slub: fix kmemcheck calls to match ksize() hints
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
9 */
10
11#include <linux/mm.h>
1eb5ac64 12#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
13#include <linux/module.h>
14#include <linux/bit_spinlock.h>
15#include <linux/interrupt.h>
16#include <linux/bitops.h>
17#include <linux/slab.h>
7b3c3a50 18#include <linux/proc_fs.h>
81819f0f 19#include <linux/seq_file.h>
5a896d9e 20#include <linux/kmemcheck.h>
81819f0f
CL
21#include <linux/cpu.h>
22#include <linux/cpuset.h>
23#include <linux/mempolicy.h>
24#include <linux/ctype.h>
3ac7fe5a 25#include <linux/debugobjects.h>
81819f0f 26#include <linux/kallsyms.h>
b9049e23 27#include <linux/memory.h>
f8bd2258 28#include <linux/math64.h>
773ff60e 29#include <linux/fault-inject.h>
81819f0f 30
4a92379b
RK
31#include <trace/events/kmem.h>
32
81819f0f
CL
33/*
34 * Lock order:
35 * 1. slab_lock(page)
36 * 2. slab->list_lock
37 *
38 * The slab_lock protects operations on the object of a particular
39 * slab and its metadata in the page struct. If the slab lock
40 * has been taken then no allocations nor frees can be performed
41 * on the objects in the slab nor can the slab be added or removed
42 * from the partial or full lists since this would mean modifying
43 * the page_struct of the slab.
44 *
45 * The list_lock protects the partial and full list on each node and
46 * the partial slab counter. If taken then no new slabs may be added or
47 * removed from the lists nor make the number of partial slabs be modified.
48 * (Note that the total number of slabs is an atomic value that may be
49 * modified without taking the list lock).
50 *
51 * The list_lock is a centralized lock and thus we avoid taking it as
52 * much as possible. As long as SLUB does not have to handle partial
53 * slabs, operations can continue without any centralized lock. F.e.
54 * allocating a long series of objects that fill up slabs does not require
55 * the list lock.
56 *
57 * The lock order is sometimes inverted when we are trying to get a slab
58 * off a list. We take the list_lock and then look for a page on the list
59 * to use. While we do that objects in the slabs may be freed. We can
60 * only operate on the slab if we have also taken the slab_lock. So we use
61 * a slab_trylock() on the slab. If trylock was successful then no frees
62 * can occur anymore and we can use the slab for allocations etc. If the
63 * slab_trylock() does not succeed then frees are in progress in the slab and
64 * we must stay away from it for a while since we may cause a bouncing
65 * cacheline if we try to acquire the lock. So go onto the next slab.
66 * If all pages are busy then we may allocate a new slab instead of reusing
67 * a partial slab. A new slab has noone operating on it and thus there is
68 * no danger of cacheline contention.
69 *
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
672bba3a
CL
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 80 * freed then the slab will show up again on the partial lists.
672bba3a
CL
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
81819f0f
CL
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
4b6f0750
CL
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
98 *
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
dfb4f096 102 * freelist that allows lockless access to
894b8788
CL
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
81819f0f
CL
105 *
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
894b8788 108 * the fast path and disables lockless freelists.
81819f0f
CL
109 */
110
af537b0a
CL
111#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
113
114static inline int kmem_cache_debug(struct kmem_cache *s)
115{
5577bd8a 116#ifdef CONFIG_SLUB_DEBUG
af537b0a 117 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 118#else
af537b0a 119 return 0;
5577bd8a 120#endif
af537b0a 121}
5577bd8a 122
81819f0f
CL
123/*
124 * Issues still to be resolved:
125 *
81819f0f
CL
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127 *
81819f0f
CL
128 * - Variable sizing of the per node arrays
129 */
130
131/* Enable to test recovery from slab corruption on boot */
132#undef SLUB_RESILIENCY_TEST
133
2086d26a
CL
134/*
135 * Mininum number of partial slabs. These will be left on the partial
136 * lists even if they are empty. kmem_cache_shrink may reclaim them.
137 */
76be8950 138#define MIN_PARTIAL 5
e95eed57 139
2086d26a
CL
140/*
141 * Maximum number of desirable partial slabs.
142 * The existence of more partial slabs makes kmem_cache_shrink
143 * sort the partial list by the number of objects in the.
144 */
145#define MAX_PARTIAL 10
146
81819f0f
CL
147#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
148 SLAB_POISON | SLAB_STORE_USER)
672bba3a 149
fa5ec8a1 150/*
3de47213
DR
151 * Debugging flags that require metadata to be stored in the slab. These get
152 * disabled when slub_debug=O is used and a cache's min order increases with
153 * metadata.
fa5ec8a1 154 */
3de47213 155#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 156
81819f0f
CL
157/*
158 * Set of flags that will prevent slab merging
159 */
160#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
161 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
162 SLAB_FAILSLAB)
81819f0f
CL
163
164#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 165 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 166
210b5c06
CG
167#define OO_SHIFT 16
168#define OO_MASK ((1 << OO_SHIFT) - 1)
169#define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
170
81819f0f 171/* Internal SLUB flags */
f90ec390 172#define __OBJECT_POISON 0x80000000UL /* Poison object */
81819f0f
CL
173
174static int kmem_size = sizeof(struct kmem_cache);
175
176#ifdef CONFIG_SMP
177static struct notifier_block slab_notifier;
178#endif
179
180static enum {
181 DOWN, /* No slab functionality available */
51df1142 182 PARTIAL, /* Kmem_cache_node works */
672bba3a 183 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
184 SYSFS /* Sysfs up */
185} slab_state = DOWN;
186
187/* A list of all slab caches on the system */
188static DECLARE_RWSEM(slub_lock);
5af328a5 189static LIST_HEAD(slab_caches);
81819f0f 190
02cbc874
CL
191/*
192 * Tracking user of a slab.
193 */
194struct track {
ce71e27c 195 unsigned long addr; /* Called from address */
02cbc874
CL
196 int cpu; /* Was running on cpu */
197 int pid; /* Pid context */
198 unsigned long when; /* When did the operation occur */
199};
200
201enum track_item { TRACK_ALLOC, TRACK_FREE };
202
ab4d5ed5 203#ifdef CONFIG_SYSFS
81819f0f
CL
204static int sysfs_slab_add(struct kmem_cache *);
205static int sysfs_slab_alias(struct kmem_cache *, const char *);
206static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 207
81819f0f 208#else
0c710013
CL
209static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
210static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
211 { return 0; }
151c602f
CL
212static inline void sysfs_slab_remove(struct kmem_cache *s)
213{
84c1cf62 214 kfree(s->name);
151c602f
CL
215 kfree(s);
216}
8ff12cfc 217
81819f0f
CL
218#endif
219
84e554e6 220static inline void stat(struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
221{
222#ifdef CONFIG_SLUB_STATS
84e554e6 223 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
224#endif
225}
226
81819f0f
CL
227/********************************************************************
228 * Core slab cache functions
229 *******************************************************************/
230
231int slab_is_available(void)
232{
233 return slab_state >= UP;
234}
235
236static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
237{
81819f0f 238 return s->node[node];
81819f0f
CL
239}
240
6446faa2 241/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
242static inline int check_valid_pointer(struct kmem_cache *s,
243 struct page *page, const void *object)
244{
245 void *base;
246
a973e9dd 247 if (!object)
02cbc874
CL
248 return 1;
249
a973e9dd 250 base = page_address(page);
39b26464 251 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
252 (object - base) % s->size) {
253 return 0;
254 }
255
256 return 1;
257}
258
7656c72b
CL
259static inline void *get_freepointer(struct kmem_cache *s, void *object)
260{
261 return *(void **)(object + s->offset);
262}
263
264static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
265{
266 *(void **)(object + s->offset) = fp;
267}
268
269/* Loop over all objects in a slab */
224a88be
CL
270#define for_each_object(__p, __s, __addr, __objects) \
271 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
272 __p += (__s)->size)
273
274/* Scan freelist */
275#define for_each_free_object(__p, __s, __free) \
a973e9dd 276 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
7656c72b
CL
277
278/* Determine object index from a given position */
279static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
280{
281 return (p - addr) / s->size;
282}
283
834f3d11
CL
284static inline struct kmem_cache_order_objects oo_make(int order,
285 unsigned long size)
286{
287 struct kmem_cache_order_objects x = {
210b5c06 288 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
834f3d11
CL
289 };
290
291 return x;
292}
293
294static inline int oo_order(struct kmem_cache_order_objects x)
295{
210b5c06 296 return x.x >> OO_SHIFT;
834f3d11
CL
297}
298
299static inline int oo_objects(struct kmem_cache_order_objects x)
300{
210b5c06 301 return x.x & OO_MASK;
834f3d11
CL
302}
303
41ecc55b
CL
304#ifdef CONFIG_SLUB_DEBUG
305/*
306 * Debug settings:
307 */
f0630fff
CL
308#ifdef CONFIG_SLUB_DEBUG_ON
309static int slub_debug = DEBUG_DEFAULT_FLAGS;
310#else
41ecc55b 311static int slub_debug;
f0630fff 312#endif
41ecc55b
CL
313
314static char *slub_debug_slabs;
fa5ec8a1 315static int disable_higher_order_debug;
41ecc55b 316
81819f0f
CL
317/*
318 * Object debugging
319 */
320static void print_section(char *text, u8 *addr, unsigned int length)
321{
322 int i, offset;
323 int newline = 1;
324 char ascii[17];
325
326 ascii[16] = 0;
327
328 for (i = 0; i < length; i++) {
329 if (newline) {
24922684 330 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
331 newline = 0;
332 }
06428780 333 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
334 offset = i % 16;
335 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
336 if (offset == 15) {
06428780 337 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
338 newline = 1;
339 }
340 }
341 if (!newline) {
342 i %= 16;
343 while (i < 16) {
06428780 344 printk(KERN_CONT " ");
81819f0f
CL
345 ascii[i] = ' ';
346 i++;
347 }
06428780 348 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
349 }
350}
351
81819f0f
CL
352static struct track *get_track(struct kmem_cache *s, void *object,
353 enum track_item alloc)
354{
355 struct track *p;
356
357 if (s->offset)
358 p = object + s->offset + sizeof(void *);
359 else
360 p = object + s->inuse;
361
362 return p + alloc;
363}
364
365static void set_track(struct kmem_cache *s, void *object,
ce71e27c 366 enum track_item alloc, unsigned long addr)
81819f0f 367{
1a00df4a 368 struct track *p = get_track(s, object, alloc);
81819f0f 369
81819f0f
CL
370 if (addr) {
371 p->addr = addr;
372 p->cpu = smp_processor_id();
88e4ccf2 373 p->pid = current->pid;
81819f0f
CL
374 p->when = jiffies;
375 } else
376 memset(p, 0, sizeof(struct track));
377}
378
81819f0f
CL
379static void init_tracking(struct kmem_cache *s, void *object)
380{
24922684
CL
381 if (!(s->flags & SLAB_STORE_USER))
382 return;
383
ce71e27c
EGM
384 set_track(s, object, TRACK_FREE, 0UL);
385 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
386}
387
388static void print_track(const char *s, struct track *t)
389{
390 if (!t->addr)
391 return;
392
7daf705f 393 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 394 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
24922684
CL
395}
396
397static void print_tracking(struct kmem_cache *s, void *object)
398{
399 if (!(s->flags & SLAB_STORE_USER))
400 return;
401
402 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
403 print_track("Freed", get_track(s, object, TRACK_FREE));
404}
405
406static void print_page_info(struct page *page)
407{
39b26464
CL
408 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
409 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
410
411}
412
413static void slab_bug(struct kmem_cache *s, char *fmt, ...)
414{
415 va_list args;
416 char buf[100];
417
418 va_start(args, fmt);
419 vsnprintf(buf, sizeof(buf), fmt, args);
420 va_end(args);
421 printk(KERN_ERR "========================================"
422 "=====================================\n");
423 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
424 printk(KERN_ERR "----------------------------------------"
425 "-------------------------------------\n\n");
81819f0f
CL
426}
427
24922684
CL
428static void slab_fix(struct kmem_cache *s, char *fmt, ...)
429{
430 va_list args;
431 char buf[100];
432
433 va_start(args, fmt);
434 vsnprintf(buf, sizeof(buf), fmt, args);
435 va_end(args);
436 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
437}
438
439static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
440{
441 unsigned int off; /* Offset of last byte */
a973e9dd 442 u8 *addr = page_address(page);
24922684
CL
443
444 print_tracking(s, p);
445
446 print_page_info(page);
447
448 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
449 p, p - addr, get_freepointer(s, p));
450
451 if (p > addr + 16)
452 print_section("Bytes b4", p - 16, 16);
453
0ebd652b 454 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
81819f0f
CL
455
456 if (s->flags & SLAB_RED_ZONE)
457 print_section("Redzone", p + s->objsize,
458 s->inuse - s->objsize);
459
81819f0f
CL
460 if (s->offset)
461 off = s->offset + sizeof(void *);
462 else
463 off = s->inuse;
464
24922684 465 if (s->flags & SLAB_STORE_USER)
81819f0f 466 off += 2 * sizeof(struct track);
81819f0f
CL
467
468 if (off != s->size)
469 /* Beginning of the filler is the free pointer */
24922684
CL
470 print_section("Padding", p + off, s->size - off);
471
472 dump_stack();
81819f0f
CL
473}
474
475static void object_err(struct kmem_cache *s, struct page *page,
476 u8 *object, char *reason)
477{
3dc50637 478 slab_bug(s, "%s", reason);
24922684 479 print_trailer(s, page, object);
81819f0f
CL
480}
481
24922684 482static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
483{
484 va_list args;
485 char buf[100];
486
24922684
CL
487 va_start(args, fmt);
488 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 489 va_end(args);
3dc50637 490 slab_bug(s, "%s", buf);
24922684 491 print_page_info(page);
81819f0f
CL
492 dump_stack();
493}
494
f7cb1933 495static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
496{
497 u8 *p = object;
498
499 if (s->flags & __OBJECT_POISON) {
500 memset(p, POISON_FREE, s->objsize - 1);
06428780 501 p[s->objsize - 1] = POISON_END;
81819f0f
CL
502 }
503
504 if (s->flags & SLAB_RED_ZONE)
f7cb1933 505 memset(p + s->objsize, val, s->inuse - s->objsize);
81819f0f
CL
506}
507
24922684 508static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
509{
510 while (bytes) {
511 if (*start != (u8)value)
24922684 512 return start;
81819f0f
CL
513 start++;
514 bytes--;
515 }
24922684
CL
516 return NULL;
517}
518
519static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
520 void *from, void *to)
521{
522 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
523 memset(from, data, to - from);
524}
525
526static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
527 u8 *object, char *what,
06428780 528 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
529{
530 u8 *fault;
531 u8 *end;
532
533 fault = check_bytes(start, value, bytes);
534 if (!fault)
535 return 1;
536
537 end = start + bytes;
538 while (end > fault && end[-1] == value)
539 end--;
540
541 slab_bug(s, "%s overwritten", what);
542 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
543 fault, end - 1, fault[0], value);
544 print_trailer(s, page, object);
545
546 restore_bytes(s, what, value, fault, end);
547 return 0;
81819f0f
CL
548}
549
81819f0f
CL
550/*
551 * Object layout:
552 *
553 * object address
554 * Bytes of the object to be managed.
555 * If the freepointer may overlay the object then the free
556 * pointer is the first word of the object.
672bba3a 557 *
81819f0f
CL
558 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
559 * 0xa5 (POISON_END)
560 *
561 * object + s->objsize
562 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
563 * Padding is extended by another word if Redzoning is enabled and
564 * objsize == inuse.
565 *
81819f0f
CL
566 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
567 * 0xcc (RED_ACTIVE) for objects in use.
568 *
569 * object + s->inuse
672bba3a
CL
570 * Meta data starts here.
571 *
81819f0f
CL
572 * A. Free pointer (if we cannot overwrite object on free)
573 * B. Tracking data for SLAB_STORE_USER
672bba3a 574 * C. Padding to reach required alignment boundary or at mininum
6446faa2 575 * one word if debugging is on to be able to detect writes
672bba3a
CL
576 * before the word boundary.
577 *
578 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
579 *
580 * object + s->size
672bba3a 581 * Nothing is used beyond s->size.
81819f0f 582 *
672bba3a
CL
583 * If slabcaches are merged then the objsize and inuse boundaries are mostly
584 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
585 * may be used with merged slabcaches.
586 */
587
81819f0f
CL
588static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
589{
590 unsigned long off = s->inuse; /* The end of info */
591
592 if (s->offset)
593 /* Freepointer is placed after the object. */
594 off += sizeof(void *);
595
596 if (s->flags & SLAB_STORE_USER)
597 /* We also have user information there */
598 off += 2 * sizeof(struct track);
599
600 if (s->size == off)
601 return 1;
602
24922684
CL
603 return check_bytes_and_report(s, page, p, "Object padding",
604 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
605}
606
39b26464 607/* Check the pad bytes at the end of a slab page */
81819f0f
CL
608static int slab_pad_check(struct kmem_cache *s, struct page *page)
609{
24922684
CL
610 u8 *start;
611 u8 *fault;
612 u8 *end;
613 int length;
614 int remainder;
81819f0f
CL
615
616 if (!(s->flags & SLAB_POISON))
617 return 1;
618
a973e9dd 619 start = page_address(page);
834f3d11 620 length = (PAGE_SIZE << compound_order(page));
39b26464
CL
621 end = start + length;
622 remainder = length % s->size;
81819f0f
CL
623 if (!remainder)
624 return 1;
625
39b26464 626 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
627 if (!fault)
628 return 1;
629 while (end > fault && end[-1] == POISON_INUSE)
630 end--;
631
632 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 633 print_section("Padding", end - remainder, remainder);
24922684 634
8a3d271d 635 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 636 return 0;
81819f0f
CL
637}
638
639static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 640 void *object, u8 val)
81819f0f
CL
641{
642 u8 *p = object;
643 u8 *endobject = object + s->objsize;
644
645 if (s->flags & SLAB_RED_ZONE) {
24922684 646 if (!check_bytes_and_report(s, page, object, "Redzone",
f7cb1933 647 endobject, val, s->inuse - s->objsize))
81819f0f 648 return 0;
81819f0f 649 } else {
3adbefee
IM
650 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
651 check_bytes_and_report(s, page, p, "Alignment padding",
652 endobject, POISON_INUSE, s->inuse - s->objsize);
653 }
81819f0f
CL
654 }
655
656 if (s->flags & SLAB_POISON) {
f7cb1933 657 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684
CL
658 (!check_bytes_and_report(s, page, p, "Poison", p,
659 POISON_FREE, s->objsize - 1) ||
660 !check_bytes_and_report(s, page, p, "Poison",
06428780 661 p + s->objsize - 1, POISON_END, 1)))
81819f0f 662 return 0;
81819f0f
CL
663 /*
664 * check_pad_bytes cleans up on its own.
665 */
666 check_pad_bytes(s, page, p);
667 }
668
f7cb1933 669 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
670 /*
671 * Object and freepointer overlap. Cannot check
672 * freepointer while object is allocated.
673 */
674 return 1;
675
676 /* Check free pointer validity */
677 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
678 object_err(s, page, p, "Freepointer corrupt");
679 /*
9f6c708e 680 * No choice but to zap it and thus lose the remainder
81819f0f 681 * of the free objects in this slab. May cause
672bba3a 682 * another error because the object count is now wrong.
81819f0f 683 */
a973e9dd 684 set_freepointer(s, p, NULL);
81819f0f
CL
685 return 0;
686 }
687 return 1;
688}
689
690static int check_slab(struct kmem_cache *s, struct page *page)
691{
39b26464
CL
692 int maxobj;
693
81819f0f
CL
694 VM_BUG_ON(!irqs_disabled());
695
696 if (!PageSlab(page)) {
24922684 697 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
698 return 0;
699 }
39b26464
CL
700
701 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
702 if (page->objects > maxobj) {
703 slab_err(s, page, "objects %u > max %u",
704 s->name, page->objects, maxobj);
705 return 0;
706 }
707 if (page->inuse > page->objects) {
24922684 708 slab_err(s, page, "inuse %u > max %u",
39b26464 709 s->name, page->inuse, page->objects);
81819f0f
CL
710 return 0;
711 }
712 /* Slab_pad_check fixes things up after itself */
713 slab_pad_check(s, page);
714 return 1;
715}
716
717/*
672bba3a
CL
718 * Determine if a certain object on a page is on the freelist. Must hold the
719 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
720 */
721static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
722{
723 int nr = 0;
724 void *fp = page->freelist;
725 void *object = NULL;
224a88be 726 unsigned long max_objects;
81819f0f 727
39b26464 728 while (fp && nr <= page->objects) {
81819f0f
CL
729 if (fp == search)
730 return 1;
731 if (!check_valid_pointer(s, page, fp)) {
732 if (object) {
733 object_err(s, page, object,
734 "Freechain corrupt");
a973e9dd 735 set_freepointer(s, object, NULL);
81819f0f
CL
736 break;
737 } else {
24922684 738 slab_err(s, page, "Freepointer corrupt");
a973e9dd 739 page->freelist = NULL;
39b26464 740 page->inuse = page->objects;
24922684 741 slab_fix(s, "Freelist cleared");
81819f0f
CL
742 return 0;
743 }
744 break;
745 }
746 object = fp;
747 fp = get_freepointer(s, object);
748 nr++;
749 }
750
224a88be 751 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
210b5c06
CG
752 if (max_objects > MAX_OBJS_PER_PAGE)
753 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
754
755 if (page->objects != max_objects) {
756 slab_err(s, page, "Wrong number of objects. Found %d but "
757 "should be %d", page->objects, max_objects);
758 page->objects = max_objects;
759 slab_fix(s, "Number of objects adjusted.");
760 }
39b26464 761 if (page->inuse != page->objects - nr) {
70d71228 762 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
763 "counted were %d", page->inuse, page->objects - nr);
764 page->inuse = page->objects - nr;
24922684 765 slab_fix(s, "Object count adjusted.");
81819f0f
CL
766 }
767 return search == NULL;
768}
769
0121c619
CL
770static void trace(struct kmem_cache *s, struct page *page, void *object,
771 int alloc)
3ec09742
CL
772{
773 if (s->flags & SLAB_TRACE) {
774 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
775 s->name,
776 alloc ? "alloc" : "free",
777 object, page->inuse,
778 page->freelist);
779
780 if (!alloc)
781 print_section("Object", (void *)object, s->objsize);
782
783 dump_stack();
784 }
785}
786
c016b0bd
CL
787/*
788 * Hooks for other subsystems that check memory allocations. In a typical
789 * production configuration these hooks all should produce no code at all.
790 */
791static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
792{
c1d50836 793 flags &= gfp_allowed_mask;
c016b0bd
CL
794 lockdep_trace_alloc(flags);
795 might_sleep_if(flags & __GFP_WAIT);
796
797 return should_failslab(s->objsize, flags, s->flags);
798}
799
b3d41885
ED
800static inline size_t slab_ksize(const struct kmem_cache *s)
801{
802#ifdef CONFIG_SLUB_DEBUG
803 /*
804 * Debugging requires use of the padding between object
805 * and whatever may come after it.
806 */
807 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
808 return s->objsize;
809
810#endif
811 /*
812 * If we have the need to store the freelist pointer
813 * back there or track user information then we can
814 * only use the space before that information.
815 */
816 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
817 return s->inuse;
818 /*
819 * Else we can use all the padding etc for the allocation
820 */
821 return s->size;
822}
823
c016b0bd
CL
824static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
825{
c1d50836 826 flags &= gfp_allowed_mask;
b3d41885 827 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
c016b0bd
CL
828 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
829}
830
831static inline void slab_free_hook(struct kmem_cache *s, void *x)
832{
833 kmemleak_free_recursive(x, s->flags);
834}
835
836static inline void slab_free_hook_irq(struct kmem_cache *s, void *object)
837{
838 kmemcheck_slab_free(s, object, s->objsize);
839 debug_check_no_locks_freed(object, s->objsize);
840 if (!(s->flags & SLAB_DEBUG_OBJECTS))
841 debug_check_no_obj_freed(object, s->objsize);
842}
843
643b1138 844/*
672bba3a 845 * Tracking of fully allocated slabs for debugging purposes.
643b1138 846 */
e95eed57 847static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 848{
643b1138
CL
849 spin_lock(&n->list_lock);
850 list_add(&page->lru, &n->full);
851 spin_unlock(&n->list_lock);
852}
853
854static void remove_full(struct kmem_cache *s, struct page *page)
855{
856 struct kmem_cache_node *n;
857
858 if (!(s->flags & SLAB_STORE_USER))
859 return;
860
861 n = get_node(s, page_to_nid(page));
862
863 spin_lock(&n->list_lock);
864 list_del(&page->lru);
865 spin_unlock(&n->list_lock);
866}
867
0f389ec6
CL
868/* Tracking of the number of slabs for debugging purposes */
869static inline unsigned long slabs_node(struct kmem_cache *s, int node)
870{
871 struct kmem_cache_node *n = get_node(s, node);
872
873 return atomic_long_read(&n->nr_slabs);
874}
875
26c02cf0
AB
876static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
877{
878 return atomic_long_read(&n->nr_slabs);
879}
880
205ab99d 881static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
882{
883 struct kmem_cache_node *n = get_node(s, node);
884
885 /*
886 * May be called early in order to allocate a slab for the
887 * kmem_cache_node structure. Solve the chicken-egg
888 * dilemma by deferring the increment of the count during
889 * bootstrap (see early_kmem_cache_node_alloc).
890 */
7340cc84 891 if (n) {
0f389ec6 892 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
893 atomic_long_add(objects, &n->total_objects);
894 }
0f389ec6 895}
205ab99d 896static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
897{
898 struct kmem_cache_node *n = get_node(s, node);
899
900 atomic_long_dec(&n->nr_slabs);
205ab99d 901 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
902}
903
904/* Object debug checks for alloc/free paths */
3ec09742
CL
905static void setup_object_debug(struct kmem_cache *s, struct page *page,
906 void *object)
907{
908 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
909 return;
910
f7cb1933 911 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
912 init_tracking(s, object);
913}
914
1537066c 915static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 916 void *object, unsigned long addr)
81819f0f
CL
917{
918 if (!check_slab(s, page))
919 goto bad;
920
d692ef6d 921 if (!on_freelist(s, page, object)) {
24922684 922 object_err(s, page, object, "Object already allocated");
70d71228 923 goto bad;
81819f0f
CL
924 }
925
926 if (!check_valid_pointer(s, page, object)) {
927 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 928 goto bad;
81819f0f
CL
929 }
930
f7cb1933 931 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 932 goto bad;
81819f0f 933
3ec09742
CL
934 /* Success perform special debug activities for allocs */
935 if (s->flags & SLAB_STORE_USER)
936 set_track(s, object, TRACK_ALLOC, addr);
937 trace(s, page, object, 1);
f7cb1933 938 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 939 return 1;
3ec09742 940
81819f0f
CL
941bad:
942 if (PageSlab(page)) {
943 /*
944 * If this is a slab page then lets do the best we can
945 * to avoid issues in the future. Marking all objects
672bba3a 946 * as used avoids touching the remaining objects.
81819f0f 947 */
24922684 948 slab_fix(s, "Marking all objects used");
39b26464 949 page->inuse = page->objects;
a973e9dd 950 page->freelist = NULL;
81819f0f
CL
951 }
952 return 0;
953}
954
1537066c
CL
955static noinline int free_debug_processing(struct kmem_cache *s,
956 struct page *page, void *object, unsigned long addr)
81819f0f
CL
957{
958 if (!check_slab(s, page))
959 goto fail;
960
961 if (!check_valid_pointer(s, page, object)) {
70d71228 962 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
963 goto fail;
964 }
965
966 if (on_freelist(s, page, object)) {
24922684 967 object_err(s, page, object, "Object already free");
81819f0f
CL
968 goto fail;
969 }
970
f7cb1933 971 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
81819f0f
CL
972 return 0;
973
974 if (unlikely(s != page->slab)) {
3adbefee 975 if (!PageSlab(page)) {
70d71228
CL
976 slab_err(s, page, "Attempt to free object(0x%p) "
977 "outside of slab", object);
3adbefee 978 } else if (!page->slab) {
81819f0f 979 printk(KERN_ERR
70d71228 980 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 981 object);
70d71228 982 dump_stack();
06428780 983 } else
24922684
CL
984 object_err(s, page, object,
985 "page slab pointer corrupt.");
81819f0f
CL
986 goto fail;
987 }
3ec09742
CL
988
989 /* Special debug activities for freeing objects */
8a38082d 990 if (!PageSlubFrozen(page) && !page->freelist)
3ec09742
CL
991 remove_full(s, page);
992 if (s->flags & SLAB_STORE_USER)
993 set_track(s, object, TRACK_FREE, addr);
994 trace(s, page, object, 0);
f7cb1933 995 init_object(s, object, SLUB_RED_INACTIVE);
81819f0f 996 return 1;
3ec09742 997
81819f0f 998fail:
24922684 999 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
1000 return 0;
1001}
1002
41ecc55b
CL
1003static int __init setup_slub_debug(char *str)
1004{
f0630fff
CL
1005 slub_debug = DEBUG_DEFAULT_FLAGS;
1006 if (*str++ != '=' || !*str)
1007 /*
1008 * No options specified. Switch on full debugging.
1009 */
1010 goto out;
1011
1012 if (*str == ',')
1013 /*
1014 * No options but restriction on slabs. This means full
1015 * debugging for slabs matching a pattern.
1016 */
1017 goto check_slabs;
1018
fa5ec8a1
DR
1019 if (tolower(*str) == 'o') {
1020 /*
1021 * Avoid enabling debugging on caches if its minimum order
1022 * would increase as a result.
1023 */
1024 disable_higher_order_debug = 1;
1025 goto out;
1026 }
1027
f0630fff
CL
1028 slub_debug = 0;
1029 if (*str == '-')
1030 /*
1031 * Switch off all debugging measures.
1032 */
1033 goto out;
1034
1035 /*
1036 * Determine which debug features should be switched on
1037 */
06428780 1038 for (; *str && *str != ','; str++) {
f0630fff
CL
1039 switch (tolower(*str)) {
1040 case 'f':
1041 slub_debug |= SLAB_DEBUG_FREE;
1042 break;
1043 case 'z':
1044 slub_debug |= SLAB_RED_ZONE;
1045 break;
1046 case 'p':
1047 slub_debug |= SLAB_POISON;
1048 break;
1049 case 'u':
1050 slub_debug |= SLAB_STORE_USER;
1051 break;
1052 case 't':
1053 slub_debug |= SLAB_TRACE;
1054 break;
4c13dd3b
DM
1055 case 'a':
1056 slub_debug |= SLAB_FAILSLAB;
1057 break;
f0630fff
CL
1058 default:
1059 printk(KERN_ERR "slub_debug option '%c' "
06428780 1060 "unknown. skipped\n", *str);
f0630fff 1061 }
41ecc55b
CL
1062 }
1063
f0630fff 1064check_slabs:
41ecc55b
CL
1065 if (*str == ',')
1066 slub_debug_slabs = str + 1;
f0630fff 1067out:
41ecc55b
CL
1068 return 1;
1069}
1070
1071__setup("slub_debug", setup_slub_debug);
1072
ba0268a8
CL
1073static unsigned long kmem_cache_flags(unsigned long objsize,
1074 unsigned long flags, const char *name,
51cc5068 1075 void (*ctor)(void *))
41ecc55b
CL
1076{
1077 /*
e153362a 1078 * Enable debugging if selected on the kernel commandline.
41ecc55b 1079 */
e153362a 1080 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1081 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1082 flags |= slub_debug;
ba0268a8
CL
1083
1084 return flags;
41ecc55b
CL
1085}
1086#else
3ec09742
CL
1087static inline void setup_object_debug(struct kmem_cache *s,
1088 struct page *page, void *object) {}
41ecc55b 1089
3ec09742 1090static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1091 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1092
3ec09742 1093static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1094 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1095
41ecc55b
CL
1096static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1097 { return 1; }
1098static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1099 void *object, u8 val) { return 1; }
3ec09742 1100static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1101static inline unsigned long kmem_cache_flags(unsigned long objsize,
1102 unsigned long flags, const char *name,
51cc5068 1103 void (*ctor)(void *))
ba0268a8
CL
1104{
1105 return flags;
1106}
41ecc55b 1107#define slub_debug 0
0f389ec6 1108
fdaa45e9
IM
1109#define disable_higher_order_debug 0
1110
0f389ec6
CL
1111static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1112 { return 0; }
26c02cf0
AB
1113static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1114 { return 0; }
205ab99d
CL
1115static inline void inc_slabs_node(struct kmem_cache *s, int node,
1116 int objects) {}
1117static inline void dec_slabs_node(struct kmem_cache *s, int node,
1118 int objects) {}
7d550c56
CL
1119
1120static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1121 { return 0; }
1122
1123static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1124 void *object) {}
1125
1126static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1127
1128static inline void slab_free_hook_irq(struct kmem_cache *s,
1129 void *object) {}
1130
ab4d5ed5 1131#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1132
81819f0f
CL
1133/*
1134 * Slab allocation and freeing
1135 */
65c3376a
CL
1136static inline struct page *alloc_slab_page(gfp_t flags, int node,
1137 struct kmem_cache_order_objects oo)
1138{
1139 int order = oo_order(oo);
1140
b1eeab67
VN
1141 flags |= __GFP_NOTRACK;
1142
2154a336 1143 if (node == NUMA_NO_NODE)
65c3376a
CL
1144 return alloc_pages(flags, order);
1145 else
6b65aaf3 1146 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1147}
1148
81819f0f
CL
1149static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1150{
06428780 1151 struct page *page;
834f3d11 1152 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1153 gfp_t alloc_gfp;
81819f0f 1154
b7a49f0d 1155 flags |= s->allocflags;
e12ba74d 1156
ba52270d
PE
1157 /*
1158 * Let the initial higher-order allocation fail under memory pressure
1159 * so we fall-back to the minimum order allocation.
1160 */
1161 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1162
1163 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1164 if (unlikely(!page)) {
1165 oo = s->min;
1166 /*
1167 * Allocation may have failed due to fragmentation.
1168 * Try a lower order alloc if possible
1169 */
1170 page = alloc_slab_page(flags, node, oo);
1171 if (!page)
1172 return NULL;
81819f0f 1173
84e554e6 1174 stat(s, ORDER_FALLBACK);
65c3376a 1175 }
5a896d9e
VN
1176
1177 if (kmemcheck_enabled
5086c389 1178 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1179 int pages = 1 << oo_order(oo);
1180
1181 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1182
1183 /*
1184 * Objects from caches that have a constructor don't get
1185 * cleared when they're allocated, so we need to do it here.
1186 */
1187 if (s->ctor)
1188 kmemcheck_mark_uninitialized_pages(page, pages);
1189 else
1190 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1191 }
1192
834f3d11 1193 page->objects = oo_objects(oo);
81819f0f
CL
1194 mod_zone_page_state(page_zone(page),
1195 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1196 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1197 1 << oo_order(oo));
81819f0f
CL
1198
1199 return page;
1200}
1201
1202static void setup_object(struct kmem_cache *s, struct page *page,
1203 void *object)
1204{
3ec09742 1205 setup_object_debug(s, page, object);
4f104934 1206 if (unlikely(s->ctor))
51cc5068 1207 s->ctor(object);
81819f0f
CL
1208}
1209
1210static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1211{
1212 struct page *page;
81819f0f 1213 void *start;
81819f0f
CL
1214 void *last;
1215 void *p;
1216
6cb06229 1217 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1218
6cb06229
CL
1219 page = allocate_slab(s,
1220 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1221 if (!page)
1222 goto out;
1223
205ab99d 1224 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1225 page->slab = s;
1226 page->flags |= 1 << PG_slab;
81819f0f
CL
1227
1228 start = page_address(page);
81819f0f
CL
1229
1230 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1231 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1232
1233 last = start;
224a88be 1234 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1235 setup_object(s, page, last);
1236 set_freepointer(s, last, p);
1237 last = p;
1238 }
1239 setup_object(s, page, last);
a973e9dd 1240 set_freepointer(s, last, NULL);
81819f0f
CL
1241
1242 page->freelist = start;
1243 page->inuse = 0;
1244out:
81819f0f
CL
1245 return page;
1246}
1247
1248static void __free_slab(struct kmem_cache *s, struct page *page)
1249{
834f3d11
CL
1250 int order = compound_order(page);
1251 int pages = 1 << order;
81819f0f 1252
af537b0a 1253 if (kmem_cache_debug(s)) {
81819f0f
CL
1254 void *p;
1255
1256 slab_pad_check(s, page);
224a88be
CL
1257 for_each_object(p, s, page_address(page),
1258 page->objects)
f7cb1933 1259 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1260 }
1261
b1eeab67 1262 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1263
81819f0f
CL
1264 mod_zone_page_state(page_zone(page),
1265 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1266 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1267 -pages);
81819f0f 1268
49bd5221
CL
1269 __ClearPageSlab(page);
1270 reset_page_mapcount(page);
1eb5ac64
NP
1271 if (current->reclaim_state)
1272 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1273 __free_pages(page, order);
81819f0f
CL
1274}
1275
1276static void rcu_free_slab(struct rcu_head *h)
1277{
1278 struct page *page;
1279
1280 page = container_of((struct list_head *)h, struct page, lru);
1281 __free_slab(page->slab, page);
1282}
1283
1284static void free_slab(struct kmem_cache *s, struct page *page)
1285{
1286 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1287 /*
1288 * RCU free overloads the RCU head over the LRU
1289 */
1290 struct rcu_head *head = (void *)&page->lru;
1291
1292 call_rcu(head, rcu_free_slab);
1293 } else
1294 __free_slab(s, page);
1295}
1296
1297static void discard_slab(struct kmem_cache *s, struct page *page)
1298{
205ab99d 1299 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1300 free_slab(s, page);
1301}
1302
1303/*
1304 * Per slab locking using the pagelock
1305 */
1306static __always_inline void slab_lock(struct page *page)
1307{
1308 bit_spin_lock(PG_locked, &page->flags);
1309}
1310
1311static __always_inline void slab_unlock(struct page *page)
1312{
a76d3546 1313 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1314}
1315
1316static __always_inline int slab_trylock(struct page *page)
1317{
1318 int rc = 1;
1319
1320 rc = bit_spin_trylock(PG_locked, &page->flags);
1321 return rc;
1322}
1323
1324/*
1325 * Management of partially allocated slabs
1326 */
7c2e132c
CL
1327static void add_partial(struct kmem_cache_node *n,
1328 struct page *page, int tail)
81819f0f 1329{
e95eed57
CL
1330 spin_lock(&n->list_lock);
1331 n->nr_partial++;
7c2e132c
CL
1332 if (tail)
1333 list_add_tail(&page->lru, &n->partial);
1334 else
1335 list_add(&page->lru, &n->partial);
81819f0f
CL
1336 spin_unlock(&n->list_lock);
1337}
1338
62e346a8
CL
1339static inline void __remove_partial(struct kmem_cache_node *n,
1340 struct page *page)
1341{
1342 list_del(&page->lru);
1343 n->nr_partial--;
1344}
1345
0121c619 1346static void remove_partial(struct kmem_cache *s, struct page *page)
81819f0f
CL
1347{
1348 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1349
1350 spin_lock(&n->list_lock);
62e346a8 1351 __remove_partial(n, page);
81819f0f
CL
1352 spin_unlock(&n->list_lock);
1353}
1354
1355/*
672bba3a 1356 * Lock slab and remove from the partial list.
81819f0f 1357 *
672bba3a 1358 * Must hold list_lock.
81819f0f 1359 */
0121c619
CL
1360static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1361 struct page *page)
81819f0f
CL
1362{
1363 if (slab_trylock(page)) {
62e346a8 1364 __remove_partial(n, page);
8a38082d 1365 __SetPageSlubFrozen(page);
81819f0f
CL
1366 return 1;
1367 }
1368 return 0;
1369}
1370
1371/*
672bba3a 1372 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1373 */
1374static struct page *get_partial_node(struct kmem_cache_node *n)
1375{
1376 struct page *page;
1377
1378 /*
1379 * Racy check. If we mistakenly see no partial slabs then we
1380 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1381 * partial slab and there is none available then get_partials()
1382 * will return NULL.
81819f0f
CL
1383 */
1384 if (!n || !n->nr_partial)
1385 return NULL;
1386
1387 spin_lock(&n->list_lock);
1388 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1389 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1390 goto out;
1391 page = NULL;
1392out:
1393 spin_unlock(&n->list_lock);
1394 return page;
1395}
1396
1397/*
672bba3a 1398 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1399 */
1400static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1401{
1402#ifdef CONFIG_NUMA
1403 struct zonelist *zonelist;
dd1a239f 1404 struct zoneref *z;
54a6eb5c
MG
1405 struct zone *zone;
1406 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1407 struct page *page;
1408
1409 /*
672bba3a
CL
1410 * The defrag ratio allows a configuration of the tradeoffs between
1411 * inter node defragmentation and node local allocations. A lower
1412 * defrag_ratio increases the tendency to do local allocations
1413 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1414 *
672bba3a
CL
1415 * If the defrag_ratio is set to 0 then kmalloc() always
1416 * returns node local objects. If the ratio is higher then kmalloc()
1417 * may return off node objects because partial slabs are obtained
1418 * from other nodes and filled up.
81819f0f 1419 *
6446faa2 1420 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1421 * defrag_ratio = 1000) then every (well almost) allocation will
1422 * first attempt to defrag slab caches on other nodes. This means
1423 * scanning over all nodes to look for partial slabs which may be
1424 * expensive if we do it every time we are trying to find a slab
1425 * with available objects.
81819f0f 1426 */
9824601e
CL
1427 if (!s->remote_node_defrag_ratio ||
1428 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1429 return NULL;
1430
c0ff7453 1431 get_mems_allowed();
0e88460d 1432 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1433 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1434 struct kmem_cache_node *n;
1435
54a6eb5c 1436 n = get_node(s, zone_to_nid(zone));
81819f0f 1437
54a6eb5c 1438 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1439 n->nr_partial > s->min_partial) {
81819f0f 1440 page = get_partial_node(n);
c0ff7453
MX
1441 if (page) {
1442 put_mems_allowed();
81819f0f 1443 return page;
c0ff7453 1444 }
81819f0f
CL
1445 }
1446 }
c0ff7453 1447 put_mems_allowed();
81819f0f
CL
1448#endif
1449 return NULL;
1450}
1451
1452/*
1453 * Get a partial page, lock it and return it.
1454 */
1455static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1456{
1457 struct page *page;
2154a336 1458 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f
CL
1459
1460 page = get_partial_node(get_node(s, searchnode));
bc6488e9 1461 if (page || node != -1)
81819f0f
CL
1462 return page;
1463
1464 return get_any_partial(s, flags);
1465}
1466
1467/*
1468 * Move a page back to the lists.
1469 *
1470 * Must be called with the slab lock held.
1471 *
1472 * On exit the slab lock will have been dropped.
1473 */
7c2e132c 1474static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
3478973d 1475 __releases(bitlock)
81819f0f 1476{
e95eed57
CL
1477 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1478
8a38082d 1479 __ClearPageSlubFrozen(page);
81819f0f 1480 if (page->inuse) {
e95eed57 1481
a973e9dd 1482 if (page->freelist) {
7c2e132c 1483 add_partial(n, page, tail);
84e554e6 1484 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
8ff12cfc 1485 } else {
84e554e6 1486 stat(s, DEACTIVATE_FULL);
af537b0a 1487 if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
8ff12cfc
CL
1488 add_full(n, page);
1489 }
81819f0f
CL
1490 slab_unlock(page);
1491 } else {
84e554e6 1492 stat(s, DEACTIVATE_EMPTY);
3b89d7d8 1493 if (n->nr_partial < s->min_partial) {
e95eed57 1494 /*
672bba3a
CL
1495 * Adding an empty slab to the partial slabs in order
1496 * to avoid page allocator overhead. This slab needs
1497 * to come after the other slabs with objects in
6446faa2
CL
1498 * so that the others get filled first. That way the
1499 * size of the partial list stays small.
1500 *
0121c619
CL
1501 * kmem_cache_shrink can reclaim any empty slabs from
1502 * the partial list.
e95eed57 1503 */
7c2e132c 1504 add_partial(n, page, 1);
e95eed57
CL
1505 slab_unlock(page);
1506 } else {
1507 slab_unlock(page);
84e554e6 1508 stat(s, FREE_SLAB);
e95eed57
CL
1509 discard_slab(s, page);
1510 }
81819f0f
CL
1511 }
1512}
1513
1514/*
1515 * Remove the cpu slab
1516 */
dfb4f096 1517static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3478973d 1518 __releases(bitlock)
81819f0f 1519{
dfb4f096 1520 struct page *page = c->page;
7c2e132c 1521 int tail = 1;
8ff12cfc 1522
b773ad73 1523 if (page->freelist)
84e554e6 1524 stat(s, DEACTIVATE_REMOTE_FREES);
894b8788 1525 /*
6446faa2 1526 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1527 * because both freelists are empty. So this is unlikely
1528 * to occur.
1529 */
a973e9dd 1530 while (unlikely(c->freelist)) {
894b8788
CL
1531 void **object;
1532
7c2e132c
CL
1533 tail = 0; /* Hot objects. Put the slab first */
1534
894b8788 1535 /* Retrieve object from cpu_freelist */
dfb4f096 1536 object = c->freelist;
ff12059e 1537 c->freelist = get_freepointer(s, c->freelist);
894b8788
CL
1538
1539 /* And put onto the regular freelist */
ff12059e 1540 set_freepointer(s, object, page->freelist);
894b8788
CL
1541 page->freelist = object;
1542 page->inuse--;
1543 }
dfb4f096 1544 c->page = NULL;
7c2e132c 1545 unfreeze_slab(s, page, tail);
81819f0f
CL
1546}
1547
dfb4f096 1548static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1549{
84e554e6 1550 stat(s, CPUSLAB_FLUSH);
dfb4f096
CL
1551 slab_lock(c->page);
1552 deactivate_slab(s, c);
81819f0f
CL
1553}
1554
1555/*
1556 * Flush cpu slab.
6446faa2 1557 *
81819f0f
CL
1558 * Called from IPI handler with interrupts disabled.
1559 */
0c710013 1560static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1561{
9dfc6e68 1562 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 1563
dfb4f096
CL
1564 if (likely(c && c->page))
1565 flush_slab(s, c);
81819f0f
CL
1566}
1567
1568static void flush_cpu_slab(void *d)
1569{
1570 struct kmem_cache *s = d;
81819f0f 1571
dfb4f096 1572 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1573}
1574
1575static void flush_all(struct kmem_cache *s)
1576{
15c8b6c1 1577 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
1578}
1579
dfb4f096
CL
1580/*
1581 * Check if the objects in a per cpu structure fit numa
1582 * locality expectations.
1583 */
1584static inline int node_match(struct kmem_cache_cpu *c, int node)
1585{
1586#ifdef CONFIG_NUMA
2154a336 1587 if (node != NUMA_NO_NODE && c->node != node)
dfb4f096
CL
1588 return 0;
1589#endif
1590 return 1;
1591}
1592
781b2ba6
PE
1593static int count_free(struct page *page)
1594{
1595 return page->objects - page->inuse;
1596}
1597
1598static unsigned long count_partial(struct kmem_cache_node *n,
1599 int (*get_count)(struct page *))
1600{
1601 unsigned long flags;
1602 unsigned long x = 0;
1603 struct page *page;
1604
1605 spin_lock_irqsave(&n->list_lock, flags);
1606 list_for_each_entry(page, &n->partial, lru)
1607 x += get_count(page);
1608 spin_unlock_irqrestore(&n->list_lock, flags);
1609 return x;
1610}
1611
26c02cf0
AB
1612static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1613{
1614#ifdef CONFIG_SLUB_DEBUG
1615 return atomic_long_read(&n->total_objects);
1616#else
1617 return 0;
1618#endif
1619}
1620
781b2ba6
PE
1621static noinline void
1622slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1623{
1624 int node;
1625
1626 printk(KERN_WARNING
1627 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1628 nid, gfpflags);
1629 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1630 "default order: %d, min order: %d\n", s->name, s->objsize,
1631 s->size, oo_order(s->oo), oo_order(s->min));
1632
fa5ec8a1
DR
1633 if (oo_order(s->min) > get_order(s->objsize))
1634 printk(KERN_WARNING " %s debugging increased min order, use "
1635 "slub_debug=O to disable.\n", s->name);
1636
781b2ba6
PE
1637 for_each_online_node(node) {
1638 struct kmem_cache_node *n = get_node(s, node);
1639 unsigned long nr_slabs;
1640 unsigned long nr_objs;
1641 unsigned long nr_free;
1642
1643 if (!n)
1644 continue;
1645
26c02cf0
AB
1646 nr_free = count_partial(n, count_free);
1647 nr_slabs = node_nr_slabs(n);
1648 nr_objs = node_nr_objs(n);
781b2ba6
PE
1649
1650 printk(KERN_WARNING
1651 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1652 node, nr_slabs, nr_objs, nr_free);
1653 }
1654}
1655
81819f0f 1656/*
894b8788
CL
1657 * Slow path. The lockless freelist is empty or we need to perform
1658 * debugging duties.
1659 *
1660 * Interrupts are disabled.
81819f0f 1661 *
894b8788
CL
1662 * Processing is still very fast if new objects have been freed to the
1663 * regular freelist. In that case we simply take over the regular freelist
1664 * as the lockless freelist and zap the regular freelist.
81819f0f 1665 *
894b8788
CL
1666 * If that is not working then we fall back to the partial lists. We take the
1667 * first element of the freelist as the object to allocate now and move the
1668 * rest of the freelist to the lockless freelist.
81819f0f 1669 *
894b8788 1670 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1671 * we need to allocate a new slab. This is the slowest path since it involves
1672 * a call to the page allocator and the setup of a new slab.
81819f0f 1673 */
ce71e27c
EGM
1674static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1675 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 1676{
81819f0f 1677 void **object;
dfb4f096 1678 struct page *new;
81819f0f 1679
e72e9c23
LT
1680 /* We handle __GFP_ZERO in the caller */
1681 gfpflags &= ~__GFP_ZERO;
1682
dfb4f096 1683 if (!c->page)
81819f0f
CL
1684 goto new_slab;
1685
dfb4f096
CL
1686 slab_lock(c->page);
1687 if (unlikely(!node_match(c, node)))
81819f0f 1688 goto another_slab;
6446faa2 1689
84e554e6 1690 stat(s, ALLOC_REFILL);
6446faa2 1691
894b8788 1692load_freelist:
dfb4f096 1693 object = c->page->freelist;
a973e9dd 1694 if (unlikely(!object))
81819f0f 1695 goto another_slab;
af537b0a 1696 if (kmem_cache_debug(s))
81819f0f
CL
1697 goto debug;
1698
ff12059e 1699 c->freelist = get_freepointer(s, object);
39b26464 1700 c->page->inuse = c->page->objects;
a973e9dd 1701 c->page->freelist = NULL;
dfb4f096 1702 c->node = page_to_nid(c->page);
1f84260c 1703unlock_out:
dfb4f096 1704 slab_unlock(c->page);
84e554e6 1705 stat(s, ALLOC_SLOWPATH);
81819f0f
CL
1706 return object;
1707
1708another_slab:
dfb4f096 1709 deactivate_slab(s, c);
81819f0f
CL
1710
1711new_slab:
dfb4f096
CL
1712 new = get_partial(s, gfpflags, node);
1713 if (new) {
1714 c->page = new;
84e554e6 1715 stat(s, ALLOC_FROM_PARTIAL);
894b8788 1716 goto load_freelist;
81819f0f
CL
1717 }
1718
c1d50836 1719 gfpflags &= gfp_allowed_mask;
b811c202
CL
1720 if (gfpflags & __GFP_WAIT)
1721 local_irq_enable();
1722
dfb4f096 1723 new = new_slab(s, gfpflags, node);
b811c202
CL
1724
1725 if (gfpflags & __GFP_WAIT)
1726 local_irq_disable();
1727
dfb4f096 1728 if (new) {
9dfc6e68 1729 c = __this_cpu_ptr(s->cpu_slab);
84e554e6 1730 stat(s, ALLOC_SLAB);
05aa3450 1731 if (c->page)
dfb4f096 1732 flush_slab(s, c);
dfb4f096 1733 slab_lock(new);
8a38082d 1734 __SetPageSlubFrozen(new);
dfb4f096 1735 c->page = new;
4b6f0750 1736 goto load_freelist;
81819f0f 1737 }
95f85989
PE
1738 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1739 slab_out_of_memory(s, gfpflags, node);
71c7a06f 1740 return NULL;
81819f0f 1741debug:
dfb4f096 1742 if (!alloc_debug_processing(s, c->page, object, addr))
81819f0f 1743 goto another_slab;
894b8788 1744
dfb4f096 1745 c->page->inuse++;
ff12059e 1746 c->page->freelist = get_freepointer(s, object);
15b7c514 1747 c->node = NUMA_NO_NODE;
1f84260c 1748 goto unlock_out;
894b8788
CL
1749}
1750
1751/*
1752 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1753 * have the fastpath folded into their functions. So no function call
1754 * overhead for requests that can be satisfied on the fastpath.
1755 *
1756 * The fastpath works by first checking if the lockless freelist can be used.
1757 * If not then __slab_alloc is called for slow processing.
1758 *
1759 * Otherwise we can simply pick the next object from the lockless free list.
1760 */
06428780 1761static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 1762 gfp_t gfpflags, int node, unsigned long addr)
894b8788 1763{
894b8788 1764 void **object;
dfb4f096 1765 struct kmem_cache_cpu *c;
1f84260c
CL
1766 unsigned long flags;
1767
c016b0bd 1768 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 1769 return NULL;
1f84260c 1770
894b8788 1771 local_irq_save(flags);
9dfc6e68
CL
1772 c = __this_cpu_ptr(s->cpu_slab);
1773 object = c->freelist;
9dfc6e68 1774 if (unlikely(!object || !node_match(c, node)))
894b8788 1775
dfb4f096 1776 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1777
1778 else {
ff12059e 1779 c->freelist = get_freepointer(s, object);
84e554e6 1780 stat(s, ALLOC_FASTPATH);
894b8788
CL
1781 }
1782 local_irq_restore(flags);
d07dbea4 1783
74e2134f 1784 if (unlikely(gfpflags & __GFP_ZERO) && object)
ff12059e 1785 memset(object, 0, s->objsize);
d07dbea4 1786
c016b0bd 1787 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 1788
894b8788 1789 return object;
81819f0f
CL
1790}
1791
1792void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1793{
2154a336 1794 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 1795
ca2b84cb 1796 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
1797
1798 return ret;
81819f0f
CL
1799}
1800EXPORT_SYMBOL(kmem_cache_alloc);
1801
0f24f128 1802#ifdef CONFIG_TRACING
4a92379b
RK
1803void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
1804{
1805 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1806 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
1807 return ret;
1808}
1809EXPORT_SYMBOL(kmem_cache_alloc_trace);
1810
1811void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 1812{
4a92379b
RK
1813 void *ret = kmalloc_order(size, flags, order);
1814 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1815 return ret;
5b882be4 1816}
4a92379b 1817EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
1818#endif
1819
81819f0f
CL
1820#ifdef CONFIG_NUMA
1821void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1822{
5b882be4
EGM
1823 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1824
ca2b84cb
EGM
1825 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1826 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
1827
1828 return ret;
81819f0f
CL
1829}
1830EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 1831
0f24f128 1832#ifdef CONFIG_TRACING
4a92379b 1833void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 1834 gfp_t gfpflags,
4a92379b 1835 int node, size_t size)
5b882be4 1836{
4a92379b
RK
1837 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1838
1839 trace_kmalloc_node(_RET_IP_, ret,
1840 size, s->size, gfpflags, node);
1841 return ret;
5b882be4 1842}
4a92379b 1843EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 1844#endif
5d1f57e4 1845#endif
5b882be4 1846
81819f0f 1847/*
894b8788
CL
1848 * Slow patch handling. This may still be called frequently since objects
1849 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1850 *
894b8788
CL
1851 * So we still attempt to reduce cache line usage. Just take the slab
1852 * lock and free the item. If there is no additional partial page
1853 * handling required then we can return immediately.
81819f0f 1854 */
894b8788 1855static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 1856 void *x, unsigned long addr)
81819f0f
CL
1857{
1858 void *prior;
1859 void **object = (void *)x;
81819f0f 1860
84e554e6 1861 stat(s, FREE_SLOWPATH);
81819f0f
CL
1862 slab_lock(page);
1863
af537b0a 1864 if (kmem_cache_debug(s))
81819f0f 1865 goto debug;
6446faa2 1866
81819f0f 1867checks_ok:
ff12059e
CL
1868 prior = page->freelist;
1869 set_freepointer(s, object, prior);
81819f0f
CL
1870 page->freelist = object;
1871 page->inuse--;
1872
8a38082d 1873 if (unlikely(PageSlubFrozen(page))) {
84e554e6 1874 stat(s, FREE_FROZEN);
81819f0f 1875 goto out_unlock;
8ff12cfc 1876 }
81819f0f
CL
1877
1878 if (unlikely(!page->inuse))
1879 goto slab_empty;
1880
1881 /*
6446faa2 1882 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
1883 * then add it.
1884 */
a973e9dd 1885 if (unlikely(!prior)) {
7c2e132c 1886 add_partial(get_node(s, page_to_nid(page)), page, 1);
84e554e6 1887 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 1888 }
81819f0f
CL
1889
1890out_unlock:
1891 slab_unlock(page);
81819f0f
CL
1892 return;
1893
1894slab_empty:
a973e9dd 1895 if (prior) {
81819f0f 1896 /*
672bba3a 1897 * Slab still on the partial list.
81819f0f
CL
1898 */
1899 remove_partial(s, page);
84e554e6 1900 stat(s, FREE_REMOVE_PARTIAL);
8ff12cfc 1901 }
81819f0f 1902 slab_unlock(page);
84e554e6 1903 stat(s, FREE_SLAB);
81819f0f 1904 discard_slab(s, page);
81819f0f
CL
1905 return;
1906
1907debug:
3ec09742 1908 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 1909 goto out_unlock;
77c5e2d0 1910 goto checks_ok;
81819f0f
CL
1911}
1912
894b8788
CL
1913/*
1914 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1915 * can perform fastpath freeing without additional function calls.
1916 *
1917 * The fastpath is only possible if we are freeing to the current cpu slab
1918 * of this processor. This typically the case if we have just allocated
1919 * the item before.
1920 *
1921 * If fastpath is not possible then fall back to __slab_free where we deal
1922 * with all sorts of special processing.
1923 */
06428780 1924static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 1925 struct page *page, void *x, unsigned long addr)
894b8788
CL
1926{
1927 void **object = (void *)x;
dfb4f096 1928 struct kmem_cache_cpu *c;
1f84260c
CL
1929 unsigned long flags;
1930
c016b0bd
CL
1931 slab_free_hook(s, x);
1932
894b8788 1933 local_irq_save(flags);
9dfc6e68 1934 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd
CL
1935
1936 slab_free_hook_irq(s, x);
1937
15b7c514 1938 if (likely(page == c->page && c->node != NUMA_NO_NODE)) {
ff12059e 1939 set_freepointer(s, object, c->freelist);
dfb4f096 1940 c->freelist = object;
84e554e6 1941 stat(s, FREE_FASTPATH);
894b8788 1942 } else
ff12059e 1943 __slab_free(s, page, x, addr);
894b8788
CL
1944
1945 local_irq_restore(flags);
1946}
1947
81819f0f
CL
1948void kmem_cache_free(struct kmem_cache *s, void *x)
1949{
77c5e2d0 1950 struct page *page;
81819f0f 1951
b49af68f 1952 page = virt_to_head_page(x);
81819f0f 1953
ce71e27c 1954 slab_free(s, page, x, _RET_IP_);
5b882be4 1955
ca2b84cb 1956 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
1957}
1958EXPORT_SYMBOL(kmem_cache_free);
1959
81819f0f 1960/*
672bba3a
CL
1961 * Object placement in a slab is made very easy because we always start at
1962 * offset 0. If we tune the size of the object to the alignment then we can
1963 * get the required alignment by putting one properly sized object after
1964 * another.
81819f0f
CL
1965 *
1966 * Notice that the allocation order determines the sizes of the per cpu
1967 * caches. Each processor has always one slab available for allocations.
1968 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1969 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1970 * locking overhead.
81819f0f
CL
1971 */
1972
1973/*
1974 * Mininum / Maximum order of slab pages. This influences locking overhead
1975 * and slab fragmentation. A higher order reduces the number of partial slabs
1976 * and increases the number of allocations possible without having to
1977 * take the list_lock.
1978 */
1979static int slub_min_order;
114e9e89 1980static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 1981static int slub_min_objects;
81819f0f
CL
1982
1983/*
1984 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1985 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1986 */
1987static int slub_nomerge;
1988
81819f0f
CL
1989/*
1990 * Calculate the order of allocation given an slab object size.
1991 *
672bba3a
CL
1992 * The order of allocation has significant impact on performance and other
1993 * system components. Generally order 0 allocations should be preferred since
1994 * order 0 does not cause fragmentation in the page allocator. Larger objects
1995 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 1996 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
1997 * would be wasted.
1998 *
1999 * In order to reach satisfactory performance we must ensure that a minimum
2000 * number of objects is in one slab. Otherwise we may generate too much
2001 * activity on the partial lists which requires taking the list_lock. This is
2002 * less a concern for large slabs though which are rarely used.
81819f0f 2003 *
672bba3a
CL
2004 * slub_max_order specifies the order where we begin to stop considering the
2005 * number of objects in a slab as critical. If we reach slub_max_order then
2006 * we try to keep the page order as low as possible. So we accept more waste
2007 * of space in favor of a small page order.
81819f0f 2008 *
672bba3a
CL
2009 * Higher order allocations also allow the placement of more objects in a
2010 * slab and thereby reduce object handling overhead. If the user has
2011 * requested a higher mininum order then we start with that one instead of
2012 * the smallest order which will fit the object.
81819f0f 2013 */
5e6d444e
CL
2014static inline int slab_order(int size, int min_objects,
2015 int max_order, int fract_leftover)
81819f0f
CL
2016{
2017 int order;
2018 int rem;
6300ea75 2019 int min_order = slub_min_order;
81819f0f 2020
210b5c06
CG
2021 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
2022 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2023
6300ea75 2024 for (order = max(min_order,
5e6d444e
CL
2025 fls(min_objects * size - 1) - PAGE_SHIFT);
2026 order <= max_order; order++) {
81819f0f 2027
5e6d444e 2028 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2029
5e6d444e 2030 if (slab_size < min_objects * size)
81819f0f
CL
2031 continue;
2032
2033 rem = slab_size % size;
2034
5e6d444e 2035 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2036 break;
2037
2038 }
672bba3a 2039
81819f0f
CL
2040 return order;
2041}
2042
5e6d444e
CL
2043static inline int calculate_order(int size)
2044{
2045 int order;
2046 int min_objects;
2047 int fraction;
e8120ff1 2048 int max_objects;
5e6d444e
CL
2049
2050 /*
2051 * Attempt to find best configuration for a slab. This
2052 * works by first attempting to generate a layout with
2053 * the best configuration and backing off gradually.
2054 *
2055 * First we reduce the acceptable waste in a slab. Then
2056 * we reduce the minimum objects required in a slab.
2057 */
2058 min_objects = slub_min_objects;
9b2cd506
CL
2059 if (!min_objects)
2060 min_objects = 4 * (fls(nr_cpu_ids) + 1);
e8120ff1
ZY
2061 max_objects = (PAGE_SIZE << slub_max_order)/size;
2062 min_objects = min(min_objects, max_objects);
2063
5e6d444e 2064 while (min_objects > 1) {
c124f5b5 2065 fraction = 16;
5e6d444e
CL
2066 while (fraction >= 4) {
2067 order = slab_order(size, min_objects,
2068 slub_max_order, fraction);
2069 if (order <= slub_max_order)
2070 return order;
2071 fraction /= 2;
2072 }
5086c389 2073 min_objects--;
5e6d444e
CL
2074 }
2075
2076 /*
2077 * We were unable to place multiple objects in a slab. Now
2078 * lets see if we can place a single object there.
2079 */
2080 order = slab_order(size, 1, slub_max_order, 1);
2081 if (order <= slub_max_order)
2082 return order;
2083
2084 /*
2085 * Doh this slab cannot be placed using slub_max_order.
2086 */
2087 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 2088 if (order < MAX_ORDER)
5e6d444e
CL
2089 return order;
2090 return -ENOSYS;
2091}
2092
81819f0f 2093/*
672bba3a 2094 * Figure out what the alignment of the objects will be.
81819f0f
CL
2095 */
2096static unsigned long calculate_alignment(unsigned long flags,
2097 unsigned long align, unsigned long size)
2098{
2099 /*
6446faa2
CL
2100 * If the user wants hardware cache aligned objects then follow that
2101 * suggestion if the object is sufficiently large.
81819f0f 2102 *
6446faa2
CL
2103 * The hardware cache alignment cannot override the specified
2104 * alignment though. If that is greater then use it.
81819f0f 2105 */
b6210386
NP
2106 if (flags & SLAB_HWCACHE_ALIGN) {
2107 unsigned long ralign = cache_line_size();
2108 while (size <= ralign / 2)
2109 ralign /= 2;
2110 align = max(align, ralign);
2111 }
81819f0f
CL
2112
2113 if (align < ARCH_SLAB_MINALIGN)
b6210386 2114 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2115
2116 return ALIGN(align, sizeof(void *));
2117}
2118
5595cffc
PE
2119static void
2120init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2121{
2122 n->nr_partial = 0;
81819f0f
CL
2123 spin_lock_init(&n->list_lock);
2124 INIT_LIST_HEAD(&n->partial);
8ab1372f 2125#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2126 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2127 atomic_long_set(&n->total_objects, 0);
643b1138 2128 INIT_LIST_HEAD(&n->full);
8ab1372f 2129#endif
81819f0f
CL
2130}
2131
55136592 2132static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2133{
6c182dc0
CL
2134 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2135 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2136
6c182dc0 2137 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
4c93c355 2138
6c182dc0 2139 return s->cpu_slab != NULL;
4c93c355 2140}
4c93c355 2141
51df1142
CL
2142static struct kmem_cache *kmem_cache_node;
2143
81819f0f
CL
2144/*
2145 * No kmalloc_node yet so do it by hand. We know that this is the first
2146 * slab on the node for this slabcache. There are no concurrent accesses
2147 * possible.
2148 *
2149 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2150 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2151 * memory on a fresh node that has no slab structures yet.
81819f0f 2152 */
55136592 2153static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2154{
2155 struct page *page;
2156 struct kmem_cache_node *n;
ba84c73c 2157 unsigned long flags;
81819f0f 2158
51df1142 2159 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2160
51df1142 2161 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2162
2163 BUG_ON(!page);
a2f92ee7
CL
2164 if (page_to_nid(page) != node) {
2165 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2166 "node %d\n", node);
2167 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2168 "in order to be able to continue\n");
2169 }
2170
81819f0f
CL
2171 n = page->freelist;
2172 BUG_ON(!n);
51df1142 2173 page->freelist = get_freepointer(kmem_cache_node, n);
81819f0f 2174 page->inuse++;
51df1142 2175 kmem_cache_node->node[node] = n;
8ab1372f 2176#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2177 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2178 init_tracking(kmem_cache_node, n);
8ab1372f 2179#endif
51df1142
CL
2180 init_kmem_cache_node(n, kmem_cache_node);
2181 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2182
ba84c73c 2183 /*
2184 * lockdep requires consistent irq usage for each lock
2185 * so even though there cannot be a race this early in
2186 * the boot sequence, we still disable irqs.
2187 */
2188 local_irq_save(flags);
7c2e132c 2189 add_partial(n, page, 0);
ba84c73c 2190 local_irq_restore(flags);
81819f0f
CL
2191}
2192
2193static void free_kmem_cache_nodes(struct kmem_cache *s)
2194{
2195 int node;
2196
f64dc58c 2197 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2198 struct kmem_cache_node *n = s->node[node];
51df1142 2199
73367bd8 2200 if (n)
51df1142
CL
2201 kmem_cache_free(kmem_cache_node, n);
2202
81819f0f
CL
2203 s->node[node] = NULL;
2204 }
2205}
2206
55136592 2207static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2208{
2209 int node;
81819f0f 2210
f64dc58c 2211 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2212 struct kmem_cache_node *n;
2213
73367bd8 2214 if (slab_state == DOWN) {
55136592 2215 early_kmem_cache_node_alloc(node);
73367bd8
AD
2216 continue;
2217 }
51df1142 2218 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2219 GFP_KERNEL, node);
81819f0f 2220
73367bd8
AD
2221 if (!n) {
2222 free_kmem_cache_nodes(s);
2223 return 0;
81819f0f 2224 }
73367bd8 2225
81819f0f 2226 s->node[node] = n;
5595cffc 2227 init_kmem_cache_node(n, s);
81819f0f
CL
2228 }
2229 return 1;
2230}
81819f0f 2231
c0bdb232 2232static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2233{
2234 if (min < MIN_PARTIAL)
2235 min = MIN_PARTIAL;
2236 else if (min > MAX_PARTIAL)
2237 min = MAX_PARTIAL;
2238 s->min_partial = min;
2239}
2240
81819f0f
CL
2241/*
2242 * calculate_sizes() determines the order and the distribution of data within
2243 * a slab object.
2244 */
06b285dc 2245static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2246{
2247 unsigned long flags = s->flags;
2248 unsigned long size = s->objsize;
2249 unsigned long align = s->align;
834f3d11 2250 int order;
81819f0f 2251
d8b42bf5
CL
2252 /*
2253 * Round up object size to the next word boundary. We can only
2254 * place the free pointer at word boundaries and this determines
2255 * the possible location of the free pointer.
2256 */
2257 size = ALIGN(size, sizeof(void *));
2258
2259#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2260 /*
2261 * Determine if we can poison the object itself. If the user of
2262 * the slab may touch the object after free or before allocation
2263 * then we should never poison the object itself.
2264 */
2265 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2266 !s->ctor)
81819f0f
CL
2267 s->flags |= __OBJECT_POISON;
2268 else
2269 s->flags &= ~__OBJECT_POISON;
2270
81819f0f
CL
2271
2272 /*
672bba3a 2273 * If we are Redzoning then check if there is some space between the
81819f0f 2274 * end of the object and the free pointer. If not then add an
672bba3a 2275 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2276 */
2277 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2278 size += sizeof(void *);
41ecc55b 2279#endif
81819f0f
CL
2280
2281 /*
672bba3a
CL
2282 * With that we have determined the number of bytes in actual use
2283 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2284 */
2285 s->inuse = size;
2286
2287 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2288 s->ctor)) {
81819f0f
CL
2289 /*
2290 * Relocate free pointer after the object if it is not
2291 * permitted to overwrite the first word of the object on
2292 * kmem_cache_free.
2293 *
2294 * This is the case if we do RCU, have a constructor or
2295 * destructor or are poisoning the objects.
2296 */
2297 s->offset = size;
2298 size += sizeof(void *);
2299 }
2300
c12b3c62 2301#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2302 if (flags & SLAB_STORE_USER)
2303 /*
2304 * Need to store information about allocs and frees after
2305 * the object.
2306 */
2307 size += 2 * sizeof(struct track);
2308
be7b3fbc 2309 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2310 /*
2311 * Add some empty padding so that we can catch
2312 * overwrites from earlier objects rather than let
2313 * tracking information or the free pointer be
0211a9c8 2314 * corrupted if a user writes before the start
81819f0f
CL
2315 * of the object.
2316 */
2317 size += sizeof(void *);
41ecc55b 2318#endif
672bba3a 2319
81819f0f
CL
2320 /*
2321 * Determine the alignment based on various parameters that the
65c02d4c
CL
2322 * user specified and the dynamic determination of cache line size
2323 * on bootup.
81819f0f
CL
2324 */
2325 align = calculate_alignment(flags, align, s->objsize);
dcb0ce1b 2326 s->align = align;
81819f0f
CL
2327
2328 /*
2329 * SLUB stores one object immediately after another beginning from
2330 * offset 0. In order to align the objects we have to simply size
2331 * each object to conform to the alignment.
2332 */
2333 size = ALIGN(size, align);
2334 s->size = size;
06b285dc
CL
2335 if (forced_order >= 0)
2336 order = forced_order;
2337 else
2338 order = calculate_order(size);
81819f0f 2339
834f3d11 2340 if (order < 0)
81819f0f
CL
2341 return 0;
2342
b7a49f0d 2343 s->allocflags = 0;
834f3d11 2344 if (order)
b7a49f0d
CL
2345 s->allocflags |= __GFP_COMP;
2346
2347 if (s->flags & SLAB_CACHE_DMA)
2348 s->allocflags |= SLUB_DMA;
2349
2350 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2351 s->allocflags |= __GFP_RECLAIMABLE;
2352
81819f0f
CL
2353 /*
2354 * Determine the number of objects per slab
2355 */
834f3d11 2356 s->oo = oo_make(order, size);
65c3376a 2357 s->min = oo_make(get_order(size), size);
205ab99d
CL
2358 if (oo_objects(s->oo) > oo_objects(s->max))
2359 s->max = s->oo;
81819f0f 2360
834f3d11 2361 return !!oo_objects(s->oo);
81819f0f
CL
2362
2363}
2364
55136592 2365static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
2366 const char *name, size_t size,
2367 size_t align, unsigned long flags,
51cc5068 2368 void (*ctor)(void *))
81819f0f
CL
2369{
2370 memset(s, 0, kmem_size);
2371 s->name = name;
2372 s->ctor = ctor;
81819f0f 2373 s->objsize = size;
81819f0f 2374 s->align = align;
ba0268a8 2375 s->flags = kmem_cache_flags(size, flags, name, ctor);
81819f0f 2376
06b285dc 2377 if (!calculate_sizes(s, -1))
81819f0f 2378 goto error;
3de47213
DR
2379 if (disable_higher_order_debug) {
2380 /*
2381 * Disable debugging flags that store metadata if the min slab
2382 * order increased.
2383 */
2384 if (get_order(s->size) > get_order(s->objsize)) {
2385 s->flags &= ~DEBUG_METADATA_FLAGS;
2386 s->offset = 0;
2387 if (!calculate_sizes(s, -1))
2388 goto error;
2389 }
2390 }
81819f0f 2391
3b89d7d8
DR
2392 /*
2393 * The larger the object size is, the more pages we want on the partial
2394 * list to avoid pounding the page allocator excessively.
2395 */
c0bdb232 2396 set_min_partial(s, ilog2(s->size));
81819f0f
CL
2397 s->refcount = 1;
2398#ifdef CONFIG_NUMA
e2cb96b7 2399 s->remote_node_defrag_ratio = 1000;
81819f0f 2400#endif
55136592 2401 if (!init_kmem_cache_nodes(s))
dfb4f096 2402 goto error;
81819f0f 2403
55136592 2404 if (alloc_kmem_cache_cpus(s))
81819f0f 2405 return 1;
ff12059e 2406
4c93c355 2407 free_kmem_cache_nodes(s);
81819f0f
CL
2408error:
2409 if (flags & SLAB_PANIC)
2410 panic("Cannot create slab %s size=%lu realsize=%u "
2411 "order=%u offset=%u flags=%lx\n",
834f3d11 2412 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2413 s->offset, flags);
2414 return 0;
2415}
81819f0f 2416
81819f0f
CL
2417/*
2418 * Determine the size of a slab object
2419 */
2420unsigned int kmem_cache_size(struct kmem_cache *s)
2421{
2422 return s->objsize;
2423}
2424EXPORT_SYMBOL(kmem_cache_size);
2425
33b12c38
CL
2426static void list_slab_objects(struct kmem_cache *s, struct page *page,
2427 const char *text)
2428{
2429#ifdef CONFIG_SLUB_DEBUG
2430 void *addr = page_address(page);
2431 void *p;
a5dd5c11
NK
2432 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2433 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
2434 if (!map)
2435 return;
33b12c38
CL
2436 slab_err(s, page, "%s", text);
2437 slab_lock(page);
2438 for_each_free_object(p, s, page->freelist)
2439 set_bit(slab_index(p, s, addr), map);
2440
2441 for_each_object(p, s, addr, page->objects) {
2442
2443 if (!test_bit(slab_index(p, s, addr), map)) {
2444 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2445 p, p - addr);
2446 print_tracking(s, p);
2447 }
2448 }
2449 slab_unlock(page);
bbd7d57b 2450 kfree(map);
33b12c38
CL
2451#endif
2452}
2453
81819f0f 2454/*
599870b1 2455 * Attempt to free all partial slabs on a node.
81819f0f 2456 */
599870b1 2457static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2458{
81819f0f
CL
2459 unsigned long flags;
2460 struct page *page, *h;
2461
2462 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2463 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 2464 if (!page->inuse) {
62e346a8 2465 __remove_partial(n, page);
81819f0f 2466 discard_slab(s, page);
33b12c38
CL
2467 } else {
2468 list_slab_objects(s, page,
2469 "Objects remaining on kmem_cache_close()");
599870b1 2470 }
33b12c38 2471 }
81819f0f 2472 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2473}
2474
2475/*
672bba3a 2476 * Release all resources used by a slab cache.
81819f0f 2477 */
0c710013 2478static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2479{
2480 int node;
2481
2482 flush_all(s);
9dfc6e68 2483 free_percpu(s->cpu_slab);
81819f0f 2484 /* Attempt to free all objects */
f64dc58c 2485 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2486 struct kmem_cache_node *n = get_node(s, node);
2487
599870b1
CL
2488 free_partial(s, n);
2489 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2490 return 1;
2491 }
2492 free_kmem_cache_nodes(s);
2493 return 0;
2494}
2495
2496/*
2497 * Close a cache and release the kmem_cache structure
2498 * (must be used for caches created using kmem_cache_create)
2499 */
2500void kmem_cache_destroy(struct kmem_cache *s)
2501{
2502 down_write(&slub_lock);
2503 s->refcount--;
2504 if (!s->refcount) {
2505 list_del(&s->list);
d629d819
PE
2506 if (kmem_cache_close(s)) {
2507 printk(KERN_ERR "SLUB %s: %s called for cache that "
2508 "still has objects.\n", s->name, __func__);
2509 dump_stack();
2510 }
d76b1590
ED
2511 if (s->flags & SLAB_DESTROY_BY_RCU)
2512 rcu_barrier();
81819f0f 2513 sysfs_slab_remove(s);
2bce6485
CL
2514 }
2515 up_write(&slub_lock);
81819f0f
CL
2516}
2517EXPORT_SYMBOL(kmem_cache_destroy);
2518
2519/********************************************************************
2520 * Kmalloc subsystem
2521 *******************************************************************/
2522
51df1142 2523struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
2524EXPORT_SYMBOL(kmalloc_caches);
2525
51df1142
CL
2526static struct kmem_cache *kmem_cache;
2527
55136592 2528#ifdef CONFIG_ZONE_DMA
51df1142 2529static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
2530#endif
2531
81819f0f
CL
2532static int __init setup_slub_min_order(char *str)
2533{
06428780 2534 get_option(&str, &slub_min_order);
81819f0f
CL
2535
2536 return 1;
2537}
2538
2539__setup("slub_min_order=", setup_slub_min_order);
2540
2541static int __init setup_slub_max_order(char *str)
2542{
06428780 2543 get_option(&str, &slub_max_order);
818cf590 2544 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
2545
2546 return 1;
2547}
2548
2549__setup("slub_max_order=", setup_slub_max_order);
2550
2551static int __init setup_slub_min_objects(char *str)
2552{
06428780 2553 get_option(&str, &slub_min_objects);
81819f0f
CL
2554
2555 return 1;
2556}
2557
2558__setup("slub_min_objects=", setup_slub_min_objects);
2559
2560static int __init setup_slub_nomerge(char *str)
2561{
2562 slub_nomerge = 1;
2563 return 1;
2564}
2565
2566__setup("slub_nomerge", setup_slub_nomerge);
2567
51df1142
CL
2568static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2569 int size, unsigned int flags)
81819f0f 2570{
51df1142
CL
2571 struct kmem_cache *s;
2572
2573 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2574
83b519e8
PE
2575 /*
2576 * This function is called with IRQs disabled during early-boot on
2577 * single CPU so there's no need to take slub_lock here.
2578 */
55136592 2579 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 2580 flags, NULL))
81819f0f
CL
2581 goto panic;
2582
2583 list_add(&s->list, &slab_caches);
51df1142 2584 return s;
81819f0f
CL
2585
2586panic:
2587 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 2588 return NULL;
81819f0f
CL
2589}
2590
f1b26339
CL
2591/*
2592 * Conversion table for small slabs sizes / 8 to the index in the
2593 * kmalloc array. This is necessary for slabs < 192 since we have non power
2594 * of two cache sizes there. The size of larger slabs can be determined using
2595 * fls.
2596 */
2597static s8 size_index[24] = {
2598 3, /* 8 */
2599 4, /* 16 */
2600 5, /* 24 */
2601 5, /* 32 */
2602 6, /* 40 */
2603 6, /* 48 */
2604 6, /* 56 */
2605 6, /* 64 */
2606 1, /* 72 */
2607 1, /* 80 */
2608 1, /* 88 */
2609 1, /* 96 */
2610 7, /* 104 */
2611 7, /* 112 */
2612 7, /* 120 */
2613 7, /* 128 */
2614 2, /* 136 */
2615 2, /* 144 */
2616 2, /* 152 */
2617 2, /* 160 */
2618 2, /* 168 */
2619 2, /* 176 */
2620 2, /* 184 */
2621 2 /* 192 */
2622};
2623
acdfcd04
AK
2624static inline int size_index_elem(size_t bytes)
2625{
2626 return (bytes - 1) / 8;
2627}
2628
81819f0f
CL
2629static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2630{
f1b26339 2631 int index;
81819f0f 2632
f1b26339
CL
2633 if (size <= 192) {
2634 if (!size)
2635 return ZERO_SIZE_PTR;
81819f0f 2636
acdfcd04 2637 index = size_index[size_index_elem(size)];
aadb4bc4 2638 } else
f1b26339 2639 index = fls(size - 1);
81819f0f
CL
2640
2641#ifdef CONFIG_ZONE_DMA
f1b26339 2642 if (unlikely((flags & SLUB_DMA)))
51df1142 2643 return kmalloc_dma_caches[index];
f1b26339 2644
81819f0f 2645#endif
51df1142 2646 return kmalloc_caches[index];
81819f0f
CL
2647}
2648
2649void *__kmalloc(size_t size, gfp_t flags)
2650{
aadb4bc4 2651 struct kmem_cache *s;
5b882be4 2652 void *ret;
81819f0f 2653
ffadd4d0 2654 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 2655 return kmalloc_large(size, flags);
aadb4bc4
CL
2656
2657 s = get_slab(size, flags);
2658
2659 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2660 return s;
2661
2154a336 2662 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2663
ca2b84cb 2664 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
2665
2666 return ret;
81819f0f
CL
2667}
2668EXPORT_SYMBOL(__kmalloc);
2669
5d1f57e4 2670#ifdef CONFIG_NUMA
f619cfe1
CL
2671static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2672{
b1eeab67 2673 struct page *page;
e4f7c0b4 2674 void *ptr = NULL;
f619cfe1 2675
b1eeab67
VN
2676 flags |= __GFP_COMP | __GFP_NOTRACK;
2677 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 2678 if (page)
e4f7c0b4
CM
2679 ptr = page_address(page);
2680
2681 kmemleak_alloc(ptr, size, 1, flags);
2682 return ptr;
f619cfe1
CL
2683}
2684
81819f0f
CL
2685void *__kmalloc_node(size_t size, gfp_t flags, int node)
2686{
aadb4bc4 2687 struct kmem_cache *s;
5b882be4 2688 void *ret;
81819f0f 2689
057685cf 2690 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
2691 ret = kmalloc_large_node(size, flags, node);
2692
ca2b84cb
EGM
2693 trace_kmalloc_node(_RET_IP_, ret,
2694 size, PAGE_SIZE << get_order(size),
2695 flags, node);
5b882be4
EGM
2696
2697 return ret;
2698 }
aadb4bc4
CL
2699
2700 s = get_slab(size, flags);
2701
2702 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2703 return s;
2704
5b882be4
EGM
2705 ret = slab_alloc(s, flags, node, _RET_IP_);
2706
ca2b84cb 2707 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
2708
2709 return ret;
81819f0f
CL
2710}
2711EXPORT_SYMBOL(__kmalloc_node);
2712#endif
2713
2714size_t ksize(const void *object)
2715{
272c1d21 2716 struct page *page;
81819f0f 2717
ef8b4520 2718 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2719 return 0;
2720
294a80a8 2721 page = virt_to_head_page(object);
294a80a8 2722
76994412
PE
2723 if (unlikely(!PageSlab(page))) {
2724 WARN_ON(!PageCompound(page));
294a80a8 2725 return PAGE_SIZE << compound_order(page);
76994412 2726 }
81819f0f 2727
b3d41885 2728 return slab_ksize(page->slab);
81819f0f 2729}
b1aabecd 2730EXPORT_SYMBOL(ksize);
81819f0f
CL
2731
2732void kfree(const void *x)
2733{
81819f0f 2734 struct page *page;
5bb983b0 2735 void *object = (void *)x;
81819f0f 2736
2121db74
PE
2737 trace_kfree(_RET_IP_, x);
2738
2408c550 2739 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2740 return;
2741
b49af68f 2742 page = virt_to_head_page(x);
aadb4bc4 2743 if (unlikely(!PageSlab(page))) {
0937502a 2744 BUG_ON(!PageCompound(page));
e4f7c0b4 2745 kmemleak_free(x);
aadb4bc4
CL
2746 put_page(page);
2747 return;
2748 }
ce71e27c 2749 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
2750}
2751EXPORT_SYMBOL(kfree);
2752
2086d26a 2753/*
672bba3a
CL
2754 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2755 * the remaining slabs by the number of items in use. The slabs with the
2756 * most items in use come first. New allocations will then fill those up
2757 * and thus they can be removed from the partial lists.
2758 *
2759 * The slabs with the least items are placed last. This results in them
2760 * being allocated from last increasing the chance that the last objects
2761 * are freed in them.
2086d26a
CL
2762 */
2763int kmem_cache_shrink(struct kmem_cache *s)
2764{
2765 int node;
2766 int i;
2767 struct kmem_cache_node *n;
2768 struct page *page;
2769 struct page *t;
205ab99d 2770 int objects = oo_objects(s->max);
2086d26a 2771 struct list_head *slabs_by_inuse =
834f3d11 2772 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
2773 unsigned long flags;
2774
2775 if (!slabs_by_inuse)
2776 return -ENOMEM;
2777
2778 flush_all(s);
f64dc58c 2779 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
2780 n = get_node(s, node);
2781
2782 if (!n->nr_partial)
2783 continue;
2784
834f3d11 2785 for (i = 0; i < objects; i++)
2086d26a
CL
2786 INIT_LIST_HEAD(slabs_by_inuse + i);
2787
2788 spin_lock_irqsave(&n->list_lock, flags);
2789
2790 /*
672bba3a 2791 * Build lists indexed by the items in use in each slab.
2086d26a 2792 *
672bba3a
CL
2793 * Note that concurrent frees may occur while we hold the
2794 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2795 */
2796 list_for_each_entry_safe(page, t, &n->partial, lru) {
2797 if (!page->inuse && slab_trylock(page)) {
2798 /*
2799 * Must hold slab lock here because slab_free
2800 * may have freed the last object and be
2801 * waiting to release the slab.
2802 */
62e346a8 2803 __remove_partial(n, page);
2086d26a
CL
2804 slab_unlock(page);
2805 discard_slab(s, page);
2806 } else {
fcda3d89
CL
2807 list_move(&page->lru,
2808 slabs_by_inuse + page->inuse);
2086d26a
CL
2809 }
2810 }
2811
2086d26a 2812 /*
672bba3a
CL
2813 * Rebuild the partial list with the slabs filled up most
2814 * first and the least used slabs at the end.
2086d26a 2815 */
834f3d11 2816 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
2817 list_splice(slabs_by_inuse + i, n->partial.prev);
2818
2086d26a
CL
2819 spin_unlock_irqrestore(&n->list_lock, flags);
2820 }
2821
2822 kfree(slabs_by_inuse);
2823 return 0;
2824}
2825EXPORT_SYMBOL(kmem_cache_shrink);
2826
92a5bbc1 2827#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
2828static int slab_mem_going_offline_callback(void *arg)
2829{
2830 struct kmem_cache *s;
2831
2832 down_read(&slub_lock);
2833 list_for_each_entry(s, &slab_caches, list)
2834 kmem_cache_shrink(s);
2835 up_read(&slub_lock);
2836
2837 return 0;
2838}
2839
2840static void slab_mem_offline_callback(void *arg)
2841{
2842 struct kmem_cache_node *n;
2843 struct kmem_cache *s;
2844 struct memory_notify *marg = arg;
2845 int offline_node;
2846
2847 offline_node = marg->status_change_nid;
2848
2849 /*
2850 * If the node still has available memory. we need kmem_cache_node
2851 * for it yet.
2852 */
2853 if (offline_node < 0)
2854 return;
2855
2856 down_read(&slub_lock);
2857 list_for_each_entry(s, &slab_caches, list) {
2858 n = get_node(s, offline_node);
2859 if (n) {
2860 /*
2861 * if n->nr_slabs > 0, slabs still exist on the node
2862 * that is going down. We were unable to free them,
c9404c9c 2863 * and offline_pages() function shouldn't call this
b9049e23
YG
2864 * callback. So, we must fail.
2865 */
0f389ec6 2866 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
2867
2868 s->node[offline_node] = NULL;
8de66a0c 2869 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
2870 }
2871 }
2872 up_read(&slub_lock);
2873}
2874
2875static int slab_mem_going_online_callback(void *arg)
2876{
2877 struct kmem_cache_node *n;
2878 struct kmem_cache *s;
2879 struct memory_notify *marg = arg;
2880 int nid = marg->status_change_nid;
2881 int ret = 0;
2882
2883 /*
2884 * If the node's memory is already available, then kmem_cache_node is
2885 * already created. Nothing to do.
2886 */
2887 if (nid < 0)
2888 return 0;
2889
2890 /*
0121c619 2891 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
2892 * allocate a kmem_cache_node structure in order to bring the node
2893 * online.
2894 */
2895 down_read(&slub_lock);
2896 list_for_each_entry(s, &slab_caches, list) {
2897 /*
2898 * XXX: kmem_cache_alloc_node will fallback to other nodes
2899 * since memory is not yet available from the node that
2900 * is brought up.
2901 */
8de66a0c 2902 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
2903 if (!n) {
2904 ret = -ENOMEM;
2905 goto out;
2906 }
5595cffc 2907 init_kmem_cache_node(n, s);
b9049e23
YG
2908 s->node[nid] = n;
2909 }
2910out:
2911 up_read(&slub_lock);
2912 return ret;
2913}
2914
2915static int slab_memory_callback(struct notifier_block *self,
2916 unsigned long action, void *arg)
2917{
2918 int ret = 0;
2919
2920 switch (action) {
2921 case MEM_GOING_ONLINE:
2922 ret = slab_mem_going_online_callback(arg);
2923 break;
2924 case MEM_GOING_OFFLINE:
2925 ret = slab_mem_going_offline_callback(arg);
2926 break;
2927 case MEM_OFFLINE:
2928 case MEM_CANCEL_ONLINE:
2929 slab_mem_offline_callback(arg);
2930 break;
2931 case MEM_ONLINE:
2932 case MEM_CANCEL_OFFLINE:
2933 break;
2934 }
dc19f9db
KH
2935 if (ret)
2936 ret = notifier_from_errno(ret);
2937 else
2938 ret = NOTIFY_OK;
b9049e23
YG
2939 return ret;
2940}
2941
2942#endif /* CONFIG_MEMORY_HOTPLUG */
2943
81819f0f
CL
2944/********************************************************************
2945 * Basic setup of slabs
2946 *******************************************************************/
2947
51df1142
CL
2948/*
2949 * Used for early kmem_cache structures that were allocated using
2950 * the page allocator
2951 */
2952
2953static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
2954{
2955 int node;
2956
2957 list_add(&s->list, &slab_caches);
2958 s->refcount = -1;
2959
2960 for_each_node_state(node, N_NORMAL_MEMORY) {
2961 struct kmem_cache_node *n = get_node(s, node);
2962 struct page *p;
2963
2964 if (n) {
2965 list_for_each_entry(p, &n->partial, lru)
2966 p->slab = s;
2967
2968#ifdef CONFIG_SLAB_DEBUG
2969 list_for_each_entry(p, &n->full, lru)
2970 p->slab = s;
2971#endif
2972 }
2973 }
2974}
2975
81819f0f
CL
2976void __init kmem_cache_init(void)
2977{
2978 int i;
4b356be0 2979 int caches = 0;
51df1142
CL
2980 struct kmem_cache *temp_kmem_cache;
2981 int order;
51df1142
CL
2982 struct kmem_cache *temp_kmem_cache_node;
2983 unsigned long kmalloc_size;
2984
2985 kmem_size = offsetof(struct kmem_cache, node) +
2986 nr_node_ids * sizeof(struct kmem_cache_node *);
2987
2988 /* Allocate two kmem_caches from the page allocator */
2989 kmalloc_size = ALIGN(kmem_size, cache_line_size());
2990 order = get_order(2 * kmalloc_size);
2991 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
2992
81819f0f
CL
2993 /*
2994 * Must first have the slab cache available for the allocations of the
672bba3a 2995 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
2996 * kmem_cache_open for slab_state == DOWN.
2997 */
51df1142
CL
2998 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
2999
3000 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3001 sizeof(struct kmem_cache_node),
3002 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3003
0c40ba4f 3004 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3005
3006 /* Able to allocate the per node structures */
3007 slab_state = PARTIAL;
3008
51df1142
CL
3009 temp_kmem_cache = kmem_cache;
3010 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3011 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3012 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3013 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3014
51df1142
CL
3015 /*
3016 * Allocate kmem_cache_node properly from the kmem_cache slab.
3017 * kmem_cache_node is separately allocated so no need to
3018 * update any list pointers.
3019 */
3020 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3021
51df1142
CL
3022 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3023 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3024
3025 kmem_cache_bootstrap_fixup(kmem_cache_node);
3026
3027 caches++;
51df1142
CL
3028 kmem_cache_bootstrap_fixup(kmem_cache);
3029 caches++;
3030 /* Free temporary boot structure */
3031 free_pages((unsigned long)temp_kmem_cache, order);
3032
3033 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3034
3035 /*
3036 * Patch up the size_index table if we have strange large alignment
3037 * requirements for the kmalloc array. This is only the case for
6446faa2 3038 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3039 *
3040 * Largest permitted alignment is 256 bytes due to the way we
3041 * handle the index determination for the smaller caches.
3042 *
3043 * Make sure that nothing crazy happens if someone starts tinkering
3044 * around with ARCH_KMALLOC_MINALIGN
3045 */
3046 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3047 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3048
acdfcd04
AK
3049 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3050 int elem = size_index_elem(i);
3051 if (elem >= ARRAY_SIZE(size_index))
3052 break;
3053 size_index[elem] = KMALLOC_SHIFT_LOW;
3054 }
f1b26339 3055
acdfcd04
AK
3056 if (KMALLOC_MIN_SIZE == 64) {
3057 /*
3058 * The 96 byte size cache is not used if the alignment
3059 * is 64 byte.
3060 */
3061 for (i = 64 + 8; i <= 96; i += 8)
3062 size_index[size_index_elem(i)] = 7;
3063 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3064 /*
3065 * The 192 byte sized cache is not used if the alignment
3066 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3067 * instead.
3068 */
3069 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3070 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3071 }
3072
51df1142
CL
3073 /* Caches that are not of the two-to-the-power-of size */
3074 if (KMALLOC_MIN_SIZE <= 32) {
3075 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3076 caches++;
3077 }
3078
3079 if (KMALLOC_MIN_SIZE <= 64) {
3080 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3081 caches++;
3082 }
3083
3084 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3085 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3086 caches++;
3087 }
3088
81819f0f
CL
3089 slab_state = UP;
3090
3091 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3092 if (KMALLOC_MIN_SIZE <= 32) {
3093 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3094 BUG_ON(!kmalloc_caches[1]->name);
3095 }
3096
3097 if (KMALLOC_MIN_SIZE <= 64) {
3098 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3099 BUG_ON(!kmalloc_caches[2]->name);
3100 }
3101
d7278bd7
CL
3102 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3103 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3104
3105 BUG_ON(!s);
51df1142 3106 kmalloc_caches[i]->name = s;
d7278bd7 3107 }
81819f0f
CL
3108
3109#ifdef CONFIG_SMP
3110 register_cpu_notifier(&slab_notifier);
9dfc6e68 3111#endif
81819f0f 3112
55136592 3113#ifdef CONFIG_ZONE_DMA
51df1142
CL
3114 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3115 struct kmem_cache *s = kmalloc_caches[i];
55136592 3116
51df1142 3117 if (s && s->size) {
55136592
CL
3118 char *name = kasprintf(GFP_NOWAIT,
3119 "dma-kmalloc-%d", s->objsize);
3120
3121 BUG_ON(!name);
51df1142
CL
3122 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3123 s->objsize, SLAB_CACHE_DMA);
55136592
CL
3124 }
3125 }
3126#endif
3adbefee
IM
3127 printk(KERN_INFO
3128 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3129 " CPUs=%d, Nodes=%d\n",
3130 caches, cache_line_size(),
81819f0f
CL
3131 slub_min_order, slub_max_order, slub_min_objects,
3132 nr_cpu_ids, nr_node_ids);
3133}
3134
7e85ee0c
PE
3135void __init kmem_cache_init_late(void)
3136{
7e85ee0c
PE
3137}
3138
81819f0f
CL
3139/*
3140 * Find a mergeable slab cache
3141 */
3142static int slab_unmergeable(struct kmem_cache *s)
3143{
3144 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3145 return 1;
3146
c59def9f 3147 if (s->ctor)
81819f0f
CL
3148 return 1;
3149
8ffa6875
CL
3150 /*
3151 * We may have set a slab to be unmergeable during bootstrap.
3152 */
3153 if (s->refcount < 0)
3154 return 1;
3155
81819f0f
CL
3156 return 0;
3157}
3158
3159static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3160 size_t align, unsigned long flags, const char *name,
51cc5068 3161 void (*ctor)(void *))
81819f0f 3162{
5b95a4ac 3163 struct kmem_cache *s;
81819f0f
CL
3164
3165 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3166 return NULL;
3167
c59def9f 3168 if (ctor)
81819f0f
CL
3169 return NULL;
3170
3171 size = ALIGN(size, sizeof(void *));
3172 align = calculate_alignment(flags, align, size);
3173 size = ALIGN(size, align);
ba0268a8 3174 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3175
5b95a4ac 3176 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3177 if (slab_unmergeable(s))
3178 continue;
3179
3180 if (size > s->size)
3181 continue;
3182
ba0268a8 3183 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3184 continue;
3185 /*
3186 * Check if alignment is compatible.
3187 * Courtesy of Adrian Drzewiecki
3188 */
06428780 3189 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3190 continue;
3191
3192 if (s->size - size >= sizeof(void *))
3193 continue;
3194
3195 return s;
3196 }
3197 return NULL;
3198}
3199
3200struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3201 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3202{
3203 struct kmem_cache *s;
84c1cf62 3204 char *n;
81819f0f 3205
fe1ff49d
BH
3206 if (WARN_ON(!name))
3207 return NULL;
3208
81819f0f 3209 down_write(&slub_lock);
ba0268a8 3210 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3211 if (s) {
3212 s->refcount++;
3213 /*
3214 * Adjust the object sizes so that we clear
3215 * the complete object on kzalloc.
3216 */
3217 s->objsize = max(s->objsize, (int)size);
3218 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3219
7b8f3b66 3220 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3221 s->refcount--;
81819f0f 3222 goto err;
7b8f3b66 3223 }
2bce6485 3224 up_write(&slub_lock);
a0e1d1be
CL
3225 return s;
3226 }
6446faa2 3227
84c1cf62
PE
3228 n = kstrdup(name, GFP_KERNEL);
3229 if (!n)
3230 goto err;
3231
a0e1d1be
CL
3232 s = kmalloc(kmem_size, GFP_KERNEL);
3233 if (s) {
84c1cf62 3234 if (kmem_cache_open(s, n,
c59def9f 3235 size, align, flags, ctor)) {
81819f0f 3236 list_add(&s->list, &slab_caches);
7b8f3b66 3237 if (sysfs_slab_add(s)) {
7b8f3b66 3238 list_del(&s->list);
84c1cf62 3239 kfree(n);
7b8f3b66 3240 kfree(s);
a0e1d1be 3241 goto err;
7b8f3b66 3242 }
2bce6485 3243 up_write(&slub_lock);
a0e1d1be
CL
3244 return s;
3245 }
84c1cf62 3246 kfree(n);
a0e1d1be 3247 kfree(s);
81819f0f 3248 }
68cee4f1 3249err:
81819f0f 3250 up_write(&slub_lock);
81819f0f 3251
81819f0f
CL
3252 if (flags & SLAB_PANIC)
3253 panic("Cannot create slabcache %s\n", name);
3254 else
3255 s = NULL;
3256 return s;
3257}
3258EXPORT_SYMBOL(kmem_cache_create);
3259
81819f0f 3260#ifdef CONFIG_SMP
81819f0f 3261/*
672bba3a
CL
3262 * Use the cpu notifier to insure that the cpu slabs are flushed when
3263 * necessary.
81819f0f
CL
3264 */
3265static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3266 unsigned long action, void *hcpu)
3267{
3268 long cpu = (long)hcpu;
5b95a4ac
CL
3269 struct kmem_cache *s;
3270 unsigned long flags;
81819f0f
CL
3271
3272 switch (action) {
3273 case CPU_UP_CANCELED:
8bb78442 3274 case CPU_UP_CANCELED_FROZEN:
81819f0f 3275 case CPU_DEAD:
8bb78442 3276 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3277 down_read(&slub_lock);
3278 list_for_each_entry(s, &slab_caches, list) {
3279 local_irq_save(flags);
3280 __flush_cpu_slab(s, cpu);
3281 local_irq_restore(flags);
3282 }
3283 up_read(&slub_lock);
81819f0f
CL
3284 break;
3285 default:
3286 break;
3287 }
3288 return NOTIFY_OK;
3289}
3290
06428780 3291static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3292 .notifier_call = slab_cpuup_callback
06428780 3293};
81819f0f
CL
3294
3295#endif
3296
ce71e27c 3297void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3298{
aadb4bc4 3299 struct kmem_cache *s;
94b528d0 3300 void *ret;
aadb4bc4 3301
ffadd4d0 3302 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3303 return kmalloc_large(size, gfpflags);
3304
aadb4bc4 3305 s = get_slab(size, gfpflags);
81819f0f 3306
2408c550 3307 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3308 return s;
81819f0f 3309
2154a336 3310 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0
EGM
3311
3312 /* Honor the call site pointer we recieved. */
ca2b84cb 3313 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3314
3315 return ret;
81819f0f
CL
3316}
3317
5d1f57e4 3318#ifdef CONFIG_NUMA
81819f0f 3319void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3320 int node, unsigned long caller)
81819f0f 3321{
aadb4bc4 3322 struct kmem_cache *s;
94b528d0 3323 void *ret;
aadb4bc4 3324
d3e14aa3
XF
3325 if (unlikely(size > SLUB_MAX_SIZE)) {
3326 ret = kmalloc_large_node(size, gfpflags, node);
3327
3328 trace_kmalloc_node(caller, ret,
3329 size, PAGE_SIZE << get_order(size),
3330 gfpflags, node);
3331
3332 return ret;
3333 }
eada35ef 3334
aadb4bc4 3335 s = get_slab(size, gfpflags);
81819f0f 3336
2408c550 3337 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3338 return s;
81819f0f 3339
94b528d0
EGM
3340 ret = slab_alloc(s, gfpflags, node, caller);
3341
3342 /* Honor the call site pointer we recieved. */
ca2b84cb 3343 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3344
3345 return ret;
81819f0f 3346}
5d1f57e4 3347#endif
81819f0f 3348
ab4d5ed5 3349#ifdef CONFIG_SYSFS
205ab99d
CL
3350static int count_inuse(struct page *page)
3351{
3352 return page->inuse;
3353}
3354
3355static int count_total(struct page *page)
3356{
3357 return page->objects;
3358}
ab4d5ed5 3359#endif
205ab99d 3360
ab4d5ed5 3361#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3362static int validate_slab(struct kmem_cache *s, struct page *page,
3363 unsigned long *map)
53e15af0
CL
3364{
3365 void *p;
a973e9dd 3366 void *addr = page_address(page);
53e15af0
CL
3367
3368 if (!check_slab(s, page) ||
3369 !on_freelist(s, page, NULL))
3370 return 0;
3371
3372 /* Now we know that a valid freelist exists */
39b26464 3373 bitmap_zero(map, page->objects);
53e15af0 3374
7656c72b
CL
3375 for_each_free_object(p, s, page->freelist) {
3376 set_bit(slab_index(p, s, addr), map);
37d57443 3377 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
53e15af0
CL
3378 return 0;
3379 }
3380
224a88be 3381 for_each_object(p, s, addr, page->objects)
7656c72b 3382 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3383 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3384 return 0;
3385 return 1;
3386}
3387
434e245d
CL
3388static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3389 unsigned long *map)
53e15af0
CL
3390{
3391 if (slab_trylock(page)) {
434e245d 3392 validate_slab(s, page, map);
53e15af0
CL
3393 slab_unlock(page);
3394 } else
3395 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3396 s->name, page);
53e15af0
CL
3397}
3398
434e245d
CL
3399static int validate_slab_node(struct kmem_cache *s,
3400 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3401{
3402 unsigned long count = 0;
3403 struct page *page;
3404 unsigned long flags;
3405
3406 spin_lock_irqsave(&n->list_lock, flags);
3407
3408 list_for_each_entry(page, &n->partial, lru) {
434e245d 3409 validate_slab_slab(s, page, map);
53e15af0
CL
3410 count++;
3411 }
3412 if (count != n->nr_partial)
3413 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3414 "counter=%ld\n", s->name, count, n->nr_partial);
3415
3416 if (!(s->flags & SLAB_STORE_USER))
3417 goto out;
3418
3419 list_for_each_entry(page, &n->full, lru) {
434e245d 3420 validate_slab_slab(s, page, map);
53e15af0
CL
3421 count++;
3422 }
3423 if (count != atomic_long_read(&n->nr_slabs))
3424 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3425 "counter=%ld\n", s->name, count,
3426 atomic_long_read(&n->nr_slabs));
3427
3428out:
3429 spin_unlock_irqrestore(&n->list_lock, flags);
3430 return count;
3431}
3432
434e245d 3433static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3434{
3435 int node;
3436 unsigned long count = 0;
205ab99d 3437 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3438 sizeof(unsigned long), GFP_KERNEL);
3439
3440 if (!map)
3441 return -ENOMEM;
53e15af0
CL
3442
3443 flush_all(s);
f64dc58c 3444 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3445 struct kmem_cache_node *n = get_node(s, node);
3446
434e245d 3447 count += validate_slab_node(s, n, map);
53e15af0 3448 }
434e245d 3449 kfree(map);
53e15af0
CL
3450 return count;
3451}
88a420e4 3452/*
672bba3a 3453 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3454 * and freed.
3455 */
3456
3457struct location {
3458 unsigned long count;
ce71e27c 3459 unsigned long addr;
45edfa58
CL
3460 long long sum_time;
3461 long min_time;
3462 long max_time;
3463 long min_pid;
3464 long max_pid;
174596a0 3465 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3466 nodemask_t nodes;
88a420e4
CL
3467};
3468
3469struct loc_track {
3470 unsigned long max;
3471 unsigned long count;
3472 struct location *loc;
3473};
3474
3475static void free_loc_track(struct loc_track *t)
3476{
3477 if (t->max)
3478 free_pages((unsigned long)t->loc,
3479 get_order(sizeof(struct location) * t->max));
3480}
3481
68dff6a9 3482static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3483{
3484 struct location *l;
3485 int order;
3486
88a420e4
CL
3487 order = get_order(sizeof(struct location) * max);
3488
68dff6a9 3489 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3490 if (!l)
3491 return 0;
3492
3493 if (t->count) {
3494 memcpy(l, t->loc, sizeof(struct location) * t->count);
3495 free_loc_track(t);
3496 }
3497 t->max = max;
3498 t->loc = l;
3499 return 1;
3500}
3501
3502static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3503 const struct track *track)
88a420e4
CL
3504{
3505 long start, end, pos;
3506 struct location *l;
ce71e27c 3507 unsigned long caddr;
45edfa58 3508 unsigned long age = jiffies - track->when;
88a420e4
CL
3509
3510 start = -1;
3511 end = t->count;
3512
3513 for ( ; ; ) {
3514 pos = start + (end - start + 1) / 2;
3515
3516 /*
3517 * There is nothing at "end". If we end up there
3518 * we need to add something to before end.
3519 */
3520 if (pos == end)
3521 break;
3522
3523 caddr = t->loc[pos].addr;
45edfa58
CL
3524 if (track->addr == caddr) {
3525
3526 l = &t->loc[pos];
3527 l->count++;
3528 if (track->when) {
3529 l->sum_time += age;
3530 if (age < l->min_time)
3531 l->min_time = age;
3532 if (age > l->max_time)
3533 l->max_time = age;
3534
3535 if (track->pid < l->min_pid)
3536 l->min_pid = track->pid;
3537 if (track->pid > l->max_pid)
3538 l->max_pid = track->pid;
3539
174596a0
RR
3540 cpumask_set_cpu(track->cpu,
3541 to_cpumask(l->cpus));
45edfa58
CL
3542 }
3543 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3544 return 1;
3545 }
3546
45edfa58 3547 if (track->addr < caddr)
88a420e4
CL
3548 end = pos;
3549 else
3550 start = pos;
3551 }
3552
3553 /*
672bba3a 3554 * Not found. Insert new tracking element.
88a420e4 3555 */
68dff6a9 3556 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3557 return 0;
3558
3559 l = t->loc + pos;
3560 if (pos < t->count)
3561 memmove(l + 1, l,
3562 (t->count - pos) * sizeof(struct location));
3563 t->count++;
3564 l->count = 1;
45edfa58
CL
3565 l->addr = track->addr;
3566 l->sum_time = age;
3567 l->min_time = age;
3568 l->max_time = age;
3569 l->min_pid = track->pid;
3570 l->max_pid = track->pid;
174596a0
RR
3571 cpumask_clear(to_cpumask(l->cpus));
3572 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
3573 nodes_clear(l->nodes);
3574 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3575 return 1;
3576}
3577
3578static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 3579 struct page *page, enum track_item alloc,
a5dd5c11 3580 unsigned long *map)
88a420e4 3581{
a973e9dd 3582 void *addr = page_address(page);
88a420e4
CL
3583 void *p;
3584
39b26464 3585 bitmap_zero(map, page->objects);
7656c72b
CL
3586 for_each_free_object(p, s, page->freelist)
3587 set_bit(slab_index(p, s, addr), map);
88a420e4 3588
224a88be 3589 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3590 if (!test_bit(slab_index(p, s, addr), map))
3591 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3592}
3593
3594static int list_locations(struct kmem_cache *s, char *buf,
3595 enum track_item alloc)
3596{
e374d483 3597 int len = 0;
88a420e4 3598 unsigned long i;
68dff6a9 3599 struct loc_track t = { 0, 0, NULL };
88a420e4 3600 int node;
bbd7d57b
ED
3601 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3602 sizeof(unsigned long), GFP_KERNEL);
88a420e4 3603
bbd7d57b
ED
3604 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3605 GFP_TEMPORARY)) {
3606 kfree(map);
68dff6a9 3607 return sprintf(buf, "Out of memory\n");
bbd7d57b 3608 }
88a420e4
CL
3609 /* Push back cpu slabs */
3610 flush_all(s);
3611
f64dc58c 3612 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3613 struct kmem_cache_node *n = get_node(s, node);
3614 unsigned long flags;
3615 struct page *page;
3616
9e86943b 3617 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3618 continue;
3619
3620 spin_lock_irqsave(&n->list_lock, flags);
3621 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 3622 process_slab(&t, s, page, alloc, map);
88a420e4 3623 list_for_each_entry(page, &n->full, lru)
bbd7d57b 3624 process_slab(&t, s, page, alloc, map);
88a420e4
CL
3625 spin_unlock_irqrestore(&n->list_lock, flags);
3626 }
3627
3628 for (i = 0; i < t.count; i++) {
45edfa58 3629 struct location *l = &t.loc[i];
88a420e4 3630
9c246247 3631 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 3632 break;
e374d483 3633 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3634
3635 if (l->addr)
62c70bce 3636 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 3637 else
e374d483 3638 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3639
3640 if (l->sum_time != l->min_time) {
e374d483 3641 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
3642 l->min_time,
3643 (long)div_u64(l->sum_time, l->count),
3644 l->max_time);
45edfa58 3645 } else
e374d483 3646 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3647 l->min_time);
3648
3649 if (l->min_pid != l->max_pid)
e374d483 3650 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3651 l->min_pid, l->max_pid);
3652 else
e374d483 3653 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3654 l->min_pid);
3655
174596a0
RR
3656 if (num_online_cpus() > 1 &&
3657 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
3658 len < PAGE_SIZE - 60) {
3659 len += sprintf(buf + len, " cpus=");
3660 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 3661 to_cpumask(l->cpus));
45edfa58
CL
3662 }
3663
62bc62a8 3664 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3665 len < PAGE_SIZE - 60) {
3666 len += sprintf(buf + len, " nodes=");
3667 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3668 l->nodes);
3669 }
3670
e374d483 3671 len += sprintf(buf + len, "\n");
88a420e4
CL
3672 }
3673
3674 free_loc_track(&t);
bbd7d57b 3675 kfree(map);
88a420e4 3676 if (!t.count)
e374d483
HH
3677 len += sprintf(buf, "No data\n");
3678 return len;
88a420e4 3679}
ab4d5ed5 3680#endif
88a420e4 3681
a5a84755
CL
3682#ifdef SLUB_RESILIENCY_TEST
3683static void resiliency_test(void)
3684{
3685 u8 *p;
3686
3687 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
3688
3689 printk(KERN_ERR "SLUB resiliency testing\n");
3690 printk(KERN_ERR "-----------------------\n");
3691 printk(KERN_ERR "A. Corruption after allocation\n");
3692
3693 p = kzalloc(16, GFP_KERNEL);
3694 p[16] = 0x12;
3695 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3696 " 0x12->0x%p\n\n", p + 16);
3697
3698 validate_slab_cache(kmalloc_caches[4]);
3699
3700 /* Hmmm... The next two are dangerous */
3701 p = kzalloc(32, GFP_KERNEL);
3702 p[32 + sizeof(void *)] = 0x34;
3703 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3704 " 0x34 -> -0x%p\n", p);
3705 printk(KERN_ERR
3706 "If allocated object is overwritten then not detectable\n\n");
3707
3708 validate_slab_cache(kmalloc_caches[5]);
3709 p = kzalloc(64, GFP_KERNEL);
3710 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3711 *p = 0x56;
3712 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3713 p);
3714 printk(KERN_ERR
3715 "If allocated object is overwritten then not detectable\n\n");
3716 validate_slab_cache(kmalloc_caches[6]);
3717
3718 printk(KERN_ERR "\nB. Corruption after free\n");
3719 p = kzalloc(128, GFP_KERNEL);
3720 kfree(p);
3721 *p = 0x78;
3722 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3723 validate_slab_cache(kmalloc_caches[7]);
3724
3725 p = kzalloc(256, GFP_KERNEL);
3726 kfree(p);
3727 p[50] = 0x9a;
3728 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3729 p);
3730 validate_slab_cache(kmalloc_caches[8]);
3731
3732 p = kzalloc(512, GFP_KERNEL);
3733 kfree(p);
3734 p[512] = 0xab;
3735 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3736 validate_slab_cache(kmalloc_caches[9]);
3737}
3738#else
3739#ifdef CONFIG_SYSFS
3740static void resiliency_test(void) {};
3741#endif
3742#endif
3743
ab4d5ed5 3744#ifdef CONFIG_SYSFS
81819f0f 3745enum slab_stat_type {
205ab99d
CL
3746 SL_ALL, /* All slabs */
3747 SL_PARTIAL, /* Only partially allocated slabs */
3748 SL_CPU, /* Only slabs used for cpu caches */
3749 SL_OBJECTS, /* Determine allocated objects not slabs */
3750 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
3751};
3752
205ab99d 3753#define SO_ALL (1 << SL_ALL)
81819f0f
CL
3754#define SO_PARTIAL (1 << SL_PARTIAL)
3755#define SO_CPU (1 << SL_CPU)
3756#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 3757#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 3758
62e5c4b4
CG
3759static ssize_t show_slab_objects(struct kmem_cache *s,
3760 char *buf, unsigned long flags)
81819f0f
CL
3761{
3762 unsigned long total = 0;
81819f0f
CL
3763 int node;
3764 int x;
3765 unsigned long *nodes;
3766 unsigned long *per_cpu;
3767
3768 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
3769 if (!nodes)
3770 return -ENOMEM;
81819f0f
CL
3771 per_cpu = nodes + nr_node_ids;
3772
205ab99d
CL
3773 if (flags & SO_CPU) {
3774 int cpu;
81819f0f 3775
205ab99d 3776 for_each_possible_cpu(cpu) {
9dfc6e68 3777 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
dfb4f096 3778
205ab99d
CL
3779 if (!c || c->node < 0)
3780 continue;
3781
3782 if (c->page) {
3783 if (flags & SO_TOTAL)
3784 x = c->page->objects;
3785 else if (flags & SO_OBJECTS)
3786 x = c->page->inuse;
81819f0f
CL
3787 else
3788 x = 1;
205ab99d 3789
81819f0f 3790 total += x;
205ab99d 3791 nodes[c->node] += x;
81819f0f 3792 }
205ab99d 3793 per_cpu[c->node]++;
81819f0f
CL
3794 }
3795 }
3796
04d94879 3797 lock_memory_hotplug();
ab4d5ed5 3798#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
3799 if (flags & SO_ALL) {
3800 for_each_node_state(node, N_NORMAL_MEMORY) {
3801 struct kmem_cache_node *n = get_node(s, node);
3802
3803 if (flags & SO_TOTAL)
3804 x = atomic_long_read(&n->total_objects);
3805 else if (flags & SO_OBJECTS)
3806 x = atomic_long_read(&n->total_objects) -
3807 count_partial(n, count_free);
81819f0f 3808
81819f0f 3809 else
205ab99d 3810 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
3811 total += x;
3812 nodes[node] += x;
3813 }
3814
ab4d5ed5
CL
3815 } else
3816#endif
3817 if (flags & SO_PARTIAL) {
205ab99d
CL
3818 for_each_node_state(node, N_NORMAL_MEMORY) {
3819 struct kmem_cache_node *n = get_node(s, node);
81819f0f 3820
205ab99d
CL
3821 if (flags & SO_TOTAL)
3822 x = count_partial(n, count_total);
3823 else if (flags & SO_OBJECTS)
3824 x = count_partial(n, count_inuse);
81819f0f 3825 else
205ab99d 3826 x = n->nr_partial;
81819f0f
CL
3827 total += x;
3828 nodes[node] += x;
3829 }
3830 }
81819f0f
CL
3831 x = sprintf(buf, "%lu", total);
3832#ifdef CONFIG_NUMA
f64dc58c 3833 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
3834 if (nodes[node])
3835 x += sprintf(buf + x, " N%d=%lu",
3836 node, nodes[node]);
3837#endif
04d94879 3838 unlock_memory_hotplug();
81819f0f
CL
3839 kfree(nodes);
3840 return x + sprintf(buf + x, "\n");
3841}
3842
ab4d5ed5 3843#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3844static int any_slab_objects(struct kmem_cache *s)
3845{
3846 int node;
81819f0f 3847
dfb4f096 3848 for_each_online_node(node) {
81819f0f
CL
3849 struct kmem_cache_node *n = get_node(s, node);
3850
dfb4f096
CL
3851 if (!n)
3852 continue;
3853
4ea33e2d 3854 if (atomic_long_read(&n->total_objects))
81819f0f
CL
3855 return 1;
3856 }
3857 return 0;
3858}
ab4d5ed5 3859#endif
81819f0f
CL
3860
3861#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3862#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3863
3864struct slab_attribute {
3865 struct attribute attr;
3866 ssize_t (*show)(struct kmem_cache *s, char *buf);
3867 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3868};
3869
3870#define SLAB_ATTR_RO(_name) \
3871 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3872
3873#define SLAB_ATTR(_name) \
3874 static struct slab_attribute _name##_attr = \
3875 __ATTR(_name, 0644, _name##_show, _name##_store)
3876
81819f0f
CL
3877static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3878{
3879 return sprintf(buf, "%d\n", s->size);
3880}
3881SLAB_ATTR_RO(slab_size);
3882
3883static ssize_t align_show(struct kmem_cache *s, char *buf)
3884{
3885 return sprintf(buf, "%d\n", s->align);
3886}
3887SLAB_ATTR_RO(align);
3888
3889static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3890{
3891 return sprintf(buf, "%d\n", s->objsize);
3892}
3893SLAB_ATTR_RO(object_size);
3894
3895static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3896{
834f3d11 3897 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
3898}
3899SLAB_ATTR_RO(objs_per_slab);
3900
06b285dc
CL
3901static ssize_t order_store(struct kmem_cache *s,
3902 const char *buf, size_t length)
3903{
0121c619
CL
3904 unsigned long order;
3905 int err;
3906
3907 err = strict_strtoul(buf, 10, &order);
3908 if (err)
3909 return err;
06b285dc
CL
3910
3911 if (order > slub_max_order || order < slub_min_order)
3912 return -EINVAL;
3913
3914 calculate_sizes(s, order);
3915 return length;
3916}
3917
81819f0f
CL
3918static ssize_t order_show(struct kmem_cache *s, char *buf)
3919{
834f3d11 3920 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 3921}
06b285dc 3922SLAB_ATTR(order);
81819f0f 3923
73d342b1
DR
3924static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3925{
3926 return sprintf(buf, "%lu\n", s->min_partial);
3927}
3928
3929static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3930 size_t length)
3931{
3932 unsigned long min;
3933 int err;
3934
3935 err = strict_strtoul(buf, 10, &min);
3936 if (err)
3937 return err;
3938
c0bdb232 3939 set_min_partial(s, min);
73d342b1
DR
3940 return length;
3941}
3942SLAB_ATTR(min_partial);
3943
81819f0f
CL
3944static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3945{
62c70bce
JP
3946 if (!s->ctor)
3947 return 0;
3948 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
3949}
3950SLAB_ATTR_RO(ctor);
3951
81819f0f
CL
3952static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3953{
3954 return sprintf(buf, "%d\n", s->refcount - 1);
3955}
3956SLAB_ATTR_RO(aliases);
3957
81819f0f
CL
3958static ssize_t partial_show(struct kmem_cache *s, char *buf)
3959{
d9acf4b7 3960 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
3961}
3962SLAB_ATTR_RO(partial);
3963
3964static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3965{
d9acf4b7 3966 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
3967}
3968SLAB_ATTR_RO(cpu_slabs);
3969
3970static ssize_t objects_show(struct kmem_cache *s, char *buf)
3971{
205ab99d 3972 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
3973}
3974SLAB_ATTR_RO(objects);
3975
205ab99d
CL
3976static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3977{
3978 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3979}
3980SLAB_ATTR_RO(objects_partial);
3981
a5a84755
CL
3982static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3983{
3984 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3985}
3986
3987static ssize_t reclaim_account_store(struct kmem_cache *s,
3988 const char *buf, size_t length)
3989{
3990 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3991 if (buf[0] == '1')
3992 s->flags |= SLAB_RECLAIM_ACCOUNT;
3993 return length;
3994}
3995SLAB_ATTR(reclaim_account);
3996
3997static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3998{
3999 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4000}
4001SLAB_ATTR_RO(hwcache_align);
4002
4003#ifdef CONFIG_ZONE_DMA
4004static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4005{
4006 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4007}
4008SLAB_ATTR_RO(cache_dma);
4009#endif
4010
4011static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4012{
4013 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4014}
4015SLAB_ATTR_RO(destroy_by_rcu);
4016
ab4d5ed5 4017#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4018static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4019{
4020 return show_slab_objects(s, buf, SO_ALL);
4021}
4022SLAB_ATTR_RO(slabs);
4023
205ab99d
CL
4024static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4025{
4026 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4027}
4028SLAB_ATTR_RO(total_objects);
4029
81819f0f
CL
4030static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4031{
4032 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4033}
4034
4035static ssize_t sanity_checks_store(struct kmem_cache *s,
4036 const char *buf, size_t length)
4037{
4038 s->flags &= ~SLAB_DEBUG_FREE;
4039 if (buf[0] == '1')
4040 s->flags |= SLAB_DEBUG_FREE;
4041 return length;
4042}
4043SLAB_ATTR(sanity_checks);
4044
4045static ssize_t trace_show(struct kmem_cache *s, char *buf)
4046{
4047 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4048}
4049
4050static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4051 size_t length)
4052{
4053 s->flags &= ~SLAB_TRACE;
4054 if (buf[0] == '1')
4055 s->flags |= SLAB_TRACE;
4056 return length;
4057}
4058SLAB_ATTR(trace);
4059
81819f0f
CL
4060static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4061{
4062 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4063}
4064
4065static ssize_t red_zone_store(struct kmem_cache *s,
4066 const char *buf, size_t length)
4067{
4068 if (any_slab_objects(s))
4069 return -EBUSY;
4070
4071 s->flags &= ~SLAB_RED_ZONE;
4072 if (buf[0] == '1')
4073 s->flags |= SLAB_RED_ZONE;
06b285dc 4074 calculate_sizes(s, -1);
81819f0f
CL
4075 return length;
4076}
4077SLAB_ATTR(red_zone);
4078
4079static ssize_t poison_show(struct kmem_cache *s, char *buf)
4080{
4081 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4082}
4083
4084static ssize_t poison_store(struct kmem_cache *s,
4085 const char *buf, size_t length)
4086{
4087 if (any_slab_objects(s))
4088 return -EBUSY;
4089
4090 s->flags &= ~SLAB_POISON;
4091 if (buf[0] == '1')
4092 s->flags |= SLAB_POISON;
06b285dc 4093 calculate_sizes(s, -1);
81819f0f
CL
4094 return length;
4095}
4096SLAB_ATTR(poison);
4097
4098static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4099{
4100 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4101}
4102
4103static ssize_t store_user_store(struct kmem_cache *s,
4104 const char *buf, size_t length)
4105{
4106 if (any_slab_objects(s))
4107 return -EBUSY;
4108
4109 s->flags &= ~SLAB_STORE_USER;
4110 if (buf[0] == '1')
4111 s->flags |= SLAB_STORE_USER;
06b285dc 4112 calculate_sizes(s, -1);
81819f0f
CL
4113 return length;
4114}
4115SLAB_ATTR(store_user);
4116
53e15af0
CL
4117static ssize_t validate_show(struct kmem_cache *s, char *buf)
4118{
4119 return 0;
4120}
4121
4122static ssize_t validate_store(struct kmem_cache *s,
4123 const char *buf, size_t length)
4124{
434e245d
CL
4125 int ret = -EINVAL;
4126
4127 if (buf[0] == '1') {
4128 ret = validate_slab_cache(s);
4129 if (ret >= 0)
4130 ret = length;
4131 }
4132 return ret;
53e15af0
CL
4133}
4134SLAB_ATTR(validate);
a5a84755
CL
4135
4136static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4137{
4138 if (!(s->flags & SLAB_STORE_USER))
4139 return -ENOSYS;
4140 return list_locations(s, buf, TRACK_ALLOC);
4141}
4142SLAB_ATTR_RO(alloc_calls);
4143
4144static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4145{
4146 if (!(s->flags & SLAB_STORE_USER))
4147 return -ENOSYS;
4148 return list_locations(s, buf, TRACK_FREE);
4149}
4150SLAB_ATTR_RO(free_calls);
4151#endif /* CONFIG_SLUB_DEBUG */
4152
4153#ifdef CONFIG_FAILSLAB
4154static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4155{
4156 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4157}
4158
4159static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4160 size_t length)
4161{
4162 s->flags &= ~SLAB_FAILSLAB;
4163 if (buf[0] == '1')
4164 s->flags |= SLAB_FAILSLAB;
4165 return length;
4166}
4167SLAB_ATTR(failslab);
ab4d5ed5 4168#endif
53e15af0 4169
2086d26a
CL
4170static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4171{
4172 return 0;
4173}
4174
4175static ssize_t shrink_store(struct kmem_cache *s,
4176 const char *buf, size_t length)
4177{
4178 if (buf[0] == '1') {
4179 int rc = kmem_cache_shrink(s);
4180
4181 if (rc)
4182 return rc;
4183 } else
4184 return -EINVAL;
4185 return length;
4186}
4187SLAB_ATTR(shrink);
4188
81819f0f 4189#ifdef CONFIG_NUMA
9824601e 4190static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4191{
9824601e 4192 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4193}
4194
9824601e 4195static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4196 const char *buf, size_t length)
4197{
0121c619
CL
4198 unsigned long ratio;
4199 int err;
4200
4201 err = strict_strtoul(buf, 10, &ratio);
4202 if (err)
4203 return err;
4204
e2cb96b7 4205 if (ratio <= 100)
0121c619 4206 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4207
81819f0f
CL
4208 return length;
4209}
9824601e 4210SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4211#endif
4212
8ff12cfc 4213#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4214static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4215{
4216 unsigned long sum = 0;
4217 int cpu;
4218 int len;
4219 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4220
4221 if (!data)
4222 return -ENOMEM;
4223
4224 for_each_online_cpu(cpu) {
9dfc6e68 4225 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4226
4227 data[cpu] = x;
4228 sum += x;
4229 }
4230
4231 len = sprintf(buf, "%lu", sum);
4232
50ef37b9 4233#ifdef CONFIG_SMP
8ff12cfc
CL
4234 for_each_online_cpu(cpu) {
4235 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4236 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4237 }
50ef37b9 4238#endif
8ff12cfc
CL
4239 kfree(data);
4240 return len + sprintf(buf + len, "\n");
4241}
4242
78eb00cc
DR
4243static void clear_stat(struct kmem_cache *s, enum stat_item si)
4244{
4245 int cpu;
4246
4247 for_each_online_cpu(cpu)
9dfc6e68 4248 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4249}
4250
8ff12cfc
CL
4251#define STAT_ATTR(si, text) \
4252static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4253{ \
4254 return show_stat(s, buf, si); \
4255} \
78eb00cc
DR
4256static ssize_t text##_store(struct kmem_cache *s, \
4257 const char *buf, size_t length) \
4258{ \
4259 if (buf[0] != '0') \
4260 return -EINVAL; \
4261 clear_stat(s, si); \
4262 return length; \
4263} \
4264SLAB_ATTR(text); \
8ff12cfc
CL
4265
4266STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4267STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4268STAT_ATTR(FREE_FASTPATH, free_fastpath);
4269STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4270STAT_ATTR(FREE_FROZEN, free_frozen);
4271STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4272STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4273STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4274STAT_ATTR(ALLOC_SLAB, alloc_slab);
4275STAT_ATTR(ALLOC_REFILL, alloc_refill);
4276STAT_ATTR(FREE_SLAB, free_slab);
4277STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4278STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4279STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4280STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4281STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4282STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
65c3376a 4283STAT_ATTR(ORDER_FALLBACK, order_fallback);
8ff12cfc
CL
4284#endif
4285
06428780 4286static struct attribute *slab_attrs[] = {
81819f0f
CL
4287 &slab_size_attr.attr,
4288 &object_size_attr.attr,
4289 &objs_per_slab_attr.attr,
4290 &order_attr.attr,
73d342b1 4291 &min_partial_attr.attr,
81819f0f 4292 &objects_attr.attr,
205ab99d 4293 &objects_partial_attr.attr,
81819f0f
CL
4294 &partial_attr.attr,
4295 &cpu_slabs_attr.attr,
4296 &ctor_attr.attr,
81819f0f
CL
4297 &aliases_attr.attr,
4298 &align_attr.attr,
81819f0f
CL
4299 &hwcache_align_attr.attr,
4300 &reclaim_account_attr.attr,
4301 &destroy_by_rcu_attr.attr,
a5a84755 4302 &shrink_attr.attr,
ab4d5ed5 4303#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4304 &total_objects_attr.attr,
4305 &slabs_attr.attr,
4306 &sanity_checks_attr.attr,
4307 &trace_attr.attr,
81819f0f
CL
4308 &red_zone_attr.attr,
4309 &poison_attr.attr,
4310 &store_user_attr.attr,
53e15af0 4311 &validate_attr.attr,
88a420e4
CL
4312 &alloc_calls_attr.attr,
4313 &free_calls_attr.attr,
ab4d5ed5 4314#endif
81819f0f
CL
4315#ifdef CONFIG_ZONE_DMA
4316 &cache_dma_attr.attr,
4317#endif
4318#ifdef CONFIG_NUMA
9824601e 4319 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4320#endif
4321#ifdef CONFIG_SLUB_STATS
4322 &alloc_fastpath_attr.attr,
4323 &alloc_slowpath_attr.attr,
4324 &free_fastpath_attr.attr,
4325 &free_slowpath_attr.attr,
4326 &free_frozen_attr.attr,
4327 &free_add_partial_attr.attr,
4328 &free_remove_partial_attr.attr,
4329 &alloc_from_partial_attr.attr,
4330 &alloc_slab_attr.attr,
4331 &alloc_refill_attr.attr,
4332 &free_slab_attr.attr,
4333 &cpuslab_flush_attr.attr,
4334 &deactivate_full_attr.attr,
4335 &deactivate_empty_attr.attr,
4336 &deactivate_to_head_attr.attr,
4337 &deactivate_to_tail_attr.attr,
4338 &deactivate_remote_frees_attr.attr,
65c3376a 4339 &order_fallback_attr.attr,
81819f0f 4340#endif
4c13dd3b
DM
4341#ifdef CONFIG_FAILSLAB
4342 &failslab_attr.attr,
4343#endif
4344
81819f0f
CL
4345 NULL
4346};
4347
4348static struct attribute_group slab_attr_group = {
4349 .attrs = slab_attrs,
4350};
4351
4352static ssize_t slab_attr_show(struct kobject *kobj,
4353 struct attribute *attr,
4354 char *buf)
4355{
4356 struct slab_attribute *attribute;
4357 struct kmem_cache *s;
4358 int err;
4359
4360 attribute = to_slab_attr(attr);
4361 s = to_slab(kobj);
4362
4363 if (!attribute->show)
4364 return -EIO;
4365
4366 err = attribute->show(s, buf);
4367
4368 return err;
4369}
4370
4371static ssize_t slab_attr_store(struct kobject *kobj,
4372 struct attribute *attr,
4373 const char *buf, size_t len)
4374{
4375 struct slab_attribute *attribute;
4376 struct kmem_cache *s;
4377 int err;
4378
4379 attribute = to_slab_attr(attr);
4380 s = to_slab(kobj);
4381
4382 if (!attribute->store)
4383 return -EIO;
4384
4385 err = attribute->store(s, buf, len);
4386
4387 return err;
4388}
4389
151c602f
CL
4390static void kmem_cache_release(struct kobject *kobj)
4391{
4392 struct kmem_cache *s = to_slab(kobj);
4393
84c1cf62 4394 kfree(s->name);
151c602f
CL
4395 kfree(s);
4396}
4397
52cf25d0 4398static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
4399 .show = slab_attr_show,
4400 .store = slab_attr_store,
4401};
4402
4403static struct kobj_type slab_ktype = {
4404 .sysfs_ops = &slab_sysfs_ops,
151c602f 4405 .release = kmem_cache_release
81819f0f
CL
4406};
4407
4408static int uevent_filter(struct kset *kset, struct kobject *kobj)
4409{
4410 struct kobj_type *ktype = get_ktype(kobj);
4411
4412 if (ktype == &slab_ktype)
4413 return 1;
4414 return 0;
4415}
4416
9cd43611 4417static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
4418 .filter = uevent_filter,
4419};
4420
27c3a314 4421static struct kset *slab_kset;
81819f0f
CL
4422
4423#define ID_STR_LENGTH 64
4424
4425/* Create a unique string id for a slab cache:
6446faa2
CL
4426 *
4427 * Format :[flags-]size
81819f0f
CL
4428 */
4429static char *create_unique_id(struct kmem_cache *s)
4430{
4431 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4432 char *p = name;
4433
4434 BUG_ON(!name);
4435
4436 *p++ = ':';
4437 /*
4438 * First flags affecting slabcache operations. We will only
4439 * get here for aliasable slabs so we do not need to support
4440 * too many flags. The flags here must cover all flags that
4441 * are matched during merging to guarantee that the id is
4442 * unique.
4443 */
4444 if (s->flags & SLAB_CACHE_DMA)
4445 *p++ = 'd';
4446 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4447 *p++ = 'a';
4448 if (s->flags & SLAB_DEBUG_FREE)
4449 *p++ = 'F';
5a896d9e
VN
4450 if (!(s->flags & SLAB_NOTRACK))
4451 *p++ = 't';
81819f0f
CL
4452 if (p != name + 1)
4453 *p++ = '-';
4454 p += sprintf(p, "%07d", s->size);
4455 BUG_ON(p > name + ID_STR_LENGTH - 1);
4456 return name;
4457}
4458
4459static int sysfs_slab_add(struct kmem_cache *s)
4460{
4461 int err;
4462 const char *name;
4463 int unmergeable;
4464
4465 if (slab_state < SYSFS)
4466 /* Defer until later */
4467 return 0;
4468
4469 unmergeable = slab_unmergeable(s);
4470 if (unmergeable) {
4471 /*
4472 * Slabcache can never be merged so we can use the name proper.
4473 * This is typically the case for debug situations. In that
4474 * case we can catch duplicate names easily.
4475 */
27c3a314 4476 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4477 name = s->name;
4478 } else {
4479 /*
4480 * Create a unique name for the slab as a target
4481 * for the symlinks.
4482 */
4483 name = create_unique_id(s);
4484 }
4485
27c3a314 4486 s->kobj.kset = slab_kset;
1eada11c
GKH
4487 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4488 if (err) {
4489 kobject_put(&s->kobj);
81819f0f 4490 return err;
1eada11c 4491 }
81819f0f
CL
4492
4493 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
4494 if (err) {
4495 kobject_del(&s->kobj);
4496 kobject_put(&s->kobj);
81819f0f 4497 return err;
5788d8ad 4498 }
81819f0f
CL
4499 kobject_uevent(&s->kobj, KOBJ_ADD);
4500 if (!unmergeable) {
4501 /* Setup first alias */
4502 sysfs_slab_alias(s, s->name);
4503 kfree(name);
4504 }
4505 return 0;
4506}
4507
4508static void sysfs_slab_remove(struct kmem_cache *s)
4509{
2bce6485
CL
4510 if (slab_state < SYSFS)
4511 /*
4512 * Sysfs has not been setup yet so no need to remove the
4513 * cache from sysfs.
4514 */
4515 return;
4516
81819f0f
CL
4517 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4518 kobject_del(&s->kobj);
151c602f 4519 kobject_put(&s->kobj);
81819f0f
CL
4520}
4521
4522/*
4523 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 4524 * available lest we lose that information.
81819f0f
CL
4525 */
4526struct saved_alias {
4527 struct kmem_cache *s;
4528 const char *name;
4529 struct saved_alias *next;
4530};
4531
5af328a5 4532static struct saved_alias *alias_list;
81819f0f
CL
4533
4534static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4535{
4536 struct saved_alias *al;
4537
4538 if (slab_state == SYSFS) {
4539 /*
4540 * If we have a leftover link then remove it.
4541 */
27c3a314
GKH
4542 sysfs_remove_link(&slab_kset->kobj, name);
4543 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4544 }
4545
4546 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4547 if (!al)
4548 return -ENOMEM;
4549
4550 al->s = s;
4551 al->name = name;
4552 al->next = alias_list;
4553 alias_list = al;
4554 return 0;
4555}
4556
4557static int __init slab_sysfs_init(void)
4558{
5b95a4ac 4559 struct kmem_cache *s;
81819f0f
CL
4560 int err;
4561
2bce6485
CL
4562 down_write(&slub_lock);
4563
0ff21e46 4564 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4565 if (!slab_kset) {
2bce6485 4566 up_write(&slub_lock);
81819f0f
CL
4567 printk(KERN_ERR "Cannot register slab subsystem.\n");
4568 return -ENOSYS;
4569 }
4570
26a7bd03
CL
4571 slab_state = SYSFS;
4572
5b95a4ac 4573 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4574 err = sysfs_slab_add(s);
5d540fb7
CL
4575 if (err)
4576 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4577 " to sysfs\n", s->name);
26a7bd03 4578 }
81819f0f
CL
4579
4580 while (alias_list) {
4581 struct saved_alias *al = alias_list;
4582
4583 alias_list = alias_list->next;
4584 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4585 if (err)
4586 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4587 " %s to sysfs\n", s->name);
81819f0f
CL
4588 kfree(al);
4589 }
4590
2bce6485 4591 up_write(&slub_lock);
81819f0f
CL
4592 resiliency_test();
4593 return 0;
4594}
4595
4596__initcall(slab_sysfs_init);
ab4d5ed5 4597#endif /* CONFIG_SYSFS */
57ed3eda
PE
4598
4599/*
4600 * The /proc/slabinfo ABI
4601 */
158a9624 4602#ifdef CONFIG_SLABINFO
57ed3eda
PE
4603static void print_slabinfo_header(struct seq_file *m)
4604{
4605 seq_puts(m, "slabinfo - version: 2.1\n");
4606 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4607 "<objperslab> <pagesperslab>");
4608 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4609 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4610 seq_putc(m, '\n');
4611}
4612
4613static void *s_start(struct seq_file *m, loff_t *pos)
4614{
4615 loff_t n = *pos;
4616
4617 down_read(&slub_lock);
4618 if (!n)
4619 print_slabinfo_header(m);
4620
4621 return seq_list_start(&slab_caches, *pos);
4622}
4623
4624static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4625{
4626 return seq_list_next(p, &slab_caches, pos);
4627}
4628
4629static void s_stop(struct seq_file *m, void *p)
4630{
4631 up_read(&slub_lock);
4632}
4633
4634static int s_show(struct seq_file *m, void *p)
4635{
4636 unsigned long nr_partials = 0;
4637 unsigned long nr_slabs = 0;
4638 unsigned long nr_inuse = 0;
205ab99d
CL
4639 unsigned long nr_objs = 0;
4640 unsigned long nr_free = 0;
57ed3eda
PE
4641 struct kmem_cache *s;
4642 int node;
4643
4644 s = list_entry(p, struct kmem_cache, list);
4645
4646 for_each_online_node(node) {
4647 struct kmem_cache_node *n = get_node(s, node);
4648
4649 if (!n)
4650 continue;
4651
4652 nr_partials += n->nr_partial;
4653 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
4654 nr_objs += atomic_long_read(&n->total_objects);
4655 nr_free += count_partial(n, count_free);
57ed3eda
PE
4656 }
4657
205ab99d 4658 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
4659
4660 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
4661 nr_objs, s->size, oo_objects(s->oo),
4662 (1 << oo_order(s->oo)));
57ed3eda
PE
4663 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4664 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4665 0UL);
4666 seq_putc(m, '\n');
4667 return 0;
4668}
4669
7b3c3a50 4670static const struct seq_operations slabinfo_op = {
57ed3eda
PE
4671 .start = s_start,
4672 .next = s_next,
4673 .stop = s_stop,
4674 .show = s_show,
4675};
4676
7b3c3a50
AD
4677static int slabinfo_open(struct inode *inode, struct file *file)
4678{
4679 return seq_open(file, &slabinfo_op);
4680}
4681
4682static const struct file_operations proc_slabinfo_operations = {
4683 .open = slabinfo_open,
4684 .read = seq_read,
4685 .llseek = seq_lseek,
4686 .release = seq_release,
4687};
4688
4689static int __init slab_proc_init(void)
4690{
cf5d1131 4691 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
4692 return 0;
4693}
4694module_init(slab_proc_init);
158a9624 4695#endif /* CONFIG_SLABINFO */