slub: mark the dangling ifdef #else of CONFIG_SLUB_DEBUG
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
3ac38faa 21#include <linux/notifier.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
5a896d9e 24#include <linux/kmemcheck.h>
81819f0f
CL
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
3ac7fe5a 29#include <linux/debugobjects.h>
81819f0f 30#include <linux/kallsyms.h>
b9049e23 31#include <linux/memory.h>
f8bd2258 32#include <linux/math64.h>
773ff60e 33#include <linux/fault-inject.h>
bfa71457 34#include <linux/stacktrace.h>
4de900b4 35#include <linux/prefetch.h>
2633d7a0 36#include <linux/memcontrol.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
65 *
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
71 *
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
81819f0f
CL
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
81 *
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
84 *
672bba3a
CL
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 87 * freed then the slab will show up again on the partial lists.
672bba3a
CL
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
81819f0f
CL
90 *
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
94 *
95 * Overloading of page flags that are otherwise used for LRU management.
96 *
4b6f0750
CL
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
dfb4f096 109 * freelist that allows lockless access to
894b8788
CL
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
81819f0f
CL
112 *
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
894b8788 115 * the fast path and disables lockless freelists.
81819f0f
CL
116 */
117
af537b0a
CL
118static inline int kmem_cache_debug(struct kmem_cache *s)
119{
5577bd8a 120#ifdef CONFIG_SLUB_DEBUG
af537b0a 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 122#else
af537b0a 123 return 0;
5577bd8a 124#endif
af537b0a 125}
5577bd8a 126
345c905d
JK
127static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
128{
129#ifdef CONFIG_SLUB_CPU_PARTIAL
130 return !kmem_cache_debug(s);
131#else
132 return false;
133#endif
134}
135
81819f0f
CL
136/*
137 * Issues still to be resolved:
138 *
81819f0f
CL
139 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
140 *
81819f0f
CL
141 * - Variable sizing of the per node arrays
142 */
143
144/* Enable to test recovery from slab corruption on boot */
145#undef SLUB_RESILIENCY_TEST
146
b789ef51
CL
147/* Enable to log cmpxchg failures */
148#undef SLUB_DEBUG_CMPXCHG
149
2086d26a
CL
150/*
151 * Mininum number of partial slabs. These will be left on the partial
152 * lists even if they are empty. kmem_cache_shrink may reclaim them.
153 */
76be8950 154#define MIN_PARTIAL 5
e95eed57 155
2086d26a
CL
156/*
157 * Maximum number of desirable partial slabs.
158 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 159 * sort the partial list by the number of objects in use.
2086d26a
CL
160 */
161#define MAX_PARTIAL 10
162
81819f0f
CL
163#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
164 SLAB_POISON | SLAB_STORE_USER)
672bba3a 165
fa5ec8a1 166/*
3de47213
DR
167 * Debugging flags that require metadata to be stored in the slab. These get
168 * disabled when slub_debug=O is used and a cache's min order increases with
169 * metadata.
fa5ec8a1 170 */
3de47213 171#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 172
210b5c06
CG
173#define OO_SHIFT 16
174#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 175#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 176
81819f0f 177/* Internal SLUB flags */
f90ec390 178#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 179#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 180
81819f0f
CL
181#ifdef CONFIG_SMP
182static struct notifier_block slab_notifier;
183#endif
184
02cbc874
CL
185/*
186 * Tracking user of a slab.
187 */
d6543e39 188#define TRACK_ADDRS_COUNT 16
02cbc874 189struct track {
ce71e27c 190 unsigned long addr; /* Called from address */
d6543e39
BG
191#ifdef CONFIG_STACKTRACE
192 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
193#endif
02cbc874
CL
194 int cpu; /* Was running on cpu */
195 int pid; /* Pid context */
196 unsigned long when; /* When did the operation occur */
197};
198
199enum track_item { TRACK_ALLOC, TRACK_FREE };
200
ab4d5ed5 201#ifdef CONFIG_SYSFS
81819f0f
CL
202static int sysfs_slab_add(struct kmem_cache *);
203static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 204static void memcg_propagate_slab_attrs(struct kmem_cache *s);
81819f0f 205#else
0c710013
CL
206static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
207static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
208 { return 0; }
107dab5c 209static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
81819f0f
CL
210#endif
211
4fdccdfb 212static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
213{
214#ifdef CONFIG_SLUB_STATS
88da03a6
CL
215 /*
216 * The rmw is racy on a preemptible kernel but this is acceptable, so
217 * avoid this_cpu_add()'s irq-disable overhead.
218 */
219 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
220#endif
221}
222
81819f0f
CL
223/********************************************************************
224 * Core slab cache functions
225 *******************************************************************/
226
6446faa2 227/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
228static inline int check_valid_pointer(struct kmem_cache *s,
229 struct page *page, const void *object)
230{
231 void *base;
232
a973e9dd 233 if (!object)
02cbc874
CL
234 return 1;
235
a973e9dd 236 base = page_address(page);
39b26464 237 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
238 (object - base) % s->size) {
239 return 0;
240 }
241
242 return 1;
243}
244
7656c72b
CL
245static inline void *get_freepointer(struct kmem_cache *s, void *object)
246{
247 return *(void **)(object + s->offset);
248}
249
0ad9500e
ED
250static void prefetch_freepointer(const struct kmem_cache *s, void *object)
251{
252 prefetch(object + s->offset);
253}
254
1393d9a1
CL
255static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
256{
257 void *p;
258
259#ifdef CONFIG_DEBUG_PAGEALLOC
260 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
261#else
262 p = get_freepointer(s, object);
263#endif
264 return p;
265}
266
7656c72b
CL
267static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
268{
269 *(void **)(object + s->offset) = fp;
270}
271
272/* Loop over all objects in a slab */
224a88be
CL
273#define for_each_object(__p, __s, __addr, __objects) \
274 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
275 __p += (__s)->size)
276
54266640
WY
277#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
278 for (__p = (__addr), __idx = 1; __idx <= __objects;\
279 __p += (__s)->size, __idx++)
280
7656c72b
CL
281/* Determine object index from a given position */
282static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
283{
284 return (p - addr) / s->size;
285}
286
d71f606f
MK
287static inline size_t slab_ksize(const struct kmem_cache *s)
288{
289#ifdef CONFIG_SLUB_DEBUG
290 /*
291 * Debugging requires use of the padding between object
292 * and whatever may come after it.
293 */
294 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
3b0efdfa 295 return s->object_size;
d71f606f
MK
296
297#endif
298 /*
299 * If we have the need to store the freelist pointer
300 * back there or track user information then we can
301 * only use the space before that information.
302 */
303 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
304 return s->inuse;
305 /*
306 * Else we can use all the padding etc for the allocation
307 */
308 return s->size;
309}
310
ab9a0f19
LJ
311static inline int order_objects(int order, unsigned long size, int reserved)
312{
313 return ((PAGE_SIZE << order) - reserved) / size;
314}
315
834f3d11 316static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 317 unsigned long size, int reserved)
834f3d11
CL
318{
319 struct kmem_cache_order_objects x = {
ab9a0f19 320 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
321 };
322
323 return x;
324}
325
326static inline int oo_order(struct kmem_cache_order_objects x)
327{
210b5c06 328 return x.x >> OO_SHIFT;
834f3d11
CL
329}
330
331static inline int oo_objects(struct kmem_cache_order_objects x)
332{
210b5c06 333 return x.x & OO_MASK;
834f3d11
CL
334}
335
881db7fb
CL
336/*
337 * Per slab locking using the pagelock
338 */
339static __always_inline void slab_lock(struct page *page)
340{
341 bit_spin_lock(PG_locked, &page->flags);
342}
343
344static __always_inline void slab_unlock(struct page *page)
345{
346 __bit_spin_unlock(PG_locked, &page->flags);
347}
348
a0320865
DH
349static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
350{
351 struct page tmp;
352 tmp.counters = counters_new;
353 /*
354 * page->counters can cover frozen/inuse/objects as well
355 * as page->_count. If we assign to ->counters directly
356 * we run the risk of losing updates to page->_count, so
357 * be careful and only assign to the fields we need.
358 */
359 page->frozen = tmp.frozen;
360 page->inuse = tmp.inuse;
361 page->objects = tmp.objects;
362}
363
1d07171c
CL
364/* Interrupts must be disabled (for the fallback code to work right) */
365static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
366 void *freelist_old, unsigned long counters_old,
367 void *freelist_new, unsigned long counters_new,
368 const char *n)
369{
370 VM_BUG_ON(!irqs_disabled());
2565409f
HC
371#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
372 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 373 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 374 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
375 freelist_old, counters_old,
376 freelist_new, counters_new))
6f6528a1 377 return true;
1d07171c
CL
378 } else
379#endif
380 {
381 slab_lock(page);
d0e0ac97
CG
382 if (page->freelist == freelist_old &&
383 page->counters == counters_old) {
1d07171c 384 page->freelist = freelist_new;
a0320865 385 set_page_slub_counters(page, counters_new);
1d07171c 386 slab_unlock(page);
6f6528a1 387 return true;
1d07171c
CL
388 }
389 slab_unlock(page);
390 }
391
392 cpu_relax();
393 stat(s, CMPXCHG_DOUBLE_FAIL);
394
395#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 396 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
397#endif
398
6f6528a1 399 return false;
1d07171c
CL
400}
401
b789ef51
CL
402static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
403 void *freelist_old, unsigned long counters_old,
404 void *freelist_new, unsigned long counters_new,
405 const char *n)
406{
2565409f
HC
407#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
408 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 409 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 410 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
411 freelist_old, counters_old,
412 freelist_new, counters_new))
6f6528a1 413 return true;
b789ef51
CL
414 } else
415#endif
416 {
1d07171c
CL
417 unsigned long flags;
418
419 local_irq_save(flags);
881db7fb 420 slab_lock(page);
d0e0ac97
CG
421 if (page->freelist == freelist_old &&
422 page->counters == counters_old) {
b789ef51 423 page->freelist = freelist_new;
a0320865 424 set_page_slub_counters(page, counters_new);
881db7fb 425 slab_unlock(page);
1d07171c 426 local_irq_restore(flags);
6f6528a1 427 return true;
b789ef51 428 }
881db7fb 429 slab_unlock(page);
1d07171c 430 local_irq_restore(flags);
b789ef51
CL
431 }
432
433 cpu_relax();
434 stat(s, CMPXCHG_DOUBLE_FAIL);
435
436#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 437 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
438#endif
439
6f6528a1 440 return false;
b789ef51
CL
441}
442
41ecc55b 443#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
444/*
445 * Determine a map of object in use on a page.
446 *
881db7fb 447 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
448 * not vanish from under us.
449 */
450static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
451{
452 void *p;
453 void *addr = page_address(page);
454
455 for (p = page->freelist; p; p = get_freepointer(s, p))
456 set_bit(slab_index(p, s, addr), map);
457}
458
41ecc55b
CL
459/*
460 * Debug settings:
461 */
89d3c87e 462#if defined(CONFIG_SLUB_DEBUG_ON)
f0630fff 463static int slub_debug = DEBUG_DEFAULT_FLAGS;
89d3c87e
AR
464#elif defined(CONFIG_KASAN)
465static int slub_debug = SLAB_STORE_USER;
f0630fff 466#else
41ecc55b 467static int slub_debug;
f0630fff 468#endif
41ecc55b
CL
469
470static char *slub_debug_slabs;
fa5ec8a1 471static int disable_higher_order_debug;
41ecc55b 472
a79316c6
AR
473/*
474 * slub is about to manipulate internal object metadata. This memory lies
475 * outside the range of the allocated object, so accessing it would normally
476 * be reported by kasan as a bounds error. metadata_access_enable() is used
477 * to tell kasan that these accesses are OK.
478 */
479static inline void metadata_access_enable(void)
480{
481 kasan_disable_current();
482}
483
484static inline void metadata_access_disable(void)
485{
486 kasan_enable_current();
487}
488
81819f0f
CL
489/*
490 * Object debugging
491 */
492static void print_section(char *text, u8 *addr, unsigned int length)
493{
a79316c6 494 metadata_access_enable();
ffc79d28
SAS
495 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
496 length, 1);
a79316c6 497 metadata_access_disable();
81819f0f
CL
498}
499
81819f0f
CL
500static struct track *get_track(struct kmem_cache *s, void *object,
501 enum track_item alloc)
502{
503 struct track *p;
504
505 if (s->offset)
506 p = object + s->offset + sizeof(void *);
507 else
508 p = object + s->inuse;
509
510 return p + alloc;
511}
512
513static void set_track(struct kmem_cache *s, void *object,
ce71e27c 514 enum track_item alloc, unsigned long addr)
81819f0f 515{
1a00df4a 516 struct track *p = get_track(s, object, alloc);
81819f0f 517
81819f0f 518 if (addr) {
d6543e39
BG
519#ifdef CONFIG_STACKTRACE
520 struct stack_trace trace;
521 int i;
522
523 trace.nr_entries = 0;
524 trace.max_entries = TRACK_ADDRS_COUNT;
525 trace.entries = p->addrs;
526 trace.skip = 3;
a79316c6 527 metadata_access_enable();
d6543e39 528 save_stack_trace(&trace);
a79316c6 529 metadata_access_disable();
d6543e39
BG
530
531 /* See rant in lockdep.c */
532 if (trace.nr_entries != 0 &&
533 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
534 trace.nr_entries--;
535
536 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
537 p->addrs[i] = 0;
538#endif
81819f0f
CL
539 p->addr = addr;
540 p->cpu = smp_processor_id();
88e4ccf2 541 p->pid = current->pid;
81819f0f
CL
542 p->when = jiffies;
543 } else
544 memset(p, 0, sizeof(struct track));
545}
546
81819f0f
CL
547static void init_tracking(struct kmem_cache *s, void *object)
548{
24922684
CL
549 if (!(s->flags & SLAB_STORE_USER))
550 return;
551
ce71e27c
EGM
552 set_track(s, object, TRACK_FREE, 0UL);
553 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
554}
555
556static void print_track(const char *s, struct track *t)
557{
558 if (!t->addr)
559 return;
560
f9f58285
FF
561 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
562 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
563#ifdef CONFIG_STACKTRACE
564 {
565 int i;
566 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
567 if (t->addrs[i])
f9f58285 568 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
569 else
570 break;
571 }
572#endif
24922684
CL
573}
574
575static void print_tracking(struct kmem_cache *s, void *object)
576{
577 if (!(s->flags & SLAB_STORE_USER))
578 return;
579
580 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
581 print_track("Freed", get_track(s, object, TRACK_FREE));
582}
583
584static void print_page_info(struct page *page)
585{
f9f58285 586 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 587 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
588
589}
590
591static void slab_bug(struct kmem_cache *s, char *fmt, ...)
592{
ecc42fbe 593 struct va_format vaf;
24922684 594 va_list args;
24922684
CL
595
596 va_start(args, fmt);
ecc42fbe
FF
597 vaf.fmt = fmt;
598 vaf.va = &args;
f9f58285 599 pr_err("=============================================================================\n");
ecc42fbe 600 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 601 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 602
373d4d09 603 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 604 va_end(args);
81819f0f
CL
605}
606
24922684
CL
607static void slab_fix(struct kmem_cache *s, char *fmt, ...)
608{
ecc42fbe 609 struct va_format vaf;
24922684 610 va_list args;
24922684
CL
611
612 va_start(args, fmt);
ecc42fbe
FF
613 vaf.fmt = fmt;
614 vaf.va = &args;
615 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 616 va_end(args);
24922684
CL
617}
618
619static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
620{
621 unsigned int off; /* Offset of last byte */
a973e9dd 622 u8 *addr = page_address(page);
24922684
CL
623
624 print_tracking(s, p);
625
626 print_page_info(page);
627
f9f58285
FF
628 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
629 p, p - addr, get_freepointer(s, p));
24922684
CL
630
631 if (p > addr + 16)
ffc79d28 632 print_section("Bytes b4 ", p - 16, 16);
81819f0f 633
3b0efdfa 634 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 635 PAGE_SIZE));
81819f0f 636 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
637 print_section("Redzone ", p + s->object_size,
638 s->inuse - s->object_size);
81819f0f 639
81819f0f
CL
640 if (s->offset)
641 off = s->offset + sizeof(void *);
642 else
643 off = s->inuse;
644
24922684 645 if (s->flags & SLAB_STORE_USER)
81819f0f 646 off += 2 * sizeof(struct track);
81819f0f
CL
647
648 if (off != s->size)
649 /* Beginning of the filler is the free pointer */
ffc79d28 650 print_section("Padding ", p + off, s->size - off);
24922684
CL
651
652 dump_stack();
81819f0f
CL
653}
654
75c66def 655void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
656 u8 *object, char *reason)
657{
3dc50637 658 slab_bug(s, "%s", reason);
24922684 659 print_trailer(s, page, object);
81819f0f
CL
660}
661
d0e0ac97
CG
662static void slab_err(struct kmem_cache *s, struct page *page,
663 const char *fmt, ...)
81819f0f
CL
664{
665 va_list args;
666 char buf[100];
667
24922684
CL
668 va_start(args, fmt);
669 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 670 va_end(args);
3dc50637 671 slab_bug(s, "%s", buf);
24922684 672 print_page_info(page);
81819f0f
CL
673 dump_stack();
674}
675
f7cb1933 676static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
677{
678 u8 *p = object;
679
680 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
681 memset(p, POISON_FREE, s->object_size - 1);
682 p[s->object_size - 1] = POISON_END;
81819f0f
CL
683 }
684
685 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 686 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
687}
688
24922684
CL
689static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
690 void *from, void *to)
691{
692 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
693 memset(from, data, to - from);
694}
695
696static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
697 u8 *object, char *what,
06428780 698 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
699{
700 u8 *fault;
701 u8 *end;
702
a79316c6 703 metadata_access_enable();
79824820 704 fault = memchr_inv(start, value, bytes);
a79316c6 705 metadata_access_disable();
24922684
CL
706 if (!fault)
707 return 1;
708
709 end = start + bytes;
710 while (end > fault && end[-1] == value)
711 end--;
712
713 slab_bug(s, "%s overwritten", what);
f9f58285 714 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
715 fault, end - 1, fault[0], value);
716 print_trailer(s, page, object);
717
718 restore_bytes(s, what, value, fault, end);
719 return 0;
81819f0f
CL
720}
721
81819f0f
CL
722/*
723 * Object layout:
724 *
725 * object address
726 * Bytes of the object to be managed.
727 * If the freepointer may overlay the object then the free
728 * pointer is the first word of the object.
672bba3a 729 *
81819f0f
CL
730 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
731 * 0xa5 (POISON_END)
732 *
3b0efdfa 733 * object + s->object_size
81819f0f 734 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 735 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 736 * object_size == inuse.
672bba3a 737 *
81819f0f
CL
738 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
739 * 0xcc (RED_ACTIVE) for objects in use.
740 *
741 * object + s->inuse
672bba3a
CL
742 * Meta data starts here.
743 *
81819f0f
CL
744 * A. Free pointer (if we cannot overwrite object on free)
745 * B. Tracking data for SLAB_STORE_USER
672bba3a 746 * C. Padding to reach required alignment boundary or at mininum
6446faa2 747 * one word if debugging is on to be able to detect writes
672bba3a
CL
748 * before the word boundary.
749 *
750 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
751 *
752 * object + s->size
672bba3a 753 * Nothing is used beyond s->size.
81819f0f 754 *
3b0efdfa 755 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 756 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
757 * may be used with merged slabcaches.
758 */
759
81819f0f
CL
760static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
761{
762 unsigned long off = s->inuse; /* The end of info */
763
764 if (s->offset)
765 /* Freepointer is placed after the object. */
766 off += sizeof(void *);
767
768 if (s->flags & SLAB_STORE_USER)
769 /* We also have user information there */
770 off += 2 * sizeof(struct track);
771
772 if (s->size == off)
773 return 1;
774
24922684
CL
775 return check_bytes_and_report(s, page, p, "Object padding",
776 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
777}
778
39b26464 779/* Check the pad bytes at the end of a slab page */
81819f0f
CL
780static int slab_pad_check(struct kmem_cache *s, struct page *page)
781{
24922684
CL
782 u8 *start;
783 u8 *fault;
784 u8 *end;
785 int length;
786 int remainder;
81819f0f
CL
787
788 if (!(s->flags & SLAB_POISON))
789 return 1;
790
a973e9dd 791 start = page_address(page);
ab9a0f19 792 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
793 end = start + length;
794 remainder = length % s->size;
81819f0f
CL
795 if (!remainder)
796 return 1;
797
a79316c6 798 metadata_access_enable();
79824820 799 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
a79316c6 800 metadata_access_disable();
24922684
CL
801 if (!fault)
802 return 1;
803 while (end > fault && end[-1] == POISON_INUSE)
804 end--;
805
806 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 807 print_section("Padding ", end - remainder, remainder);
24922684 808
8a3d271d 809 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 810 return 0;
81819f0f
CL
811}
812
813static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 814 void *object, u8 val)
81819f0f
CL
815{
816 u8 *p = object;
3b0efdfa 817 u8 *endobject = object + s->object_size;
81819f0f
CL
818
819 if (s->flags & SLAB_RED_ZONE) {
24922684 820 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 821 endobject, val, s->inuse - s->object_size))
81819f0f 822 return 0;
81819f0f 823 } else {
3b0efdfa 824 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 825 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
826 endobject, POISON_INUSE,
827 s->inuse - s->object_size);
3adbefee 828 }
81819f0f
CL
829 }
830
831 if (s->flags & SLAB_POISON) {
f7cb1933 832 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 833 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 834 POISON_FREE, s->object_size - 1) ||
24922684 835 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 836 p + s->object_size - 1, POISON_END, 1)))
81819f0f 837 return 0;
81819f0f
CL
838 /*
839 * check_pad_bytes cleans up on its own.
840 */
841 check_pad_bytes(s, page, p);
842 }
843
f7cb1933 844 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
845 /*
846 * Object and freepointer overlap. Cannot check
847 * freepointer while object is allocated.
848 */
849 return 1;
850
851 /* Check free pointer validity */
852 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
853 object_err(s, page, p, "Freepointer corrupt");
854 /*
9f6c708e 855 * No choice but to zap it and thus lose the remainder
81819f0f 856 * of the free objects in this slab. May cause
672bba3a 857 * another error because the object count is now wrong.
81819f0f 858 */
a973e9dd 859 set_freepointer(s, p, NULL);
81819f0f
CL
860 return 0;
861 }
862 return 1;
863}
864
865static int check_slab(struct kmem_cache *s, struct page *page)
866{
39b26464
CL
867 int maxobj;
868
81819f0f
CL
869 VM_BUG_ON(!irqs_disabled());
870
871 if (!PageSlab(page)) {
24922684 872 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
873 return 0;
874 }
39b26464 875
ab9a0f19 876 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
877 if (page->objects > maxobj) {
878 slab_err(s, page, "objects %u > max %u",
f6edde9c 879 page->objects, maxobj);
39b26464
CL
880 return 0;
881 }
882 if (page->inuse > page->objects) {
24922684 883 slab_err(s, page, "inuse %u > max %u",
f6edde9c 884 page->inuse, page->objects);
81819f0f
CL
885 return 0;
886 }
887 /* Slab_pad_check fixes things up after itself */
888 slab_pad_check(s, page);
889 return 1;
890}
891
892/*
672bba3a
CL
893 * Determine if a certain object on a page is on the freelist. Must hold the
894 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
895 */
896static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
897{
898 int nr = 0;
881db7fb 899 void *fp;
81819f0f 900 void *object = NULL;
f6edde9c 901 int max_objects;
81819f0f 902
881db7fb 903 fp = page->freelist;
39b26464 904 while (fp && nr <= page->objects) {
81819f0f
CL
905 if (fp == search)
906 return 1;
907 if (!check_valid_pointer(s, page, fp)) {
908 if (object) {
909 object_err(s, page, object,
910 "Freechain corrupt");
a973e9dd 911 set_freepointer(s, object, NULL);
81819f0f 912 } else {
24922684 913 slab_err(s, page, "Freepointer corrupt");
a973e9dd 914 page->freelist = NULL;
39b26464 915 page->inuse = page->objects;
24922684 916 slab_fix(s, "Freelist cleared");
81819f0f
CL
917 return 0;
918 }
919 break;
920 }
921 object = fp;
922 fp = get_freepointer(s, object);
923 nr++;
924 }
925
ab9a0f19 926 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
927 if (max_objects > MAX_OBJS_PER_PAGE)
928 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
929
930 if (page->objects != max_objects) {
931 slab_err(s, page, "Wrong number of objects. Found %d but "
932 "should be %d", page->objects, max_objects);
933 page->objects = max_objects;
934 slab_fix(s, "Number of objects adjusted.");
935 }
39b26464 936 if (page->inuse != page->objects - nr) {
70d71228 937 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
938 "counted were %d", page->inuse, page->objects - nr);
939 page->inuse = page->objects - nr;
24922684 940 slab_fix(s, "Object count adjusted.");
81819f0f
CL
941 }
942 return search == NULL;
943}
944
0121c619
CL
945static void trace(struct kmem_cache *s, struct page *page, void *object,
946 int alloc)
3ec09742
CL
947{
948 if (s->flags & SLAB_TRACE) {
f9f58285 949 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
950 s->name,
951 alloc ? "alloc" : "free",
952 object, page->inuse,
953 page->freelist);
954
955 if (!alloc)
d0e0ac97
CG
956 print_section("Object ", (void *)object,
957 s->object_size);
3ec09742
CL
958
959 dump_stack();
960 }
961}
962
643b1138 963/*
672bba3a 964 * Tracking of fully allocated slabs for debugging purposes.
643b1138 965 */
5cc6eee8
CL
966static void add_full(struct kmem_cache *s,
967 struct kmem_cache_node *n, struct page *page)
643b1138 968{
5cc6eee8
CL
969 if (!(s->flags & SLAB_STORE_USER))
970 return;
971
255d0884 972 lockdep_assert_held(&n->list_lock);
643b1138 973 list_add(&page->lru, &n->full);
643b1138
CL
974}
975
c65c1877 976static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 977{
643b1138
CL
978 if (!(s->flags & SLAB_STORE_USER))
979 return;
980
255d0884 981 lockdep_assert_held(&n->list_lock);
643b1138 982 list_del(&page->lru);
643b1138
CL
983}
984
0f389ec6
CL
985/* Tracking of the number of slabs for debugging purposes */
986static inline unsigned long slabs_node(struct kmem_cache *s, int node)
987{
988 struct kmem_cache_node *n = get_node(s, node);
989
990 return atomic_long_read(&n->nr_slabs);
991}
992
26c02cf0
AB
993static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
994{
995 return atomic_long_read(&n->nr_slabs);
996}
997
205ab99d 998static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
999{
1000 struct kmem_cache_node *n = get_node(s, node);
1001
1002 /*
1003 * May be called early in order to allocate a slab for the
1004 * kmem_cache_node structure. Solve the chicken-egg
1005 * dilemma by deferring the increment of the count during
1006 * bootstrap (see early_kmem_cache_node_alloc).
1007 */
338b2642 1008 if (likely(n)) {
0f389ec6 1009 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1010 atomic_long_add(objects, &n->total_objects);
1011 }
0f389ec6 1012}
205ab99d 1013static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1014{
1015 struct kmem_cache_node *n = get_node(s, node);
1016
1017 atomic_long_dec(&n->nr_slabs);
205ab99d 1018 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1019}
1020
1021/* Object debug checks for alloc/free paths */
3ec09742
CL
1022static void setup_object_debug(struct kmem_cache *s, struct page *page,
1023 void *object)
1024{
1025 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1026 return;
1027
f7cb1933 1028 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1029 init_tracking(s, object);
1030}
1031
d0e0ac97
CG
1032static noinline int alloc_debug_processing(struct kmem_cache *s,
1033 struct page *page,
ce71e27c 1034 void *object, unsigned long addr)
81819f0f
CL
1035{
1036 if (!check_slab(s, page))
1037 goto bad;
1038
81819f0f
CL
1039 if (!check_valid_pointer(s, page, object)) {
1040 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1041 goto bad;
81819f0f
CL
1042 }
1043
f7cb1933 1044 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1045 goto bad;
81819f0f 1046
3ec09742
CL
1047 /* Success perform special debug activities for allocs */
1048 if (s->flags & SLAB_STORE_USER)
1049 set_track(s, object, TRACK_ALLOC, addr);
1050 trace(s, page, object, 1);
f7cb1933 1051 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1052 return 1;
3ec09742 1053
81819f0f
CL
1054bad:
1055 if (PageSlab(page)) {
1056 /*
1057 * If this is a slab page then lets do the best we can
1058 * to avoid issues in the future. Marking all objects
672bba3a 1059 * as used avoids touching the remaining objects.
81819f0f 1060 */
24922684 1061 slab_fix(s, "Marking all objects used");
39b26464 1062 page->inuse = page->objects;
a973e9dd 1063 page->freelist = NULL;
81819f0f
CL
1064 }
1065 return 0;
1066}
1067
19c7ff9e
CL
1068static noinline struct kmem_cache_node *free_debug_processing(
1069 struct kmem_cache *s, struct page *page, void *object,
1070 unsigned long addr, unsigned long *flags)
81819f0f 1071{
19c7ff9e 1072 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
5c2e4bbb 1073
19c7ff9e 1074 spin_lock_irqsave(&n->list_lock, *flags);
881db7fb
CL
1075 slab_lock(page);
1076
81819f0f
CL
1077 if (!check_slab(s, page))
1078 goto fail;
1079
1080 if (!check_valid_pointer(s, page, object)) {
70d71228 1081 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1082 goto fail;
1083 }
1084
1085 if (on_freelist(s, page, object)) {
24922684 1086 object_err(s, page, object, "Object already free");
81819f0f
CL
1087 goto fail;
1088 }
1089
f7cb1933 1090 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1091 goto out;
81819f0f 1092
1b4f59e3 1093 if (unlikely(s != page->slab_cache)) {
3adbefee 1094 if (!PageSlab(page)) {
70d71228
CL
1095 slab_err(s, page, "Attempt to free object(0x%p) "
1096 "outside of slab", object);
1b4f59e3 1097 } else if (!page->slab_cache) {
f9f58285
FF
1098 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1099 object);
70d71228 1100 dump_stack();
06428780 1101 } else
24922684
CL
1102 object_err(s, page, object,
1103 "page slab pointer corrupt.");
81819f0f
CL
1104 goto fail;
1105 }
3ec09742 1106
3ec09742
CL
1107 if (s->flags & SLAB_STORE_USER)
1108 set_track(s, object, TRACK_FREE, addr);
1109 trace(s, page, object, 0);
f7cb1933 1110 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb 1111out:
881db7fb 1112 slab_unlock(page);
19c7ff9e
CL
1113 /*
1114 * Keep node_lock to preserve integrity
1115 * until the object is actually freed
1116 */
1117 return n;
3ec09742 1118
81819f0f 1119fail:
19c7ff9e
CL
1120 slab_unlock(page);
1121 spin_unlock_irqrestore(&n->list_lock, *flags);
24922684 1122 slab_fix(s, "Object at 0x%p not freed", object);
19c7ff9e 1123 return NULL;
81819f0f
CL
1124}
1125
41ecc55b
CL
1126static int __init setup_slub_debug(char *str)
1127{
f0630fff
CL
1128 slub_debug = DEBUG_DEFAULT_FLAGS;
1129 if (*str++ != '=' || !*str)
1130 /*
1131 * No options specified. Switch on full debugging.
1132 */
1133 goto out;
1134
1135 if (*str == ',')
1136 /*
1137 * No options but restriction on slabs. This means full
1138 * debugging for slabs matching a pattern.
1139 */
1140 goto check_slabs;
1141
1142 slub_debug = 0;
1143 if (*str == '-')
1144 /*
1145 * Switch off all debugging measures.
1146 */
1147 goto out;
1148
1149 /*
1150 * Determine which debug features should be switched on
1151 */
06428780 1152 for (; *str && *str != ','; str++) {
f0630fff
CL
1153 switch (tolower(*str)) {
1154 case 'f':
1155 slub_debug |= SLAB_DEBUG_FREE;
1156 break;
1157 case 'z':
1158 slub_debug |= SLAB_RED_ZONE;
1159 break;
1160 case 'p':
1161 slub_debug |= SLAB_POISON;
1162 break;
1163 case 'u':
1164 slub_debug |= SLAB_STORE_USER;
1165 break;
1166 case 't':
1167 slub_debug |= SLAB_TRACE;
1168 break;
4c13dd3b
DM
1169 case 'a':
1170 slub_debug |= SLAB_FAILSLAB;
1171 break;
08303a73
CA
1172 case 'o':
1173 /*
1174 * Avoid enabling debugging on caches if its minimum
1175 * order would increase as a result.
1176 */
1177 disable_higher_order_debug = 1;
1178 break;
f0630fff 1179 default:
f9f58285
FF
1180 pr_err("slub_debug option '%c' unknown. skipped\n",
1181 *str);
f0630fff 1182 }
41ecc55b
CL
1183 }
1184
f0630fff 1185check_slabs:
41ecc55b
CL
1186 if (*str == ',')
1187 slub_debug_slabs = str + 1;
f0630fff 1188out:
41ecc55b
CL
1189 return 1;
1190}
1191
1192__setup("slub_debug", setup_slub_debug);
1193
423c929c 1194unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1195 unsigned long flags, const char *name,
51cc5068 1196 void (*ctor)(void *))
41ecc55b
CL
1197{
1198 /*
e153362a 1199 * Enable debugging if selected on the kernel commandline.
41ecc55b 1200 */
c6f58d9b
CL
1201 if (slub_debug && (!slub_debug_slabs || (name &&
1202 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1203 flags |= slub_debug;
ba0268a8
CL
1204
1205 return flags;
41ecc55b 1206}
b4a64718 1207#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1208static inline void setup_object_debug(struct kmem_cache *s,
1209 struct page *page, void *object) {}
41ecc55b 1210
3ec09742 1211static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1212 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1213
19c7ff9e
CL
1214static inline struct kmem_cache_node *free_debug_processing(
1215 struct kmem_cache *s, struct page *page, void *object,
1216 unsigned long addr, unsigned long *flags) { return NULL; }
41ecc55b 1217
41ecc55b
CL
1218static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1219 { return 1; }
1220static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1221 void *object, u8 val) { return 1; }
5cc6eee8
CL
1222static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1223 struct page *page) {}
c65c1877
PZ
1224static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1225 struct page *page) {}
423c929c 1226unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1227 unsigned long flags, const char *name,
51cc5068 1228 void (*ctor)(void *))
ba0268a8
CL
1229{
1230 return flags;
1231}
41ecc55b 1232#define slub_debug 0
0f389ec6 1233
fdaa45e9
IM
1234#define disable_higher_order_debug 0
1235
0f389ec6
CL
1236static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1237 { return 0; }
26c02cf0
AB
1238static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1239 { return 0; }
205ab99d
CL
1240static inline void inc_slabs_node(struct kmem_cache *s, int node,
1241 int objects) {}
1242static inline void dec_slabs_node(struct kmem_cache *s, int node,
1243 int objects) {}
7d550c56 1244
02e72cc6
AR
1245#endif /* CONFIG_SLUB_DEBUG */
1246
1247/*
1248 * Hooks for other subsystems that check memory allocations. In a typical
1249 * production configuration these hooks all should produce no code at all.
1250 */
d56791b3
RB
1251static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1252{
1253 kmemleak_alloc(ptr, size, 1, flags);
0316bec2 1254 kasan_kmalloc_large(ptr, size);
d56791b3
RB
1255}
1256
1257static inline void kfree_hook(const void *x)
1258{
1259 kmemleak_free(x);
0316bec2 1260 kasan_kfree_large(x);
d56791b3
RB
1261}
1262
8135be5a
VD
1263static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
1264 gfp_t flags)
02e72cc6
AR
1265{
1266 flags &= gfp_allowed_mask;
1267 lockdep_trace_alloc(flags);
d0164adc 1268 might_sleep_if(gfpflags_allow_blocking(flags));
7d550c56 1269
8135be5a
VD
1270 if (should_failslab(s->object_size, flags, s->flags))
1271 return NULL;
1272
1273 return memcg_kmem_get_cache(s, flags);
02e72cc6
AR
1274}
1275
1276static inline void slab_post_alloc_hook(struct kmem_cache *s,
1277 gfp_t flags, void *object)
d56791b3 1278{
02e72cc6
AR
1279 flags &= gfp_allowed_mask;
1280 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1281 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
8135be5a 1282 memcg_kmem_put_cache(s);
0316bec2 1283 kasan_slab_alloc(s, object);
d56791b3 1284}
7d550c56 1285
d56791b3
RB
1286static inline void slab_free_hook(struct kmem_cache *s, void *x)
1287{
1288 kmemleak_free_recursive(x, s->flags);
7d550c56 1289
02e72cc6
AR
1290 /*
1291 * Trouble is that we may no longer disable interrupts in the fast path
1292 * So in order to make the debug calls that expect irqs to be
1293 * disabled we need to disable interrupts temporarily.
1294 */
1295#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1296 {
1297 unsigned long flags;
1298
1299 local_irq_save(flags);
1300 kmemcheck_slab_free(s, x, s->object_size);
1301 debug_check_no_locks_freed(x, s->object_size);
1302 local_irq_restore(flags);
1303 }
1304#endif
1305 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1306 debug_check_no_obj_freed(x, s->object_size);
0316bec2
AR
1307
1308 kasan_slab_free(s, x);
02e72cc6 1309}
205ab99d 1310
588f8ba9
TG
1311static void setup_object(struct kmem_cache *s, struct page *page,
1312 void *object)
1313{
1314 setup_object_debug(s, page, object);
1315 if (unlikely(s->ctor)) {
1316 kasan_unpoison_object_data(s, object);
1317 s->ctor(object);
1318 kasan_poison_object_data(s, object);
1319 }
1320}
1321
81819f0f
CL
1322/*
1323 * Slab allocation and freeing
1324 */
5dfb4175
VD
1325static inline struct page *alloc_slab_page(struct kmem_cache *s,
1326 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1327{
5dfb4175 1328 struct page *page;
65c3376a
CL
1329 int order = oo_order(oo);
1330
b1eeab67
VN
1331 flags |= __GFP_NOTRACK;
1332
2154a336 1333 if (node == NUMA_NO_NODE)
5dfb4175 1334 page = alloc_pages(flags, order);
65c3376a 1335 else
96db800f 1336 page = __alloc_pages_node(node, flags, order);
5dfb4175 1337
f3ccb2c4
VD
1338 if (page && memcg_charge_slab(page, flags, order, s)) {
1339 __free_pages(page, order);
1340 page = NULL;
1341 }
5dfb4175
VD
1342
1343 return page;
65c3376a
CL
1344}
1345
81819f0f
CL
1346static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1347{
06428780 1348 struct page *page;
834f3d11 1349 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1350 gfp_t alloc_gfp;
588f8ba9
TG
1351 void *start, *p;
1352 int idx, order;
81819f0f 1353
7e0528da
CL
1354 flags &= gfp_allowed_mask;
1355
d0164adc 1356 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1357 local_irq_enable();
1358
b7a49f0d 1359 flags |= s->allocflags;
e12ba74d 1360
ba52270d
PE
1361 /*
1362 * Let the initial higher-order allocation fail under memory pressure
1363 * so we fall-back to the minimum order allocation.
1364 */
1365 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc
MG
1366 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1367 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_DIRECT_RECLAIM;
ba52270d 1368
5dfb4175 1369 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1370 if (unlikely(!page)) {
1371 oo = s->min;
80c3a998 1372 alloc_gfp = flags;
65c3376a
CL
1373 /*
1374 * Allocation may have failed due to fragmentation.
1375 * Try a lower order alloc if possible
1376 */
5dfb4175 1377 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1378 if (unlikely(!page))
1379 goto out;
1380 stat(s, ORDER_FALLBACK);
65c3376a 1381 }
5a896d9e 1382
588f8ba9
TG
1383 if (kmemcheck_enabled &&
1384 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1385 int pages = 1 << oo_order(oo);
1386
80c3a998 1387 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
b1eeab67
VN
1388
1389 /*
1390 * Objects from caches that have a constructor don't get
1391 * cleared when they're allocated, so we need to do it here.
1392 */
1393 if (s->ctor)
1394 kmemcheck_mark_uninitialized_pages(page, pages);
1395 else
1396 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1397 }
1398
834f3d11 1399 page->objects = oo_objects(oo);
81819f0f 1400
1f458cbf 1401 order = compound_order(page);
1b4f59e3 1402 page->slab_cache = s;
c03f94cc 1403 __SetPageSlab(page);
2f064f34 1404 if (page_is_pfmemalloc(page))
072bb0aa 1405 SetPageSlabPfmemalloc(page);
81819f0f
CL
1406
1407 start = page_address(page);
81819f0f
CL
1408
1409 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1410 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f 1411
0316bec2
AR
1412 kasan_poison_slab(page);
1413
54266640
WY
1414 for_each_object_idx(p, idx, s, start, page->objects) {
1415 setup_object(s, page, p);
1416 if (likely(idx < page->objects))
1417 set_freepointer(s, p, p + s->size);
1418 else
1419 set_freepointer(s, p, NULL);
81819f0f 1420 }
81819f0f
CL
1421
1422 page->freelist = start;
e6e82ea1 1423 page->inuse = page->objects;
8cb0a506 1424 page->frozen = 1;
588f8ba9 1425
81819f0f 1426out:
d0164adc 1427 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1428 local_irq_disable();
1429 if (!page)
1430 return NULL;
1431
1432 mod_zone_page_state(page_zone(page),
1433 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1434 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1435 1 << oo_order(oo));
1436
1437 inc_slabs_node(s, page_to_nid(page), page->objects);
1438
81819f0f
CL
1439 return page;
1440}
1441
588f8ba9
TG
1442static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1443{
1444 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1445 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1446 BUG();
1447 }
1448
1449 return allocate_slab(s,
1450 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1451}
1452
81819f0f
CL
1453static void __free_slab(struct kmem_cache *s, struct page *page)
1454{
834f3d11
CL
1455 int order = compound_order(page);
1456 int pages = 1 << order;
81819f0f 1457
af537b0a 1458 if (kmem_cache_debug(s)) {
81819f0f
CL
1459 void *p;
1460
1461 slab_pad_check(s, page);
224a88be
CL
1462 for_each_object(p, s, page_address(page),
1463 page->objects)
f7cb1933 1464 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1465 }
1466
b1eeab67 1467 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1468
81819f0f
CL
1469 mod_zone_page_state(page_zone(page),
1470 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1471 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1472 -pages);
81819f0f 1473
072bb0aa 1474 __ClearPageSlabPfmemalloc(page);
49bd5221 1475 __ClearPageSlab(page);
1f458cbf 1476
22b751c3 1477 page_mapcount_reset(page);
1eb5ac64
NP
1478 if (current->reclaim_state)
1479 current->reclaim_state->reclaimed_slab += pages;
f3ccb2c4 1480 __free_kmem_pages(page, order);
81819f0f
CL
1481}
1482
da9a638c
LJ
1483#define need_reserve_slab_rcu \
1484 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1485
81819f0f
CL
1486static void rcu_free_slab(struct rcu_head *h)
1487{
1488 struct page *page;
1489
da9a638c
LJ
1490 if (need_reserve_slab_rcu)
1491 page = virt_to_head_page(h);
1492 else
1493 page = container_of((struct list_head *)h, struct page, lru);
1494
1b4f59e3 1495 __free_slab(page->slab_cache, page);
81819f0f
CL
1496}
1497
1498static void free_slab(struct kmem_cache *s, struct page *page)
1499{
1500 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1501 struct rcu_head *head;
1502
1503 if (need_reserve_slab_rcu) {
1504 int order = compound_order(page);
1505 int offset = (PAGE_SIZE << order) - s->reserved;
1506
1507 VM_BUG_ON(s->reserved != sizeof(*head));
1508 head = page_address(page) + offset;
1509 } else {
bc4f610d 1510 head = &page->rcu_head;
da9a638c 1511 }
81819f0f
CL
1512
1513 call_rcu(head, rcu_free_slab);
1514 } else
1515 __free_slab(s, page);
1516}
1517
1518static void discard_slab(struct kmem_cache *s, struct page *page)
1519{
205ab99d 1520 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1521 free_slab(s, page);
1522}
1523
1524/*
5cc6eee8 1525 * Management of partially allocated slabs.
81819f0f 1526 */
1e4dd946
SR
1527static inline void
1528__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1529{
e95eed57 1530 n->nr_partial++;
136333d1 1531 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1532 list_add_tail(&page->lru, &n->partial);
1533 else
1534 list_add(&page->lru, &n->partial);
81819f0f
CL
1535}
1536
1e4dd946
SR
1537static inline void add_partial(struct kmem_cache_node *n,
1538 struct page *page, int tail)
62e346a8 1539{
c65c1877 1540 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1541 __add_partial(n, page, tail);
1542}
c65c1877 1543
1e4dd946
SR
1544static inline void
1545__remove_partial(struct kmem_cache_node *n, struct page *page)
1546{
62e346a8
CL
1547 list_del(&page->lru);
1548 n->nr_partial--;
1549}
1550
1e4dd946
SR
1551static inline void remove_partial(struct kmem_cache_node *n,
1552 struct page *page)
1553{
1554 lockdep_assert_held(&n->list_lock);
1555 __remove_partial(n, page);
1556}
1557
81819f0f 1558/*
7ced3719
CL
1559 * Remove slab from the partial list, freeze it and
1560 * return the pointer to the freelist.
81819f0f 1561 *
497b66f2 1562 * Returns a list of objects or NULL if it fails.
81819f0f 1563 */
497b66f2 1564static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1565 struct kmem_cache_node *n, struct page *page,
633b0764 1566 int mode, int *objects)
81819f0f 1567{
2cfb7455
CL
1568 void *freelist;
1569 unsigned long counters;
1570 struct page new;
1571
c65c1877
PZ
1572 lockdep_assert_held(&n->list_lock);
1573
2cfb7455
CL
1574 /*
1575 * Zap the freelist and set the frozen bit.
1576 * The old freelist is the list of objects for the
1577 * per cpu allocation list.
1578 */
7ced3719
CL
1579 freelist = page->freelist;
1580 counters = page->counters;
1581 new.counters = counters;
633b0764 1582 *objects = new.objects - new.inuse;
23910c50 1583 if (mode) {
7ced3719 1584 new.inuse = page->objects;
23910c50
PE
1585 new.freelist = NULL;
1586 } else {
1587 new.freelist = freelist;
1588 }
2cfb7455 1589
a0132ac0 1590 VM_BUG_ON(new.frozen);
7ced3719 1591 new.frozen = 1;
2cfb7455 1592
7ced3719 1593 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1594 freelist, counters,
02d7633f 1595 new.freelist, new.counters,
7ced3719 1596 "acquire_slab"))
7ced3719 1597 return NULL;
2cfb7455
CL
1598
1599 remove_partial(n, page);
7ced3719 1600 WARN_ON(!freelist);
49e22585 1601 return freelist;
81819f0f
CL
1602}
1603
633b0764 1604static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1605static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1606
81819f0f 1607/*
672bba3a 1608 * Try to allocate a partial slab from a specific node.
81819f0f 1609 */
8ba00bb6
JK
1610static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1611 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1612{
49e22585
CL
1613 struct page *page, *page2;
1614 void *object = NULL;
633b0764
JK
1615 int available = 0;
1616 int objects;
81819f0f
CL
1617
1618 /*
1619 * Racy check. If we mistakenly see no partial slabs then we
1620 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1621 * partial slab and there is none available then get_partials()
1622 * will return NULL.
81819f0f
CL
1623 */
1624 if (!n || !n->nr_partial)
1625 return NULL;
1626
1627 spin_lock(&n->list_lock);
49e22585 1628 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1629 void *t;
49e22585 1630
8ba00bb6
JK
1631 if (!pfmemalloc_match(page, flags))
1632 continue;
1633
633b0764 1634 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1635 if (!t)
1636 break;
1637
633b0764 1638 available += objects;
12d79634 1639 if (!object) {
49e22585 1640 c->page = page;
49e22585 1641 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1642 object = t;
49e22585 1643 } else {
633b0764 1644 put_cpu_partial(s, page, 0);
8028dcea 1645 stat(s, CPU_PARTIAL_NODE);
49e22585 1646 }
345c905d
JK
1647 if (!kmem_cache_has_cpu_partial(s)
1648 || available > s->cpu_partial / 2)
49e22585
CL
1649 break;
1650
497b66f2 1651 }
81819f0f 1652 spin_unlock(&n->list_lock);
497b66f2 1653 return object;
81819f0f
CL
1654}
1655
1656/*
672bba3a 1657 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1658 */
de3ec035 1659static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1660 struct kmem_cache_cpu *c)
81819f0f
CL
1661{
1662#ifdef CONFIG_NUMA
1663 struct zonelist *zonelist;
dd1a239f 1664 struct zoneref *z;
54a6eb5c
MG
1665 struct zone *zone;
1666 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1667 void *object;
cc9a6c87 1668 unsigned int cpuset_mems_cookie;
81819f0f
CL
1669
1670 /*
672bba3a
CL
1671 * The defrag ratio allows a configuration of the tradeoffs between
1672 * inter node defragmentation and node local allocations. A lower
1673 * defrag_ratio increases the tendency to do local allocations
1674 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1675 *
672bba3a
CL
1676 * If the defrag_ratio is set to 0 then kmalloc() always
1677 * returns node local objects. If the ratio is higher then kmalloc()
1678 * may return off node objects because partial slabs are obtained
1679 * from other nodes and filled up.
81819f0f 1680 *
6446faa2 1681 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1682 * defrag_ratio = 1000) then every (well almost) allocation will
1683 * first attempt to defrag slab caches on other nodes. This means
1684 * scanning over all nodes to look for partial slabs which may be
1685 * expensive if we do it every time we are trying to find a slab
1686 * with available objects.
81819f0f 1687 */
9824601e
CL
1688 if (!s->remote_node_defrag_ratio ||
1689 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1690 return NULL;
1691
cc9a6c87 1692 do {
d26914d1 1693 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1694 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1695 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1696 struct kmem_cache_node *n;
1697
1698 n = get_node(s, zone_to_nid(zone));
1699
dee2f8aa 1700 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1701 n->nr_partial > s->min_partial) {
8ba00bb6 1702 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1703 if (object) {
1704 /*
d26914d1
MG
1705 * Don't check read_mems_allowed_retry()
1706 * here - if mems_allowed was updated in
1707 * parallel, that was a harmless race
1708 * between allocation and the cpuset
1709 * update
cc9a6c87 1710 */
cc9a6c87
MG
1711 return object;
1712 }
c0ff7453 1713 }
81819f0f 1714 }
d26914d1 1715 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1716#endif
1717 return NULL;
1718}
1719
1720/*
1721 * Get a partial page, lock it and return it.
1722 */
497b66f2 1723static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1724 struct kmem_cache_cpu *c)
81819f0f 1725{
497b66f2 1726 void *object;
a561ce00
JK
1727 int searchnode = node;
1728
1729 if (node == NUMA_NO_NODE)
1730 searchnode = numa_mem_id();
1731 else if (!node_present_pages(node))
1732 searchnode = node_to_mem_node(node);
81819f0f 1733
8ba00bb6 1734 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1735 if (object || node != NUMA_NO_NODE)
1736 return object;
81819f0f 1737
acd19fd1 1738 return get_any_partial(s, flags, c);
81819f0f
CL
1739}
1740
8a5ec0ba
CL
1741#ifdef CONFIG_PREEMPT
1742/*
1743 * Calculate the next globally unique transaction for disambiguiation
1744 * during cmpxchg. The transactions start with the cpu number and are then
1745 * incremented by CONFIG_NR_CPUS.
1746 */
1747#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1748#else
1749/*
1750 * No preemption supported therefore also no need to check for
1751 * different cpus.
1752 */
1753#define TID_STEP 1
1754#endif
1755
1756static inline unsigned long next_tid(unsigned long tid)
1757{
1758 return tid + TID_STEP;
1759}
1760
1761static inline unsigned int tid_to_cpu(unsigned long tid)
1762{
1763 return tid % TID_STEP;
1764}
1765
1766static inline unsigned long tid_to_event(unsigned long tid)
1767{
1768 return tid / TID_STEP;
1769}
1770
1771static inline unsigned int init_tid(int cpu)
1772{
1773 return cpu;
1774}
1775
1776static inline void note_cmpxchg_failure(const char *n,
1777 const struct kmem_cache *s, unsigned long tid)
1778{
1779#ifdef SLUB_DEBUG_CMPXCHG
1780 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1781
f9f58285 1782 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
1783
1784#ifdef CONFIG_PREEMPT
1785 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 1786 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
1787 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1788 else
1789#endif
1790 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 1791 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
1792 tid_to_event(tid), tid_to_event(actual_tid));
1793 else
f9f58285 1794 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
1795 actual_tid, tid, next_tid(tid));
1796#endif
4fdccdfb 1797 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1798}
1799
788e1aad 1800static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1801{
8a5ec0ba
CL
1802 int cpu;
1803
1804 for_each_possible_cpu(cpu)
1805 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1806}
2cfb7455 1807
81819f0f
CL
1808/*
1809 * Remove the cpu slab
1810 */
d0e0ac97
CG
1811static void deactivate_slab(struct kmem_cache *s, struct page *page,
1812 void *freelist)
81819f0f 1813{
2cfb7455 1814 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1815 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1816 int lock = 0;
1817 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1818 void *nextfree;
136333d1 1819 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1820 struct page new;
1821 struct page old;
1822
1823 if (page->freelist) {
84e554e6 1824 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1825 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1826 }
1827
894b8788 1828 /*
2cfb7455
CL
1829 * Stage one: Free all available per cpu objects back
1830 * to the page freelist while it is still frozen. Leave the
1831 * last one.
1832 *
1833 * There is no need to take the list->lock because the page
1834 * is still frozen.
1835 */
1836 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1837 void *prior;
1838 unsigned long counters;
1839
1840 do {
1841 prior = page->freelist;
1842 counters = page->counters;
1843 set_freepointer(s, freelist, prior);
1844 new.counters = counters;
1845 new.inuse--;
a0132ac0 1846 VM_BUG_ON(!new.frozen);
2cfb7455 1847
1d07171c 1848 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1849 prior, counters,
1850 freelist, new.counters,
1851 "drain percpu freelist"));
1852
1853 freelist = nextfree;
1854 }
1855
894b8788 1856 /*
2cfb7455
CL
1857 * Stage two: Ensure that the page is unfrozen while the
1858 * list presence reflects the actual number of objects
1859 * during unfreeze.
1860 *
1861 * We setup the list membership and then perform a cmpxchg
1862 * with the count. If there is a mismatch then the page
1863 * is not unfrozen but the page is on the wrong list.
1864 *
1865 * Then we restart the process which may have to remove
1866 * the page from the list that we just put it on again
1867 * because the number of objects in the slab may have
1868 * changed.
894b8788 1869 */
2cfb7455 1870redo:
894b8788 1871
2cfb7455
CL
1872 old.freelist = page->freelist;
1873 old.counters = page->counters;
a0132ac0 1874 VM_BUG_ON(!old.frozen);
7c2e132c 1875
2cfb7455
CL
1876 /* Determine target state of the slab */
1877 new.counters = old.counters;
1878 if (freelist) {
1879 new.inuse--;
1880 set_freepointer(s, freelist, old.freelist);
1881 new.freelist = freelist;
1882 } else
1883 new.freelist = old.freelist;
1884
1885 new.frozen = 0;
1886
8a5b20ae 1887 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
1888 m = M_FREE;
1889 else if (new.freelist) {
1890 m = M_PARTIAL;
1891 if (!lock) {
1892 lock = 1;
1893 /*
1894 * Taking the spinlock removes the possiblity
1895 * that acquire_slab() will see a slab page that
1896 * is frozen
1897 */
1898 spin_lock(&n->list_lock);
1899 }
1900 } else {
1901 m = M_FULL;
1902 if (kmem_cache_debug(s) && !lock) {
1903 lock = 1;
1904 /*
1905 * This also ensures that the scanning of full
1906 * slabs from diagnostic functions will not see
1907 * any frozen slabs.
1908 */
1909 spin_lock(&n->list_lock);
1910 }
1911 }
1912
1913 if (l != m) {
1914
1915 if (l == M_PARTIAL)
1916
1917 remove_partial(n, page);
1918
1919 else if (l == M_FULL)
894b8788 1920
c65c1877 1921 remove_full(s, n, page);
2cfb7455
CL
1922
1923 if (m == M_PARTIAL) {
1924
1925 add_partial(n, page, tail);
136333d1 1926 stat(s, tail);
2cfb7455
CL
1927
1928 } else if (m == M_FULL) {
894b8788 1929
2cfb7455
CL
1930 stat(s, DEACTIVATE_FULL);
1931 add_full(s, n, page);
1932
1933 }
1934 }
1935
1936 l = m;
1d07171c 1937 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1938 old.freelist, old.counters,
1939 new.freelist, new.counters,
1940 "unfreezing slab"))
1941 goto redo;
1942
2cfb7455
CL
1943 if (lock)
1944 spin_unlock(&n->list_lock);
1945
1946 if (m == M_FREE) {
1947 stat(s, DEACTIVATE_EMPTY);
1948 discard_slab(s, page);
1949 stat(s, FREE_SLAB);
894b8788 1950 }
81819f0f
CL
1951}
1952
d24ac77f
JK
1953/*
1954 * Unfreeze all the cpu partial slabs.
1955 *
59a09917
CL
1956 * This function must be called with interrupts disabled
1957 * for the cpu using c (or some other guarantee must be there
1958 * to guarantee no concurrent accesses).
d24ac77f 1959 */
59a09917
CL
1960static void unfreeze_partials(struct kmem_cache *s,
1961 struct kmem_cache_cpu *c)
49e22585 1962{
345c905d 1963#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 1964 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 1965 struct page *page, *discard_page = NULL;
49e22585
CL
1966
1967 while ((page = c->partial)) {
49e22585
CL
1968 struct page new;
1969 struct page old;
1970
1971 c->partial = page->next;
43d77867
JK
1972
1973 n2 = get_node(s, page_to_nid(page));
1974 if (n != n2) {
1975 if (n)
1976 spin_unlock(&n->list_lock);
1977
1978 n = n2;
1979 spin_lock(&n->list_lock);
1980 }
49e22585
CL
1981
1982 do {
1983
1984 old.freelist = page->freelist;
1985 old.counters = page->counters;
a0132ac0 1986 VM_BUG_ON(!old.frozen);
49e22585
CL
1987
1988 new.counters = old.counters;
1989 new.freelist = old.freelist;
1990
1991 new.frozen = 0;
1992
d24ac77f 1993 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
1994 old.freelist, old.counters,
1995 new.freelist, new.counters,
1996 "unfreezing slab"));
1997
8a5b20ae 1998 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
1999 page->next = discard_page;
2000 discard_page = page;
43d77867
JK
2001 } else {
2002 add_partial(n, page, DEACTIVATE_TO_TAIL);
2003 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2004 }
2005 }
2006
2007 if (n)
2008 spin_unlock(&n->list_lock);
9ada1934
SL
2009
2010 while (discard_page) {
2011 page = discard_page;
2012 discard_page = discard_page->next;
2013
2014 stat(s, DEACTIVATE_EMPTY);
2015 discard_slab(s, page);
2016 stat(s, FREE_SLAB);
2017 }
345c905d 2018#endif
49e22585
CL
2019}
2020
2021/*
2022 * Put a page that was just frozen (in __slab_free) into a partial page
2023 * slot if available. This is done without interrupts disabled and without
2024 * preemption disabled. The cmpxchg is racy and may put the partial page
2025 * onto a random cpus partial slot.
2026 *
2027 * If we did not find a slot then simply move all the partials to the
2028 * per node partial list.
2029 */
633b0764 2030static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2031{
345c905d 2032#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2033 struct page *oldpage;
2034 int pages;
2035 int pobjects;
2036
d6e0b7fa 2037 preempt_disable();
49e22585
CL
2038 do {
2039 pages = 0;
2040 pobjects = 0;
2041 oldpage = this_cpu_read(s->cpu_slab->partial);
2042
2043 if (oldpage) {
2044 pobjects = oldpage->pobjects;
2045 pages = oldpage->pages;
2046 if (drain && pobjects > s->cpu_partial) {
2047 unsigned long flags;
2048 /*
2049 * partial array is full. Move the existing
2050 * set to the per node partial list.
2051 */
2052 local_irq_save(flags);
59a09917 2053 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2054 local_irq_restore(flags);
e24fc410 2055 oldpage = NULL;
49e22585
CL
2056 pobjects = 0;
2057 pages = 0;
8028dcea 2058 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2059 }
2060 }
2061
2062 pages++;
2063 pobjects += page->objects - page->inuse;
2064
2065 page->pages = pages;
2066 page->pobjects = pobjects;
2067 page->next = oldpage;
2068
d0e0ac97
CG
2069 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2070 != oldpage);
d6e0b7fa
VD
2071 if (unlikely(!s->cpu_partial)) {
2072 unsigned long flags;
2073
2074 local_irq_save(flags);
2075 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2076 local_irq_restore(flags);
2077 }
2078 preempt_enable();
345c905d 2079#endif
49e22585
CL
2080}
2081
dfb4f096 2082static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2083{
84e554e6 2084 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
2085 deactivate_slab(s, c->page, c->freelist);
2086
2087 c->tid = next_tid(c->tid);
2088 c->page = NULL;
2089 c->freelist = NULL;
81819f0f
CL
2090}
2091
2092/*
2093 * Flush cpu slab.
6446faa2 2094 *
81819f0f
CL
2095 * Called from IPI handler with interrupts disabled.
2096 */
0c710013 2097static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2098{
9dfc6e68 2099 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2100
49e22585
CL
2101 if (likely(c)) {
2102 if (c->page)
2103 flush_slab(s, c);
2104
59a09917 2105 unfreeze_partials(s, c);
49e22585 2106 }
81819f0f
CL
2107}
2108
2109static void flush_cpu_slab(void *d)
2110{
2111 struct kmem_cache *s = d;
81819f0f 2112
dfb4f096 2113 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2114}
2115
a8364d55
GBY
2116static bool has_cpu_slab(int cpu, void *info)
2117{
2118 struct kmem_cache *s = info;
2119 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2120
02e1a9cd 2121 return c->page || c->partial;
a8364d55
GBY
2122}
2123
81819f0f
CL
2124static void flush_all(struct kmem_cache *s)
2125{
a8364d55 2126 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2127}
2128
dfb4f096
CL
2129/*
2130 * Check if the objects in a per cpu structure fit numa
2131 * locality expectations.
2132 */
57d437d2 2133static inline int node_match(struct page *page, int node)
dfb4f096
CL
2134{
2135#ifdef CONFIG_NUMA
4d7868e6 2136 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2137 return 0;
2138#endif
2139 return 1;
2140}
2141
9a02d699 2142#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2143static int count_free(struct page *page)
2144{
2145 return page->objects - page->inuse;
2146}
2147
9a02d699
DR
2148static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2149{
2150 return atomic_long_read(&n->total_objects);
2151}
2152#endif /* CONFIG_SLUB_DEBUG */
2153
2154#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2155static unsigned long count_partial(struct kmem_cache_node *n,
2156 int (*get_count)(struct page *))
2157{
2158 unsigned long flags;
2159 unsigned long x = 0;
2160 struct page *page;
2161
2162 spin_lock_irqsave(&n->list_lock, flags);
2163 list_for_each_entry(page, &n->partial, lru)
2164 x += get_count(page);
2165 spin_unlock_irqrestore(&n->list_lock, flags);
2166 return x;
2167}
9a02d699 2168#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2169
781b2ba6
PE
2170static noinline void
2171slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2172{
9a02d699
DR
2173#ifdef CONFIG_SLUB_DEBUG
2174 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2175 DEFAULT_RATELIMIT_BURST);
781b2ba6 2176 int node;
fa45dc25 2177 struct kmem_cache_node *n;
781b2ba6 2178
9a02d699
DR
2179 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2180 return;
2181
f9f58285 2182 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
781b2ba6 2183 nid, gfpflags);
f9f58285
FF
2184 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2185 s->name, s->object_size, s->size, oo_order(s->oo),
2186 oo_order(s->min));
781b2ba6 2187
3b0efdfa 2188 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2189 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2190 s->name);
fa5ec8a1 2191
fa45dc25 2192 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2193 unsigned long nr_slabs;
2194 unsigned long nr_objs;
2195 unsigned long nr_free;
2196
26c02cf0
AB
2197 nr_free = count_partial(n, count_free);
2198 nr_slabs = node_nr_slabs(n);
2199 nr_objs = node_nr_objs(n);
781b2ba6 2200
f9f58285 2201 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2202 node, nr_slabs, nr_objs, nr_free);
2203 }
9a02d699 2204#endif
781b2ba6
PE
2205}
2206
497b66f2
CL
2207static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2208 int node, struct kmem_cache_cpu **pc)
2209{
6faa6833 2210 void *freelist;
188fd063
CL
2211 struct kmem_cache_cpu *c = *pc;
2212 struct page *page;
497b66f2 2213
188fd063 2214 freelist = get_partial(s, flags, node, c);
497b66f2 2215
188fd063
CL
2216 if (freelist)
2217 return freelist;
2218
2219 page = new_slab(s, flags, node);
497b66f2 2220 if (page) {
7c8e0181 2221 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2222 if (c->page)
2223 flush_slab(s, c);
2224
2225 /*
2226 * No other reference to the page yet so we can
2227 * muck around with it freely without cmpxchg
2228 */
6faa6833 2229 freelist = page->freelist;
497b66f2
CL
2230 page->freelist = NULL;
2231
2232 stat(s, ALLOC_SLAB);
497b66f2
CL
2233 c->page = page;
2234 *pc = c;
2235 } else
6faa6833 2236 freelist = NULL;
497b66f2 2237
6faa6833 2238 return freelist;
497b66f2
CL
2239}
2240
072bb0aa
MG
2241static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2242{
2243 if (unlikely(PageSlabPfmemalloc(page)))
2244 return gfp_pfmemalloc_allowed(gfpflags);
2245
2246 return true;
2247}
2248
213eeb9f 2249/*
d0e0ac97
CG
2250 * Check the page->freelist of a page and either transfer the freelist to the
2251 * per cpu freelist or deactivate the page.
213eeb9f
CL
2252 *
2253 * The page is still frozen if the return value is not NULL.
2254 *
2255 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2256 *
2257 * This function must be called with interrupt disabled.
213eeb9f
CL
2258 */
2259static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2260{
2261 struct page new;
2262 unsigned long counters;
2263 void *freelist;
2264
2265 do {
2266 freelist = page->freelist;
2267 counters = page->counters;
6faa6833 2268
213eeb9f 2269 new.counters = counters;
a0132ac0 2270 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2271
2272 new.inuse = page->objects;
2273 new.frozen = freelist != NULL;
2274
d24ac77f 2275 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2276 freelist, counters,
2277 NULL, new.counters,
2278 "get_freelist"));
2279
2280 return freelist;
2281}
2282
81819f0f 2283/*
894b8788
CL
2284 * Slow path. The lockless freelist is empty or we need to perform
2285 * debugging duties.
2286 *
894b8788
CL
2287 * Processing is still very fast if new objects have been freed to the
2288 * regular freelist. In that case we simply take over the regular freelist
2289 * as the lockless freelist and zap the regular freelist.
81819f0f 2290 *
894b8788
CL
2291 * If that is not working then we fall back to the partial lists. We take the
2292 * first element of the freelist as the object to allocate now and move the
2293 * rest of the freelist to the lockless freelist.
81819f0f 2294 *
894b8788 2295 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2296 * we need to allocate a new slab. This is the slowest path since it involves
2297 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2298 *
2299 * Version of __slab_alloc to use when we know that interrupts are
2300 * already disabled (which is the case for bulk allocation).
81819f0f 2301 */
a380a3c7 2302static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2303 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2304{
6faa6833 2305 void *freelist;
f6e7def7 2306 struct page *page;
81819f0f 2307
f6e7def7
CL
2308 page = c->page;
2309 if (!page)
81819f0f 2310 goto new_slab;
49e22585 2311redo:
6faa6833 2312
57d437d2 2313 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2314 int searchnode = node;
2315
2316 if (node != NUMA_NO_NODE && !node_present_pages(node))
2317 searchnode = node_to_mem_node(node);
2318
2319 if (unlikely(!node_match(page, searchnode))) {
2320 stat(s, ALLOC_NODE_MISMATCH);
2321 deactivate_slab(s, page, c->freelist);
2322 c->page = NULL;
2323 c->freelist = NULL;
2324 goto new_slab;
2325 }
fc59c053 2326 }
6446faa2 2327
072bb0aa
MG
2328 /*
2329 * By rights, we should be searching for a slab page that was
2330 * PFMEMALLOC but right now, we are losing the pfmemalloc
2331 * information when the page leaves the per-cpu allocator
2332 */
2333 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2334 deactivate_slab(s, page, c->freelist);
2335 c->page = NULL;
2336 c->freelist = NULL;
2337 goto new_slab;
2338 }
2339
73736e03 2340 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2341 freelist = c->freelist;
2342 if (freelist)
73736e03 2343 goto load_freelist;
03e404af 2344
f6e7def7 2345 freelist = get_freelist(s, page);
6446faa2 2346
6faa6833 2347 if (!freelist) {
03e404af
CL
2348 c->page = NULL;
2349 stat(s, DEACTIVATE_BYPASS);
fc59c053 2350 goto new_slab;
03e404af 2351 }
6446faa2 2352
84e554e6 2353 stat(s, ALLOC_REFILL);
6446faa2 2354
894b8788 2355load_freelist:
507effea
CL
2356 /*
2357 * freelist is pointing to the list of objects to be used.
2358 * page is pointing to the page from which the objects are obtained.
2359 * That page must be frozen for per cpu allocations to work.
2360 */
a0132ac0 2361 VM_BUG_ON(!c->page->frozen);
6faa6833 2362 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2363 c->tid = next_tid(c->tid);
6faa6833 2364 return freelist;
81819f0f 2365
81819f0f 2366new_slab:
2cfb7455 2367
49e22585 2368 if (c->partial) {
f6e7def7
CL
2369 page = c->page = c->partial;
2370 c->partial = page->next;
49e22585
CL
2371 stat(s, CPU_PARTIAL_ALLOC);
2372 c->freelist = NULL;
2373 goto redo;
81819f0f
CL
2374 }
2375
188fd063 2376 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2377
f4697436 2378 if (unlikely(!freelist)) {
9a02d699 2379 slab_out_of_memory(s, gfpflags, node);
f4697436 2380 return NULL;
81819f0f 2381 }
2cfb7455 2382
f6e7def7 2383 page = c->page;
5091b74a 2384 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2385 goto load_freelist;
2cfb7455 2386
497b66f2 2387 /* Only entered in the debug case */
d0e0ac97
CG
2388 if (kmem_cache_debug(s) &&
2389 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2390 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2391
f6e7def7 2392 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2393 c->page = NULL;
2394 c->freelist = NULL;
6faa6833 2395 return freelist;
894b8788
CL
2396}
2397
a380a3c7
CL
2398/*
2399 * Another one that disabled interrupt and compensates for possible
2400 * cpu changes by refetching the per cpu area pointer.
2401 */
2402static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2403 unsigned long addr, struct kmem_cache_cpu *c)
2404{
2405 void *p;
2406 unsigned long flags;
2407
2408 local_irq_save(flags);
2409#ifdef CONFIG_PREEMPT
2410 /*
2411 * We may have been preempted and rescheduled on a different
2412 * cpu before disabling interrupts. Need to reload cpu area
2413 * pointer.
2414 */
2415 c = this_cpu_ptr(s->cpu_slab);
2416#endif
2417
2418 p = ___slab_alloc(s, gfpflags, node, addr, c);
2419 local_irq_restore(flags);
2420 return p;
2421}
2422
894b8788
CL
2423/*
2424 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2425 * have the fastpath folded into their functions. So no function call
2426 * overhead for requests that can be satisfied on the fastpath.
2427 *
2428 * The fastpath works by first checking if the lockless freelist can be used.
2429 * If not then __slab_alloc is called for slow processing.
2430 *
2431 * Otherwise we can simply pick the next object from the lockless free list.
2432 */
2b847c3c 2433static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2434 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2435{
894b8788 2436 void **object;
dfb4f096 2437 struct kmem_cache_cpu *c;
57d437d2 2438 struct page *page;
8a5ec0ba 2439 unsigned long tid;
1f84260c 2440
8135be5a
VD
2441 s = slab_pre_alloc_hook(s, gfpflags);
2442 if (!s)
773ff60e 2443 return NULL;
8a5ec0ba 2444redo:
8a5ec0ba
CL
2445 /*
2446 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2447 * enabled. We may switch back and forth between cpus while
2448 * reading from one cpu area. That does not matter as long
2449 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2450 *
9aabf810
JK
2451 * We should guarantee that tid and kmem_cache are retrieved on
2452 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2453 * to check if it is matched or not.
8a5ec0ba 2454 */
9aabf810
JK
2455 do {
2456 tid = this_cpu_read(s->cpu_slab->tid);
2457 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2458 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2459 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2460
2461 /*
2462 * Irqless object alloc/free algorithm used here depends on sequence
2463 * of fetching cpu_slab's data. tid should be fetched before anything
2464 * on c to guarantee that object and page associated with previous tid
2465 * won't be used with current tid. If we fetch tid first, object and
2466 * page could be one associated with next tid and our alloc/free
2467 * request will be failed. In this case, we will retry. So, no problem.
2468 */
2469 barrier();
8a5ec0ba 2470
8a5ec0ba
CL
2471 /*
2472 * The transaction ids are globally unique per cpu and per operation on
2473 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2474 * occurs on the right processor and that there was no operation on the
2475 * linked list in between.
2476 */
8a5ec0ba 2477
9dfc6e68 2478 object = c->freelist;
57d437d2 2479 page = c->page;
8eae1492 2480 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2481 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2482 stat(s, ALLOC_SLOWPATH);
2483 } else {
0ad9500e
ED
2484 void *next_object = get_freepointer_safe(s, object);
2485
8a5ec0ba 2486 /*
25985edc 2487 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2488 * operation and if we are on the right processor.
2489 *
d0e0ac97
CG
2490 * The cmpxchg does the following atomically (without lock
2491 * semantics!)
8a5ec0ba
CL
2492 * 1. Relocate first pointer to the current per cpu area.
2493 * 2. Verify that tid and freelist have not been changed
2494 * 3. If they were not changed replace tid and freelist
2495 *
d0e0ac97
CG
2496 * Since this is without lock semantics the protection is only
2497 * against code executing on this cpu *not* from access by
2498 * other cpus.
8a5ec0ba 2499 */
933393f5 2500 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2501 s->cpu_slab->freelist, s->cpu_slab->tid,
2502 object, tid,
0ad9500e 2503 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2504
2505 note_cmpxchg_failure("slab_alloc", s, tid);
2506 goto redo;
2507 }
0ad9500e 2508 prefetch_freepointer(s, next_object);
84e554e6 2509 stat(s, ALLOC_FASTPATH);
894b8788 2510 }
8a5ec0ba 2511
74e2134f 2512 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2513 memset(object, 0, s->object_size);
d07dbea4 2514
c016b0bd 2515 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2516
894b8788 2517 return object;
81819f0f
CL
2518}
2519
2b847c3c
EG
2520static __always_inline void *slab_alloc(struct kmem_cache *s,
2521 gfp_t gfpflags, unsigned long addr)
2522{
2523 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2524}
2525
81819f0f
CL
2526void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2527{
2b847c3c 2528 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2529
d0e0ac97
CG
2530 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2531 s->size, gfpflags);
5b882be4
EGM
2532
2533 return ret;
81819f0f
CL
2534}
2535EXPORT_SYMBOL(kmem_cache_alloc);
2536
0f24f128 2537#ifdef CONFIG_TRACING
4a92379b
RK
2538void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2539{
2b847c3c 2540 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2541 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0316bec2 2542 kasan_kmalloc(s, ret, size);
4a92379b
RK
2543 return ret;
2544}
2545EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2546#endif
2547
81819f0f
CL
2548#ifdef CONFIG_NUMA
2549void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2550{
2b847c3c 2551 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2552
ca2b84cb 2553 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2554 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2555
2556 return ret;
81819f0f
CL
2557}
2558EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2559
0f24f128 2560#ifdef CONFIG_TRACING
4a92379b 2561void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2562 gfp_t gfpflags,
4a92379b 2563 int node, size_t size)
5b882be4 2564{
2b847c3c 2565 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2566
2567 trace_kmalloc_node(_RET_IP_, ret,
2568 size, s->size, gfpflags, node);
0316bec2
AR
2569
2570 kasan_kmalloc(s, ret, size);
4a92379b 2571 return ret;
5b882be4 2572}
4a92379b 2573EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2574#endif
5d1f57e4 2575#endif
5b882be4 2576
81819f0f 2577/*
94e4d712 2578 * Slow path handling. This may still be called frequently since objects
894b8788 2579 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2580 *
894b8788
CL
2581 * So we still attempt to reduce cache line usage. Just take the slab
2582 * lock and free the item. If there is no additional partial page
2583 * handling required then we can return immediately.
81819f0f 2584 */
894b8788 2585static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2586 void *x, unsigned long addr)
81819f0f
CL
2587{
2588 void *prior;
2589 void **object = (void *)x;
2cfb7455 2590 int was_frozen;
2cfb7455
CL
2591 struct page new;
2592 unsigned long counters;
2593 struct kmem_cache_node *n = NULL;
61728d1e 2594 unsigned long uninitialized_var(flags);
81819f0f 2595
8a5ec0ba 2596 stat(s, FREE_SLOWPATH);
81819f0f 2597
19c7ff9e
CL
2598 if (kmem_cache_debug(s) &&
2599 !(n = free_debug_processing(s, page, x, addr, &flags)))
80f08c19 2600 return;
6446faa2 2601
2cfb7455 2602 do {
837d678d
JK
2603 if (unlikely(n)) {
2604 spin_unlock_irqrestore(&n->list_lock, flags);
2605 n = NULL;
2606 }
2cfb7455
CL
2607 prior = page->freelist;
2608 counters = page->counters;
2609 set_freepointer(s, object, prior);
2610 new.counters = counters;
2611 was_frozen = new.frozen;
2612 new.inuse--;
837d678d 2613 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2614
c65c1877 2615 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2616
2617 /*
d0e0ac97
CG
2618 * Slab was on no list before and will be
2619 * partially empty
2620 * We can defer the list move and instead
2621 * freeze it.
49e22585
CL
2622 */
2623 new.frozen = 1;
2624
c65c1877 2625 } else { /* Needs to be taken off a list */
49e22585 2626
b455def2 2627 n = get_node(s, page_to_nid(page));
49e22585
CL
2628 /*
2629 * Speculatively acquire the list_lock.
2630 * If the cmpxchg does not succeed then we may
2631 * drop the list_lock without any processing.
2632 *
2633 * Otherwise the list_lock will synchronize with
2634 * other processors updating the list of slabs.
2635 */
2636 spin_lock_irqsave(&n->list_lock, flags);
2637
2638 }
2cfb7455 2639 }
81819f0f 2640
2cfb7455
CL
2641 } while (!cmpxchg_double_slab(s, page,
2642 prior, counters,
2643 object, new.counters,
2644 "__slab_free"));
81819f0f 2645
2cfb7455 2646 if (likely(!n)) {
49e22585
CL
2647
2648 /*
2649 * If we just froze the page then put it onto the
2650 * per cpu partial list.
2651 */
8028dcea 2652 if (new.frozen && !was_frozen) {
49e22585 2653 put_cpu_partial(s, page, 1);
8028dcea
AS
2654 stat(s, CPU_PARTIAL_FREE);
2655 }
49e22585 2656 /*
2cfb7455
CL
2657 * The list lock was not taken therefore no list
2658 * activity can be necessary.
2659 */
b455def2
L
2660 if (was_frozen)
2661 stat(s, FREE_FROZEN);
2662 return;
2663 }
81819f0f 2664
8a5b20ae 2665 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2666 goto slab_empty;
2667
81819f0f 2668 /*
837d678d
JK
2669 * Objects left in the slab. If it was not on the partial list before
2670 * then add it.
81819f0f 2671 */
345c905d
JK
2672 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2673 if (kmem_cache_debug(s))
c65c1877 2674 remove_full(s, n, page);
837d678d
JK
2675 add_partial(n, page, DEACTIVATE_TO_TAIL);
2676 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2677 }
80f08c19 2678 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2679 return;
2680
2681slab_empty:
a973e9dd 2682 if (prior) {
81819f0f 2683 /*
6fbabb20 2684 * Slab on the partial list.
81819f0f 2685 */
5cc6eee8 2686 remove_partial(n, page);
84e554e6 2687 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2688 } else {
6fbabb20 2689 /* Slab must be on the full list */
c65c1877
PZ
2690 remove_full(s, n, page);
2691 }
2cfb7455 2692
80f08c19 2693 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2694 stat(s, FREE_SLAB);
81819f0f 2695 discard_slab(s, page);
81819f0f
CL
2696}
2697
894b8788
CL
2698/*
2699 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2700 * can perform fastpath freeing without additional function calls.
2701 *
2702 * The fastpath is only possible if we are freeing to the current cpu slab
2703 * of this processor. This typically the case if we have just allocated
2704 * the item before.
2705 *
2706 * If fastpath is not possible then fall back to __slab_free where we deal
2707 * with all sorts of special processing.
2708 */
06428780 2709static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2710 struct page *page, void *x, unsigned long addr)
894b8788
CL
2711{
2712 void **object = (void *)x;
dfb4f096 2713 struct kmem_cache_cpu *c;
8a5ec0ba 2714 unsigned long tid;
1f84260c 2715
c016b0bd
CL
2716 slab_free_hook(s, x);
2717
8a5ec0ba
CL
2718redo:
2719 /*
2720 * Determine the currently cpus per cpu slab.
2721 * The cpu may change afterward. However that does not matter since
2722 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 2723 * during the cmpxchg then the free will succeed.
8a5ec0ba 2724 */
9aabf810
JK
2725 do {
2726 tid = this_cpu_read(s->cpu_slab->tid);
2727 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2728 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2729 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 2730
9aabf810
JK
2731 /* Same with comment on barrier() in slab_alloc_node() */
2732 barrier();
c016b0bd 2733
442b06bc 2734 if (likely(page == c->page)) {
ff12059e 2735 set_freepointer(s, object, c->freelist);
8a5ec0ba 2736
933393f5 2737 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2738 s->cpu_slab->freelist, s->cpu_slab->tid,
2739 c->freelist, tid,
2740 object, next_tid(tid)))) {
2741
2742 note_cmpxchg_failure("slab_free", s, tid);
2743 goto redo;
2744 }
84e554e6 2745 stat(s, FREE_FASTPATH);
894b8788 2746 } else
ff12059e 2747 __slab_free(s, page, x, addr);
894b8788 2748
894b8788
CL
2749}
2750
81819f0f
CL
2751void kmem_cache_free(struct kmem_cache *s, void *x)
2752{
b9ce5ef4
GC
2753 s = cache_from_obj(s, x);
2754 if (!s)
79576102 2755 return;
b9ce5ef4 2756 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
ca2b84cb 2757 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2758}
2759EXPORT_SYMBOL(kmem_cache_free);
2760
994eb764 2761/* Note that interrupts must be enabled when calling this function. */
484748f0
CL
2762void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
2763{
fbd02630
JDB
2764 struct kmem_cache_cpu *c;
2765 struct page *page;
2766 int i;
2767
fbd02630
JDB
2768 local_irq_disable();
2769 c = this_cpu_ptr(s->cpu_slab);
2770
2771 for (i = 0; i < size; i++) {
2772 void *object = p[i];
2773
2774 BUG_ON(!object);
3eed034d
JDB
2775 /* kmem cache debug support */
2776 s = cache_from_obj(s, object);
2777 if (unlikely(!s))
2778 goto exit;
2779 slab_free_hook(s, object);
2780
fbd02630 2781 page = virt_to_head_page(object);
fbd02630
JDB
2782
2783 if (c->page == page) {
2784 /* Fastpath: local CPU free */
2785 set_freepointer(s, object, c->freelist);
2786 c->freelist = object;
2787 } else {
2788 c->tid = next_tid(c->tid);
2789 local_irq_enable();
2790 /* Slowpath: overhead locked cmpxchg_double_slab */
2791 __slab_free(s, page, object, _RET_IP_);
2792 local_irq_disable();
2793 c = this_cpu_ptr(s->cpu_slab);
2794 }
2795 }
3eed034d 2796exit:
fbd02630
JDB
2797 c->tid = next_tid(c->tid);
2798 local_irq_enable();
484748f0
CL
2799}
2800EXPORT_SYMBOL(kmem_cache_free_bulk);
2801
994eb764 2802/* Note that interrupts must be enabled when calling this function. */
484748f0 2803bool kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
994eb764 2804 void **p)
484748f0 2805{
994eb764
JDB
2806 struct kmem_cache_cpu *c;
2807 int i;
2808
994eb764
JDB
2809 /*
2810 * Drain objects in the per cpu slab, while disabling local
2811 * IRQs, which protects against PREEMPT and interrupts
2812 * handlers invoking normal fastpath.
2813 */
2814 local_irq_disable();
2815 c = this_cpu_ptr(s->cpu_slab);
2816
2817 for (i = 0; i < size; i++) {
2818 void *object = c->freelist;
2819
ebe909e0 2820 if (unlikely(!object)) {
ebe909e0
JDB
2821 /*
2822 * Invoking slow path likely have side-effect
2823 * of re-populating per CPU c->freelist
2824 */
87098373 2825 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 2826 _RET_IP_, c);
87098373
CL
2827 if (unlikely(!p[i]))
2828 goto error;
2829
ebe909e0
JDB
2830 c = this_cpu_ptr(s->cpu_slab);
2831 continue; /* goto for-loop */
2832 }
994eb764 2833
3eed034d
JDB
2834 /* kmem_cache debug support */
2835 s = slab_pre_alloc_hook(s, flags);
87098373
CL
2836 if (unlikely(!s))
2837 goto error;
3eed034d 2838
994eb764
JDB
2839 c->freelist = get_freepointer(s, object);
2840 p[i] = object;
3eed034d
JDB
2841
2842 /* kmem_cache debug support */
2843 slab_post_alloc_hook(s, flags, object);
994eb764
JDB
2844 }
2845 c->tid = next_tid(c->tid);
2846 local_irq_enable();
2847
2848 /* Clear memory outside IRQ disabled fastpath loop */
2849 if (unlikely(flags & __GFP_ZERO)) {
2850 int j;
2851
2852 for (j = 0; j < i; j++)
2853 memset(p[j], 0, s->object_size);
2854 }
2855
994eb764 2856 return true;
87098373
CL
2857
2858error:
2859 __kmem_cache_free_bulk(s, i, p);
2860 local_irq_enable();
2861 return false;
484748f0
CL
2862}
2863EXPORT_SYMBOL(kmem_cache_alloc_bulk);
2864
2865
81819f0f 2866/*
672bba3a
CL
2867 * Object placement in a slab is made very easy because we always start at
2868 * offset 0. If we tune the size of the object to the alignment then we can
2869 * get the required alignment by putting one properly sized object after
2870 * another.
81819f0f
CL
2871 *
2872 * Notice that the allocation order determines the sizes of the per cpu
2873 * caches. Each processor has always one slab available for allocations.
2874 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2875 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2876 * locking overhead.
81819f0f
CL
2877 */
2878
2879/*
2880 * Mininum / Maximum order of slab pages. This influences locking overhead
2881 * and slab fragmentation. A higher order reduces the number of partial slabs
2882 * and increases the number of allocations possible without having to
2883 * take the list_lock.
2884 */
2885static int slub_min_order;
114e9e89 2886static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2887static int slub_min_objects;
81819f0f 2888
81819f0f
CL
2889/*
2890 * Calculate the order of allocation given an slab object size.
2891 *
672bba3a
CL
2892 * The order of allocation has significant impact on performance and other
2893 * system components. Generally order 0 allocations should be preferred since
2894 * order 0 does not cause fragmentation in the page allocator. Larger objects
2895 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2896 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2897 * would be wasted.
2898 *
2899 * In order to reach satisfactory performance we must ensure that a minimum
2900 * number of objects is in one slab. Otherwise we may generate too much
2901 * activity on the partial lists which requires taking the list_lock. This is
2902 * less a concern for large slabs though which are rarely used.
81819f0f 2903 *
672bba3a
CL
2904 * slub_max_order specifies the order where we begin to stop considering the
2905 * number of objects in a slab as critical. If we reach slub_max_order then
2906 * we try to keep the page order as low as possible. So we accept more waste
2907 * of space in favor of a small page order.
81819f0f 2908 *
672bba3a
CL
2909 * Higher order allocations also allow the placement of more objects in a
2910 * slab and thereby reduce object handling overhead. If the user has
2911 * requested a higher mininum order then we start with that one instead of
2912 * the smallest order which will fit the object.
81819f0f 2913 */
5e6d444e 2914static inline int slab_order(int size, int min_objects,
ab9a0f19 2915 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2916{
2917 int order;
2918 int rem;
6300ea75 2919 int min_order = slub_min_order;
81819f0f 2920
ab9a0f19 2921 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2922 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2923
9f835703 2924 for (order = max(min_order, get_order(min_objects * size + reserved));
5e6d444e 2925 order <= max_order; order++) {
81819f0f 2926
5e6d444e 2927 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2928
ab9a0f19 2929 rem = (slab_size - reserved) % size;
81819f0f 2930
5e6d444e 2931 if (rem <= slab_size / fract_leftover)
81819f0f 2932 break;
81819f0f 2933 }
672bba3a 2934
81819f0f
CL
2935 return order;
2936}
2937
ab9a0f19 2938static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2939{
2940 int order;
2941 int min_objects;
2942 int fraction;
e8120ff1 2943 int max_objects;
5e6d444e
CL
2944
2945 /*
2946 * Attempt to find best configuration for a slab. This
2947 * works by first attempting to generate a layout with
2948 * the best configuration and backing off gradually.
2949 *
422ff4d7 2950 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
2951 * we reduce the minimum objects required in a slab.
2952 */
2953 min_objects = slub_min_objects;
9b2cd506
CL
2954 if (!min_objects)
2955 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2956 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2957 min_objects = min(min_objects, max_objects);
2958
5e6d444e 2959 while (min_objects > 1) {
c124f5b5 2960 fraction = 16;
5e6d444e
CL
2961 while (fraction >= 4) {
2962 order = slab_order(size, min_objects,
ab9a0f19 2963 slub_max_order, fraction, reserved);
5e6d444e
CL
2964 if (order <= slub_max_order)
2965 return order;
2966 fraction /= 2;
2967 }
5086c389 2968 min_objects--;
5e6d444e
CL
2969 }
2970
2971 /*
2972 * We were unable to place multiple objects in a slab. Now
2973 * lets see if we can place a single object there.
2974 */
ab9a0f19 2975 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2976 if (order <= slub_max_order)
2977 return order;
2978
2979 /*
2980 * Doh this slab cannot be placed using slub_max_order.
2981 */
ab9a0f19 2982 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2983 if (order < MAX_ORDER)
5e6d444e
CL
2984 return order;
2985 return -ENOSYS;
2986}
2987
5595cffc 2988static void
4053497d 2989init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
2990{
2991 n->nr_partial = 0;
81819f0f
CL
2992 spin_lock_init(&n->list_lock);
2993 INIT_LIST_HEAD(&n->partial);
8ab1372f 2994#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2995 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2996 atomic_long_set(&n->total_objects, 0);
643b1138 2997 INIT_LIST_HEAD(&n->full);
8ab1372f 2998#endif
81819f0f
CL
2999}
3000
55136592 3001static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3002{
6c182dc0 3003 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3004 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3005
8a5ec0ba 3006 /*
d4d84fef
CM
3007 * Must align to double word boundary for the double cmpxchg
3008 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3009 */
d4d84fef
CM
3010 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3011 2 * sizeof(void *));
8a5ec0ba
CL
3012
3013 if (!s->cpu_slab)
3014 return 0;
3015
3016 init_kmem_cache_cpus(s);
4c93c355 3017
8a5ec0ba 3018 return 1;
4c93c355 3019}
4c93c355 3020
51df1142
CL
3021static struct kmem_cache *kmem_cache_node;
3022
81819f0f
CL
3023/*
3024 * No kmalloc_node yet so do it by hand. We know that this is the first
3025 * slab on the node for this slabcache. There are no concurrent accesses
3026 * possible.
3027 *
721ae22a
ZYW
3028 * Note that this function only works on the kmem_cache_node
3029 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3030 * memory on a fresh node that has no slab structures yet.
81819f0f 3031 */
55136592 3032static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3033{
3034 struct page *page;
3035 struct kmem_cache_node *n;
3036
51df1142 3037 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3038
51df1142 3039 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3040
3041 BUG_ON(!page);
a2f92ee7 3042 if (page_to_nid(page) != node) {
f9f58285
FF
3043 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3044 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3045 }
3046
81819f0f
CL
3047 n = page->freelist;
3048 BUG_ON(!n);
51df1142 3049 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 3050 page->inuse = 1;
8cb0a506 3051 page->frozen = 0;
51df1142 3052 kmem_cache_node->node[node] = n;
8ab1372f 3053#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3054 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3055 init_tracking(kmem_cache_node, n);
8ab1372f 3056#endif
0316bec2 3057 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
4053497d 3058 init_kmem_cache_node(n);
51df1142 3059 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3060
67b6c900 3061 /*
1e4dd946
SR
3062 * No locks need to be taken here as it has just been
3063 * initialized and there is no concurrent access.
67b6c900 3064 */
1e4dd946 3065 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3066}
3067
3068static void free_kmem_cache_nodes(struct kmem_cache *s)
3069{
3070 int node;
fa45dc25 3071 struct kmem_cache_node *n;
81819f0f 3072
fa45dc25
CL
3073 for_each_kmem_cache_node(s, node, n) {
3074 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3075 s->node[node] = NULL;
3076 }
3077}
3078
55136592 3079static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3080{
3081 int node;
81819f0f 3082
f64dc58c 3083 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3084 struct kmem_cache_node *n;
3085
73367bd8 3086 if (slab_state == DOWN) {
55136592 3087 early_kmem_cache_node_alloc(node);
73367bd8
AD
3088 continue;
3089 }
51df1142 3090 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3091 GFP_KERNEL, node);
81819f0f 3092
73367bd8
AD
3093 if (!n) {
3094 free_kmem_cache_nodes(s);
3095 return 0;
81819f0f 3096 }
73367bd8 3097
81819f0f 3098 s->node[node] = n;
4053497d 3099 init_kmem_cache_node(n);
81819f0f
CL
3100 }
3101 return 1;
3102}
81819f0f 3103
c0bdb232 3104static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3105{
3106 if (min < MIN_PARTIAL)
3107 min = MIN_PARTIAL;
3108 else if (min > MAX_PARTIAL)
3109 min = MAX_PARTIAL;
3110 s->min_partial = min;
3111}
3112
81819f0f
CL
3113/*
3114 * calculate_sizes() determines the order and the distribution of data within
3115 * a slab object.
3116 */
06b285dc 3117static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
3118{
3119 unsigned long flags = s->flags;
3b0efdfa 3120 unsigned long size = s->object_size;
834f3d11 3121 int order;
81819f0f 3122
d8b42bf5
CL
3123 /*
3124 * Round up object size to the next word boundary. We can only
3125 * place the free pointer at word boundaries and this determines
3126 * the possible location of the free pointer.
3127 */
3128 size = ALIGN(size, sizeof(void *));
3129
3130#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3131 /*
3132 * Determine if we can poison the object itself. If the user of
3133 * the slab may touch the object after free or before allocation
3134 * then we should never poison the object itself.
3135 */
3136 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 3137 !s->ctor)
81819f0f
CL
3138 s->flags |= __OBJECT_POISON;
3139 else
3140 s->flags &= ~__OBJECT_POISON;
3141
81819f0f
CL
3142
3143 /*
672bba3a 3144 * If we are Redzoning then check if there is some space between the
81819f0f 3145 * end of the object and the free pointer. If not then add an
672bba3a 3146 * additional word to have some bytes to store Redzone information.
81819f0f 3147 */
3b0efdfa 3148 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3149 size += sizeof(void *);
41ecc55b 3150#endif
81819f0f
CL
3151
3152 /*
672bba3a
CL
3153 * With that we have determined the number of bytes in actual use
3154 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3155 */
3156 s->inuse = size;
3157
3158 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 3159 s->ctor)) {
81819f0f
CL
3160 /*
3161 * Relocate free pointer after the object if it is not
3162 * permitted to overwrite the first word of the object on
3163 * kmem_cache_free.
3164 *
3165 * This is the case if we do RCU, have a constructor or
3166 * destructor or are poisoning the objects.
3167 */
3168 s->offset = size;
3169 size += sizeof(void *);
3170 }
3171
c12b3c62 3172#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3173 if (flags & SLAB_STORE_USER)
3174 /*
3175 * Need to store information about allocs and frees after
3176 * the object.
3177 */
3178 size += 2 * sizeof(struct track);
3179
be7b3fbc 3180 if (flags & SLAB_RED_ZONE)
81819f0f
CL
3181 /*
3182 * Add some empty padding so that we can catch
3183 * overwrites from earlier objects rather than let
3184 * tracking information or the free pointer be
0211a9c8 3185 * corrupted if a user writes before the start
81819f0f
CL
3186 * of the object.
3187 */
3188 size += sizeof(void *);
41ecc55b 3189#endif
672bba3a 3190
81819f0f
CL
3191 /*
3192 * SLUB stores one object immediately after another beginning from
3193 * offset 0. In order to align the objects we have to simply size
3194 * each object to conform to the alignment.
3195 */
45906855 3196 size = ALIGN(size, s->align);
81819f0f 3197 s->size = size;
06b285dc
CL
3198 if (forced_order >= 0)
3199 order = forced_order;
3200 else
ab9a0f19 3201 order = calculate_order(size, s->reserved);
81819f0f 3202
834f3d11 3203 if (order < 0)
81819f0f
CL
3204 return 0;
3205
b7a49f0d 3206 s->allocflags = 0;
834f3d11 3207 if (order)
b7a49f0d
CL
3208 s->allocflags |= __GFP_COMP;
3209
3210 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3211 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3212
3213 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3214 s->allocflags |= __GFP_RECLAIMABLE;
3215
81819f0f
CL
3216 /*
3217 * Determine the number of objects per slab
3218 */
ab9a0f19
LJ
3219 s->oo = oo_make(order, size, s->reserved);
3220 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3221 if (oo_objects(s->oo) > oo_objects(s->max))
3222 s->max = s->oo;
81819f0f 3223
834f3d11 3224 return !!oo_objects(s->oo);
81819f0f
CL
3225}
3226
8a13a4cc 3227static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3228{
8a13a4cc 3229 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3230 s->reserved = 0;
81819f0f 3231
da9a638c
LJ
3232 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3233 s->reserved = sizeof(struct rcu_head);
81819f0f 3234
06b285dc 3235 if (!calculate_sizes(s, -1))
81819f0f 3236 goto error;
3de47213
DR
3237 if (disable_higher_order_debug) {
3238 /*
3239 * Disable debugging flags that store metadata if the min slab
3240 * order increased.
3241 */
3b0efdfa 3242 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3243 s->flags &= ~DEBUG_METADATA_FLAGS;
3244 s->offset = 0;
3245 if (!calculate_sizes(s, -1))
3246 goto error;
3247 }
3248 }
81819f0f 3249
2565409f
HC
3250#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3251 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3252 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3253 /* Enable fast mode */
3254 s->flags |= __CMPXCHG_DOUBLE;
3255#endif
3256
3b89d7d8
DR
3257 /*
3258 * The larger the object size is, the more pages we want on the partial
3259 * list to avoid pounding the page allocator excessively.
3260 */
49e22585
CL
3261 set_min_partial(s, ilog2(s->size) / 2);
3262
3263 /*
3264 * cpu_partial determined the maximum number of objects kept in the
3265 * per cpu partial lists of a processor.
3266 *
3267 * Per cpu partial lists mainly contain slabs that just have one
3268 * object freed. If they are used for allocation then they can be
3269 * filled up again with minimal effort. The slab will never hit the
3270 * per node partial lists and therefore no locking will be required.
3271 *
3272 * This setting also determines
3273 *
3274 * A) The number of objects from per cpu partial slabs dumped to the
3275 * per node list when we reach the limit.
9f264904 3276 * B) The number of objects in cpu partial slabs to extract from the
d0e0ac97
CG
3277 * per node list when we run out of per cpu objects. We only fetch
3278 * 50% to keep some capacity around for frees.
49e22585 3279 */
345c905d 3280 if (!kmem_cache_has_cpu_partial(s))
8f1e33da
CL
3281 s->cpu_partial = 0;
3282 else if (s->size >= PAGE_SIZE)
49e22585
CL
3283 s->cpu_partial = 2;
3284 else if (s->size >= 1024)
3285 s->cpu_partial = 6;
3286 else if (s->size >= 256)
3287 s->cpu_partial = 13;
3288 else
3289 s->cpu_partial = 30;
3290
81819f0f 3291#ifdef CONFIG_NUMA
e2cb96b7 3292 s->remote_node_defrag_ratio = 1000;
81819f0f 3293#endif
55136592 3294 if (!init_kmem_cache_nodes(s))
dfb4f096 3295 goto error;
81819f0f 3296
55136592 3297 if (alloc_kmem_cache_cpus(s))
278b1bb1 3298 return 0;
ff12059e 3299
4c93c355 3300 free_kmem_cache_nodes(s);
81819f0f
CL
3301error:
3302 if (flags & SLAB_PANIC)
3303 panic("Cannot create slab %s size=%lu realsize=%u "
3304 "order=%u offset=%u flags=%lx\n",
d0e0ac97
CG
3305 s->name, (unsigned long)s->size, s->size,
3306 oo_order(s->oo), s->offset, flags);
278b1bb1 3307 return -EINVAL;
81819f0f 3308}
81819f0f 3309
33b12c38
CL
3310static void list_slab_objects(struct kmem_cache *s, struct page *page,
3311 const char *text)
3312{
3313#ifdef CONFIG_SLUB_DEBUG
3314 void *addr = page_address(page);
3315 void *p;
a5dd5c11
NK
3316 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3317 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3318 if (!map)
3319 return;
945cf2b6 3320 slab_err(s, page, text, s->name);
33b12c38 3321 slab_lock(page);
33b12c38 3322
5f80b13a 3323 get_map(s, page, map);
33b12c38
CL
3324 for_each_object(p, s, addr, page->objects) {
3325
3326 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3327 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3328 print_tracking(s, p);
3329 }
3330 }
3331 slab_unlock(page);
bbd7d57b 3332 kfree(map);
33b12c38
CL
3333#endif
3334}
3335
81819f0f 3336/*
599870b1 3337 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3338 * This is called from kmem_cache_close(). We must be the last thread
3339 * using the cache and therefore we do not need to lock anymore.
81819f0f 3340 */
599870b1 3341static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3342{
81819f0f
CL
3343 struct page *page, *h;
3344
33b12c38 3345 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3346 if (!page->inuse) {
1e4dd946 3347 __remove_partial(n, page);
81819f0f 3348 discard_slab(s, page);
33b12c38
CL
3349 } else {
3350 list_slab_objects(s, page,
945cf2b6 3351 "Objects remaining in %s on kmem_cache_close()");
599870b1 3352 }
33b12c38 3353 }
81819f0f
CL
3354}
3355
3356/*
672bba3a 3357 * Release all resources used by a slab cache.
81819f0f 3358 */
0c710013 3359static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3360{
3361 int node;
fa45dc25 3362 struct kmem_cache_node *n;
81819f0f
CL
3363
3364 flush_all(s);
81819f0f 3365 /* Attempt to free all objects */
fa45dc25 3366 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3367 free_partial(s, n);
3368 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3369 return 1;
3370 }
945cf2b6 3371 free_percpu(s->cpu_slab);
81819f0f
CL
3372 free_kmem_cache_nodes(s);
3373 return 0;
3374}
3375
945cf2b6 3376int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f 3377{
41a21285 3378 return kmem_cache_close(s);
81819f0f 3379}
81819f0f
CL
3380
3381/********************************************************************
3382 * Kmalloc subsystem
3383 *******************************************************************/
3384
81819f0f
CL
3385static int __init setup_slub_min_order(char *str)
3386{
06428780 3387 get_option(&str, &slub_min_order);
81819f0f
CL
3388
3389 return 1;
3390}
3391
3392__setup("slub_min_order=", setup_slub_min_order);
3393
3394static int __init setup_slub_max_order(char *str)
3395{
06428780 3396 get_option(&str, &slub_max_order);
818cf590 3397 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3398
3399 return 1;
3400}
3401
3402__setup("slub_max_order=", setup_slub_max_order);
3403
3404static int __init setup_slub_min_objects(char *str)
3405{
06428780 3406 get_option(&str, &slub_min_objects);
81819f0f
CL
3407
3408 return 1;
3409}
3410
3411__setup("slub_min_objects=", setup_slub_min_objects);
3412
81819f0f
CL
3413void *__kmalloc(size_t size, gfp_t flags)
3414{
aadb4bc4 3415 struct kmem_cache *s;
5b882be4 3416 void *ret;
81819f0f 3417
95a05b42 3418 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3419 return kmalloc_large(size, flags);
aadb4bc4 3420
2c59dd65 3421 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3422
3423 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3424 return s;
3425
2b847c3c 3426 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3427
ca2b84cb 3428 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3429
0316bec2
AR
3430 kasan_kmalloc(s, ret, size);
3431
5b882be4 3432 return ret;
81819f0f
CL
3433}
3434EXPORT_SYMBOL(__kmalloc);
3435
5d1f57e4 3436#ifdef CONFIG_NUMA
f619cfe1
CL
3437static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3438{
b1eeab67 3439 struct page *page;
e4f7c0b4 3440 void *ptr = NULL;
f619cfe1 3441
52383431
VD
3442 flags |= __GFP_COMP | __GFP_NOTRACK;
3443 page = alloc_kmem_pages_node(node, flags, get_order(size));
f619cfe1 3444 if (page)
e4f7c0b4
CM
3445 ptr = page_address(page);
3446
d56791b3 3447 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3448 return ptr;
f619cfe1
CL
3449}
3450
81819f0f
CL
3451void *__kmalloc_node(size_t size, gfp_t flags, int node)
3452{
aadb4bc4 3453 struct kmem_cache *s;
5b882be4 3454 void *ret;
81819f0f 3455
95a05b42 3456 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3457 ret = kmalloc_large_node(size, flags, node);
3458
ca2b84cb
EGM
3459 trace_kmalloc_node(_RET_IP_, ret,
3460 size, PAGE_SIZE << get_order(size),
3461 flags, node);
5b882be4
EGM
3462
3463 return ret;
3464 }
aadb4bc4 3465
2c59dd65 3466 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3467
3468 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3469 return s;
3470
2b847c3c 3471 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3472
ca2b84cb 3473 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3474
0316bec2
AR
3475 kasan_kmalloc(s, ret, size);
3476
5b882be4 3477 return ret;
81819f0f
CL
3478}
3479EXPORT_SYMBOL(__kmalloc_node);
3480#endif
3481
0316bec2 3482static size_t __ksize(const void *object)
81819f0f 3483{
272c1d21 3484 struct page *page;
81819f0f 3485
ef8b4520 3486 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3487 return 0;
3488
294a80a8 3489 page = virt_to_head_page(object);
294a80a8 3490
76994412
PE
3491 if (unlikely(!PageSlab(page))) {
3492 WARN_ON(!PageCompound(page));
294a80a8 3493 return PAGE_SIZE << compound_order(page);
76994412 3494 }
81819f0f 3495
1b4f59e3 3496 return slab_ksize(page->slab_cache);
81819f0f 3497}
0316bec2
AR
3498
3499size_t ksize(const void *object)
3500{
3501 size_t size = __ksize(object);
3502 /* We assume that ksize callers could use whole allocated area,
3503 so we need unpoison this area. */
3504 kasan_krealloc(object, size);
3505 return size;
3506}
b1aabecd 3507EXPORT_SYMBOL(ksize);
81819f0f
CL
3508
3509void kfree(const void *x)
3510{
81819f0f 3511 struct page *page;
5bb983b0 3512 void *object = (void *)x;
81819f0f 3513
2121db74
PE
3514 trace_kfree(_RET_IP_, x);
3515
2408c550 3516 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3517 return;
3518
b49af68f 3519 page = virt_to_head_page(x);
aadb4bc4 3520 if (unlikely(!PageSlab(page))) {
0937502a 3521 BUG_ON(!PageCompound(page));
d56791b3 3522 kfree_hook(x);
52383431 3523 __free_kmem_pages(page, compound_order(page));
aadb4bc4
CL
3524 return;
3525 }
1b4f59e3 3526 slab_free(page->slab_cache, page, object, _RET_IP_);
81819f0f
CL
3527}
3528EXPORT_SYMBOL(kfree);
3529
832f37f5
VD
3530#define SHRINK_PROMOTE_MAX 32
3531
2086d26a 3532/*
832f37f5
VD
3533 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3534 * up most to the head of the partial lists. New allocations will then
3535 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
3536 *
3537 * The slabs with the least items are placed last. This results in them
3538 * being allocated from last increasing the chance that the last objects
3539 * are freed in them.
2086d26a 3540 */
d6e0b7fa 3541int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
2086d26a
CL
3542{
3543 int node;
3544 int i;
3545 struct kmem_cache_node *n;
3546 struct page *page;
3547 struct page *t;
832f37f5
VD
3548 struct list_head discard;
3549 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 3550 unsigned long flags;
ce3712d7 3551 int ret = 0;
2086d26a 3552
d6e0b7fa
VD
3553 if (deactivate) {
3554 /*
3555 * Disable empty slabs caching. Used to avoid pinning offline
3556 * memory cgroups by kmem pages that can be freed.
3557 */
3558 s->cpu_partial = 0;
3559 s->min_partial = 0;
3560
3561 /*
3562 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3563 * so we have to make sure the change is visible.
3564 */
3565 kick_all_cpus_sync();
3566 }
3567
2086d26a 3568 flush_all(s);
fa45dc25 3569 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
3570 INIT_LIST_HEAD(&discard);
3571 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3572 INIT_LIST_HEAD(promote + i);
2086d26a
CL
3573
3574 spin_lock_irqsave(&n->list_lock, flags);
3575
3576 /*
832f37f5 3577 * Build lists of slabs to discard or promote.
2086d26a 3578 *
672bba3a
CL
3579 * Note that concurrent frees may occur while we hold the
3580 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3581 */
3582 list_for_each_entry_safe(page, t, &n->partial, lru) {
832f37f5
VD
3583 int free = page->objects - page->inuse;
3584
3585 /* Do not reread page->inuse */
3586 barrier();
3587
3588 /* We do not keep full slabs on the list */
3589 BUG_ON(free <= 0);
3590
3591 if (free == page->objects) {
3592 list_move(&page->lru, &discard);
69cb8e6b 3593 n->nr_partial--;
832f37f5
VD
3594 } else if (free <= SHRINK_PROMOTE_MAX)
3595 list_move(&page->lru, promote + free - 1);
2086d26a
CL
3596 }
3597
2086d26a 3598 /*
832f37f5
VD
3599 * Promote the slabs filled up most to the head of the
3600 * partial list.
2086d26a 3601 */
832f37f5
VD
3602 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3603 list_splice(promote + i, &n->partial);
2086d26a 3604
2086d26a 3605 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3606
3607 /* Release empty slabs */
832f37f5 3608 list_for_each_entry_safe(page, t, &discard, lru)
69cb8e6b 3609 discard_slab(s, page);
ce3712d7
VD
3610
3611 if (slabs_node(s, node))
3612 ret = 1;
2086d26a
CL
3613 }
3614
ce3712d7 3615 return ret;
2086d26a 3616}
2086d26a 3617
b9049e23
YG
3618static int slab_mem_going_offline_callback(void *arg)
3619{
3620 struct kmem_cache *s;
3621
18004c5d 3622 mutex_lock(&slab_mutex);
b9049e23 3623 list_for_each_entry(s, &slab_caches, list)
d6e0b7fa 3624 __kmem_cache_shrink(s, false);
18004c5d 3625 mutex_unlock(&slab_mutex);
b9049e23
YG
3626
3627 return 0;
3628}
3629
3630static void slab_mem_offline_callback(void *arg)
3631{
3632 struct kmem_cache_node *n;
3633 struct kmem_cache *s;
3634 struct memory_notify *marg = arg;
3635 int offline_node;
3636
b9d5ab25 3637 offline_node = marg->status_change_nid_normal;
b9049e23
YG
3638
3639 /*
3640 * If the node still has available memory. we need kmem_cache_node
3641 * for it yet.
3642 */
3643 if (offline_node < 0)
3644 return;
3645
18004c5d 3646 mutex_lock(&slab_mutex);
b9049e23
YG
3647 list_for_each_entry(s, &slab_caches, list) {
3648 n = get_node(s, offline_node);
3649 if (n) {
3650 /*
3651 * if n->nr_slabs > 0, slabs still exist on the node
3652 * that is going down. We were unable to free them,
c9404c9c 3653 * and offline_pages() function shouldn't call this
b9049e23
YG
3654 * callback. So, we must fail.
3655 */
0f389ec6 3656 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3657
3658 s->node[offline_node] = NULL;
8de66a0c 3659 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3660 }
3661 }
18004c5d 3662 mutex_unlock(&slab_mutex);
b9049e23
YG
3663}
3664
3665static int slab_mem_going_online_callback(void *arg)
3666{
3667 struct kmem_cache_node *n;
3668 struct kmem_cache *s;
3669 struct memory_notify *marg = arg;
b9d5ab25 3670 int nid = marg->status_change_nid_normal;
b9049e23
YG
3671 int ret = 0;
3672
3673 /*
3674 * If the node's memory is already available, then kmem_cache_node is
3675 * already created. Nothing to do.
3676 */
3677 if (nid < 0)
3678 return 0;
3679
3680 /*
0121c619 3681 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3682 * allocate a kmem_cache_node structure in order to bring the node
3683 * online.
3684 */
18004c5d 3685 mutex_lock(&slab_mutex);
b9049e23
YG
3686 list_for_each_entry(s, &slab_caches, list) {
3687 /*
3688 * XXX: kmem_cache_alloc_node will fallback to other nodes
3689 * since memory is not yet available from the node that
3690 * is brought up.
3691 */
8de66a0c 3692 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3693 if (!n) {
3694 ret = -ENOMEM;
3695 goto out;
3696 }
4053497d 3697 init_kmem_cache_node(n);
b9049e23
YG
3698 s->node[nid] = n;
3699 }
3700out:
18004c5d 3701 mutex_unlock(&slab_mutex);
b9049e23
YG
3702 return ret;
3703}
3704
3705static int slab_memory_callback(struct notifier_block *self,
3706 unsigned long action, void *arg)
3707{
3708 int ret = 0;
3709
3710 switch (action) {
3711 case MEM_GOING_ONLINE:
3712 ret = slab_mem_going_online_callback(arg);
3713 break;
3714 case MEM_GOING_OFFLINE:
3715 ret = slab_mem_going_offline_callback(arg);
3716 break;
3717 case MEM_OFFLINE:
3718 case MEM_CANCEL_ONLINE:
3719 slab_mem_offline_callback(arg);
3720 break;
3721 case MEM_ONLINE:
3722 case MEM_CANCEL_OFFLINE:
3723 break;
3724 }
dc19f9db
KH
3725 if (ret)
3726 ret = notifier_from_errno(ret);
3727 else
3728 ret = NOTIFY_OK;
b9049e23
YG
3729 return ret;
3730}
3731
3ac38faa
AM
3732static struct notifier_block slab_memory_callback_nb = {
3733 .notifier_call = slab_memory_callback,
3734 .priority = SLAB_CALLBACK_PRI,
3735};
b9049e23 3736
81819f0f
CL
3737/********************************************************************
3738 * Basic setup of slabs
3739 *******************************************************************/
3740
51df1142
CL
3741/*
3742 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
3743 * the page allocator. Allocate them properly then fix up the pointers
3744 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
3745 */
3746
dffb4d60 3747static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
3748{
3749 int node;
dffb4d60 3750 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 3751 struct kmem_cache_node *n;
51df1142 3752
dffb4d60 3753 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 3754
7d557b3c
GC
3755 /*
3756 * This runs very early, and only the boot processor is supposed to be
3757 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3758 * IPIs around.
3759 */
3760 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 3761 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
3762 struct page *p;
3763
fa45dc25
CL
3764 list_for_each_entry(p, &n->partial, lru)
3765 p->slab_cache = s;
51df1142 3766
607bf324 3767#ifdef CONFIG_SLUB_DEBUG
fa45dc25
CL
3768 list_for_each_entry(p, &n->full, lru)
3769 p->slab_cache = s;
51df1142 3770#endif
51df1142 3771 }
f7ce3190 3772 slab_init_memcg_params(s);
dffb4d60
CL
3773 list_add(&s->list, &slab_caches);
3774 return s;
51df1142
CL
3775}
3776
81819f0f
CL
3777void __init kmem_cache_init(void)
3778{
dffb4d60
CL
3779 static __initdata struct kmem_cache boot_kmem_cache,
3780 boot_kmem_cache_node;
51df1142 3781
fc8d8620
SG
3782 if (debug_guardpage_minorder())
3783 slub_max_order = 0;
3784
dffb4d60
CL
3785 kmem_cache_node = &boot_kmem_cache_node;
3786 kmem_cache = &boot_kmem_cache;
51df1142 3787
dffb4d60
CL
3788 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3789 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 3790
3ac38faa 3791 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
3792
3793 /* Able to allocate the per node structures */
3794 slab_state = PARTIAL;
3795
dffb4d60
CL
3796 create_boot_cache(kmem_cache, "kmem_cache",
3797 offsetof(struct kmem_cache, node) +
3798 nr_node_ids * sizeof(struct kmem_cache_node *),
3799 SLAB_HWCACHE_ALIGN);
8a13a4cc 3800
dffb4d60 3801 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 3802
51df1142
CL
3803 /*
3804 * Allocate kmem_cache_node properly from the kmem_cache slab.
3805 * kmem_cache_node is separately allocated so no need to
3806 * update any list pointers.
3807 */
dffb4d60 3808 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
3809
3810 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 3811 setup_kmalloc_cache_index_table();
f97d5f63 3812 create_kmalloc_caches(0);
81819f0f
CL
3813
3814#ifdef CONFIG_SMP
3815 register_cpu_notifier(&slab_notifier);
9dfc6e68 3816#endif
81819f0f 3817
f9f58285 3818 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
f97d5f63 3819 cache_line_size(),
81819f0f
CL
3820 slub_min_order, slub_max_order, slub_min_objects,
3821 nr_cpu_ids, nr_node_ids);
3822}
3823
7e85ee0c
PE
3824void __init kmem_cache_init_late(void)
3825{
7e85ee0c
PE
3826}
3827
2633d7a0 3828struct kmem_cache *
a44cb944
VD
3829__kmem_cache_alias(const char *name, size_t size, size_t align,
3830 unsigned long flags, void (*ctor)(void *))
81819f0f 3831{
426589f5 3832 struct kmem_cache *s, *c;
81819f0f 3833
a44cb944 3834 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3835 if (s) {
3836 s->refcount++;
84d0ddd6 3837
81819f0f
CL
3838 /*
3839 * Adjust the object sizes so that we clear
3840 * the complete object on kzalloc.
3841 */
3b0efdfa 3842 s->object_size = max(s->object_size, (int)size);
81819f0f 3843 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3844
426589f5 3845 for_each_memcg_cache(c, s) {
84d0ddd6
VD
3846 c->object_size = s->object_size;
3847 c->inuse = max_t(int, c->inuse,
3848 ALIGN(size, sizeof(void *)));
3849 }
3850
7b8f3b66 3851 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3852 s->refcount--;
cbb79694 3853 s = NULL;
7b8f3b66 3854 }
a0e1d1be 3855 }
6446faa2 3856
cbb79694
CL
3857 return s;
3858}
84c1cf62 3859
8a13a4cc 3860int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 3861{
aac3a166
PE
3862 int err;
3863
3864 err = kmem_cache_open(s, flags);
3865 if (err)
3866 return err;
20cea968 3867
45530c44
CL
3868 /* Mutex is not taken during early boot */
3869 if (slab_state <= UP)
3870 return 0;
3871
107dab5c 3872 memcg_propagate_slab_attrs(s);
aac3a166 3873 err = sysfs_slab_add(s);
aac3a166
PE
3874 if (err)
3875 kmem_cache_close(s);
20cea968 3876
aac3a166 3877 return err;
81819f0f 3878}
81819f0f 3879
81819f0f 3880#ifdef CONFIG_SMP
81819f0f 3881/*
672bba3a
CL
3882 * Use the cpu notifier to insure that the cpu slabs are flushed when
3883 * necessary.
81819f0f 3884 */
0db0628d 3885static int slab_cpuup_callback(struct notifier_block *nfb,
81819f0f
CL
3886 unsigned long action, void *hcpu)
3887{
3888 long cpu = (long)hcpu;
5b95a4ac
CL
3889 struct kmem_cache *s;
3890 unsigned long flags;
81819f0f
CL
3891
3892 switch (action) {
3893 case CPU_UP_CANCELED:
8bb78442 3894 case CPU_UP_CANCELED_FROZEN:
81819f0f 3895 case CPU_DEAD:
8bb78442 3896 case CPU_DEAD_FROZEN:
18004c5d 3897 mutex_lock(&slab_mutex);
5b95a4ac
CL
3898 list_for_each_entry(s, &slab_caches, list) {
3899 local_irq_save(flags);
3900 __flush_cpu_slab(s, cpu);
3901 local_irq_restore(flags);
3902 }
18004c5d 3903 mutex_unlock(&slab_mutex);
81819f0f
CL
3904 break;
3905 default:
3906 break;
3907 }
3908 return NOTIFY_OK;
3909}
3910
0db0628d 3911static struct notifier_block slab_notifier = {
3adbefee 3912 .notifier_call = slab_cpuup_callback
06428780 3913};
81819f0f
CL
3914
3915#endif
3916
ce71e27c 3917void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3918{
aadb4bc4 3919 struct kmem_cache *s;
94b528d0 3920 void *ret;
aadb4bc4 3921
95a05b42 3922 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
3923 return kmalloc_large(size, gfpflags);
3924
2c59dd65 3925 s = kmalloc_slab(size, gfpflags);
81819f0f 3926
2408c550 3927 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3928 return s;
81819f0f 3929
2b847c3c 3930 ret = slab_alloc(s, gfpflags, caller);
94b528d0 3931
25985edc 3932 /* Honor the call site pointer we received. */
ca2b84cb 3933 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3934
3935 return ret;
81819f0f
CL
3936}
3937
5d1f57e4 3938#ifdef CONFIG_NUMA
81819f0f 3939void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3940 int node, unsigned long caller)
81819f0f 3941{
aadb4bc4 3942 struct kmem_cache *s;
94b528d0 3943 void *ret;
aadb4bc4 3944
95a05b42 3945 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
3946 ret = kmalloc_large_node(size, gfpflags, node);
3947
3948 trace_kmalloc_node(caller, ret,
3949 size, PAGE_SIZE << get_order(size),
3950 gfpflags, node);
3951
3952 return ret;
3953 }
eada35ef 3954
2c59dd65 3955 s = kmalloc_slab(size, gfpflags);
81819f0f 3956
2408c550 3957 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3958 return s;
81819f0f 3959
2b847c3c 3960 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 3961
25985edc 3962 /* Honor the call site pointer we received. */
ca2b84cb 3963 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3964
3965 return ret;
81819f0f 3966}
5d1f57e4 3967#endif
81819f0f 3968
ab4d5ed5 3969#ifdef CONFIG_SYSFS
205ab99d
CL
3970static int count_inuse(struct page *page)
3971{
3972 return page->inuse;
3973}
3974
3975static int count_total(struct page *page)
3976{
3977 return page->objects;
3978}
ab4d5ed5 3979#endif
205ab99d 3980
ab4d5ed5 3981#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3982static int validate_slab(struct kmem_cache *s, struct page *page,
3983 unsigned long *map)
53e15af0
CL
3984{
3985 void *p;
a973e9dd 3986 void *addr = page_address(page);
53e15af0
CL
3987
3988 if (!check_slab(s, page) ||
3989 !on_freelist(s, page, NULL))
3990 return 0;
3991
3992 /* Now we know that a valid freelist exists */
39b26464 3993 bitmap_zero(map, page->objects);
53e15af0 3994
5f80b13a
CL
3995 get_map(s, page, map);
3996 for_each_object(p, s, addr, page->objects) {
3997 if (test_bit(slab_index(p, s, addr), map))
3998 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3999 return 0;
53e15af0
CL
4000 }
4001
224a88be 4002 for_each_object(p, s, addr, page->objects)
7656c72b 4003 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4004 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4005 return 0;
4006 return 1;
4007}
4008
434e245d
CL
4009static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4010 unsigned long *map)
53e15af0 4011{
881db7fb
CL
4012 slab_lock(page);
4013 validate_slab(s, page, map);
4014 slab_unlock(page);
53e15af0
CL
4015}
4016
434e245d
CL
4017static int validate_slab_node(struct kmem_cache *s,
4018 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4019{
4020 unsigned long count = 0;
4021 struct page *page;
4022 unsigned long flags;
4023
4024 spin_lock_irqsave(&n->list_lock, flags);
4025
4026 list_for_each_entry(page, &n->partial, lru) {
434e245d 4027 validate_slab_slab(s, page, map);
53e15af0
CL
4028 count++;
4029 }
4030 if (count != n->nr_partial)
f9f58285
FF
4031 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4032 s->name, count, n->nr_partial);
53e15af0
CL
4033
4034 if (!(s->flags & SLAB_STORE_USER))
4035 goto out;
4036
4037 list_for_each_entry(page, &n->full, lru) {
434e245d 4038 validate_slab_slab(s, page, map);
53e15af0
CL
4039 count++;
4040 }
4041 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4042 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4043 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4044
4045out:
4046 spin_unlock_irqrestore(&n->list_lock, flags);
4047 return count;
4048}
4049
434e245d 4050static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4051{
4052 int node;
4053 unsigned long count = 0;
205ab99d 4054 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d 4055 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4056 struct kmem_cache_node *n;
434e245d
CL
4057
4058 if (!map)
4059 return -ENOMEM;
53e15af0
CL
4060
4061 flush_all(s);
fa45dc25 4062 for_each_kmem_cache_node(s, node, n)
434e245d 4063 count += validate_slab_node(s, n, map);
434e245d 4064 kfree(map);
53e15af0
CL
4065 return count;
4066}
88a420e4 4067/*
672bba3a 4068 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4069 * and freed.
4070 */
4071
4072struct location {
4073 unsigned long count;
ce71e27c 4074 unsigned long addr;
45edfa58
CL
4075 long long sum_time;
4076 long min_time;
4077 long max_time;
4078 long min_pid;
4079 long max_pid;
174596a0 4080 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4081 nodemask_t nodes;
88a420e4
CL
4082};
4083
4084struct loc_track {
4085 unsigned long max;
4086 unsigned long count;
4087 struct location *loc;
4088};
4089
4090static void free_loc_track(struct loc_track *t)
4091{
4092 if (t->max)
4093 free_pages((unsigned long)t->loc,
4094 get_order(sizeof(struct location) * t->max));
4095}
4096
68dff6a9 4097static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4098{
4099 struct location *l;
4100 int order;
4101
88a420e4
CL
4102 order = get_order(sizeof(struct location) * max);
4103
68dff6a9 4104 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4105 if (!l)
4106 return 0;
4107
4108 if (t->count) {
4109 memcpy(l, t->loc, sizeof(struct location) * t->count);
4110 free_loc_track(t);
4111 }
4112 t->max = max;
4113 t->loc = l;
4114 return 1;
4115}
4116
4117static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4118 const struct track *track)
88a420e4
CL
4119{
4120 long start, end, pos;
4121 struct location *l;
ce71e27c 4122 unsigned long caddr;
45edfa58 4123 unsigned long age = jiffies - track->when;
88a420e4
CL
4124
4125 start = -1;
4126 end = t->count;
4127
4128 for ( ; ; ) {
4129 pos = start + (end - start + 1) / 2;
4130
4131 /*
4132 * There is nothing at "end". If we end up there
4133 * we need to add something to before end.
4134 */
4135 if (pos == end)
4136 break;
4137
4138 caddr = t->loc[pos].addr;
45edfa58
CL
4139 if (track->addr == caddr) {
4140
4141 l = &t->loc[pos];
4142 l->count++;
4143 if (track->when) {
4144 l->sum_time += age;
4145 if (age < l->min_time)
4146 l->min_time = age;
4147 if (age > l->max_time)
4148 l->max_time = age;
4149
4150 if (track->pid < l->min_pid)
4151 l->min_pid = track->pid;
4152 if (track->pid > l->max_pid)
4153 l->max_pid = track->pid;
4154
174596a0
RR
4155 cpumask_set_cpu(track->cpu,
4156 to_cpumask(l->cpus));
45edfa58
CL
4157 }
4158 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4159 return 1;
4160 }
4161
45edfa58 4162 if (track->addr < caddr)
88a420e4
CL
4163 end = pos;
4164 else
4165 start = pos;
4166 }
4167
4168 /*
672bba3a 4169 * Not found. Insert new tracking element.
88a420e4 4170 */
68dff6a9 4171 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4172 return 0;
4173
4174 l = t->loc + pos;
4175 if (pos < t->count)
4176 memmove(l + 1, l,
4177 (t->count - pos) * sizeof(struct location));
4178 t->count++;
4179 l->count = 1;
45edfa58
CL
4180 l->addr = track->addr;
4181 l->sum_time = age;
4182 l->min_time = age;
4183 l->max_time = age;
4184 l->min_pid = track->pid;
4185 l->max_pid = track->pid;
174596a0
RR
4186 cpumask_clear(to_cpumask(l->cpus));
4187 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4188 nodes_clear(l->nodes);
4189 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4190 return 1;
4191}
4192
4193static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4194 struct page *page, enum track_item alloc,
a5dd5c11 4195 unsigned long *map)
88a420e4 4196{
a973e9dd 4197 void *addr = page_address(page);
88a420e4
CL
4198 void *p;
4199
39b26464 4200 bitmap_zero(map, page->objects);
5f80b13a 4201 get_map(s, page, map);
88a420e4 4202
224a88be 4203 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4204 if (!test_bit(slab_index(p, s, addr), map))
4205 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4206}
4207
4208static int list_locations(struct kmem_cache *s, char *buf,
4209 enum track_item alloc)
4210{
e374d483 4211 int len = 0;
88a420e4 4212 unsigned long i;
68dff6a9 4213 struct loc_track t = { 0, 0, NULL };
88a420e4 4214 int node;
bbd7d57b
ED
4215 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4216 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4217 struct kmem_cache_node *n;
88a420e4 4218
bbd7d57b
ED
4219 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4220 GFP_TEMPORARY)) {
4221 kfree(map);
68dff6a9 4222 return sprintf(buf, "Out of memory\n");
bbd7d57b 4223 }
88a420e4
CL
4224 /* Push back cpu slabs */
4225 flush_all(s);
4226
fa45dc25 4227 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4228 unsigned long flags;
4229 struct page *page;
4230
9e86943b 4231 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4232 continue;
4233
4234 spin_lock_irqsave(&n->list_lock, flags);
4235 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4236 process_slab(&t, s, page, alloc, map);
88a420e4 4237 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4238 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4239 spin_unlock_irqrestore(&n->list_lock, flags);
4240 }
4241
4242 for (i = 0; i < t.count; i++) {
45edfa58 4243 struct location *l = &t.loc[i];
88a420e4 4244
9c246247 4245 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4246 break;
e374d483 4247 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4248
4249 if (l->addr)
62c70bce 4250 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4251 else
e374d483 4252 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4253
4254 if (l->sum_time != l->min_time) {
e374d483 4255 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4256 l->min_time,
4257 (long)div_u64(l->sum_time, l->count),
4258 l->max_time);
45edfa58 4259 } else
e374d483 4260 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4261 l->min_time);
4262
4263 if (l->min_pid != l->max_pid)
e374d483 4264 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4265 l->min_pid, l->max_pid);
4266 else
e374d483 4267 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4268 l->min_pid);
4269
174596a0
RR
4270 if (num_online_cpus() > 1 &&
4271 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4272 len < PAGE_SIZE - 60)
4273 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4274 " cpus=%*pbl",
4275 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4276
62bc62a8 4277 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4278 len < PAGE_SIZE - 60)
4279 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4280 " nodes=%*pbl",
4281 nodemask_pr_args(&l->nodes));
45edfa58 4282
e374d483 4283 len += sprintf(buf + len, "\n");
88a420e4
CL
4284 }
4285
4286 free_loc_track(&t);
bbd7d57b 4287 kfree(map);
88a420e4 4288 if (!t.count)
e374d483
HH
4289 len += sprintf(buf, "No data\n");
4290 return len;
88a420e4 4291}
ab4d5ed5 4292#endif
88a420e4 4293
a5a84755 4294#ifdef SLUB_RESILIENCY_TEST
c07b8183 4295static void __init resiliency_test(void)
a5a84755
CL
4296{
4297 u8 *p;
4298
95a05b42 4299 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4300
f9f58285
FF
4301 pr_err("SLUB resiliency testing\n");
4302 pr_err("-----------------------\n");
4303 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4304
4305 p = kzalloc(16, GFP_KERNEL);
4306 p[16] = 0x12;
f9f58285
FF
4307 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4308 p + 16);
a5a84755
CL
4309
4310 validate_slab_cache(kmalloc_caches[4]);
4311
4312 /* Hmmm... The next two are dangerous */
4313 p = kzalloc(32, GFP_KERNEL);
4314 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4315 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4316 p);
4317 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4318
4319 validate_slab_cache(kmalloc_caches[5]);
4320 p = kzalloc(64, GFP_KERNEL);
4321 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4322 *p = 0x56;
f9f58285
FF
4323 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4324 p);
4325 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4326 validate_slab_cache(kmalloc_caches[6]);
4327
f9f58285 4328 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4329 p = kzalloc(128, GFP_KERNEL);
4330 kfree(p);
4331 *p = 0x78;
f9f58285 4332 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a5a84755
CL
4333 validate_slab_cache(kmalloc_caches[7]);
4334
4335 p = kzalloc(256, GFP_KERNEL);
4336 kfree(p);
4337 p[50] = 0x9a;
f9f58285 4338 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
a5a84755
CL
4339 validate_slab_cache(kmalloc_caches[8]);
4340
4341 p = kzalloc(512, GFP_KERNEL);
4342 kfree(p);
4343 p[512] = 0xab;
f9f58285 4344 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a5a84755
CL
4345 validate_slab_cache(kmalloc_caches[9]);
4346}
4347#else
4348#ifdef CONFIG_SYSFS
4349static void resiliency_test(void) {};
4350#endif
4351#endif
4352
ab4d5ed5 4353#ifdef CONFIG_SYSFS
81819f0f 4354enum slab_stat_type {
205ab99d
CL
4355 SL_ALL, /* All slabs */
4356 SL_PARTIAL, /* Only partially allocated slabs */
4357 SL_CPU, /* Only slabs used for cpu caches */
4358 SL_OBJECTS, /* Determine allocated objects not slabs */
4359 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4360};
4361
205ab99d 4362#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4363#define SO_PARTIAL (1 << SL_PARTIAL)
4364#define SO_CPU (1 << SL_CPU)
4365#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4366#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4367
62e5c4b4
CG
4368static ssize_t show_slab_objects(struct kmem_cache *s,
4369 char *buf, unsigned long flags)
81819f0f
CL
4370{
4371 unsigned long total = 0;
81819f0f
CL
4372 int node;
4373 int x;
4374 unsigned long *nodes;
81819f0f 4375
e35e1a97 4376 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4377 if (!nodes)
4378 return -ENOMEM;
81819f0f 4379
205ab99d
CL
4380 if (flags & SO_CPU) {
4381 int cpu;
81819f0f 4382
205ab99d 4383 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4384 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4385 cpu);
ec3ab083 4386 int node;
49e22585 4387 struct page *page;
dfb4f096 4388
4db0c3c2 4389 page = READ_ONCE(c->page);
ec3ab083
CL
4390 if (!page)
4391 continue;
205ab99d 4392
ec3ab083
CL
4393 node = page_to_nid(page);
4394 if (flags & SO_TOTAL)
4395 x = page->objects;
4396 else if (flags & SO_OBJECTS)
4397 x = page->inuse;
4398 else
4399 x = 1;
49e22585 4400
ec3ab083
CL
4401 total += x;
4402 nodes[node] += x;
4403
4db0c3c2 4404 page = READ_ONCE(c->partial);
49e22585 4405 if (page) {
8afb1474
LZ
4406 node = page_to_nid(page);
4407 if (flags & SO_TOTAL)
4408 WARN_ON_ONCE(1);
4409 else if (flags & SO_OBJECTS)
4410 WARN_ON_ONCE(1);
4411 else
4412 x = page->pages;
bc6697d8
ED
4413 total += x;
4414 nodes[node] += x;
49e22585 4415 }
81819f0f
CL
4416 }
4417 }
4418
bfc8c901 4419 get_online_mems();
ab4d5ed5 4420#ifdef CONFIG_SLUB_DEBUG
205ab99d 4421 if (flags & SO_ALL) {
fa45dc25
CL
4422 struct kmem_cache_node *n;
4423
4424 for_each_kmem_cache_node(s, node, n) {
205ab99d 4425
d0e0ac97
CG
4426 if (flags & SO_TOTAL)
4427 x = atomic_long_read(&n->total_objects);
4428 else if (flags & SO_OBJECTS)
4429 x = atomic_long_read(&n->total_objects) -
4430 count_partial(n, count_free);
81819f0f 4431 else
205ab99d 4432 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4433 total += x;
4434 nodes[node] += x;
4435 }
4436
ab4d5ed5
CL
4437 } else
4438#endif
4439 if (flags & SO_PARTIAL) {
fa45dc25 4440 struct kmem_cache_node *n;
81819f0f 4441
fa45dc25 4442 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4443 if (flags & SO_TOTAL)
4444 x = count_partial(n, count_total);
4445 else if (flags & SO_OBJECTS)
4446 x = count_partial(n, count_inuse);
81819f0f 4447 else
205ab99d 4448 x = n->nr_partial;
81819f0f
CL
4449 total += x;
4450 nodes[node] += x;
4451 }
4452 }
81819f0f
CL
4453 x = sprintf(buf, "%lu", total);
4454#ifdef CONFIG_NUMA
fa45dc25 4455 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4456 if (nodes[node])
4457 x += sprintf(buf + x, " N%d=%lu",
4458 node, nodes[node]);
4459#endif
bfc8c901 4460 put_online_mems();
81819f0f
CL
4461 kfree(nodes);
4462 return x + sprintf(buf + x, "\n");
4463}
4464
ab4d5ed5 4465#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4466static int any_slab_objects(struct kmem_cache *s)
4467{
4468 int node;
fa45dc25 4469 struct kmem_cache_node *n;
81819f0f 4470
fa45dc25 4471 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4472 if (atomic_long_read(&n->total_objects))
81819f0f 4473 return 1;
fa45dc25 4474
81819f0f
CL
4475 return 0;
4476}
ab4d5ed5 4477#endif
81819f0f
CL
4478
4479#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4480#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4481
4482struct slab_attribute {
4483 struct attribute attr;
4484 ssize_t (*show)(struct kmem_cache *s, char *buf);
4485 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4486};
4487
4488#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4489 static struct slab_attribute _name##_attr = \
4490 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4491
4492#define SLAB_ATTR(_name) \
4493 static struct slab_attribute _name##_attr = \
ab067e99 4494 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4495
81819f0f
CL
4496static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4497{
4498 return sprintf(buf, "%d\n", s->size);
4499}
4500SLAB_ATTR_RO(slab_size);
4501
4502static ssize_t align_show(struct kmem_cache *s, char *buf)
4503{
4504 return sprintf(buf, "%d\n", s->align);
4505}
4506SLAB_ATTR_RO(align);
4507
4508static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4509{
3b0efdfa 4510 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4511}
4512SLAB_ATTR_RO(object_size);
4513
4514static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4515{
834f3d11 4516 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4517}
4518SLAB_ATTR_RO(objs_per_slab);
4519
06b285dc
CL
4520static ssize_t order_store(struct kmem_cache *s,
4521 const char *buf, size_t length)
4522{
0121c619
CL
4523 unsigned long order;
4524 int err;
4525
3dbb95f7 4526 err = kstrtoul(buf, 10, &order);
0121c619
CL
4527 if (err)
4528 return err;
06b285dc
CL
4529
4530 if (order > slub_max_order || order < slub_min_order)
4531 return -EINVAL;
4532
4533 calculate_sizes(s, order);
4534 return length;
4535}
4536
81819f0f
CL
4537static ssize_t order_show(struct kmem_cache *s, char *buf)
4538{
834f3d11 4539 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4540}
06b285dc 4541SLAB_ATTR(order);
81819f0f 4542
73d342b1
DR
4543static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4544{
4545 return sprintf(buf, "%lu\n", s->min_partial);
4546}
4547
4548static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4549 size_t length)
4550{
4551 unsigned long min;
4552 int err;
4553
3dbb95f7 4554 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4555 if (err)
4556 return err;
4557
c0bdb232 4558 set_min_partial(s, min);
73d342b1
DR
4559 return length;
4560}
4561SLAB_ATTR(min_partial);
4562
49e22585
CL
4563static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4564{
4565 return sprintf(buf, "%u\n", s->cpu_partial);
4566}
4567
4568static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4569 size_t length)
4570{
4571 unsigned long objects;
4572 int err;
4573
3dbb95f7 4574 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4575 if (err)
4576 return err;
345c905d 4577 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4578 return -EINVAL;
49e22585
CL
4579
4580 s->cpu_partial = objects;
4581 flush_all(s);
4582 return length;
4583}
4584SLAB_ATTR(cpu_partial);
4585
81819f0f
CL
4586static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4587{
62c70bce
JP
4588 if (!s->ctor)
4589 return 0;
4590 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4591}
4592SLAB_ATTR_RO(ctor);
4593
81819f0f
CL
4594static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4595{
4307c14f 4596 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
4597}
4598SLAB_ATTR_RO(aliases);
4599
81819f0f
CL
4600static ssize_t partial_show(struct kmem_cache *s, char *buf)
4601{
d9acf4b7 4602 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4603}
4604SLAB_ATTR_RO(partial);
4605
4606static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4607{
d9acf4b7 4608 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4609}
4610SLAB_ATTR_RO(cpu_slabs);
4611
4612static ssize_t objects_show(struct kmem_cache *s, char *buf)
4613{
205ab99d 4614 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4615}
4616SLAB_ATTR_RO(objects);
4617
205ab99d
CL
4618static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4619{
4620 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4621}
4622SLAB_ATTR_RO(objects_partial);
4623
49e22585
CL
4624static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4625{
4626 int objects = 0;
4627 int pages = 0;
4628 int cpu;
4629 int len;
4630
4631 for_each_online_cpu(cpu) {
4632 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4633
4634 if (page) {
4635 pages += page->pages;
4636 objects += page->pobjects;
4637 }
4638 }
4639
4640 len = sprintf(buf, "%d(%d)", objects, pages);
4641
4642#ifdef CONFIG_SMP
4643 for_each_online_cpu(cpu) {
4644 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4645
4646 if (page && len < PAGE_SIZE - 20)
4647 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4648 page->pobjects, page->pages);
4649 }
4650#endif
4651 return len + sprintf(buf + len, "\n");
4652}
4653SLAB_ATTR_RO(slabs_cpu_partial);
4654
a5a84755
CL
4655static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4656{
4657 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4658}
4659
4660static ssize_t reclaim_account_store(struct kmem_cache *s,
4661 const char *buf, size_t length)
4662{
4663 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4664 if (buf[0] == '1')
4665 s->flags |= SLAB_RECLAIM_ACCOUNT;
4666 return length;
4667}
4668SLAB_ATTR(reclaim_account);
4669
4670static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4671{
4672 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4673}
4674SLAB_ATTR_RO(hwcache_align);
4675
4676#ifdef CONFIG_ZONE_DMA
4677static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4678{
4679 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4680}
4681SLAB_ATTR_RO(cache_dma);
4682#endif
4683
4684static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4685{
4686 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4687}
4688SLAB_ATTR_RO(destroy_by_rcu);
4689
ab9a0f19
LJ
4690static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4691{
4692 return sprintf(buf, "%d\n", s->reserved);
4693}
4694SLAB_ATTR_RO(reserved);
4695
ab4d5ed5 4696#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4697static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4698{
4699 return show_slab_objects(s, buf, SO_ALL);
4700}
4701SLAB_ATTR_RO(slabs);
4702
205ab99d
CL
4703static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4704{
4705 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4706}
4707SLAB_ATTR_RO(total_objects);
4708
81819f0f
CL
4709static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4710{
4711 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4712}
4713
4714static ssize_t sanity_checks_store(struct kmem_cache *s,
4715 const char *buf, size_t length)
4716{
4717 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4718 if (buf[0] == '1') {
4719 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4720 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4721 }
81819f0f
CL
4722 return length;
4723}
4724SLAB_ATTR(sanity_checks);
4725
4726static ssize_t trace_show(struct kmem_cache *s, char *buf)
4727{
4728 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4729}
4730
4731static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4732 size_t length)
4733{
c9e16131
CL
4734 /*
4735 * Tracing a merged cache is going to give confusing results
4736 * as well as cause other issues like converting a mergeable
4737 * cache into an umergeable one.
4738 */
4739 if (s->refcount > 1)
4740 return -EINVAL;
4741
81819f0f 4742 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4743 if (buf[0] == '1') {
4744 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4745 s->flags |= SLAB_TRACE;
b789ef51 4746 }
81819f0f
CL
4747 return length;
4748}
4749SLAB_ATTR(trace);
4750
81819f0f
CL
4751static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4752{
4753 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4754}
4755
4756static ssize_t red_zone_store(struct kmem_cache *s,
4757 const char *buf, size_t length)
4758{
4759 if (any_slab_objects(s))
4760 return -EBUSY;
4761
4762 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4763 if (buf[0] == '1') {
4764 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4765 s->flags |= SLAB_RED_ZONE;
b789ef51 4766 }
06b285dc 4767 calculate_sizes(s, -1);
81819f0f
CL
4768 return length;
4769}
4770SLAB_ATTR(red_zone);
4771
4772static ssize_t poison_show(struct kmem_cache *s, char *buf)
4773{
4774 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4775}
4776
4777static ssize_t poison_store(struct kmem_cache *s,
4778 const char *buf, size_t length)
4779{
4780 if (any_slab_objects(s))
4781 return -EBUSY;
4782
4783 s->flags &= ~SLAB_POISON;
b789ef51
CL
4784 if (buf[0] == '1') {
4785 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4786 s->flags |= SLAB_POISON;
b789ef51 4787 }
06b285dc 4788 calculate_sizes(s, -1);
81819f0f
CL
4789 return length;
4790}
4791SLAB_ATTR(poison);
4792
4793static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4794{
4795 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4796}
4797
4798static ssize_t store_user_store(struct kmem_cache *s,
4799 const char *buf, size_t length)
4800{
4801 if (any_slab_objects(s))
4802 return -EBUSY;
4803
4804 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4805 if (buf[0] == '1') {
4806 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4807 s->flags |= SLAB_STORE_USER;
b789ef51 4808 }
06b285dc 4809 calculate_sizes(s, -1);
81819f0f
CL
4810 return length;
4811}
4812SLAB_ATTR(store_user);
4813
53e15af0
CL
4814static ssize_t validate_show(struct kmem_cache *s, char *buf)
4815{
4816 return 0;
4817}
4818
4819static ssize_t validate_store(struct kmem_cache *s,
4820 const char *buf, size_t length)
4821{
434e245d
CL
4822 int ret = -EINVAL;
4823
4824 if (buf[0] == '1') {
4825 ret = validate_slab_cache(s);
4826 if (ret >= 0)
4827 ret = length;
4828 }
4829 return ret;
53e15af0
CL
4830}
4831SLAB_ATTR(validate);
a5a84755
CL
4832
4833static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4834{
4835 if (!(s->flags & SLAB_STORE_USER))
4836 return -ENOSYS;
4837 return list_locations(s, buf, TRACK_ALLOC);
4838}
4839SLAB_ATTR_RO(alloc_calls);
4840
4841static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4842{
4843 if (!(s->flags & SLAB_STORE_USER))
4844 return -ENOSYS;
4845 return list_locations(s, buf, TRACK_FREE);
4846}
4847SLAB_ATTR_RO(free_calls);
4848#endif /* CONFIG_SLUB_DEBUG */
4849
4850#ifdef CONFIG_FAILSLAB
4851static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4852{
4853 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4854}
4855
4856static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4857 size_t length)
4858{
c9e16131
CL
4859 if (s->refcount > 1)
4860 return -EINVAL;
4861
a5a84755
CL
4862 s->flags &= ~SLAB_FAILSLAB;
4863 if (buf[0] == '1')
4864 s->flags |= SLAB_FAILSLAB;
4865 return length;
4866}
4867SLAB_ATTR(failslab);
ab4d5ed5 4868#endif
53e15af0 4869
2086d26a
CL
4870static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4871{
4872 return 0;
4873}
4874
4875static ssize_t shrink_store(struct kmem_cache *s,
4876 const char *buf, size_t length)
4877{
832f37f5
VD
4878 if (buf[0] == '1')
4879 kmem_cache_shrink(s);
4880 else
2086d26a
CL
4881 return -EINVAL;
4882 return length;
4883}
4884SLAB_ATTR(shrink);
4885
81819f0f 4886#ifdef CONFIG_NUMA
9824601e 4887static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4888{
9824601e 4889 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4890}
4891
9824601e 4892static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4893 const char *buf, size_t length)
4894{
0121c619
CL
4895 unsigned long ratio;
4896 int err;
4897
3dbb95f7 4898 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
4899 if (err)
4900 return err;
4901
e2cb96b7 4902 if (ratio <= 100)
0121c619 4903 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4904
81819f0f
CL
4905 return length;
4906}
9824601e 4907SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4908#endif
4909
8ff12cfc 4910#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4911static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4912{
4913 unsigned long sum = 0;
4914 int cpu;
4915 int len;
4916 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4917
4918 if (!data)
4919 return -ENOMEM;
4920
4921 for_each_online_cpu(cpu) {
9dfc6e68 4922 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4923
4924 data[cpu] = x;
4925 sum += x;
4926 }
4927
4928 len = sprintf(buf, "%lu", sum);
4929
50ef37b9 4930#ifdef CONFIG_SMP
8ff12cfc
CL
4931 for_each_online_cpu(cpu) {
4932 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4933 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4934 }
50ef37b9 4935#endif
8ff12cfc
CL
4936 kfree(data);
4937 return len + sprintf(buf + len, "\n");
4938}
4939
78eb00cc
DR
4940static void clear_stat(struct kmem_cache *s, enum stat_item si)
4941{
4942 int cpu;
4943
4944 for_each_online_cpu(cpu)
9dfc6e68 4945 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4946}
4947
8ff12cfc
CL
4948#define STAT_ATTR(si, text) \
4949static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4950{ \
4951 return show_stat(s, buf, si); \
4952} \
78eb00cc
DR
4953static ssize_t text##_store(struct kmem_cache *s, \
4954 const char *buf, size_t length) \
4955{ \
4956 if (buf[0] != '0') \
4957 return -EINVAL; \
4958 clear_stat(s, si); \
4959 return length; \
4960} \
4961SLAB_ATTR(text); \
8ff12cfc
CL
4962
4963STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4964STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4965STAT_ATTR(FREE_FASTPATH, free_fastpath);
4966STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4967STAT_ATTR(FREE_FROZEN, free_frozen);
4968STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4969STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4970STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4971STAT_ATTR(ALLOC_SLAB, alloc_slab);
4972STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 4973STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
4974STAT_ATTR(FREE_SLAB, free_slab);
4975STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4976STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4977STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4978STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4979STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4980STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 4981STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 4982STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
4983STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4984STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
4985STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4986STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
4987STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4988STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
4989#endif
4990
06428780 4991static struct attribute *slab_attrs[] = {
81819f0f
CL
4992 &slab_size_attr.attr,
4993 &object_size_attr.attr,
4994 &objs_per_slab_attr.attr,
4995 &order_attr.attr,
73d342b1 4996 &min_partial_attr.attr,
49e22585 4997 &cpu_partial_attr.attr,
81819f0f 4998 &objects_attr.attr,
205ab99d 4999 &objects_partial_attr.attr,
81819f0f
CL
5000 &partial_attr.attr,
5001 &cpu_slabs_attr.attr,
5002 &ctor_attr.attr,
81819f0f
CL
5003 &aliases_attr.attr,
5004 &align_attr.attr,
81819f0f
CL
5005 &hwcache_align_attr.attr,
5006 &reclaim_account_attr.attr,
5007 &destroy_by_rcu_attr.attr,
a5a84755 5008 &shrink_attr.attr,
ab9a0f19 5009 &reserved_attr.attr,
49e22585 5010 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5011#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5012 &total_objects_attr.attr,
5013 &slabs_attr.attr,
5014 &sanity_checks_attr.attr,
5015 &trace_attr.attr,
81819f0f
CL
5016 &red_zone_attr.attr,
5017 &poison_attr.attr,
5018 &store_user_attr.attr,
53e15af0 5019 &validate_attr.attr,
88a420e4
CL
5020 &alloc_calls_attr.attr,
5021 &free_calls_attr.attr,
ab4d5ed5 5022#endif
81819f0f
CL
5023#ifdef CONFIG_ZONE_DMA
5024 &cache_dma_attr.attr,
5025#endif
5026#ifdef CONFIG_NUMA
9824601e 5027 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5028#endif
5029#ifdef CONFIG_SLUB_STATS
5030 &alloc_fastpath_attr.attr,
5031 &alloc_slowpath_attr.attr,
5032 &free_fastpath_attr.attr,
5033 &free_slowpath_attr.attr,
5034 &free_frozen_attr.attr,
5035 &free_add_partial_attr.attr,
5036 &free_remove_partial_attr.attr,
5037 &alloc_from_partial_attr.attr,
5038 &alloc_slab_attr.attr,
5039 &alloc_refill_attr.attr,
e36a2652 5040 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5041 &free_slab_attr.attr,
5042 &cpuslab_flush_attr.attr,
5043 &deactivate_full_attr.attr,
5044 &deactivate_empty_attr.attr,
5045 &deactivate_to_head_attr.attr,
5046 &deactivate_to_tail_attr.attr,
5047 &deactivate_remote_frees_attr.attr,
03e404af 5048 &deactivate_bypass_attr.attr,
65c3376a 5049 &order_fallback_attr.attr,
b789ef51
CL
5050 &cmpxchg_double_fail_attr.attr,
5051 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5052 &cpu_partial_alloc_attr.attr,
5053 &cpu_partial_free_attr.attr,
8028dcea
AS
5054 &cpu_partial_node_attr.attr,
5055 &cpu_partial_drain_attr.attr,
81819f0f 5056#endif
4c13dd3b
DM
5057#ifdef CONFIG_FAILSLAB
5058 &failslab_attr.attr,
5059#endif
5060
81819f0f
CL
5061 NULL
5062};
5063
5064static struct attribute_group slab_attr_group = {
5065 .attrs = slab_attrs,
5066};
5067
5068static ssize_t slab_attr_show(struct kobject *kobj,
5069 struct attribute *attr,
5070 char *buf)
5071{
5072 struct slab_attribute *attribute;
5073 struct kmem_cache *s;
5074 int err;
5075
5076 attribute = to_slab_attr(attr);
5077 s = to_slab(kobj);
5078
5079 if (!attribute->show)
5080 return -EIO;
5081
5082 err = attribute->show(s, buf);
5083
5084 return err;
5085}
5086
5087static ssize_t slab_attr_store(struct kobject *kobj,
5088 struct attribute *attr,
5089 const char *buf, size_t len)
5090{
5091 struct slab_attribute *attribute;
5092 struct kmem_cache *s;
5093 int err;
5094
5095 attribute = to_slab_attr(attr);
5096 s = to_slab(kobj);
5097
5098 if (!attribute->store)
5099 return -EIO;
5100
5101 err = attribute->store(s, buf, len);
107dab5c
GC
5102#ifdef CONFIG_MEMCG_KMEM
5103 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5104 struct kmem_cache *c;
81819f0f 5105
107dab5c
GC
5106 mutex_lock(&slab_mutex);
5107 if (s->max_attr_size < len)
5108 s->max_attr_size = len;
5109
ebe945c2
GC
5110 /*
5111 * This is a best effort propagation, so this function's return
5112 * value will be determined by the parent cache only. This is
5113 * basically because not all attributes will have a well
5114 * defined semantics for rollbacks - most of the actions will
5115 * have permanent effects.
5116 *
5117 * Returning the error value of any of the children that fail
5118 * is not 100 % defined, in the sense that users seeing the
5119 * error code won't be able to know anything about the state of
5120 * the cache.
5121 *
5122 * Only returning the error code for the parent cache at least
5123 * has well defined semantics. The cache being written to
5124 * directly either failed or succeeded, in which case we loop
5125 * through the descendants with best-effort propagation.
5126 */
426589f5
VD
5127 for_each_memcg_cache(c, s)
5128 attribute->store(c, buf, len);
107dab5c
GC
5129 mutex_unlock(&slab_mutex);
5130 }
5131#endif
81819f0f
CL
5132 return err;
5133}
5134
107dab5c
GC
5135static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5136{
5137#ifdef CONFIG_MEMCG_KMEM
5138 int i;
5139 char *buffer = NULL;
93030d83 5140 struct kmem_cache *root_cache;
107dab5c 5141
93030d83 5142 if (is_root_cache(s))
107dab5c
GC
5143 return;
5144
f7ce3190 5145 root_cache = s->memcg_params.root_cache;
93030d83 5146
107dab5c
GC
5147 /*
5148 * This mean this cache had no attribute written. Therefore, no point
5149 * in copying default values around
5150 */
93030d83 5151 if (!root_cache->max_attr_size)
107dab5c
GC
5152 return;
5153
5154 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5155 char mbuf[64];
5156 char *buf;
5157 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5158
5159 if (!attr || !attr->store || !attr->show)
5160 continue;
5161
5162 /*
5163 * It is really bad that we have to allocate here, so we will
5164 * do it only as a fallback. If we actually allocate, though,
5165 * we can just use the allocated buffer until the end.
5166 *
5167 * Most of the slub attributes will tend to be very small in
5168 * size, but sysfs allows buffers up to a page, so they can
5169 * theoretically happen.
5170 */
5171 if (buffer)
5172 buf = buffer;
93030d83 5173 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5174 buf = mbuf;
5175 else {
5176 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5177 if (WARN_ON(!buffer))
5178 continue;
5179 buf = buffer;
5180 }
5181
93030d83 5182 attr->show(root_cache, buf);
107dab5c
GC
5183 attr->store(s, buf, strlen(buf));
5184 }
5185
5186 if (buffer)
5187 free_page((unsigned long)buffer);
5188#endif
5189}
5190
41a21285
CL
5191static void kmem_cache_release(struct kobject *k)
5192{
5193 slab_kmem_cache_release(to_slab(k));
5194}
5195
52cf25d0 5196static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5197 .show = slab_attr_show,
5198 .store = slab_attr_store,
5199};
5200
5201static struct kobj_type slab_ktype = {
5202 .sysfs_ops = &slab_sysfs_ops,
41a21285 5203 .release = kmem_cache_release,
81819f0f
CL
5204};
5205
5206static int uevent_filter(struct kset *kset, struct kobject *kobj)
5207{
5208 struct kobj_type *ktype = get_ktype(kobj);
5209
5210 if (ktype == &slab_ktype)
5211 return 1;
5212 return 0;
5213}
5214
9cd43611 5215static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5216 .filter = uevent_filter,
5217};
5218
27c3a314 5219static struct kset *slab_kset;
81819f0f 5220
9a41707b
VD
5221static inline struct kset *cache_kset(struct kmem_cache *s)
5222{
5223#ifdef CONFIG_MEMCG_KMEM
5224 if (!is_root_cache(s))
f7ce3190 5225 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5226#endif
5227 return slab_kset;
5228}
5229
81819f0f
CL
5230#define ID_STR_LENGTH 64
5231
5232/* Create a unique string id for a slab cache:
6446faa2
CL
5233 *
5234 * Format :[flags-]size
81819f0f
CL
5235 */
5236static char *create_unique_id(struct kmem_cache *s)
5237{
5238 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5239 char *p = name;
5240
5241 BUG_ON(!name);
5242
5243 *p++ = ':';
5244 /*
5245 * First flags affecting slabcache operations. We will only
5246 * get here for aliasable slabs so we do not need to support
5247 * too many flags. The flags here must cover all flags that
5248 * are matched during merging to guarantee that the id is
5249 * unique.
5250 */
5251 if (s->flags & SLAB_CACHE_DMA)
5252 *p++ = 'd';
5253 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5254 *p++ = 'a';
5255 if (s->flags & SLAB_DEBUG_FREE)
5256 *p++ = 'F';
5a896d9e
VN
5257 if (!(s->flags & SLAB_NOTRACK))
5258 *p++ = 't';
81819f0f
CL
5259 if (p != name + 1)
5260 *p++ = '-';
5261 p += sprintf(p, "%07d", s->size);
2633d7a0 5262
81819f0f
CL
5263 BUG_ON(p > name + ID_STR_LENGTH - 1);
5264 return name;
5265}
5266
5267static int sysfs_slab_add(struct kmem_cache *s)
5268{
5269 int err;
5270 const char *name;
45530c44 5271 int unmergeable = slab_unmergeable(s);
81819f0f 5272
81819f0f
CL
5273 if (unmergeable) {
5274 /*
5275 * Slabcache can never be merged so we can use the name proper.
5276 * This is typically the case for debug situations. In that
5277 * case we can catch duplicate names easily.
5278 */
27c3a314 5279 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5280 name = s->name;
5281 } else {
5282 /*
5283 * Create a unique name for the slab as a target
5284 * for the symlinks.
5285 */
5286 name = create_unique_id(s);
5287 }
5288
9a41707b 5289 s->kobj.kset = cache_kset(s);
26e4f205 5290 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731 5291 if (err)
80da026a 5292 goto out;
81819f0f
CL
5293
5294 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5295 if (err)
5296 goto out_del_kobj;
9a41707b
VD
5297
5298#ifdef CONFIG_MEMCG_KMEM
5299 if (is_root_cache(s)) {
5300 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5301 if (!s->memcg_kset) {
54b6a731
DJ
5302 err = -ENOMEM;
5303 goto out_del_kobj;
9a41707b
VD
5304 }
5305 }
5306#endif
5307
81819f0f
CL
5308 kobject_uevent(&s->kobj, KOBJ_ADD);
5309 if (!unmergeable) {
5310 /* Setup first alias */
5311 sysfs_slab_alias(s, s->name);
81819f0f 5312 }
54b6a731
DJ
5313out:
5314 if (!unmergeable)
5315 kfree(name);
5316 return err;
5317out_del_kobj:
5318 kobject_del(&s->kobj);
54b6a731 5319 goto out;
81819f0f
CL
5320}
5321
41a21285 5322void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5323{
97d06609 5324 if (slab_state < FULL)
2bce6485
CL
5325 /*
5326 * Sysfs has not been setup yet so no need to remove the
5327 * cache from sysfs.
5328 */
5329 return;
5330
9a41707b
VD
5331#ifdef CONFIG_MEMCG_KMEM
5332 kset_unregister(s->memcg_kset);
5333#endif
81819f0f
CL
5334 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5335 kobject_del(&s->kobj);
151c602f 5336 kobject_put(&s->kobj);
81819f0f
CL
5337}
5338
5339/*
5340 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5341 * available lest we lose that information.
81819f0f
CL
5342 */
5343struct saved_alias {
5344 struct kmem_cache *s;
5345 const char *name;
5346 struct saved_alias *next;
5347};
5348
5af328a5 5349static struct saved_alias *alias_list;
81819f0f
CL
5350
5351static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5352{
5353 struct saved_alias *al;
5354
97d06609 5355 if (slab_state == FULL) {
81819f0f
CL
5356 /*
5357 * If we have a leftover link then remove it.
5358 */
27c3a314
GKH
5359 sysfs_remove_link(&slab_kset->kobj, name);
5360 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5361 }
5362
5363 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5364 if (!al)
5365 return -ENOMEM;
5366
5367 al->s = s;
5368 al->name = name;
5369 al->next = alias_list;
5370 alias_list = al;
5371 return 0;
5372}
5373
5374static int __init slab_sysfs_init(void)
5375{
5b95a4ac 5376 struct kmem_cache *s;
81819f0f
CL
5377 int err;
5378
18004c5d 5379 mutex_lock(&slab_mutex);
2bce6485 5380
0ff21e46 5381 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5382 if (!slab_kset) {
18004c5d 5383 mutex_unlock(&slab_mutex);
f9f58285 5384 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5385 return -ENOSYS;
5386 }
5387
97d06609 5388 slab_state = FULL;
26a7bd03 5389
5b95a4ac 5390 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5391 err = sysfs_slab_add(s);
5d540fb7 5392 if (err)
f9f58285
FF
5393 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5394 s->name);
26a7bd03 5395 }
81819f0f
CL
5396
5397 while (alias_list) {
5398 struct saved_alias *al = alias_list;
5399
5400 alias_list = alias_list->next;
5401 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5402 if (err)
f9f58285
FF
5403 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5404 al->name);
81819f0f
CL
5405 kfree(al);
5406 }
5407
18004c5d 5408 mutex_unlock(&slab_mutex);
81819f0f
CL
5409 resiliency_test();
5410 return 0;
5411}
5412
5413__initcall(slab_sysfs_init);
ab4d5ed5 5414#endif /* CONFIG_SYSFS */
57ed3eda
PE
5415
5416/*
5417 * The /proc/slabinfo ABI
5418 */
158a9624 5419#ifdef CONFIG_SLABINFO
0d7561c6 5420void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5421{
57ed3eda 5422 unsigned long nr_slabs = 0;
205ab99d
CL
5423 unsigned long nr_objs = 0;
5424 unsigned long nr_free = 0;
57ed3eda 5425 int node;
fa45dc25 5426 struct kmem_cache_node *n;
57ed3eda 5427
fa45dc25 5428 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5429 nr_slabs += node_nr_slabs(n);
5430 nr_objs += node_nr_objs(n);
205ab99d 5431 nr_free += count_partial(n, count_free);
57ed3eda
PE
5432 }
5433
0d7561c6
GC
5434 sinfo->active_objs = nr_objs - nr_free;
5435 sinfo->num_objs = nr_objs;
5436 sinfo->active_slabs = nr_slabs;
5437 sinfo->num_slabs = nr_slabs;
5438 sinfo->objects_per_slab = oo_objects(s->oo);
5439 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5440}
5441
0d7561c6 5442void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5443{
7b3c3a50
AD
5444}
5445
b7454ad3
GC
5446ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5447 size_t count, loff_t *ppos)
7b3c3a50 5448{
b7454ad3 5449 return -EIO;
7b3c3a50 5450}
158a9624 5451#endif /* CONFIG_SLABINFO */