slub: convert SLAB_DEBUG_FREE to SLAB_CONSISTENCY_CHECKS
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
3ac38faa 21#include <linux/notifier.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
5a896d9e 24#include <linux/kmemcheck.h>
81819f0f
CL
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
3ac7fe5a 29#include <linux/debugobjects.h>
81819f0f 30#include <linux/kallsyms.h>
b9049e23 31#include <linux/memory.h>
f8bd2258 32#include <linux/math64.h>
773ff60e 33#include <linux/fault-inject.h>
bfa71457 34#include <linux/stacktrace.h>
4de900b4 35#include <linux/prefetch.h>
2633d7a0 36#include <linux/memcontrol.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
65 *
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
71 *
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
81819f0f
CL
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
81 *
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
84 *
672bba3a
CL
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 87 * freed then the slab will show up again on the partial lists.
672bba3a
CL
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
81819f0f
CL
90 *
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
94 *
95 * Overloading of page flags that are otherwise used for LRU management.
96 *
4b6f0750
CL
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
dfb4f096 109 * freelist that allows lockless access to
894b8788
CL
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
81819f0f
CL
112 *
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
894b8788 115 * the fast path and disables lockless freelists.
81819f0f
CL
116 */
117
af537b0a
CL
118static inline int kmem_cache_debug(struct kmem_cache *s)
119{
5577bd8a 120#ifdef CONFIG_SLUB_DEBUG
af537b0a 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 122#else
af537b0a 123 return 0;
5577bd8a 124#endif
af537b0a 125}
5577bd8a 126
345c905d
JK
127static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
128{
129#ifdef CONFIG_SLUB_CPU_PARTIAL
130 return !kmem_cache_debug(s);
131#else
132 return false;
133#endif
134}
135
81819f0f
CL
136/*
137 * Issues still to be resolved:
138 *
81819f0f
CL
139 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
140 *
81819f0f
CL
141 * - Variable sizing of the per node arrays
142 */
143
144/* Enable to test recovery from slab corruption on boot */
145#undef SLUB_RESILIENCY_TEST
146
b789ef51
CL
147/* Enable to log cmpxchg failures */
148#undef SLUB_DEBUG_CMPXCHG
149
2086d26a
CL
150/*
151 * Mininum number of partial slabs. These will be left on the partial
152 * lists even if they are empty. kmem_cache_shrink may reclaim them.
153 */
76be8950 154#define MIN_PARTIAL 5
e95eed57 155
2086d26a
CL
156/*
157 * Maximum number of desirable partial slabs.
158 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 159 * sort the partial list by the number of objects in use.
2086d26a
CL
160 */
161#define MAX_PARTIAL 10
162
becfda68 163#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 164 SLAB_POISON | SLAB_STORE_USER)
672bba3a 165
fa5ec8a1 166/*
3de47213
DR
167 * Debugging flags that require metadata to be stored in the slab. These get
168 * disabled when slub_debug=O is used and a cache's min order increases with
169 * metadata.
fa5ec8a1 170 */
3de47213 171#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 172
210b5c06
CG
173#define OO_SHIFT 16
174#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 175#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 176
81819f0f 177/* Internal SLUB flags */
f90ec390 178#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 179#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 180
81819f0f
CL
181#ifdef CONFIG_SMP
182static struct notifier_block slab_notifier;
183#endif
184
02cbc874
CL
185/*
186 * Tracking user of a slab.
187 */
d6543e39 188#define TRACK_ADDRS_COUNT 16
02cbc874 189struct track {
ce71e27c 190 unsigned long addr; /* Called from address */
d6543e39
BG
191#ifdef CONFIG_STACKTRACE
192 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
193#endif
02cbc874
CL
194 int cpu; /* Was running on cpu */
195 int pid; /* Pid context */
196 unsigned long when; /* When did the operation occur */
197};
198
199enum track_item { TRACK_ALLOC, TRACK_FREE };
200
ab4d5ed5 201#ifdef CONFIG_SYSFS
81819f0f
CL
202static int sysfs_slab_add(struct kmem_cache *);
203static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 204static void memcg_propagate_slab_attrs(struct kmem_cache *s);
81819f0f 205#else
0c710013
CL
206static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
207static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
208 { return 0; }
107dab5c 209static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
81819f0f
CL
210#endif
211
4fdccdfb 212static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
213{
214#ifdef CONFIG_SLUB_STATS
88da03a6
CL
215 /*
216 * The rmw is racy on a preemptible kernel but this is acceptable, so
217 * avoid this_cpu_add()'s irq-disable overhead.
218 */
219 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
220#endif
221}
222
81819f0f
CL
223/********************************************************************
224 * Core slab cache functions
225 *******************************************************************/
226
6446faa2 227/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
228static inline int check_valid_pointer(struct kmem_cache *s,
229 struct page *page, const void *object)
230{
231 void *base;
232
a973e9dd 233 if (!object)
02cbc874
CL
234 return 1;
235
a973e9dd 236 base = page_address(page);
39b26464 237 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
238 (object - base) % s->size) {
239 return 0;
240 }
241
242 return 1;
243}
244
7656c72b
CL
245static inline void *get_freepointer(struct kmem_cache *s, void *object)
246{
247 return *(void **)(object + s->offset);
248}
249
0ad9500e
ED
250static void prefetch_freepointer(const struct kmem_cache *s, void *object)
251{
252 prefetch(object + s->offset);
253}
254
1393d9a1
CL
255static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
256{
257 void *p;
258
259#ifdef CONFIG_DEBUG_PAGEALLOC
260 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
261#else
262 p = get_freepointer(s, object);
263#endif
264 return p;
265}
266
7656c72b
CL
267static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
268{
269 *(void **)(object + s->offset) = fp;
270}
271
272/* Loop over all objects in a slab */
224a88be
CL
273#define for_each_object(__p, __s, __addr, __objects) \
274 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
275 __p += (__s)->size)
276
54266640
WY
277#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
278 for (__p = (__addr), __idx = 1; __idx <= __objects;\
279 __p += (__s)->size, __idx++)
280
7656c72b
CL
281/* Determine object index from a given position */
282static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
283{
284 return (p - addr) / s->size;
285}
286
ab9a0f19
LJ
287static inline int order_objects(int order, unsigned long size, int reserved)
288{
289 return ((PAGE_SIZE << order) - reserved) / size;
290}
291
834f3d11 292static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 293 unsigned long size, int reserved)
834f3d11
CL
294{
295 struct kmem_cache_order_objects x = {
ab9a0f19 296 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
297 };
298
299 return x;
300}
301
302static inline int oo_order(struct kmem_cache_order_objects x)
303{
210b5c06 304 return x.x >> OO_SHIFT;
834f3d11
CL
305}
306
307static inline int oo_objects(struct kmem_cache_order_objects x)
308{
210b5c06 309 return x.x & OO_MASK;
834f3d11
CL
310}
311
881db7fb
CL
312/*
313 * Per slab locking using the pagelock
314 */
315static __always_inline void slab_lock(struct page *page)
316{
48c935ad 317 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
318 bit_spin_lock(PG_locked, &page->flags);
319}
320
321static __always_inline void slab_unlock(struct page *page)
322{
48c935ad 323 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
324 __bit_spin_unlock(PG_locked, &page->flags);
325}
326
a0320865
DH
327static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
328{
329 struct page tmp;
330 tmp.counters = counters_new;
331 /*
332 * page->counters can cover frozen/inuse/objects as well
333 * as page->_count. If we assign to ->counters directly
334 * we run the risk of losing updates to page->_count, so
335 * be careful and only assign to the fields we need.
336 */
337 page->frozen = tmp.frozen;
338 page->inuse = tmp.inuse;
339 page->objects = tmp.objects;
340}
341
1d07171c
CL
342/* Interrupts must be disabled (for the fallback code to work right) */
343static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
344 void *freelist_old, unsigned long counters_old,
345 void *freelist_new, unsigned long counters_new,
346 const char *n)
347{
348 VM_BUG_ON(!irqs_disabled());
2565409f
HC
349#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
350 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 351 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 352 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
353 freelist_old, counters_old,
354 freelist_new, counters_new))
6f6528a1 355 return true;
1d07171c
CL
356 } else
357#endif
358 {
359 slab_lock(page);
d0e0ac97
CG
360 if (page->freelist == freelist_old &&
361 page->counters == counters_old) {
1d07171c 362 page->freelist = freelist_new;
a0320865 363 set_page_slub_counters(page, counters_new);
1d07171c 364 slab_unlock(page);
6f6528a1 365 return true;
1d07171c
CL
366 }
367 slab_unlock(page);
368 }
369
370 cpu_relax();
371 stat(s, CMPXCHG_DOUBLE_FAIL);
372
373#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 374 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
375#endif
376
6f6528a1 377 return false;
1d07171c
CL
378}
379
b789ef51
CL
380static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
381 void *freelist_old, unsigned long counters_old,
382 void *freelist_new, unsigned long counters_new,
383 const char *n)
384{
2565409f
HC
385#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
386 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 387 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 388 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
389 freelist_old, counters_old,
390 freelist_new, counters_new))
6f6528a1 391 return true;
b789ef51
CL
392 } else
393#endif
394 {
1d07171c
CL
395 unsigned long flags;
396
397 local_irq_save(flags);
881db7fb 398 slab_lock(page);
d0e0ac97
CG
399 if (page->freelist == freelist_old &&
400 page->counters == counters_old) {
b789ef51 401 page->freelist = freelist_new;
a0320865 402 set_page_slub_counters(page, counters_new);
881db7fb 403 slab_unlock(page);
1d07171c 404 local_irq_restore(flags);
6f6528a1 405 return true;
b789ef51 406 }
881db7fb 407 slab_unlock(page);
1d07171c 408 local_irq_restore(flags);
b789ef51
CL
409 }
410
411 cpu_relax();
412 stat(s, CMPXCHG_DOUBLE_FAIL);
413
414#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 415 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
416#endif
417
6f6528a1 418 return false;
b789ef51
CL
419}
420
41ecc55b 421#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
422/*
423 * Determine a map of object in use on a page.
424 *
881db7fb 425 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
426 * not vanish from under us.
427 */
428static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
429{
430 void *p;
431 void *addr = page_address(page);
432
433 for (p = page->freelist; p; p = get_freepointer(s, p))
434 set_bit(slab_index(p, s, addr), map);
435}
436
41ecc55b
CL
437/*
438 * Debug settings:
439 */
89d3c87e 440#if defined(CONFIG_SLUB_DEBUG_ON)
f0630fff 441static int slub_debug = DEBUG_DEFAULT_FLAGS;
89d3c87e
AR
442#elif defined(CONFIG_KASAN)
443static int slub_debug = SLAB_STORE_USER;
f0630fff 444#else
41ecc55b 445static int slub_debug;
f0630fff 446#endif
41ecc55b
CL
447
448static char *slub_debug_slabs;
fa5ec8a1 449static int disable_higher_order_debug;
41ecc55b 450
a79316c6
AR
451/*
452 * slub is about to manipulate internal object metadata. This memory lies
453 * outside the range of the allocated object, so accessing it would normally
454 * be reported by kasan as a bounds error. metadata_access_enable() is used
455 * to tell kasan that these accesses are OK.
456 */
457static inline void metadata_access_enable(void)
458{
459 kasan_disable_current();
460}
461
462static inline void metadata_access_disable(void)
463{
464 kasan_enable_current();
465}
466
81819f0f
CL
467/*
468 * Object debugging
469 */
470static void print_section(char *text, u8 *addr, unsigned int length)
471{
a79316c6 472 metadata_access_enable();
ffc79d28
SAS
473 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
474 length, 1);
a79316c6 475 metadata_access_disable();
81819f0f
CL
476}
477
81819f0f
CL
478static struct track *get_track(struct kmem_cache *s, void *object,
479 enum track_item alloc)
480{
481 struct track *p;
482
483 if (s->offset)
484 p = object + s->offset + sizeof(void *);
485 else
486 p = object + s->inuse;
487
488 return p + alloc;
489}
490
491static void set_track(struct kmem_cache *s, void *object,
ce71e27c 492 enum track_item alloc, unsigned long addr)
81819f0f 493{
1a00df4a 494 struct track *p = get_track(s, object, alloc);
81819f0f 495
81819f0f 496 if (addr) {
d6543e39
BG
497#ifdef CONFIG_STACKTRACE
498 struct stack_trace trace;
499 int i;
500
501 trace.nr_entries = 0;
502 trace.max_entries = TRACK_ADDRS_COUNT;
503 trace.entries = p->addrs;
504 trace.skip = 3;
a79316c6 505 metadata_access_enable();
d6543e39 506 save_stack_trace(&trace);
a79316c6 507 metadata_access_disable();
d6543e39
BG
508
509 /* See rant in lockdep.c */
510 if (trace.nr_entries != 0 &&
511 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
512 trace.nr_entries--;
513
514 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
515 p->addrs[i] = 0;
516#endif
81819f0f
CL
517 p->addr = addr;
518 p->cpu = smp_processor_id();
88e4ccf2 519 p->pid = current->pid;
81819f0f
CL
520 p->when = jiffies;
521 } else
522 memset(p, 0, sizeof(struct track));
523}
524
81819f0f
CL
525static void init_tracking(struct kmem_cache *s, void *object)
526{
24922684
CL
527 if (!(s->flags & SLAB_STORE_USER))
528 return;
529
ce71e27c
EGM
530 set_track(s, object, TRACK_FREE, 0UL);
531 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
532}
533
534static void print_track(const char *s, struct track *t)
535{
536 if (!t->addr)
537 return;
538
f9f58285
FF
539 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
540 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
541#ifdef CONFIG_STACKTRACE
542 {
543 int i;
544 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
545 if (t->addrs[i])
f9f58285 546 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
547 else
548 break;
549 }
550#endif
24922684
CL
551}
552
553static void print_tracking(struct kmem_cache *s, void *object)
554{
555 if (!(s->flags & SLAB_STORE_USER))
556 return;
557
558 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
559 print_track("Freed", get_track(s, object, TRACK_FREE));
560}
561
562static void print_page_info(struct page *page)
563{
f9f58285 564 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 565 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
566
567}
568
569static void slab_bug(struct kmem_cache *s, char *fmt, ...)
570{
ecc42fbe 571 struct va_format vaf;
24922684 572 va_list args;
24922684
CL
573
574 va_start(args, fmt);
ecc42fbe
FF
575 vaf.fmt = fmt;
576 vaf.va = &args;
f9f58285 577 pr_err("=============================================================================\n");
ecc42fbe 578 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 579 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 580
373d4d09 581 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 582 va_end(args);
81819f0f
CL
583}
584
24922684
CL
585static void slab_fix(struct kmem_cache *s, char *fmt, ...)
586{
ecc42fbe 587 struct va_format vaf;
24922684 588 va_list args;
24922684
CL
589
590 va_start(args, fmt);
ecc42fbe
FF
591 vaf.fmt = fmt;
592 vaf.va = &args;
593 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 594 va_end(args);
24922684
CL
595}
596
597static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
598{
599 unsigned int off; /* Offset of last byte */
a973e9dd 600 u8 *addr = page_address(page);
24922684
CL
601
602 print_tracking(s, p);
603
604 print_page_info(page);
605
f9f58285
FF
606 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
607 p, p - addr, get_freepointer(s, p));
24922684
CL
608
609 if (p > addr + 16)
ffc79d28 610 print_section("Bytes b4 ", p - 16, 16);
81819f0f 611
3b0efdfa 612 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 613 PAGE_SIZE));
81819f0f 614 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
615 print_section("Redzone ", p + s->object_size,
616 s->inuse - s->object_size);
81819f0f 617
81819f0f
CL
618 if (s->offset)
619 off = s->offset + sizeof(void *);
620 else
621 off = s->inuse;
622
24922684 623 if (s->flags & SLAB_STORE_USER)
81819f0f 624 off += 2 * sizeof(struct track);
81819f0f
CL
625
626 if (off != s->size)
627 /* Beginning of the filler is the free pointer */
ffc79d28 628 print_section("Padding ", p + off, s->size - off);
24922684
CL
629
630 dump_stack();
81819f0f
CL
631}
632
75c66def 633void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
634 u8 *object, char *reason)
635{
3dc50637 636 slab_bug(s, "%s", reason);
24922684 637 print_trailer(s, page, object);
81819f0f
CL
638}
639
d0e0ac97
CG
640static void slab_err(struct kmem_cache *s, struct page *page,
641 const char *fmt, ...)
81819f0f
CL
642{
643 va_list args;
644 char buf[100];
645
24922684
CL
646 va_start(args, fmt);
647 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 648 va_end(args);
3dc50637 649 slab_bug(s, "%s", buf);
24922684 650 print_page_info(page);
81819f0f
CL
651 dump_stack();
652}
653
f7cb1933 654static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
655{
656 u8 *p = object;
657
658 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
659 memset(p, POISON_FREE, s->object_size - 1);
660 p[s->object_size - 1] = POISON_END;
81819f0f
CL
661 }
662
663 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 664 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
665}
666
24922684
CL
667static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
668 void *from, void *to)
669{
670 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
671 memset(from, data, to - from);
672}
673
674static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
675 u8 *object, char *what,
06428780 676 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
677{
678 u8 *fault;
679 u8 *end;
680
a79316c6 681 metadata_access_enable();
79824820 682 fault = memchr_inv(start, value, bytes);
a79316c6 683 metadata_access_disable();
24922684
CL
684 if (!fault)
685 return 1;
686
687 end = start + bytes;
688 while (end > fault && end[-1] == value)
689 end--;
690
691 slab_bug(s, "%s overwritten", what);
f9f58285 692 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
693 fault, end - 1, fault[0], value);
694 print_trailer(s, page, object);
695
696 restore_bytes(s, what, value, fault, end);
697 return 0;
81819f0f
CL
698}
699
81819f0f
CL
700/*
701 * Object layout:
702 *
703 * object address
704 * Bytes of the object to be managed.
705 * If the freepointer may overlay the object then the free
706 * pointer is the first word of the object.
672bba3a 707 *
81819f0f
CL
708 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
709 * 0xa5 (POISON_END)
710 *
3b0efdfa 711 * object + s->object_size
81819f0f 712 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 713 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 714 * object_size == inuse.
672bba3a 715 *
81819f0f
CL
716 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
717 * 0xcc (RED_ACTIVE) for objects in use.
718 *
719 * object + s->inuse
672bba3a
CL
720 * Meta data starts here.
721 *
81819f0f
CL
722 * A. Free pointer (if we cannot overwrite object on free)
723 * B. Tracking data for SLAB_STORE_USER
672bba3a 724 * C. Padding to reach required alignment boundary or at mininum
6446faa2 725 * one word if debugging is on to be able to detect writes
672bba3a
CL
726 * before the word boundary.
727 *
728 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
729 *
730 * object + s->size
672bba3a 731 * Nothing is used beyond s->size.
81819f0f 732 *
3b0efdfa 733 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 734 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
735 * may be used with merged slabcaches.
736 */
737
81819f0f
CL
738static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
739{
740 unsigned long off = s->inuse; /* The end of info */
741
742 if (s->offset)
743 /* Freepointer is placed after the object. */
744 off += sizeof(void *);
745
746 if (s->flags & SLAB_STORE_USER)
747 /* We also have user information there */
748 off += 2 * sizeof(struct track);
749
750 if (s->size == off)
751 return 1;
752
24922684
CL
753 return check_bytes_and_report(s, page, p, "Object padding",
754 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
755}
756
39b26464 757/* Check the pad bytes at the end of a slab page */
81819f0f
CL
758static int slab_pad_check(struct kmem_cache *s, struct page *page)
759{
24922684
CL
760 u8 *start;
761 u8 *fault;
762 u8 *end;
763 int length;
764 int remainder;
81819f0f
CL
765
766 if (!(s->flags & SLAB_POISON))
767 return 1;
768
a973e9dd 769 start = page_address(page);
ab9a0f19 770 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
771 end = start + length;
772 remainder = length % s->size;
81819f0f
CL
773 if (!remainder)
774 return 1;
775
a79316c6 776 metadata_access_enable();
79824820 777 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
a79316c6 778 metadata_access_disable();
24922684
CL
779 if (!fault)
780 return 1;
781 while (end > fault && end[-1] == POISON_INUSE)
782 end--;
783
784 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 785 print_section("Padding ", end - remainder, remainder);
24922684 786
8a3d271d 787 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 788 return 0;
81819f0f
CL
789}
790
791static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 792 void *object, u8 val)
81819f0f
CL
793{
794 u8 *p = object;
3b0efdfa 795 u8 *endobject = object + s->object_size;
81819f0f
CL
796
797 if (s->flags & SLAB_RED_ZONE) {
24922684 798 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 799 endobject, val, s->inuse - s->object_size))
81819f0f 800 return 0;
81819f0f 801 } else {
3b0efdfa 802 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 803 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
804 endobject, POISON_INUSE,
805 s->inuse - s->object_size);
3adbefee 806 }
81819f0f
CL
807 }
808
809 if (s->flags & SLAB_POISON) {
f7cb1933 810 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 811 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 812 POISON_FREE, s->object_size - 1) ||
24922684 813 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 814 p + s->object_size - 1, POISON_END, 1)))
81819f0f 815 return 0;
81819f0f
CL
816 /*
817 * check_pad_bytes cleans up on its own.
818 */
819 check_pad_bytes(s, page, p);
820 }
821
f7cb1933 822 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
823 /*
824 * Object and freepointer overlap. Cannot check
825 * freepointer while object is allocated.
826 */
827 return 1;
828
829 /* Check free pointer validity */
830 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
831 object_err(s, page, p, "Freepointer corrupt");
832 /*
9f6c708e 833 * No choice but to zap it and thus lose the remainder
81819f0f 834 * of the free objects in this slab. May cause
672bba3a 835 * another error because the object count is now wrong.
81819f0f 836 */
a973e9dd 837 set_freepointer(s, p, NULL);
81819f0f
CL
838 return 0;
839 }
840 return 1;
841}
842
843static int check_slab(struct kmem_cache *s, struct page *page)
844{
39b26464
CL
845 int maxobj;
846
81819f0f
CL
847 VM_BUG_ON(!irqs_disabled());
848
849 if (!PageSlab(page)) {
24922684 850 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
851 return 0;
852 }
39b26464 853
ab9a0f19 854 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
855 if (page->objects > maxobj) {
856 slab_err(s, page, "objects %u > max %u",
f6edde9c 857 page->objects, maxobj);
39b26464
CL
858 return 0;
859 }
860 if (page->inuse > page->objects) {
24922684 861 slab_err(s, page, "inuse %u > max %u",
f6edde9c 862 page->inuse, page->objects);
81819f0f
CL
863 return 0;
864 }
865 /* Slab_pad_check fixes things up after itself */
866 slab_pad_check(s, page);
867 return 1;
868}
869
870/*
672bba3a
CL
871 * Determine if a certain object on a page is on the freelist. Must hold the
872 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
873 */
874static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
875{
876 int nr = 0;
881db7fb 877 void *fp;
81819f0f 878 void *object = NULL;
f6edde9c 879 int max_objects;
81819f0f 880
881db7fb 881 fp = page->freelist;
39b26464 882 while (fp && nr <= page->objects) {
81819f0f
CL
883 if (fp == search)
884 return 1;
885 if (!check_valid_pointer(s, page, fp)) {
886 if (object) {
887 object_err(s, page, object,
888 "Freechain corrupt");
a973e9dd 889 set_freepointer(s, object, NULL);
81819f0f 890 } else {
24922684 891 slab_err(s, page, "Freepointer corrupt");
a973e9dd 892 page->freelist = NULL;
39b26464 893 page->inuse = page->objects;
24922684 894 slab_fix(s, "Freelist cleared");
81819f0f
CL
895 return 0;
896 }
897 break;
898 }
899 object = fp;
900 fp = get_freepointer(s, object);
901 nr++;
902 }
903
ab9a0f19 904 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
905 if (max_objects > MAX_OBJS_PER_PAGE)
906 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
907
908 if (page->objects != max_objects) {
909 slab_err(s, page, "Wrong number of objects. Found %d but "
910 "should be %d", page->objects, max_objects);
911 page->objects = max_objects;
912 slab_fix(s, "Number of objects adjusted.");
913 }
39b26464 914 if (page->inuse != page->objects - nr) {
70d71228 915 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
916 "counted were %d", page->inuse, page->objects - nr);
917 page->inuse = page->objects - nr;
24922684 918 slab_fix(s, "Object count adjusted.");
81819f0f
CL
919 }
920 return search == NULL;
921}
922
0121c619
CL
923static void trace(struct kmem_cache *s, struct page *page, void *object,
924 int alloc)
3ec09742
CL
925{
926 if (s->flags & SLAB_TRACE) {
f9f58285 927 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
928 s->name,
929 alloc ? "alloc" : "free",
930 object, page->inuse,
931 page->freelist);
932
933 if (!alloc)
d0e0ac97
CG
934 print_section("Object ", (void *)object,
935 s->object_size);
3ec09742
CL
936
937 dump_stack();
938 }
939}
940
643b1138 941/*
672bba3a 942 * Tracking of fully allocated slabs for debugging purposes.
643b1138 943 */
5cc6eee8
CL
944static void add_full(struct kmem_cache *s,
945 struct kmem_cache_node *n, struct page *page)
643b1138 946{
5cc6eee8
CL
947 if (!(s->flags & SLAB_STORE_USER))
948 return;
949
255d0884 950 lockdep_assert_held(&n->list_lock);
643b1138 951 list_add(&page->lru, &n->full);
643b1138
CL
952}
953
c65c1877 954static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 955{
643b1138
CL
956 if (!(s->flags & SLAB_STORE_USER))
957 return;
958
255d0884 959 lockdep_assert_held(&n->list_lock);
643b1138 960 list_del(&page->lru);
643b1138
CL
961}
962
0f389ec6
CL
963/* Tracking of the number of slabs for debugging purposes */
964static inline unsigned long slabs_node(struct kmem_cache *s, int node)
965{
966 struct kmem_cache_node *n = get_node(s, node);
967
968 return atomic_long_read(&n->nr_slabs);
969}
970
26c02cf0
AB
971static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
972{
973 return atomic_long_read(&n->nr_slabs);
974}
975
205ab99d 976static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
977{
978 struct kmem_cache_node *n = get_node(s, node);
979
980 /*
981 * May be called early in order to allocate a slab for the
982 * kmem_cache_node structure. Solve the chicken-egg
983 * dilemma by deferring the increment of the count during
984 * bootstrap (see early_kmem_cache_node_alloc).
985 */
338b2642 986 if (likely(n)) {
0f389ec6 987 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
988 atomic_long_add(objects, &n->total_objects);
989 }
0f389ec6 990}
205ab99d 991static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
992{
993 struct kmem_cache_node *n = get_node(s, node);
994
995 atomic_long_dec(&n->nr_slabs);
205ab99d 996 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
997}
998
999/* Object debug checks for alloc/free paths */
3ec09742
CL
1000static void setup_object_debug(struct kmem_cache *s, struct page *page,
1001 void *object)
1002{
1003 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1004 return;
1005
f7cb1933 1006 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1007 init_tracking(s, object);
1008}
1009
becfda68 1010static inline int alloc_consistency_checks(struct kmem_cache *s,
d0e0ac97 1011 struct page *page,
ce71e27c 1012 void *object, unsigned long addr)
81819f0f
CL
1013{
1014 if (!check_slab(s, page))
becfda68 1015 return 0;
81819f0f 1016
81819f0f
CL
1017 if (!check_valid_pointer(s, page, object)) {
1018 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1019 return 0;
81819f0f
CL
1020 }
1021
f7cb1933 1022 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1023 return 0;
1024
1025 return 1;
1026}
1027
1028static noinline int alloc_debug_processing(struct kmem_cache *s,
1029 struct page *page,
1030 void *object, unsigned long addr)
1031{
1032 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1033 if (!alloc_consistency_checks(s, page, object, addr))
1034 goto bad;
1035 }
81819f0f 1036
3ec09742
CL
1037 /* Success perform special debug activities for allocs */
1038 if (s->flags & SLAB_STORE_USER)
1039 set_track(s, object, TRACK_ALLOC, addr);
1040 trace(s, page, object, 1);
f7cb1933 1041 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1042 return 1;
3ec09742 1043
81819f0f
CL
1044bad:
1045 if (PageSlab(page)) {
1046 /*
1047 * If this is a slab page then lets do the best we can
1048 * to avoid issues in the future. Marking all objects
672bba3a 1049 * as used avoids touching the remaining objects.
81819f0f 1050 */
24922684 1051 slab_fix(s, "Marking all objects used");
39b26464 1052 page->inuse = page->objects;
a973e9dd 1053 page->freelist = NULL;
81819f0f
CL
1054 }
1055 return 0;
1056}
1057
becfda68
LA
1058static inline int free_consistency_checks(struct kmem_cache *s,
1059 struct page *page, void *object, unsigned long addr)
81819f0f 1060{
81819f0f 1061 if (!check_valid_pointer(s, page, object)) {
70d71228 1062 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1063 return 0;
81819f0f
CL
1064 }
1065
1066 if (on_freelist(s, page, object)) {
24922684 1067 object_err(s, page, object, "Object already free");
becfda68 1068 return 0;
81819f0f
CL
1069 }
1070
f7cb1933 1071 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1072 return 0;
81819f0f 1073
1b4f59e3 1074 if (unlikely(s != page->slab_cache)) {
3adbefee 1075 if (!PageSlab(page)) {
70d71228
CL
1076 slab_err(s, page, "Attempt to free object(0x%p) "
1077 "outside of slab", object);
1b4f59e3 1078 } else if (!page->slab_cache) {
f9f58285
FF
1079 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1080 object);
70d71228 1081 dump_stack();
06428780 1082 } else
24922684
CL
1083 object_err(s, page, object,
1084 "page slab pointer corrupt.");
becfda68
LA
1085 return 0;
1086 }
1087 return 1;
1088}
1089
1090/* Supports checking bulk free of a constructed freelist */
1091static noinline int free_debug_processing(
1092 struct kmem_cache *s, struct page *page,
1093 void *head, void *tail, int bulk_cnt,
1094 unsigned long addr)
1095{
1096 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1097 void *object = head;
1098 int cnt = 0;
1099 unsigned long uninitialized_var(flags);
1100 int ret = 0;
1101
1102 spin_lock_irqsave(&n->list_lock, flags);
1103 slab_lock(page);
1104
1105 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1106 if (!check_slab(s, page))
1107 goto out;
1108 }
1109
1110next_object:
1111 cnt++;
1112
1113 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1114 if (!free_consistency_checks(s, page, object, addr))
1115 goto out;
81819f0f 1116 }
3ec09742 1117
3ec09742
CL
1118 if (s->flags & SLAB_STORE_USER)
1119 set_track(s, object, TRACK_FREE, addr);
1120 trace(s, page, object, 0);
81084651 1121 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1122 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1123
1124 /* Reached end of constructed freelist yet? */
1125 if (object != tail) {
1126 object = get_freepointer(s, object);
1127 goto next_object;
1128 }
804aa132
LA
1129 ret = 1;
1130
5c2e4bbb 1131out:
81084651
JDB
1132 if (cnt != bulk_cnt)
1133 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1134 bulk_cnt, cnt);
1135
881db7fb 1136 slab_unlock(page);
282acb43 1137 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1138 if (!ret)
1139 slab_fix(s, "Object at 0x%p not freed", object);
1140 return ret;
81819f0f
CL
1141}
1142
41ecc55b
CL
1143static int __init setup_slub_debug(char *str)
1144{
f0630fff
CL
1145 slub_debug = DEBUG_DEFAULT_FLAGS;
1146 if (*str++ != '=' || !*str)
1147 /*
1148 * No options specified. Switch on full debugging.
1149 */
1150 goto out;
1151
1152 if (*str == ',')
1153 /*
1154 * No options but restriction on slabs. This means full
1155 * debugging for slabs matching a pattern.
1156 */
1157 goto check_slabs;
1158
1159 slub_debug = 0;
1160 if (*str == '-')
1161 /*
1162 * Switch off all debugging measures.
1163 */
1164 goto out;
1165
1166 /*
1167 * Determine which debug features should be switched on
1168 */
06428780 1169 for (; *str && *str != ','; str++) {
f0630fff
CL
1170 switch (tolower(*str)) {
1171 case 'f':
becfda68 1172 slub_debug |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1173 break;
1174 case 'z':
1175 slub_debug |= SLAB_RED_ZONE;
1176 break;
1177 case 'p':
1178 slub_debug |= SLAB_POISON;
1179 break;
1180 case 'u':
1181 slub_debug |= SLAB_STORE_USER;
1182 break;
1183 case 't':
1184 slub_debug |= SLAB_TRACE;
1185 break;
4c13dd3b
DM
1186 case 'a':
1187 slub_debug |= SLAB_FAILSLAB;
1188 break;
08303a73
CA
1189 case 'o':
1190 /*
1191 * Avoid enabling debugging on caches if its minimum
1192 * order would increase as a result.
1193 */
1194 disable_higher_order_debug = 1;
1195 break;
f0630fff 1196 default:
f9f58285
FF
1197 pr_err("slub_debug option '%c' unknown. skipped\n",
1198 *str);
f0630fff 1199 }
41ecc55b
CL
1200 }
1201
f0630fff 1202check_slabs:
41ecc55b
CL
1203 if (*str == ',')
1204 slub_debug_slabs = str + 1;
f0630fff 1205out:
41ecc55b
CL
1206 return 1;
1207}
1208
1209__setup("slub_debug", setup_slub_debug);
1210
423c929c 1211unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1212 unsigned long flags, const char *name,
51cc5068 1213 void (*ctor)(void *))
41ecc55b
CL
1214{
1215 /*
e153362a 1216 * Enable debugging if selected on the kernel commandline.
41ecc55b 1217 */
c6f58d9b
CL
1218 if (slub_debug && (!slub_debug_slabs || (name &&
1219 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1220 flags |= slub_debug;
ba0268a8
CL
1221
1222 return flags;
41ecc55b 1223}
b4a64718 1224#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1225static inline void setup_object_debug(struct kmem_cache *s,
1226 struct page *page, void *object) {}
41ecc55b 1227
3ec09742 1228static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1229 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1230
282acb43 1231static inline int free_debug_processing(
81084651
JDB
1232 struct kmem_cache *s, struct page *page,
1233 void *head, void *tail, int bulk_cnt,
282acb43 1234 unsigned long addr) { return 0; }
41ecc55b 1235
41ecc55b
CL
1236static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1237 { return 1; }
1238static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1239 void *object, u8 val) { return 1; }
5cc6eee8
CL
1240static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1241 struct page *page) {}
c65c1877
PZ
1242static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1243 struct page *page) {}
423c929c 1244unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1245 unsigned long flags, const char *name,
51cc5068 1246 void (*ctor)(void *))
ba0268a8
CL
1247{
1248 return flags;
1249}
41ecc55b 1250#define slub_debug 0
0f389ec6 1251
fdaa45e9
IM
1252#define disable_higher_order_debug 0
1253
0f389ec6
CL
1254static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1255 { return 0; }
26c02cf0
AB
1256static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1257 { return 0; }
205ab99d
CL
1258static inline void inc_slabs_node(struct kmem_cache *s, int node,
1259 int objects) {}
1260static inline void dec_slabs_node(struct kmem_cache *s, int node,
1261 int objects) {}
7d550c56 1262
02e72cc6
AR
1263#endif /* CONFIG_SLUB_DEBUG */
1264
1265/*
1266 * Hooks for other subsystems that check memory allocations. In a typical
1267 * production configuration these hooks all should produce no code at all.
1268 */
d56791b3
RB
1269static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1270{
1271 kmemleak_alloc(ptr, size, 1, flags);
0316bec2 1272 kasan_kmalloc_large(ptr, size);
d56791b3
RB
1273}
1274
1275static inline void kfree_hook(const void *x)
1276{
1277 kmemleak_free(x);
0316bec2 1278 kasan_kfree_large(x);
d56791b3
RB
1279}
1280
d56791b3
RB
1281static inline void slab_free_hook(struct kmem_cache *s, void *x)
1282{
1283 kmemleak_free_recursive(x, s->flags);
7d550c56 1284
02e72cc6
AR
1285 /*
1286 * Trouble is that we may no longer disable interrupts in the fast path
1287 * So in order to make the debug calls that expect irqs to be
1288 * disabled we need to disable interrupts temporarily.
1289 */
1290#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1291 {
1292 unsigned long flags;
1293
1294 local_irq_save(flags);
1295 kmemcheck_slab_free(s, x, s->object_size);
1296 debug_check_no_locks_freed(x, s->object_size);
1297 local_irq_restore(flags);
1298 }
1299#endif
1300 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1301 debug_check_no_obj_freed(x, s->object_size);
0316bec2
AR
1302
1303 kasan_slab_free(s, x);
02e72cc6 1304}
205ab99d 1305
81084651
JDB
1306static inline void slab_free_freelist_hook(struct kmem_cache *s,
1307 void *head, void *tail)
1308{
1309/*
1310 * Compiler cannot detect this function can be removed if slab_free_hook()
1311 * evaluates to nothing. Thus, catch all relevant config debug options here.
1312 */
1313#if defined(CONFIG_KMEMCHECK) || \
1314 defined(CONFIG_LOCKDEP) || \
1315 defined(CONFIG_DEBUG_KMEMLEAK) || \
1316 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1317 defined(CONFIG_KASAN)
1318
1319 void *object = head;
1320 void *tail_obj = tail ? : head;
1321
1322 do {
1323 slab_free_hook(s, object);
1324 } while ((object != tail_obj) &&
1325 (object = get_freepointer(s, object)));
1326#endif
1327}
1328
588f8ba9
TG
1329static void setup_object(struct kmem_cache *s, struct page *page,
1330 void *object)
1331{
1332 setup_object_debug(s, page, object);
1333 if (unlikely(s->ctor)) {
1334 kasan_unpoison_object_data(s, object);
1335 s->ctor(object);
1336 kasan_poison_object_data(s, object);
1337 }
1338}
1339
81819f0f
CL
1340/*
1341 * Slab allocation and freeing
1342 */
5dfb4175
VD
1343static inline struct page *alloc_slab_page(struct kmem_cache *s,
1344 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1345{
5dfb4175 1346 struct page *page;
65c3376a
CL
1347 int order = oo_order(oo);
1348
b1eeab67
VN
1349 flags |= __GFP_NOTRACK;
1350
2154a336 1351 if (node == NUMA_NO_NODE)
5dfb4175 1352 page = alloc_pages(flags, order);
65c3376a 1353 else
96db800f 1354 page = __alloc_pages_node(node, flags, order);
5dfb4175 1355
f3ccb2c4
VD
1356 if (page && memcg_charge_slab(page, flags, order, s)) {
1357 __free_pages(page, order);
1358 page = NULL;
1359 }
5dfb4175
VD
1360
1361 return page;
65c3376a
CL
1362}
1363
81819f0f
CL
1364static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1365{
06428780 1366 struct page *page;
834f3d11 1367 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1368 gfp_t alloc_gfp;
588f8ba9
TG
1369 void *start, *p;
1370 int idx, order;
81819f0f 1371
7e0528da
CL
1372 flags &= gfp_allowed_mask;
1373
d0164adc 1374 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1375 local_irq_enable();
1376
b7a49f0d 1377 flags |= s->allocflags;
e12ba74d 1378
ba52270d
PE
1379 /*
1380 * Let the initial higher-order allocation fail under memory pressure
1381 * so we fall-back to the minimum order allocation.
1382 */
1383 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc
MG
1384 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1385 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_DIRECT_RECLAIM;
ba52270d 1386
5dfb4175 1387 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1388 if (unlikely(!page)) {
1389 oo = s->min;
80c3a998 1390 alloc_gfp = flags;
65c3376a
CL
1391 /*
1392 * Allocation may have failed due to fragmentation.
1393 * Try a lower order alloc if possible
1394 */
5dfb4175 1395 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1396 if (unlikely(!page))
1397 goto out;
1398 stat(s, ORDER_FALLBACK);
65c3376a 1399 }
5a896d9e 1400
588f8ba9
TG
1401 if (kmemcheck_enabled &&
1402 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1403 int pages = 1 << oo_order(oo);
1404
80c3a998 1405 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
b1eeab67
VN
1406
1407 /*
1408 * Objects from caches that have a constructor don't get
1409 * cleared when they're allocated, so we need to do it here.
1410 */
1411 if (s->ctor)
1412 kmemcheck_mark_uninitialized_pages(page, pages);
1413 else
1414 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1415 }
1416
834f3d11 1417 page->objects = oo_objects(oo);
81819f0f 1418
1f458cbf 1419 order = compound_order(page);
1b4f59e3 1420 page->slab_cache = s;
c03f94cc 1421 __SetPageSlab(page);
2f064f34 1422 if (page_is_pfmemalloc(page))
072bb0aa 1423 SetPageSlabPfmemalloc(page);
81819f0f
CL
1424
1425 start = page_address(page);
81819f0f
CL
1426
1427 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1428 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f 1429
0316bec2
AR
1430 kasan_poison_slab(page);
1431
54266640
WY
1432 for_each_object_idx(p, idx, s, start, page->objects) {
1433 setup_object(s, page, p);
1434 if (likely(idx < page->objects))
1435 set_freepointer(s, p, p + s->size);
1436 else
1437 set_freepointer(s, p, NULL);
81819f0f 1438 }
81819f0f
CL
1439
1440 page->freelist = start;
e6e82ea1 1441 page->inuse = page->objects;
8cb0a506 1442 page->frozen = 1;
588f8ba9 1443
81819f0f 1444out:
d0164adc 1445 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1446 local_irq_disable();
1447 if (!page)
1448 return NULL;
1449
1450 mod_zone_page_state(page_zone(page),
1451 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1452 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1453 1 << oo_order(oo));
1454
1455 inc_slabs_node(s, page_to_nid(page), page->objects);
1456
81819f0f
CL
1457 return page;
1458}
1459
588f8ba9
TG
1460static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1461{
1462 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1463 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1464 BUG();
1465 }
1466
1467 return allocate_slab(s,
1468 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1469}
1470
81819f0f
CL
1471static void __free_slab(struct kmem_cache *s, struct page *page)
1472{
834f3d11
CL
1473 int order = compound_order(page);
1474 int pages = 1 << order;
81819f0f 1475
becfda68 1476 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
81819f0f
CL
1477 void *p;
1478
1479 slab_pad_check(s, page);
224a88be
CL
1480 for_each_object(p, s, page_address(page),
1481 page->objects)
f7cb1933 1482 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1483 }
1484
b1eeab67 1485 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1486
81819f0f
CL
1487 mod_zone_page_state(page_zone(page),
1488 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1489 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1490 -pages);
81819f0f 1491
072bb0aa 1492 __ClearPageSlabPfmemalloc(page);
49bd5221 1493 __ClearPageSlab(page);
1f458cbf 1494
22b751c3 1495 page_mapcount_reset(page);
1eb5ac64
NP
1496 if (current->reclaim_state)
1497 current->reclaim_state->reclaimed_slab += pages;
f3ccb2c4 1498 __free_kmem_pages(page, order);
81819f0f
CL
1499}
1500
da9a638c
LJ
1501#define need_reserve_slab_rcu \
1502 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1503
81819f0f
CL
1504static void rcu_free_slab(struct rcu_head *h)
1505{
1506 struct page *page;
1507
da9a638c
LJ
1508 if (need_reserve_slab_rcu)
1509 page = virt_to_head_page(h);
1510 else
1511 page = container_of((struct list_head *)h, struct page, lru);
1512
1b4f59e3 1513 __free_slab(page->slab_cache, page);
81819f0f
CL
1514}
1515
1516static void free_slab(struct kmem_cache *s, struct page *page)
1517{
1518 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1519 struct rcu_head *head;
1520
1521 if (need_reserve_slab_rcu) {
1522 int order = compound_order(page);
1523 int offset = (PAGE_SIZE << order) - s->reserved;
1524
1525 VM_BUG_ON(s->reserved != sizeof(*head));
1526 head = page_address(page) + offset;
1527 } else {
bc4f610d 1528 head = &page->rcu_head;
da9a638c 1529 }
81819f0f
CL
1530
1531 call_rcu(head, rcu_free_slab);
1532 } else
1533 __free_slab(s, page);
1534}
1535
1536static void discard_slab(struct kmem_cache *s, struct page *page)
1537{
205ab99d 1538 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1539 free_slab(s, page);
1540}
1541
1542/*
5cc6eee8 1543 * Management of partially allocated slabs.
81819f0f 1544 */
1e4dd946
SR
1545static inline void
1546__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1547{
e95eed57 1548 n->nr_partial++;
136333d1 1549 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1550 list_add_tail(&page->lru, &n->partial);
1551 else
1552 list_add(&page->lru, &n->partial);
81819f0f
CL
1553}
1554
1e4dd946
SR
1555static inline void add_partial(struct kmem_cache_node *n,
1556 struct page *page, int tail)
62e346a8 1557{
c65c1877 1558 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1559 __add_partial(n, page, tail);
1560}
c65c1877 1561
1e4dd946
SR
1562static inline void remove_partial(struct kmem_cache_node *n,
1563 struct page *page)
1564{
1565 lockdep_assert_held(&n->list_lock);
52b4b950
DS
1566 list_del(&page->lru);
1567 n->nr_partial--;
1e4dd946
SR
1568}
1569
81819f0f 1570/*
7ced3719
CL
1571 * Remove slab from the partial list, freeze it and
1572 * return the pointer to the freelist.
81819f0f 1573 *
497b66f2 1574 * Returns a list of objects or NULL if it fails.
81819f0f 1575 */
497b66f2 1576static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1577 struct kmem_cache_node *n, struct page *page,
633b0764 1578 int mode, int *objects)
81819f0f 1579{
2cfb7455
CL
1580 void *freelist;
1581 unsigned long counters;
1582 struct page new;
1583
c65c1877
PZ
1584 lockdep_assert_held(&n->list_lock);
1585
2cfb7455
CL
1586 /*
1587 * Zap the freelist and set the frozen bit.
1588 * The old freelist is the list of objects for the
1589 * per cpu allocation list.
1590 */
7ced3719
CL
1591 freelist = page->freelist;
1592 counters = page->counters;
1593 new.counters = counters;
633b0764 1594 *objects = new.objects - new.inuse;
23910c50 1595 if (mode) {
7ced3719 1596 new.inuse = page->objects;
23910c50
PE
1597 new.freelist = NULL;
1598 } else {
1599 new.freelist = freelist;
1600 }
2cfb7455 1601
a0132ac0 1602 VM_BUG_ON(new.frozen);
7ced3719 1603 new.frozen = 1;
2cfb7455 1604
7ced3719 1605 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1606 freelist, counters,
02d7633f 1607 new.freelist, new.counters,
7ced3719 1608 "acquire_slab"))
7ced3719 1609 return NULL;
2cfb7455
CL
1610
1611 remove_partial(n, page);
7ced3719 1612 WARN_ON(!freelist);
49e22585 1613 return freelist;
81819f0f
CL
1614}
1615
633b0764 1616static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1617static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1618
81819f0f 1619/*
672bba3a 1620 * Try to allocate a partial slab from a specific node.
81819f0f 1621 */
8ba00bb6
JK
1622static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1623 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1624{
49e22585
CL
1625 struct page *page, *page2;
1626 void *object = NULL;
633b0764
JK
1627 int available = 0;
1628 int objects;
81819f0f
CL
1629
1630 /*
1631 * Racy check. If we mistakenly see no partial slabs then we
1632 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1633 * partial slab and there is none available then get_partials()
1634 * will return NULL.
81819f0f
CL
1635 */
1636 if (!n || !n->nr_partial)
1637 return NULL;
1638
1639 spin_lock(&n->list_lock);
49e22585 1640 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1641 void *t;
49e22585 1642
8ba00bb6
JK
1643 if (!pfmemalloc_match(page, flags))
1644 continue;
1645
633b0764 1646 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1647 if (!t)
1648 break;
1649
633b0764 1650 available += objects;
12d79634 1651 if (!object) {
49e22585 1652 c->page = page;
49e22585 1653 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1654 object = t;
49e22585 1655 } else {
633b0764 1656 put_cpu_partial(s, page, 0);
8028dcea 1657 stat(s, CPU_PARTIAL_NODE);
49e22585 1658 }
345c905d
JK
1659 if (!kmem_cache_has_cpu_partial(s)
1660 || available > s->cpu_partial / 2)
49e22585
CL
1661 break;
1662
497b66f2 1663 }
81819f0f 1664 spin_unlock(&n->list_lock);
497b66f2 1665 return object;
81819f0f
CL
1666}
1667
1668/*
672bba3a 1669 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1670 */
de3ec035 1671static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1672 struct kmem_cache_cpu *c)
81819f0f
CL
1673{
1674#ifdef CONFIG_NUMA
1675 struct zonelist *zonelist;
dd1a239f 1676 struct zoneref *z;
54a6eb5c
MG
1677 struct zone *zone;
1678 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1679 void *object;
cc9a6c87 1680 unsigned int cpuset_mems_cookie;
81819f0f
CL
1681
1682 /*
672bba3a
CL
1683 * The defrag ratio allows a configuration of the tradeoffs between
1684 * inter node defragmentation and node local allocations. A lower
1685 * defrag_ratio increases the tendency to do local allocations
1686 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1687 *
672bba3a
CL
1688 * If the defrag_ratio is set to 0 then kmalloc() always
1689 * returns node local objects. If the ratio is higher then kmalloc()
1690 * may return off node objects because partial slabs are obtained
1691 * from other nodes and filled up.
81819f0f 1692 *
6446faa2 1693 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1694 * defrag_ratio = 1000) then every (well almost) allocation will
1695 * first attempt to defrag slab caches on other nodes. This means
1696 * scanning over all nodes to look for partial slabs which may be
1697 * expensive if we do it every time we are trying to find a slab
1698 * with available objects.
81819f0f 1699 */
9824601e
CL
1700 if (!s->remote_node_defrag_ratio ||
1701 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1702 return NULL;
1703
cc9a6c87 1704 do {
d26914d1 1705 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1706 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1707 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1708 struct kmem_cache_node *n;
1709
1710 n = get_node(s, zone_to_nid(zone));
1711
dee2f8aa 1712 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1713 n->nr_partial > s->min_partial) {
8ba00bb6 1714 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1715 if (object) {
1716 /*
d26914d1
MG
1717 * Don't check read_mems_allowed_retry()
1718 * here - if mems_allowed was updated in
1719 * parallel, that was a harmless race
1720 * between allocation and the cpuset
1721 * update
cc9a6c87 1722 */
cc9a6c87
MG
1723 return object;
1724 }
c0ff7453 1725 }
81819f0f 1726 }
d26914d1 1727 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1728#endif
1729 return NULL;
1730}
1731
1732/*
1733 * Get a partial page, lock it and return it.
1734 */
497b66f2 1735static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1736 struct kmem_cache_cpu *c)
81819f0f 1737{
497b66f2 1738 void *object;
a561ce00
JK
1739 int searchnode = node;
1740
1741 if (node == NUMA_NO_NODE)
1742 searchnode = numa_mem_id();
1743 else if (!node_present_pages(node))
1744 searchnode = node_to_mem_node(node);
81819f0f 1745
8ba00bb6 1746 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1747 if (object || node != NUMA_NO_NODE)
1748 return object;
81819f0f 1749
acd19fd1 1750 return get_any_partial(s, flags, c);
81819f0f
CL
1751}
1752
8a5ec0ba
CL
1753#ifdef CONFIG_PREEMPT
1754/*
1755 * Calculate the next globally unique transaction for disambiguiation
1756 * during cmpxchg. The transactions start with the cpu number and are then
1757 * incremented by CONFIG_NR_CPUS.
1758 */
1759#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1760#else
1761/*
1762 * No preemption supported therefore also no need to check for
1763 * different cpus.
1764 */
1765#define TID_STEP 1
1766#endif
1767
1768static inline unsigned long next_tid(unsigned long tid)
1769{
1770 return tid + TID_STEP;
1771}
1772
1773static inline unsigned int tid_to_cpu(unsigned long tid)
1774{
1775 return tid % TID_STEP;
1776}
1777
1778static inline unsigned long tid_to_event(unsigned long tid)
1779{
1780 return tid / TID_STEP;
1781}
1782
1783static inline unsigned int init_tid(int cpu)
1784{
1785 return cpu;
1786}
1787
1788static inline void note_cmpxchg_failure(const char *n,
1789 const struct kmem_cache *s, unsigned long tid)
1790{
1791#ifdef SLUB_DEBUG_CMPXCHG
1792 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1793
f9f58285 1794 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
1795
1796#ifdef CONFIG_PREEMPT
1797 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 1798 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
1799 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1800 else
1801#endif
1802 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 1803 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
1804 tid_to_event(tid), tid_to_event(actual_tid));
1805 else
f9f58285 1806 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
1807 actual_tid, tid, next_tid(tid));
1808#endif
4fdccdfb 1809 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1810}
1811
788e1aad 1812static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1813{
8a5ec0ba
CL
1814 int cpu;
1815
1816 for_each_possible_cpu(cpu)
1817 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1818}
2cfb7455 1819
81819f0f
CL
1820/*
1821 * Remove the cpu slab
1822 */
d0e0ac97
CG
1823static void deactivate_slab(struct kmem_cache *s, struct page *page,
1824 void *freelist)
81819f0f 1825{
2cfb7455 1826 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1827 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1828 int lock = 0;
1829 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1830 void *nextfree;
136333d1 1831 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1832 struct page new;
1833 struct page old;
1834
1835 if (page->freelist) {
84e554e6 1836 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1837 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1838 }
1839
894b8788 1840 /*
2cfb7455
CL
1841 * Stage one: Free all available per cpu objects back
1842 * to the page freelist while it is still frozen. Leave the
1843 * last one.
1844 *
1845 * There is no need to take the list->lock because the page
1846 * is still frozen.
1847 */
1848 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1849 void *prior;
1850 unsigned long counters;
1851
1852 do {
1853 prior = page->freelist;
1854 counters = page->counters;
1855 set_freepointer(s, freelist, prior);
1856 new.counters = counters;
1857 new.inuse--;
a0132ac0 1858 VM_BUG_ON(!new.frozen);
2cfb7455 1859
1d07171c 1860 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1861 prior, counters,
1862 freelist, new.counters,
1863 "drain percpu freelist"));
1864
1865 freelist = nextfree;
1866 }
1867
894b8788 1868 /*
2cfb7455
CL
1869 * Stage two: Ensure that the page is unfrozen while the
1870 * list presence reflects the actual number of objects
1871 * during unfreeze.
1872 *
1873 * We setup the list membership and then perform a cmpxchg
1874 * with the count. If there is a mismatch then the page
1875 * is not unfrozen but the page is on the wrong list.
1876 *
1877 * Then we restart the process which may have to remove
1878 * the page from the list that we just put it on again
1879 * because the number of objects in the slab may have
1880 * changed.
894b8788 1881 */
2cfb7455 1882redo:
894b8788 1883
2cfb7455
CL
1884 old.freelist = page->freelist;
1885 old.counters = page->counters;
a0132ac0 1886 VM_BUG_ON(!old.frozen);
7c2e132c 1887
2cfb7455
CL
1888 /* Determine target state of the slab */
1889 new.counters = old.counters;
1890 if (freelist) {
1891 new.inuse--;
1892 set_freepointer(s, freelist, old.freelist);
1893 new.freelist = freelist;
1894 } else
1895 new.freelist = old.freelist;
1896
1897 new.frozen = 0;
1898
8a5b20ae 1899 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
1900 m = M_FREE;
1901 else if (new.freelist) {
1902 m = M_PARTIAL;
1903 if (!lock) {
1904 lock = 1;
1905 /*
1906 * Taking the spinlock removes the possiblity
1907 * that acquire_slab() will see a slab page that
1908 * is frozen
1909 */
1910 spin_lock(&n->list_lock);
1911 }
1912 } else {
1913 m = M_FULL;
1914 if (kmem_cache_debug(s) && !lock) {
1915 lock = 1;
1916 /*
1917 * This also ensures that the scanning of full
1918 * slabs from diagnostic functions will not see
1919 * any frozen slabs.
1920 */
1921 spin_lock(&n->list_lock);
1922 }
1923 }
1924
1925 if (l != m) {
1926
1927 if (l == M_PARTIAL)
1928
1929 remove_partial(n, page);
1930
1931 else if (l == M_FULL)
894b8788 1932
c65c1877 1933 remove_full(s, n, page);
2cfb7455
CL
1934
1935 if (m == M_PARTIAL) {
1936
1937 add_partial(n, page, tail);
136333d1 1938 stat(s, tail);
2cfb7455
CL
1939
1940 } else if (m == M_FULL) {
894b8788 1941
2cfb7455
CL
1942 stat(s, DEACTIVATE_FULL);
1943 add_full(s, n, page);
1944
1945 }
1946 }
1947
1948 l = m;
1d07171c 1949 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1950 old.freelist, old.counters,
1951 new.freelist, new.counters,
1952 "unfreezing slab"))
1953 goto redo;
1954
2cfb7455
CL
1955 if (lock)
1956 spin_unlock(&n->list_lock);
1957
1958 if (m == M_FREE) {
1959 stat(s, DEACTIVATE_EMPTY);
1960 discard_slab(s, page);
1961 stat(s, FREE_SLAB);
894b8788 1962 }
81819f0f
CL
1963}
1964
d24ac77f
JK
1965/*
1966 * Unfreeze all the cpu partial slabs.
1967 *
59a09917
CL
1968 * This function must be called with interrupts disabled
1969 * for the cpu using c (or some other guarantee must be there
1970 * to guarantee no concurrent accesses).
d24ac77f 1971 */
59a09917
CL
1972static void unfreeze_partials(struct kmem_cache *s,
1973 struct kmem_cache_cpu *c)
49e22585 1974{
345c905d 1975#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 1976 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 1977 struct page *page, *discard_page = NULL;
49e22585
CL
1978
1979 while ((page = c->partial)) {
49e22585
CL
1980 struct page new;
1981 struct page old;
1982
1983 c->partial = page->next;
43d77867
JK
1984
1985 n2 = get_node(s, page_to_nid(page));
1986 if (n != n2) {
1987 if (n)
1988 spin_unlock(&n->list_lock);
1989
1990 n = n2;
1991 spin_lock(&n->list_lock);
1992 }
49e22585
CL
1993
1994 do {
1995
1996 old.freelist = page->freelist;
1997 old.counters = page->counters;
a0132ac0 1998 VM_BUG_ON(!old.frozen);
49e22585
CL
1999
2000 new.counters = old.counters;
2001 new.freelist = old.freelist;
2002
2003 new.frozen = 0;
2004
d24ac77f 2005 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2006 old.freelist, old.counters,
2007 new.freelist, new.counters,
2008 "unfreezing slab"));
2009
8a5b20ae 2010 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2011 page->next = discard_page;
2012 discard_page = page;
43d77867
JK
2013 } else {
2014 add_partial(n, page, DEACTIVATE_TO_TAIL);
2015 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2016 }
2017 }
2018
2019 if (n)
2020 spin_unlock(&n->list_lock);
9ada1934
SL
2021
2022 while (discard_page) {
2023 page = discard_page;
2024 discard_page = discard_page->next;
2025
2026 stat(s, DEACTIVATE_EMPTY);
2027 discard_slab(s, page);
2028 stat(s, FREE_SLAB);
2029 }
345c905d 2030#endif
49e22585
CL
2031}
2032
2033/*
2034 * Put a page that was just frozen (in __slab_free) into a partial page
2035 * slot if available. This is done without interrupts disabled and without
2036 * preemption disabled. The cmpxchg is racy and may put the partial page
2037 * onto a random cpus partial slot.
2038 *
2039 * If we did not find a slot then simply move all the partials to the
2040 * per node partial list.
2041 */
633b0764 2042static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2043{
345c905d 2044#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2045 struct page *oldpage;
2046 int pages;
2047 int pobjects;
2048
d6e0b7fa 2049 preempt_disable();
49e22585
CL
2050 do {
2051 pages = 0;
2052 pobjects = 0;
2053 oldpage = this_cpu_read(s->cpu_slab->partial);
2054
2055 if (oldpage) {
2056 pobjects = oldpage->pobjects;
2057 pages = oldpage->pages;
2058 if (drain && pobjects > s->cpu_partial) {
2059 unsigned long flags;
2060 /*
2061 * partial array is full. Move the existing
2062 * set to the per node partial list.
2063 */
2064 local_irq_save(flags);
59a09917 2065 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2066 local_irq_restore(flags);
e24fc410 2067 oldpage = NULL;
49e22585
CL
2068 pobjects = 0;
2069 pages = 0;
8028dcea 2070 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2071 }
2072 }
2073
2074 pages++;
2075 pobjects += page->objects - page->inuse;
2076
2077 page->pages = pages;
2078 page->pobjects = pobjects;
2079 page->next = oldpage;
2080
d0e0ac97
CG
2081 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2082 != oldpage);
d6e0b7fa
VD
2083 if (unlikely(!s->cpu_partial)) {
2084 unsigned long flags;
2085
2086 local_irq_save(flags);
2087 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2088 local_irq_restore(flags);
2089 }
2090 preempt_enable();
345c905d 2091#endif
49e22585
CL
2092}
2093
dfb4f096 2094static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2095{
84e554e6 2096 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
2097 deactivate_slab(s, c->page, c->freelist);
2098
2099 c->tid = next_tid(c->tid);
2100 c->page = NULL;
2101 c->freelist = NULL;
81819f0f
CL
2102}
2103
2104/*
2105 * Flush cpu slab.
6446faa2 2106 *
81819f0f
CL
2107 * Called from IPI handler with interrupts disabled.
2108 */
0c710013 2109static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2110{
9dfc6e68 2111 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2112
49e22585
CL
2113 if (likely(c)) {
2114 if (c->page)
2115 flush_slab(s, c);
2116
59a09917 2117 unfreeze_partials(s, c);
49e22585 2118 }
81819f0f
CL
2119}
2120
2121static void flush_cpu_slab(void *d)
2122{
2123 struct kmem_cache *s = d;
81819f0f 2124
dfb4f096 2125 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2126}
2127
a8364d55
GBY
2128static bool has_cpu_slab(int cpu, void *info)
2129{
2130 struct kmem_cache *s = info;
2131 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2132
02e1a9cd 2133 return c->page || c->partial;
a8364d55
GBY
2134}
2135
81819f0f
CL
2136static void flush_all(struct kmem_cache *s)
2137{
a8364d55 2138 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2139}
2140
dfb4f096
CL
2141/*
2142 * Check if the objects in a per cpu structure fit numa
2143 * locality expectations.
2144 */
57d437d2 2145static inline int node_match(struct page *page, int node)
dfb4f096
CL
2146{
2147#ifdef CONFIG_NUMA
4d7868e6 2148 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2149 return 0;
2150#endif
2151 return 1;
2152}
2153
9a02d699 2154#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2155static int count_free(struct page *page)
2156{
2157 return page->objects - page->inuse;
2158}
2159
9a02d699
DR
2160static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2161{
2162 return atomic_long_read(&n->total_objects);
2163}
2164#endif /* CONFIG_SLUB_DEBUG */
2165
2166#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2167static unsigned long count_partial(struct kmem_cache_node *n,
2168 int (*get_count)(struct page *))
2169{
2170 unsigned long flags;
2171 unsigned long x = 0;
2172 struct page *page;
2173
2174 spin_lock_irqsave(&n->list_lock, flags);
2175 list_for_each_entry(page, &n->partial, lru)
2176 x += get_count(page);
2177 spin_unlock_irqrestore(&n->list_lock, flags);
2178 return x;
2179}
9a02d699 2180#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2181
781b2ba6
PE
2182static noinline void
2183slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2184{
9a02d699
DR
2185#ifdef CONFIG_SLUB_DEBUG
2186 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2187 DEFAULT_RATELIMIT_BURST);
781b2ba6 2188 int node;
fa45dc25 2189 struct kmem_cache_node *n;
781b2ba6 2190
9a02d699
DR
2191 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2192 return;
2193
f9f58285 2194 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
781b2ba6 2195 nid, gfpflags);
f9f58285
FF
2196 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2197 s->name, s->object_size, s->size, oo_order(s->oo),
2198 oo_order(s->min));
781b2ba6 2199
3b0efdfa 2200 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2201 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2202 s->name);
fa5ec8a1 2203
fa45dc25 2204 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2205 unsigned long nr_slabs;
2206 unsigned long nr_objs;
2207 unsigned long nr_free;
2208
26c02cf0
AB
2209 nr_free = count_partial(n, count_free);
2210 nr_slabs = node_nr_slabs(n);
2211 nr_objs = node_nr_objs(n);
781b2ba6 2212
f9f58285 2213 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2214 node, nr_slabs, nr_objs, nr_free);
2215 }
9a02d699 2216#endif
781b2ba6
PE
2217}
2218
497b66f2
CL
2219static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2220 int node, struct kmem_cache_cpu **pc)
2221{
6faa6833 2222 void *freelist;
188fd063
CL
2223 struct kmem_cache_cpu *c = *pc;
2224 struct page *page;
497b66f2 2225
188fd063 2226 freelist = get_partial(s, flags, node, c);
497b66f2 2227
188fd063
CL
2228 if (freelist)
2229 return freelist;
2230
2231 page = new_slab(s, flags, node);
497b66f2 2232 if (page) {
7c8e0181 2233 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2234 if (c->page)
2235 flush_slab(s, c);
2236
2237 /*
2238 * No other reference to the page yet so we can
2239 * muck around with it freely without cmpxchg
2240 */
6faa6833 2241 freelist = page->freelist;
497b66f2
CL
2242 page->freelist = NULL;
2243
2244 stat(s, ALLOC_SLAB);
497b66f2
CL
2245 c->page = page;
2246 *pc = c;
2247 } else
6faa6833 2248 freelist = NULL;
497b66f2 2249
6faa6833 2250 return freelist;
497b66f2
CL
2251}
2252
072bb0aa
MG
2253static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2254{
2255 if (unlikely(PageSlabPfmemalloc(page)))
2256 return gfp_pfmemalloc_allowed(gfpflags);
2257
2258 return true;
2259}
2260
213eeb9f 2261/*
d0e0ac97
CG
2262 * Check the page->freelist of a page and either transfer the freelist to the
2263 * per cpu freelist or deactivate the page.
213eeb9f
CL
2264 *
2265 * The page is still frozen if the return value is not NULL.
2266 *
2267 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2268 *
2269 * This function must be called with interrupt disabled.
213eeb9f
CL
2270 */
2271static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2272{
2273 struct page new;
2274 unsigned long counters;
2275 void *freelist;
2276
2277 do {
2278 freelist = page->freelist;
2279 counters = page->counters;
6faa6833 2280
213eeb9f 2281 new.counters = counters;
a0132ac0 2282 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2283
2284 new.inuse = page->objects;
2285 new.frozen = freelist != NULL;
2286
d24ac77f 2287 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2288 freelist, counters,
2289 NULL, new.counters,
2290 "get_freelist"));
2291
2292 return freelist;
2293}
2294
81819f0f 2295/*
894b8788
CL
2296 * Slow path. The lockless freelist is empty or we need to perform
2297 * debugging duties.
2298 *
894b8788
CL
2299 * Processing is still very fast if new objects have been freed to the
2300 * regular freelist. In that case we simply take over the regular freelist
2301 * as the lockless freelist and zap the regular freelist.
81819f0f 2302 *
894b8788
CL
2303 * If that is not working then we fall back to the partial lists. We take the
2304 * first element of the freelist as the object to allocate now and move the
2305 * rest of the freelist to the lockless freelist.
81819f0f 2306 *
894b8788 2307 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2308 * we need to allocate a new slab. This is the slowest path since it involves
2309 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2310 *
2311 * Version of __slab_alloc to use when we know that interrupts are
2312 * already disabled (which is the case for bulk allocation).
81819f0f 2313 */
a380a3c7 2314static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2315 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2316{
6faa6833 2317 void *freelist;
f6e7def7 2318 struct page *page;
81819f0f 2319
f6e7def7
CL
2320 page = c->page;
2321 if (!page)
81819f0f 2322 goto new_slab;
49e22585 2323redo:
6faa6833 2324
57d437d2 2325 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2326 int searchnode = node;
2327
2328 if (node != NUMA_NO_NODE && !node_present_pages(node))
2329 searchnode = node_to_mem_node(node);
2330
2331 if (unlikely(!node_match(page, searchnode))) {
2332 stat(s, ALLOC_NODE_MISMATCH);
2333 deactivate_slab(s, page, c->freelist);
2334 c->page = NULL;
2335 c->freelist = NULL;
2336 goto new_slab;
2337 }
fc59c053 2338 }
6446faa2 2339
072bb0aa
MG
2340 /*
2341 * By rights, we should be searching for a slab page that was
2342 * PFMEMALLOC but right now, we are losing the pfmemalloc
2343 * information when the page leaves the per-cpu allocator
2344 */
2345 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2346 deactivate_slab(s, page, c->freelist);
2347 c->page = NULL;
2348 c->freelist = NULL;
2349 goto new_slab;
2350 }
2351
73736e03 2352 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2353 freelist = c->freelist;
2354 if (freelist)
73736e03 2355 goto load_freelist;
03e404af 2356
f6e7def7 2357 freelist = get_freelist(s, page);
6446faa2 2358
6faa6833 2359 if (!freelist) {
03e404af
CL
2360 c->page = NULL;
2361 stat(s, DEACTIVATE_BYPASS);
fc59c053 2362 goto new_slab;
03e404af 2363 }
6446faa2 2364
84e554e6 2365 stat(s, ALLOC_REFILL);
6446faa2 2366
894b8788 2367load_freelist:
507effea
CL
2368 /*
2369 * freelist is pointing to the list of objects to be used.
2370 * page is pointing to the page from which the objects are obtained.
2371 * That page must be frozen for per cpu allocations to work.
2372 */
a0132ac0 2373 VM_BUG_ON(!c->page->frozen);
6faa6833 2374 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2375 c->tid = next_tid(c->tid);
6faa6833 2376 return freelist;
81819f0f 2377
81819f0f 2378new_slab:
2cfb7455 2379
49e22585 2380 if (c->partial) {
f6e7def7
CL
2381 page = c->page = c->partial;
2382 c->partial = page->next;
49e22585
CL
2383 stat(s, CPU_PARTIAL_ALLOC);
2384 c->freelist = NULL;
2385 goto redo;
81819f0f
CL
2386 }
2387
188fd063 2388 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2389
f4697436 2390 if (unlikely(!freelist)) {
9a02d699 2391 slab_out_of_memory(s, gfpflags, node);
f4697436 2392 return NULL;
81819f0f 2393 }
2cfb7455 2394
f6e7def7 2395 page = c->page;
5091b74a 2396 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2397 goto load_freelist;
2cfb7455 2398
497b66f2 2399 /* Only entered in the debug case */
d0e0ac97
CG
2400 if (kmem_cache_debug(s) &&
2401 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2402 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2403
f6e7def7 2404 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2405 c->page = NULL;
2406 c->freelist = NULL;
6faa6833 2407 return freelist;
894b8788
CL
2408}
2409
a380a3c7
CL
2410/*
2411 * Another one that disabled interrupt and compensates for possible
2412 * cpu changes by refetching the per cpu area pointer.
2413 */
2414static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2415 unsigned long addr, struct kmem_cache_cpu *c)
2416{
2417 void *p;
2418 unsigned long flags;
2419
2420 local_irq_save(flags);
2421#ifdef CONFIG_PREEMPT
2422 /*
2423 * We may have been preempted and rescheduled on a different
2424 * cpu before disabling interrupts. Need to reload cpu area
2425 * pointer.
2426 */
2427 c = this_cpu_ptr(s->cpu_slab);
2428#endif
2429
2430 p = ___slab_alloc(s, gfpflags, node, addr, c);
2431 local_irq_restore(flags);
2432 return p;
2433}
2434
894b8788
CL
2435/*
2436 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2437 * have the fastpath folded into their functions. So no function call
2438 * overhead for requests that can be satisfied on the fastpath.
2439 *
2440 * The fastpath works by first checking if the lockless freelist can be used.
2441 * If not then __slab_alloc is called for slow processing.
2442 *
2443 * Otherwise we can simply pick the next object from the lockless free list.
2444 */
2b847c3c 2445static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2446 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2447{
03ec0ed5 2448 void *object;
dfb4f096 2449 struct kmem_cache_cpu *c;
57d437d2 2450 struct page *page;
8a5ec0ba 2451 unsigned long tid;
1f84260c 2452
8135be5a
VD
2453 s = slab_pre_alloc_hook(s, gfpflags);
2454 if (!s)
773ff60e 2455 return NULL;
8a5ec0ba 2456redo:
8a5ec0ba
CL
2457 /*
2458 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2459 * enabled. We may switch back and forth between cpus while
2460 * reading from one cpu area. That does not matter as long
2461 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2462 *
9aabf810
JK
2463 * We should guarantee that tid and kmem_cache are retrieved on
2464 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2465 * to check if it is matched or not.
8a5ec0ba 2466 */
9aabf810
JK
2467 do {
2468 tid = this_cpu_read(s->cpu_slab->tid);
2469 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2470 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2471 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2472
2473 /*
2474 * Irqless object alloc/free algorithm used here depends on sequence
2475 * of fetching cpu_slab's data. tid should be fetched before anything
2476 * on c to guarantee that object and page associated with previous tid
2477 * won't be used with current tid. If we fetch tid first, object and
2478 * page could be one associated with next tid and our alloc/free
2479 * request will be failed. In this case, we will retry. So, no problem.
2480 */
2481 barrier();
8a5ec0ba 2482
8a5ec0ba
CL
2483 /*
2484 * The transaction ids are globally unique per cpu and per operation on
2485 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2486 * occurs on the right processor and that there was no operation on the
2487 * linked list in between.
2488 */
8a5ec0ba 2489
9dfc6e68 2490 object = c->freelist;
57d437d2 2491 page = c->page;
8eae1492 2492 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2493 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2494 stat(s, ALLOC_SLOWPATH);
2495 } else {
0ad9500e
ED
2496 void *next_object = get_freepointer_safe(s, object);
2497
8a5ec0ba 2498 /*
25985edc 2499 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2500 * operation and if we are on the right processor.
2501 *
d0e0ac97
CG
2502 * The cmpxchg does the following atomically (without lock
2503 * semantics!)
8a5ec0ba
CL
2504 * 1. Relocate first pointer to the current per cpu area.
2505 * 2. Verify that tid and freelist have not been changed
2506 * 3. If they were not changed replace tid and freelist
2507 *
d0e0ac97
CG
2508 * Since this is without lock semantics the protection is only
2509 * against code executing on this cpu *not* from access by
2510 * other cpus.
8a5ec0ba 2511 */
933393f5 2512 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2513 s->cpu_slab->freelist, s->cpu_slab->tid,
2514 object, tid,
0ad9500e 2515 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2516
2517 note_cmpxchg_failure("slab_alloc", s, tid);
2518 goto redo;
2519 }
0ad9500e 2520 prefetch_freepointer(s, next_object);
84e554e6 2521 stat(s, ALLOC_FASTPATH);
894b8788 2522 }
8a5ec0ba 2523
74e2134f 2524 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2525 memset(object, 0, s->object_size);
d07dbea4 2526
03ec0ed5 2527 slab_post_alloc_hook(s, gfpflags, 1, &object);
5a896d9e 2528
894b8788 2529 return object;
81819f0f
CL
2530}
2531
2b847c3c
EG
2532static __always_inline void *slab_alloc(struct kmem_cache *s,
2533 gfp_t gfpflags, unsigned long addr)
2534{
2535 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2536}
2537
81819f0f
CL
2538void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2539{
2b847c3c 2540 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2541
d0e0ac97
CG
2542 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2543 s->size, gfpflags);
5b882be4
EGM
2544
2545 return ret;
81819f0f
CL
2546}
2547EXPORT_SYMBOL(kmem_cache_alloc);
2548
0f24f128 2549#ifdef CONFIG_TRACING
4a92379b
RK
2550void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2551{
2b847c3c 2552 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2553 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0316bec2 2554 kasan_kmalloc(s, ret, size);
4a92379b
RK
2555 return ret;
2556}
2557EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2558#endif
2559
81819f0f
CL
2560#ifdef CONFIG_NUMA
2561void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2562{
2b847c3c 2563 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2564
ca2b84cb 2565 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2566 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2567
2568 return ret;
81819f0f
CL
2569}
2570EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2571
0f24f128 2572#ifdef CONFIG_TRACING
4a92379b 2573void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2574 gfp_t gfpflags,
4a92379b 2575 int node, size_t size)
5b882be4 2576{
2b847c3c 2577 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2578
2579 trace_kmalloc_node(_RET_IP_, ret,
2580 size, s->size, gfpflags, node);
0316bec2
AR
2581
2582 kasan_kmalloc(s, ret, size);
4a92379b 2583 return ret;
5b882be4 2584}
4a92379b 2585EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2586#endif
5d1f57e4 2587#endif
5b882be4 2588
81819f0f 2589/*
94e4d712 2590 * Slow path handling. This may still be called frequently since objects
894b8788 2591 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2592 *
894b8788
CL
2593 * So we still attempt to reduce cache line usage. Just take the slab
2594 * lock and free the item. If there is no additional partial page
2595 * handling required then we can return immediately.
81819f0f 2596 */
894b8788 2597static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2598 void *head, void *tail, int cnt,
2599 unsigned long addr)
2600
81819f0f
CL
2601{
2602 void *prior;
2cfb7455 2603 int was_frozen;
2cfb7455
CL
2604 struct page new;
2605 unsigned long counters;
2606 struct kmem_cache_node *n = NULL;
61728d1e 2607 unsigned long uninitialized_var(flags);
81819f0f 2608
8a5ec0ba 2609 stat(s, FREE_SLOWPATH);
81819f0f 2610
19c7ff9e 2611 if (kmem_cache_debug(s) &&
282acb43 2612 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2613 return;
6446faa2 2614
2cfb7455 2615 do {
837d678d
JK
2616 if (unlikely(n)) {
2617 spin_unlock_irqrestore(&n->list_lock, flags);
2618 n = NULL;
2619 }
2cfb7455
CL
2620 prior = page->freelist;
2621 counters = page->counters;
81084651 2622 set_freepointer(s, tail, prior);
2cfb7455
CL
2623 new.counters = counters;
2624 was_frozen = new.frozen;
81084651 2625 new.inuse -= cnt;
837d678d 2626 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2627
c65c1877 2628 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2629
2630 /*
d0e0ac97
CG
2631 * Slab was on no list before and will be
2632 * partially empty
2633 * We can defer the list move and instead
2634 * freeze it.
49e22585
CL
2635 */
2636 new.frozen = 1;
2637
c65c1877 2638 } else { /* Needs to be taken off a list */
49e22585 2639
b455def2 2640 n = get_node(s, page_to_nid(page));
49e22585
CL
2641 /*
2642 * Speculatively acquire the list_lock.
2643 * If the cmpxchg does not succeed then we may
2644 * drop the list_lock without any processing.
2645 *
2646 * Otherwise the list_lock will synchronize with
2647 * other processors updating the list of slabs.
2648 */
2649 spin_lock_irqsave(&n->list_lock, flags);
2650
2651 }
2cfb7455 2652 }
81819f0f 2653
2cfb7455
CL
2654 } while (!cmpxchg_double_slab(s, page,
2655 prior, counters,
81084651 2656 head, new.counters,
2cfb7455 2657 "__slab_free"));
81819f0f 2658
2cfb7455 2659 if (likely(!n)) {
49e22585
CL
2660
2661 /*
2662 * If we just froze the page then put it onto the
2663 * per cpu partial list.
2664 */
8028dcea 2665 if (new.frozen && !was_frozen) {
49e22585 2666 put_cpu_partial(s, page, 1);
8028dcea
AS
2667 stat(s, CPU_PARTIAL_FREE);
2668 }
49e22585 2669 /*
2cfb7455
CL
2670 * The list lock was not taken therefore no list
2671 * activity can be necessary.
2672 */
b455def2
L
2673 if (was_frozen)
2674 stat(s, FREE_FROZEN);
2675 return;
2676 }
81819f0f 2677
8a5b20ae 2678 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2679 goto slab_empty;
2680
81819f0f 2681 /*
837d678d
JK
2682 * Objects left in the slab. If it was not on the partial list before
2683 * then add it.
81819f0f 2684 */
345c905d
JK
2685 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2686 if (kmem_cache_debug(s))
c65c1877 2687 remove_full(s, n, page);
837d678d
JK
2688 add_partial(n, page, DEACTIVATE_TO_TAIL);
2689 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2690 }
80f08c19 2691 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2692 return;
2693
2694slab_empty:
a973e9dd 2695 if (prior) {
81819f0f 2696 /*
6fbabb20 2697 * Slab on the partial list.
81819f0f 2698 */
5cc6eee8 2699 remove_partial(n, page);
84e554e6 2700 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2701 } else {
6fbabb20 2702 /* Slab must be on the full list */
c65c1877
PZ
2703 remove_full(s, n, page);
2704 }
2cfb7455 2705
80f08c19 2706 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2707 stat(s, FREE_SLAB);
81819f0f 2708 discard_slab(s, page);
81819f0f
CL
2709}
2710
894b8788
CL
2711/*
2712 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2713 * can perform fastpath freeing without additional function calls.
2714 *
2715 * The fastpath is only possible if we are freeing to the current cpu slab
2716 * of this processor. This typically the case if we have just allocated
2717 * the item before.
2718 *
2719 * If fastpath is not possible then fall back to __slab_free where we deal
2720 * with all sorts of special processing.
81084651
JDB
2721 *
2722 * Bulk free of a freelist with several objects (all pointing to the
2723 * same page) possible by specifying head and tail ptr, plus objects
2724 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 2725 */
81084651
JDB
2726static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2727 void *head, void *tail, int cnt,
2728 unsigned long addr)
894b8788 2729{
81084651 2730 void *tail_obj = tail ? : head;
dfb4f096 2731 struct kmem_cache_cpu *c;
8a5ec0ba 2732 unsigned long tid;
1f84260c 2733
81084651 2734 slab_free_freelist_hook(s, head, tail);
c016b0bd 2735
8a5ec0ba
CL
2736redo:
2737 /*
2738 * Determine the currently cpus per cpu slab.
2739 * The cpu may change afterward. However that does not matter since
2740 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 2741 * during the cmpxchg then the free will succeed.
8a5ec0ba 2742 */
9aabf810
JK
2743 do {
2744 tid = this_cpu_read(s->cpu_slab->tid);
2745 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2746 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2747 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 2748
9aabf810
JK
2749 /* Same with comment on barrier() in slab_alloc_node() */
2750 barrier();
c016b0bd 2751
442b06bc 2752 if (likely(page == c->page)) {
81084651 2753 set_freepointer(s, tail_obj, c->freelist);
8a5ec0ba 2754
933393f5 2755 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2756 s->cpu_slab->freelist, s->cpu_slab->tid,
2757 c->freelist, tid,
81084651 2758 head, next_tid(tid)))) {
8a5ec0ba
CL
2759
2760 note_cmpxchg_failure("slab_free", s, tid);
2761 goto redo;
2762 }
84e554e6 2763 stat(s, FREE_FASTPATH);
894b8788 2764 } else
81084651 2765 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 2766
894b8788
CL
2767}
2768
81819f0f
CL
2769void kmem_cache_free(struct kmem_cache *s, void *x)
2770{
b9ce5ef4
GC
2771 s = cache_from_obj(s, x);
2772 if (!s)
79576102 2773 return;
81084651 2774 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 2775 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2776}
2777EXPORT_SYMBOL(kmem_cache_free);
2778
d0ecd894 2779struct detached_freelist {
fbd02630 2780 struct page *page;
d0ecd894
JDB
2781 void *tail;
2782 void *freelist;
2783 int cnt;
376bf125 2784 struct kmem_cache *s;
d0ecd894 2785};
fbd02630 2786
d0ecd894
JDB
2787/*
2788 * This function progressively scans the array with free objects (with
2789 * a limited look ahead) and extract objects belonging to the same
2790 * page. It builds a detached freelist directly within the given
2791 * page/objects. This can happen without any need for
2792 * synchronization, because the objects are owned by running process.
2793 * The freelist is build up as a single linked list in the objects.
2794 * The idea is, that this detached freelist can then be bulk
2795 * transferred to the real freelist(s), but only requiring a single
2796 * synchronization primitive. Look ahead in the array is limited due
2797 * to performance reasons.
2798 */
376bf125
JDB
2799static inline
2800int build_detached_freelist(struct kmem_cache *s, size_t size,
2801 void **p, struct detached_freelist *df)
d0ecd894
JDB
2802{
2803 size_t first_skipped_index = 0;
2804 int lookahead = 3;
2805 void *object;
ca257195 2806 struct page *page;
fbd02630 2807
d0ecd894
JDB
2808 /* Always re-init detached_freelist */
2809 df->page = NULL;
fbd02630 2810
d0ecd894
JDB
2811 do {
2812 object = p[--size];
ca257195 2813 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 2814 } while (!object && size);
3eed034d 2815
d0ecd894
JDB
2816 if (!object)
2817 return 0;
fbd02630 2818
ca257195
JDB
2819 page = virt_to_head_page(object);
2820 if (!s) {
2821 /* Handle kalloc'ed objects */
2822 if (unlikely(!PageSlab(page))) {
2823 BUG_ON(!PageCompound(page));
2824 kfree_hook(object);
2825 __free_kmem_pages(page, compound_order(page));
2826 p[size] = NULL; /* mark object processed */
2827 return size;
2828 }
2829 /* Derive kmem_cache from object */
2830 df->s = page->slab_cache;
2831 } else {
2832 df->s = cache_from_obj(s, object); /* Support for memcg */
2833 }
376bf125 2834
d0ecd894 2835 /* Start new detached freelist */
ca257195 2836 df->page = page;
376bf125 2837 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
2838 df->tail = object;
2839 df->freelist = object;
2840 p[size] = NULL; /* mark object processed */
2841 df->cnt = 1;
2842
2843 while (size) {
2844 object = p[--size];
2845 if (!object)
2846 continue; /* Skip processed objects */
2847
2848 /* df->page is always set at this point */
2849 if (df->page == virt_to_head_page(object)) {
2850 /* Opportunity build freelist */
376bf125 2851 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
2852 df->freelist = object;
2853 df->cnt++;
2854 p[size] = NULL; /* mark object processed */
2855
2856 continue;
fbd02630 2857 }
d0ecd894
JDB
2858
2859 /* Limit look ahead search */
2860 if (!--lookahead)
2861 break;
2862
2863 if (!first_skipped_index)
2864 first_skipped_index = size + 1;
fbd02630 2865 }
d0ecd894
JDB
2866
2867 return first_skipped_index;
2868}
2869
d0ecd894 2870/* Note that interrupts must be enabled when calling this function. */
376bf125 2871void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
2872{
2873 if (WARN_ON(!size))
2874 return;
2875
2876 do {
2877 struct detached_freelist df;
2878
2879 size = build_detached_freelist(s, size, p, &df);
2880 if (unlikely(!df.page))
2881 continue;
2882
376bf125 2883 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
d0ecd894 2884 } while (likely(size));
484748f0
CL
2885}
2886EXPORT_SYMBOL(kmem_cache_free_bulk);
2887
994eb764 2888/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
2889int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2890 void **p)
484748f0 2891{
994eb764
JDB
2892 struct kmem_cache_cpu *c;
2893 int i;
2894
03ec0ed5
JDB
2895 /* memcg and kmem_cache debug support */
2896 s = slab_pre_alloc_hook(s, flags);
2897 if (unlikely(!s))
2898 return false;
994eb764
JDB
2899 /*
2900 * Drain objects in the per cpu slab, while disabling local
2901 * IRQs, which protects against PREEMPT and interrupts
2902 * handlers invoking normal fastpath.
2903 */
2904 local_irq_disable();
2905 c = this_cpu_ptr(s->cpu_slab);
2906
2907 for (i = 0; i < size; i++) {
2908 void *object = c->freelist;
2909
ebe909e0 2910 if (unlikely(!object)) {
ebe909e0
JDB
2911 /*
2912 * Invoking slow path likely have side-effect
2913 * of re-populating per CPU c->freelist
2914 */
87098373 2915 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 2916 _RET_IP_, c);
87098373
CL
2917 if (unlikely(!p[i]))
2918 goto error;
2919
ebe909e0
JDB
2920 c = this_cpu_ptr(s->cpu_slab);
2921 continue; /* goto for-loop */
2922 }
994eb764
JDB
2923 c->freelist = get_freepointer(s, object);
2924 p[i] = object;
2925 }
2926 c->tid = next_tid(c->tid);
2927 local_irq_enable();
2928
2929 /* Clear memory outside IRQ disabled fastpath loop */
2930 if (unlikely(flags & __GFP_ZERO)) {
2931 int j;
2932
2933 for (j = 0; j < i; j++)
2934 memset(p[j], 0, s->object_size);
2935 }
2936
03ec0ed5
JDB
2937 /* memcg and kmem_cache debug support */
2938 slab_post_alloc_hook(s, flags, size, p);
865762a8 2939 return i;
87098373 2940error:
87098373 2941 local_irq_enable();
03ec0ed5
JDB
2942 slab_post_alloc_hook(s, flags, i, p);
2943 __kmem_cache_free_bulk(s, i, p);
865762a8 2944 return 0;
484748f0
CL
2945}
2946EXPORT_SYMBOL(kmem_cache_alloc_bulk);
2947
2948
81819f0f 2949/*
672bba3a
CL
2950 * Object placement in a slab is made very easy because we always start at
2951 * offset 0. If we tune the size of the object to the alignment then we can
2952 * get the required alignment by putting one properly sized object after
2953 * another.
81819f0f
CL
2954 *
2955 * Notice that the allocation order determines the sizes of the per cpu
2956 * caches. Each processor has always one slab available for allocations.
2957 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2958 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2959 * locking overhead.
81819f0f
CL
2960 */
2961
2962/*
2963 * Mininum / Maximum order of slab pages. This influences locking overhead
2964 * and slab fragmentation. A higher order reduces the number of partial slabs
2965 * and increases the number of allocations possible without having to
2966 * take the list_lock.
2967 */
2968static int slub_min_order;
114e9e89 2969static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2970static int slub_min_objects;
81819f0f 2971
81819f0f
CL
2972/*
2973 * Calculate the order of allocation given an slab object size.
2974 *
672bba3a
CL
2975 * The order of allocation has significant impact on performance and other
2976 * system components. Generally order 0 allocations should be preferred since
2977 * order 0 does not cause fragmentation in the page allocator. Larger objects
2978 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2979 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2980 * would be wasted.
2981 *
2982 * In order to reach satisfactory performance we must ensure that a minimum
2983 * number of objects is in one slab. Otherwise we may generate too much
2984 * activity on the partial lists which requires taking the list_lock. This is
2985 * less a concern for large slabs though which are rarely used.
81819f0f 2986 *
672bba3a
CL
2987 * slub_max_order specifies the order where we begin to stop considering the
2988 * number of objects in a slab as critical. If we reach slub_max_order then
2989 * we try to keep the page order as low as possible. So we accept more waste
2990 * of space in favor of a small page order.
81819f0f 2991 *
672bba3a
CL
2992 * Higher order allocations also allow the placement of more objects in a
2993 * slab and thereby reduce object handling overhead. If the user has
2994 * requested a higher mininum order then we start with that one instead of
2995 * the smallest order which will fit the object.
81819f0f 2996 */
5e6d444e 2997static inline int slab_order(int size, int min_objects,
ab9a0f19 2998 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2999{
3000 int order;
3001 int rem;
6300ea75 3002 int min_order = slub_min_order;
81819f0f 3003
ab9a0f19 3004 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 3005 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3006
9f835703 3007 for (order = max(min_order, get_order(min_objects * size + reserved));
5e6d444e 3008 order <= max_order; order++) {
81819f0f 3009
5e6d444e 3010 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 3011
ab9a0f19 3012 rem = (slab_size - reserved) % size;
81819f0f 3013
5e6d444e 3014 if (rem <= slab_size / fract_leftover)
81819f0f 3015 break;
81819f0f 3016 }
672bba3a 3017
81819f0f
CL
3018 return order;
3019}
3020
ab9a0f19 3021static inline int calculate_order(int size, int reserved)
5e6d444e
CL
3022{
3023 int order;
3024 int min_objects;
3025 int fraction;
e8120ff1 3026 int max_objects;
5e6d444e
CL
3027
3028 /*
3029 * Attempt to find best configuration for a slab. This
3030 * works by first attempting to generate a layout with
3031 * the best configuration and backing off gradually.
3032 *
422ff4d7 3033 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3034 * we reduce the minimum objects required in a slab.
3035 */
3036 min_objects = slub_min_objects;
9b2cd506
CL
3037 if (!min_objects)
3038 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 3039 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
3040 min_objects = min(min_objects, max_objects);
3041
5e6d444e 3042 while (min_objects > 1) {
c124f5b5 3043 fraction = 16;
5e6d444e
CL
3044 while (fraction >= 4) {
3045 order = slab_order(size, min_objects,
ab9a0f19 3046 slub_max_order, fraction, reserved);
5e6d444e
CL
3047 if (order <= slub_max_order)
3048 return order;
3049 fraction /= 2;
3050 }
5086c389 3051 min_objects--;
5e6d444e
CL
3052 }
3053
3054 /*
3055 * We were unable to place multiple objects in a slab. Now
3056 * lets see if we can place a single object there.
3057 */
ab9a0f19 3058 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
3059 if (order <= slub_max_order)
3060 return order;
3061
3062 /*
3063 * Doh this slab cannot be placed using slub_max_order.
3064 */
ab9a0f19 3065 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 3066 if (order < MAX_ORDER)
5e6d444e
CL
3067 return order;
3068 return -ENOSYS;
3069}
3070
5595cffc 3071static void
4053497d 3072init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3073{
3074 n->nr_partial = 0;
81819f0f
CL
3075 spin_lock_init(&n->list_lock);
3076 INIT_LIST_HEAD(&n->partial);
8ab1372f 3077#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3078 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3079 atomic_long_set(&n->total_objects, 0);
643b1138 3080 INIT_LIST_HEAD(&n->full);
8ab1372f 3081#endif
81819f0f
CL
3082}
3083
55136592 3084static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3085{
6c182dc0 3086 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3087 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3088
8a5ec0ba 3089 /*
d4d84fef
CM
3090 * Must align to double word boundary for the double cmpxchg
3091 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3092 */
d4d84fef
CM
3093 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3094 2 * sizeof(void *));
8a5ec0ba
CL
3095
3096 if (!s->cpu_slab)
3097 return 0;
3098
3099 init_kmem_cache_cpus(s);
4c93c355 3100
8a5ec0ba 3101 return 1;
4c93c355 3102}
4c93c355 3103
51df1142
CL
3104static struct kmem_cache *kmem_cache_node;
3105
81819f0f
CL
3106/*
3107 * No kmalloc_node yet so do it by hand. We know that this is the first
3108 * slab on the node for this slabcache. There are no concurrent accesses
3109 * possible.
3110 *
721ae22a
ZYW
3111 * Note that this function only works on the kmem_cache_node
3112 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3113 * memory on a fresh node that has no slab structures yet.
81819f0f 3114 */
55136592 3115static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3116{
3117 struct page *page;
3118 struct kmem_cache_node *n;
3119
51df1142 3120 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3121
51df1142 3122 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3123
3124 BUG_ON(!page);
a2f92ee7 3125 if (page_to_nid(page) != node) {
f9f58285
FF
3126 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3127 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3128 }
3129
81819f0f
CL
3130 n = page->freelist;
3131 BUG_ON(!n);
51df1142 3132 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 3133 page->inuse = 1;
8cb0a506 3134 page->frozen = 0;
51df1142 3135 kmem_cache_node->node[node] = n;
8ab1372f 3136#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3137 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3138 init_tracking(kmem_cache_node, n);
8ab1372f 3139#endif
0316bec2 3140 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
4053497d 3141 init_kmem_cache_node(n);
51df1142 3142 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3143
67b6c900 3144 /*
1e4dd946
SR
3145 * No locks need to be taken here as it has just been
3146 * initialized and there is no concurrent access.
67b6c900 3147 */
1e4dd946 3148 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3149}
3150
3151static void free_kmem_cache_nodes(struct kmem_cache *s)
3152{
3153 int node;
fa45dc25 3154 struct kmem_cache_node *n;
81819f0f 3155
fa45dc25
CL
3156 for_each_kmem_cache_node(s, node, n) {
3157 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3158 s->node[node] = NULL;
3159 }
3160}
3161
52b4b950
DS
3162void __kmem_cache_release(struct kmem_cache *s)
3163{
3164 free_percpu(s->cpu_slab);
3165 free_kmem_cache_nodes(s);
3166}
3167
55136592 3168static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3169{
3170 int node;
81819f0f 3171
f64dc58c 3172 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3173 struct kmem_cache_node *n;
3174
73367bd8 3175 if (slab_state == DOWN) {
55136592 3176 early_kmem_cache_node_alloc(node);
73367bd8
AD
3177 continue;
3178 }
51df1142 3179 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3180 GFP_KERNEL, node);
81819f0f 3181
73367bd8
AD
3182 if (!n) {
3183 free_kmem_cache_nodes(s);
3184 return 0;
81819f0f 3185 }
73367bd8 3186
81819f0f 3187 s->node[node] = n;
4053497d 3188 init_kmem_cache_node(n);
81819f0f
CL
3189 }
3190 return 1;
3191}
81819f0f 3192
c0bdb232 3193static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3194{
3195 if (min < MIN_PARTIAL)
3196 min = MIN_PARTIAL;
3197 else if (min > MAX_PARTIAL)
3198 min = MAX_PARTIAL;
3199 s->min_partial = min;
3200}
3201
81819f0f
CL
3202/*
3203 * calculate_sizes() determines the order and the distribution of data within
3204 * a slab object.
3205 */
06b285dc 3206static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
3207{
3208 unsigned long flags = s->flags;
3b0efdfa 3209 unsigned long size = s->object_size;
834f3d11 3210 int order;
81819f0f 3211
d8b42bf5
CL
3212 /*
3213 * Round up object size to the next word boundary. We can only
3214 * place the free pointer at word boundaries and this determines
3215 * the possible location of the free pointer.
3216 */
3217 size = ALIGN(size, sizeof(void *));
3218
3219#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3220 /*
3221 * Determine if we can poison the object itself. If the user of
3222 * the slab may touch the object after free or before allocation
3223 * then we should never poison the object itself.
3224 */
3225 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 3226 !s->ctor)
81819f0f
CL
3227 s->flags |= __OBJECT_POISON;
3228 else
3229 s->flags &= ~__OBJECT_POISON;
3230
81819f0f
CL
3231
3232 /*
672bba3a 3233 * If we are Redzoning then check if there is some space between the
81819f0f 3234 * end of the object and the free pointer. If not then add an
672bba3a 3235 * additional word to have some bytes to store Redzone information.
81819f0f 3236 */
3b0efdfa 3237 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3238 size += sizeof(void *);
41ecc55b 3239#endif
81819f0f
CL
3240
3241 /*
672bba3a
CL
3242 * With that we have determined the number of bytes in actual use
3243 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3244 */
3245 s->inuse = size;
3246
3247 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 3248 s->ctor)) {
81819f0f
CL
3249 /*
3250 * Relocate free pointer after the object if it is not
3251 * permitted to overwrite the first word of the object on
3252 * kmem_cache_free.
3253 *
3254 * This is the case if we do RCU, have a constructor or
3255 * destructor or are poisoning the objects.
3256 */
3257 s->offset = size;
3258 size += sizeof(void *);
3259 }
3260
c12b3c62 3261#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3262 if (flags & SLAB_STORE_USER)
3263 /*
3264 * Need to store information about allocs and frees after
3265 * the object.
3266 */
3267 size += 2 * sizeof(struct track);
3268
be7b3fbc 3269 if (flags & SLAB_RED_ZONE)
81819f0f
CL
3270 /*
3271 * Add some empty padding so that we can catch
3272 * overwrites from earlier objects rather than let
3273 * tracking information or the free pointer be
0211a9c8 3274 * corrupted if a user writes before the start
81819f0f
CL
3275 * of the object.
3276 */
3277 size += sizeof(void *);
41ecc55b 3278#endif
672bba3a 3279
81819f0f
CL
3280 /*
3281 * SLUB stores one object immediately after another beginning from
3282 * offset 0. In order to align the objects we have to simply size
3283 * each object to conform to the alignment.
3284 */
45906855 3285 size = ALIGN(size, s->align);
81819f0f 3286 s->size = size;
06b285dc
CL
3287 if (forced_order >= 0)
3288 order = forced_order;
3289 else
ab9a0f19 3290 order = calculate_order(size, s->reserved);
81819f0f 3291
834f3d11 3292 if (order < 0)
81819f0f
CL
3293 return 0;
3294
b7a49f0d 3295 s->allocflags = 0;
834f3d11 3296 if (order)
b7a49f0d
CL
3297 s->allocflags |= __GFP_COMP;
3298
3299 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3300 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3301
3302 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3303 s->allocflags |= __GFP_RECLAIMABLE;
3304
81819f0f
CL
3305 /*
3306 * Determine the number of objects per slab
3307 */
ab9a0f19
LJ
3308 s->oo = oo_make(order, size, s->reserved);
3309 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3310 if (oo_objects(s->oo) > oo_objects(s->max))
3311 s->max = s->oo;
81819f0f 3312
834f3d11 3313 return !!oo_objects(s->oo);
81819f0f
CL
3314}
3315
8a13a4cc 3316static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3317{
8a13a4cc 3318 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3319 s->reserved = 0;
81819f0f 3320
da9a638c
LJ
3321 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3322 s->reserved = sizeof(struct rcu_head);
81819f0f 3323
06b285dc 3324 if (!calculate_sizes(s, -1))
81819f0f 3325 goto error;
3de47213
DR
3326 if (disable_higher_order_debug) {
3327 /*
3328 * Disable debugging flags that store metadata if the min slab
3329 * order increased.
3330 */
3b0efdfa 3331 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3332 s->flags &= ~DEBUG_METADATA_FLAGS;
3333 s->offset = 0;
3334 if (!calculate_sizes(s, -1))
3335 goto error;
3336 }
3337 }
81819f0f 3338
2565409f
HC
3339#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3340 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3341 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3342 /* Enable fast mode */
3343 s->flags |= __CMPXCHG_DOUBLE;
3344#endif
3345
3b89d7d8
DR
3346 /*
3347 * The larger the object size is, the more pages we want on the partial
3348 * list to avoid pounding the page allocator excessively.
3349 */
49e22585
CL
3350 set_min_partial(s, ilog2(s->size) / 2);
3351
3352 /*
3353 * cpu_partial determined the maximum number of objects kept in the
3354 * per cpu partial lists of a processor.
3355 *
3356 * Per cpu partial lists mainly contain slabs that just have one
3357 * object freed. If they are used for allocation then they can be
3358 * filled up again with minimal effort. The slab will never hit the
3359 * per node partial lists and therefore no locking will be required.
3360 *
3361 * This setting also determines
3362 *
3363 * A) The number of objects from per cpu partial slabs dumped to the
3364 * per node list when we reach the limit.
9f264904 3365 * B) The number of objects in cpu partial slabs to extract from the
d0e0ac97
CG
3366 * per node list when we run out of per cpu objects. We only fetch
3367 * 50% to keep some capacity around for frees.
49e22585 3368 */
345c905d 3369 if (!kmem_cache_has_cpu_partial(s))
8f1e33da
CL
3370 s->cpu_partial = 0;
3371 else if (s->size >= PAGE_SIZE)
49e22585
CL
3372 s->cpu_partial = 2;
3373 else if (s->size >= 1024)
3374 s->cpu_partial = 6;
3375 else if (s->size >= 256)
3376 s->cpu_partial = 13;
3377 else
3378 s->cpu_partial = 30;
3379
81819f0f 3380#ifdef CONFIG_NUMA
e2cb96b7 3381 s->remote_node_defrag_ratio = 1000;
81819f0f 3382#endif
55136592 3383 if (!init_kmem_cache_nodes(s))
dfb4f096 3384 goto error;
81819f0f 3385
55136592 3386 if (alloc_kmem_cache_cpus(s))
278b1bb1 3387 return 0;
ff12059e 3388
4c93c355 3389 free_kmem_cache_nodes(s);
81819f0f
CL
3390error:
3391 if (flags & SLAB_PANIC)
3392 panic("Cannot create slab %s size=%lu realsize=%u "
3393 "order=%u offset=%u flags=%lx\n",
d0e0ac97
CG
3394 s->name, (unsigned long)s->size, s->size,
3395 oo_order(s->oo), s->offset, flags);
278b1bb1 3396 return -EINVAL;
81819f0f 3397}
81819f0f 3398
33b12c38
CL
3399static void list_slab_objects(struct kmem_cache *s, struct page *page,
3400 const char *text)
3401{
3402#ifdef CONFIG_SLUB_DEBUG
3403 void *addr = page_address(page);
3404 void *p;
a5dd5c11
NK
3405 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3406 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3407 if (!map)
3408 return;
945cf2b6 3409 slab_err(s, page, text, s->name);
33b12c38 3410 slab_lock(page);
33b12c38 3411
5f80b13a 3412 get_map(s, page, map);
33b12c38
CL
3413 for_each_object(p, s, addr, page->objects) {
3414
3415 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3416 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3417 print_tracking(s, p);
3418 }
3419 }
3420 slab_unlock(page);
bbd7d57b 3421 kfree(map);
33b12c38
CL
3422#endif
3423}
3424
81819f0f 3425/*
599870b1 3426 * Attempt to free all partial slabs on a node.
52b4b950
DS
3427 * This is called from __kmem_cache_shutdown(). We must take list_lock
3428 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3429 */
599870b1 3430static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3431{
81819f0f
CL
3432 struct page *page, *h;
3433
52b4b950
DS
3434 BUG_ON(irqs_disabled());
3435 spin_lock_irq(&n->list_lock);
33b12c38 3436 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3437 if (!page->inuse) {
52b4b950 3438 remove_partial(n, page);
81819f0f 3439 discard_slab(s, page);
33b12c38
CL
3440 } else {
3441 list_slab_objects(s, page,
52b4b950 3442 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3443 }
33b12c38 3444 }
52b4b950 3445 spin_unlock_irq(&n->list_lock);
81819f0f
CL
3446}
3447
3448/*
672bba3a 3449 * Release all resources used by a slab cache.
81819f0f 3450 */
52b4b950 3451int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3452{
3453 int node;
fa45dc25 3454 struct kmem_cache_node *n;
81819f0f
CL
3455
3456 flush_all(s);
81819f0f 3457 /* Attempt to free all objects */
fa45dc25 3458 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3459 free_partial(s, n);
3460 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3461 return 1;
3462 }
81819f0f
CL
3463 return 0;
3464}
3465
81819f0f
CL
3466/********************************************************************
3467 * Kmalloc subsystem
3468 *******************************************************************/
3469
81819f0f
CL
3470static int __init setup_slub_min_order(char *str)
3471{
06428780 3472 get_option(&str, &slub_min_order);
81819f0f
CL
3473
3474 return 1;
3475}
3476
3477__setup("slub_min_order=", setup_slub_min_order);
3478
3479static int __init setup_slub_max_order(char *str)
3480{
06428780 3481 get_option(&str, &slub_max_order);
818cf590 3482 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3483
3484 return 1;
3485}
3486
3487__setup("slub_max_order=", setup_slub_max_order);
3488
3489static int __init setup_slub_min_objects(char *str)
3490{
06428780 3491 get_option(&str, &slub_min_objects);
81819f0f
CL
3492
3493 return 1;
3494}
3495
3496__setup("slub_min_objects=", setup_slub_min_objects);
3497
81819f0f
CL
3498void *__kmalloc(size_t size, gfp_t flags)
3499{
aadb4bc4 3500 struct kmem_cache *s;
5b882be4 3501 void *ret;
81819f0f 3502
95a05b42 3503 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3504 return kmalloc_large(size, flags);
aadb4bc4 3505
2c59dd65 3506 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3507
3508 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3509 return s;
3510
2b847c3c 3511 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3512
ca2b84cb 3513 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3514
0316bec2
AR
3515 kasan_kmalloc(s, ret, size);
3516
5b882be4 3517 return ret;
81819f0f
CL
3518}
3519EXPORT_SYMBOL(__kmalloc);
3520
5d1f57e4 3521#ifdef CONFIG_NUMA
f619cfe1
CL
3522static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3523{
b1eeab67 3524 struct page *page;
e4f7c0b4 3525 void *ptr = NULL;
f619cfe1 3526
52383431
VD
3527 flags |= __GFP_COMP | __GFP_NOTRACK;
3528 page = alloc_kmem_pages_node(node, flags, get_order(size));
f619cfe1 3529 if (page)
e4f7c0b4
CM
3530 ptr = page_address(page);
3531
d56791b3 3532 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3533 return ptr;
f619cfe1
CL
3534}
3535
81819f0f
CL
3536void *__kmalloc_node(size_t size, gfp_t flags, int node)
3537{
aadb4bc4 3538 struct kmem_cache *s;
5b882be4 3539 void *ret;
81819f0f 3540
95a05b42 3541 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3542 ret = kmalloc_large_node(size, flags, node);
3543
ca2b84cb
EGM
3544 trace_kmalloc_node(_RET_IP_, ret,
3545 size, PAGE_SIZE << get_order(size),
3546 flags, node);
5b882be4
EGM
3547
3548 return ret;
3549 }
aadb4bc4 3550
2c59dd65 3551 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3552
3553 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3554 return s;
3555
2b847c3c 3556 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3557
ca2b84cb 3558 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3559
0316bec2
AR
3560 kasan_kmalloc(s, ret, size);
3561
5b882be4 3562 return ret;
81819f0f
CL
3563}
3564EXPORT_SYMBOL(__kmalloc_node);
3565#endif
3566
0316bec2 3567static size_t __ksize(const void *object)
81819f0f 3568{
272c1d21 3569 struct page *page;
81819f0f 3570
ef8b4520 3571 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3572 return 0;
3573
294a80a8 3574 page = virt_to_head_page(object);
294a80a8 3575
76994412
PE
3576 if (unlikely(!PageSlab(page))) {
3577 WARN_ON(!PageCompound(page));
294a80a8 3578 return PAGE_SIZE << compound_order(page);
76994412 3579 }
81819f0f 3580
1b4f59e3 3581 return slab_ksize(page->slab_cache);
81819f0f 3582}
0316bec2
AR
3583
3584size_t ksize(const void *object)
3585{
3586 size_t size = __ksize(object);
3587 /* We assume that ksize callers could use whole allocated area,
3588 so we need unpoison this area. */
3589 kasan_krealloc(object, size);
3590 return size;
3591}
b1aabecd 3592EXPORT_SYMBOL(ksize);
81819f0f
CL
3593
3594void kfree(const void *x)
3595{
81819f0f 3596 struct page *page;
5bb983b0 3597 void *object = (void *)x;
81819f0f 3598
2121db74
PE
3599 trace_kfree(_RET_IP_, x);
3600
2408c550 3601 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3602 return;
3603
b49af68f 3604 page = virt_to_head_page(x);
aadb4bc4 3605 if (unlikely(!PageSlab(page))) {
0937502a 3606 BUG_ON(!PageCompound(page));
d56791b3 3607 kfree_hook(x);
52383431 3608 __free_kmem_pages(page, compound_order(page));
aadb4bc4
CL
3609 return;
3610 }
81084651 3611 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
3612}
3613EXPORT_SYMBOL(kfree);
3614
832f37f5
VD
3615#define SHRINK_PROMOTE_MAX 32
3616
2086d26a 3617/*
832f37f5
VD
3618 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3619 * up most to the head of the partial lists. New allocations will then
3620 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
3621 *
3622 * The slabs with the least items are placed last. This results in them
3623 * being allocated from last increasing the chance that the last objects
3624 * are freed in them.
2086d26a 3625 */
d6e0b7fa 3626int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
2086d26a
CL
3627{
3628 int node;
3629 int i;
3630 struct kmem_cache_node *n;
3631 struct page *page;
3632 struct page *t;
832f37f5
VD
3633 struct list_head discard;
3634 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 3635 unsigned long flags;
ce3712d7 3636 int ret = 0;
2086d26a 3637
d6e0b7fa
VD
3638 if (deactivate) {
3639 /*
3640 * Disable empty slabs caching. Used to avoid pinning offline
3641 * memory cgroups by kmem pages that can be freed.
3642 */
3643 s->cpu_partial = 0;
3644 s->min_partial = 0;
3645
3646 /*
3647 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3648 * so we have to make sure the change is visible.
3649 */
3650 kick_all_cpus_sync();
3651 }
3652
2086d26a 3653 flush_all(s);
fa45dc25 3654 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
3655 INIT_LIST_HEAD(&discard);
3656 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3657 INIT_LIST_HEAD(promote + i);
2086d26a
CL
3658
3659 spin_lock_irqsave(&n->list_lock, flags);
3660
3661 /*
832f37f5 3662 * Build lists of slabs to discard or promote.
2086d26a 3663 *
672bba3a
CL
3664 * Note that concurrent frees may occur while we hold the
3665 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3666 */
3667 list_for_each_entry_safe(page, t, &n->partial, lru) {
832f37f5
VD
3668 int free = page->objects - page->inuse;
3669
3670 /* Do not reread page->inuse */
3671 barrier();
3672
3673 /* We do not keep full slabs on the list */
3674 BUG_ON(free <= 0);
3675
3676 if (free == page->objects) {
3677 list_move(&page->lru, &discard);
69cb8e6b 3678 n->nr_partial--;
832f37f5
VD
3679 } else if (free <= SHRINK_PROMOTE_MAX)
3680 list_move(&page->lru, promote + free - 1);
2086d26a
CL
3681 }
3682
2086d26a 3683 /*
832f37f5
VD
3684 * Promote the slabs filled up most to the head of the
3685 * partial list.
2086d26a 3686 */
832f37f5
VD
3687 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3688 list_splice(promote + i, &n->partial);
2086d26a 3689
2086d26a 3690 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3691
3692 /* Release empty slabs */
832f37f5 3693 list_for_each_entry_safe(page, t, &discard, lru)
69cb8e6b 3694 discard_slab(s, page);
ce3712d7
VD
3695
3696 if (slabs_node(s, node))
3697 ret = 1;
2086d26a
CL
3698 }
3699
ce3712d7 3700 return ret;
2086d26a 3701}
2086d26a 3702
b9049e23
YG
3703static int slab_mem_going_offline_callback(void *arg)
3704{
3705 struct kmem_cache *s;
3706
18004c5d 3707 mutex_lock(&slab_mutex);
b9049e23 3708 list_for_each_entry(s, &slab_caches, list)
d6e0b7fa 3709 __kmem_cache_shrink(s, false);
18004c5d 3710 mutex_unlock(&slab_mutex);
b9049e23
YG
3711
3712 return 0;
3713}
3714
3715static void slab_mem_offline_callback(void *arg)
3716{
3717 struct kmem_cache_node *n;
3718 struct kmem_cache *s;
3719 struct memory_notify *marg = arg;
3720 int offline_node;
3721
b9d5ab25 3722 offline_node = marg->status_change_nid_normal;
b9049e23
YG
3723
3724 /*
3725 * If the node still has available memory. we need kmem_cache_node
3726 * for it yet.
3727 */
3728 if (offline_node < 0)
3729 return;
3730
18004c5d 3731 mutex_lock(&slab_mutex);
b9049e23
YG
3732 list_for_each_entry(s, &slab_caches, list) {
3733 n = get_node(s, offline_node);
3734 if (n) {
3735 /*
3736 * if n->nr_slabs > 0, slabs still exist on the node
3737 * that is going down. We were unable to free them,
c9404c9c 3738 * and offline_pages() function shouldn't call this
b9049e23
YG
3739 * callback. So, we must fail.
3740 */
0f389ec6 3741 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3742
3743 s->node[offline_node] = NULL;
8de66a0c 3744 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3745 }
3746 }
18004c5d 3747 mutex_unlock(&slab_mutex);
b9049e23
YG
3748}
3749
3750static int slab_mem_going_online_callback(void *arg)
3751{
3752 struct kmem_cache_node *n;
3753 struct kmem_cache *s;
3754 struct memory_notify *marg = arg;
b9d5ab25 3755 int nid = marg->status_change_nid_normal;
b9049e23
YG
3756 int ret = 0;
3757
3758 /*
3759 * If the node's memory is already available, then kmem_cache_node is
3760 * already created. Nothing to do.
3761 */
3762 if (nid < 0)
3763 return 0;
3764
3765 /*
0121c619 3766 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3767 * allocate a kmem_cache_node structure in order to bring the node
3768 * online.
3769 */
18004c5d 3770 mutex_lock(&slab_mutex);
b9049e23
YG
3771 list_for_each_entry(s, &slab_caches, list) {
3772 /*
3773 * XXX: kmem_cache_alloc_node will fallback to other nodes
3774 * since memory is not yet available from the node that
3775 * is brought up.
3776 */
8de66a0c 3777 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3778 if (!n) {
3779 ret = -ENOMEM;
3780 goto out;
3781 }
4053497d 3782 init_kmem_cache_node(n);
b9049e23
YG
3783 s->node[nid] = n;
3784 }
3785out:
18004c5d 3786 mutex_unlock(&slab_mutex);
b9049e23
YG
3787 return ret;
3788}
3789
3790static int slab_memory_callback(struct notifier_block *self,
3791 unsigned long action, void *arg)
3792{
3793 int ret = 0;
3794
3795 switch (action) {
3796 case MEM_GOING_ONLINE:
3797 ret = slab_mem_going_online_callback(arg);
3798 break;
3799 case MEM_GOING_OFFLINE:
3800 ret = slab_mem_going_offline_callback(arg);
3801 break;
3802 case MEM_OFFLINE:
3803 case MEM_CANCEL_ONLINE:
3804 slab_mem_offline_callback(arg);
3805 break;
3806 case MEM_ONLINE:
3807 case MEM_CANCEL_OFFLINE:
3808 break;
3809 }
dc19f9db
KH
3810 if (ret)
3811 ret = notifier_from_errno(ret);
3812 else
3813 ret = NOTIFY_OK;
b9049e23
YG
3814 return ret;
3815}
3816
3ac38faa
AM
3817static struct notifier_block slab_memory_callback_nb = {
3818 .notifier_call = slab_memory_callback,
3819 .priority = SLAB_CALLBACK_PRI,
3820};
b9049e23 3821
81819f0f
CL
3822/********************************************************************
3823 * Basic setup of slabs
3824 *******************************************************************/
3825
51df1142
CL
3826/*
3827 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
3828 * the page allocator. Allocate them properly then fix up the pointers
3829 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
3830 */
3831
dffb4d60 3832static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
3833{
3834 int node;
dffb4d60 3835 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 3836 struct kmem_cache_node *n;
51df1142 3837
dffb4d60 3838 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 3839
7d557b3c
GC
3840 /*
3841 * This runs very early, and only the boot processor is supposed to be
3842 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3843 * IPIs around.
3844 */
3845 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 3846 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
3847 struct page *p;
3848
fa45dc25
CL
3849 list_for_each_entry(p, &n->partial, lru)
3850 p->slab_cache = s;
51df1142 3851
607bf324 3852#ifdef CONFIG_SLUB_DEBUG
fa45dc25
CL
3853 list_for_each_entry(p, &n->full, lru)
3854 p->slab_cache = s;
51df1142 3855#endif
51df1142 3856 }
f7ce3190 3857 slab_init_memcg_params(s);
dffb4d60
CL
3858 list_add(&s->list, &slab_caches);
3859 return s;
51df1142
CL
3860}
3861
81819f0f
CL
3862void __init kmem_cache_init(void)
3863{
dffb4d60
CL
3864 static __initdata struct kmem_cache boot_kmem_cache,
3865 boot_kmem_cache_node;
51df1142 3866
fc8d8620
SG
3867 if (debug_guardpage_minorder())
3868 slub_max_order = 0;
3869
dffb4d60
CL
3870 kmem_cache_node = &boot_kmem_cache_node;
3871 kmem_cache = &boot_kmem_cache;
51df1142 3872
dffb4d60
CL
3873 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3874 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 3875
3ac38faa 3876 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
3877
3878 /* Able to allocate the per node structures */
3879 slab_state = PARTIAL;
3880
dffb4d60
CL
3881 create_boot_cache(kmem_cache, "kmem_cache",
3882 offsetof(struct kmem_cache, node) +
3883 nr_node_ids * sizeof(struct kmem_cache_node *),
3884 SLAB_HWCACHE_ALIGN);
8a13a4cc 3885
dffb4d60 3886 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 3887
51df1142
CL
3888 /*
3889 * Allocate kmem_cache_node properly from the kmem_cache slab.
3890 * kmem_cache_node is separately allocated so no need to
3891 * update any list pointers.
3892 */
dffb4d60 3893 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
3894
3895 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 3896 setup_kmalloc_cache_index_table();
f97d5f63 3897 create_kmalloc_caches(0);
81819f0f
CL
3898
3899#ifdef CONFIG_SMP
3900 register_cpu_notifier(&slab_notifier);
9dfc6e68 3901#endif
81819f0f 3902
f9f58285 3903 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
f97d5f63 3904 cache_line_size(),
81819f0f
CL
3905 slub_min_order, slub_max_order, slub_min_objects,
3906 nr_cpu_ids, nr_node_ids);
3907}
3908
7e85ee0c
PE
3909void __init kmem_cache_init_late(void)
3910{
7e85ee0c
PE
3911}
3912
2633d7a0 3913struct kmem_cache *
a44cb944
VD
3914__kmem_cache_alias(const char *name, size_t size, size_t align,
3915 unsigned long flags, void (*ctor)(void *))
81819f0f 3916{
426589f5 3917 struct kmem_cache *s, *c;
81819f0f 3918
a44cb944 3919 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3920 if (s) {
3921 s->refcount++;
84d0ddd6 3922
81819f0f
CL
3923 /*
3924 * Adjust the object sizes so that we clear
3925 * the complete object on kzalloc.
3926 */
3b0efdfa 3927 s->object_size = max(s->object_size, (int)size);
81819f0f 3928 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3929
426589f5 3930 for_each_memcg_cache(c, s) {
84d0ddd6
VD
3931 c->object_size = s->object_size;
3932 c->inuse = max_t(int, c->inuse,
3933 ALIGN(size, sizeof(void *)));
3934 }
3935
7b8f3b66 3936 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3937 s->refcount--;
cbb79694 3938 s = NULL;
7b8f3b66 3939 }
a0e1d1be 3940 }
6446faa2 3941
cbb79694
CL
3942 return s;
3943}
84c1cf62 3944
8a13a4cc 3945int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 3946{
aac3a166
PE
3947 int err;
3948
3949 err = kmem_cache_open(s, flags);
3950 if (err)
3951 return err;
20cea968 3952
45530c44
CL
3953 /* Mutex is not taken during early boot */
3954 if (slab_state <= UP)
3955 return 0;
3956
107dab5c 3957 memcg_propagate_slab_attrs(s);
aac3a166 3958 err = sysfs_slab_add(s);
aac3a166 3959 if (err)
52b4b950 3960 __kmem_cache_release(s);
20cea968 3961
aac3a166 3962 return err;
81819f0f 3963}
81819f0f 3964
81819f0f 3965#ifdef CONFIG_SMP
81819f0f 3966/*
672bba3a
CL
3967 * Use the cpu notifier to insure that the cpu slabs are flushed when
3968 * necessary.
81819f0f 3969 */
0db0628d 3970static int slab_cpuup_callback(struct notifier_block *nfb,
81819f0f
CL
3971 unsigned long action, void *hcpu)
3972{
3973 long cpu = (long)hcpu;
5b95a4ac
CL
3974 struct kmem_cache *s;
3975 unsigned long flags;
81819f0f
CL
3976
3977 switch (action) {
3978 case CPU_UP_CANCELED:
8bb78442 3979 case CPU_UP_CANCELED_FROZEN:
81819f0f 3980 case CPU_DEAD:
8bb78442 3981 case CPU_DEAD_FROZEN:
18004c5d 3982 mutex_lock(&slab_mutex);
5b95a4ac
CL
3983 list_for_each_entry(s, &slab_caches, list) {
3984 local_irq_save(flags);
3985 __flush_cpu_slab(s, cpu);
3986 local_irq_restore(flags);
3987 }
18004c5d 3988 mutex_unlock(&slab_mutex);
81819f0f
CL
3989 break;
3990 default:
3991 break;
3992 }
3993 return NOTIFY_OK;
3994}
3995
0db0628d 3996static struct notifier_block slab_notifier = {
3adbefee 3997 .notifier_call = slab_cpuup_callback
06428780 3998};
81819f0f
CL
3999
4000#endif
4001
ce71e27c 4002void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4003{
aadb4bc4 4004 struct kmem_cache *s;
94b528d0 4005 void *ret;
aadb4bc4 4006
95a05b42 4007 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4008 return kmalloc_large(size, gfpflags);
4009
2c59dd65 4010 s = kmalloc_slab(size, gfpflags);
81819f0f 4011
2408c550 4012 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4013 return s;
81819f0f 4014
2b847c3c 4015 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4016
25985edc 4017 /* Honor the call site pointer we received. */
ca2b84cb 4018 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4019
4020 return ret;
81819f0f
CL
4021}
4022
5d1f57e4 4023#ifdef CONFIG_NUMA
81819f0f 4024void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4025 int node, unsigned long caller)
81819f0f 4026{
aadb4bc4 4027 struct kmem_cache *s;
94b528d0 4028 void *ret;
aadb4bc4 4029
95a05b42 4030 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4031 ret = kmalloc_large_node(size, gfpflags, node);
4032
4033 trace_kmalloc_node(caller, ret,
4034 size, PAGE_SIZE << get_order(size),
4035 gfpflags, node);
4036
4037 return ret;
4038 }
eada35ef 4039
2c59dd65 4040 s = kmalloc_slab(size, gfpflags);
81819f0f 4041
2408c550 4042 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4043 return s;
81819f0f 4044
2b847c3c 4045 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4046
25985edc 4047 /* Honor the call site pointer we received. */
ca2b84cb 4048 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4049
4050 return ret;
81819f0f 4051}
5d1f57e4 4052#endif
81819f0f 4053
ab4d5ed5 4054#ifdef CONFIG_SYSFS
205ab99d
CL
4055static int count_inuse(struct page *page)
4056{
4057 return page->inuse;
4058}
4059
4060static int count_total(struct page *page)
4061{
4062 return page->objects;
4063}
ab4d5ed5 4064#endif
205ab99d 4065
ab4d5ed5 4066#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4067static int validate_slab(struct kmem_cache *s, struct page *page,
4068 unsigned long *map)
53e15af0
CL
4069{
4070 void *p;
a973e9dd 4071 void *addr = page_address(page);
53e15af0
CL
4072
4073 if (!check_slab(s, page) ||
4074 !on_freelist(s, page, NULL))
4075 return 0;
4076
4077 /* Now we know that a valid freelist exists */
39b26464 4078 bitmap_zero(map, page->objects);
53e15af0 4079
5f80b13a
CL
4080 get_map(s, page, map);
4081 for_each_object(p, s, addr, page->objects) {
4082 if (test_bit(slab_index(p, s, addr), map))
4083 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4084 return 0;
53e15af0
CL
4085 }
4086
224a88be 4087 for_each_object(p, s, addr, page->objects)
7656c72b 4088 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4089 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4090 return 0;
4091 return 1;
4092}
4093
434e245d
CL
4094static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4095 unsigned long *map)
53e15af0 4096{
881db7fb
CL
4097 slab_lock(page);
4098 validate_slab(s, page, map);
4099 slab_unlock(page);
53e15af0
CL
4100}
4101
434e245d
CL
4102static int validate_slab_node(struct kmem_cache *s,
4103 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4104{
4105 unsigned long count = 0;
4106 struct page *page;
4107 unsigned long flags;
4108
4109 spin_lock_irqsave(&n->list_lock, flags);
4110
4111 list_for_each_entry(page, &n->partial, lru) {
434e245d 4112 validate_slab_slab(s, page, map);
53e15af0
CL
4113 count++;
4114 }
4115 if (count != n->nr_partial)
f9f58285
FF
4116 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4117 s->name, count, n->nr_partial);
53e15af0
CL
4118
4119 if (!(s->flags & SLAB_STORE_USER))
4120 goto out;
4121
4122 list_for_each_entry(page, &n->full, lru) {
434e245d 4123 validate_slab_slab(s, page, map);
53e15af0
CL
4124 count++;
4125 }
4126 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4127 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4128 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4129
4130out:
4131 spin_unlock_irqrestore(&n->list_lock, flags);
4132 return count;
4133}
4134
434e245d 4135static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4136{
4137 int node;
4138 unsigned long count = 0;
205ab99d 4139 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d 4140 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4141 struct kmem_cache_node *n;
434e245d
CL
4142
4143 if (!map)
4144 return -ENOMEM;
53e15af0
CL
4145
4146 flush_all(s);
fa45dc25 4147 for_each_kmem_cache_node(s, node, n)
434e245d 4148 count += validate_slab_node(s, n, map);
434e245d 4149 kfree(map);
53e15af0
CL
4150 return count;
4151}
88a420e4 4152/*
672bba3a 4153 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4154 * and freed.
4155 */
4156
4157struct location {
4158 unsigned long count;
ce71e27c 4159 unsigned long addr;
45edfa58
CL
4160 long long sum_time;
4161 long min_time;
4162 long max_time;
4163 long min_pid;
4164 long max_pid;
174596a0 4165 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4166 nodemask_t nodes;
88a420e4
CL
4167};
4168
4169struct loc_track {
4170 unsigned long max;
4171 unsigned long count;
4172 struct location *loc;
4173};
4174
4175static void free_loc_track(struct loc_track *t)
4176{
4177 if (t->max)
4178 free_pages((unsigned long)t->loc,
4179 get_order(sizeof(struct location) * t->max));
4180}
4181
68dff6a9 4182static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4183{
4184 struct location *l;
4185 int order;
4186
88a420e4
CL
4187 order = get_order(sizeof(struct location) * max);
4188
68dff6a9 4189 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4190 if (!l)
4191 return 0;
4192
4193 if (t->count) {
4194 memcpy(l, t->loc, sizeof(struct location) * t->count);
4195 free_loc_track(t);
4196 }
4197 t->max = max;
4198 t->loc = l;
4199 return 1;
4200}
4201
4202static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4203 const struct track *track)
88a420e4
CL
4204{
4205 long start, end, pos;
4206 struct location *l;
ce71e27c 4207 unsigned long caddr;
45edfa58 4208 unsigned long age = jiffies - track->when;
88a420e4
CL
4209
4210 start = -1;
4211 end = t->count;
4212
4213 for ( ; ; ) {
4214 pos = start + (end - start + 1) / 2;
4215
4216 /*
4217 * There is nothing at "end". If we end up there
4218 * we need to add something to before end.
4219 */
4220 if (pos == end)
4221 break;
4222
4223 caddr = t->loc[pos].addr;
45edfa58
CL
4224 if (track->addr == caddr) {
4225
4226 l = &t->loc[pos];
4227 l->count++;
4228 if (track->when) {
4229 l->sum_time += age;
4230 if (age < l->min_time)
4231 l->min_time = age;
4232 if (age > l->max_time)
4233 l->max_time = age;
4234
4235 if (track->pid < l->min_pid)
4236 l->min_pid = track->pid;
4237 if (track->pid > l->max_pid)
4238 l->max_pid = track->pid;
4239
174596a0
RR
4240 cpumask_set_cpu(track->cpu,
4241 to_cpumask(l->cpus));
45edfa58
CL
4242 }
4243 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4244 return 1;
4245 }
4246
45edfa58 4247 if (track->addr < caddr)
88a420e4
CL
4248 end = pos;
4249 else
4250 start = pos;
4251 }
4252
4253 /*
672bba3a 4254 * Not found. Insert new tracking element.
88a420e4 4255 */
68dff6a9 4256 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4257 return 0;
4258
4259 l = t->loc + pos;
4260 if (pos < t->count)
4261 memmove(l + 1, l,
4262 (t->count - pos) * sizeof(struct location));
4263 t->count++;
4264 l->count = 1;
45edfa58
CL
4265 l->addr = track->addr;
4266 l->sum_time = age;
4267 l->min_time = age;
4268 l->max_time = age;
4269 l->min_pid = track->pid;
4270 l->max_pid = track->pid;
174596a0
RR
4271 cpumask_clear(to_cpumask(l->cpus));
4272 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4273 nodes_clear(l->nodes);
4274 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4275 return 1;
4276}
4277
4278static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4279 struct page *page, enum track_item alloc,
a5dd5c11 4280 unsigned long *map)
88a420e4 4281{
a973e9dd 4282 void *addr = page_address(page);
88a420e4
CL
4283 void *p;
4284
39b26464 4285 bitmap_zero(map, page->objects);
5f80b13a 4286 get_map(s, page, map);
88a420e4 4287
224a88be 4288 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4289 if (!test_bit(slab_index(p, s, addr), map))
4290 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4291}
4292
4293static int list_locations(struct kmem_cache *s, char *buf,
4294 enum track_item alloc)
4295{
e374d483 4296 int len = 0;
88a420e4 4297 unsigned long i;
68dff6a9 4298 struct loc_track t = { 0, 0, NULL };
88a420e4 4299 int node;
bbd7d57b
ED
4300 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4301 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4302 struct kmem_cache_node *n;
88a420e4 4303
bbd7d57b
ED
4304 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4305 GFP_TEMPORARY)) {
4306 kfree(map);
68dff6a9 4307 return sprintf(buf, "Out of memory\n");
bbd7d57b 4308 }
88a420e4
CL
4309 /* Push back cpu slabs */
4310 flush_all(s);
4311
fa45dc25 4312 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4313 unsigned long flags;
4314 struct page *page;
4315
9e86943b 4316 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4317 continue;
4318
4319 spin_lock_irqsave(&n->list_lock, flags);
4320 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4321 process_slab(&t, s, page, alloc, map);
88a420e4 4322 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4323 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4324 spin_unlock_irqrestore(&n->list_lock, flags);
4325 }
4326
4327 for (i = 0; i < t.count; i++) {
45edfa58 4328 struct location *l = &t.loc[i];
88a420e4 4329
9c246247 4330 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4331 break;
e374d483 4332 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4333
4334 if (l->addr)
62c70bce 4335 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4336 else
e374d483 4337 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4338
4339 if (l->sum_time != l->min_time) {
e374d483 4340 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4341 l->min_time,
4342 (long)div_u64(l->sum_time, l->count),
4343 l->max_time);
45edfa58 4344 } else
e374d483 4345 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4346 l->min_time);
4347
4348 if (l->min_pid != l->max_pid)
e374d483 4349 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4350 l->min_pid, l->max_pid);
4351 else
e374d483 4352 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4353 l->min_pid);
4354
174596a0
RR
4355 if (num_online_cpus() > 1 &&
4356 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4357 len < PAGE_SIZE - 60)
4358 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4359 " cpus=%*pbl",
4360 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4361
62bc62a8 4362 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4363 len < PAGE_SIZE - 60)
4364 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4365 " nodes=%*pbl",
4366 nodemask_pr_args(&l->nodes));
45edfa58 4367
e374d483 4368 len += sprintf(buf + len, "\n");
88a420e4
CL
4369 }
4370
4371 free_loc_track(&t);
bbd7d57b 4372 kfree(map);
88a420e4 4373 if (!t.count)
e374d483
HH
4374 len += sprintf(buf, "No data\n");
4375 return len;
88a420e4 4376}
ab4d5ed5 4377#endif
88a420e4 4378
a5a84755 4379#ifdef SLUB_RESILIENCY_TEST
c07b8183 4380static void __init resiliency_test(void)
a5a84755
CL
4381{
4382 u8 *p;
4383
95a05b42 4384 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4385
f9f58285
FF
4386 pr_err("SLUB resiliency testing\n");
4387 pr_err("-----------------------\n");
4388 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4389
4390 p = kzalloc(16, GFP_KERNEL);
4391 p[16] = 0x12;
f9f58285
FF
4392 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4393 p + 16);
a5a84755
CL
4394
4395 validate_slab_cache(kmalloc_caches[4]);
4396
4397 /* Hmmm... The next two are dangerous */
4398 p = kzalloc(32, GFP_KERNEL);
4399 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4400 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4401 p);
4402 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4403
4404 validate_slab_cache(kmalloc_caches[5]);
4405 p = kzalloc(64, GFP_KERNEL);
4406 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4407 *p = 0x56;
f9f58285
FF
4408 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4409 p);
4410 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4411 validate_slab_cache(kmalloc_caches[6]);
4412
f9f58285 4413 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4414 p = kzalloc(128, GFP_KERNEL);
4415 kfree(p);
4416 *p = 0x78;
f9f58285 4417 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a5a84755
CL
4418 validate_slab_cache(kmalloc_caches[7]);
4419
4420 p = kzalloc(256, GFP_KERNEL);
4421 kfree(p);
4422 p[50] = 0x9a;
f9f58285 4423 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
a5a84755
CL
4424 validate_slab_cache(kmalloc_caches[8]);
4425
4426 p = kzalloc(512, GFP_KERNEL);
4427 kfree(p);
4428 p[512] = 0xab;
f9f58285 4429 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a5a84755
CL
4430 validate_slab_cache(kmalloc_caches[9]);
4431}
4432#else
4433#ifdef CONFIG_SYSFS
4434static void resiliency_test(void) {};
4435#endif
4436#endif
4437
ab4d5ed5 4438#ifdef CONFIG_SYSFS
81819f0f 4439enum slab_stat_type {
205ab99d
CL
4440 SL_ALL, /* All slabs */
4441 SL_PARTIAL, /* Only partially allocated slabs */
4442 SL_CPU, /* Only slabs used for cpu caches */
4443 SL_OBJECTS, /* Determine allocated objects not slabs */
4444 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4445};
4446
205ab99d 4447#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4448#define SO_PARTIAL (1 << SL_PARTIAL)
4449#define SO_CPU (1 << SL_CPU)
4450#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4451#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4452
62e5c4b4
CG
4453static ssize_t show_slab_objects(struct kmem_cache *s,
4454 char *buf, unsigned long flags)
81819f0f
CL
4455{
4456 unsigned long total = 0;
81819f0f
CL
4457 int node;
4458 int x;
4459 unsigned long *nodes;
81819f0f 4460
e35e1a97 4461 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4462 if (!nodes)
4463 return -ENOMEM;
81819f0f 4464
205ab99d
CL
4465 if (flags & SO_CPU) {
4466 int cpu;
81819f0f 4467
205ab99d 4468 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4469 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4470 cpu);
ec3ab083 4471 int node;
49e22585 4472 struct page *page;
dfb4f096 4473
4db0c3c2 4474 page = READ_ONCE(c->page);
ec3ab083
CL
4475 if (!page)
4476 continue;
205ab99d 4477
ec3ab083
CL
4478 node = page_to_nid(page);
4479 if (flags & SO_TOTAL)
4480 x = page->objects;
4481 else if (flags & SO_OBJECTS)
4482 x = page->inuse;
4483 else
4484 x = 1;
49e22585 4485
ec3ab083
CL
4486 total += x;
4487 nodes[node] += x;
4488
4db0c3c2 4489 page = READ_ONCE(c->partial);
49e22585 4490 if (page) {
8afb1474
LZ
4491 node = page_to_nid(page);
4492 if (flags & SO_TOTAL)
4493 WARN_ON_ONCE(1);
4494 else if (flags & SO_OBJECTS)
4495 WARN_ON_ONCE(1);
4496 else
4497 x = page->pages;
bc6697d8
ED
4498 total += x;
4499 nodes[node] += x;
49e22585 4500 }
81819f0f
CL
4501 }
4502 }
4503
bfc8c901 4504 get_online_mems();
ab4d5ed5 4505#ifdef CONFIG_SLUB_DEBUG
205ab99d 4506 if (flags & SO_ALL) {
fa45dc25
CL
4507 struct kmem_cache_node *n;
4508
4509 for_each_kmem_cache_node(s, node, n) {
205ab99d 4510
d0e0ac97
CG
4511 if (flags & SO_TOTAL)
4512 x = atomic_long_read(&n->total_objects);
4513 else if (flags & SO_OBJECTS)
4514 x = atomic_long_read(&n->total_objects) -
4515 count_partial(n, count_free);
81819f0f 4516 else
205ab99d 4517 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4518 total += x;
4519 nodes[node] += x;
4520 }
4521
ab4d5ed5
CL
4522 } else
4523#endif
4524 if (flags & SO_PARTIAL) {
fa45dc25 4525 struct kmem_cache_node *n;
81819f0f 4526
fa45dc25 4527 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4528 if (flags & SO_TOTAL)
4529 x = count_partial(n, count_total);
4530 else if (flags & SO_OBJECTS)
4531 x = count_partial(n, count_inuse);
81819f0f 4532 else
205ab99d 4533 x = n->nr_partial;
81819f0f
CL
4534 total += x;
4535 nodes[node] += x;
4536 }
4537 }
81819f0f
CL
4538 x = sprintf(buf, "%lu", total);
4539#ifdef CONFIG_NUMA
fa45dc25 4540 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4541 if (nodes[node])
4542 x += sprintf(buf + x, " N%d=%lu",
4543 node, nodes[node]);
4544#endif
bfc8c901 4545 put_online_mems();
81819f0f
CL
4546 kfree(nodes);
4547 return x + sprintf(buf + x, "\n");
4548}
4549
ab4d5ed5 4550#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4551static int any_slab_objects(struct kmem_cache *s)
4552{
4553 int node;
fa45dc25 4554 struct kmem_cache_node *n;
81819f0f 4555
fa45dc25 4556 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4557 if (atomic_long_read(&n->total_objects))
81819f0f 4558 return 1;
fa45dc25 4559
81819f0f
CL
4560 return 0;
4561}
ab4d5ed5 4562#endif
81819f0f
CL
4563
4564#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4565#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4566
4567struct slab_attribute {
4568 struct attribute attr;
4569 ssize_t (*show)(struct kmem_cache *s, char *buf);
4570 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4571};
4572
4573#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4574 static struct slab_attribute _name##_attr = \
4575 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4576
4577#define SLAB_ATTR(_name) \
4578 static struct slab_attribute _name##_attr = \
ab067e99 4579 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4580
81819f0f
CL
4581static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4582{
4583 return sprintf(buf, "%d\n", s->size);
4584}
4585SLAB_ATTR_RO(slab_size);
4586
4587static ssize_t align_show(struct kmem_cache *s, char *buf)
4588{
4589 return sprintf(buf, "%d\n", s->align);
4590}
4591SLAB_ATTR_RO(align);
4592
4593static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4594{
3b0efdfa 4595 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4596}
4597SLAB_ATTR_RO(object_size);
4598
4599static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4600{
834f3d11 4601 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4602}
4603SLAB_ATTR_RO(objs_per_slab);
4604
06b285dc
CL
4605static ssize_t order_store(struct kmem_cache *s,
4606 const char *buf, size_t length)
4607{
0121c619
CL
4608 unsigned long order;
4609 int err;
4610
3dbb95f7 4611 err = kstrtoul(buf, 10, &order);
0121c619
CL
4612 if (err)
4613 return err;
06b285dc
CL
4614
4615 if (order > slub_max_order || order < slub_min_order)
4616 return -EINVAL;
4617
4618 calculate_sizes(s, order);
4619 return length;
4620}
4621
81819f0f
CL
4622static ssize_t order_show(struct kmem_cache *s, char *buf)
4623{
834f3d11 4624 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4625}
06b285dc 4626SLAB_ATTR(order);
81819f0f 4627
73d342b1
DR
4628static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4629{
4630 return sprintf(buf, "%lu\n", s->min_partial);
4631}
4632
4633static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4634 size_t length)
4635{
4636 unsigned long min;
4637 int err;
4638
3dbb95f7 4639 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4640 if (err)
4641 return err;
4642
c0bdb232 4643 set_min_partial(s, min);
73d342b1
DR
4644 return length;
4645}
4646SLAB_ATTR(min_partial);
4647
49e22585
CL
4648static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4649{
4650 return sprintf(buf, "%u\n", s->cpu_partial);
4651}
4652
4653static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4654 size_t length)
4655{
4656 unsigned long objects;
4657 int err;
4658
3dbb95f7 4659 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4660 if (err)
4661 return err;
345c905d 4662 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4663 return -EINVAL;
49e22585
CL
4664
4665 s->cpu_partial = objects;
4666 flush_all(s);
4667 return length;
4668}
4669SLAB_ATTR(cpu_partial);
4670
81819f0f
CL
4671static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4672{
62c70bce
JP
4673 if (!s->ctor)
4674 return 0;
4675 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4676}
4677SLAB_ATTR_RO(ctor);
4678
81819f0f
CL
4679static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4680{
4307c14f 4681 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
4682}
4683SLAB_ATTR_RO(aliases);
4684
81819f0f
CL
4685static ssize_t partial_show(struct kmem_cache *s, char *buf)
4686{
d9acf4b7 4687 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4688}
4689SLAB_ATTR_RO(partial);
4690
4691static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4692{
d9acf4b7 4693 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4694}
4695SLAB_ATTR_RO(cpu_slabs);
4696
4697static ssize_t objects_show(struct kmem_cache *s, char *buf)
4698{
205ab99d 4699 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4700}
4701SLAB_ATTR_RO(objects);
4702
205ab99d
CL
4703static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4704{
4705 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4706}
4707SLAB_ATTR_RO(objects_partial);
4708
49e22585
CL
4709static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4710{
4711 int objects = 0;
4712 int pages = 0;
4713 int cpu;
4714 int len;
4715
4716 for_each_online_cpu(cpu) {
4717 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4718
4719 if (page) {
4720 pages += page->pages;
4721 objects += page->pobjects;
4722 }
4723 }
4724
4725 len = sprintf(buf, "%d(%d)", objects, pages);
4726
4727#ifdef CONFIG_SMP
4728 for_each_online_cpu(cpu) {
4729 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4730
4731 if (page && len < PAGE_SIZE - 20)
4732 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4733 page->pobjects, page->pages);
4734 }
4735#endif
4736 return len + sprintf(buf + len, "\n");
4737}
4738SLAB_ATTR_RO(slabs_cpu_partial);
4739
a5a84755
CL
4740static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4741{
4742 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4743}
4744
4745static ssize_t reclaim_account_store(struct kmem_cache *s,
4746 const char *buf, size_t length)
4747{
4748 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4749 if (buf[0] == '1')
4750 s->flags |= SLAB_RECLAIM_ACCOUNT;
4751 return length;
4752}
4753SLAB_ATTR(reclaim_account);
4754
4755static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4756{
4757 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4758}
4759SLAB_ATTR_RO(hwcache_align);
4760
4761#ifdef CONFIG_ZONE_DMA
4762static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4763{
4764 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4765}
4766SLAB_ATTR_RO(cache_dma);
4767#endif
4768
4769static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4770{
4771 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4772}
4773SLAB_ATTR_RO(destroy_by_rcu);
4774
ab9a0f19
LJ
4775static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4776{
4777 return sprintf(buf, "%d\n", s->reserved);
4778}
4779SLAB_ATTR_RO(reserved);
4780
ab4d5ed5 4781#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4782static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4783{
4784 return show_slab_objects(s, buf, SO_ALL);
4785}
4786SLAB_ATTR_RO(slabs);
4787
205ab99d
CL
4788static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4789{
4790 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4791}
4792SLAB_ATTR_RO(total_objects);
4793
81819f0f
CL
4794static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4795{
becfda68 4796 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f
CL
4797}
4798
4799static ssize_t sanity_checks_store(struct kmem_cache *s,
4800 const char *buf, size_t length)
4801{
becfda68 4802 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
b789ef51
CL
4803 if (buf[0] == '1') {
4804 s->flags &= ~__CMPXCHG_DOUBLE;
becfda68 4805 s->flags |= SLAB_CONSISTENCY_CHECKS;
b789ef51 4806 }
81819f0f
CL
4807 return length;
4808}
4809SLAB_ATTR(sanity_checks);
4810
4811static ssize_t trace_show(struct kmem_cache *s, char *buf)
4812{
4813 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4814}
4815
4816static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4817 size_t length)
4818{
c9e16131
CL
4819 /*
4820 * Tracing a merged cache is going to give confusing results
4821 * as well as cause other issues like converting a mergeable
4822 * cache into an umergeable one.
4823 */
4824 if (s->refcount > 1)
4825 return -EINVAL;
4826
81819f0f 4827 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4828 if (buf[0] == '1') {
4829 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4830 s->flags |= SLAB_TRACE;
b789ef51 4831 }
81819f0f
CL
4832 return length;
4833}
4834SLAB_ATTR(trace);
4835
81819f0f
CL
4836static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4837{
4838 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4839}
4840
4841static ssize_t red_zone_store(struct kmem_cache *s,
4842 const char *buf, size_t length)
4843{
4844 if (any_slab_objects(s))
4845 return -EBUSY;
4846
4847 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4848 if (buf[0] == '1') {
4849 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4850 s->flags |= SLAB_RED_ZONE;
b789ef51 4851 }
06b285dc 4852 calculate_sizes(s, -1);
81819f0f
CL
4853 return length;
4854}
4855SLAB_ATTR(red_zone);
4856
4857static ssize_t poison_show(struct kmem_cache *s, char *buf)
4858{
4859 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4860}
4861
4862static ssize_t poison_store(struct kmem_cache *s,
4863 const char *buf, size_t length)
4864{
4865 if (any_slab_objects(s))
4866 return -EBUSY;
4867
4868 s->flags &= ~SLAB_POISON;
b789ef51
CL
4869 if (buf[0] == '1') {
4870 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4871 s->flags |= SLAB_POISON;
b789ef51 4872 }
06b285dc 4873 calculate_sizes(s, -1);
81819f0f
CL
4874 return length;
4875}
4876SLAB_ATTR(poison);
4877
4878static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4879{
4880 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4881}
4882
4883static ssize_t store_user_store(struct kmem_cache *s,
4884 const char *buf, size_t length)
4885{
4886 if (any_slab_objects(s))
4887 return -EBUSY;
4888
4889 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4890 if (buf[0] == '1') {
4891 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4892 s->flags |= SLAB_STORE_USER;
b789ef51 4893 }
06b285dc 4894 calculate_sizes(s, -1);
81819f0f
CL
4895 return length;
4896}
4897SLAB_ATTR(store_user);
4898
53e15af0
CL
4899static ssize_t validate_show(struct kmem_cache *s, char *buf)
4900{
4901 return 0;
4902}
4903
4904static ssize_t validate_store(struct kmem_cache *s,
4905 const char *buf, size_t length)
4906{
434e245d
CL
4907 int ret = -EINVAL;
4908
4909 if (buf[0] == '1') {
4910 ret = validate_slab_cache(s);
4911 if (ret >= 0)
4912 ret = length;
4913 }
4914 return ret;
53e15af0
CL
4915}
4916SLAB_ATTR(validate);
a5a84755
CL
4917
4918static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4919{
4920 if (!(s->flags & SLAB_STORE_USER))
4921 return -ENOSYS;
4922 return list_locations(s, buf, TRACK_ALLOC);
4923}
4924SLAB_ATTR_RO(alloc_calls);
4925
4926static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4927{
4928 if (!(s->flags & SLAB_STORE_USER))
4929 return -ENOSYS;
4930 return list_locations(s, buf, TRACK_FREE);
4931}
4932SLAB_ATTR_RO(free_calls);
4933#endif /* CONFIG_SLUB_DEBUG */
4934
4935#ifdef CONFIG_FAILSLAB
4936static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4937{
4938 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4939}
4940
4941static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4942 size_t length)
4943{
c9e16131
CL
4944 if (s->refcount > 1)
4945 return -EINVAL;
4946
a5a84755
CL
4947 s->flags &= ~SLAB_FAILSLAB;
4948 if (buf[0] == '1')
4949 s->flags |= SLAB_FAILSLAB;
4950 return length;
4951}
4952SLAB_ATTR(failslab);
ab4d5ed5 4953#endif
53e15af0 4954
2086d26a
CL
4955static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4956{
4957 return 0;
4958}
4959
4960static ssize_t shrink_store(struct kmem_cache *s,
4961 const char *buf, size_t length)
4962{
832f37f5
VD
4963 if (buf[0] == '1')
4964 kmem_cache_shrink(s);
4965 else
2086d26a
CL
4966 return -EINVAL;
4967 return length;
4968}
4969SLAB_ATTR(shrink);
4970
81819f0f 4971#ifdef CONFIG_NUMA
9824601e 4972static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4973{
9824601e 4974 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4975}
4976
9824601e 4977static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4978 const char *buf, size_t length)
4979{
0121c619
CL
4980 unsigned long ratio;
4981 int err;
4982
3dbb95f7 4983 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
4984 if (err)
4985 return err;
4986
e2cb96b7 4987 if (ratio <= 100)
0121c619 4988 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4989
81819f0f
CL
4990 return length;
4991}
9824601e 4992SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4993#endif
4994
8ff12cfc 4995#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4996static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4997{
4998 unsigned long sum = 0;
4999 int cpu;
5000 int len;
5001 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5002
5003 if (!data)
5004 return -ENOMEM;
5005
5006 for_each_online_cpu(cpu) {
9dfc6e68 5007 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5008
5009 data[cpu] = x;
5010 sum += x;
5011 }
5012
5013 len = sprintf(buf, "%lu", sum);
5014
50ef37b9 5015#ifdef CONFIG_SMP
8ff12cfc
CL
5016 for_each_online_cpu(cpu) {
5017 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5018 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5019 }
50ef37b9 5020#endif
8ff12cfc
CL
5021 kfree(data);
5022 return len + sprintf(buf + len, "\n");
5023}
5024
78eb00cc
DR
5025static void clear_stat(struct kmem_cache *s, enum stat_item si)
5026{
5027 int cpu;
5028
5029 for_each_online_cpu(cpu)
9dfc6e68 5030 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5031}
5032
8ff12cfc
CL
5033#define STAT_ATTR(si, text) \
5034static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5035{ \
5036 return show_stat(s, buf, si); \
5037} \
78eb00cc
DR
5038static ssize_t text##_store(struct kmem_cache *s, \
5039 const char *buf, size_t length) \
5040{ \
5041 if (buf[0] != '0') \
5042 return -EINVAL; \
5043 clear_stat(s, si); \
5044 return length; \
5045} \
5046SLAB_ATTR(text); \
8ff12cfc
CL
5047
5048STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5049STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5050STAT_ATTR(FREE_FASTPATH, free_fastpath);
5051STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5052STAT_ATTR(FREE_FROZEN, free_frozen);
5053STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5054STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5055STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5056STAT_ATTR(ALLOC_SLAB, alloc_slab);
5057STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5058STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5059STAT_ATTR(FREE_SLAB, free_slab);
5060STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5061STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5062STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5063STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5064STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5065STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5066STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5067STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5068STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5069STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5070STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5071STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5072STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5073STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
5074#endif
5075
06428780 5076static struct attribute *slab_attrs[] = {
81819f0f
CL
5077 &slab_size_attr.attr,
5078 &object_size_attr.attr,
5079 &objs_per_slab_attr.attr,
5080 &order_attr.attr,
73d342b1 5081 &min_partial_attr.attr,
49e22585 5082 &cpu_partial_attr.attr,
81819f0f 5083 &objects_attr.attr,
205ab99d 5084 &objects_partial_attr.attr,
81819f0f
CL
5085 &partial_attr.attr,
5086 &cpu_slabs_attr.attr,
5087 &ctor_attr.attr,
81819f0f
CL
5088 &aliases_attr.attr,
5089 &align_attr.attr,
81819f0f
CL
5090 &hwcache_align_attr.attr,
5091 &reclaim_account_attr.attr,
5092 &destroy_by_rcu_attr.attr,
a5a84755 5093 &shrink_attr.attr,
ab9a0f19 5094 &reserved_attr.attr,
49e22585 5095 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5096#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5097 &total_objects_attr.attr,
5098 &slabs_attr.attr,
5099 &sanity_checks_attr.attr,
5100 &trace_attr.attr,
81819f0f
CL
5101 &red_zone_attr.attr,
5102 &poison_attr.attr,
5103 &store_user_attr.attr,
53e15af0 5104 &validate_attr.attr,
88a420e4
CL
5105 &alloc_calls_attr.attr,
5106 &free_calls_attr.attr,
ab4d5ed5 5107#endif
81819f0f
CL
5108#ifdef CONFIG_ZONE_DMA
5109 &cache_dma_attr.attr,
5110#endif
5111#ifdef CONFIG_NUMA
9824601e 5112 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5113#endif
5114#ifdef CONFIG_SLUB_STATS
5115 &alloc_fastpath_attr.attr,
5116 &alloc_slowpath_attr.attr,
5117 &free_fastpath_attr.attr,
5118 &free_slowpath_attr.attr,
5119 &free_frozen_attr.attr,
5120 &free_add_partial_attr.attr,
5121 &free_remove_partial_attr.attr,
5122 &alloc_from_partial_attr.attr,
5123 &alloc_slab_attr.attr,
5124 &alloc_refill_attr.attr,
e36a2652 5125 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5126 &free_slab_attr.attr,
5127 &cpuslab_flush_attr.attr,
5128 &deactivate_full_attr.attr,
5129 &deactivate_empty_attr.attr,
5130 &deactivate_to_head_attr.attr,
5131 &deactivate_to_tail_attr.attr,
5132 &deactivate_remote_frees_attr.attr,
03e404af 5133 &deactivate_bypass_attr.attr,
65c3376a 5134 &order_fallback_attr.attr,
b789ef51
CL
5135 &cmpxchg_double_fail_attr.attr,
5136 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5137 &cpu_partial_alloc_attr.attr,
5138 &cpu_partial_free_attr.attr,
8028dcea
AS
5139 &cpu_partial_node_attr.attr,
5140 &cpu_partial_drain_attr.attr,
81819f0f 5141#endif
4c13dd3b
DM
5142#ifdef CONFIG_FAILSLAB
5143 &failslab_attr.attr,
5144#endif
5145
81819f0f
CL
5146 NULL
5147};
5148
5149static struct attribute_group slab_attr_group = {
5150 .attrs = slab_attrs,
5151};
5152
5153static ssize_t slab_attr_show(struct kobject *kobj,
5154 struct attribute *attr,
5155 char *buf)
5156{
5157 struct slab_attribute *attribute;
5158 struct kmem_cache *s;
5159 int err;
5160
5161 attribute = to_slab_attr(attr);
5162 s = to_slab(kobj);
5163
5164 if (!attribute->show)
5165 return -EIO;
5166
5167 err = attribute->show(s, buf);
5168
5169 return err;
5170}
5171
5172static ssize_t slab_attr_store(struct kobject *kobj,
5173 struct attribute *attr,
5174 const char *buf, size_t len)
5175{
5176 struct slab_attribute *attribute;
5177 struct kmem_cache *s;
5178 int err;
5179
5180 attribute = to_slab_attr(attr);
5181 s = to_slab(kobj);
5182
5183 if (!attribute->store)
5184 return -EIO;
5185
5186 err = attribute->store(s, buf, len);
127424c8 5187#ifdef CONFIG_MEMCG
107dab5c 5188 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5189 struct kmem_cache *c;
81819f0f 5190
107dab5c
GC
5191 mutex_lock(&slab_mutex);
5192 if (s->max_attr_size < len)
5193 s->max_attr_size = len;
5194
ebe945c2
GC
5195 /*
5196 * This is a best effort propagation, so this function's return
5197 * value will be determined by the parent cache only. This is
5198 * basically because not all attributes will have a well
5199 * defined semantics for rollbacks - most of the actions will
5200 * have permanent effects.
5201 *
5202 * Returning the error value of any of the children that fail
5203 * is not 100 % defined, in the sense that users seeing the
5204 * error code won't be able to know anything about the state of
5205 * the cache.
5206 *
5207 * Only returning the error code for the parent cache at least
5208 * has well defined semantics. The cache being written to
5209 * directly either failed or succeeded, in which case we loop
5210 * through the descendants with best-effort propagation.
5211 */
426589f5
VD
5212 for_each_memcg_cache(c, s)
5213 attribute->store(c, buf, len);
107dab5c
GC
5214 mutex_unlock(&slab_mutex);
5215 }
5216#endif
81819f0f
CL
5217 return err;
5218}
5219
107dab5c
GC
5220static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5221{
127424c8 5222#ifdef CONFIG_MEMCG
107dab5c
GC
5223 int i;
5224 char *buffer = NULL;
93030d83 5225 struct kmem_cache *root_cache;
107dab5c 5226
93030d83 5227 if (is_root_cache(s))
107dab5c
GC
5228 return;
5229
f7ce3190 5230 root_cache = s->memcg_params.root_cache;
93030d83 5231
107dab5c
GC
5232 /*
5233 * This mean this cache had no attribute written. Therefore, no point
5234 * in copying default values around
5235 */
93030d83 5236 if (!root_cache->max_attr_size)
107dab5c
GC
5237 return;
5238
5239 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5240 char mbuf[64];
5241 char *buf;
5242 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5243
5244 if (!attr || !attr->store || !attr->show)
5245 continue;
5246
5247 /*
5248 * It is really bad that we have to allocate here, so we will
5249 * do it only as a fallback. If we actually allocate, though,
5250 * we can just use the allocated buffer until the end.
5251 *
5252 * Most of the slub attributes will tend to be very small in
5253 * size, but sysfs allows buffers up to a page, so they can
5254 * theoretically happen.
5255 */
5256 if (buffer)
5257 buf = buffer;
93030d83 5258 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5259 buf = mbuf;
5260 else {
5261 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5262 if (WARN_ON(!buffer))
5263 continue;
5264 buf = buffer;
5265 }
5266
93030d83 5267 attr->show(root_cache, buf);
107dab5c
GC
5268 attr->store(s, buf, strlen(buf));
5269 }
5270
5271 if (buffer)
5272 free_page((unsigned long)buffer);
5273#endif
5274}
5275
41a21285
CL
5276static void kmem_cache_release(struct kobject *k)
5277{
5278 slab_kmem_cache_release(to_slab(k));
5279}
5280
52cf25d0 5281static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5282 .show = slab_attr_show,
5283 .store = slab_attr_store,
5284};
5285
5286static struct kobj_type slab_ktype = {
5287 .sysfs_ops = &slab_sysfs_ops,
41a21285 5288 .release = kmem_cache_release,
81819f0f
CL
5289};
5290
5291static int uevent_filter(struct kset *kset, struct kobject *kobj)
5292{
5293 struct kobj_type *ktype = get_ktype(kobj);
5294
5295 if (ktype == &slab_ktype)
5296 return 1;
5297 return 0;
5298}
5299
9cd43611 5300static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5301 .filter = uevent_filter,
5302};
5303
27c3a314 5304static struct kset *slab_kset;
81819f0f 5305
9a41707b
VD
5306static inline struct kset *cache_kset(struct kmem_cache *s)
5307{
127424c8 5308#ifdef CONFIG_MEMCG
9a41707b 5309 if (!is_root_cache(s))
f7ce3190 5310 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5311#endif
5312 return slab_kset;
5313}
5314
81819f0f
CL
5315#define ID_STR_LENGTH 64
5316
5317/* Create a unique string id for a slab cache:
6446faa2
CL
5318 *
5319 * Format :[flags-]size
81819f0f
CL
5320 */
5321static char *create_unique_id(struct kmem_cache *s)
5322{
5323 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5324 char *p = name;
5325
5326 BUG_ON(!name);
5327
5328 *p++ = ':';
5329 /*
5330 * First flags affecting slabcache operations. We will only
5331 * get here for aliasable slabs so we do not need to support
5332 * too many flags. The flags here must cover all flags that
5333 * are matched during merging to guarantee that the id is
5334 * unique.
5335 */
5336 if (s->flags & SLAB_CACHE_DMA)
5337 *p++ = 'd';
5338 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5339 *p++ = 'a';
becfda68 5340 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5341 *p++ = 'F';
5a896d9e
VN
5342 if (!(s->flags & SLAB_NOTRACK))
5343 *p++ = 't';
230e9fc2
VD
5344 if (s->flags & SLAB_ACCOUNT)
5345 *p++ = 'A';
81819f0f
CL
5346 if (p != name + 1)
5347 *p++ = '-';
5348 p += sprintf(p, "%07d", s->size);
2633d7a0 5349
81819f0f
CL
5350 BUG_ON(p > name + ID_STR_LENGTH - 1);
5351 return name;
5352}
5353
5354static int sysfs_slab_add(struct kmem_cache *s)
5355{
5356 int err;
5357 const char *name;
45530c44 5358 int unmergeable = slab_unmergeable(s);
81819f0f 5359
81819f0f
CL
5360 if (unmergeable) {
5361 /*
5362 * Slabcache can never be merged so we can use the name proper.
5363 * This is typically the case for debug situations. In that
5364 * case we can catch duplicate names easily.
5365 */
27c3a314 5366 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5367 name = s->name;
5368 } else {
5369 /*
5370 * Create a unique name for the slab as a target
5371 * for the symlinks.
5372 */
5373 name = create_unique_id(s);
5374 }
5375
9a41707b 5376 s->kobj.kset = cache_kset(s);
26e4f205 5377 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731 5378 if (err)
80da026a 5379 goto out;
81819f0f
CL
5380
5381 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5382 if (err)
5383 goto out_del_kobj;
9a41707b 5384
127424c8 5385#ifdef CONFIG_MEMCG
9a41707b
VD
5386 if (is_root_cache(s)) {
5387 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5388 if (!s->memcg_kset) {
54b6a731
DJ
5389 err = -ENOMEM;
5390 goto out_del_kobj;
9a41707b
VD
5391 }
5392 }
5393#endif
5394
81819f0f
CL
5395 kobject_uevent(&s->kobj, KOBJ_ADD);
5396 if (!unmergeable) {
5397 /* Setup first alias */
5398 sysfs_slab_alias(s, s->name);
81819f0f 5399 }
54b6a731
DJ
5400out:
5401 if (!unmergeable)
5402 kfree(name);
5403 return err;
5404out_del_kobj:
5405 kobject_del(&s->kobj);
54b6a731 5406 goto out;
81819f0f
CL
5407}
5408
41a21285 5409void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5410{
97d06609 5411 if (slab_state < FULL)
2bce6485
CL
5412 /*
5413 * Sysfs has not been setup yet so no need to remove the
5414 * cache from sysfs.
5415 */
5416 return;
5417
127424c8 5418#ifdef CONFIG_MEMCG
9a41707b
VD
5419 kset_unregister(s->memcg_kset);
5420#endif
81819f0f
CL
5421 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5422 kobject_del(&s->kobj);
151c602f 5423 kobject_put(&s->kobj);
81819f0f
CL
5424}
5425
5426/*
5427 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5428 * available lest we lose that information.
81819f0f
CL
5429 */
5430struct saved_alias {
5431 struct kmem_cache *s;
5432 const char *name;
5433 struct saved_alias *next;
5434};
5435
5af328a5 5436static struct saved_alias *alias_list;
81819f0f
CL
5437
5438static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5439{
5440 struct saved_alias *al;
5441
97d06609 5442 if (slab_state == FULL) {
81819f0f
CL
5443 /*
5444 * If we have a leftover link then remove it.
5445 */
27c3a314
GKH
5446 sysfs_remove_link(&slab_kset->kobj, name);
5447 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5448 }
5449
5450 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5451 if (!al)
5452 return -ENOMEM;
5453
5454 al->s = s;
5455 al->name = name;
5456 al->next = alias_list;
5457 alias_list = al;
5458 return 0;
5459}
5460
5461static int __init slab_sysfs_init(void)
5462{
5b95a4ac 5463 struct kmem_cache *s;
81819f0f
CL
5464 int err;
5465
18004c5d 5466 mutex_lock(&slab_mutex);
2bce6485 5467
0ff21e46 5468 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5469 if (!slab_kset) {
18004c5d 5470 mutex_unlock(&slab_mutex);
f9f58285 5471 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5472 return -ENOSYS;
5473 }
5474
97d06609 5475 slab_state = FULL;
26a7bd03 5476
5b95a4ac 5477 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5478 err = sysfs_slab_add(s);
5d540fb7 5479 if (err)
f9f58285
FF
5480 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5481 s->name);
26a7bd03 5482 }
81819f0f
CL
5483
5484 while (alias_list) {
5485 struct saved_alias *al = alias_list;
5486
5487 alias_list = alias_list->next;
5488 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5489 if (err)
f9f58285
FF
5490 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5491 al->name);
81819f0f
CL
5492 kfree(al);
5493 }
5494
18004c5d 5495 mutex_unlock(&slab_mutex);
81819f0f
CL
5496 resiliency_test();
5497 return 0;
5498}
5499
5500__initcall(slab_sysfs_init);
ab4d5ed5 5501#endif /* CONFIG_SYSFS */
57ed3eda
PE
5502
5503/*
5504 * The /proc/slabinfo ABI
5505 */
158a9624 5506#ifdef CONFIG_SLABINFO
0d7561c6 5507void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5508{
57ed3eda 5509 unsigned long nr_slabs = 0;
205ab99d
CL
5510 unsigned long nr_objs = 0;
5511 unsigned long nr_free = 0;
57ed3eda 5512 int node;
fa45dc25 5513 struct kmem_cache_node *n;
57ed3eda 5514
fa45dc25 5515 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5516 nr_slabs += node_nr_slabs(n);
5517 nr_objs += node_nr_objs(n);
205ab99d 5518 nr_free += count_partial(n, count_free);
57ed3eda
PE
5519 }
5520
0d7561c6
GC
5521 sinfo->active_objs = nr_objs - nr_free;
5522 sinfo->num_objs = nr_objs;
5523 sinfo->active_slabs = nr_slabs;
5524 sinfo->num_slabs = nr_slabs;
5525 sinfo->objects_per_slab = oo_objects(s->oo);
5526 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5527}
5528
0d7561c6 5529void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5530{
7b3c3a50
AD
5531}
5532
b7454ad3
GC
5533ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5534 size_t count, loff_t *ppos)
7b3c3a50 5535{
b7454ad3 5536 return -EIO;
7b3c3a50 5537}
158a9624 5538#endif /* CONFIG_SLABINFO */