tail ptr, plus objects
2755 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 2756 */
81084651
JDB
2757static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2758 void *head, void *tail, int cnt,
2759 unsigned long addr)
894b8788 2760{
81084651 2761 void *tail_obj = tail ? : head;
dfb4f096 2762 struct kmem_cache_cpu *c;
8a5ec0ba 2763 unsigned long tid;
1f84260c 2764
81084651 2765 slab_free_freelist_hook(s, head, tail);
c016b0bd 2766
8a5ec0ba
CL
2767redo:
2768 /*
2769 * Determine the currently cpus per cpu slab.
2770 * The cpu may change afterward. However that does not matter since
2771 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 2772 * during the cmpxchg then the free will succeed.
8a5ec0ba 2773 */
9aabf810
JK
2774 do {
2775 tid = this_cpu_read(s->cpu_slab->tid);
2776 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2777 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2778 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 2779
9aabf810
JK
2780 /* Same with comment on barrier() in slab_alloc_node() */
2781 barrier();
c016b0bd 2782
442b06bc 2783 if (likely(page == c->page)) {
81084651 2784 set_freepointer(s, tail_obj, c->freelist);
8a5ec0ba 2785
933393f5 2786 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2787 s->cpu_slab->freelist, s->cpu_slab->tid,
2788 c->freelist, tid,
81084651 2789 head, next_tid(tid)))) {
8a5ec0ba
CL
2790
2791 note_cmpxchg_failure("slab_free", s, tid);
2792 goto redo;
2793 }
84e554e6 2794 stat(s, FREE_FASTPATH);
894b8788 2795 } else
81084651 2796 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 2797
894b8788
CL
2798}
2799
81819f0f
CL
2800void kmem_cache_free(struct kmem_cache *s, void *x)
2801{
b9ce5ef4
GC
2802 s = cache_from_obj(s, x);
2803 if (!s)
79576102 2804 return;
81084651 2805 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 2806 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2807}
2808EXPORT_SYMBOL(kmem_cache_free);
2809
d0ecd894 2810struct detached_freelist {
fbd02630 2811 struct page *page;
d0ecd894
JDB
2812 void *tail;
2813 void *freelist;
2814 int cnt;
2815};
fbd02630 2816
d0ecd894
JDB
2817/*
2818 * This function progressively scans the array with free objects (with
2819 * a limited look ahead) and extract objects belonging to the same
2820 * page. It builds a detached freelist directly within the given
2821 * page/objects. This can happen without any need for
2822 * synchronization, because the objects are owned by running process.
2823 * The freelist is build up as a single linked list in the objects.
2824 * The idea is, that this detached freelist can then be bulk
2825 * transferred to the real freelist(s), but only requiring a single
2826 * synchronization primitive. Look ahead in the array is limited due
2827 * to performance reasons.
2828 */
2829static int build_detached_freelist(struct kmem_cache *s, size_t size,
2830 void **p, struct detached_freelist *df)
2831{
2832 size_t first_skipped_index = 0;
2833 int lookahead = 3;
2834 void *object;
fbd02630 2835
d0ecd894
JDB
2836 /* Always re-init detached_freelist */
2837 df->page = NULL;
fbd02630 2838
d0ecd894
JDB
2839 do {
2840 object = p[--size];
2841 } while (!object && size);
3eed034d 2842
d0ecd894
JDB
2843 if (!object)
2844 return 0;
fbd02630 2845
d0ecd894
JDB
2846 /* Start new detached freelist */
2847 set_freepointer(s, object, NULL);
2848 df->page = virt_to_head_page(object);
2849 df->tail = object;
2850 df->freelist = object;
2851 p[size] = NULL; /* mark object processed */
2852 df->cnt = 1;
2853
2854 while (size) {
2855 object = p[--size];
2856 if (!object)
2857 continue; /* Skip processed objects */
2858
2859 /* df->page is always set at this point */
2860 if (df->page == virt_to_head_page(object)) {
2861 /* Opportunity build freelist */
2862 set_freepointer(s, object, df->freelist);
2863 df->freelist = object;
2864 df->cnt++;
2865 p[size] = NULL; /* mark object processed */
2866
2867 continue;
fbd02630 2868 }
d0ecd894
JDB
2869
2870 /* Limit look ahead search */
2871 if (!--lookahead)
2872 break;
2873
2874 if (!first_skipped_index)
2875 first_skipped_index = size + 1;
fbd02630 2876 }
d0ecd894
JDB
2877
2878 return first_skipped_index;
2879}
2880
2881
2882/* Note that interrupts must be enabled when calling this function. */
2883void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
2884{
2885 if (WARN_ON(!size))
2886 return;
2887
2888 do {
2889 struct detached_freelist df;
2890
2891 size = build_detached_freelist(s, size, p, &df);
2892 if (unlikely(!df.page))
2893 continue;
2894
2895 slab_free(s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
2896 } while (likely(size));
484748f0
CL
2897}
2898EXPORT_SYMBOL(kmem_cache_free_bulk);
2899
994eb764 2900/* Note that interrupts must be enabled when calling this function. */
484748f0 2901bool kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
994eb764 2902 void **p)
484748f0 2903{
994eb764
JDB
2904 struct kmem_cache_cpu *c;
2905 int i;
2906
994eb764
JDB
2907 /*
2908 * Drain objects in the per cpu slab, while disabling local
2909 * IRQs, which protects against PREEMPT and interrupts
2910 * handlers invoking normal fastpath.
2911 */
2912 local_irq_disable();
2913 c = this_cpu_ptr(s->cpu_slab);
2914
2915 for (i = 0; i < size; i++) {
2916 void *object = c->freelist;
2917
ebe909e0 2918 if (unlikely(!object)) {
ebe909e0
JDB
2919 /*
2920 * Invoking slow path likely have side-effect
2921 * of re-populating per CPU c->freelist
2922 */
87098373 2923 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 2924 _RET_IP_, c);
87098373
CL
2925 if (unlikely(!p[i]))
2926 goto error;
2927
ebe909e0
JDB
2928 c = this_cpu_ptr(s->cpu_slab);
2929 continue; /* goto for-loop */
2930 }
994eb764 2931
3eed034d
JDB
2932 /* kmem_cache debug support */
2933 s = slab_pre_alloc_hook(s, flags);
87098373
CL
2934 if (unlikely(!s))
2935 goto error;
3eed034d 2936
994eb764
JDB
2937 c->freelist = get_freepointer(s, object);
2938 p[i] = object;
3eed034d
JDB
2939
2940 /* kmem_cache debug support */
2941 slab_post_alloc_hook(s, flags, object);
994eb764
JDB
2942 }
2943 c->tid = next_tid(c->tid);
2944 local_irq_enable();
2945
2946 /* Clear memory outside IRQ disabled fastpath loop */
2947 if (unlikely(flags & __GFP_ZERO)) {
2948 int j;
2949
2950 for (j = 0; j < i; j++)
2951 memset(p[j], 0, s->object_size);
2952 }
2953
994eb764 2954 return true;
87098373
CL
2955
2956error:
2957 __kmem_cache_free_bulk(s, i, p);
2958 local_irq_enable();
2959 return false;
484748f0
CL
2960}
2961EXPORT_SYMBOL(kmem_cache_alloc_bulk);
2962
2963
81819f0f 2964/*
672bba3a
CL
2965 * Object placement in a slab is made very easy because we always start at
2966 * offset 0. If we tune the size of the object to the alignment then we can
2967 * get the required alignment by putting one properly sized object after
2968 * another.
81819f0f
CL
2969 *
2970 * Notice that the allocation order determines the sizes of the per cpu
2971 * caches. Each processor has always one slab available for allocations.
2972 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2973 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2974 * locking overhead.
81819f0f
CL
2975 */
2976
2977/*
2978 * Mininum / Maximum order of slab pages. This influences locking overhead
2979 * and slab fragmentation. A higher order reduces the number of partial slabs
2980 * and increases the number of allocations possible without having to
2981 * take the list_lock.
2982 */
2983static int slub_min_order;
114e9e89 2984static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2985static int slub_min_objects;
81819f0f 2986
81819f0f
CL
2987/*
2988 * Calculate the order of allocation given an slab object size.
2989 *
672bba3a
CL
2990 * The order of allocation has significant impact on performance and other
2991 * system components. Generally order 0 allocations should be preferred since
2992 * order 0 does not cause fragmentation in the page allocator. Larger objects
2993 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2994 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2995 * would be wasted.
2996 *
2997 * In order to reach satisfactory performance we must ensure that a minimum
2998 * number of objects is in one slab. Otherwise we may generate too much
2999 * activity on the partial lists which requires taking the list_lock. This is
3000 * less a concern for large slabs though which are rarely used.
81819f0f 3001 *
672bba3a
CL
3002 * slub_max_order specifies the order where we begin to stop considering the
3003 * number of objects in a slab as critical. If we reach slub_max_order then
3004 * we try to keep the page order as low as possible. So we accept more waste
3005 * of space in favor of a small page order.
81819f0f 3006 *
672bba3a
CL
3007 * Higher order allocations also allow the placement of more objects in a
3008 * slab and thereby reduce object handling overhead. If the user has
3009 * requested a higher mininum order then we start with that one instead of
3010 * the smallest order which will fit the object.
81819f0f 3011 */
5e6d444e 3012static inline int slab_order(int size, int min_objects,
ab9a0f19 3013 int max_order, int fract_leftover, int reserved)
81819f0f
CL
3014{
3015 int order;
3016 int rem;
6300ea75 3017 int min_order = slub_min_order;
81819f0f 3018
ab9a0f19 3019 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 3020 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3021
9f835703 3022 for (order = max(min_order, get_order(min_objects * size + reserved));
5e6d444e 3023 order <= max_order; order++) {
81819f0f 3024
5e6d444e 3025 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 3026
ab9a0f19 3027 rem = (slab_size - reserved) % size;
81819f0f 3028
5e6d444e 3029 if (rem <= slab_size / fract_leftover)
81819f0f 3030 break;
81819f0f 3031 }
672bba3a 3032
81819f0f
CL
3033 return order;
3034}
3035
ab9a0f19 3036static inline int calculate_order(int size, int reserved)
5e6d444e
CL
3037{
3038 int order;
3039 int min_objects;
3040 int fraction;
e8120ff1 3041 int max_objects;
5e6d444e
CL
3042
3043 /*
3044 * Attempt to find best configuration for a slab. This
3045 * works by first attempting to generate a layout with
3046 * the best configuration and backing off gradually.
3047 *
422ff4d7 3048 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3049 * we reduce the minimum objects required in a slab.
3050 */
3051 min_objects = slub_min_objects;
9b2cd506
CL
3052 if (!min_objects)
3053 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 3054 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
3055 min_objects = min(min_objects, max_objects);
3056
5e6d444e 3057 while (min_objects > 1) {
c124f5b5 3058 fraction = 16;
5e6d444e
CL
3059 while (fraction >= 4) {
3060 order = slab_order(size, min_objects,
ab9a0f19 3061 slub_max_order, fraction, reserved);
5e6d444e
CL
3062 if (order <= slub_max_order)
3063 return order;
3064 fraction /= 2;
3065 }
5086c389 3066 min_objects--;
5e6d444e
CL
3067 }
3068
3069 /*
3070 * We were unable to place multiple objects in a slab. Now
3071 * lets see if we can place a single object there.
3072 */
ab9a0f19 3073 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
3074 if (order <= slub_max_order)
3075 return order;
3076
3077 /*
3078 * Doh this slab cannot be placed using slub_max_order.
3079 */
ab9a0f19 3080 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 3081 if (order < MAX_ORDER)
5e6d444e
CL
3082 return order;
3083 return -ENOSYS;
3084}
3085
5595cffc 3086static void
4053497d 3087init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3088{
3089 n->nr_partial = 0;
81819f0f
CL
3090 spin_lock_init(&n->list_lock);
3091 INIT_LIST_HEAD(&n->partial);
8ab1372f 3092#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3093 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3094 atomic_long_set(&n->total_objects, 0);
643b1138 3095 INIT_LIST_HEAD(&n->full);
8ab1372f 3096#endif
81819f0f
CL
3097}
3098
55136592 3099static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3100{
6c182dc0 3101 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3102 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3103
8a5ec0ba 3104 /*
d4d84fef
CM
3105 * Must align to double word boundary for the double cmpxchg
3106 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3107 */
d4d84fef
CM
3108 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3109 2 * sizeof(void *));
8a5ec0ba
CL
3110
3111 if (!s->cpu_slab)
3112 return 0;
3113
3114 init_kmem_cache_cpus(s);
4c93c355 3115
8a5ec0ba 3116 return 1;
4c93c355 3117}
4c93c355 3118
51df1142
CL
3119static struct kmem_cache *kmem_cache_node;
3120
81819f0f
CL
3121/*
3122 * No kmalloc_node yet so do it by hand. We know that this is the first
3123 * slab on the node for this slabcache. There are no concurrent accesses
3124 * possible.
3125 *
721ae22a
ZYW
3126 * Note that this function only works on the kmem_cache_node
3127 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3128 * memory on a fresh node that has no slab structures yet.
81819f0f 3129 */
55136592 3130static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3131{
3132 struct page *page;
3133 struct kmem_cache_node *n;
3134
51df1142 3135 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3136
51df1142 3137 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3138
3139 BUG_ON(!page);
a2f92ee7 3140 if (page_to_nid(page) != node) {
f9f58285
FF
3141 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3142 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3143 }
3144
81819f0f
CL
3145 n = page->freelist;
3146 BUG_ON(!n);
51df1142 3147 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 3148 page->inuse = 1;
8cb0a506 3149 page->frozen = 0;
51df1142 3150 kmem_cache_node->node[node] = n;
8ab1372f 3151#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3152 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3153 init_tracking(kmem_cache_node, n);
8ab1372f 3154#endif
0316bec2 3155 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
4053497d 3156 init_kmem_cache_node(n);
51df1142 3157 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3158
67b6c900 3159 /*
1e4dd946
SR
3160 * No locks need to be taken here as it has just been
3161 * initialized and there is no concurrent access.
67b6c900 3162 */
1e4dd946 3163 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3164}
3165
3166static void free_kmem_cache_nodes(struct kmem_cache *s)
3167{
3168 int node;
fa45dc25 3169 struct kmem_cache_node *n;
81819f0f 3170
fa45dc25
CL
3171 for_each_kmem_cache_node(s, node, n) {
3172 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3173 s->node[node] = NULL;
3174 }
3175}
3176
55136592 3177static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3178{
3179 int node;
81819f0f 3180
f64dc58c 3181 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3182 struct kmem_cache_node *n;
3183
73367bd8 3184 if (slab_state == DOWN) {
55136592 3185 early_kmem_cache_node_alloc(node);
73367bd8
AD
3186 continue;
3187 }
51df1142 3188 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3189 GFP_KERNEL, node);
81819f0f 3190
73367bd8
AD
3191 if (!n) {
3192 free_kmem_cache_nodes(s);
3193 return 0;
81819f0f 3194 }
73367bd8 3195
81819f0f 3196 s->node[node] = n;
4053497d 3197 init_kmem_cache_node(n);
81819f0f
CL
3198 }
3199 return 1;
3200}
81819f0f 3201
c0bdb232 3202static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3203{
3204 if (min < MIN_PARTIAL)
3205 min = MIN_PARTIAL;
3206 else if (min > MAX_PARTIAL)
3207 min = MAX_PARTIAL;
3208 s->min_partial = min;
3209}
3210
81819f0f
CL
3211/*
3212 * calculate_sizes() determines the order and the distribution of data within
3213 * a slab object.
3214 */
06b285dc 3215static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
3216{
3217 unsigned long flags = s->flags;
3b0efdfa 3218 unsigned long size = s->object_size;
834f3d11 3219 int order;
81819f0f 3220
d8b42bf5
CL
3221 /*
3222 * Round up object size to the next word boundary. We can only
3223 * place the free pointer at word boundaries and this determines
3224 * the possible location of the free pointer.
3225 */
3226 size = ALIGN(size, sizeof(void *));
3227
3228#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3229 /*
3230 * Determine if we can poison the object itself. If the user of
3231 * the slab may touch the object after free or before allocation
3232 * then we should never poison the object itself.
3233 */
3234 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 3235 !s->ctor)
81819f0f
CL
3236 s->flags |= __OBJECT_POISON;
3237 else
3238 s->flags &= ~__OBJECT_POISON;
3239
81819f0f
CL
3240
3241 /*
672bba3a 3242 * If we are Redzoning then check if there is some space between the
81819f0f 3243 * end of the object and the free pointer. If not then add an
672bba3a 3244 * additional word to have some bytes to store Redzone information.
81819f0f 3245 */
3b0efdfa 3246 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3247 size += sizeof(void *);
41ecc55b 3248#endif
81819f0f
CL
3249
3250 /*
672bba3a
CL
3251 * With that we have determined the number of bytes in actual use
3252 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3253 */
3254 s->inuse = size;
3255
3256 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 3257 s->ctor)) {
81819f0f
CL
3258 /*
3259 * Relocate free pointer after the object if it is not
3260 * permitted to overwrite the first word of the object on
3261 * kmem_cache_free.
3262 *
3263 * This is the case if we do RCU, have a constructor or
3264 * destructor or are poisoning the objects.
3265 */
3266 s->offset = size;
3267 size += sizeof(void *);
3268 }
3269
c12b3c62 3270#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3271 if (flags & SLAB_STORE_USER)
3272 /*
3273 * Need to store information about allocs and frees after
3274 * the object.
3275 */
3276 size += 2 * sizeof(struct track);
3277
be7b3fbc 3278 if (flags & SLAB_RED_ZONE)
81819f0f
CL
3279 /*
3280 * Add some empty padding so that we can catch
3281 * overwrites from earlier objects rather than let
3282 * tracking information or the free pointer be
0211a9c8 3283 * corrupted if a user writes before the start
81819f0f
CL
3284 * of the object.
3285 */
3286 size += sizeof(void *);
41ecc55b 3287#endif
672bba3a 3288
81819f0f
CL
3289 /*
3290 * SLUB stores one object immediately after another beginning from
3291 * offset 0. In order to align the objects we have to simply size
3292 * each object to conform to the alignment.
3293 */
45906855 3294 size = ALIGN(size, s->align);
81819f0f 3295 s->size = size;
06b285dc
CL
3296 if (forced_order >= 0)
3297 order = forced_order;
3298 else
ab9a0f19 3299 order = calculate_order(size, s->reserved);
81819f0f 3300
834f3d11 3301 if (order < 0)
81819f0f
CL
3302 return 0;
3303
b7a49f0d 3304 s->allocflags = 0;
834f3d11 3305 if (order)
b7a49f0d
CL
3306 s->allocflags |= __GFP_COMP;
3307
3308 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3309 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3310
3311 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3312 s->allocflags |= __GFP_RECLAIMABLE;
3313
81819f0f
CL
3314 /*
3315 * Determine the number of objects per slab
3316 */
ab9a0f19
LJ
3317 s->oo = oo_make(order, size, s->reserved);
3318 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3319 if (oo_objects(s->oo) > oo_objects(s->max))
3320 s->max = s->oo;
81819f0f 3321
834f3d11 3322 return !!oo_objects(s->oo);
81819f0f
CL
3323}
3324
8a13a4cc 3325static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3326{
8a13a4cc 3327 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3328 s->reserved = 0;
81819f0f 3329
da9a638c
LJ
3330 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3331 s->reserved = sizeof(struct rcu_head);
81819f0f 3332
06b285dc 3333 if (!calculate_sizes(s, -1))
81819f0f 3334 goto error;
3de47213
DR
3335 if (disable_higher_order_debug) {
3336 /*
3337 * Disable debugging flags that store metadata if the min slab
3338 * order increased.
3339 */
3b0efdfa 3340 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3341 s->flags &= ~DEBUG_METADATA_FLAGS;
3342 s->offset = 0;
3343 if (!calculate_sizes(s, -1))
3344 goto error;
3345 }
3346 }
81819f0f 3347
2565409f
HC
3348#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3349 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3350 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3351 /* Enable fast mode */
3352 s->flags |= __CMPXCHG_DOUBLE;
3353#endif
3354
3b89d7d8
DR
3355 /*
3356 * The larger the object size is, the more pages we want on the partial
3357 * list to avoid pounding the page allocator excessively.
3358 */
49e22585
CL
3359 set_min_partial(s, ilog2(s->size) / 2);
3360
3361 /*
3362 * cpu_partial determined the maximum number of objects kept in the
3363 * per cpu partial lists of a processor.
3364 *
3365 * Per cpu partial lists mainly contain slabs that just have one
3366 * object freed. If they are used for allocation then they can be
3367 * filled up again with minimal effort. The slab will never hit the
3368 * per node partial lists and therefore no locking will be required.
3369 *
3370 * This setting also determines
3371 *
3372 * A) The number of objects from per cpu partial slabs dumped to the
3373 * per node list when we reach the limit.
9f264904 3374 * B) The number of objects in cpu partial slabs to extract from the
d0e0ac97
CG
3375 * per node list when we run out of per cpu objects. We only fetch
3376 * 50% to keep some capacity around for frees.
49e22585 3377 */
345c905d 3378 if (!kmem_cache_has_cpu_partial(s))
8f1e33da
CL
3379 s->cpu_partial = 0;
3380 else if (s->size >= PAGE_SIZE)
49e22585
CL
3381 s->cpu_partial = 2;
3382 else if (s->size >= 1024)
3383 s->cpu_partial = 6;
3384 else if (s->size >= 256)
3385 s->cpu_partial = 13;
3386 else
3387 s->cpu_partial = 30;
3388
81819f0f 3389#ifdef CONFIG_NUMA
e2cb96b7 3390 s->remote_node_defrag_ratio = 1000;
81819f0f 3391#endif
55136592 3392 if (!init_kmem_cache_nodes(s))
dfb4f096 3393 goto error;
81819f0f 3394
55136592 3395 if (alloc_kmem_cache_cpus(s))
278b1bb1 3396 return 0;
ff12059e 3397
4c93c355 3398 free_kmem_cache_nodes(s);
81819f0f
CL
3399error:
3400 if (flags & SLAB_PANIC)
3401 panic("Cannot create slab %s size=%lu realsize=%u "
3402 "order=%u offset=%u flags=%lx\n",
d0e0ac97
CG
3403 s->name, (unsigned long)s->size, s->size,
3404 oo_order(s->oo), s->offset, flags);
278b1bb1 3405 return -EINVAL;
81819f0f 3406}
81819f0f 3407
33b12c38
CL
3408static void list_slab_objects(struct kmem_cache *s, struct page *page,
3409 const char *text)
3410{
3411#ifdef CONFIG_SLUB_DEBUG
3412 void *addr = page_address(page);
3413 void *p;
a5dd5c11
NK
3414 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3415 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3416 if (!map)
3417 return;
945cf2b6 3418 slab_err(s, page, text, s->name);
33b12c38 3419 slab_lock(page);
33b12c38 3420
5f80b13a 3421 get_map(s, page, map);
33b12c38
CL
3422 for_each_object(p, s, addr, page->objects) {
3423
3424 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3425 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3426 print_tracking(s, p);
3427 }
3428 }
3429 slab_unlock(page);
bbd7d57b 3430 kfree(map);
33b12c38
CL
3431#endif
3432}
3433
81819f0f 3434/*
599870b1 3435 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3436 * This is called from kmem_cache_close(). We must be the last thread
3437 * using the cache and therefore we do not need to lock anymore.
81819f0f 3438 */
599870b1 3439static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3440{
81819f0f
CL
3441 struct page *page, *h;
3442
33b12c38 3443 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3444 if (!page->inuse) {
1e4dd946 3445 __remove_partial(n, page);
81819f0f 3446 discard_slab(s, page);
33b12c38
CL
3447 } else {
3448 list_slab_objects(s, page,
945cf2b6 3449 "Objects remaining in %s on kmem_cache_close()");
599870b1 3450 }
33b12c38 3451 }
81819f0f
CL
3452}
3453
3454/*
672bba3a 3455 * Release all resources used by a slab cache.
81819f0f 3456 */
0c710013 3457static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3458{
3459 int node;
fa45dc25 3460 struct kmem_cache_node *n;
81819f0f
CL
3461
3462 flush_all(s);
81819f0f 3463 /* Attempt to free all objects */
fa45dc25 3464 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3465 free_partial(s, n);
3466 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3467 return 1;
3468 }
945cf2b6 3469 free_percpu(s->cpu_slab);
81819f0f
CL
3470 free_kmem_cache_nodes(s);
3471 return 0;
3472}
3473
945cf2b6 3474int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f 3475{
41a21285 3476 return kmem_cache_close(s);
81819f0f 3477}
81819f0f
CL
3478
3479/********************************************************************
3480 * Kmalloc subsystem
3481 *******************************************************************/
3482
81819f0f
CL
3483static int __init setup_slub_min_order(char *str)
3484{
06428780 3485 get_option(&str, &slub_min_order);
81819f0f
CL
3486
3487 return 1;
3488}
3489
3490__setup("slub_min_order=", setup_slub_min_order);
3491
3492static int __init setup_slub_max_order(char *str)
3493{
06428780 3494 get_option(&str, &slub_max_order);
818cf590 3495 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3496
3497 return 1;
3498}
3499
3500__setup("slub_max_order=", setup_slub_max_order);
3501
3502static int __init setup_slub_min_objects(char *str)
3503{
06428780 3504 get_option(&str, &slub_min_objects);
81819f0f
CL
3505
3506 return 1;
3507}
3508
3509__setup("slub_min_objects=", setup_slub_min_objects);
3510
81819f0f
CL
3511void *__kmalloc(size_t size, gfp_t flags)
3512{
aadb4bc4 3513 struct kmem_cache *s;
5b882be4 3514 void *ret;
81819f0f 3515
95a05b42 3516 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3517 return kmalloc_large(size, flags);
aadb4bc4 3518
2c59dd65 3519 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3520
3521 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3522 return s;
3523
2b847c3c 3524 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3525
ca2b84cb 3526 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3527
0316bec2
AR
3528 kasan_kmalloc(s, ret, size);
3529
5b882be4 3530 return ret;
81819f0f
CL
3531}
3532EXPORT_SYMBOL(__kmalloc);
3533
5d1f57e4 3534#ifdef CONFIG_NUMA
f619cfe1
CL
3535static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3536{
b1eeab67 3537 struct page *page;
e4f7c0b4 3538 void *ptr = NULL;
f619cfe1 3539
52383431
VD
3540 flags |= __GFP_COMP | __GFP_NOTRACK;
3541 page = alloc_kmem_pages_node(node, flags, get_order(size));
f619cfe1 3542 if (page)
e4f7c0b4
CM
3543 ptr = page_address(page);
3544
d56791b3 3545 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3546 return ptr;
f619cfe1
CL
3547}
3548
81819f0f
CL
3549void *__kmalloc_node(size_t size, gfp_t flags, int node)
3550{
aadb4bc4 3551 struct kmem_cache *s;
5b882be4 3552 void *ret;
81819f0f 3553
95a05b42 3554 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3555 ret = kmalloc_large_node(size, flags, node);
3556
ca2b84cb
EGM
3557 trace_kmalloc_node(_RET_IP_, ret,
3558 size, PAGE_SIZE << get_order(size),
3559 flags, node);
5b882be4
EGM
3560
3561 return ret;
3562 }
aadb4bc4 3563
2c59dd65 3564 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3565
3566 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3567 return s;
3568
2b847c3c 3569 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3570
ca2b84cb 3571 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3572
0316bec2
AR
3573 kasan_kmalloc(s, ret, size);
3574
5b882be4 3575 return ret;
81819f0f
CL
3576}
3577EXPORT_SYMBOL(__kmalloc_node);
3578#endif
3579
0316bec2 3580static size_t __ksize(const void *object)
81819f0f 3581{
272c1d21 3582 struct page *page;
81819f0f 3583
ef8b4520 3584 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3585 return 0;
3586
294a80a8 3587 page = virt_to_head_page(object);
294a80a8 3588
76994412
PE
3589 if (unlikely(!PageSlab(page))) {
3590 WARN_ON(!PageCompound(page));
294a80a8 3591 return PAGE_SIZE << compound_order(page);
76994412 3592 }
81819f0f 3593
1b4f59e3 3594 return slab_ksize(page->slab_cache);
81819f0f 3595}
0316bec2
AR
3596
3597size_t ksize(const void *object)
3598{
3599 size_t size = __ksize(object);
3600 /* We assume that ksize callers could use whole allocated area,
3601 so we need unpoison this area. */
3602 kasan_krealloc(object, size);
3603 return size;
3604}
b1aabecd 3605EXPORT_SYMBOL(ksize);
81819f0f
CL
3606
3607void kfree(const void *x)
3608{
81819f0f 3609 struct page *page;
5bb983b0 3610 void *object = (void *)x;
81819f0f 3611
2121db74
PE
3612 trace_kfree(_RET_IP_, x);
3613
2408c550 3614 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3615 return;
3616
b49af68f 3617 page = virt_to_head_page(x);
aadb4bc4 3618 if (unlikely(!PageSlab(page))) {
0937502a 3619 BUG_ON(!PageCompound(page));
d56791b3 3620 kfree_hook(x);
52383431 3621 __free_kmem_pages(page, compound_order(page));
aadb4bc4
CL
3622 return;
3623 }
81084651 3624 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
3625}
3626EXPORT_SYMBOL(kfree);
3627
832f37f5
VD
3628#define SHRINK_PROMOTE_MAX 32
3629
2086d26a 3630/*
832f37f5
VD
3631 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3632 * up most to the head of the partial lists. New allocations will then
3633 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
3634 *
3635 * The slabs with the least items are placed last. This results in them
3636 * being allocated from last increasing the chance that the last objects
3637 * are freed in them.
2086d26a 3638 */
d6e0b7fa 3639int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
2086d26a
CL
3640{
3641 int node;
3642 int i;
3643 struct kmem_cache_node *n;
3644 struct page *page;
3645 struct page *t;
832f37f5
VD
3646 struct list_head discard;
3647 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 3648 unsigned long flags;
ce3712d7 3649 int ret = 0;
2086d26a 3650
d6e0b7fa
VD
3651 if (deactivate) {
3652 /*
3653 * Disable empty slabs caching. Used to avoid pinning offline
3654 * memory cgroups by kmem pages that can be freed.
3655 */
3656 s->cpu_partial = 0;
3657 s->min_partial = 0;
3658
3659 /*
3660 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3661 * so we have to make sure the change is visible.
3662 */
3663 kick_all_cpus_sync();
3664 }
3665
2086d26a 3666 flush_all(s);
fa45dc25 3667 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
3668 INIT_LIST_HEAD(&discard);
3669 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3670 INIT_LIST_HEAD(promote + i);
2086d26a
CL
3671
3672 spin_lock_irqsave(&n->list_lock, flags);
3673
3674 /*
832f37f5 3675 * Build lists of slabs to discard or promote.
2086d26a 3676 *
672bba3a
CL
3677 * Note that concurrent frees may occur while we hold the
3678 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3679 */
3680 list_for_each_entry_safe(page, t, &n->partial, lru) {
832f37f5
VD
3681 int free = page->objects - page->inuse;
3682
3683 /* Do not reread page->inuse */
3684 barrier();
3685
3686 /* We do not keep full slabs on the list */
3687 BUG_ON(free <= 0);
3688
3689 if (free == page->objects) {
3690 list_move(&page->lru, &discard);
69cb8e6b 3691 n->nr_partial--;
832f37f5
VD
3692 } else if (free <= SHRINK_PROMOTE_MAX)
3693 list_move(&page->lru, promote + free - 1);
2086d26a
CL
3694 }
3695
2086d26a 3696 /*
832f37f5
VD
3697 * Promote the slabs filled up most to the head of the
3698 * partial list.
2086d26a 3699 */
832f37f5
VD
3700 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3701 list_splice(promote + i, &n->partial);
2086d26a 3702
2086d26a 3703 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3704
3705 /* Release empty slabs */
832f37f5 3706 list_for_each_entry_safe(page, t, &discard, lru)
69cb8e6b 3707 discard_slab(s, page);
ce3712d7
VD
3708
3709 if (slabs_node(s, node))
3710 ret = 1;
2086d26a
CL
3711 }
3712
ce3712d7 3713 return ret;
2086d26a 3714}
2086d26a 3715
b9049e23
YG
3716static int slab_mem_going_offline_callback(void *arg)
3717{
3718 struct kmem_cache *s;
3719
18004c5d 3720 mutex_lock(&slab_mutex);
b9049e23 3721 list_for_each_entry(s, &slab_caches, list)
d6e0b7fa 3722 __kmem_cache_shrink(s, false);
18004c5d 3723 mutex_unlock(&slab_mutex);
b9049e23
YG
3724
3725 return 0;
3726}
3727
3728static void slab_mem_offline_callback(void *arg)
3729{
3730 struct kmem_cache_node *n;
3731 struct kmem_cache *s;
3732 struct memory_notify *marg = arg;
3733 int offline_node;
3734
b9d5ab25 3735 offline_node = marg->status_change_nid_normal;
b9049e23
YG
3736
3737 /*
3738 * If the node still has available memory. we need kmem_cache_node
3739 * for it yet.
3740 */
3741 if (offline_node < 0)
3742 return;
3743
18004c5d 3744 mutex_lock(&slab_mutex);
b9049e23
YG
3745 list_for_each_entry(s, &slab_caches, list) {
3746 n = get_node(s, offline_node);
3747 if (n) {
3748 /*
3749 * if n->nr_slabs > 0, slabs still exist on the node
3750 * that is going down. We were unable to free them,
c9404c9c 3751 * and offline_pages() function shouldn't call this
b9049e23
YG
3752 * callback. So, we must fail.
3753 */
0f389ec6 3754 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3755
3756 s->node[offline_node] = NULL;
8de66a0c 3757 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3758 }
3759 }
18004c5d 3760 mutex_unlock(&slab_mutex);
b9049e23
YG
3761}
3762
3763static int slab_mem_going_online_callback(void *arg)
3764{
3765 struct kmem_cache_node *n;
3766 struct kmem_cache *s;
3767 struct memory_notify *marg = arg;
b9d5ab25 3768 int nid = marg->status_change_nid_normal;
b9049e23
YG
3769 int ret = 0;
3770
3771 /*
3772 * If the node's memory is already available, then kmem_cache_node is
3773 * already created. Nothing to do.
3774 */
3775 if (nid < 0)
3776 return 0;
3777
3778 /*
0121c619 3779 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3780 * allocate a kmem_cache_node structure in order to bring the node
3781 * online.
3782 */
18004c5d 3783 mutex_lock(&slab_mutex);
b9049e23
YG
3784 list_for_each_entry(s, &slab_caches, list) {
3785 /*
3786 * XXX: kmem_cache_alloc_node will fallback to other nodes
3787 * since memory is not yet available from the node that
3788 * is brought up.
3789 */
8de66a0c 3790 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3791 if (!n) {
3792 ret = -ENOMEM;
3793 goto out;
3794 }
4053497d 3795 init_kmem_cache_node(n);
b9049e23
YG
3796 s->node[nid] = n;
3797 }
3798out:
18004c5d 3799 mutex_unlock(&slab_mutex);
b9049e23
YG
3800 return ret;
3801}
3802
3803static int slab_memory_callback(struct notifier_block *self,
3804 unsigned long action, void *arg)
3805{
3806 int ret = 0;
3807
3808 switch (action) {
3809 case MEM_GOING_ONLINE:
3810 ret = slab_mem_going_online_callback(arg);
3811 break;
3812 case MEM_GOING_OFFLINE:
3813 ret = slab_mem_going_offline_callback(arg);
3814 break;
3815 case MEM_OFFLINE:
3816 case MEM_CANCEL_ONLINE:
3817 slab_mem_offline_callback(arg);
3818 break;
3819 case MEM_ONLINE:
3820 case MEM_CANCEL_OFFLINE:
3821 break;
3822 }
dc19f9db
KH
3823 if (ret)
3824 ret = notifier_from_errno(ret);
3825 else
3826 ret = NOTIFY_OK;
b9049e23
YG
3827 return ret;
3828}
3829
3ac38faa
AM
3830static struct notifier_block slab_memory_callback_nb = {
3831 .notifier_call = slab_memory_callback,
3832 .priority = SLAB_CALLBACK_PRI,
3833};
b9049e23 3834
81819f0f
CL
3835/********************************************************************
3836 * Basic setup of slabs
3837 *******************************************************************/
3838
51df1142
CL
3839/*
3840 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
3841 * the page allocator. Allocate them properly then fix up the pointers
3842 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
3843 */
3844
dffb4d60 3845static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
3846{
3847 int node;
dffb4d60 3848 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 3849 struct kmem_cache_node *n;
51df1142 3850
dffb4d60 3851 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 3852
7d557b3c
GC
3853 /*
3854 * This runs very early, and only the boot processor is supposed to be
3855 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3856 * IPIs around.
3857 */
3858 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 3859 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
3860 struct page *p;
3861
fa45dc25
CL
3862 list_for_each_entry(p, &n->partial, lru)
3863 p->slab_cache = s;
51df1142 3864
607bf324 3865#ifdef CONFIG_SLUB_DEBUG
fa45dc25
CL
3866 list_for_each_entry(p, &n->full, lru)
3867 p->slab_cache = s;
51df1142 3868#endif
51df1142 3869 }
f7ce3190 3870 slab_init_memcg_params(s);
dffb4d60
CL
3871 list_add(&s->list, &slab_caches);
3872 return s;
51df1142
CL
3873}
3874
81819f0f
CL
3875void __init kmem_cache_init(void)
3876{
dffb4d60
CL
3877 static __initdata struct kmem_cache boot_kmem_cache,
3878 boot_kmem_cache_node;
51df1142 3879
fc8d8620
SG
3880 if (debug_guardpage_minorder())
3881 slub_max_order = 0;
3882
dffb4d60
CL
3883 kmem_cache_node = &boot_kmem_cache_node;
3884 kmem_cache = &boot_kmem_cache;
51df1142 3885
dffb4d60
CL
3886 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3887 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 3888
3ac38faa 3889 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
3890
3891 /* Able to allocate the per node structures */
3892 slab_state = PARTIAL;
3893
dffb4d60
CL
3894 create_boot_cache(kmem_cache, "kmem_cache",
3895 offsetof(struct kmem_cache, node) +
3896 nr_node_ids * sizeof(struct kmem_cache_node *),
3897 SLAB_HWCACHE_ALIGN);
8a13a4cc 3898
dffb4d60 3899 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 3900
51df1142
CL
3901 /*
3902 * Allocate kmem_cache_node properly from the kmem_cache slab.
3903 * kmem_cache_node is separately allocated so no need to
3904 * update any list pointers.
3905 */
dffb4d60 3906 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
3907
3908 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 3909 setup_kmalloc_cache_index_table();
f97d5f63 3910 create_kmalloc_caches(0);
81819f0f
CL
3911
3912#ifdef CONFIG_SMP
3913 register_cpu_notifier(&slab_notifier);
9dfc6e68 3914#endif
81819f0f 3915
f9f58285 3916 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
f97d5f63 3917 cache_line_size(),
81819f0f
CL
3918 slub_min_order, slub_max_order, slub_min_objects,
3919 nr_cpu_ids, nr_node_ids);
3920}
3921
7e85ee0c
PE
3922void __init kmem_cache_init_late(void)
3923{
7e85ee0c
PE
3924}
3925
2633d7a0 3926struct kmem_cache *
a44cb944
VD
3927__kmem_cache_alias(const char *name, size_t size, size_t align,
3928 unsigned long flags, void (*ctor)(void *))
81819f0f 3929{
426589f5 3930 struct kmem_cache *s, *c;
81819f0f 3931
a44cb944 3932 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3933 if (s) {
3934 s->refcount++;
84d0ddd6 3935
81819f0f
CL
3936 /*
3937 * Adjust the object sizes so that we clear
3938 * the complete object on kzalloc.
3939 */
3b0efdfa 3940 s->object_size = max(s->object_size, (int)size);
81819f0f 3941 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3942
426589f5 3943 for_each_memcg_cache(c, s) {
84d0ddd6
VD
3944 c->object_size = s->object_size;
3945 c->inuse = max_t(int, c->inuse,
3946 ALIGN(size, sizeof(void *)));
3947 }
3948
7b8f3b66 3949 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3950 s->refcount--;
cbb79694 3951 s = NULL;
7b8f3b66 3952 }
a0e1d1be 3953 }
6446faa2 3954
cbb79694
CL
3955 return s;
3956}
84c1cf62 3957
8a13a4cc 3958int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 3959{
aac3a166
PE
3960 int err;
3961
3962 err = kmem_cache_open(s, flags);
3963 if (err)
3964 return err;
20cea968 3965
45530c44
CL
3966 /* Mutex is not taken during early boot */
3967 if (slab_state <= UP)
3968 return 0;
3969
107dab5c 3970 memcg_propagate_slab_attrs(s);
aac3a166 3971 err = sysfs_slab_add(s);
aac3a166
PE
3972 if (err)
3973 kmem_cache_close(s);
20cea968 3974
aac3a166 3975 return err;
81819f0f 3976}
81819f0f 3977
81819f0f 3978#ifdef CONFIG_SMP
81819f0f 3979/*
672bba3a
CL
3980 * Use the cpu notifier to insure that the cpu slabs are flushed when
3981 * necessary.
81819f0f 3982 */
0db0628d 3983static int slab_cpuup_callback(struct notifier_block *nfb,
81819f0f
CL
3984 unsigned long action, void *hcpu)
3985{
3986 long cpu = (long)hcpu;
5b95a4ac
CL
3987 struct kmem_cache *s;
3988 unsigned long flags;
81819f0f
CL
3989
3990 switch (action) {
3991 case CPU_UP_CANCELED:
8bb78442 3992 case CPU_UP_CANCELED_FROZEN:
81819f0f 3993 case CPU_DEAD:
8bb78442 3994 case CPU_DEAD_FROZEN:
18004c5d 3995 mutex_lock(&slab_mutex);
5b95a4ac
CL
3996 list_for_each_entry(s, &slab_caches, list) {
3997 local_irq_save(flags);
3998 __flush_cpu_slab(s, cpu);
3999 local_irq_restore(flags);
4000 }
18004c5d 4001 mutex_unlock(&slab_mutex);
81819f0f
CL
4002 break;
4003 default:
4004 break;
4005 }
4006 return NOTIFY_OK;
4007}
4008
0db0628d 4009static struct notifier_block slab_notifier = {
3adbefee 4010 .notifier_call = slab_cpuup_callback
06428780 4011};
81819f0f
CL
4012
4013#endif
4014
ce71e27c 4015void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4016{
aadb4bc4 4017 struct kmem_cache *s;
94b528d0 4018 void *ret;
aadb4bc4 4019
95a05b42 4020 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4021 return kmalloc_large(size, gfpflags);
4022
2c59dd65 4023 s = kmalloc_slab(size, gfpflags);
81819f0f 4024
2408c550 4025 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4026 return s;
81819f0f 4027
2b847c3c 4028 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4029
25985edc 4030 /* Honor the call site pointer we received. */
ca2b84cb 4031 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4032
4033 return ret;
81819f0f
CL
4034}
4035
5d1f57e4 4036#ifdef CONFIG_NUMA
81819f0f 4037void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4038 int node, unsigned long caller)
81819f0f 4039{
aadb4bc4 4040 struct kmem_cache *s;
94b528d0 4041 void *ret;
aadb4bc4 4042
95a05b42 4043 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4044 ret = kmalloc_large_node(size, gfpflags, node);
4045
4046 trace_kmalloc_node(caller, ret,
4047 size, PAGE_SIZE << get_order(size),
4048 gfpflags, node);
4049
4050 return ret;
4051 }
eada35ef 4052
2c59dd65 4053 s = kmalloc_slab(size, gfpflags);
81819f0f 4054
2408c550 4055 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4056 return s;
81819f0f 4057
2b847c3c 4058 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4059
25985edc 4060 /* Honor the call site pointer we received. */
ca2b84cb 4061 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4062
4063 return ret;
81819f0f 4064}
5d1f57e4 4065#endif
81819f0f 4066
ab4d5ed5 4067#ifdef CONFIG_SYSFS
205ab99d
CL
4068static int count_inuse(struct page *page)
4069{
4070 return page->inuse;
4071}
4072
4073static int count_total(struct page *page)
4074{
4075 return page->objects;
4076}
ab4d5ed5 4077#endif
205ab99d 4078
ab4d5ed5 4079#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4080static int validate_slab(struct kmem_cache *s, struct page *page,
4081 unsigned long *map)
53e15af0
CL
4082{
4083 void *p;
a973e9dd 4084 void *addr = page_address(page);
53e15af0
CL
4085
4086 if (!check_slab(s, page) ||
4087 !on_freelist(s, page, NULL))
4088 return 0;
4089
4090 /* Now we know that a valid freelist exists */
39b26464 4091 bitmap_zero(map, page->objects);
53e15af0 4092
5f80b13a
CL
4093 get_map(s, page, map);
4094 for_each_object(p, s, addr, page->objects) {
4095 if (test_bit(slab_index(p, s, addr), map))
4096 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4097 return 0;
53e15af0
CL
4098 }
4099
224a88be 4100 for_each_object(p, s, addr, page->objects)
7656c72b 4101 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4102 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4103 return 0;
4104 return 1;
4105}
4106
434e245d
CL
4107static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4108 unsigned long *map)
53e15af0 4109{
881db7fb
CL
4110 slab_lock(page);
4111 validate_slab(s, page, map);
4112 slab_unlock(page);
53e15af0
CL
4113}
4114
434e245d
CL
4115static int validate_slab_node(struct kmem_cache *s,
4116 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4117{
4118 unsigned long count = 0;
4119 struct page *page;
4120 unsigned long flags;
4121
4122 spin_lock_irqsave(&n->list_lock, flags);
4123
4124 list_for_each_entry(page, &n->partial, lru) {
434e245d 4125 validate_slab_slab(s, page, map);
53e15af0
CL
4126 count++;
4127 }
4128 if (count != n->nr_partial)
f9f58285
FF
4129 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4130 s->name, count, n->nr_partial);
53e15af0
CL
4131
4132 if (!(s->flags & SLAB_STORE_USER))
4133 goto out;
4134
4135 list_for_each_entry(page, &n->full, lru) {
434e245d 4136 validate_slab_slab(s, page, map);
53e15af0
CL
4137 count++;
4138 }
4139 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4140 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4141 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4142
4143out:
4144 spin_unlock_irqrestore(&n->list_lock, flags);
4145 return count;
4146}
4147
434e245d 4148static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4149{
4150 int node;
4151 unsigned long count = 0;
205ab99d 4152 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d 4153 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4154 struct kmem_cache_node *n;
434e245d
CL
4155
4156 if (!map)
4157 return -ENOMEM;
53e15af0
CL
4158
4159 flush_all(s);
fa45dc25 4160 for_each_kmem_cache_node(s, node, n)
434e245d 4161 count += validate_slab_node(s, n, map);
434e245d 4162 kfree(map);
53e15af0
CL
4163 return count;
4164}
88a420e4 4165/*
672bba3a 4166 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4167 * and freed.
4168 */
4169
4170struct location {
4171 unsigned long count;
ce71e27c 4172 unsigned long addr;
45edfa58
CL
4173 long long sum_time;
4174 long min_time;
4175 long max_time;
4176 long min_pid;
4177 long max_pid;
174596a0 4178 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4179 nodemask_t nodes;
88a420e4
CL
4180};
4181
4182struct loc_track {
4183 unsigned long max;
4184 unsigned long count;
4185 struct location *loc;
4186};
4187
4188static void free_loc_track(struct loc_track *t)
4189{
4190 if (t->max)
4191 free_pages((unsigned long)t->loc,
4192 get_order(sizeof(struct location) * t->max));
4193}
4194
68dff6a9 4195static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4196{
4197 struct location *l;
4198 int order;
4199
88a420e4
CL
4200 order = get_order(sizeof(struct location) * max);
4201
68dff6a9 4202 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4203 if (!l)
4204 return 0;
4205
4206 if (t->count) {
4207 memcpy(l, t->loc, sizeof(struct location) * t->count);
4208 free_loc_track(t);
4209 }
4210 t->max = max;
4211 t->loc = l;
4212 return 1;
4213}
4214
4215static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4216 const struct track *track)
88a420e4
CL
4217{
4218 long start, end, pos;
4219 struct location *l;
ce71e27c 4220 unsigned long caddr;
45edfa58 4221 unsigned long age = jiffies - track->when;
88a420e4
CL
4222
4223 start = -1;
4224 end = t->count;
4225
4226 for ( ; ; ) {
4227 pos = start + (end - start + 1) / 2;
4228
4229 /*
4230 * There is nothing at "end". If we end up there
4231 * we need to add something to before end.
4232 */
4233 if (pos == end)
4234 break;
4235
4236 caddr = t->loc[pos].addr;
45edfa58
CL
4237 if (track->addr == caddr) {
4238
4239 l = &t->loc[pos];
4240 l->count++;
4241 if (track->when) {
4242 l->sum_time += age;
4243 if (age < l->min_time)
4244 l->min_time = age;
4245 if (age > l->max_time)
4246 l->max_time = age;
4247
4248 if (track->pid < l->min_pid)
4249 l->min_pid = track->pid;
4250 if (track->pid > l->max_pid)
4251 l->max_pid = track->pid;
4252
174596a0
RR
4253 cpumask_set_cpu(track->cpu,
4254 to_cpumask(l->cpus));
45edfa58
CL
4255 }
4256 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4257 return 1;
4258 }
4259
45edfa58 4260 if (track->addr < caddr)
88a420e4
CL
4261 end = pos;
4262 else
4263 start = pos;
4264 }
4265
4266 /*
672bba3a 4267 * Not found. Insert new tracking element.
88a420e4 4268 */
68dff6a9 4269 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4270 return 0;
4271
4272 l = t->loc + pos;
4273 if (pos < t->count)
4274 memmove(l + 1, l,
4275 (t->count - pos) * sizeof(struct location));
4276 t->count++;
4277 l->count = 1;
45edfa58
CL
4278 l->addr = track->addr;
4279 l->sum_time = age;
4280 l->min_time = age;
4281 l->max_time = age;
4282 l->min_pid = track->pid;
4283 l->max_pid = track->pid;
174596a0
RR
4284 cpumask_clear(to_cpumask(l->cpus));
4285 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4286 nodes_clear(l->nodes);
4287 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4288 return 1;
4289}
4290
4291static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4292 struct page *page, enum track_item alloc,
a5dd5c11 4293 unsigned long *map)
88a420e4 4294{
a973e9dd 4295 void *addr = page_address(page);
88a420e4
CL
4296 void *p;
4297
39b26464 4298 bitmap_zero(map, page->objects);
5f80b13a 4299 get_map(s, page, map);
88a420e4 4300
224a88be 4301 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4302 if (!test_bit(slab_index(p, s, addr), map))
4303 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4304}
4305
4306static int list_locations(struct kmem_cache *s, char *buf,
4307 enum track_item alloc)
4308{
e374d483 4309 int len = 0;
88a420e4 4310 unsigned long i;
68dff6a9 4311 struct loc_track t = { 0, 0, NULL };
88a420e4 4312 int node;
bbd7d57b
ED
4313 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4314 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4315 struct kmem_cache_node *n;
88a420e4 4316
bbd7d57b
ED
4317 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4318 GFP_TEMPORARY)) {
4319 kfree(map);
68dff6a9 4320 return sprintf(buf, "Out of memory\n");
bbd7d57b 4321 }
88a420e4
CL
4322 /* Push back cpu slabs */
4323 flush_all(s);
4324
fa45dc25 4325 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4326 unsigned long flags;
4327 struct page *page;
4328
9e86943b 4329 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4330 continue;
4331
4332 spin_lock_irqsave(&n->list_lock, flags);
4333 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4334 process_slab(&t, s, page, alloc, map);
88a420e4 4335 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4336 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4337 spin_unlock_irqrestore(&n->list_lock, flags);
4338 }
4339
4340 for (i = 0; i < t.count; i++) {
45edfa58 4341 struct location *l = &t.loc[i];
88a420e4 4342
9c246247 4343 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4344 break;
e374d483 4345 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4346
4347 if (l->addr)
62c70bce 4348 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4349 else
e374d483 4350 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4351
4352 if (l->sum_time != l->min_time) {
e374d483 4353 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4354 l->min_time,
4355 (long)div_u64(l->sum_time, l->count),
4356 l->max_time);
45edfa58 4357 } else
e374d483 4358 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4359 l->min_time);
4360
4361 if (l->min_pid != l->max_pid)
e374d483 4362 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4363 l->min_pid, l->max_pid);
4364 else
e374d483 4365 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4366 l->min_pid);
4367
174596a0
RR
4368 if (num_online_cpus() > 1 &&
4369 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4370 len < PAGE_SIZE - 60)
4371 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4372 " cpus=%*pbl",
4373 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4374
62bc62a8 4375 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4376 len < PAGE_SIZE - 60)
4377 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4378 " nodes=%*pbl",
4379 nodemask_pr_args(&l->nodes));
45edfa58 4380
e374d483 4381 len += sprintf(buf + len, "\n");
88a420e4
CL
4382 }
4383
4384 free_loc_track(&t);
bbd7d57b 4385 kfree(map);
88a420e4 4386 if (!t.count)
e374d483
HH
4387 len += sprintf(buf, "No data\n");
4388 return len;
88a420e4 4389}
ab4d5ed5 4390#endif
88a420e4 4391
a5a84755 4392#ifdef SLUB_RESILIENCY_TEST
c07b8183 4393static void __init resiliency_test(void)
a5a84755
CL
4394{
4395 u8 *p;
4396
95a05b42 4397 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4398
f9f58285
FF
4399 pr_err("SLUB resiliency testing\n");
4400 pr_err("-----------------------\n");
4401 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4402
4403 p = kzalloc(16, GFP_KERNEL);
4404 p[16] = 0x12;
f9f58285
FF
4405 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4406 p + 16);
a5a84755
CL
4407
4408 validate_slab_cache(kmalloc_caches[4]);
4409
4410 /* Hmmm... The next two are dangerous */
4411 p = kzalloc(32, GFP_KERNEL);
4412 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4413 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4414 p);
4415 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4416
4417 validate_slab_cache(kmalloc_caches[5]);
4418 p = kzalloc(64, GFP_KERNEL);
4419 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4420 *p = 0x56;
f9f58285
FF
4421 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4422 p);
4423 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4424 validate_slab_cache(kmalloc_caches[6]);
4425
f9f58285 4426 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4427 p = kzalloc(128, GFP_KERNEL);
4428 kfree(p);
4429 *p = 0x78;
f9f58285 4430 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a5a84755
CL
4431 validate_slab_cache(kmalloc_caches[7]);
4432
4433 p = kzalloc(256, GFP_KERNEL);
4434 kfree(p);
4435 p[50] = 0x9a;
f9f58285 4436 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
a5a84755
CL
4437 validate_slab_cache(kmalloc_caches[8]);
4438
4439 p = kzalloc(512, GFP_KERNEL);
4440 kfree(p);
4441 p[512] = 0xab;
f9f58285 4442 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a5a84755
CL
4443 validate_slab_cache(kmalloc_caches[9]);
4444}
4445#else
4446#ifdef CONFIG_SYSFS
4447static void resiliency_test(void) {};
4448#endif
4449#endif
4450
ab4d5ed5 4451#ifdef CONFIG_SYSFS
81819f0f 4452enum slab_stat_type {
205ab99d
CL
4453 SL_ALL, /* All slabs */
4454 SL_PARTIAL, /* Only partially allocated slabs */
4455 SL_CPU, /* Only slabs used for cpu caches */
4456 SL_OBJECTS, /* Determine allocated objects not slabs */
4457 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4458};
4459
205ab99d 4460#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4461#define SO_PARTIAL (1 << SL_PARTIAL)
4462#define SO_CPU (1 << SL_CPU)
4463#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4464#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4465
62e5c4b4
CG
4466static ssize_t show_slab_objects(struct kmem_cache *s,
4467 char *buf, unsigned long flags)
81819f0f
CL
4468{
4469 unsigned long total = 0;
81819f0f
CL
4470 int node;
4471 int x;
4472 unsigned long *nodes;
81819f0f 4473
e35e1a97 4474 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4475 if (!nodes)
4476 return -ENOMEM;
81819f0f 4477
205ab99d
CL
4478 if (flags & SO_CPU) {
4479 int cpu;
81819f0f 4480
205ab99d 4481 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4482 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4483 cpu);
ec3ab083 4484 int node;
49e22585 4485 struct page *page;
dfb4f096 4486
4db0c3c2 4487 page = READ_ONCE(c->page);
ec3ab083
CL
4488 if (!page)
4489 continue;
205ab99d 4490
ec3ab083
CL
4491 node = page_to_nid(page);
4492 if (flags & SO_TOTAL)
4493 x = page->objects;
4494 else if (flags & SO_OBJECTS)
4495 x = page->inuse;
4496 else
4497 x = 1;
49e22585 4498
ec3ab083
CL
4499 total += x;
4500 nodes[node] += x;
4501
4db0c3c2 4502 page = READ_ONCE(c->partial);
49e22585 4503 if (page) {
8afb1474
LZ
4504 node = page_to_nid(page);
4505 if (flags & SO_TOTAL)
4506 WARN_ON_ONCE(1);
4507 else if (flags & SO_OBJECTS)
4508 WARN_ON_ONCE(1);
4509 else
4510 x = page->pages;
bc6697d8
ED
4511 total += x;
4512 nodes[node] += x;
49e22585 4513 }
81819f0f
CL
4514 }
4515 }
4516
bfc8c901 4517 get_online_mems();
ab4d5ed5 4518#ifdef CONFIG_SLUB_DEBUG
205ab99d 4519 if (flags & SO_ALL) {
fa45dc25
CL
4520 struct kmem_cache_node *n;
4521
4522 for_each_kmem_cache_node(s, node, n) {
205ab99d 4523
d0e0ac97
CG
4524 if (flags & SO_TOTAL)
4525 x = atomic_long_read(&n->total_objects);
4526 else if (flags & SO_OBJECTS)
4527 x = atomic_long_read(&n->total_objects) -
4528 count_partial(n, count_free);
81819f0f 4529 else
205ab99d 4530 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4531 total += x;
4532 nodes[node] += x;
4533 }
4534
ab4d5ed5
CL
4535 } else
4536#endif
4537 if (flags & SO_PARTIAL) {
fa45dc25 4538 struct kmem_cache_node *n;
81819f0f 4539
fa45dc25 4540 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4541 if (flags & SO_TOTAL)
4542 x = count_partial(n, count_total);
4543 else if (flags & SO_OBJECTS)
4544 x = count_partial(n, count_inuse);
81819f0f 4545 else
205ab99d 4546 x = n->nr_partial;
81819f0f
CL
4547 total += x;
4548 nodes[node] += x;
4549 }
4550 }
81819f0f
CL
4551 x = sprintf(buf, "%lu", total);
4552#ifdef CONFIG_NUMA
fa45dc25 4553 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4554 if (nodes[node])
4555 x += sprintf(buf + x, " N%d=%lu",
4556 node, nodes[node]);
4557#endif
bfc8c901 4558 put_online_mems();
81819f0f
CL
4559 kfree(nodes);
4560 return x + sprintf(buf + x, "\n");
4561}
4562
ab4d5ed5 4563#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4564static int any_slab_objects(struct kmem_cache *s)
4565{
4566 int node;
fa45dc25 4567 struct kmem_cache_node *n;
81819f0f 4568
fa45dc25 4569 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4570 if (atomic_long_read(&n->total_objects))
81819f0f 4571 return 1;
fa45dc25 4572
81819f0f
CL
4573 return 0;
4574}
ab4d5ed5 4575#endif
81819f0f
CL
4576
4577#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4578#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4579
4580struct slab_attribute {
4581 struct attribute attr;
4582 ssize_t (*show)(struct kmem_cache *s, char *buf);
4583 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4584};
4585
4586#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4587 static struct slab_attribute _name##_attr = \
4588 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4589
4590#define SLAB_ATTR(_name) \
4591 static struct slab_attribute _name##_attr = \
ab067e99 4592 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4593
81819f0f
CL
4594static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4595{
4596 return sprintf(buf, "%d\n", s->size);
4597}
4598SLAB_ATTR_RO(slab_size);
4599
4600static ssize_t align_show(struct kmem_cache *s, char *buf)
4601{
4602 return sprintf(buf, "%d\n", s->align);
4603}
4604SLAB_ATTR_RO(align);
4605
4606static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4607{
3b0efdfa 4608 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4609}
4610SLAB_ATTR_RO(object_size);
4611
4612static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4613{
834f3d11 4614 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4615}
4616SLAB_ATTR_RO(objs_per_slab);
4617
06b285dc
CL
4618static ssize_t order_store(struct kmem_cache *s,
4619 const char *buf, size_t length)
4620{
0121c619
CL
4621 unsigned long order;
4622 int err;
4623
3dbb95f7 4624 err = kstrtoul(buf, 10, &order);
0121c619
CL
4625 if (err)
4626 return err;
06b285dc
CL
4627
4628 if (order > slub_max_order || order < slub_min_order)
4629 return -EINVAL;
4630
4631 calculate_sizes(s, order);
4632 return length;
4633}
4634
81819f0f
CL
4635static ssize_t order_show(struct kmem_cache *s, char *buf)
4636{
834f3d11 4637 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4638}
06b285dc 4639SLAB_ATTR(order);
81819f0f 4640
73d342b1
DR
4641static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4642{
4643 return sprintf(buf, "%lu\n", s->min_partial);
4644}
4645
4646static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4647 size_t length)
4648{
4649 unsigned long min;
4650 int err;
4651
3dbb95f7 4652 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4653 if (err)
4654 return err;
4655
c0bdb232 4656 set_min_partial(s, min);
73d342b1
DR
4657 return length;
4658}
4659SLAB_ATTR(min_partial);
4660
49e22585
CL
4661static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4662{
4663 return sprintf(buf, "%u\n", s->cpu_partial);
4664}
4665
4666static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4667 size_t length)
4668{
4669 unsigned long objects;
4670 int err;
4671
3dbb95f7 4672 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4673 if (err)
4674 return err;
345c905d 4675 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4676 return -EINVAL;
49e22585
CL
4677
4678 s->cpu_partial = objects;
4679 flush_all(s);
4680 return length;
4681}
4682SLAB_ATTR(cpu_partial);
4683
81819f0f
CL
4684static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4685{
62c70bce
JP
4686 if (!s->ctor)
4687 return 0;
4688 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4689}
4690SLAB_ATTR_RO(ctor);
4691
81819f0f
CL
4692static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4693{
4307c14f 4694 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
4695}
4696SLAB_ATTR_RO(aliases);
4697
81819f0f
CL
4698static ssize_t partial_show(struct kmem_cache *s, char *buf)
4699{
d9acf4b7 4700 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4701}
4702SLAB_ATTR_RO(partial);
4703
4704static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4705{
d9acf4b7 4706 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4707}
4708SLAB_ATTR_RO(cpu_slabs);
4709
4710static ssize_t objects_show(struct kmem_cache *s, char *buf)
4711{
205ab99d 4712 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4713}
4714SLAB_ATTR_RO(objects);
4715
205ab99d
CL
4716static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4717{
4718 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4719}
4720SLAB_ATTR_RO(objects_partial);
4721
49e22585
CL
4722static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4723{
4724 int objects = 0;
4725 int pages = 0;
4726 int cpu;
4727 int len;
4728
4729 for_each_online_cpu(cpu) {
4730 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4731
4732 if (page) {
4733 pages += page->pages;
4734 objects += page->pobjects;
4735 }
4736 }
4737
4738 len = sprintf(buf, "%d(%d)", objects, pages);
4739
4740#ifdef CONFIG_SMP
4741 for_each_online_cpu(cpu) {
4742 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4743
4744 if (page && len < PAGE_SIZE - 20)
4745 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4746 page->pobjects, page->pages);
4747 }
4748#endif
4749 return len + sprintf(buf + len, "\n");
4750}
4751SLAB_ATTR_RO(slabs_cpu_partial);
4752
a5a84755
CL
4753static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4754{
4755 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4756}
4757
4758static ssize_t reclaim_account_store(struct kmem_cache *s,
4759 const char *buf, size_t length)
4760{
4761 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4762 if (buf[0] == '1')
4763 s->flags |= SLAB_RECLAIM_ACCOUNT;
4764 return length;
4765}
4766SLAB_ATTR(reclaim_account);
4767
4768static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4769{
4770 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4771}
4772SLAB_ATTR_RO(hwcache_align);
4773
4774#ifdef CONFIG_ZONE_DMA
4775static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4776{
4777 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4778}
4779SLAB_ATTR_RO(cache_dma);
4780#endif
4781
4782static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4783{
4784 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4785}
4786SLAB_ATTR_RO(destroy_by_rcu);
4787
ab9a0f19
LJ
4788static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4789{
4790 return sprintf(buf, "%d\n", s->reserved);
4791}
4792SLAB_ATTR_RO(reserved);
4793
ab4d5ed5 4794#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4795static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4796{
4797 return show_slab_objects(s, buf, SO_ALL);
4798}
4799SLAB_ATTR_RO(slabs);
4800
205ab99d
CL
4801static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4802{
4803 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4804}
4805SLAB_ATTR_RO(total_objects);
4806
81819f0f
CL
4807static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4808{
4809 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4810}
4811
4812static ssize_t sanity_checks_store(struct kmem_cache *s,
4813 const char *buf, size_t length)
4814{
4815 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4816 if (buf[0] == '1') {
4817 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4818 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4819 }
81819f0f
CL
4820 return length;
4821}
4822SLAB_ATTR(sanity_checks);
4823
4824static ssize_t trace_show(struct kmem_cache *s, char *buf)
4825{
4826 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4827}
4828
4829static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4830 size_t length)
4831{
c9e16131
CL
4832 /*
4833 * Tracing a merged cache is going to give confusing results
4834 * as well as cause other issues like converting a mergeable
4835 * cache into an umergeable one.
4836 */
4837 if (s->refcount > 1)
4838 return -EINVAL;
4839
81819f0f 4840 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4841 if (buf[0] == '1') {
4842 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4843 s->flags |= SLAB_TRACE;
b789ef51 4844 }
81819f0f
CL
4845 return length;
4846}
4847SLAB_ATTR(trace);
4848
81819f0f
CL
4849static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4850{
4851 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4852}
4853
4854static ssize_t red_zone_store(struct kmem_cache *s,
4855 const char *buf, size_t length)
4856{
4857 if (any_slab_objects(s))
4858 return -EBUSY;
4859
4860 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4861 if (buf[0] == '1') {
4862 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4863 s->flags |= SLAB_RED_ZONE;
b789ef51 4864 }
06b285dc 4865 calculate_sizes(s, -1);
81819f0f
CL
4866 return length;
4867}
4868SLAB_ATTR(red_zone);
4869
4870static ssize_t poison_show(struct kmem_cache *s, char *buf)
4871{
4872 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4873}
4874
4875static ssize_t poison_store(struct kmem_cache *s,
4876 const char *buf, size_t length)
4877{
4878 if (any_slab_objects(s))
4879 return -EBUSY;
4880
4881 s->flags &= ~SLAB_POISON;
b789ef51
CL
4882 if (buf[0] == '1') {
4883 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4884 s->flags |= SLAB_POISON;
b789ef51 4885 }
06b285dc 4886 calculate_sizes(s, -1);
81819f0f
CL
4887 return length;
4888}
4889SLAB_ATTR(poison);
4890
4891static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4892{
4893 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4894}
4895
4896static ssize_t store_user_store(struct kmem_cache *s,
4897 const char *buf, size_t length)
4898{
4899 if (any_slab_objects(s))
4900 return -EBUSY;
4901
4902 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4903 if (buf[0] == '1') {
4904 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4905 s->flags |= SLAB_STORE_USER;
b789ef51 4906 }
06b285dc 4907 calculate_sizes(s, -1);
81819f0f
CL
4908 return length;
4909}
4910SLAB_ATTR(store_user);
4911
53e15af0
CL
4912static ssize_t validate_show(struct kmem_cache *s, char *buf)
4913{
4914 return 0;
4915}
4916
4917static ssize_t validate_store(struct kmem_cache *s,
4918 const char *buf, size_t length)
4919{
434e245d
CL
4920 int ret = -EINVAL;
4921
4922 if (buf[0] == '1') {
4923 ret = validate_slab_cache(s);
4924 if (ret >= 0)
4925 ret = length;
4926 }
4927 return ret;
53e15af0
CL
4928}
4929SLAB_ATTR(validate);
a5a84755
CL
4930
4931static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4932{
4933 if (!(s->flags & SLAB_STORE_USER))
4934 return -ENOSYS;
4935 return list_locations(s, buf, TRACK_ALLOC);
4936}
4937SLAB_ATTR_RO(alloc_calls);
4938
4939static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4940{
4941 if (!(s->flags & SLAB_STORE_USER))
4942 return -ENOSYS;
4943 return list_locations(s, buf, TRACK_FREE);
4944}
4945SLAB_ATTR_RO(free_calls);
4946#endif /* CONFIG_SLUB_DEBUG */
4947
4948#ifdef CONFIG_FAILSLAB
4949static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4950{
4951 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4952}
4953
4954static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4955 size_t length)
4956{
c9e16131
CL
4957 if (s->refcount > 1)
4958 return -EINVAL;
4959
a5a84755
CL
4960 s->flags &= ~SLAB_FAILSLAB;
4961 if (buf[0] == '1')
4962 s->flags |= SLAB_FAILSLAB;
4963 return length;
4964}
4965SLAB_ATTR(failslab);
ab4d5ed5 4966#endif
53e15af0 4967
2086d26a
CL
4968static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4969{
4970 return 0;
4971}
4972
4973static ssize_t shrink_store(struct kmem_cache *s,
4974 const char *buf, size_t length)
4975{
832f37f5
VD
4976 if (buf[0] == '1')
4977 kmem_cache_shrink(s);
4978 else
2086d26a
CL
4979 return -EINVAL;
4980 return length;
4981}
4982SLAB_ATTR(shrink);
4983
81819f0f 4984#ifdef CONFIG_NUMA
9824601e 4985static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4986{
9824601e 4987 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4988}
4989
9824601e 4990static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4991 const char *buf, size_t length)
4992{
0121c619
CL
4993 unsigned long ratio;
4994 int err;
4995
3dbb95f7 4996 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
4997 if (err)
4998 return err;
4999
e2cb96b7 5000 if (ratio <= 100)
0121c619 5001 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5002
81819f0f
CL
5003 return length;
5004}
9824601e 5005SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5006#endif
5007
8ff12cfc 5008#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5009static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5010{
5011 unsigned long sum = 0;
5012 int cpu;
5013 int len;
5014 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5015
5016 if (!data)
5017 return -ENOMEM;
5018
5019 for_each_online_cpu(cpu) {
9dfc6e68 5020 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5021
5022 data[cpu] = x;
5023 sum += x;
5024 }
5025
5026 len = sprintf(buf, "%lu", sum);
5027
50ef37b9 5028#ifdef CONFIG_SMP
8ff12cfc
CL
5029 for_each_online_cpu(cpu) {
5030 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5031 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5032 }
50ef37b9 5033#endif
8ff12cfc
CL
5034 kfree(data);
5035 return len + sprintf(buf + len, "\n");
5036}
5037
78eb00cc
DR
5038static void clear_stat(struct kmem_cache *s, enum stat_item si)
5039{
5040 int cpu;
5041
5042 for_each_online_cpu(cpu)
9dfc6e68 5043 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5044}
5045
8ff12cfc
CL
5046#define STAT_ATTR(si, text) \
5047static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5048{ \
5049 return show_stat(s, buf, si); \
5050} \
78eb00cc
DR
5051static ssize_t text##_store(struct kmem_cache *s, \
5052 const char *buf, size_t length) \
5053{ \
5054 if (buf[0] != '0') \
5055 return -EINVAL; \
5056 clear_stat(s, si); \
5057 return length; \
5058} \
5059SLAB_ATTR(text); \
8ff12cfc
CL
5060
5061STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5062STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5063STAT_ATTR(FREE_FASTPATH, free_fastpath);
5064STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5065STAT_ATTR(FREE_FROZEN, free_frozen);
5066STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5067STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5068STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5069STAT_ATTR(ALLOC_SLAB, alloc_slab);
5070STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5071STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5072STAT_ATTR(FREE_SLAB, free_slab);
5073STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5074STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5075STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5076STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5077STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5078STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5079STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5080STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5081STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5082STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5083STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5084STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5085STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5086STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
5087#endif
5088
06428780 5089static struct attribute *slab_attrs[] = {
81819f0f
CL
5090 &slab_size_attr.attr,
5091 &object_size_attr.attr,
5092 &objs_per_slab_attr.attr,
5093 &order_attr.attr,
73d342b1 5094 &min_partial_attr.attr,
49e22585 5095 &cpu_partial_attr.attr,
81819f0f 5096 &objects_attr.attr,
205ab99d 5097 &objects_partial_attr.attr,
81819f0f
CL
5098 &partial_attr.attr,
5099 &cpu_slabs_attr.attr,
5100 &ctor_attr.attr,
81819f0f
CL
5101 &aliases_attr.attr,
5102 &align_attr.attr,
81819f0f
CL
5103 &hwcache_align_attr.attr,
5104 &reclaim_account_attr.attr,
5105 &destroy_by_rcu_attr.attr,
a5a84755 5106 &shrink_attr.attr,
ab9a0f19 5107 &reserved_attr.attr,
49e22585 5108 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5109#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5110 &total_objects_attr.attr,
5111 &slabs_attr.attr,
5112 &sanity_checks_attr.attr,
5113 &trace_attr.attr,
81819f0f
CL
5114 &red_zone_attr.attr,
5115 &poison_attr.attr,
5116 &store_user_attr.attr,
53e15af0 5117 &validate_attr.attr,
88a420e4
CL
5118 &alloc_calls_attr.attr,
5119 &free_calls_attr.attr,
ab4d5ed5 5120#endif
81819f0f
CL
5121#ifdef CONFIG_ZONE_DMA
5122 &cache_dma_attr.attr,
5123#endif
5124#ifdef CONFIG_NUMA
9824601e 5125 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5126#endif
5127#ifdef CONFIG_SLUB_STATS
5128 &alloc_fastpath_attr.attr,
5129 &alloc_slowpath_attr.attr,
5130 &free_fastpath_attr.attr,
5131 &free_slowpath_attr.attr,
5132 &free_frozen_attr.attr,
5133 &free_add_partial_attr.attr,
5134 &free_remove_partial_attr.attr,
5135 &alloc_from_partial_attr.attr,
5136 &alloc_slab_attr.attr,
5137 &alloc_refill_attr.attr,
e36a2652 5138 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5139 &free_slab_attr.attr,
5140 &cpuslab_flush_attr.attr,
5141 &deactivate_full_attr.attr,
5142 &deactivate_empty_attr.attr,
5143 &deactivate_to_head_attr.attr,
5144 &deactivate_to_tail_attr.attr,
5145 &deactivate_remote_frees_attr.attr,
03e404af 5146 &deactivate_bypass_attr.attr,
65c3376a 5147 &order_fallback_attr.attr,
b789ef51
CL
5148 &cmpxchg_double_fail_attr.attr,
5149 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5150 &cpu_partial_alloc_attr.attr,
5151 &cpu_partial_free_attr.attr,
8028dcea
AS
5152 &cpu_partial_node_attr.attr,
5153 &cpu_partial_drain_attr.attr,
81819f0f 5154#endif
4c13dd3b
DM
5155#ifdef CONFIG_FAILSLAB
5156 &failslab_attr.attr,
5157#endif
5158
81819f0f
CL
5159 NULL
5160};
5161
5162static struct attribute_group slab_attr_group = {
5163 .attrs = slab_attrs,
5164};
5165
5166static ssize_t slab_attr_show(struct kobject *kobj,
5167 struct attribute *attr,
5168 char *buf)
5169{
5170 struct slab_attribute *attribute;
5171 struct kmem_cache *s;
5172 int err;
5173
5174 attribute = to_slab_attr(attr);
5175 s = to_slab(kobj);
5176
5177 if (!attribute->show)
5178 return -EIO;
5179
5180 err = attribute->show(s, buf);
5181
5182 return err;
5183}
5184
5185static ssize_t slab_attr_store(struct kobject *kobj,
5186 struct attribute *attr,
5187 const char *buf, size_t len)
5188{
5189 struct slab_attribute *attribute;
5190 struct kmem_cache *s;
5191 int err;
5192
5193 attribute = to_slab_attr(attr);
5194 s = to_slab(kobj);
5195
5196 if (!attribute->store)
5197 return -EIO;
5198
5199 err = attribute->store(s, buf, len);
107dab5c
GC
5200#ifdef CONFIG_MEMCG_KMEM
5201 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5202 struct kmem_cache *c;
81819f0f 5203
107dab5c
GC
5204 mutex_lock(&slab_mutex);
5205 if (s->max_attr_size < len)
5206 s->max_attr_size = len;
5207
ebe945c2
GC
5208 /*
5209 * This is a best effort propagation, so this function's return
5210 * value will be determined by the parent cache only. This is
5211 * basically because not all attributes will have a well
5212 * defined semantics for rollbacks - most of the actions will
5213 * have permanent effects.
5214 *
5215 * Returning the error value of any of the children that fail
5216 * is not 100 % defined, in the sense that users seeing the
5217 * error code won't be able to know anything about the state of
5218 * the cache.
5219 *
5220 * Only returning the error code for the parent cache at least
5221 * has well defined semantics. The cache being written to
5222 * directly either failed or succeeded, in which case we loop
5223 * through the descendants with best-effort propagation.
5224 */
426589f5
VD
5225 for_each_memcg_cache(c, s)
5226 attribute->store(c, buf, len);
107dab5c
GC
5227 mutex_unlock(&slab_mutex);
5228 }
5229#endif
81819f0f
CL
5230 return err;
5231}
5232
107dab5c
GC
5233static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5234{
5235#ifdef CONFIG_MEMCG_KMEM
5236 int i;
5237 char *buffer = NULL;
93030d83 5238 struct kmem_cache *root_cache;
107dab5c 5239
93030d83 5240 if (is_root_cache(s))
107dab5c
GC
5241 return;
5242
f7ce3190 5243 root_cache = s->memcg_params.root_cache;
93030d83 5244
107dab5c
GC
5245 /*
5246 * This mean this cache had no attribute written. Therefore, no point
5247 * in copying default values around
5248 */
93030d83 5249 if (!root_cache->max_attr_size)
107dab5c
GC
5250 return;
5251
5252 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5253 char mbuf[64];
5254 char *buf;
5255 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5256
5257 if (!attr || !attr->store || !attr->show)
5258 continue;
5259
5260 /*
5261 * It is really bad that we have to allocate here, so we will
5262 * do it only as a fallback. If we actually allocate, though,
5263 * we can just use the allocated buffer until the end.
5264 *
5265 * Most of the slub attributes will tend to be very small in
5266 * size, but sysfs allows buffers up to a page, so they can
5267 * theoretically happen.
5268 */
5269 if (buffer)
5270 buf = buffer;
93030d83 5271 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5272 buf = mbuf;
5273 else {
5274 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5275 if (WARN_ON(!buffer))
5276 continue;
5277 buf = buffer;
5278 }
5279
93030d83 5280 attr->show(root_cache, buf);
107dab5c
GC
5281 attr->store(s, buf, strlen(buf));
5282 }
5283
5284 if (buffer)
5285 free_page((unsigned long)buffer);
5286#endif
5287}
5288
41a21285
CL
5289static void kmem_cache_release(struct kobject *k)
5290{
5291 slab_kmem_cache_release(to_slab(k));
5292}
5293
52cf25d0 5294static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5295 .show = slab_attr_show,
5296 .store = slab_attr_store,
5297};
5298
5299static struct kobj_type slab_ktype = {
5300 .sysfs_ops = &slab_sysfs_ops,
41a21285 5301 .release = kmem_cache_release,
81819f0f
CL
5302};
5303
5304static int uevent_filter(struct kset *kset, struct kobject *kobj)
5305{
5306 struct kobj_type *ktype = get_ktype(kobj);
5307
5308 if (ktype == &slab_ktype)
5309 return 1;
5310 return 0;
5311}
5312
9cd43611 5313static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5314 .filter = uevent_filter,
5315};
5316
27c3a314 5317static struct kset *slab_kset;
81819f0f 5318
9a41707b
VD
5319static inline struct kset *cache_kset(struct kmem_cache *s)
5320{
5321#ifdef CONFIG_MEMCG_KMEM
5322 if (!is_root_cache(s))
f7ce3190 5323 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5324#endif
5325 return slab_kset;
5326}
5327
81819f0f
CL
5328#define ID_STR_LENGTH 64
5329
5330/* Create a unique string id for a slab cache:
6446faa2
CL
5331 *
5332 * Format :[flags-]size
81819f0f
CL
5333 */
5334static char *create_unique_id(struct kmem_cache *s)
5335{
5336 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5337 char *p = name;
5338
5339 BUG_ON(!name);
5340
5341 *p++ = ':';
5342 /*
5343 * First flags affecting slabcache operations. We will only
5344 * get here for aliasable slabs so we do not need to support
5345 * too many flags. The flags here must cover all flags that
5346 * are matched during merging to guarantee that the id is
5347 * unique.
5348 */
5349 if (s->flags & SLAB_CACHE_DMA)
5350 *p++ = 'd';
5351 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5352 *p++ = 'a';
5353 if (s->flags & SLAB_DEBUG_FREE)
5354 *p++ = 'F';
5a896d9e
VN
5355 if (!(s->flags & SLAB_NOTRACK))
5356 *p++ = 't';
81819f0f
CL
5357 if (p != name + 1)
5358 *p++ = '-';
5359 p += sprintf(p, "%07d", s->size);
2633d7a0 5360
81819f0f
CL
5361 BUG_ON(p > name + ID_STR_LENGTH - 1);
5362 return name;
5363}
5364
5365static int sysfs_slab_add(struct kmem_cache *s)
5366{
5367 int err;
5368 const char *name;
45530c44 5369 int unmergeable = slab_unmergeable(s);
81819f0f 5370
81819f0f
CL
5371 if (unmergeable) {
5372 /*
5373 * Slabcache can never be merged so we can use the name proper.
5374 * This is typically the case for debug situations. In that
5375 * case we can catch duplicate names easily.
5376 */
27c3a314 5377 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5378 name = s->name;
5379 } else {
5380 /*
5381 * Create a unique name for the slab as a target
5382 * for the symlinks.
5383 */
5384 name = create_unique_id(s);
5385 }
5386
9a41707b 5387 s->kobj.kset = cache_kset(s);
26e4f205 5388 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731 5389 if (err)
80da026a 5390 goto out;
81819f0f
CL
5391
5392 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5393 if (err)
5394 goto out_del_kobj;
9a41707b
VD
5395
5396#ifdef CONFIG_MEMCG_KMEM
5397 if (is_root_cache(s)) {
5398 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5399 if (!s->memcg_kset) {
54b6a731
DJ
5400 err = -ENOMEM;
5401 goto out_del_kobj;
9a41707b
VD
5402 }
5403 }
5404#endif
5405
81819f0f
CL
5406 kobject_uevent(&s->kobj, KOBJ_ADD);
5407 if (!unmergeable) {
5408 /* Setup first alias */
5409 sysfs_slab_alias(s, s->name);
81819f0f 5410 }
54b6a731
DJ
5411out:
5412 if (!unmergeable)
5413 kfree(name);
5414 return err;
5415out_del_kobj:
5416 kobject_del(&s->kobj);
54b6a731 5417 goto out;
81819f0f
CL
5418}
5419
41a21285 5420void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5421{
97d06609 5422 if (slab_state < FULL)
2bce6485
CL
5423 /*
5424 * Sysfs has not been setup yet so no need to remove the
5425 * cache from sysfs.
5426 */
5427 return;
5428
9a41707b
VD
5429#ifdef CONFIG_MEMCG_KMEM
5430 kset_unregister(s->memcg_kset);
5431#endif
81819f0f
CL
5432 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5433 kobject_del(&s->kobj);
151c602f 5434 kobject_put(&s->kobj);
81819f0f
CL
5435}
5436
5437/*
5438 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5439 * available lest we lose that information.
81819f0f
CL
5440 */
5441struct saved_alias {
5442 struct kmem_cache *s;
5443 const char *name;
5444 struct saved_alias *next;
5445};
5446
5af328a5 5447static struct saved_alias *alias_list;
81819f0f
CL
5448
5449static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5450{
5451 struct saved_alias *al;
5452
97d06609 5453 if (slab_state == FULL) {
81819f0f
CL
5454 /*
5455 * If we have a leftover link then remove it.
5456 */
27c3a314
GKH
5457 sysfs_remove_link(&slab_kset->kobj, name);
5458 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5459 }
5460
5461 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5462 if (!al)
5463 return -ENOMEM;
5464
5465 al->s = s;
5466 al->name = name;
5467 al->next = alias_list;
5468 alias_list = al;
5469 return 0;
5470}
5471
5472static int __init slab_sysfs_init(void)
5473{
5b95a4ac 5474 struct kmem_cache *s;
81819f0f
CL
5475 int err;
5476
18004c5d 5477 mutex_lock(&slab_mutex);
2bce6485 5478
0ff21e46 5479 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5480 if (!slab_kset) {
18004c5d 5481 mutex_unlock(&slab_mutex);
f9f58285 5482 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5483 return -ENOSYS;
5484 }
5485
97d06609 5486 slab_state = FULL;
26a7bd03 5487
5b95a4ac 5488 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5489 err = sysfs_slab_add(s);
5d540fb7 5490 if (err)
f9f58285
FF
5491 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5492 s->name);
26a7bd03 5493 }
81819f0f
CL
5494
5495 while (alias_list) {
5496 struct saved_alias *al = alias_list;
5497
5498 alias_list = alias_list->next;
5499 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5500 if (err)
f9f58285
FF
5501 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5502 al->name);
81819f0f
CL
5503 kfree(al);
5504 }
5505
18004c5d 5506 mutex_unlock(&slab_mutex);
81819f0f
CL
5507 resiliency_test();
5508 return 0;
5509}
5510
5511__initcall(slab_sysfs_init);
ab4d5ed5 5512#endif /* CONFIG_SYSFS */
57ed3eda
PE
5513
5514/*
5515 * The /proc/slabinfo ABI
5516 */
158a9624 5517#ifdef CONFIG_SLABINFO
0d7561c6 5518void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5519{
57ed3eda 5520 unsigned long nr_slabs = 0;
205ab99d
CL
5521 unsigned long nr_objs = 0;
5522 unsigned long nr_free = 0;
57ed3eda 5523 int node;
fa45dc25 5524 struct kmem_cache_node *n;
57ed3eda 5525
fa45dc25 5526 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5527 nr_slabs += node_nr_slabs(n);
5528 nr_objs += node_nr_objs(n);
205ab99d 5529 nr_free += count_partial(n, count_free);
57ed3eda
PE
5530 }
5531
0d7561c6
GC
5532 sinfo->active_objs = nr_objs - nr_free;
5533 sinfo->num_objs = nr_objs;
5534 sinfo->active_slabs = nr_slabs;
5535 sinfo->num_slabs = nr_slabs;
5536 sinfo->objects_per_slab = oo_objects(s->oo);
5537 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5538}
5539
0d7561c6 5540void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5541{
7b3c3a50
AD
5542}
5543
b7454ad3
GC
5544ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5545 size_t count, loff_t *ppos)
7b3c3a50 5546{
b7454ad3 5547 return -EIO;
7b3c3a50 5548}
158a9624 5549#endif /* CONFIG_SLABINFO */