slub: reduce overhead of slub_debug
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
9 */
10
11#include <linux/mm.h>
1eb5ac64 12#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
13#include <linux/module.h>
14#include <linux/bit_spinlock.h>
15#include <linux/interrupt.h>
16#include <linux/bitops.h>
17#include <linux/slab.h>
7b3c3a50 18#include <linux/proc_fs.h>
81819f0f 19#include <linux/seq_file.h>
5a896d9e 20#include <linux/kmemcheck.h>
81819f0f
CL
21#include <linux/cpu.h>
22#include <linux/cpuset.h>
23#include <linux/mempolicy.h>
24#include <linux/ctype.h>
3ac7fe5a 25#include <linux/debugobjects.h>
81819f0f 26#include <linux/kallsyms.h>
b9049e23 27#include <linux/memory.h>
f8bd2258 28#include <linux/math64.h>
773ff60e 29#include <linux/fault-inject.h>
81819f0f 30
4a92379b
RK
31#include <trace/events/kmem.h>
32
81819f0f
CL
33/*
34 * Lock order:
35 * 1. slab_lock(page)
36 * 2. slab->list_lock
37 *
38 * The slab_lock protects operations on the object of a particular
39 * slab and its metadata in the page struct. If the slab lock
40 * has been taken then no allocations nor frees can be performed
41 * on the objects in the slab nor can the slab be added or removed
42 * from the partial or full lists since this would mean modifying
43 * the page_struct of the slab.
44 *
45 * The list_lock protects the partial and full list on each node and
46 * the partial slab counter. If taken then no new slabs may be added or
47 * removed from the lists nor make the number of partial slabs be modified.
48 * (Note that the total number of slabs is an atomic value that may be
49 * modified without taking the list lock).
50 *
51 * The list_lock is a centralized lock and thus we avoid taking it as
52 * much as possible. As long as SLUB does not have to handle partial
53 * slabs, operations can continue without any centralized lock. F.e.
54 * allocating a long series of objects that fill up slabs does not require
55 * the list lock.
56 *
57 * The lock order is sometimes inverted when we are trying to get a slab
58 * off a list. We take the list_lock and then look for a page on the list
59 * to use. While we do that objects in the slabs may be freed. We can
60 * only operate on the slab if we have also taken the slab_lock. So we use
61 * a slab_trylock() on the slab. If trylock was successful then no frees
62 * can occur anymore and we can use the slab for allocations etc. If the
63 * slab_trylock() does not succeed then frees are in progress in the slab and
64 * we must stay away from it for a while since we may cause a bouncing
65 * cacheline if we try to acquire the lock. So go onto the next slab.
66 * If all pages are busy then we may allocate a new slab instead of reusing
25985edc 67 * a partial slab. A new slab has no one operating on it and thus there is
81819f0f
CL
68 * no danger of cacheline contention.
69 *
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
672bba3a
CL
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 80 * freed then the slab will show up again on the partial lists.
672bba3a
CL
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
81819f0f
CL
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
4b6f0750
CL
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
98 *
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
dfb4f096 102 * freelist that allows lockless access to
894b8788
CL
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
81819f0f
CL
105 *
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
894b8788 108 * the fast path and disables lockless freelists.
81819f0f
CL
109 */
110
af537b0a
CL
111#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
113
114static inline int kmem_cache_debug(struct kmem_cache *s)
115{
5577bd8a 116#ifdef CONFIG_SLUB_DEBUG
af537b0a 117 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 118#else
af537b0a 119 return 0;
5577bd8a 120#endif
af537b0a 121}
5577bd8a 122
81819f0f
CL
123/*
124 * Issues still to be resolved:
125 *
81819f0f
CL
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127 *
81819f0f
CL
128 * - Variable sizing of the per node arrays
129 */
130
131/* Enable to test recovery from slab corruption on boot */
132#undef SLUB_RESILIENCY_TEST
133
2086d26a
CL
134/*
135 * Mininum number of partial slabs. These will be left on the partial
136 * lists even if they are empty. kmem_cache_shrink may reclaim them.
137 */
76be8950 138#define MIN_PARTIAL 5
e95eed57 139
2086d26a
CL
140/*
141 * Maximum number of desirable partial slabs.
142 * The existence of more partial slabs makes kmem_cache_shrink
143 * sort the partial list by the number of objects in the.
144 */
145#define MAX_PARTIAL 10
146
81819f0f
CL
147#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
148 SLAB_POISON | SLAB_STORE_USER)
672bba3a 149
fa5ec8a1 150/*
3de47213
DR
151 * Debugging flags that require metadata to be stored in the slab. These get
152 * disabled when slub_debug=O is used and a cache's min order increases with
153 * metadata.
fa5ec8a1 154 */
3de47213 155#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 156
81819f0f
CL
157/*
158 * Set of flags that will prevent slab merging
159 */
160#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
161 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
162 SLAB_FAILSLAB)
81819f0f
CL
163
164#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 165 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 166
210b5c06
CG
167#define OO_SHIFT 16
168#define OO_MASK ((1 << OO_SHIFT) - 1)
169#define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
170
81819f0f 171/* Internal SLUB flags */
f90ec390 172#define __OBJECT_POISON 0x80000000UL /* Poison object */
81819f0f
CL
173
174static int kmem_size = sizeof(struct kmem_cache);
175
176#ifdef CONFIG_SMP
177static struct notifier_block slab_notifier;
178#endif
179
180static enum {
181 DOWN, /* No slab functionality available */
51df1142 182 PARTIAL, /* Kmem_cache_node works */
672bba3a 183 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
184 SYSFS /* Sysfs up */
185} slab_state = DOWN;
186
187/* A list of all slab caches on the system */
188static DECLARE_RWSEM(slub_lock);
5af328a5 189static LIST_HEAD(slab_caches);
81819f0f 190
02cbc874
CL
191/*
192 * Tracking user of a slab.
193 */
d6543e39 194#define TRACK_ADDRS_COUNT 16
02cbc874 195struct track {
ce71e27c 196 unsigned long addr; /* Called from address */
d6543e39
BG
197#ifdef CONFIG_STACKTRACE
198 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
199#endif
02cbc874
CL
200 int cpu; /* Was running on cpu */
201 int pid; /* Pid context */
202 unsigned long when; /* When did the operation occur */
203};
204
205enum track_item { TRACK_ALLOC, TRACK_FREE };
206
ab4d5ed5 207#ifdef CONFIG_SYSFS
81819f0f
CL
208static int sysfs_slab_add(struct kmem_cache *);
209static int sysfs_slab_alias(struct kmem_cache *, const char *);
210static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 211
81819f0f 212#else
0c710013
CL
213static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
214static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
215 { return 0; }
151c602f
CL
216static inline void sysfs_slab_remove(struct kmem_cache *s)
217{
84c1cf62 218 kfree(s->name);
151c602f
CL
219 kfree(s);
220}
8ff12cfc 221
81819f0f
CL
222#endif
223
4fdccdfb 224static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
225{
226#ifdef CONFIG_SLUB_STATS
84e554e6 227 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
228#endif
229}
230
81819f0f
CL
231/********************************************************************
232 * Core slab cache functions
233 *******************************************************************/
234
235int slab_is_available(void)
236{
237 return slab_state >= UP;
238}
239
240static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
241{
81819f0f 242 return s->node[node];
81819f0f
CL
243}
244
6446faa2 245/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
246static inline int check_valid_pointer(struct kmem_cache *s,
247 struct page *page, const void *object)
248{
249 void *base;
250
a973e9dd 251 if (!object)
02cbc874
CL
252 return 1;
253
a973e9dd 254 base = page_address(page);
39b26464 255 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
256 (object - base) % s->size) {
257 return 0;
258 }
259
260 return 1;
261}
262
7656c72b
CL
263static inline void *get_freepointer(struct kmem_cache *s, void *object)
264{
265 return *(void **)(object + s->offset);
266}
267
1393d9a1
CL
268static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
269{
270 void *p;
271
272#ifdef CONFIG_DEBUG_PAGEALLOC
273 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
274#else
275 p = get_freepointer(s, object);
276#endif
277 return p;
278}
279
7656c72b
CL
280static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
281{
282 *(void **)(object + s->offset) = fp;
283}
284
285/* Loop over all objects in a slab */
224a88be
CL
286#define for_each_object(__p, __s, __addr, __objects) \
287 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
288 __p += (__s)->size)
289
7656c72b
CL
290/* Determine object index from a given position */
291static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
292{
293 return (p - addr) / s->size;
294}
295
d71f606f
MK
296static inline size_t slab_ksize(const struct kmem_cache *s)
297{
298#ifdef CONFIG_SLUB_DEBUG
299 /*
300 * Debugging requires use of the padding between object
301 * and whatever may come after it.
302 */
303 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
304 return s->objsize;
305
306#endif
307 /*
308 * If we have the need to store the freelist pointer
309 * back there or track user information then we can
310 * only use the space before that information.
311 */
312 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
313 return s->inuse;
314 /*
315 * Else we can use all the padding etc for the allocation
316 */
317 return s->size;
318}
319
ab9a0f19
LJ
320static inline int order_objects(int order, unsigned long size, int reserved)
321{
322 return ((PAGE_SIZE << order) - reserved) / size;
323}
324
834f3d11 325static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 326 unsigned long size, int reserved)
834f3d11
CL
327{
328 struct kmem_cache_order_objects x = {
ab9a0f19 329 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
330 };
331
332 return x;
333}
334
335static inline int oo_order(struct kmem_cache_order_objects x)
336{
210b5c06 337 return x.x >> OO_SHIFT;
834f3d11
CL
338}
339
340static inline int oo_objects(struct kmem_cache_order_objects x)
341{
210b5c06 342 return x.x & OO_MASK;
834f3d11
CL
343}
344
41ecc55b 345#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
346/*
347 * Determine a map of object in use on a page.
348 *
349 * Slab lock or node listlock must be held to guarantee that the page does
350 * not vanish from under us.
351 */
352static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
353{
354 void *p;
355 void *addr = page_address(page);
356
357 for (p = page->freelist; p; p = get_freepointer(s, p))
358 set_bit(slab_index(p, s, addr), map);
359}
360
41ecc55b
CL
361/*
362 * Debug settings:
363 */
f0630fff
CL
364#ifdef CONFIG_SLUB_DEBUG_ON
365static int slub_debug = DEBUG_DEFAULT_FLAGS;
366#else
41ecc55b 367static int slub_debug;
f0630fff 368#endif
41ecc55b
CL
369
370static char *slub_debug_slabs;
fa5ec8a1 371static int disable_higher_order_debug;
41ecc55b 372
81819f0f
CL
373/*
374 * Object debugging
375 */
376static void print_section(char *text, u8 *addr, unsigned int length)
377{
378 int i, offset;
379 int newline = 1;
380 char ascii[17];
381
382 ascii[16] = 0;
383
384 for (i = 0; i < length; i++) {
385 if (newline) {
24922684 386 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
387 newline = 0;
388 }
06428780 389 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
390 offset = i % 16;
391 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
392 if (offset == 15) {
06428780 393 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
394 newline = 1;
395 }
396 }
397 if (!newline) {
398 i %= 16;
399 while (i < 16) {
06428780 400 printk(KERN_CONT " ");
81819f0f
CL
401 ascii[i] = ' ';
402 i++;
403 }
06428780 404 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
405 }
406}
407
81819f0f
CL
408static struct track *get_track(struct kmem_cache *s, void *object,
409 enum track_item alloc)
410{
411 struct track *p;
412
413 if (s->offset)
414 p = object + s->offset + sizeof(void *);
415 else
416 p = object + s->inuse;
417
418 return p + alloc;
419}
420
421static void set_track(struct kmem_cache *s, void *object,
ce71e27c 422 enum track_item alloc, unsigned long addr)
81819f0f 423{
1a00df4a 424 struct track *p = get_track(s, object, alloc);
81819f0f 425
81819f0f 426 if (addr) {
d6543e39
BG
427#ifdef CONFIG_STACKTRACE
428 struct stack_trace trace;
429 int i;
430
431 trace.nr_entries = 0;
432 trace.max_entries = TRACK_ADDRS_COUNT;
433 trace.entries = p->addrs;
434 trace.skip = 3;
435 save_stack_trace(&trace);
436
437 /* See rant in lockdep.c */
438 if (trace.nr_entries != 0 &&
439 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
440 trace.nr_entries--;
441
442 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
443 p->addrs[i] = 0;
444#endif
81819f0f
CL
445 p->addr = addr;
446 p->cpu = smp_processor_id();
88e4ccf2 447 p->pid = current->pid;
81819f0f
CL
448 p->when = jiffies;
449 } else
450 memset(p, 0, sizeof(struct track));
451}
452
81819f0f
CL
453static void init_tracking(struct kmem_cache *s, void *object)
454{
24922684
CL
455 if (!(s->flags & SLAB_STORE_USER))
456 return;
457
ce71e27c
EGM
458 set_track(s, object, TRACK_FREE, 0UL);
459 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
460}
461
462static void print_track(const char *s, struct track *t)
463{
464 if (!t->addr)
465 return;
466
7daf705f 467 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 468 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
469#ifdef CONFIG_STACKTRACE
470 {
471 int i;
472 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
473 if (t->addrs[i])
474 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
475 else
476 break;
477 }
478#endif
24922684
CL
479}
480
481static void print_tracking(struct kmem_cache *s, void *object)
482{
483 if (!(s->flags & SLAB_STORE_USER))
484 return;
485
486 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
487 print_track("Freed", get_track(s, object, TRACK_FREE));
488}
489
490static void print_page_info(struct page *page)
491{
39b26464
CL
492 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
493 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
494
495}
496
497static void slab_bug(struct kmem_cache *s, char *fmt, ...)
498{
499 va_list args;
500 char buf[100];
501
502 va_start(args, fmt);
503 vsnprintf(buf, sizeof(buf), fmt, args);
504 va_end(args);
505 printk(KERN_ERR "========================================"
506 "=====================================\n");
507 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
508 printk(KERN_ERR "----------------------------------------"
509 "-------------------------------------\n\n");
81819f0f
CL
510}
511
24922684
CL
512static void slab_fix(struct kmem_cache *s, char *fmt, ...)
513{
514 va_list args;
515 char buf[100];
516
517 va_start(args, fmt);
518 vsnprintf(buf, sizeof(buf), fmt, args);
519 va_end(args);
520 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
521}
522
523static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
524{
525 unsigned int off; /* Offset of last byte */
a973e9dd 526 u8 *addr = page_address(page);
24922684
CL
527
528 print_tracking(s, p);
529
530 print_page_info(page);
531
532 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
533 p, p - addr, get_freepointer(s, p));
534
535 if (p > addr + 16)
536 print_section("Bytes b4", p - 16, 16);
537
0ebd652b 538 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
81819f0f
CL
539
540 if (s->flags & SLAB_RED_ZONE)
541 print_section("Redzone", p + s->objsize,
542 s->inuse - s->objsize);
543
81819f0f
CL
544 if (s->offset)
545 off = s->offset + sizeof(void *);
546 else
547 off = s->inuse;
548
24922684 549 if (s->flags & SLAB_STORE_USER)
81819f0f 550 off += 2 * sizeof(struct track);
81819f0f
CL
551
552 if (off != s->size)
553 /* Beginning of the filler is the free pointer */
24922684
CL
554 print_section("Padding", p + off, s->size - off);
555
556 dump_stack();
81819f0f
CL
557}
558
559static void object_err(struct kmem_cache *s, struct page *page,
560 u8 *object, char *reason)
561{
3dc50637 562 slab_bug(s, "%s", reason);
24922684 563 print_trailer(s, page, object);
81819f0f
CL
564}
565
24922684 566static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
567{
568 va_list args;
569 char buf[100];
570
24922684
CL
571 va_start(args, fmt);
572 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 573 va_end(args);
3dc50637 574 slab_bug(s, "%s", buf);
24922684 575 print_page_info(page);
81819f0f
CL
576 dump_stack();
577}
578
f7cb1933 579static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
580{
581 u8 *p = object;
582
583 if (s->flags & __OBJECT_POISON) {
584 memset(p, POISON_FREE, s->objsize - 1);
06428780 585 p[s->objsize - 1] = POISON_END;
81819f0f
CL
586 }
587
588 if (s->flags & SLAB_RED_ZONE)
f7cb1933 589 memset(p + s->objsize, val, s->inuse - s->objsize);
81819f0f
CL
590}
591
c4089f98 592static u8 *check_bytes8(u8 *start, u8 value, unsigned int bytes)
81819f0f
CL
593{
594 while (bytes) {
c4089f98 595 if (*start != value)
24922684 596 return start;
81819f0f
CL
597 start++;
598 bytes--;
599 }
24922684
CL
600 return NULL;
601}
602
c4089f98
MS
603static u8 *check_bytes(u8 *start, u8 value, unsigned int bytes)
604{
605 u64 value64;
606 unsigned int words, prefix;
607
608 if (bytes <= 16)
609 return check_bytes8(start, value, bytes);
610
611 value64 = value | value << 8 | value << 16 | value << 24;
612 value64 = value64 | value64 << 32;
613 prefix = 8 - ((unsigned long)start) % 8;
614
615 if (prefix) {
616 u8 *r = check_bytes8(start, value, prefix);
617 if (r)
618 return r;
619 start += prefix;
620 bytes -= prefix;
621 }
622
623 words = bytes / 8;
624
625 while (words) {
626 if (*(u64 *)start != value64)
627 return check_bytes8(start, value, 8);
628 start += 8;
629 words--;
630 }
631
632 return check_bytes8(start, value, bytes % 8);
633}
634
24922684
CL
635static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
636 void *from, void *to)
637{
638 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
639 memset(from, data, to - from);
640}
641
642static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
643 u8 *object, char *what,
06428780 644 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
645{
646 u8 *fault;
647 u8 *end;
648
649 fault = check_bytes(start, value, bytes);
650 if (!fault)
651 return 1;
652
653 end = start + bytes;
654 while (end > fault && end[-1] == value)
655 end--;
656
657 slab_bug(s, "%s overwritten", what);
658 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
659 fault, end - 1, fault[0], value);
660 print_trailer(s, page, object);
661
662 restore_bytes(s, what, value, fault, end);
663 return 0;
81819f0f
CL
664}
665
81819f0f
CL
666/*
667 * Object layout:
668 *
669 * object address
670 * Bytes of the object to be managed.
671 * If the freepointer may overlay the object then the free
672 * pointer is the first word of the object.
672bba3a 673 *
81819f0f
CL
674 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
675 * 0xa5 (POISON_END)
676 *
677 * object + s->objsize
678 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
679 * Padding is extended by another word if Redzoning is enabled and
680 * objsize == inuse.
681 *
81819f0f
CL
682 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
683 * 0xcc (RED_ACTIVE) for objects in use.
684 *
685 * object + s->inuse
672bba3a
CL
686 * Meta data starts here.
687 *
81819f0f
CL
688 * A. Free pointer (if we cannot overwrite object on free)
689 * B. Tracking data for SLAB_STORE_USER
672bba3a 690 * C. Padding to reach required alignment boundary or at mininum
6446faa2 691 * one word if debugging is on to be able to detect writes
672bba3a
CL
692 * before the word boundary.
693 *
694 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
695 *
696 * object + s->size
672bba3a 697 * Nothing is used beyond s->size.
81819f0f 698 *
672bba3a
CL
699 * If slabcaches are merged then the objsize and inuse boundaries are mostly
700 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
701 * may be used with merged slabcaches.
702 */
703
81819f0f
CL
704static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
705{
706 unsigned long off = s->inuse; /* The end of info */
707
708 if (s->offset)
709 /* Freepointer is placed after the object. */
710 off += sizeof(void *);
711
712 if (s->flags & SLAB_STORE_USER)
713 /* We also have user information there */
714 off += 2 * sizeof(struct track);
715
716 if (s->size == off)
717 return 1;
718
24922684
CL
719 return check_bytes_and_report(s, page, p, "Object padding",
720 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
721}
722
39b26464 723/* Check the pad bytes at the end of a slab page */
81819f0f
CL
724static int slab_pad_check(struct kmem_cache *s, struct page *page)
725{
24922684
CL
726 u8 *start;
727 u8 *fault;
728 u8 *end;
729 int length;
730 int remainder;
81819f0f
CL
731
732 if (!(s->flags & SLAB_POISON))
733 return 1;
734
a973e9dd 735 start = page_address(page);
ab9a0f19 736 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
737 end = start + length;
738 remainder = length % s->size;
81819f0f
CL
739 if (!remainder)
740 return 1;
741
39b26464 742 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
743 if (!fault)
744 return 1;
745 while (end > fault && end[-1] == POISON_INUSE)
746 end--;
747
748 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 749 print_section("Padding", end - remainder, remainder);
24922684 750
8a3d271d 751 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 752 return 0;
81819f0f
CL
753}
754
755static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 756 void *object, u8 val)
81819f0f
CL
757{
758 u8 *p = object;
759 u8 *endobject = object + s->objsize;
760
761 if (s->flags & SLAB_RED_ZONE) {
24922684 762 if (!check_bytes_and_report(s, page, object, "Redzone",
f7cb1933 763 endobject, val, s->inuse - s->objsize))
81819f0f 764 return 0;
81819f0f 765 } else {
3adbefee
IM
766 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
767 check_bytes_and_report(s, page, p, "Alignment padding",
768 endobject, POISON_INUSE, s->inuse - s->objsize);
769 }
81819f0f
CL
770 }
771
772 if (s->flags & SLAB_POISON) {
f7cb1933 773 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684
CL
774 (!check_bytes_and_report(s, page, p, "Poison", p,
775 POISON_FREE, s->objsize - 1) ||
776 !check_bytes_and_report(s, page, p, "Poison",
06428780 777 p + s->objsize - 1, POISON_END, 1)))
81819f0f 778 return 0;
81819f0f
CL
779 /*
780 * check_pad_bytes cleans up on its own.
781 */
782 check_pad_bytes(s, page, p);
783 }
784
f7cb1933 785 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
786 /*
787 * Object and freepointer overlap. Cannot check
788 * freepointer while object is allocated.
789 */
790 return 1;
791
792 /* Check free pointer validity */
793 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
794 object_err(s, page, p, "Freepointer corrupt");
795 /*
9f6c708e 796 * No choice but to zap it and thus lose the remainder
81819f0f 797 * of the free objects in this slab. May cause
672bba3a 798 * another error because the object count is now wrong.
81819f0f 799 */
a973e9dd 800 set_freepointer(s, p, NULL);
81819f0f
CL
801 return 0;
802 }
803 return 1;
804}
805
806static int check_slab(struct kmem_cache *s, struct page *page)
807{
39b26464
CL
808 int maxobj;
809
81819f0f
CL
810 VM_BUG_ON(!irqs_disabled());
811
812 if (!PageSlab(page)) {
24922684 813 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
814 return 0;
815 }
39b26464 816
ab9a0f19 817 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
818 if (page->objects > maxobj) {
819 slab_err(s, page, "objects %u > max %u",
820 s->name, page->objects, maxobj);
821 return 0;
822 }
823 if (page->inuse > page->objects) {
24922684 824 slab_err(s, page, "inuse %u > max %u",
39b26464 825 s->name, page->inuse, page->objects);
81819f0f
CL
826 return 0;
827 }
828 /* Slab_pad_check fixes things up after itself */
829 slab_pad_check(s, page);
830 return 1;
831}
832
833/*
672bba3a
CL
834 * Determine if a certain object on a page is on the freelist. Must hold the
835 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
836 */
837static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
838{
839 int nr = 0;
840 void *fp = page->freelist;
841 void *object = NULL;
224a88be 842 unsigned long max_objects;
81819f0f 843
39b26464 844 while (fp && nr <= page->objects) {
81819f0f
CL
845 if (fp == search)
846 return 1;
847 if (!check_valid_pointer(s, page, fp)) {
848 if (object) {
849 object_err(s, page, object,
850 "Freechain corrupt");
a973e9dd 851 set_freepointer(s, object, NULL);
81819f0f
CL
852 break;
853 } else {
24922684 854 slab_err(s, page, "Freepointer corrupt");
a973e9dd 855 page->freelist = NULL;
39b26464 856 page->inuse = page->objects;
24922684 857 slab_fix(s, "Freelist cleared");
81819f0f
CL
858 return 0;
859 }
860 break;
861 }
862 object = fp;
863 fp = get_freepointer(s, object);
864 nr++;
865 }
866
ab9a0f19 867 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
868 if (max_objects > MAX_OBJS_PER_PAGE)
869 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
870
871 if (page->objects != max_objects) {
872 slab_err(s, page, "Wrong number of objects. Found %d but "
873 "should be %d", page->objects, max_objects);
874 page->objects = max_objects;
875 slab_fix(s, "Number of objects adjusted.");
876 }
39b26464 877 if (page->inuse != page->objects - nr) {
70d71228 878 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
879 "counted were %d", page->inuse, page->objects - nr);
880 page->inuse = page->objects - nr;
24922684 881 slab_fix(s, "Object count adjusted.");
81819f0f
CL
882 }
883 return search == NULL;
884}
885
0121c619
CL
886static void trace(struct kmem_cache *s, struct page *page, void *object,
887 int alloc)
3ec09742
CL
888{
889 if (s->flags & SLAB_TRACE) {
890 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
891 s->name,
892 alloc ? "alloc" : "free",
893 object, page->inuse,
894 page->freelist);
895
896 if (!alloc)
897 print_section("Object", (void *)object, s->objsize);
898
899 dump_stack();
900 }
901}
902
c016b0bd
CL
903/*
904 * Hooks for other subsystems that check memory allocations. In a typical
905 * production configuration these hooks all should produce no code at all.
906 */
907static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
908{
c1d50836 909 flags &= gfp_allowed_mask;
c016b0bd
CL
910 lockdep_trace_alloc(flags);
911 might_sleep_if(flags & __GFP_WAIT);
912
913 return should_failslab(s->objsize, flags, s->flags);
914}
915
916static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
917{
c1d50836 918 flags &= gfp_allowed_mask;
b3d41885 919 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
c016b0bd
CL
920 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
921}
922
923static inline void slab_free_hook(struct kmem_cache *s, void *x)
924{
925 kmemleak_free_recursive(x, s->flags);
c016b0bd 926
d3f661d6
CL
927 /*
928 * Trouble is that we may no longer disable interupts in the fast path
929 * So in order to make the debug calls that expect irqs to be
930 * disabled we need to disable interrupts temporarily.
931 */
932#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
933 {
934 unsigned long flags;
935
936 local_irq_save(flags);
937 kmemcheck_slab_free(s, x, s->objsize);
938 debug_check_no_locks_freed(x, s->objsize);
d3f661d6
CL
939 local_irq_restore(flags);
940 }
941#endif
f9b615de
TG
942 if (!(s->flags & SLAB_DEBUG_OBJECTS))
943 debug_check_no_obj_freed(x, s->objsize);
c016b0bd
CL
944}
945
643b1138 946/*
672bba3a 947 * Tracking of fully allocated slabs for debugging purposes.
643b1138 948 */
e95eed57 949static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 950{
643b1138
CL
951 spin_lock(&n->list_lock);
952 list_add(&page->lru, &n->full);
953 spin_unlock(&n->list_lock);
954}
955
956static void remove_full(struct kmem_cache *s, struct page *page)
957{
958 struct kmem_cache_node *n;
959
960 if (!(s->flags & SLAB_STORE_USER))
961 return;
962
963 n = get_node(s, page_to_nid(page));
964
965 spin_lock(&n->list_lock);
966 list_del(&page->lru);
967 spin_unlock(&n->list_lock);
968}
969
0f389ec6
CL
970/* Tracking of the number of slabs for debugging purposes */
971static inline unsigned long slabs_node(struct kmem_cache *s, int node)
972{
973 struct kmem_cache_node *n = get_node(s, node);
974
975 return atomic_long_read(&n->nr_slabs);
976}
977
26c02cf0
AB
978static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
979{
980 return atomic_long_read(&n->nr_slabs);
981}
982
205ab99d 983static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
984{
985 struct kmem_cache_node *n = get_node(s, node);
986
987 /*
988 * May be called early in order to allocate a slab for the
989 * kmem_cache_node structure. Solve the chicken-egg
990 * dilemma by deferring the increment of the count during
991 * bootstrap (see early_kmem_cache_node_alloc).
992 */
7340cc84 993 if (n) {
0f389ec6 994 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
995 atomic_long_add(objects, &n->total_objects);
996 }
0f389ec6 997}
205ab99d 998static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
999{
1000 struct kmem_cache_node *n = get_node(s, node);
1001
1002 atomic_long_dec(&n->nr_slabs);
205ab99d 1003 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1004}
1005
1006/* Object debug checks for alloc/free paths */
3ec09742
CL
1007static void setup_object_debug(struct kmem_cache *s, struct page *page,
1008 void *object)
1009{
1010 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1011 return;
1012
f7cb1933 1013 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1014 init_tracking(s, object);
1015}
1016
1537066c 1017static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 1018 void *object, unsigned long addr)
81819f0f
CL
1019{
1020 if (!check_slab(s, page))
1021 goto bad;
1022
d692ef6d 1023 if (!on_freelist(s, page, object)) {
24922684 1024 object_err(s, page, object, "Object already allocated");
70d71228 1025 goto bad;
81819f0f
CL
1026 }
1027
1028 if (!check_valid_pointer(s, page, object)) {
1029 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1030 goto bad;
81819f0f
CL
1031 }
1032
f7cb1933 1033 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1034 goto bad;
81819f0f 1035
3ec09742
CL
1036 /* Success perform special debug activities for allocs */
1037 if (s->flags & SLAB_STORE_USER)
1038 set_track(s, object, TRACK_ALLOC, addr);
1039 trace(s, page, object, 1);
f7cb1933 1040 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1041 return 1;
3ec09742 1042
81819f0f
CL
1043bad:
1044 if (PageSlab(page)) {
1045 /*
1046 * If this is a slab page then lets do the best we can
1047 * to avoid issues in the future. Marking all objects
672bba3a 1048 * as used avoids touching the remaining objects.
81819f0f 1049 */
24922684 1050 slab_fix(s, "Marking all objects used");
39b26464 1051 page->inuse = page->objects;
a973e9dd 1052 page->freelist = NULL;
81819f0f
CL
1053 }
1054 return 0;
1055}
1056
1537066c
CL
1057static noinline int free_debug_processing(struct kmem_cache *s,
1058 struct page *page, void *object, unsigned long addr)
81819f0f
CL
1059{
1060 if (!check_slab(s, page))
1061 goto fail;
1062
1063 if (!check_valid_pointer(s, page, object)) {
70d71228 1064 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1065 goto fail;
1066 }
1067
1068 if (on_freelist(s, page, object)) {
24922684 1069 object_err(s, page, object, "Object already free");
81819f0f
CL
1070 goto fail;
1071 }
1072
f7cb1933 1073 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
81819f0f
CL
1074 return 0;
1075
1076 if (unlikely(s != page->slab)) {
3adbefee 1077 if (!PageSlab(page)) {
70d71228
CL
1078 slab_err(s, page, "Attempt to free object(0x%p) "
1079 "outside of slab", object);
3adbefee 1080 } else if (!page->slab) {
81819f0f 1081 printk(KERN_ERR
70d71228 1082 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1083 object);
70d71228 1084 dump_stack();
06428780 1085 } else
24922684
CL
1086 object_err(s, page, object,
1087 "page slab pointer corrupt.");
81819f0f
CL
1088 goto fail;
1089 }
3ec09742
CL
1090
1091 /* Special debug activities for freeing objects */
8a38082d 1092 if (!PageSlubFrozen(page) && !page->freelist)
3ec09742
CL
1093 remove_full(s, page);
1094 if (s->flags & SLAB_STORE_USER)
1095 set_track(s, object, TRACK_FREE, addr);
1096 trace(s, page, object, 0);
f7cb1933 1097 init_object(s, object, SLUB_RED_INACTIVE);
81819f0f 1098 return 1;
3ec09742 1099
81819f0f 1100fail:
24922684 1101 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
1102 return 0;
1103}
1104
41ecc55b
CL
1105static int __init setup_slub_debug(char *str)
1106{
f0630fff
CL
1107 slub_debug = DEBUG_DEFAULT_FLAGS;
1108 if (*str++ != '=' || !*str)
1109 /*
1110 * No options specified. Switch on full debugging.
1111 */
1112 goto out;
1113
1114 if (*str == ',')
1115 /*
1116 * No options but restriction on slabs. This means full
1117 * debugging for slabs matching a pattern.
1118 */
1119 goto check_slabs;
1120
fa5ec8a1
DR
1121 if (tolower(*str) == 'o') {
1122 /*
1123 * Avoid enabling debugging on caches if its minimum order
1124 * would increase as a result.
1125 */
1126 disable_higher_order_debug = 1;
1127 goto out;
1128 }
1129
f0630fff
CL
1130 slub_debug = 0;
1131 if (*str == '-')
1132 /*
1133 * Switch off all debugging measures.
1134 */
1135 goto out;
1136
1137 /*
1138 * Determine which debug features should be switched on
1139 */
06428780 1140 for (; *str && *str != ','; str++) {
f0630fff
CL
1141 switch (tolower(*str)) {
1142 case 'f':
1143 slub_debug |= SLAB_DEBUG_FREE;
1144 break;
1145 case 'z':
1146 slub_debug |= SLAB_RED_ZONE;
1147 break;
1148 case 'p':
1149 slub_debug |= SLAB_POISON;
1150 break;
1151 case 'u':
1152 slub_debug |= SLAB_STORE_USER;
1153 break;
1154 case 't':
1155 slub_debug |= SLAB_TRACE;
1156 break;
4c13dd3b
DM
1157 case 'a':
1158 slub_debug |= SLAB_FAILSLAB;
1159 break;
f0630fff
CL
1160 default:
1161 printk(KERN_ERR "slub_debug option '%c' "
06428780 1162 "unknown. skipped\n", *str);
f0630fff 1163 }
41ecc55b
CL
1164 }
1165
f0630fff 1166check_slabs:
41ecc55b
CL
1167 if (*str == ',')
1168 slub_debug_slabs = str + 1;
f0630fff 1169out:
41ecc55b
CL
1170 return 1;
1171}
1172
1173__setup("slub_debug", setup_slub_debug);
1174
ba0268a8
CL
1175static unsigned long kmem_cache_flags(unsigned long objsize,
1176 unsigned long flags, const char *name,
51cc5068 1177 void (*ctor)(void *))
41ecc55b
CL
1178{
1179 /*
e153362a 1180 * Enable debugging if selected on the kernel commandline.
41ecc55b 1181 */
e153362a 1182 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1183 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1184 flags |= slub_debug;
ba0268a8
CL
1185
1186 return flags;
41ecc55b
CL
1187}
1188#else
3ec09742
CL
1189static inline void setup_object_debug(struct kmem_cache *s,
1190 struct page *page, void *object) {}
41ecc55b 1191
3ec09742 1192static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1193 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1194
3ec09742 1195static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1196 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1197
41ecc55b
CL
1198static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1199 { return 1; }
1200static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1201 void *object, u8 val) { return 1; }
3ec09742 1202static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1203static inline unsigned long kmem_cache_flags(unsigned long objsize,
1204 unsigned long flags, const char *name,
51cc5068 1205 void (*ctor)(void *))
ba0268a8
CL
1206{
1207 return flags;
1208}
41ecc55b 1209#define slub_debug 0
0f389ec6 1210
fdaa45e9
IM
1211#define disable_higher_order_debug 0
1212
0f389ec6
CL
1213static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1214 { return 0; }
26c02cf0
AB
1215static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1216 { return 0; }
205ab99d
CL
1217static inline void inc_slabs_node(struct kmem_cache *s, int node,
1218 int objects) {}
1219static inline void dec_slabs_node(struct kmem_cache *s, int node,
1220 int objects) {}
7d550c56
CL
1221
1222static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1223 { return 0; }
1224
1225static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1226 void *object) {}
1227
1228static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1229
ab4d5ed5 1230#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1231
81819f0f
CL
1232/*
1233 * Slab allocation and freeing
1234 */
65c3376a
CL
1235static inline struct page *alloc_slab_page(gfp_t flags, int node,
1236 struct kmem_cache_order_objects oo)
1237{
1238 int order = oo_order(oo);
1239
b1eeab67
VN
1240 flags |= __GFP_NOTRACK;
1241
2154a336 1242 if (node == NUMA_NO_NODE)
65c3376a
CL
1243 return alloc_pages(flags, order);
1244 else
6b65aaf3 1245 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1246}
1247
81819f0f
CL
1248static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1249{
06428780 1250 struct page *page;
834f3d11 1251 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1252 gfp_t alloc_gfp;
81819f0f 1253
b7a49f0d 1254 flags |= s->allocflags;
e12ba74d 1255
ba52270d
PE
1256 /*
1257 * Let the initial higher-order allocation fail under memory pressure
1258 * so we fall-back to the minimum order allocation.
1259 */
1260 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1261
1262 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1263 if (unlikely(!page)) {
1264 oo = s->min;
1265 /*
1266 * Allocation may have failed due to fragmentation.
1267 * Try a lower order alloc if possible
1268 */
1269 page = alloc_slab_page(flags, node, oo);
1270 if (!page)
1271 return NULL;
81819f0f 1272
84e554e6 1273 stat(s, ORDER_FALLBACK);
65c3376a 1274 }
5a896d9e
VN
1275
1276 if (kmemcheck_enabled
5086c389 1277 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1278 int pages = 1 << oo_order(oo);
1279
1280 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1281
1282 /*
1283 * Objects from caches that have a constructor don't get
1284 * cleared when they're allocated, so we need to do it here.
1285 */
1286 if (s->ctor)
1287 kmemcheck_mark_uninitialized_pages(page, pages);
1288 else
1289 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1290 }
1291
834f3d11 1292 page->objects = oo_objects(oo);
81819f0f
CL
1293 mod_zone_page_state(page_zone(page),
1294 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1295 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1296 1 << oo_order(oo));
81819f0f
CL
1297
1298 return page;
1299}
1300
1301static void setup_object(struct kmem_cache *s, struct page *page,
1302 void *object)
1303{
3ec09742 1304 setup_object_debug(s, page, object);
4f104934 1305 if (unlikely(s->ctor))
51cc5068 1306 s->ctor(object);
81819f0f
CL
1307}
1308
1309static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1310{
1311 struct page *page;
81819f0f 1312 void *start;
81819f0f
CL
1313 void *last;
1314 void *p;
1315
6cb06229 1316 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1317
6cb06229
CL
1318 page = allocate_slab(s,
1319 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1320 if (!page)
1321 goto out;
1322
205ab99d 1323 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1324 page->slab = s;
1325 page->flags |= 1 << PG_slab;
81819f0f
CL
1326
1327 start = page_address(page);
81819f0f
CL
1328
1329 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1330 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1331
1332 last = start;
224a88be 1333 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1334 setup_object(s, page, last);
1335 set_freepointer(s, last, p);
1336 last = p;
1337 }
1338 setup_object(s, page, last);
a973e9dd 1339 set_freepointer(s, last, NULL);
81819f0f
CL
1340
1341 page->freelist = start;
1342 page->inuse = 0;
1343out:
81819f0f
CL
1344 return page;
1345}
1346
1347static void __free_slab(struct kmem_cache *s, struct page *page)
1348{
834f3d11
CL
1349 int order = compound_order(page);
1350 int pages = 1 << order;
81819f0f 1351
af537b0a 1352 if (kmem_cache_debug(s)) {
81819f0f
CL
1353 void *p;
1354
1355 slab_pad_check(s, page);
224a88be
CL
1356 for_each_object(p, s, page_address(page),
1357 page->objects)
f7cb1933 1358 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1359 }
1360
b1eeab67 1361 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1362
81819f0f
CL
1363 mod_zone_page_state(page_zone(page),
1364 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1365 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1366 -pages);
81819f0f 1367
49bd5221
CL
1368 __ClearPageSlab(page);
1369 reset_page_mapcount(page);
1eb5ac64
NP
1370 if (current->reclaim_state)
1371 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1372 __free_pages(page, order);
81819f0f
CL
1373}
1374
da9a638c
LJ
1375#define need_reserve_slab_rcu \
1376 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1377
81819f0f
CL
1378static void rcu_free_slab(struct rcu_head *h)
1379{
1380 struct page *page;
1381
da9a638c
LJ
1382 if (need_reserve_slab_rcu)
1383 page = virt_to_head_page(h);
1384 else
1385 page = container_of((struct list_head *)h, struct page, lru);
1386
81819f0f
CL
1387 __free_slab(page->slab, page);
1388}
1389
1390static void free_slab(struct kmem_cache *s, struct page *page)
1391{
1392 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1393 struct rcu_head *head;
1394
1395 if (need_reserve_slab_rcu) {
1396 int order = compound_order(page);
1397 int offset = (PAGE_SIZE << order) - s->reserved;
1398
1399 VM_BUG_ON(s->reserved != sizeof(*head));
1400 head = page_address(page) + offset;
1401 } else {
1402 /*
1403 * RCU free overloads the RCU head over the LRU
1404 */
1405 head = (void *)&page->lru;
1406 }
81819f0f
CL
1407
1408 call_rcu(head, rcu_free_slab);
1409 } else
1410 __free_slab(s, page);
1411}
1412
1413static void discard_slab(struct kmem_cache *s, struct page *page)
1414{
205ab99d 1415 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1416 free_slab(s, page);
1417}
1418
1419/*
1420 * Per slab locking using the pagelock
1421 */
1422static __always_inline void slab_lock(struct page *page)
1423{
1424 bit_spin_lock(PG_locked, &page->flags);
1425}
1426
1427static __always_inline void slab_unlock(struct page *page)
1428{
a76d3546 1429 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1430}
1431
1432static __always_inline int slab_trylock(struct page *page)
1433{
1434 int rc = 1;
1435
1436 rc = bit_spin_trylock(PG_locked, &page->flags);
1437 return rc;
1438}
1439
1440/*
1441 * Management of partially allocated slabs
1442 */
7c2e132c
CL
1443static void add_partial(struct kmem_cache_node *n,
1444 struct page *page, int tail)
81819f0f 1445{
e95eed57
CL
1446 spin_lock(&n->list_lock);
1447 n->nr_partial++;
7c2e132c
CL
1448 if (tail)
1449 list_add_tail(&page->lru, &n->partial);
1450 else
1451 list_add(&page->lru, &n->partial);
81819f0f
CL
1452 spin_unlock(&n->list_lock);
1453}
1454
62e346a8
CL
1455static inline void __remove_partial(struct kmem_cache_node *n,
1456 struct page *page)
1457{
1458 list_del(&page->lru);
1459 n->nr_partial--;
1460}
1461
0121c619 1462static void remove_partial(struct kmem_cache *s, struct page *page)
81819f0f
CL
1463{
1464 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1465
1466 spin_lock(&n->list_lock);
62e346a8 1467 __remove_partial(n, page);
81819f0f
CL
1468 spin_unlock(&n->list_lock);
1469}
1470
1471/*
672bba3a 1472 * Lock slab and remove from the partial list.
81819f0f 1473 *
672bba3a 1474 * Must hold list_lock.
81819f0f 1475 */
0121c619
CL
1476static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1477 struct page *page)
81819f0f
CL
1478{
1479 if (slab_trylock(page)) {
62e346a8 1480 __remove_partial(n, page);
8a38082d 1481 __SetPageSlubFrozen(page);
81819f0f
CL
1482 return 1;
1483 }
1484 return 0;
1485}
1486
1487/*
672bba3a 1488 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1489 */
1490static struct page *get_partial_node(struct kmem_cache_node *n)
1491{
1492 struct page *page;
1493
1494 /*
1495 * Racy check. If we mistakenly see no partial slabs then we
1496 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1497 * partial slab and there is none available then get_partials()
1498 * will return NULL.
81819f0f
CL
1499 */
1500 if (!n || !n->nr_partial)
1501 return NULL;
1502
1503 spin_lock(&n->list_lock);
1504 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1505 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1506 goto out;
1507 page = NULL;
1508out:
1509 spin_unlock(&n->list_lock);
1510 return page;
1511}
1512
1513/*
672bba3a 1514 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1515 */
1516static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1517{
1518#ifdef CONFIG_NUMA
1519 struct zonelist *zonelist;
dd1a239f 1520 struct zoneref *z;
54a6eb5c
MG
1521 struct zone *zone;
1522 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1523 struct page *page;
1524
1525 /*
672bba3a
CL
1526 * The defrag ratio allows a configuration of the tradeoffs between
1527 * inter node defragmentation and node local allocations. A lower
1528 * defrag_ratio increases the tendency to do local allocations
1529 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1530 *
672bba3a
CL
1531 * If the defrag_ratio is set to 0 then kmalloc() always
1532 * returns node local objects. If the ratio is higher then kmalloc()
1533 * may return off node objects because partial slabs are obtained
1534 * from other nodes and filled up.
81819f0f 1535 *
6446faa2 1536 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1537 * defrag_ratio = 1000) then every (well almost) allocation will
1538 * first attempt to defrag slab caches on other nodes. This means
1539 * scanning over all nodes to look for partial slabs which may be
1540 * expensive if we do it every time we are trying to find a slab
1541 * with available objects.
81819f0f 1542 */
9824601e
CL
1543 if (!s->remote_node_defrag_ratio ||
1544 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1545 return NULL;
1546
c0ff7453 1547 get_mems_allowed();
0e88460d 1548 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1549 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1550 struct kmem_cache_node *n;
1551
54a6eb5c 1552 n = get_node(s, zone_to_nid(zone));
81819f0f 1553
54a6eb5c 1554 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1555 n->nr_partial > s->min_partial) {
81819f0f 1556 page = get_partial_node(n);
c0ff7453
MX
1557 if (page) {
1558 put_mems_allowed();
81819f0f 1559 return page;
c0ff7453 1560 }
81819f0f
CL
1561 }
1562 }
c0ff7453 1563 put_mems_allowed();
81819f0f
CL
1564#endif
1565 return NULL;
1566}
1567
1568/*
1569 * Get a partial page, lock it and return it.
1570 */
1571static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1572{
1573 struct page *page;
2154a336 1574 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f
CL
1575
1576 page = get_partial_node(get_node(s, searchnode));
33de04ec 1577 if (page || node != NUMA_NO_NODE)
81819f0f
CL
1578 return page;
1579
1580 return get_any_partial(s, flags);
1581}
1582
1583/*
1584 * Move a page back to the lists.
1585 *
1586 * Must be called with the slab lock held.
1587 *
1588 * On exit the slab lock will have been dropped.
1589 */
7c2e132c 1590static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
3478973d 1591 __releases(bitlock)
81819f0f 1592{
e95eed57
CL
1593 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1594
8a38082d 1595 __ClearPageSlubFrozen(page);
81819f0f 1596 if (page->inuse) {
e95eed57 1597
a973e9dd 1598 if (page->freelist) {
7c2e132c 1599 add_partial(n, page, tail);
84e554e6 1600 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
8ff12cfc 1601 } else {
84e554e6 1602 stat(s, DEACTIVATE_FULL);
af537b0a 1603 if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
8ff12cfc
CL
1604 add_full(n, page);
1605 }
81819f0f
CL
1606 slab_unlock(page);
1607 } else {
84e554e6 1608 stat(s, DEACTIVATE_EMPTY);
3b89d7d8 1609 if (n->nr_partial < s->min_partial) {
e95eed57 1610 /*
672bba3a
CL
1611 * Adding an empty slab to the partial slabs in order
1612 * to avoid page allocator overhead. This slab needs
1613 * to come after the other slabs with objects in
6446faa2
CL
1614 * so that the others get filled first. That way the
1615 * size of the partial list stays small.
1616 *
0121c619
CL
1617 * kmem_cache_shrink can reclaim any empty slabs from
1618 * the partial list.
e95eed57 1619 */
7c2e132c 1620 add_partial(n, page, 1);
e95eed57
CL
1621 slab_unlock(page);
1622 } else {
1623 slab_unlock(page);
84e554e6 1624 stat(s, FREE_SLAB);
e95eed57
CL
1625 discard_slab(s, page);
1626 }
81819f0f
CL
1627 }
1628}
1629
8a5ec0ba
CL
1630#ifdef CONFIG_PREEMPT
1631/*
1632 * Calculate the next globally unique transaction for disambiguiation
1633 * during cmpxchg. The transactions start with the cpu number and are then
1634 * incremented by CONFIG_NR_CPUS.
1635 */
1636#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1637#else
1638/*
1639 * No preemption supported therefore also no need to check for
1640 * different cpus.
1641 */
1642#define TID_STEP 1
1643#endif
1644
1645static inline unsigned long next_tid(unsigned long tid)
1646{
1647 return tid + TID_STEP;
1648}
1649
1650static inline unsigned int tid_to_cpu(unsigned long tid)
1651{
1652 return tid % TID_STEP;
1653}
1654
1655static inline unsigned long tid_to_event(unsigned long tid)
1656{
1657 return tid / TID_STEP;
1658}
1659
1660static inline unsigned int init_tid(int cpu)
1661{
1662 return cpu;
1663}
1664
1665static inline void note_cmpxchg_failure(const char *n,
1666 const struct kmem_cache *s, unsigned long tid)
1667{
1668#ifdef SLUB_DEBUG_CMPXCHG
1669 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1670
1671 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1672
1673#ifdef CONFIG_PREEMPT
1674 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1675 printk("due to cpu change %d -> %d\n",
1676 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1677 else
1678#endif
1679 if (tid_to_event(tid) != tid_to_event(actual_tid))
1680 printk("due to cpu running other code. Event %ld->%ld\n",
1681 tid_to_event(tid), tid_to_event(actual_tid));
1682 else
1683 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1684 actual_tid, tid, next_tid(tid));
1685#endif
4fdccdfb 1686 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1687}
1688
8a5ec0ba
CL
1689void init_kmem_cache_cpus(struct kmem_cache *s)
1690{
8a5ec0ba
CL
1691 int cpu;
1692
1693 for_each_possible_cpu(cpu)
1694 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1695}
81819f0f
CL
1696/*
1697 * Remove the cpu slab
1698 */
dfb4f096 1699static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3478973d 1700 __releases(bitlock)
81819f0f 1701{
dfb4f096 1702 struct page *page = c->page;
7c2e132c 1703 int tail = 1;
8ff12cfc 1704
b773ad73 1705 if (page->freelist)
84e554e6 1706 stat(s, DEACTIVATE_REMOTE_FREES);
894b8788 1707 /*
6446faa2 1708 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1709 * because both freelists are empty. So this is unlikely
1710 * to occur.
1711 */
a973e9dd 1712 while (unlikely(c->freelist)) {
894b8788
CL
1713 void **object;
1714
7c2e132c
CL
1715 tail = 0; /* Hot objects. Put the slab first */
1716
894b8788 1717 /* Retrieve object from cpu_freelist */
dfb4f096 1718 object = c->freelist;
ff12059e 1719 c->freelist = get_freepointer(s, c->freelist);
894b8788
CL
1720
1721 /* And put onto the regular freelist */
ff12059e 1722 set_freepointer(s, object, page->freelist);
894b8788
CL
1723 page->freelist = object;
1724 page->inuse--;
1725 }
dfb4f096 1726 c->page = NULL;
8a5ec0ba 1727 c->tid = next_tid(c->tid);
7c2e132c 1728 unfreeze_slab(s, page, tail);
81819f0f
CL
1729}
1730
dfb4f096 1731static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1732{
84e554e6 1733 stat(s, CPUSLAB_FLUSH);
dfb4f096
CL
1734 slab_lock(c->page);
1735 deactivate_slab(s, c);
81819f0f
CL
1736}
1737
1738/*
1739 * Flush cpu slab.
6446faa2 1740 *
81819f0f
CL
1741 * Called from IPI handler with interrupts disabled.
1742 */
0c710013 1743static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1744{
9dfc6e68 1745 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 1746
dfb4f096
CL
1747 if (likely(c && c->page))
1748 flush_slab(s, c);
81819f0f
CL
1749}
1750
1751static void flush_cpu_slab(void *d)
1752{
1753 struct kmem_cache *s = d;
81819f0f 1754
dfb4f096 1755 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1756}
1757
1758static void flush_all(struct kmem_cache *s)
1759{
15c8b6c1 1760 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
1761}
1762
dfb4f096
CL
1763/*
1764 * Check if the objects in a per cpu structure fit numa
1765 * locality expectations.
1766 */
1767static inline int node_match(struct kmem_cache_cpu *c, int node)
1768{
1769#ifdef CONFIG_NUMA
2154a336 1770 if (node != NUMA_NO_NODE && c->node != node)
dfb4f096
CL
1771 return 0;
1772#endif
1773 return 1;
1774}
1775
781b2ba6
PE
1776static int count_free(struct page *page)
1777{
1778 return page->objects - page->inuse;
1779}
1780
1781static unsigned long count_partial(struct kmem_cache_node *n,
1782 int (*get_count)(struct page *))
1783{
1784 unsigned long flags;
1785 unsigned long x = 0;
1786 struct page *page;
1787
1788 spin_lock_irqsave(&n->list_lock, flags);
1789 list_for_each_entry(page, &n->partial, lru)
1790 x += get_count(page);
1791 spin_unlock_irqrestore(&n->list_lock, flags);
1792 return x;
1793}
1794
26c02cf0
AB
1795static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1796{
1797#ifdef CONFIG_SLUB_DEBUG
1798 return atomic_long_read(&n->total_objects);
1799#else
1800 return 0;
1801#endif
1802}
1803
781b2ba6
PE
1804static noinline void
1805slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1806{
1807 int node;
1808
1809 printk(KERN_WARNING
1810 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1811 nid, gfpflags);
1812 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1813 "default order: %d, min order: %d\n", s->name, s->objsize,
1814 s->size, oo_order(s->oo), oo_order(s->min));
1815
fa5ec8a1
DR
1816 if (oo_order(s->min) > get_order(s->objsize))
1817 printk(KERN_WARNING " %s debugging increased min order, use "
1818 "slub_debug=O to disable.\n", s->name);
1819
781b2ba6
PE
1820 for_each_online_node(node) {
1821 struct kmem_cache_node *n = get_node(s, node);
1822 unsigned long nr_slabs;
1823 unsigned long nr_objs;
1824 unsigned long nr_free;
1825
1826 if (!n)
1827 continue;
1828
26c02cf0
AB
1829 nr_free = count_partial(n, count_free);
1830 nr_slabs = node_nr_slabs(n);
1831 nr_objs = node_nr_objs(n);
781b2ba6
PE
1832
1833 printk(KERN_WARNING
1834 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1835 node, nr_slabs, nr_objs, nr_free);
1836 }
1837}
1838
81819f0f 1839/*
894b8788
CL
1840 * Slow path. The lockless freelist is empty or we need to perform
1841 * debugging duties.
1842 *
1843 * Interrupts are disabled.
81819f0f 1844 *
894b8788
CL
1845 * Processing is still very fast if new objects have been freed to the
1846 * regular freelist. In that case we simply take over the regular freelist
1847 * as the lockless freelist and zap the regular freelist.
81819f0f 1848 *
894b8788
CL
1849 * If that is not working then we fall back to the partial lists. We take the
1850 * first element of the freelist as the object to allocate now and move the
1851 * rest of the freelist to the lockless freelist.
81819f0f 1852 *
894b8788 1853 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1854 * we need to allocate a new slab. This is the slowest path since it involves
1855 * a call to the page allocator and the setup of a new slab.
81819f0f 1856 */
ce71e27c
EGM
1857static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1858 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 1859{
81819f0f 1860 void **object;
01ad8a7b 1861 struct page *page;
8a5ec0ba
CL
1862 unsigned long flags;
1863
1864 local_irq_save(flags);
1865#ifdef CONFIG_PREEMPT
1866 /*
1867 * We may have been preempted and rescheduled on a different
1868 * cpu before disabling interrupts. Need to reload cpu area
1869 * pointer.
1870 */
1871 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 1872#endif
81819f0f 1873
e72e9c23
LT
1874 /* We handle __GFP_ZERO in the caller */
1875 gfpflags &= ~__GFP_ZERO;
1876
01ad8a7b
CL
1877 page = c->page;
1878 if (!page)
81819f0f
CL
1879 goto new_slab;
1880
01ad8a7b 1881 slab_lock(page);
dfb4f096 1882 if (unlikely(!node_match(c, node)))
81819f0f 1883 goto another_slab;
6446faa2 1884
84e554e6 1885 stat(s, ALLOC_REFILL);
6446faa2 1886
894b8788 1887load_freelist:
01ad8a7b 1888 object = page->freelist;
a973e9dd 1889 if (unlikely(!object))
81819f0f 1890 goto another_slab;
af537b0a 1891 if (kmem_cache_debug(s))
81819f0f
CL
1892 goto debug;
1893
ff12059e 1894 c->freelist = get_freepointer(s, object);
01ad8a7b
CL
1895 page->inuse = page->objects;
1896 page->freelist = NULL;
01ad8a7b 1897
01ad8a7b 1898 slab_unlock(page);
8a5ec0ba
CL
1899 c->tid = next_tid(c->tid);
1900 local_irq_restore(flags);
84e554e6 1901 stat(s, ALLOC_SLOWPATH);
81819f0f
CL
1902 return object;
1903
1904another_slab:
dfb4f096 1905 deactivate_slab(s, c);
81819f0f
CL
1906
1907new_slab:
01ad8a7b
CL
1908 page = get_partial(s, gfpflags, node);
1909 if (page) {
84e554e6 1910 stat(s, ALLOC_FROM_PARTIAL);
dc1fb7f4
CL
1911 c->node = page_to_nid(page);
1912 c->page = page;
894b8788 1913 goto load_freelist;
81819f0f
CL
1914 }
1915
c1d50836 1916 gfpflags &= gfp_allowed_mask;
b811c202
CL
1917 if (gfpflags & __GFP_WAIT)
1918 local_irq_enable();
1919
01ad8a7b 1920 page = new_slab(s, gfpflags, node);
b811c202
CL
1921
1922 if (gfpflags & __GFP_WAIT)
1923 local_irq_disable();
1924
01ad8a7b 1925 if (page) {
9dfc6e68 1926 c = __this_cpu_ptr(s->cpu_slab);
84e554e6 1927 stat(s, ALLOC_SLAB);
05aa3450 1928 if (c->page)
dfb4f096 1929 flush_slab(s, c);
01ad8a7b
CL
1930
1931 slab_lock(page);
1932 __SetPageSlubFrozen(page);
bd07d87f
DR
1933 c->node = page_to_nid(page);
1934 c->page = page;
4b6f0750 1935 goto load_freelist;
81819f0f 1936 }
95f85989
PE
1937 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1938 slab_out_of_memory(s, gfpflags, node);
2fd66c51 1939 local_irq_restore(flags);
71c7a06f 1940 return NULL;
81819f0f 1941debug:
01ad8a7b 1942 if (!alloc_debug_processing(s, page, object, addr))
81819f0f 1943 goto another_slab;
894b8788 1944
01ad8a7b
CL
1945 page->inuse++;
1946 page->freelist = get_freepointer(s, object);
442b06bc
CL
1947 deactivate_slab(s, c);
1948 c->page = NULL;
15b7c514 1949 c->node = NUMA_NO_NODE;
a71ae47a
CL
1950 local_irq_restore(flags);
1951 return object;
894b8788
CL
1952}
1953
1954/*
1955 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1956 * have the fastpath folded into their functions. So no function call
1957 * overhead for requests that can be satisfied on the fastpath.
1958 *
1959 * The fastpath works by first checking if the lockless freelist can be used.
1960 * If not then __slab_alloc is called for slow processing.
1961 *
1962 * Otherwise we can simply pick the next object from the lockless free list.
1963 */
06428780 1964static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 1965 gfp_t gfpflags, int node, unsigned long addr)
894b8788 1966{
894b8788 1967 void **object;
dfb4f096 1968 struct kmem_cache_cpu *c;
8a5ec0ba 1969 unsigned long tid;
1f84260c 1970
c016b0bd 1971 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 1972 return NULL;
1f84260c 1973
8a5ec0ba 1974redo:
8a5ec0ba
CL
1975
1976 /*
1977 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
1978 * enabled. We may switch back and forth between cpus while
1979 * reading from one cpu area. That does not matter as long
1980 * as we end up on the original cpu again when doing the cmpxchg.
1981 */
9dfc6e68 1982 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 1983
8a5ec0ba
CL
1984 /*
1985 * The transaction ids are globally unique per cpu and per operation on
1986 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
1987 * occurs on the right processor and that there was no operation on the
1988 * linked list in between.
1989 */
1990 tid = c->tid;
1991 barrier();
8a5ec0ba 1992
9dfc6e68 1993 object = c->freelist;
9dfc6e68 1994 if (unlikely(!object || !node_match(c, node)))
894b8788 1995
dfb4f096 1996 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1997
1998 else {
8a5ec0ba 1999 /*
25985edc 2000 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2001 * operation and if we are on the right processor.
2002 *
2003 * The cmpxchg does the following atomically (without lock semantics!)
2004 * 1. Relocate first pointer to the current per cpu area.
2005 * 2. Verify that tid and freelist have not been changed
2006 * 3. If they were not changed replace tid and freelist
2007 *
2008 * Since this is without lock semantics the protection is only against
2009 * code executing on this cpu *not* from access by other cpus.
2010 */
30106b8c 2011 if (unlikely(!irqsafe_cpu_cmpxchg_double(
8a5ec0ba
CL
2012 s->cpu_slab->freelist, s->cpu_slab->tid,
2013 object, tid,
1393d9a1 2014 get_freepointer_safe(s, object), next_tid(tid)))) {
8a5ec0ba
CL
2015
2016 note_cmpxchg_failure("slab_alloc", s, tid);
2017 goto redo;
2018 }
84e554e6 2019 stat(s, ALLOC_FASTPATH);
894b8788 2020 }
8a5ec0ba 2021
74e2134f 2022 if (unlikely(gfpflags & __GFP_ZERO) && object)
ff12059e 2023 memset(object, 0, s->objsize);
d07dbea4 2024
c016b0bd 2025 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2026
894b8788 2027 return object;
81819f0f
CL
2028}
2029
2030void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2031{
2154a336 2032 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2033
ca2b84cb 2034 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
2035
2036 return ret;
81819f0f
CL
2037}
2038EXPORT_SYMBOL(kmem_cache_alloc);
2039
0f24f128 2040#ifdef CONFIG_TRACING
4a92379b
RK
2041void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2042{
2043 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2044 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2045 return ret;
2046}
2047EXPORT_SYMBOL(kmem_cache_alloc_trace);
2048
2049void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 2050{
4a92379b
RK
2051 void *ret = kmalloc_order(size, flags, order);
2052 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2053 return ret;
5b882be4 2054}
4a92379b 2055EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
2056#endif
2057
81819f0f
CL
2058#ifdef CONFIG_NUMA
2059void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2060{
5b882be4
EGM
2061 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2062
ca2b84cb
EGM
2063 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2064 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
2065
2066 return ret;
81819f0f
CL
2067}
2068EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2069
0f24f128 2070#ifdef CONFIG_TRACING
4a92379b 2071void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2072 gfp_t gfpflags,
4a92379b 2073 int node, size_t size)
5b882be4 2074{
4a92379b
RK
2075 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2076
2077 trace_kmalloc_node(_RET_IP_, ret,
2078 size, s->size, gfpflags, node);
2079 return ret;
5b882be4 2080}
4a92379b 2081EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2082#endif
5d1f57e4 2083#endif
5b882be4 2084
81819f0f 2085/*
894b8788
CL
2086 * Slow patch handling. This may still be called frequently since objects
2087 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2088 *
894b8788
CL
2089 * So we still attempt to reduce cache line usage. Just take the slab
2090 * lock and free the item. If there is no additional partial page
2091 * handling required then we can return immediately.
81819f0f 2092 */
894b8788 2093static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2094 void *x, unsigned long addr)
81819f0f
CL
2095{
2096 void *prior;
2097 void **object = (void *)x;
8a5ec0ba 2098 unsigned long flags;
81819f0f 2099
8a5ec0ba 2100 local_irq_save(flags);
81819f0f 2101 slab_lock(page);
8a5ec0ba 2102 stat(s, FREE_SLOWPATH);
81819f0f 2103
8dc16c6c
CL
2104 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
2105 goto out_unlock;
6446faa2 2106
ff12059e
CL
2107 prior = page->freelist;
2108 set_freepointer(s, object, prior);
81819f0f
CL
2109 page->freelist = object;
2110 page->inuse--;
2111
8a38082d 2112 if (unlikely(PageSlubFrozen(page))) {
84e554e6 2113 stat(s, FREE_FROZEN);
81819f0f 2114 goto out_unlock;
8ff12cfc 2115 }
81819f0f
CL
2116
2117 if (unlikely(!page->inuse))
2118 goto slab_empty;
2119
2120 /*
6446faa2 2121 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
2122 * then add it.
2123 */
a973e9dd 2124 if (unlikely(!prior)) {
7c2e132c 2125 add_partial(get_node(s, page_to_nid(page)), page, 1);
84e554e6 2126 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2127 }
81819f0f
CL
2128
2129out_unlock:
2130 slab_unlock(page);
8a5ec0ba 2131 local_irq_restore(flags);
81819f0f
CL
2132 return;
2133
2134slab_empty:
a973e9dd 2135 if (prior) {
81819f0f 2136 /*
672bba3a 2137 * Slab still on the partial list.
81819f0f
CL
2138 */
2139 remove_partial(s, page);
84e554e6 2140 stat(s, FREE_REMOVE_PARTIAL);
8ff12cfc 2141 }
81819f0f 2142 slab_unlock(page);
8a5ec0ba 2143 local_irq_restore(flags);
84e554e6 2144 stat(s, FREE_SLAB);
81819f0f 2145 discard_slab(s, page);
81819f0f
CL
2146}
2147
894b8788
CL
2148/*
2149 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2150 * can perform fastpath freeing without additional function calls.
2151 *
2152 * The fastpath is only possible if we are freeing to the current cpu slab
2153 * of this processor. This typically the case if we have just allocated
2154 * the item before.
2155 *
2156 * If fastpath is not possible then fall back to __slab_free where we deal
2157 * with all sorts of special processing.
2158 */
06428780 2159static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2160 struct page *page, void *x, unsigned long addr)
894b8788
CL
2161{
2162 void **object = (void *)x;
dfb4f096 2163 struct kmem_cache_cpu *c;
8a5ec0ba 2164 unsigned long tid;
1f84260c 2165
c016b0bd
CL
2166 slab_free_hook(s, x);
2167
8a5ec0ba 2168redo:
a24c5a0e 2169
8a5ec0ba
CL
2170 /*
2171 * Determine the currently cpus per cpu slab.
2172 * The cpu may change afterward. However that does not matter since
2173 * data is retrieved via this pointer. If we are on the same cpu
2174 * during the cmpxchg then the free will succedd.
2175 */
9dfc6e68 2176 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2177
8a5ec0ba
CL
2178 tid = c->tid;
2179 barrier();
c016b0bd 2180
442b06bc 2181 if (likely(page == c->page)) {
ff12059e 2182 set_freepointer(s, object, c->freelist);
8a5ec0ba 2183
30106b8c 2184 if (unlikely(!irqsafe_cpu_cmpxchg_double(
8a5ec0ba
CL
2185 s->cpu_slab->freelist, s->cpu_slab->tid,
2186 c->freelist, tid,
2187 object, next_tid(tid)))) {
2188
2189 note_cmpxchg_failure("slab_free", s, tid);
2190 goto redo;
2191 }
84e554e6 2192 stat(s, FREE_FASTPATH);
894b8788 2193 } else
ff12059e 2194 __slab_free(s, page, x, addr);
894b8788 2195
894b8788
CL
2196}
2197
81819f0f
CL
2198void kmem_cache_free(struct kmem_cache *s, void *x)
2199{
77c5e2d0 2200 struct page *page;
81819f0f 2201
b49af68f 2202 page = virt_to_head_page(x);
81819f0f 2203
ce71e27c 2204 slab_free(s, page, x, _RET_IP_);
5b882be4 2205
ca2b84cb 2206 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2207}
2208EXPORT_SYMBOL(kmem_cache_free);
2209
81819f0f 2210/*
672bba3a
CL
2211 * Object placement in a slab is made very easy because we always start at
2212 * offset 0. If we tune the size of the object to the alignment then we can
2213 * get the required alignment by putting one properly sized object after
2214 * another.
81819f0f
CL
2215 *
2216 * Notice that the allocation order determines the sizes of the per cpu
2217 * caches. Each processor has always one slab available for allocations.
2218 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2219 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2220 * locking overhead.
81819f0f
CL
2221 */
2222
2223/*
2224 * Mininum / Maximum order of slab pages. This influences locking overhead
2225 * and slab fragmentation. A higher order reduces the number of partial slabs
2226 * and increases the number of allocations possible without having to
2227 * take the list_lock.
2228 */
2229static int slub_min_order;
114e9e89 2230static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2231static int slub_min_objects;
81819f0f
CL
2232
2233/*
2234 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2235 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2236 */
2237static int slub_nomerge;
2238
81819f0f
CL
2239/*
2240 * Calculate the order of allocation given an slab object size.
2241 *
672bba3a
CL
2242 * The order of allocation has significant impact on performance and other
2243 * system components. Generally order 0 allocations should be preferred since
2244 * order 0 does not cause fragmentation in the page allocator. Larger objects
2245 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2246 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2247 * would be wasted.
2248 *
2249 * In order to reach satisfactory performance we must ensure that a minimum
2250 * number of objects is in one slab. Otherwise we may generate too much
2251 * activity on the partial lists which requires taking the list_lock. This is
2252 * less a concern for large slabs though which are rarely used.
81819f0f 2253 *
672bba3a
CL
2254 * slub_max_order specifies the order where we begin to stop considering the
2255 * number of objects in a slab as critical. If we reach slub_max_order then
2256 * we try to keep the page order as low as possible. So we accept more waste
2257 * of space in favor of a small page order.
81819f0f 2258 *
672bba3a
CL
2259 * Higher order allocations also allow the placement of more objects in a
2260 * slab and thereby reduce object handling overhead. If the user has
2261 * requested a higher mininum order then we start with that one instead of
2262 * the smallest order which will fit the object.
81819f0f 2263 */
5e6d444e 2264static inline int slab_order(int size, int min_objects,
ab9a0f19 2265 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2266{
2267 int order;
2268 int rem;
6300ea75 2269 int min_order = slub_min_order;
81819f0f 2270
ab9a0f19 2271 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2272 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2273
6300ea75 2274 for (order = max(min_order,
5e6d444e
CL
2275 fls(min_objects * size - 1) - PAGE_SHIFT);
2276 order <= max_order; order++) {
81819f0f 2277
5e6d444e 2278 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2279
ab9a0f19 2280 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2281 continue;
2282
ab9a0f19 2283 rem = (slab_size - reserved) % size;
81819f0f 2284
5e6d444e 2285 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2286 break;
2287
2288 }
672bba3a 2289
81819f0f
CL
2290 return order;
2291}
2292
ab9a0f19 2293static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2294{
2295 int order;
2296 int min_objects;
2297 int fraction;
e8120ff1 2298 int max_objects;
5e6d444e
CL
2299
2300 /*
2301 * Attempt to find best configuration for a slab. This
2302 * works by first attempting to generate a layout with
2303 * the best configuration and backing off gradually.
2304 *
2305 * First we reduce the acceptable waste in a slab. Then
2306 * we reduce the minimum objects required in a slab.
2307 */
2308 min_objects = slub_min_objects;
9b2cd506
CL
2309 if (!min_objects)
2310 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2311 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2312 min_objects = min(min_objects, max_objects);
2313
5e6d444e 2314 while (min_objects > 1) {
c124f5b5 2315 fraction = 16;
5e6d444e
CL
2316 while (fraction >= 4) {
2317 order = slab_order(size, min_objects,
ab9a0f19 2318 slub_max_order, fraction, reserved);
5e6d444e
CL
2319 if (order <= slub_max_order)
2320 return order;
2321 fraction /= 2;
2322 }
5086c389 2323 min_objects--;
5e6d444e
CL
2324 }
2325
2326 /*
2327 * We were unable to place multiple objects in a slab. Now
2328 * lets see if we can place a single object there.
2329 */
ab9a0f19 2330 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2331 if (order <= slub_max_order)
2332 return order;
2333
2334 /*
2335 * Doh this slab cannot be placed using slub_max_order.
2336 */
ab9a0f19 2337 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2338 if (order < MAX_ORDER)
5e6d444e
CL
2339 return order;
2340 return -ENOSYS;
2341}
2342
81819f0f 2343/*
672bba3a 2344 * Figure out what the alignment of the objects will be.
81819f0f
CL
2345 */
2346static unsigned long calculate_alignment(unsigned long flags,
2347 unsigned long align, unsigned long size)
2348{
2349 /*
6446faa2
CL
2350 * If the user wants hardware cache aligned objects then follow that
2351 * suggestion if the object is sufficiently large.
81819f0f 2352 *
6446faa2
CL
2353 * The hardware cache alignment cannot override the specified
2354 * alignment though. If that is greater then use it.
81819f0f 2355 */
b6210386
NP
2356 if (flags & SLAB_HWCACHE_ALIGN) {
2357 unsigned long ralign = cache_line_size();
2358 while (size <= ralign / 2)
2359 ralign /= 2;
2360 align = max(align, ralign);
2361 }
81819f0f
CL
2362
2363 if (align < ARCH_SLAB_MINALIGN)
b6210386 2364 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2365
2366 return ALIGN(align, sizeof(void *));
2367}
2368
5595cffc
PE
2369static void
2370init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2371{
2372 n->nr_partial = 0;
81819f0f
CL
2373 spin_lock_init(&n->list_lock);
2374 INIT_LIST_HEAD(&n->partial);
8ab1372f 2375#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2376 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2377 atomic_long_set(&n->total_objects, 0);
643b1138 2378 INIT_LIST_HEAD(&n->full);
8ab1372f 2379#endif
81819f0f
CL
2380}
2381
55136592 2382static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2383{
6c182dc0
CL
2384 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2385 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2386
8a5ec0ba
CL
2387#ifdef CONFIG_CMPXCHG_LOCAL
2388 /*
2389 * Must align to double word boundary for the double cmpxchg instructions
2390 * to work.
2391 */
2392 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 2 * sizeof(void *));
2393#else
2394 /* Regular alignment is sufficient */
6c182dc0 2395 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
8a5ec0ba
CL
2396#endif
2397
2398 if (!s->cpu_slab)
2399 return 0;
2400
2401 init_kmem_cache_cpus(s);
4c93c355 2402
8a5ec0ba 2403 return 1;
4c93c355 2404}
4c93c355 2405
51df1142
CL
2406static struct kmem_cache *kmem_cache_node;
2407
81819f0f
CL
2408/*
2409 * No kmalloc_node yet so do it by hand. We know that this is the first
2410 * slab on the node for this slabcache. There are no concurrent accesses
2411 * possible.
2412 *
2413 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2414 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2415 * memory on a fresh node that has no slab structures yet.
81819f0f 2416 */
55136592 2417static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2418{
2419 struct page *page;
2420 struct kmem_cache_node *n;
ba84c73c 2421 unsigned long flags;
81819f0f 2422
51df1142 2423 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2424
51df1142 2425 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2426
2427 BUG_ON(!page);
a2f92ee7
CL
2428 if (page_to_nid(page) != node) {
2429 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2430 "node %d\n", node);
2431 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2432 "in order to be able to continue\n");
2433 }
2434
81819f0f
CL
2435 n = page->freelist;
2436 BUG_ON(!n);
51df1142 2437 page->freelist = get_freepointer(kmem_cache_node, n);
81819f0f 2438 page->inuse++;
51df1142 2439 kmem_cache_node->node[node] = n;
8ab1372f 2440#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2441 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2442 init_tracking(kmem_cache_node, n);
8ab1372f 2443#endif
51df1142
CL
2444 init_kmem_cache_node(n, kmem_cache_node);
2445 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2446
ba84c73c 2447 /*
2448 * lockdep requires consistent irq usage for each lock
2449 * so even though there cannot be a race this early in
2450 * the boot sequence, we still disable irqs.
2451 */
2452 local_irq_save(flags);
7c2e132c 2453 add_partial(n, page, 0);
ba84c73c 2454 local_irq_restore(flags);
81819f0f
CL
2455}
2456
2457static void free_kmem_cache_nodes(struct kmem_cache *s)
2458{
2459 int node;
2460
f64dc58c 2461 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2462 struct kmem_cache_node *n = s->node[node];
51df1142 2463
73367bd8 2464 if (n)
51df1142
CL
2465 kmem_cache_free(kmem_cache_node, n);
2466
81819f0f
CL
2467 s->node[node] = NULL;
2468 }
2469}
2470
55136592 2471static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2472{
2473 int node;
81819f0f 2474
f64dc58c 2475 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2476 struct kmem_cache_node *n;
2477
73367bd8 2478 if (slab_state == DOWN) {
55136592 2479 early_kmem_cache_node_alloc(node);
73367bd8
AD
2480 continue;
2481 }
51df1142 2482 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2483 GFP_KERNEL, node);
81819f0f 2484
73367bd8
AD
2485 if (!n) {
2486 free_kmem_cache_nodes(s);
2487 return 0;
81819f0f 2488 }
73367bd8 2489
81819f0f 2490 s->node[node] = n;
5595cffc 2491 init_kmem_cache_node(n, s);
81819f0f
CL
2492 }
2493 return 1;
2494}
81819f0f 2495
c0bdb232 2496static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2497{
2498 if (min < MIN_PARTIAL)
2499 min = MIN_PARTIAL;
2500 else if (min > MAX_PARTIAL)
2501 min = MAX_PARTIAL;
2502 s->min_partial = min;
2503}
2504
81819f0f
CL
2505/*
2506 * calculate_sizes() determines the order and the distribution of data within
2507 * a slab object.
2508 */
06b285dc 2509static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2510{
2511 unsigned long flags = s->flags;
2512 unsigned long size = s->objsize;
2513 unsigned long align = s->align;
834f3d11 2514 int order;
81819f0f 2515
d8b42bf5
CL
2516 /*
2517 * Round up object size to the next word boundary. We can only
2518 * place the free pointer at word boundaries and this determines
2519 * the possible location of the free pointer.
2520 */
2521 size = ALIGN(size, sizeof(void *));
2522
2523#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2524 /*
2525 * Determine if we can poison the object itself. If the user of
2526 * the slab may touch the object after free or before allocation
2527 * then we should never poison the object itself.
2528 */
2529 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2530 !s->ctor)
81819f0f
CL
2531 s->flags |= __OBJECT_POISON;
2532 else
2533 s->flags &= ~__OBJECT_POISON;
2534
81819f0f
CL
2535
2536 /*
672bba3a 2537 * If we are Redzoning then check if there is some space between the
81819f0f 2538 * end of the object and the free pointer. If not then add an
672bba3a 2539 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2540 */
2541 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2542 size += sizeof(void *);
41ecc55b 2543#endif
81819f0f
CL
2544
2545 /*
672bba3a
CL
2546 * With that we have determined the number of bytes in actual use
2547 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2548 */
2549 s->inuse = size;
2550
2551 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2552 s->ctor)) {
81819f0f
CL
2553 /*
2554 * Relocate free pointer after the object if it is not
2555 * permitted to overwrite the first word of the object on
2556 * kmem_cache_free.
2557 *
2558 * This is the case if we do RCU, have a constructor or
2559 * destructor or are poisoning the objects.
2560 */
2561 s->offset = size;
2562 size += sizeof(void *);
2563 }
2564
c12b3c62 2565#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2566 if (flags & SLAB_STORE_USER)
2567 /*
2568 * Need to store information about allocs and frees after
2569 * the object.
2570 */
2571 size += 2 * sizeof(struct track);
2572
be7b3fbc 2573 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2574 /*
2575 * Add some empty padding so that we can catch
2576 * overwrites from earlier objects rather than let
2577 * tracking information or the free pointer be
0211a9c8 2578 * corrupted if a user writes before the start
81819f0f
CL
2579 * of the object.
2580 */
2581 size += sizeof(void *);
41ecc55b 2582#endif
672bba3a 2583
81819f0f
CL
2584 /*
2585 * Determine the alignment based on various parameters that the
65c02d4c
CL
2586 * user specified and the dynamic determination of cache line size
2587 * on bootup.
81819f0f
CL
2588 */
2589 align = calculate_alignment(flags, align, s->objsize);
dcb0ce1b 2590 s->align = align;
81819f0f
CL
2591
2592 /*
2593 * SLUB stores one object immediately after another beginning from
2594 * offset 0. In order to align the objects we have to simply size
2595 * each object to conform to the alignment.
2596 */
2597 size = ALIGN(size, align);
2598 s->size = size;
06b285dc
CL
2599 if (forced_order >= 0)
2600 order = forced_order;
2601 else
ab9a0f19 2602 order = calculate_order(size, s->reserved);
81819f0f 2603
834f3d11 2604 if (order < 0)
81819f0f
CL
2605 return 0;
2606
b7a49f0d 2607 s->allocflags = 0;
834f3d11 2608 if (order)
b7a49f0d
CL
2609 s->allocflags |= __GFP_COMP;
2610
2611 if (s->flags & SLAB_CACHE_DMA)
2612 s->allocflags |= SLUB_DMA;
2613
2614 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2615 s->allocflags |= __GFP_RECLAIMABLE;
2616
81819f0f
CL
2617 /*
2618 * Determine the number of objects per slab
2619 */
ab9a0f19
LJ
2620 s->oo = oo_make(order, size, s->reserved);
2621 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
2622 if (oo_objects(s->oo) > oo_objects(s->max))
2623 s->max = s->oo;
81819f0f 2624
834f3d11 2625 return !!oo_objects(s->oo);
81819f0f
CL
2626
2627}
2628
55136592 2629static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
2630 const char *name, size_t size,
2631 size_t align, unsigned long flags,
51cc5068 2632 void (*ctor)(void *))
81819f0f
CL
2633{
2634 memset(s, 0, kmem_size);
2635 s->name = name;
2636 s->ctor = ctor;
81819f0f 2637 s->objsize = size;
81819f0f 2638 s->align = align;
ba0268a8 2639 s->flags = kmem_cache_flags(size, flags, name, ctor);
ab9a0f19 2640 s->reserved = 0;
81819f0f 2641
da9a638c
LJ
2642 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
2643 s->reserved = sizeof(struct rcu_head);
81819f0f 2644
06b285dc 2645 if (!calculate_sizes(s, -1))
81819f0f 2646 goto error;
3de47213
DR
2647 if (disable_higher_order_debug) {
2648 /*
2649 * Disable debugging flags that store metadata if the min slab
2650 * order increased.
2651 */
2652 if (get_order(s->size) > get_order(s->objsize)) {
2653 s->flags &= ~DEBUG_METADATA_FLAGS;
2654 s->offset = 0;
2655 if (!calculate_sizes(s, -1))
2656 goto error;
2657 }
2658 }
81819f0f 2659
3b89d7d8
DR
2660 /*
2661 * The larger the object size is, the more pages we want on the partial
2662 * list to avoid pounding the page allocator excessively.
2663 */
c0bdb232 2664 set_min_partial(s, ilog2(s->size));
81819f0f
CL
2665 s->refcount = 1;
2666#ifdef CONFIG_NUMA
e2cb96b7 2667 s->remote_node_defrag_ratio = 1000;
81819f0f 2668#endif
55136592 2669 if (!init_kmem_cache_nodes(s))
dfb4f096 2670 goto error;
81819f0f 2671
55136592 2672 if (alloc_kmem_cache_cpus(s))
81819f0f 2673 return 1;
ff12059e 2674
4c93c355 2675 free_kmem_cache_nodes(s);
81819f0f
CL
2676error:
2677 if (flags & SLAB_PANIC)
2678 panic("Cannot create slab %s size=%lu realsize=%u "
2679 "order=%u offset=%u flags=%lx\n",
834f3d11 2680 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2681 s->offset, flags);
2682 return 0;
2683}
81819f0f 2684
81819f0f
CL
2685/*
2686 * Determine the size of a slab object
2687 */
2688unsigned int kmem_cache_size(struct kmem_cache *s)
2689{
2690 return s->objsize;
2691}
2692EXPORT_SYMBOL(kmem_cache_size);
2693
33b12c38
CL
2694static void list_slab_objects(struct kmem_cache *s, struct page *page,
2695 const char *text)
2696{
2697#ifdef CONFIG_SLUB_DEBUG
2698 void *addr = page_address(page);
2699 void *p;
a5dd5c11
NK
2700 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2701 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
2702 if (!map)
2703 return;
33b12c38
CL
2704 slab_err(s, page, "%s", text);
2705 slab_lock(page);
33b12c38 2706
5f80b13a 2707 get_map(s, page, map);
33b12c38
CL
2708 for_each_object(p, s, addr, page->objects) {
2709
2710 if (!test_bit(slab_index(p, s, addr), map)) {
2711 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2712 p, p - addr);
2713 print_tracking(s, p);
2714 }
2715 }
2716 slab_unlock(page);
bbd7d57b 2717 kfree(map);
33b12c38
CL
2718#endif
2719}
2720
81819f0f 2721/*
599870b1 2722 * Attempt to free all partial slabs on a node.
81819f0f 2723 */
599870b1 2724static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2725{
81819f0f
CL
2726 unsigned long flags;
2727 struct page *page, *h;
2728
2729 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2730 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 2731 if (!page->inuse) {
62e346a8 2732 __remove_partial(n, page);
81819f0f 2733 discard_slab(s, page);
33b12c38
CL
2734 } else {
2735 list_slab_objects(s, page,
2736 "Objects remaining on kmem_cache_close()");
599870b1 2737 }
33b12c38 2738 }
81819f0f 2739 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2740}
2741
2742/*
672bba3a 2743 * Release all resources used by a slab cache.
81819f0f 2744 */
0c710013 2745static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2746{
2747 int node;
2748
2749 flush_all(s);
9dfc6e68 2750 free_percpu(s->cpu_slab);
81819f0f 2751 /* Attempt to free all objects */
f64dc58c 2752 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2753 struct kmem_cache_node *n = get_node(s, node);
2754
599870b1
CL
2755 free_partial(s, n);
2756 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2757 return 1;
2758 }
2759 free_kmem_cache_nodes(s);
2760 return 0;
2761}
2762
2763/*
2764 * Close a cache and release the kmem_cache structure
2765 * (must be used for caches created using kmem_cache_create)
2766 */
2767void kmem_cache_destroy(struct kmem_cache *s)
2768{
2769 down_write(&slub_lock);
2770 s->refcount--;
2771 if (!s->refcount) {
2772 list_del(&s->list);
d629d819
PE
2773 if (kmem_cache_close(s)) {
2774 printk(KERN_ERR "SLUB %s: %s called for cache that "
2775 "still has objects.\n", s->name, __func__);
2776 dump_stack();
2777 }
d76b1590
ED
2778 if (s->flags & SLAB_DESTROY_BY_RCU)
2779 rcu_barrier();
81819f0f 2780 sysfs_slab_remove(s);
2bce6485
CL
2781 }
2782 up_write(&slub_lock);
81819f0f
CL
2783}
2784EXPORT_SYMBOL(kmem_cache_destroy);
2785
2786/********************************************************************
2787 * Kmalloc subsystem
2788 *******************************************************************/
2789
51df1142 2790struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
2791EXPORT_SYMBOL(kmalloc_caches);
2792
51df1142
CL
2793static struct kmem_cache *kmem_cache;
2794
55136592 2795#ifdef CONFIG_ZONE_DMA
51df1142 2796static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
2797#endif
2798
81819f0f
CL
2799static int __init setup_slub_min_order(char *str)
2800{
06428780 2801 get_option(&str, &slub_min_order);
81819f0f
CL
2802
2803 return 1;
2804}
2805
2806__setup("slub_min_order=", setup_slub_min_order);
2807
2808static int __init setup_slub_max_order(char *str)
2809{
06428780 2810 get_option(&str, &slub_max_order);
818cf590 2811 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
2812
2813 return 1;
2814}
2815
2816__setup("slub_max_order=", setup_slub_max_order);
2817
2818static int __init setup_slub_min_objects(char *str)
2819{
06428780 2820 get_option(&str, &slub_min_objects);
81819f0f
CL
2821
2822 return 1;
2823}
2824
2825__setup("slub_min_objects=", setup_slub_min_objects);
2826
2827static int __init setup_slub_nomerge(char *str)
2828{
2829 slub_nomerge = 1;
2830 return 1;
2831}
2832
2833__setup("slub_nomerge", setup_slub_nomerge);
2834
51df1142
CL
2835static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2836 int size, unsigned int flags)
81819f0f 2837{
51df1142
CL
2838 struct kmem_cache *s;
2839
2840 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2841
83b519e8
PE
2842 /*
2843 * This function is called with IRQs disabled during early-boot on
2844 * single CPU so there's no need to take slub_lock here.
2845 */
55136592 2846 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 2847 flags, NULL))
81819f0f
CL
2848 goto panic;
2849
2850 list_add(&s->list, &slab_caches);
51df1142 2851 return s;
81819f0f
CL
2852
2853panic:
2854 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 2855 return NULL;
81819f0f
CL
2856}
2857
f1b26339
CL
2858/*
2859 * Conversion table for small slabs sizes / 8 to the index in the
2860 * kmalloc array. This is necessary for slabs < 192 since we have non power
2861 * of two cache sizes there. The size of larger slabs can be determined using
2862 * fls.
2863 */
2864static s8 size_index[24] = {
2865 3, /* 8 */
2866 4, /* 16 */
2867 5, /* 24 */
2868 5, /* 32 */
2869 6, /* 40 */
2870 6, /* 48 */
2871 6, /* 56 */
2872 6, /* 64 */
2873 1, /* 72 */
2874 1, /* 80 */
2875 1, /* 88 */
2876 1, /* 96 */
2877 7, /* 104 */
2878 7, /* 112 */
2879 7, /* 120 */
2880 7, /* 128 */
2881 2, /* 136 */
2882 2, /* 144 */
2883 2, /* 152 */
2884 2, /* 160 */
2885 2, /* 168 */
2886 2, /* 176 */
2887 2, /* 184 */
2888 2 /* 192 */
2889};
2890
acdfcd04
AK
2891static inline int size_index_elem(size_t bytes)
2892{
2893 return (bytes - 1) / 8;
2894}
2895
81819f0f
CL
2896static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2897{
f1b26339 2898 int index;
81819f0f 2899
f1b26339
CL
2900 if (size <= 192) {
2901 if (!size)
2902 return ZERO_SIZE_PTR;
81819f0f 2903
acdfcd04 2904 index = size_index[size_index_elem(size)];
aadb4bc4 2905 } else
f1b26339 2906 index = fls(size - 1);
81819f0f
CL
2907
2908#ifdef CONFIG_ZONE_DMA
f1b26339 2909 if (unlikely((flags & SLUB_DMA)))
51df1142 2910 return kmalloc_dma_caches[index];
f1b26339 2911
81819f0f 2912#endif
51df1142 2913 return kmalloc_caches[index];
81819f0f
CL
2914}
2915
2916void *__kmalloc(size_t size, gfp_t flags)
2917{
aadb4bc4 2918 struct kmem_cache *s;
5b882be4 2919 void *ret;
81819f0f 2920
ffadd4d0 2921 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 2922 return kmalloc_large(size, flags);
aadb4bc4
CL
2923
2924 s = get_slab(size, flags);
2925
2926 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2927 return s;
2928
2154a336 2929 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2930
ca2b84cb 2931 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
2932
2933 return ret;
81819f0f
CL
2934}
2935EXPORT_SYMBOL(__kmalloc);
2936
5d1f57e4 2937#ifdef CONFIG_NUMA
f619cfe1
CL
2938static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2939{
b1eeab67 2940 struct page *page;
e4f7c0b4 2941 void *ptr = NULL;
f619cfe1 2942
b1eeab67
VN
2943 flags |= __GFP_COMP | __GFP_NOTRACK;
2944 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 2945 if (page)
e4f7c0b4
CM
2946 ptr = page_address(page);
2947
2948 kmemleak_alloc(ptr, size, 1, flags);
2949 return ptr;
f619cfe1
CL
2950}
2951
81819f0f
CL
2952void *__kmalloc_node(size_t size, gfp_t flags, int node)
2953{
aadb4bc4 2954 struct kmem_cache *s;
5b882be4 2955 void *ret;
81819f0f 2956
057685cf 2957 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
2958 ret = kmalloc_large_node(size, flags, node);
2959
ca2b84cb
EGM
2960 trace_kmalloc_node(_RET_IP_, ret,
2961 size, PAGE_SIZE << get_order(size),
2962 flags, node);
5b882be4
EGM
2963
2964 return ret;
2965 }
aadb4bc4
CL
2966
2967 s = get_slab(size, flags);
2968
2969 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2970 return s;
2971
5b882be4
EGM
2972 ret = slab_alloc(s, flags, node, _RET_IP_);
2973
ca2b84cb 2974 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
2975
2976 return ret;
81819f0f
CL
2977}
2978EXPORT_SYMBOL(__kmalloc_node);
2979#endif
2980
2981size_t ksize(const void *object)
2982{
272c1d21 2983 struct page *page;
81819f0f 2984
ef8b4520 2985 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2986 return 0;
2987
294a80a8 2988 page = virt_to_head_page(object);
294a80a8 2989
76994412
PE
2990 if (unlikely(!PageSlab(page))) {
2991 WARN_ON(!PageCompound(page));
294a80a8 2992 return PAGE_SIZE << compound_order(page);
76994412 2993 }
81819f0f 2994
b3d41885 2995 return slab_ksize(page->slab);
81819f0f 2996}
b1aabecd 2997EXPORT_SYMBOL(ksize);
81819f0f 2998
d18a90dd
BG
2999#ifdef CONFIG_SLUB_DEBUG
3000bool verify_mem_not_deleted(const void *x)
3001{
3002 struct page *page;
3003 void *object = (void *)x;
3004 unsigned long flags;
3005 bool rv;
3006
3007 if (unlikely(ZERO_OR_NULL_PTR(x)))
3008 return false;
3009
3010 local_irq_save(flags);
3011
3012 page = virt_to_head_page(x);
3013 if (unlikely(!PageSlab(page))) {
3014 /* maybe it was from stack? */
3015 rv = true;
3016 goto out_unlock;
3017 }
3018
3019 slab_lock(page);
3020 if (on_freelist(page->slab, page, object)) {
3021 object_err(page->slab, page, object, "Object is on free-list");
3022 rv = false;
3023 } else {
3024 rv = true;
3025 }
3026 slab_unlock(page);
3027
3028out_unlock:
3029 local_irq_restore(flags);
3030 return rv;
3031}
3032EXPORT_SYMBOL(verify_mem_not_deleted);
3033#endif
3034
81819f0f
CL
3035void kfree(const void *x)
3036{
81819f0f 3037 struct page *page;
5bb983b0 3038 void *object = (void *)x;
81819f0f 3039
2121db74
PE
3040 trace_kfree(_RET_IP_, x);
3041
2408c550 3042 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3043 return;
3044
b49af68f 3045 page = virt_to_head_page(x);
aadb4bc4 3046 if (unlikely(!PageSlab(page))) {
0937502a 3047 BUG_ON(!PageCompound(page));
e4f7c0b4 3048 kmemleak_free(x);
aadb4bc4
CL
3049 put_page(page);
3050 return;
3051 }
ce71e27c 3052 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
3053}
3054EXPORT_SYMBOL(kfree);
3055
2086d26a 3056/*
672bba3a
CL
3057 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3058 * the remaining slabs by the number of items in use. The slabs with the
3059 * most items in use come first. New allocations will then fill those up
3060 * and thus they can be removed from the partial lists.
3061 *
3062 * The slabs with the least items are placed last. This results in them
3063 * being allocated from last increasing the chance that the last objects
3064 * are freed in them.
2086d26a
CL
3065 */
3066int kmem_cache_shrink(struct kmem_cache *s)
3067{
3068 int node;
3069 int i;
3070 struct kmem_cache_node *n;
3071 struct page *page;
3072 struct page *t;
205ab99d 3073 int objects = oo_objects(s->max);
2086d26a 3074 struct list_head *slabs_by_inuse =
834f3d11 3075 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3076 unsigned long flags;
3077
3078 if (!slabs_by_inuse)
3079 return -ENOMEM;
3080
3081 flush_all(s);
f64dc58c 3082 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3083 n = get_node(s, node);
3084
3085 if (!n->nr_partial)
3086 continue;
3087
834f3d11 3088 for (i = 0; i < objects; i++)
2086d26a
CL
3089 INIT_LIST_HEAD(slabs_by_inuse + i);
3090
3091 spin_lock_irqsave(&n->list_lock, flags);
3092
3093 /*
672bba3a 3094 * Build lists indexed by the items in use in each slab.
2086d26a 3095 *
672bba3a
CL
3096 * Note that concurrent frees may occur while we hold the
3097 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3098 */
3099 list_for_each_entry_safe(page, t, &n->partial, lru) {
3100 if (!page->inuse && slab_trylock(page)) {
3101 /*
3102 * Must hold slab lock here because slab_free
3103 * may have freed the last object and be
3104 * waiting to release the slab.
3105 */
62e346a8 3106 __remove_partial(n, page);
2086d26a
CL
3107 slab_unlock(page);
3108 discard_slab(s, page);
3109 } else {
fcda3d89
CL
3110 list_move(&page->lru,
3111 slabs_by_inuse + page->inuse);
2086d26a
CL
3112 }
3113 }
3114
2086d26a 3115 /*
672bba3a
CL
3116 * Rebuild the partial list with the slabs filled up most
3117 * first and the least used slabs at the end.
2086d26a 3118 */
834f3d11 3119 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
3120 list_splice(slabs_by_inuse + i, n->partial.prev);
3121
2086d26a
CL
3122 spin_unlock_irqrestore(&n->list_lock, flags);
3123 }
3124
3125 kfree(slabs_by_inuse);
3126 return 0;
3127}
3128EXPORT_SYMBOL(kmem_cache_shrink);
3129
92a5bbc1 3130#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
3131static int slab_mem_going_offline_callback(void *arg)
3132{
3133 struct kmem_cache *s;
3134
3135 down_read(&slub_lock);
3136 list_for_each_entry(s, &slab_caches, list)
3137 kmem_cache_shrink(s);
3138 up_read(&slub_lock);
3139
3140 return 0;
3141}
3142
3143static void slab_mem_offline_callback(void *arg)
3144{
3145 struct kmem_cache_node *n;
3146 struct kmem_cache *s;
3147 struct memory_notify *marg = arg;
3148 int offline_node;
3149
3150 offline_node = marg->status_change_nid;
3151
3152 /*
3153 * If the node still has available memory. we need kmem_cache_node
3154 * for it yet.
3155 */
3156 if (offline_node < 0)
3157 return;
3158
3159 down_read(&slub_lock);
3160 list_for_each_entry(s, &slab_caches, list) {
3161 n = get_node(s, offline_node);
3162 if (n) {
3163 /*
3164 * if n->nr_slabs > 0, slabs still exist on the node
3165 * that is going down. We were unable to free them,
c9404c9c 3166 * and offline_pages() function shouldn't call this
b9049e23
YG
3167 * callback. So, we must fail.
3168 */
0f389ec6 3169 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3170
3171 s->node[offline_node] = NULL;
8de66a0c 3172 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3173 }
3174 }
3175 up_read(&slub_lock);
3176}
3177
3178static int slab_mem_going_online_callback(void *arg)
3179{
3180 struct kmem_cache_node *n;
3181 struct kmem_cache *s;
3182 struct memory_notify *marg = arg;
3183 int nid = marg->status_change_nid;
3184 int ret = 0;
3185
3186 /*
3187 * If the node's memory is already available, then kmem_cache_node is
3188 * already created. Nothing to do.
3189 */
3190 if (nid < 0)
3191 return 0;
3192
3193 /*
0121c619 3194 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3195 * allocate a kmem_cache_node structure in order to bring the node
3196 * online.
3197 */
3198 down_read(&slub_lock);
3199 list_for_each_entry(s, &slab_caches, list) {
3200 /*
3201 * XXX: kmem_cache_alloc_node will fallback to other nodes
3202 * since memory is not yet available from the node that
3203 * is brought up.
3204 */
8de66a0c 3205 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3206 if (!n) {
3207 ret = -ENOMEM;
3208 goto out;
3209 }
5595cffc 3210 init_kmem_cache_node(n, s);
b9049e23
YG
3211 s->node[nid] = n;
3212 }
3213out:
3214 up_read(&slub_lock);
3215 return ret;
3216}
3217
3218static int slab_memory_callback(struct notifier_block *self,
3219 unsigned long action, void *arg)
3220{
3221 int ret = 0;
3222
3223 switch (action) {
3224 case MEM_GOING_ONLINE:
3225 ret = slab_mem_going_online_callback(arg);
3226 break;
3227 case MEM_GOING_OFFLINE:
3228 ret = slab_mem_going_offline_callback(arg);
3229 break;
3230 case MEM_OFFLINE:
3231 case MEM_CANCEL_ONLINE:
3232 slab_mem_offline_callback(arg);
3233 break;
3234 case MEM_ONLINE:
3235 case MEM_CANCEL_OFFLINE:
3236 break;
3237 }
dc19f9db
KH
3238 if (ret)
3239 ret = notifier_from_errno(ret);
3240 else
3241 ret = NOTIFY_OK;
b9049e23
YG
3242 return ret;
3243}
3244
3245#endif /* CONFIG_MEMORY_HOTPLUG */
3246
81819f0f
CL
3247/********************************************************************
3248 * Basic setup of slabs
3249 *******************************************************************/
3250
51df1142
CL
3251/*
3252 * Used for early kmem_cache structures that were allocated using
3253 * the page allocator
3254 */
3255
3256static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3257{
3258 int node;
3259
3260 list_add(&s->list, &slab_caches);
3261 s->refcount = -1;
3262
3263 for_each_node_state(node, N_NORMAL_MEMORY) {
3264 struct kmem_cache_node *n = get_node(s, node);
3265 struct page *p;
3266
3267 if (n) {
3268 list_for_each_entry(p, &n->partial, lru)
3269 p->slab = s;
3270
607bf324 3271#ifdef CONFIG_SLUB_DEBUG
51df1142
CL
3272 list_for_each_entry(p, &n->full, lru)
3273 p->slab = s;
3274#endif
3275 }
3276 }
3277}
3278
81819f0f
CL
3279void __init kmem_cache_init(void)
3280{
3281 int i;
4b356be0 3282 int caches = 0;
51df1142
CL
3283 struct kmem_cache *temp_kmem_cache;
3284 int order;
51df1142
CL
3285 struct kmem_cache *temp_kmem_cache_node;
3286 unsigned long kmalloc_size;
3287
3288 kmem_size = offsetof(struct kmem_cache, node) +
3289 nr_node_ids * sizeof(struct kmem_cache_node *);
3290
3291 /* Allocate two kmem_caches from the page allocator */
3292 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3293 order = get_order(2 * kmalloc_size);
3294 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3295
81819f0f
CL
3296 /*
3297 * Must first have the slab cache available for the allocations of the
672bba3a 3298 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3299 * kmem_cache_open for slab_state == DOWN.
3300 */
51df1142
CL
3301 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3302
3303 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3304 sizeof(struct kmem_cache_node),
3305 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3306
0c40ba4f 3307 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3308
3309 /* Able to allocate the per node structures */
3310 slab_state = PARTIAL;
3311
51df1142
CL
3312 temp_kmem_cache = kmem_cache;
3313 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3314 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3315 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3316 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3317
51df1142
CL
3318 /*
3319 * Allocate kmem_cache_node properly from the kmem_cache slab.
3320 * kmem_cache_node is separately allocated so no need to
3321 * update any list pointers.
3322 */
3323 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3324
51df1142
CL
3325 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3326 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3327
3328 kmem_cache_bootstrap_fixup(kmem_cache_node);
3329
3330 caches++;
51df1142
CL
3331 kmem_cache_bootstrap_fixup(kmem_cache);
3332 caches++;
3333 /* Free temporary boot structure */
3334 free_pages((unsigned long)temp_kmem_cache, order);
3335
3336 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3337
3338 /*
3339 * Patch up the size_index table if we have strange large alignment
3340 * requirements for the kmalloc array. This is only the case for
6446faa2 3341 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3342 *
3343 * Largest permitted alignment is 256 bytes due to the way we
3344 * handle the index determination for the smaller caches.
3345 *
3346 * Make sure that nothing crazy happens if someone starts tinkering
3347 * around with ARCH_KMALLOC_MINALIGN
3348 */
3349 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3350 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3351
acdfcd04
AK
3352 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3353 int elem = size_index_elem(i);
3354 if (elem >= ARRAY_SIZE(size_index))
3355 break;
3356 size_index[elem] = KMALLOC_SHIFT_LOW;
3357 }
f1b26339 3358
acdfcd04
AK
3359 if (KMALLOC_MIN_SIZE == 64) {
3360 /*
3361 * The 96 byte size cache is not used if the alignment
3362 * is 64 byte.
3363 */
3364 for (i = 64 + 8; i <= 96; i += 8)
3365 size_index[size_index_elem(i)] = 7;
3366 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3367 /*
3368 * The 192 byte sized cache is not used if the alignment
3369 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3370 * instead.
3371 */
3372 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3373 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3374 }
3375
51df1142
CL
3376 /* Caches that are not of the two-to-the-power-of size */
3377 if (KMALLOC_MIN_SIZE <= 32) {
3378 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3379 caches++;
3380 }
3381
3382 if (KMALLOC_MIN_SIZE <= 64) {
3383 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3384 caches++;
3385 }
3386
3387 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3388 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3389 caches++;
3390 }
3391
81819f0f
CL
3392 slab_state = UP;
3393
3394 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3395 if (KMALLOC_MIN_SIZE <= 32) {
3396 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3397 BUG_ON(!kmalloc_caches[1]->name);
3398 }
3399
3400 if (KMALLOC_MIN_SIZE <= 64) {
3401 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3402 BUG_ON(!kmalloc_caches[2]->name);
3403 }
3404
d7278bd7
CL
3405 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3406 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3407
3408 BUG_ON(!s);
51df1142 3409 kmalloc_caches[i]->name = s;
d7278bd7 3410 }
81819f0f
CL
3411
3412#ifdef CONFIG_SMP
3413 register_cpu_notifier(&slab_notifier);
9dfc6e68 3414#endif
81819f0f 3415
55136592 3416#ifdef CONFIG_ZONE_DMA
51df1142
CL
3417 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3418 struct kmem_cache *s = kmalloc_caches[i];
55136592 3419
51df1142 3420 if (s && s->size) {
55136592
CL
3421 char *name = kasprintf(GFP_NOWAIT,
3422 "dma-kmalloc-%d", s->objsize);
3423
3424 BUG_ON(!name);
51df1142
CL
3425 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3426 s->objsize, SLAB_CACHE_DMA);
55136592
CL
3427 }
3428 }
3429#endif
3adbefee
IM
3430 printk(KERN_INFO
3431 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3432 " CPUs=%d, Nodes=%d\n",
3433 caches, cache_line_size(),
81819f0f
CL
3434 slub_min_order, slub_max_order, slub_min_objects,
3435 nr_cpu_ids, nr_node_ids);
3436}
3437
7e85ee0c
PE
3438void __init kmem_cache_init_late(void)
3439{
7e85ee0c
PE
3440}
3441
81819f0f
CL
3442/*
3443 * Find a mergeable slab cache
3444 */
3445static int slab_unmergeable(struct kmem_cache *s)
3446{
3447 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3448 return 1;
3449
c59def9f 3450 if (s->ctor)
81819f0f
CL
3451 return 1;
3452
8ffa6875
CL
3453 /*
3454 * We may have set a slab to be unmergeable during bootstrap.
3455 */
3456 if (s->refcount < 0)
3457 return 1;
3458
81819f0f
CL
3459 return 0;
3460}
3461
3462static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3463 size_t align, unsigned long flags, const char *name,
51cc5068 3464 void (*ctor)(void *))
81819f0f 3465{
5b95a4ac 3466 struct kmem_cache *s;
81819f0f
CL
3467
3468 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3469 return NULL;
3470
c59def9f 3471 if (ctor)
81819f0f
CL
3472 return NULL;
3473
3474 size = ALIGN(size, sizeof(void *));
3475 align = calculate_alignment(flags, align, size);
3476 size = ALIGN(size, align);
ba0268a8 3477 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3478
5b95a4ac 3479 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3480 if (slab_unmergeable(s))
3481 continue;
3482
3483 if (size > s->size)
3484 continue;
3485
ba0268a8 3486 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3487 continue;
3488 /*
3489 * Check if alignment is compatible.
3490 * Courtesy of Adrian Drzewiecki
3491 */
06428780 3492 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3493 continue;
3494
3495 if (s->size - size >= sizeof(void *))
3496 continue;
3497
3498 return s;
3499 }
3500 return NULL;
3501}
3502
3503struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3504 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3505{
3506 struct kmem_cache *s;
84c1cf62 3507 char *n;
81819f0f 3508
fe1ff49d
BH
3509 if (WARN_ON(!name))
3510 return NULL;
3511
81819f0f 3512 down_write(&slub_lock);
ba0268a8 3513 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3514 if (s) {
3515 s->refcount++;
3516 /*
3517 * Adjust the object sizes so that we clear
3518 * the complete object on kzalloc.
3519 */
3520 s->objsize = max(s->objsize, (int)size);
3521 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3522
7b8f3b66 3523 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3524 s->refcount--;
81819f0f 3525 goto err;
7b8f3b66 3526 }
2bce6485 3527 up_write(&slub_lock);
a0e1d1be
CL
3528 return s;
3529 }
6446faa2 3530
84c1cf62
PE
3531 n = kstrdup(name, GFP_KERNEL);
3532 if (!n)
3533 goto err;
3534
a0e1d1be
CL
3535 s = kmalloc(kmem_size, GFP_KERNEL);
3536 if (s) {
84c1cf62 3537 if (kmem_cache_open(s, n,
c59def9f 3538 size, align, flags, ctor)) {
81819f0f 3539 list_add(&s->list, &slab_caches);
7b8f3b66 3540 if (sysfs_slab_add(s)) {
7b8f3b66 3541 list_del(&s->list);
84c1cf62 3542 kfree(n);
7b8f3b66 3543 kfree(s);
a0e1d1be 3544 goto err;
7b8f3b66 3545 }
2bce6485 3546 up_write(&slub_lock);
a0e1d1be
CL
3547 return s;
3548 }
84c1cf62 3549 kfree(n);
a0e1d1be 3550 kfree(s);
81819f0f 3551 }
68cee4f1 3552err:
81819f0f 3553 up_write(&slub_lock);
81819f0f 3554
81819f0f
CL
3555 if (flags & SLAB_PANIC)
3556 panic("Cannot create slabcache %s\n", name);
3557 else
3558 s = NULL;
3559 return s;
3560}
3561EXPORT_SYMBOL(kmem_cache_create);
3562
81819f0f 3563#ifdef CONFIG_SMP
81819f0f 3564/*
672bba3a
CL
3565 * Use the cpu notifier to insure that the cpu slabs are flushed when
3566 * necessary.
81819f0f
CL
3567 */
3568static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3569 unsigned long action, void *hcpu)
3570{
3571 long cpu = (long)hcpu;
5b95a4ac
CL
3572 struct kmem_cache *s;
3573 unsigned long flags;
81819f0f
CL
3574
3575 switch (action) {
3576 case CPU_UP_CANCELED:
8bb78442 3577 case CPU_UP_CANCELED_FROZEN:
81819f0f 3578 case CPU_DEAD:
8bb78442 3579 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3580 down_read(&slub_lock);
3581 list_for_each_entry(s, &slab_caches, list) {
3582 local_irq_save(flags);
3583 __flush_cpu_slab(s, cpu);
3584 local_irq_restore(flags);
3585 }
3586 up_read(&slub_lock);
81819f0f
CL
3587 break;
3588 default:
3589 break;
3590 }
3591 return NOTIFY_OK;
3592}
3593
06428780 3594static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3595 .notifier_call = slab_cpuup_callback
06428780 3596};
81819f0f
CL
3597
3598#endif
3599
ce71e27c 3600void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3601{
aadb4bc4 3602 struct kmem_cache *s;
94b528d0 3603 void *ret;
aadb4bc4 3604
ffadd4d0 3605 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3606 return kmalloc_large(size, gfpflags);
3607
aadb4bc4 3608 s = get_slab(size, gfpflags);
81819f0f 3609
2408c550 3610 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3611 return s;
81819f0f 3612
2154a336 3613 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0 3614
25985edc 3615 /* Honor the call site pointer we received. */
ca2b84cb 3616 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3617
3618 return ret;
81819f0f
CL
3619}
3620
5d1f57e4 3621#ifdef CONFIG_NUMA
81819f0f 3622void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3623 int node, unsigned long caller)
81819f0f 3624{
aadb4bc4 3625 struct kmem_cache *s;
94b528d0 3626 void *ret;
aadb4bc4 3627
d3e14aa3
XF
3628 if (unlikely(size > SLUB_MAX_SIZE)) {
3629 ret = kmalloc_large_node(size, gfpflags, node);
3630
3631 trace_kmalloc_node(caller, ret,
3632 size, PAGE_SIZE << get_order(size),
3633 gfpflags, node);
3634
3635 return ret;
3636 }
eada35ef 3637
aadb4bc4 3638 s = get_slab(size, gfpflags);
81819f0f 3639
2408c550 3640 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3641 return s;
81819f0f 3642
94b528d0
EGM
3643 ret = slab_alloc(s, gfpflags, node, caller);
3644
25985edc 3645 /* Honor the call site pointer we received. */
ca2b84cb 3646 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3647
3648 return ret;
81819f0f 3649}
5d1f57e4 3650#endif
81819f0f 3651
ab4d5ed5 3652#ifdef CONFIG_SYSFS
205ab99d
CL
3653static int count_inuse(struct page *page)
3654{
3655 return page->inuse;
3656}
3657
3658static int count_total(struct page *page)
3659{
3660 return page->objects;
3661}
ab4d5ed5 3662#endif
205ab99d 3663
ab4d5ed5 3664#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3665static int validate_slab(struct kmem_cache *s, struct page *page,
3666 unsigned long *map)
53e15af0
CL
3667{
3668 void *p;
a973e9dd 3669 void *addr = page_address(page);
53e15af0
CL
3670
3671 if (!check_slab(s, page) ||
3672 !on_freelist(s, page, NULL))
3673 return 0;
3674
3675 /* Now we know that a valid freelist exists */
39b26464 3676 bitmap_zero(map, page->objects);
53e15af0 3677
5f80b13a
CL
3678 get_map(s, page, map);
3679 for_each_object(p, s, addr, page->objects) {
3680 if (test_bit(slab_index(p, s, addr), map))
3681 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3682 return 0;
53e15af0
CL
3683 }
3684
224a88be 3685 for_each_object(p, s, addr, page->objects)
7656c72b 3686 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3687 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3688 return 0;
3689 return 1;
3690}
3691
434e245d
CL
3692static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3693 unsigned long *map)
53e15af0
CL
3694{
3695 if (slab_trylock(page)) {
434e245d 3696 validate_slab(s, page, map);
53e15af0
CL
3697 slab_unlock(page);
3698 } else
3699 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3700 s->name, page);
53e15af0
CL
3701}
3702
434e245d
CL
3703static int validate_slab_node(struct kmem_cache *s,
3704 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3705{
3706 unsigned long count = 0;
3707 struct page *page;
3708 unsigned long flags;
3709
3710 spin_lock_irqsave(&n->list_lock, flags);
3711
3712 list_for_each_entry(page, &n->partial, lru) {
434e245d 3713 validate_slab_slab(s, page, map);
53e15af0
CL
3714 count++;
3715 }
3716 if (count != n->nr_partial)
3717 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3718 "counter=%ld\n", s->name, count, n->nr_partial);
3719
3720 if (!(s->flags & SLAB_STORE_USER))
3721 goto out;
3722
3723 list_for_each_entry(page, &n->full, lru) {
434e245d 3724 validate_slab_slab(s, page, map);
53e15af0
CL
3725 count++;
3726 }
3727 if (count != atomic_long_read(&n->nr_slabs))
3728 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3729 "counter=%ld\n", s->name, count,
3730 atomic_long_read(&n->nr_slabs));
3731
3732out:
3733 spin_unlock_irqrestore(&n->list_lock, flags);
3734 return count;
3735}
3736
434e245d 3737static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3738{
3739 int node;
3740 unsigned long count = 0;
205ab99d 3741 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3742 sizeof(unsigned long), GFP_KERNEL);
3743
3744 if (!map)
3745 return -ENOMEM;
53e15af0
CL
3746
3747 flush_all(s);
f64dc58c 3748 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3749 struct kmem_cache_node *n = get_node(s, node);
3750
434e245d 3751 count += validate_slab_node(s, n, map);
53e15af0 3752 }
434e245d 3753 kfree(map);
53e15af0
CL
3754 return count;
3755}
88a420e4 3756/*
672bba3a 3757 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3758 * and freed.
3759 */
3760
3761struct location {
3762 unsigned long count;
ce71e27c 3763 unsigned long addr;
45edfa58
CL
3764 long long sum_time;
3765 long min_time;
3766 long max_time;
3767 long min_pid;
3768 long max_pid;
174596a0 3769 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3770 nodemask_t nodes;
88a420e4
CL
3771};
3772
3773struct loc_track {
3774 unsigned long max;
3775 unsigned long count;
3776 struct location *loc;
3777};
3778
3779static void free_loc_track(struct loc_track *t)
3780{
3781 if (t->max)
3782 free_pages((unsigned long)t->loc,
3783 get_order(sizeof(struct location) * t->max));
3784}
3785
68dff6a9 3786static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3787{
3788 struct location *l;
3789 int order;
3790
88a420e4
CL
3791 order = get_order(sizeof(struct location) * max);
3792
68dff6a9 3793 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3794 if (!l)
3795 return 0;
3796
3797 if (t->count) {
3798 memcpy(l, t->loc, sizeof(struct location) * t->count);
3799 free_loc_track(t);
3800 }
3801 t->max = max;
3802 t->loc = l;
3803 return 1;
3804}
3805
3806static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3807 const struct track *track)
88a420e4
CL
3808{
3809 long start, end, pos;
3810 struct location *l;
ce71e27c 3811 unsigned long caddr;
45edfa58 3812 unsigned long age = jiffies - track->when;
88a420e4
CL
3813
3814 start = -1;
3815 end = t->count;
3816
3817 for ( ; ; ) {
3818 pos = start + (end - start + 1) / 2;
3819
3820 /*
3821 * There is nothing at "end". If we end up there
3822 * we need to add something to before end.
3823 */
3824 if (pos == end)
3825 break;
3826
3827 caddr = t->loc[pos].addr;
45edfa58
CL
3828 if (track->addr == caddr) {
3829
3830 l = &t->loc[pos];
3831 l->count++;
3832 if (track->when) {
3833 l->sum_time += age;
3834 if (age < l->min_time)
3835 l->min_time = age;
3836 if (age > l->max_time)
3837 l->max_time = age;
3838
3839 if (track->pid < l->min_pid)
3840 l->min_pid = track->pid;
3841 if (track->pid > l->max_pid)
3842 l->max_pid = track->pid;
3843
174596a0
RR
3844 cpumask_set_cpu(track->cpu,
3845 to_cpumask(l->cpus));
45edfa58
CL
3846 }
3847 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3848 return 1;
3849 }
3850
45edfa58 3851 if (track->addr < caddr)
88a420e4
CL
3852 end = pos;
3853 else
3854 start = pos;
3855 }
3856
3857 /*
672bba3a 3858 * Not found. Insert new tracking element.
88a420e4 3859 */
68dff6a9 3860 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3861 return 0;
3862
3863 l = t->loc + pos;
3864 if (pos < t->count)
3865 memmove(l + 1, l,
3866 (t->count - pos) * sizeof(struct location));
3867 t->count++;
3868 l->count = 1;
45edfa58
CL
3869 l->addr = track->addr;
3870 l->sum_time = age;
3871 l->min_time = age;
3872 l->max_time = age;
3873 l->min_pid = track->pid;
3874 l->max_pid = track->pid;
174596a0
RR
3875 cpumask_clear(to_cpumask(l->cpus));
3876 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
3877 nodes_clear(l->nodes);
3878 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3879 return 1;
3880}
3881
3882static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 3883 struct page *page, enum track_item alloc,
a5dd5c11 3884 unsigned long *map)
88a420e4 3885{
a973e9dd 3886 void *addr = page_address(page);
88a420e4
CL
3887 void *p;
3888
39b26464 3889 bitmap_zero(map, page->objects);
5f80b13a 3890 get_map(s, page, map);
88a420e4 3891
224a88be 3892 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3893 if (!test_bit(slab_index(p, s, addr), map))
3894 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3895}
3896
3897static int list_locations(struct kmem_cache *s, char *buf,
3898 enum track_item alloc)
3899{
e374d483 3900 int len = 0;
88a420e4 3901 unsigned long i;
68dff6a9 3902 struct loc_track t = { 0, 0, NULL };
88a420e4 3903 int node;
bbd7d57b
ED
3904 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3905 sizeof(unsigned long), GFP_KERNEL);
88a420e4 3906
bbd7d57b
ED
3907 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3908 GFP_TEMPORARY)) {
3909 kfree(map);
68dff6a9 3910 return sprintf(buf, "Out of memory\n");
bbd7d57b 3911 }
88a420e4
CL
3912 /* Push back cpu slabs */
3913 flush_all(s);
3914
f64dc58c 3915 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3916 struct kmem_cache_node *n = get_node(s, node);
3917 unsigned long flags;
3918 struct page *page;
3919
9e86943b 3920 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3921 continue;
3922
3923 spin_lock_irqsave(&n->list_lock, flags);
3924 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 3925 process_slab(&t, s, page, alloc, map);
88a420e4 3926 list_for_each_entry(page, &n->full, lru)
bbd7d57b 3927 process_slab(&t, s, page, alloc, map);
88a420e4
CL
3928 spin_unlock_irqrestore(&n->list_lock, flags);
3929 }
3930
3931 for (i = 0; i < t.count; i++) {
45edfa58 3932 struct location *l = &t.loc[i];
88a420e4 3933
9c246247 3934 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 3935 break;
e374d483 3936 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3937
3938 if (l->addr)
62c70bce 3939 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 3940 else
e374d483 3941 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3942
3943 if (l->sum_time != l->min_time) {
e374d483 3944 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
3945 l->min_time,
3946 (long)div_u64(l->sum_time, l->count),
3947 l->max_time);
45edfa58 3948 } else
e374d483 3949 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3950 l->min_time);
3951
3952 if (l->min_pid != l->max_pid)
e374d483 3953 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3954 l->min_pid, l->max_pid);
3955 else
e374d483 3956 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3957 l->min_pid);
3958
174596a0
RR
3959 if (num_online_cpus() > 1 &&
3960 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
3961 len < PAGE_SIZE - 60) {
3962 len += sprintf(buf + len, " cpus=");
3963 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 3964 to_cpumask(l->cpus));
45edfa58
CL
3965 }
3966
62bc62a8 3967 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3968 len < PAGE_SIZE - 60) {
3969 len += sprintf(buf + len, " nodes=");
3970 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3971 l->nodes);
3972 }
3973
e374d483 3974 len += sprintf(buf + len, "\n");
88a420e4
CL
3975 }
3976
3977 free_loc_track(&t);
bbd7d57b 3978 kfree(map);
88a420e4 3979 if (!t.count)
e374d483
HH
3980 len += sprintf(buf, "No data\n");
3981 return len;
88a420e4 3982}
ab4d5ed5 3983#endif
88a420e4 3984
a5a84755
CL
3985#ifdef SLUB_RESILIENCY_TEST
3986static void resiliency_test(void)
3987{
3988 u8 *p;
3989
3990 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
3991
3992 printk(KERN_ERR "SLUB resiliency testing\n");
3993 printk(KERN_ERR "-----------------------\n");
3994 printk(KERN_ERR "A. Corruption after allocation\n");
3995
3996 p = kzalloc(16, GFP_KERNEL);
3997 p[16] = 0x12;
3998 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3999 " 0x12->0x%p\n\n", p + 16);
4000
4001 validate_slab_cache(kmalloc_caches[4]);
4002
4003 /* Hmmm... The next two are dangerous */
4004 p = kzalloc(32, GFP_KERNEL);
4005 p[32 + sizeof(void *)] = 0x34;
4006 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4007 " 0x34 -> -0x%p\n", p);
4008 printk(KERN_ERR
4009 "If allocated object is overwritten then not detectable\n\n");
4010
4011 validate_slab_cache(kmalloc_caches[5]);
4012 p = kzalloc(64, GFP_KERNEL);
4013 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4014 *p = 0x56;
4015 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4016 p);
4017 printk(KERN_ERR
4018 "If allocated object is overwritten then not detectable\n\n");
4019 validate_slab_cache(kmalloc_caches[6]);
4020
4021 printk(KERN_ERR "\nB. Corruption after free\n");
4022 p = kzalloc(128, GFP_KERNEL);
4023 kfree(p);
4024 *p = 0x78;
4025 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4026 validate_slab_cache(kmalloc_caches[7]);
4027
4028 p = kzalloc(256, GFP_KERNEL);
4029 kfree(p);
4030 p[50] = 0x9a;
4031 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4032 p);
4033 validate_slab_cache(kmalloc_caches[8]);
4034
4035 p = kzalloc(512, GFP_KERNEL);
4036 kfree(p);
4037 p[512] = 0xab;
4038 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4039 validate_slab_cache(kmalloc_caches[9]);
4040}
4041#else
4042#ifdef CONFIG_SYSFS
4043static void resiliency_test(void) {};
4044#endif
4045#endif
4046
ab4d5ed5 4047#ifdef CONFIG_SYSFS
81819f0f 4048enum slab_stat_type {
205ab99d
CL
4049 SL_ALL, /* All slabs */
4050 SL_PARTIAL, /* Only partially allocated slabs */
4051 SL_CPU, /* Only slabs used for cpu caches */
4052 SL_OBJECTS, /* Determine allocated objects not slabs */
4053 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4054};
4055
205ab99d 4056#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4057#define SO_PARTIAL (1 << SL_PARTIAL)
4058#define SO_CPU (1 << SL_CPU)
4059#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4060#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4061
62e5c4b4
CG
4062static ssize_t show_slab_objects(struct kmem_cache *s,
4063 char *buf, unsigned long flags)
81819f0f
CL
4064{
4065 unsigned long total = 0;
81819f0f
CL
4066 int node;
4067 int x;
4068 unsigned long *nodes;
4069 unsigned long *per_cpu;
4070
4071 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4072 if (!nodes)
4073 return -ENOMEM;
81819f0f
CL
4074 per_cpu = nodes + nr_node_ids;
4075
205ab99d
CL
4076 if (flags & SO_CPU) {
4077 int cpu;
81819f0f 4078
205ab99d 4079 for_each_possible_cpu(cpu) {
9dfc6e68 4080 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
dfb4f096 4081
205ab99d
CL
4082 if (!c || c->node < 0)
4083 continue;
4084
4085 if (c->page) {
4086 if (flags & SO_TOTAL)
4087 x = c->page->objects;
4088 else if (flags & SO_OBJECTS)
4089 x = c->page->inuse;
81819f0f
CL
4090 else
4091 x = 1;
205ab99d 4092
81819f0f 4093 total += x;
205ab99d 4094 nodes[c->node] += x;
81819f0f 4095 }
205ab99d 4096 per_cpu[c->node]++;
81819f0f
CL
4097 }
4098 }
4099
04d94879 4100 lock_memory_hotplug();
ab4d5ed5 4101#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4102 if (flags & SO_ALL) {
4103 for_each_node_state(node, N_NORMAL_MEMORY) {
4104 struct kmem_cache_node *n = get_node(s, node);
4105
4106 if (flags & SO_TOTAL)
4107 x = atomic_long_read(&n->total_objects);
4108 else if (flags & SO_OBJECTS)
4109 x = atomic_long_read(&n->total_objects) -
4110 count_partial(n, count_free);
81819f0f 4111
81819f0f 4112 else
205ab99d 4113 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4114 total += x;
4115 nodes[node] += x;
4116 }
4117
ab4d5ed5
CL
4118 } else
4119#endif
4120 if (flags & SO_PARTIAL) {
205ab99d
CL
4121 for_each_node_state(node, N_NORMAL_MEMORY) {
4122 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4123
205ab99d
CL
4124 if (flags & SO_TOTAL)
4125 x = count_partial(n, count_total);
4126 else if (flags & SO_OBJECTS)
4127 x = count_partial(n, count_inuse);
81819f0f 4128 else
205ab99d 4129 x = n->nr_partial;
81819f0f
CL
4130 total += x;
4131 nodes[node] += x;
4132 }
4133 }
81819f0f
CL
4134 x = sprintf(buf, "%lu", total);
4135#ifdef CONFIG_NUMA
f64dc58c 4136 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4137 if (nodes[node])
4138 x += sprintf(buf + x, " N%d=%lu",
4139 node, nodes[node]);
4140#endif
04d94879 4141 unlock_memory_hotplug();
81819f0f
CL
4142 kfree(nodes);
4143 return x + sprintf(buf + x, "\n");
4144}
4145
ab4d5ed5 4146#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4147static int any_slab_objects(struct kmem_cache *s)
4148{
4149 int node;
81819f0f 4150
dfb4f096 4151 for_each_online_node(node) {
81819f0f
CL
4152 struct kmem_cache_node *n = get_node(s, node);
4153
dfb4f096
CL
4154 if (!n)
4155 continue;
4156
4ea33e2d 4157 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4158 return 1;
4159 }
4160 return 0;
4161}
ab4d5ed5 4162#endif
81819f0f
CL
4163
4164#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4165#define to_slab(n) container_of(n, struct kmem_cache, kobj);
4166
4167struct slab_attribute {
4168 struct attribute attr;
4169 ssize_t (*show)(struct kmem_cache *s, char *buf);
4170 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4171};
4172
4173#define SLAB_ATTR_RO(_name) \
4174 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4175
4176#define SLAB_ATTR(_name) \
4177 static struct slab_attribute _name##_attr = \
4178 __ATTR(_name, 0644, _name##_show, _name##_store)
4179
81819f0f
CL
4180static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4181{
4182 return sprintf(buf, "%d\n", s->size);
4183}
4184SLAB_ATTR_RO(slab_size);
4185
4186static ssize_t align_show(struct kmem_cache *s, char *buf)
4187{
4188 return sprintf(buf, "%d\n", s->align);
4189}
4190SLAB_ATTR_RO(align);
4191
4192static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4193{
4194 return sprintf(buf, "%d\n", s->objsize);
4195}
4196SLAB_ATTR_RO(object_size);
4197
4198static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4199{
834f3d11 4200 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4201}
4202SLAB_ATTR_RO(objs_per_slab);
4203
06b285dc
CL
4204static ssize_t order_store(struct kmem_cache *s,
4205 const char *buf, size_t length)
4206{
0121c619
CL
4207 unsigned long order;
4208 int err;
4209
4210 err = strict_strtoul(buf, 10, &order);
4211 if (err)
4212 return err;
06b285dc
CL
4213
4214 if (order > slub_max_order || order < slub_min_order)
4215 return -EINVAL;
4216
4217 calculate_sizes(s, order);
4218 return length;
4219}
4220
81819f0f
CL
4221static ssize_t order_show(struct kmem_cache *s, char *buf)
4222{
834f3d11 4223 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4224}
06b285dc 4225SLAB_ATTR(order);
81819f0f 4226
73d342b1
DR
4227static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4228{
4229 return sprintf(buf, "%lu\n", s->min_partial);
4230}
4231
4232static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4233 size_t length)
4234{
4235 unsigned long min;
4236 int err;
4237
4238 err = strict_strtoul(buf, 10, &min);
4239 if (err)
4240 return err;
4241
c0bdb232 4242 set_min_partial(s, min);
73d342b1
DR
4243 return length;
4244}
4245SLAB_ATTR(min_partial);
4246
81819f0f
CL
4247static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4248{
62c70bce
JP
4249 if (!s->ctor)
4250 return 0;
4251 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4252}
4253SLAB_ATTR_RO(ctor);
4254
81819f0f
CL
4255static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4256{
4257 return sprintf(buf, "%d\n", s->refcount - 1);
4258}
4259SLAB_ATTR_RO(aliases);
4260
81819f0f
CL
4261static ssize_t partial_show(struct kmem_cache *s, char *buf)
4262{
d9acf4b7 4263 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4264}
4265SLAB_ATTR_RO(partial);
4266
4267static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4268{
d9acf4b7 4269 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4270}
4271SLAB_ATTR_RO(cpu_slabs);
4272
4273static ssize_t objects_show(struct kmem_cache *s, char *buf)
4274{
205ab99d 4275 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4276}
4277SLAB_ATTR_RO(objects);
4278
205ab99d
CL
4279static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4280{
4281 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4282}
4283SLAB_ATTR_RO(objects_partial);
4284
a5a84755
CL
4285static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4286{
4287 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4288}
4289
4290static ssize_t reclaim_account_store(struct kmem_cache *s,
4291 const char *buf, size_t length)
4292{
4293 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4294 if (buf[0] == '1')
4295 s->flags |= SLAB_RECLAIM_ACCOUNT;
4296 return length;
4297}
4298SLAB_ATTR(reclaim_account);
4299
4300static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4301{
4302 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4303}
4304SLAB_ATTR_RO(hwcache_align);
4305
4306#ifdef CONFIG_ZONE_DMA
4307static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4308{
4309 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4310}
4311SLAB_ATTR_RO(cache_dma);
4312#endif
4313
4314static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4315{
4316 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4317}
4318SLAB_ATTR_RO(destroy_by_rcu);
4319
ab9a0f19
LJ
4320static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4321{
4322 return sprintf(buf, "%d\n", s->reserved);
4323}
4324SLAB_ATTR_RO(reserved);
4325
ab4d5ed5 4326#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4327static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4328{
4329 return show_slab_objects(s, buf, SO_ALL);
4330}
4331SLAB_ATTR_RO(slabs);
4332
205ab99d
CL
4333static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4334{
4335 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4336}
4337SLAB_ATTR_RO(total_objects);
4338
81819f0f
CL
4339static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4340{
4341 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4342}
4343
4344static ssize_t sanity_checks_store(struct kmem_cache *s,
4345 const char *buf, size_t length)
4346{
4347 s->flags &= ~SLAB_DEBUG_FREE;
4348 if (buf[0] == '1')
4349 s->flags |= SLAB_DEBUG_FREE;
4350 return length;
4351}
4352SLAB_ATTR(sanity_checks);
4353
4354static ssize_t trace_show(struct kmem_cache *s, char *buf)
4355{
4356 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4357}
4358
4359static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4360 size_t length)
4361{
4362 s->flags &= ~SLAB_TRACE;
4363 if (buf[0] == '1')
4364 s->flags |= SLAB_TRACE;
4365 return length;
4366}
4367SLAB_ATTR(trace);
4368
81819f0f
CL
4369static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4370{
4371 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4372}
4373
4374static ssize_t red_zone_store(struct kmem_cache *s,
4375 const char *buf, size_t length)
4376{
4377 if (any_slab_objects(s))
4378 return -EBUSY;
4379
4380 s->flags &= ~SLAB_RED_ZONE;
4381 if (buf[0] == '1')
4382 s->flags |= SLAB_RED_ZONE;
06b285dc 4383 calculate_sizes(s, -1);
81819f0f
CL
4384 return length;
4385}
4386SLAB_ATTR(red_zone);
4387
4388static ssize_t poison_show(struct kmem_cache *s, char *buf)
4389{
4390 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4391}
4392
4393static ssize_t poison_store(struct kmem_cache *s,
4394 const char *buf, size_t length)
4395{
4396 if (any_slab_objects(s))
4397 return -EBUSY;
4398
4399 s->flags &= ~SLAB_POISON;
4400 if (buf[0] == '1')
4401 s->flags |= SLAB_POISON;
06b285dc 4402 calculate_sizes(s, -1);
81819f0f
CL
4403 return length;
4404}
4405SLAB_ATTR(poison);
4406
4407static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4408{
4409 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4410}
4411
4412static ssize_t store_user_store(struct kmem_cache *s,
4413 const char *buf, size_t length)
4414{
4415 if (any_slab_objects(s))
4416 return -EBUSY;
4417
4418 s->flags &= ~SLAB_STORE_USER;
4419 if (buf[0] == '1')
4420 s->flags |= SLAB_STORE_USER;
06b285dc 4421 calculate_sizes(s, -1);
81819f0f
CL
4422 return length;
4423}
4424SLAB_ATTR(store_user);
4425
53e15af0
CL
4426static ssize_t validate_show(struct kmem_cache *s, char *buf)
4427{
4428 return 0;
4429}
4430
4431static ssize_t validate_store(struct kmem_cache *s,
4432 const char *buf, size_t length)
4433{
434e245d
CL
4434 int ret = -EINVAL;
4435
4436 if (buf[0] == '1') {
4437 ret = validate_slab_cache(s);
4438 if (ret >= 0)
4439 ret = length;
4440 }
4441 return ret;
53e15af0
CL
4442}
4443SLAB_ATTR(validate);
a5a84755
CL
4444
4445static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4446{
4447 if (!(s->flags & SLAB_STORE_USER))
4448 return -ENOSYS;
4449 return list_locations(s, buf, TRACK_ALLOC);
4450}
4451SLAB_ATTR_RO(alloc_calls);
4452
4453static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4454{
4455 if (!(s->flags & SLAB_STORE_USER))
4456 return -ENOSYS;
4457 return list_locations(s, buf, TRACK_FREE);
4458}
4459SLAB_ATTR_RO(free_calls);
4460#endif /* CONFIG_SLUB_DEBUG */
4461
4462#ifdef CONFIG_FAILSLAB
4463static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4464{
4465 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4466}
4467
4468static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4469 size_t length)
4470{
4471 s->flags &= ~SLAB_FAILSLAB;
4472 if (buf[0] == '1')
4473 s->flags |= SLAB_FAILSLAB;
4474 return length;
4475}
4476SLAB_ATTR(failslab);
ab4d5ed5 4477#endif
53e15af0 4478
2086d26a
CL
4479static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4480{
4481 return 0;
4482}
4483
4484static ssize_t shrink_store(struct kmem_cache *s,
4485 const char *buf, size_t length)
4486{
4487 if (buf[0] == '1') {
4488 int rc = kmem_cache_shrink(s);
4489
4490 if (rc)
4491 return rc;
4492 } else
4493 return -EINVAL;
4494 return length;
4495}
4496SLAB_ATTR(shrink);
4497
81819f0f 4498#ifdef CONFIG_NUMA
9824601e 4499static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4500{
9824601e 4501 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4502}
4503
9824601e 4504static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4505 const char *buf, size_t length)
4506{
0121c619
CL
4507 unsigned long ratio;
4508 int err;
4509
4510 err = strict_strtoul(buf, 10, &ratio);
4511 if (err)
4512 return err;
4513
e2cb96b7 4514 if (ratio <= 100)
0121c619 4515 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4516
81819f0f
CL
4517 return length;
4518}
9824601e 4519SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4520#endif
4521
8ff12cfc 4522#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4523static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4524{
4525 unsigned long sum = 0;
4526 int cpu;
4527 int len;
4528 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4529
4530 if (!data)
4531 return -ENOMEM;
4532
4533 for_each_online_cpu(cpu) {
9dfc6e68 4534 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4535
4536 data[cpu] = x;
4537 sum += x;
4538 }
4539
4540 len = sprintf(buf, "%lu", sum);
4541
50ef37b9 4542#ifdef CONFIG_SMP
8ff12cfc
CL
4543 for_each_online_cpu(cpu) {
4544 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4545 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4546 }
50ef37b9 4547#endif
8ff12cfc
CL
4548 kfree(data);
4549 return len + sprintf(buf + len, "\n");
4550}
4551
78eb00cc
DR
4552static void clear_stat(struct kmem_cache *s, enum stat_item si)
4553{
4554 int cpu;
4555
4556 for_each_online_cpu(cpu)
9dfc6e68 4557 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4558}
4559
8ff12cfc
CL
4560#define STAT_ATTR(si, text) \
4561static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4562{ \
4563 return show_stat(s, buf, si); \
4564} \
78eb00cc
DR
4565static ssize_t text##_store(struct kmem_cache *s, \
4566 const char *buf, size_t length) \
4567{ \
4568 if (buf[0] != '0') \
4569 return -EINVAL; \
4570 clear_stat(s, si); \
4571 return length; \
4572} \
4573SLAB_ATTR(text); \
8ff12cfc
CL
4574
4575STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4576STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4577STAT_ATTR(FREE_FASTPATH, free_fastpath);
4578STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4579STAT_ATTR(FREE_FROZEN, free_frozen);
4580STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4581STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4582STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4583STAT_ATTR(ALLOC_SLAB, alloc_slab);
4584STAT_ATTR(ALLOC_REFILL, alloc_refill);
4585STAT_ATTR(FREE_SLAB, free_slab);
4586STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4587STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4588STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4589STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4590STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4591STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
65c3376a 4592STAT_ATTR(ORDER_FALLBACK, order_fallback);
8ff12cfc
CL
4593#endif
4594
06428780 4595static struct attribute *slab_attrs[] = {
81819f0f
CL
4596 &slab_size_attr.attr,
4597 &object_size_attr.attr,
4598 &objs_per_slab_attr.attr,
4599 &order_attr.attr,
73d342b1 4600 &min_partial_attr.attr,
81819f0f 4601 &objects_attr.attr,
205ab99d 4602 &objects_partial_attr.attr,
81819f0f
CL
4603 &partial_attr.attr,
4604 &cpu_slabs_attr.attr,
4605 &ctor_attr.attr,
81819f0f
CL
4606 &aliases_attr.attr,
4607 &align_attr.attr,
81819f0f
CL
4608 &hwcache_align_attr.attr,
4609 &reclaim_account_attr.attr,
4610 &destroy_by_rcu_attr.attr,
a5a84755 4611 &shrink_attr.attr,
ab9a0f19 4612 &reserved_attr.attr,
ab4d5ed5 4613#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4614 &total_objects_attr.attr,
4615 &slabs_attr.attr,
4616 &sanity_checks_attr.attr,
4617 &trace_attr.attr,
81819f0f
CL
4618 &red_zone_attr.attr,
4619 &poison_attr.attr,
4620 &store_user_attr.attr,
53e15af0 4621 &validate_attr.attr,
88a420e4
CL
4622 &alloc_calls_attr.attr,
4623 &free_calls_attr.attr,
ab4d5ed5 4624#endif
81819f0f
CL
4625#ifdef CONFIG_ZONE_DMA
4626 &cache_dma_attr.attr,
4627#endif
4628#ifdef CONFIG_NUMA
9824601e 4629 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4630#endif
4631#ifdef CONFIG_SLUB_STATS
4632 &alloc_fastpath_attr.attr,
4633 &alloc_slowpath_attr.attr,
4634 &free_fastpath_attr.attr,
4635 &free_slowpath_attr.attr,
4636 &free_frozen_attr.attr,
4637 &free_add_partial_attr.attr,
4638 &free_remove_partial_attr.attr,
4639 &alloc_from_partial_attr.attr,
4640 &alloc_slab_attr.attr,
4641 &alloc_refill_attr.attr,
4642 &free_slab_attr.attr,
4643 &cpuslab_flush_attr.attr,
4644 &deactivate_full_attr.attr,
4645 &deactivate_empty_attr.attr,
4646 &deactivate_to_head_attr.attr,
4647 &deactivate_to_tail_attr.attr,
4648 &deactivate_remote_frees_attr.attr,
65c3376a 4649 &order_fallback_attr.attr,
81819f0f 4650#endif
4c13dd3b
DM
4651#ifdef CONFIG_FAILSLAB
4652 &failslab_attr.attr,
4653#endif
4654
81819f0f
CL
4655 NULL
4656};
4657
4658static struct attribute_group slab_attr_group = {
4659 .attrs = slab_attrs,
4660};
4661
4662static ssize_t slab_attr_show(struct kobject *kobj,
4663 struct attribute *attr,
4664 char *buf)
4665{
4666 struct slab_attribute *attribute;
4667 struct kmem_cache *s;
4668 int err;
4669
4670 attribute = to_slab_attr(attr);
4671 s = to_slab(kobj);
4672
4673 if (!attribute->show)
4674 return -EIO;
4675
4676 err = attribute->show(s, buf);
4677
4678 return err;
4679}
4680
4681static ssize_t slab_attr_store(struct kobject *kobj,
4682 struct attribute *attr,
4683 const char *buf, size_t len)
4684{
4685 struct slab_attribute *attribute;
4686 struct kmem_cache *s;
4687 int err;
4688
4689 attribute = to_slab_attr(attr);
4690 s = to_slab(kobj);
4691
4692 if (!attribute->store)
4693 return -EIO;
4694
4695 err = attribute->store(s, buf, len);
4696
4697 return err;
4698}
4699
151c602f
CL
4700static void kmem_cache_release(struct kobject *kobj)
4701{
4702 struct kmem_cache *s = to_slab(kobj);
4703
84c1cf62 4704 kfree(s->name);
151c602f
CL
4705 kfree(s);
4706}
4707
52cf25d0 4708static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
4709 .show = slab_attr_show,
4710 .store = slab_attr_store,
4711};
4712
4713static struct kobj_type slab_ktype = {
4714 .sysfs_ops = &slab_sysfs_ops,
151c602f 4715 .release = kmem_cache_release
81819f0f
CL
4716};
4717
4718static int uevent_filter(struct kset *kset, struct kobject *kobj)
4719{
4720 struct kobj_type *ktype = get_ktype(kobj);
4721
4722 if (ktype == &slab_ktype)
4723 return 1;
4724 return 0;
4725}
4726
9cd43611 4727static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
4728 .filter = uevent_filter,
4729};
4730
27c3a314 4731static struct kset *slab_kset;
81819f0f
CL
4732
4733#define ID_STR_LENGTH 64
4734
4735/* Create a unique string id for a slab cache:
6446faa2
CL
4736 *
4737 * Format :[flags-]size
81819f0f
CL
4738 */
4739static char *create_unique_id(struct kmem_cache *s)
4740{
4741 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4742 char *p = name;
4743
4744 BUG_ON(!name);
4745
4746 *p++ = ':';
4747 /*
4748 * First flags affecting slabcache operations. We will only
4749 * get here for aliasable slabs so we do not need to support
4750 * too many flags. The flags here must cover all flags that
4751 * are matched during merging to guarantee that the id is
4752 * unique.
4753 */
4754 if (s->flags & SLAB_CACHE_DMA)
4755 *p++ = 'd';
4756 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4757 *p++ = 'a';
4758 if (s->flags & SLAB_DEBUG_FREE)
4759 *p++ = 'F';
5a896d9e
VN
4760 if (!(s->flags & SLAB_NOTRACK))
4761 *p++ = 't';
81819f0f
CL
4762 if (p != name + 1)
4763 *p++ = '-';
4764 p += sprintf(p, "%07d", s->size);
4765 BUG_ON(p > name + ID_STR_LENGTH - 1);
4766 return name;
4767}
4768
4769static int sysfs_slab_add(struct kmem_cache *s)
4770{
4771 int err;
4772 const char *name;
4773 int unmergeable;
4774
4775 if (slab_state < SYSFS)
4776 /* Defer until later */
4777 return 0;
4778
4779 unmergeable = slab_unmergeable(s);
4780 if (unmergeable) {
4781 /*
4782 * Slabcache can never be merged so we can use the name proper.
4783 * This is typically the case for debug situations. In that
4784 * case we can catch duplicate names easily.
4785 */
27c3a314 4786 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4787 name = s->name;
4788 } else {
4789 /*
4790 * Create a unique name for the slab as a target
4791 * for the symlinks.
4792 */
4793 name = create_unique_id(s);
4794 }
4795
27c3a314 4796 s->kobj.kset = slab_kset;
1eada11c
GKH
4797 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4798 if (err) {
4799 kobject_put(&s->kobj);
81819f0f 4800 return err;
1eada11c 4801 }
81819f0f
CL
4802
4803 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
4804 if (err) {
4805 kobject_del(&s->kobj);
4806 kobject_put(&s->kobj);
81819f0f 4807 return err;
5788d8ad 4808 }
81819f0f
CL
4809 kobject_uevent(&s->kobj, KOBJ_ADD);
4810 if (!unmergeable) {
4811 /* Setup first alias */
4812 sysfs_slab_alias(s, s->name);
4813 kfree(name);
4814 }
4815 return 0;
4816}
4817
4818static void sysfs_slab_remove(struct kmem_cache *s)
4819{
2bce6485
CL
4820 if (slab_state < SYSFS)
4821 /*
4822 * Sysfs has not been setup yet so no need to remove the
4823 * cache from sysfs.
4824 */
4825 return;
4826
81819f0f
CL
4827 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4828 kobject_del(&s->kobj);
151c602f 4829 kobject_put(&s->kobj);
81819f0f
CL
4830}
4831
4832/*
4833 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 4834 * available lest we lose that information.
81819f0f
CL
4835 */
4836struct saved_alias {
4837 struct kmem_cache *s;
4838 const char *name;
4839 struct saved_alias *next;
4840};
4841
5af328a5 4842static struct saved_alias *alias_list;
81819f0f
CL
4843
4844static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4845{
4846 struct saved_alias *al;
4847
4848 if (slab_state == SYSFS) {
4849 /*
4850 * If we have a leftover link then remove it.
4851 */
27c3a314
GKH
4852 sysfs_remove_link(&slab_kset->kobj, name);
4853 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4854 }
4855
4856 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4857 if (!al)
4858 return -ENOMEM;
4859
4860 al->s = s;
4861 al->name = name;
4862 al->next = alias_list;
4863 alias_list = al;
4864 return 0;
4865}
4866
4867static int __init slab_sysfs_init(void)
4868{
5b95a4ac 4869 struct kmem_cache *s;
81819f0f
CL
4870 int err;
4871
2bce6485
CL
4872 down_write(&slub_lock);
4873
0ff21e46 4874 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4875 if (!slab_kset) {
2bce6485 4876 up_write(&slub_lock);
81819f0f
CL
4877 printk(KERN_ERR "Cannot register slab subsystem.\n");
4878 return -ENOSYS;
4879 }
4880
26a7bd03
CL
4881 slab_state = SYSFS;
4882
5b95a4ac 4883 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4884 err = sysfs_slab_add(s);
5d540fb7
CL
4885 if (err)
4886 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4887 " to sysfs\n", s->name);
26a7bd03 4888 }
81819f0f
CL
4889
4890 while (alias_list) {
4891 struct saved_alias *al = alias_list;
4892
4893 alias_list = alias_list->next;
4894 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4895 if (err)
4896 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4897 " %s to sysfs\n", s->name);
81819f0f
CL
4898 kfree(al);
4899 }
4900
2bce6485 4901 up_write(&slub_lock);
81819f0f
CL
4902 resiliency_test();
4903 return 0;
4904}
4905
4906__initcall(slab_sysfs_init);
ab4d5ed5 4907#endif /* CONFIG_SYSFS */
57ed3eda
PE
4908
4909/*
4910 * The /proc/slabinfo ABI
4911 */
158a9624 4912#ifdef CONFIG_SLABINFO
57ed3eda
PE
4913static void print_slabinfo_header(struct seq_file *m)
4914{
4915 seq_puts(m, "slabinfo - version: 2.1\n");
4916 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4917 "<objperslab> <pagesperslab>");
4918 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4919 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4920 seq_putc(m, '\n');
4921}
4922
4923static void *s_start(struct seq_file *m, loff_t *pos)
4924{
4925 loff_t n = *pos;
4926
4927 down_read(&slub_lock);
4928 if (!n)
4929 print_slabinfo_header(m);
4930
4931 return seq_list_start(&slab_caches, *pos);
4932}
4933
4934static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4935{
4936 return seq_list_next(p, &slab_caches, pos);
4937}
4938
4939static void s_stop(struct seq_file *m, void *p)
4940{
4941 up_read(&slub_lock);
4942}
4943
4944static int s_show(struct seq_file *m, void *p)
4945{
4946 unsigned long nr_partials = 0;
4947 unsigned long nr_slabs = 0;
4948 unsigned long nr_inuse = 0;
205ab99d
CL
4949 unsigned long nr_objs = 0;
4950 unsigned long nr_free = 0;
57ed3eda
PE
4951 struct kmem_cache *s;
4952 int node;
4953
4954 s = list_entry(p, struct kmem_cache, list);
4955
4956 for_each_online_node(node) {
4957 struct kmem_cache_node *n = get_node(s, node);
4958
4959 if (!n)
4960 continue;
4961
4962 nr_partials += n->nr_partial;
4963 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
4964 nr_objs += atomic_long_read(&n->total_objects);
4965 nr_free += count_partial(n, count_free);
57ed3eda
PE
4966 }
4967
205ab99d 4968 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
4969
4970 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
4971 nr_objs, s->size, oo_objects(s->oo),
4972 (1 << oo_order(s->oo)));
57ed3eda
PE
4973 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4974 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4975 0UL);
4976 seq_putc(m, '\n');
4977 return 0;
4978}
4979
7b3c3a50 4980static const struct seq_operations slabinfo_op = {
57ed3eda
PE
4981 .start = s_start,
4982 .next = s_next,
4983 .stop = s_stop,
4984 .show = s_show,
4985};
4986
7b3c3a50
AD
4987static int slabinfo_open(struct inode *inode, struct file *file)
4988{
4989 return seq_open(file, &slabinfo_op);
4990}
4991
4992static const struct file_operations proc_slabinfo_operations = {
4993 .open = slabinfo_open,
4994 .read = seq_read,
4995 .llseek = seq_lseek,
4996 .release = seq_release,
4997};
4998
4999static int __init slab_proc_init(void)
5000{
cf5d1131 5001 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
5002 return 0;
5003}
5004module_init(slab_proc_init);
158a9624 5005#endif /* CONFIG_SLABINFO */